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ABSTRACT

Experimental results are presented which describe the development and

structure of flow downstream of single and double rows of film-cooling holes

with both simple and compound angle orientations. Two configurations are

investigated, a simple angle injection system in which the injectant is introduced

into the freestream parallel to the main flow (as viewed in streamwise/spanwise

planes), and a compound angle injection system in which the injectant is

introduced with spanwise velocity components. Results indicate that effectiveness

depends mostly on four parameters: simple or compound angle injection,

spanwise hole spacing, one or two rows of holes, and blowing ratio. In general,

for a given m, for all the configurations tested, effectiveness is greatest at low

x/d values, and decreases with increasing x/d. As blowing ratio increases,

effectiveness generally decreases, particularly at low x/d values because of lift-

off effects. Iso-energetic Stanton number ratios vary between 1.0 and 1.25 for

all cases, and generally increase with increasing blowing ratio at any given x/d.

Effectiveness values measured downstream of two rows of holes are higher than

values measured downstream of one row of holes. Adiabatic film-cooling

effectiveness data for both the compound angle injection system and the simple

angle injection collapse with minimal scatter in rl/m vs xI/s coordinates.
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I. INTRODUCTION

A. BACKGROUND/THEORY

Current turbine inlet temperatures of gas turbines are approaching 2000 K.

These extreme temperatures, in combination with the high rotational speeds, put

extraordinary stress on component materials, especially on the blades of the first

turbine stage. For long, safe, and reliable operation, an efficient means of

cooling these blades is thus a necessity to avoid excessive thermal stresses. Film

cooling is one method of protection for these gas turbine surfaces, and is

extensively used in commercial and military applications. In the past, simple

angle injection has been the film-cooling method employed most frequently on

turbine blades, turbine endwalls, combustion chamber linings, and afterburner

linings. Simple angle injection refers to situations in which the film is injected

with holes inclined to the test surface such that injectant is issued approximately

in the direction of the mainstream flow.

More recently, gas turbine components include film holes with compound

angle orientations, from which the injectant provides better protection and

higher film effectiveness than injectant from simple angle orientations.

Compound angle orientations are ones in which the film is injected with holes

inclined to the test surface such that the injectant is issued with a spanwise

velocity component relative to the mainstream flow. Although film-cooling is a

common means of turbine blade protection, there is little data which is available

in the archival literature on heat transfer and boundary layer behavior

downstream of film cooling holes with compound angle orientations. Some data



does exist, however, and most of this is currently under the category of

corporate knowledge.

References 1 through 8 study the effectiveness of film-cooling using single

and multiple film-cooling holes. Of these references, 2, 3, 4, 5, 7, and 8, present

results on the effects of film-cooling as influenced by embedded, longitudinal

vortices. More recently, Mitchell [Ref. 7], studied the effect of embedded

vortices on heat transfer downstream of injection holes with com, ")und angle

orientations. Bishop [Ref. 6], studied the flow field downstream of injection

holes with compound angle orientations without embedded vortices.

In the present study, new Stanton number, iso-energetic Stanton number,

adiabatic film effectiveness, mean velocity, mean total pressure, and injectant

distribution data are presented and analyzed for the same compound angle

configuration used by Bishop [Ref. 61, as well as for a simple angle injection hole

configuration. Adiabatic film cooling effectiveness values are determined using

linear superposition theory from Stanton number ratios measured at different

injection temperatures. This is possible since the three-dimensional energy

equation which describes the flow field is linear and homogeneous in its

dependent variable, temperature. This equation is of the form

-(2T -+2T d2T) U _dT + dT + dT
d, 9y 2  dz2) =Ux-+ v-y+ w- (Equation 1.1)

where a= k (Equation 1.2)
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The technique of superposition was first applied to film cooling by Metzger,

Carper and Swank [Ref. 1]. They examined the effect of secondary fluid

injection through nontangential slots on the heat transfer in regions near the

injection site. They found differences in the various tangential injection

geometries employed, as reflected in rather large variations of the adiabatic wall

temperature. These authors employ the parameter (D, which depends on a

temperature difference ratio (0) and a mass velocity ratio (m), to facilitate

comparisons of various film cooling schemes. The parameter (D is defined as:

(D= hmt fi xn uon h
h , ,u _j o ho

thoutinm u h o (Equation 1.3)

In a comment on the Metzger, Carper and Swank paper, E.R.G. Eckert relates 4D

to the adiabatic wall temperature (Tad). The adiabatic wall temperature (Tad), is

defined as the temperature which the film-cooled wall assumes when the heat

flux q in the following equation is zero.

l = hfA(T - Td) (Equation 1.4)

Equation 1.4 relates heat transfer to the difference between the actual wall

temperature and the adiabatic wall temperature with the iso-energetic heat

transfer coefficient hf. Under the condition, q = 0, Tw=Tad. The inverse of the

adiabatic film-cooling effectiveness is given by:

O0 = T -T.

T'd - m (Equation 1.5)

3



Alternatively,

7.d = Td -T. = 1
Tf-Tm , (Equation 1.6)

Equation 1.4 for heat flux may also be expressed in terms of the difference

between the actual wall temperature and the freestream temperature using the

equation given by:

l = hA(T, - Tm) (Equation 1.7)

Setting Equations 1.4 and 1.7 equal then yields:

h=hf T", - T'd
TW "I'm (Equation 1.8)

Adding and subtracting Tm to the numerator of the temperature term of

Equation 1.8 yields:

T, - T~d = (Tw -T.n) -(T~d -W )- (T'd -T.,
T, - Tm (TwT) (Tw - T) (Equation 1.9)

Multiplying numerator and denominator of the right hand term of Equation 1.9

by (Tf-.Tm) and using Equation 1.6 then yields:
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TW - Td 1 d)
T, - T (Equation 1.10)

Substituting Equation 1.10 into Equation 1.8 finally yields:

h = hf(i - (.d) (Equation 1.11)

where;
0=Tf-T,

TW -Tm (Equation 1.12)

In this study heat transfer data is normalized with baseline heat transfer

coefficients, ho , obtained with no injectant. Dividing Equation 1.11 by ho , and

then expressing h and ho in terms of Stanton numbers, St and St o , Equation 1.11

finally becomes:

St StfSt - St o (1 - 01,d)

St. St. (Equation 1.13)

Equation 1.13 is a linear relation between St/Sto and 0. A plot of St/Sto

versus 0, gives a straight line with a vertical axis intercept of Stf/Sto, and a

horizontal axis intercept of Oad, provided temperature variations are small

enough that fluid properties are invariant with respect to distance. Thus, by

extrapolating to the axis intercepts of this straight line, both the iso-energetic

Stanton number ratio Stf/Sto, and the adiabatic film cooling effectiveness rhad, can

be determined. Stf/St o is the ratio of the iso-energetic Stanton number to the

Stanton number without film-cooling. The iso-energetic Stanton number is based

5



on the heat transfer coefficient with film cooling when the temperature of the

injectant is equal to the temperature of the freestream, 0--0.

Now, if St/Sto is set equal to zero in Equation 1.13, the case of no heat

transier at the wall, then it then becomes:

(1-017.d) = 0 (Equation 1.14)

Thus, adiabatic effectiveness is given by;

°d=O (Equation 1.15)

at the horizontal intercept of the straight line.

B. PRESENT STUDY

The objective of the present work is to determine Stanton numbers at theta

values ranging from 0=0, to 0=3.0, at x/d ratios of 6.7, 17.2, 33.1, 54.3, 75.4

and 96.6, for a compound angle injection system, plate 1, and x/d values of 6.8,

17.4, 33.2, 54.4, 75.5, and 96.7 for a simple angle injection system, plate 2.

With the compound angle configuration, plate 1, holes are inclined at 35 degrees

with respect to the test surface when projected into the streamwise/normal plane,

and 30 degrees with respect to the test surface when projected into the

spanwise/normal plane. With the simple angle configuration, plate 2, holes are

inclined at 35 degrees with respect to the test surface in the streamwise/normal

plane. With each configuration, two staggered rows of holes are used. Within

each row, holes are spaced 6 hole diameters apart for the simple angle
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configuration and 7.8 hole diameters apart for the compound angle

configuration. Results presented include distributions of surface heat transfer,

adiabatic film cooling effectiveness deduced from heat transfer coefficients using

superposition, and injectant distributions. Also presented are plots showing the

streamwise development of distributions of mean velocity and mean temperature.

C. EXPERIMENTAL OUTLINE

Three different types of measurements are made in the present study:

1. Heat transfer distributions including Stanton numbers, Stanton number

ratios and adiabatic film cooling effectiveness at 21 spanwise locations at x/d

ratios of 6.7, 17.2, 33.1, 54.3, 75.4 and 96.6 for plate 1, and x/d ratios of 6.8,

17.4, 33.2, 54.4, 75.5, and 96.7 for plate 2.

2. Mean velocity and total pressure surveys in Y-Z planes at x/d values of

11.4, 45.7, and 87.2 for plate 1, and 9.4, 43.7, and 85.2.for plate 2.

3. Mean temperature (T- T ) surveys in Y-Z planes at x/d values of 11.4,

45.7, and 87.2 for plate 1, and 9.4, 43.7, and 85.2 for plate 2, to provide

information on injectant distributions.

These data are obtained for the ten different injection configurations as well

as with no film-cooling. The following configurations are presented: (1) two

staggered rows of compound angle film-cooling holes with a blowing ratio of

m=0.5, (2) two staggered rows of compound angle film-cooling holes with a

blowing ratio of m=l.0, (3) two staggered rows of compound angle film-cooling

holes with a blowing ratio of m=l.5, and (4) two staggered rows of compound

angle film-cooling holes with a blowing ratio of m=1.74, (5) one row of simple

angle film-cooling holes with a blowing ratio of m=0.5, (6) one row of simple
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angle film-cooling holes with a blowing ratio of m=1.0, (7) one row of simple

angle film-cooling holes with a blowing ratio of m=1.5, (8) two staggered rows

of simple angle film-cooling holes with a blowing ratio of m=0.5, (9) two

staggered rows of simple angle film-cooling holes with a blowing ratio of

m=1.0, and (10) two staggered rows of simple angle film-cooling holes with a

blowing ratio of m=1.5. (11) No filni-cooling.

D. THESIS ORGANIZATION

The remainder of this thesis is organized as follows. Chapter II discusses the

experimental apparatus and procedures. Chapter III contains experimental

results. Chapter IV then presents a summary and conclusions. Appendix A

conLains all of the figures. Appendix B gives the uncertainty levels developed by

Schwartz [Ref. 81, for the parameters measured and calculated. Appendix C

discusses all of the data acquisition, processing and plotting programs developed

and used for this thesis. Appendix D contains a data file directory listing the

names of all data files contained on micro floppy disks.
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II. EXPERIMENTAL APPARATUS AND PROCEDURES

A. WIND TUNNEL

The wind tunnel employed is an open-circuit, subsonic wind tunnel located in

the laboratories of the Department of Mechanical Engineering of the Naval

Postgraduate School. This is the same wind tunnel described by References 2

through 8. The source of the flow is a variable speed centrifugal blower located

at the upstream end. A course filter located on the inlet of the blower removes

dirt from the surrounding room air. The blower is followed by a diffuser,

within which is located a fine grade filter to aid in removal of small air

particulates. Four baffle vanes are also contained to minimize noise and flow

separation. The inlet air then passes into a header box which contains three

screens and a honeycomb to further reduce spatial non-uniformities of the flow.

After the header, the flow enters a 16 to 1 ratio nozzle and exits into the wind

tunnel test section.

The test section is a rectangular duct 3.05 m long and 0.61 m wide with an

adjustable top wall to permit changes in the streamwise pressure gradient. The

test section contains the constant heat flux transfer surface as well as the two

rows of film-cooling injection holes. For the present study, a zero pressure

gradient is maintained along the length of the test section (without the film

cooling) to within 0.01 inches of water differential pressure. The freestream

velocity is adjustable from I m/s to 40 m/s, and the freestream turbulence

intensity is approximately 0.1 percent for a freestream velocity of 30 m/s. The

boundary layer is tripped near the nozzle exit 1.072 m upstream of the constant

heat flux transfer surface for the compound angle injection system, plate 1, and
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1.097 m for the simple angle injection system, plate 2. Figures 1 and 2 show the

test section coordinate system as well as the locations of the injection holes.

Locations of the thermocouple rows within the heated test surface are also

shown. Figures 3 and 4 show a top view of the test surface at the injection

locations for plates 1 and 2, respectively. When the heat transfer section is in

operation, an unheated starting length of 1.072 m exists for plate 1, and 1.097 m

for plate 2. The direction of heat transfer is thus from the constant heat flux

surface to the air.

B. INJECTION HOLE CONFIGURATION

The injection hole configurations consists of two staggered rows of holes,

where each row contains five injection cooling holes with a nominal insidc

diameter of 0.945 cm. Two injection plates were tested.

Plate 1, a compound angle injection system, is shown in Figures 3 and 5.

Within each row of holes, centerlines are spaced 7.8d apart in the spanwise

direction. Centerlines of holes in separate rows are separated by 5.2d in the

streamwise direction. The holes in the two rows zre staggered, with spanwise

distances between hole centerlines from different rows of 3.9d. The plane of

each injection hole is angled at 50.5 degrees from the streamwise/normal (X-Y)

plane. Within the plane of each hole, centerlines are oriented at angles of 24

degrees from the X-Z plane of the test surface. When projected into

spanwise/normal (Y-Z) planes, holes are inclined at an angle of 30 degrees with

respect to the test surface. When projected into streamwise/normal (X-Y)

planes, holes are inclined at an angle of 35 degrees from the test surface.
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Plate 2, a simple-angle injection system, is shown Figures 4 and 6. Within

each row of holes, centerlines are spaced 6d apart in the spanwise direction.

Centerlines of holes in separate rows are separated by 3.9d in the streamwise

direction. The holes in the two rows are staggered, with spanwise distances

between hole centerlines from different rows of 3.0d. Planes of each injection

hole are contained within the streamwise/normal (X-Y) plane, within which,

holes are inclined at an angle of 35 degrees from the test surface.

C. INJECTION SYSTEM

Film coolant is injected from injection holes into the boundary layer

developing along the bottom wall of the test section. Air for the film coolant

injection is provided by two 1.5 hp DR513 Rotron Blowers, each capable of

producing 30 cfm at 2.5 psig. From blowers, air flows through a regulating

valve, a Fisher and Porter rotometer, a diffuser, and finally into the injection

heat exchanger and plenum chamber. The heat exchanger allows heating of the

injectant above the ambient air temperature. The upper surface of the plenum

chamber contains ten brass injection tubes, each three inches long, which

tei n'nate in the two rows, of five injection cooling holes.

The present injection system is qualified from measurements of discharge

coefficients as a function of injection Reynolds number. Bishop [Ref. 6], gives

plots of the coefficient of discharge (Cd) versus Reynolds number (Re), one of

which is shown in Figure 7. Because the range and magnitudes of these data are

as expected, the injection system is considered to be operating normally.

All film cooling parameters, such as the blowing ratio, are calculated using

the temperature at the exits of the injection holes, (Tinj). Qualification tests,

11



performed by Bishop [Ref. 6], led to a relation between injection plenum

temperature Tplenum and Tinj. A plot of his results is shown in Figure 8. The

equation relating the two temperatures is given by:

Tinj (°C) = 2.2907 + 0.85948 * Tplenum (°C) (Equation. 2.1)

This equation represents an empirical fit to experimental data for blowing ratios

ranging from 0 to 1.5, and ranges of injection temperature from 0 to 100

degrees Celsius. With this arrangement, the injection temperature may be

calculated after measurement of the plenum temperature.

When only the downstream row of injection holes is used, the upstream

holes are plugged and covered with cellophane tape.

D. HEAT TRANSFER SURFACE

The heat transfer test surface is designed to provide constant heat flux over

most of its area. This plate is inserted into the bottom wall of the wind tunnel

test section such that the upper surface of the plate is maintained level with the

test surface and adjacent to the wind tunnel airstream. This is accomplished

using height adjustment screws mounted in the plexiglass support frame. The

test surface is made of stainless steel foil, with dimensions of 1.3 m x 0.476 m x

0.20 mm. The portion of the foil adjacent to the airstream is coated with seven

layers of liquid crystals. Copper-constantan thermocouples are attached to the

underside of the stainless steel foil in six rows of 21 thermocouples per row,

with a spanwise spacing of 1.27 cm between individual thermocouples.

Thermocouple lead wires are embedded in grooves cut into a triple sheet of
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0.254 mm thick double sided tape. RTV epoxy is then used to fill spaces around

thermocouple lead wires within these grooves. Electrobond epoxy is used to

attach a foil heater, with dimensions of 1.0 mm x 1.118 m x 0.438 m and

manufactured by the Electrofilm Corporation, to the underside of the double

sided tape. The heater is rated at 120 volts and 1500 watts, with interior foil

designed to maintain uniform dissipation of heat over the surface of the heater.

A 12.7 mm thick Lexan sheet, followed by 25.4 mm of foam insulation, an 82.55

mm thick Styrofoam layer, three sheets of 0.254 mm thick Lexan, and one 9.53

mm thick sheet of balsa wood make up the remaining insulation. A plexiglass

support frame then encases the bottom portion of the test surface and provides

support. This frame is then mounted on the underside of the wind tunnel.

The energy balance by Ortiz [Ref. 2] is used to determine conductive heat

losses from the heat transfer plate. These amount to approximately 1.5 to 2.5

percent of the total power into the heater, whereas radiation losses average about

8.5 percent of the total power. The contact resistance between the thermocouples

and the upper foil is given by Joseph [Ref. 9], but later verified by Williams

[Ref. 4].

To provide a baseline data check, Stanton numbers, measured without film

injection present, are compared to an empirical relationship given by Kays and

Crawford [Ref. 10]. This particular relationship represents turbulent boundary

layer flow in a zero pressure gradient over a constant heat flux surface just

downstream of an unheated starting length. The equation is given by

StPro4 =0.03Re-0 2 x (V 9,1 0i/)

f3, 1(1/9,1 10/9) (Equation 2.2)
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Here, PI and Pul are the Beta function and the incomplete Beta function,

respectively. The term ul is defined as:

9

U1 = 1 - (), (Equation 2.3)

Equation 2.2 is compared to the baseline data in Figures 9 and 10. For x/d

values greater than about 33, experimental data values are within + 17 percent of

Equation 2.2 for plate 1, and within + 8 percent for plate 2, providing a check

on spanwise-averaged Stanton number behavior with no film injection present.

E. TEMPERATURE MEASUREMENTS

All temperature measurements are made using calibrated copper-constantan

thermocouples. These include heat transfer surface temperatures, the freestream

temperature, local boundary layer temperatures, and the injection plenum

temperature. The calibration equation used for heat transfer surface

temperatures is given by Ortiz [Ref. 2]. These are connected to channels 1 - 126

of the data acquisition system. The calibration equation for the test bed

thermocouples is given by;

T(OC) - 0.018205 +0.025846*E -0.000000581 *E*E

(Equation 2.7)
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where E is in microvolts.

The calibration equation used for the freestream thermocouple is given by

Williams [Ref. 4]. This thermocouple is connected to data acquisition channel

147. Its calibration equation is given by;

T(°C) =-2.602912+ 32.177745*E -5.483059*E*E +1.24739*E*E*E

(Equation 2.8)

where E is in millivolts.

Thermocouples employed in the plenum chamber, used to measure film

injectant temperatures in the boundary layer, were calibrated by Bishop [Ref. 6].

From this calibration, the polynomial representing temperature as a function of

thermocouple output voltage (E-volts) is given by;

T(OC) = 0.0858454 + 26017.4569*E - 740382.8*E*E + 35639480*E*E*E

(Equation 2.9)

where E is in volts. This same equation applies to all new thermocouples

employed. Two fre used on channels 149 and 150 for measurement of plenum

temperature. One of these same thermocouples is also employed on channel 153

when boundary layer temperatures are measured to determine injection

distributions.

Temperature surveys to determine injectant distributions are performed

using a thermocouple traversed through the boundary layer in conjunction with a
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thermocouple to measure freestream temperature. For these tests, freestream

temperature is maintained at ambient temperature while injectant is heated to 50

degrees Celsius in the injection plenum, with no power applied to the heat

transfer test plate. For each survey, local temperatures are taken at 800 (20 x

40) locations in the Y-Z plane at a particular x/d location. The spatial resolution

between sampling points is 0.508 cm in each direction (Y and Z), and the overall

sampling plane dimensions are 10.2 cm x 20.3 cm.

The traversing device consists of spanwise and vertical traversing blocks

allowing two degrees of freedom. Each block is mounted on a separate assemnbly

consisting of two steel case hardened support shafts and a 20 thread per inch

pitch drive screw. Separate M092-FD310 stepping motors are used to drive ( c.

of the two shafts. A two-axis Motion Controller (MITAS), equipped with 2K

bytes of memory and a MC68000 16 bit microprocessor controls a motor drive

which runs the motors. The motors, controller and drive are manufactured by

the Superior Electric Company. Software within a Hewlett-Packard Series 9000

Model 310 computer provides instructions which control operation of the

controller and traversing device.

A Hewlett-Packard 3497A Data acquisition/Control Unit with a Hewlett-

Packard 3498A extender is used to collect all voltages from the thermocouples

used. These units are also controlled by a Hewlett-Packard Series 9000 Model

310 computer.

F. MEAN VELOCITY MEASUREMENTS

A DC-250-24CD five hole pressure probe manufactured by the United

Sensors and Control Corporation is used to measure the three mean velocity
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components. The pressure probe has a tip diameter of 6.35 mm and is mounted

on the automated traversing device discussed in the temperature measurements

section above. Calibration characteristics, given by Williams [Ref. 4], are used

to convert the pressure coefficients into velocity components. During these

surveys, the freestream temperature, heat transfer surface temperatures, and the

plenum injectant temperature are maintained at ambient conditions. A separate

Celesco model LCVR differential pressure transducer is used to measure the

pressure from each of the five ports of the pressure probe. Each transducer has

a full scale pressure range of 2.0 cm of differential water pressure. Transducer

output signals are converted to D.C. voltage by five Celesco CD-10D carrier

demodulators. The converted voltages are then sent to the Hewlett-Packarul

3497A Data Acquisition Unit.
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III. EXPERIMENTAL RESULTS

Experimental results are presented first for the compound angle injection

system, plate 1, and then for the simple angle injection system, plate 2. For plate

2, heat transfer data, velocity/pressure surveys, ard injectant distributions are

presented for both 1 row and 2 rows of holes at various blowing ratios. For

plate 1, heat transfer data are given for all blowing ratios tested, whereas

velocity/pressure data and injectant distributions are given only for m=1.0.

A. Plate 1, COMPOUND ANGLE

1. Two rows of film cooling holes with m=0.5

Figures 11 - 16 present St/Sto vs 0 for x/d=6.7, 17.2, 33.1, 54.3, 75.4,

and 96.4. Figures 17 and 18 present il and Stf/Sto vs x/d, respectively. Fiz ires

19, 20, and 21 show streamwise and spanwise variations of rl, St/Sto, and Stf/Sto,

respectively. Figure 17 shows that effectiveness is greatest at x/d=6.7. As x/d

increases, effec ness drops. Spatially resolved plots of ri at x/d=6.7 in figure

19 show spanwise periodicity which becomes less pronounce" with streamwise

development.

2. Two rows of film cooling holes with m=1.0

a. Heat Transfer Measurements.

Figures 22 - 27 present St/Sto vs 0 for x/d=6.7, 17.2, 33.1, 54.3,

75.4, and 96.4. Figures 28 and 29 present Ti and Stf/Sto vs x/d, respectively.

Figures 3U, 31, and 32 show streamwise and spanwise variations of 11, St/Sto, and

Stf/Sto. respectively. Spatially resolved plots of il at x/d=6.7 in Figure 30 show

spanwise periodicity which becomes less pronounced with streamwise
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development. Compared to results from m=0.5, effectiveness is higher at x/d

values larger than 17.2 due to the larger amounts of injectant. At low x/d,

effectiveness is lower than that at m=0.5 due to lift-off effects. Again, as x/d

increases, effectiveness drops.

b. Five Hole Pressure Probe Survey.

Figures 33, 34, and 35 show streamwise velocity surveys for

x/d=l 1.4, 45.7, and 87.2. Figures 36, 37, and 38 show total pressure surveys for

these same locations. Velocity/pressure deficits are apparent as a result of

accumulation of injectant at injectant hole locations. These deficits are non-

circular, and spanwise periodic at the wall, existing at x/d values as high as 87.2.

c. Injectant Distributions.

Figures 39, 40, and 41 show temperature survey results which

provide information on distributions of injectant. Near the wall, injectant

distributions are non-circular, and spanwise periodic across the span of the test

surface. Similarity in every other pattern is apparent because of the staggered

arrangement of the film-cooling holes in the two rows.

3. Two rows of film cooling holes with m=1.5

Figures 42 - 47 present St/Sto "s 0 for x/d=6.7, 17.2, 33.1, 54.3, 75.4,

and 96.4. Figuires 48 and 49 present ri and Stf/Sto vs x/d, respectively. Figures

50, 51, and 52 show streamwise and spanwise variations of 'r, St/Sto, and Stf/Sto,

respectively. Spatially resolved plots of ri at x/d=6.7 in Figure 50 show spanwise

periodicity which becomes less pronounced with streamwise development.

Because of lift-off effects, effectiveness values in Figure 48 drop significantly at

m=l.5 for x/d values less than about 33.1, compared to data at m=0.5. Again

effectiveness decreases as x/d increases for each m studied.
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4. Two rows of film cooling holes with m=1.74

Figures 53 - 58 present St/Sto vs 0 foi x/d=6.7, 17.2, 33.1, 54.3, 75.4,

and 96.4. Figures 59 and 60 present 1i and Stf/St, vb x/d, respectively. Figures

61, 62, and 63 show streamwise and spanwise variations of 1, St/Sto, and Stf/Sto,

respectively. Spatially resolved plots of il at x/d=6.7 in Figure 61 show spanwise

periodicity which becomes less pronounced with streamwise development. As

for m=1.5 data, effectiveness values drop as lift-off becomes more pronounced.

B. Plate 2, SIMPLE ANGLE

1. One row of film cooling holes with m=0.5

a. Heat Transfer Measurements.

Figures 64 - 69 present St/Sto vs 0 for x/d=6.8, 17.4, 33.2, 54.4,

75.6, and 96.7. Figures 70 and 71 present 71 and Stf/Sto vs x/d, respectively.

Figures 72, 73, and 74 show streamwise and spanwise variations of 11, St/Sto, and

Stf/Sto, respectively. Spatially resolved plots of 1 at x/d=6.8 in Figure 72 show

spanwise periodicity which becomes less pronounced with streamwise

development. Effectiveness drops as x/d increases, with low values compared to

m=1.0 and m=1.5 data, due to the limited coverage of the surface by injectant.

b. Five Hole Pressure Probe Surveys.

Figures 75, 76, and 77 show streamwise velocity surveys for

x/d=9.4, 43.7, and 85.2, respectively. Figures 78, 79, and 80 show total pressure

surveys at the same locations. Velocity/pressure deficits are apparent as a result

of accumulation of injectant at the spanwise positions of hole locations. These

deficits are circular, and spanwise periodic at the wall, and exist at x/d values as

high as 85.2.
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c. Injectant Distributions.

Figures 81, 82, and 83 show temperature survey results which

provide information on distributions of injectant. Injectant distribtions are

circular, and spanwise periodic near the wall of the test surface.

2. One row of film cooling holes with m=1.0

a. Heat Transfer Measurements.

Figures 84 - 89 present St/Sto vs 0 for x/d=6.8, 17.4, 33.2, 54.4,

'75.6, and 96.7. Figures 90 and 91 present rl and Stf/Sto, vs x/d respectively.

Figures 92, 93, and 94 show streamwise and the spanwise variations of 11, St/Sto,

and Stf/Sto, respectively. Spatially resolved plots of rl at x/d=6.8 in Figure 92

show spanwise periodicity which becomes less pronounced with streamwise

development. Compared to results for m--0.5, effectiveness values are lower due

to lift-off effects.

b. Five Hole Pressure Probe Surveys.

Figures 95, 96, and 97 show streamwise velocity surveys for

x/d=9.4, 43.7, and 85.2, respectively. Figures 98, 99, and 100 show total

pressure surveys at these same locations. Again, velocity/pressure deficits are

apparent as a result of accumulation of injectant at the spanwise locations of

injectant holes. Deficits are circular, and spanwise periodic at the wall, and exist

at x/d values as high as 85.2.

c. Injectant Distributions.

Figures 101, 102, and 103 show temperature survey results which

provide information on distributions of injectant. Near the wall, injectant

distributions are circular, and spanwise periodic across the span of the test
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surface. Injectant distribution patterns show concentrations of injectant which

are positioned higher off the test surface compared to results for m=0.5.

3. One row of film enoling holes with m=1.5

a. Heat Transfer Measurements.

Figures 104 - 109 present St/Sto vs 0 for x/d=6.8, 17.4, 33.2, 54.4,

75.6, and 96.7. Figures 110 and 111 present 11 and Stf/Sto vs x/d, respectively.

Figures 112, 113, and 114, show streamwise and spanwise variations of 71, St/Sto,

and Stf/Sto, respectively. Spatially resolved plots of 1i at x/d=6.8 in Figure 112

show spanwise periodicity which becomes less pronounced with streamwise

development. Compared to results for m=1.0, effectiveness values are lower due

to lift-off effects.

b. Five Hole Pressure Probe Surveys.

Figures 115, 116, and 117 show streamwise velocity surveys for

x/d=9.4, 43.7, and 85.2, respectively. Figures 118, 119, and 120 show total

pressure surveys at these same locations. As before, velocity/pressure deficits

are apparent as a result of accumulation of injectant at the spanwise locations of

injectant holes. These deficits are circular, and spanwise periodic at the wall,

and exist at x/d values as high as 85.2.

c. Injectant Distributions.

Figures 121, 122, and 123 show temperature survey results which

provide information on distributions of injectat. As before, injectant

distributions are circular near the wall, and spanwise periodic across the span of

the test surface.
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4. Two rows of film cooling holes with m=0.5

a. Heat Transfer Measurements.

Figures 124 - 129 present St/Sto vs 0 for x/d=6.8, 17.4, 33.2, 54.4,

75.6, and 96.7. Figures 130 and 131 present il and Stf/Sto vs x/d, respectively.

Figures 132, 133, and 134 show streamwise and spanwise variations of 1i, St/Sto,

and Stf/Sto, respectively. Spatially resolved plots of 1 at x/d=6.8 in Figure 132

show spanwise periodicity which becomes less pronounced with streamwise

development. Compared to the results for m=0.5 with 1 row or holes,

effectiveness is significantly higher due to more thorough coverage by injectant

from 2 staggered row of holes.

b. Five Hole Pressure Probe Surveys.

Figures 135, 136, and 137 show streamwise velocity surveys for

x/d=9.4, 43.7, and 85.2, respectively. Figures 138, 139, and 140 show total

pressure surveys at these same locations. Again, velocity/pressure deficits are

evident at the spanwise positions of injectant holes due to accumulation of

injectant. These deficits are circular and spanwise periodic at the wall.

c. Injectant Distributions.

Figures 141, 142, and 143 show temperature survey results which

provide information on distributions of injectant. Near the wall, injectant

distributions are circular, and spanwise periodic across the span of the test

surface. Similarity in every other pattern is apparent because of the staggered

arrangement of the film-cooling holes in the two different rows. From these

figures, the thorough coverage provided by injectant from two staggered rows of

holes is apparent. As x/d increases, injectant from different holes coalesces

together to form a continuous protective film over the surface.
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5. Two rows of film cooling holes with m=1.0

a. Heat Transfer Measurements.

Figures 144 - 149 present St/Sto vs 0 for x/d=6.8, 17.4, 33.2, 54.4,

75.6, and 96.7. Figures 150 and 151 present i1 and Stf/Sto vs x/d, respectively.

Figures 152, 153, and 154 show streamwise and spanwise variations of 11, St/Sto,

and Stf/Sto, respectively. Spatially resolved plots of i1 at x/d=6.8 in Figure 152

show spanwise periodicity which becomes less pronounced with streamwise

development. Compared to results obtained for m=0.5, effectiveness is lower at

x/d values below about 54 due to lift-off effects. At higher x/d, effectiveness

values are higher than at m=0.5 due to the larger amounts of injectant next to the

test surface.

b. Five Hole Pressure Probe Surveys.

Figures 155, 156, and 157 show streamwise velocity surveys for

x/d=9.4, 43.7, and 85.2, respectively. Figures 158, 159, and 160 show total

pressure surveys for the same locations. Again, velocity/pressure deficits are

evident at the spanwise positions of injectant holes due to accumulation of

injectant. These ueficits are circular and spanwise periodic at the wall.

c. Injectant Distributions.

Figures 161, 162, and 163 show temperature survey results which

provide information on distributions of injectant. Again, near the wall, injectant

distributions are circular, and spanwise periodic across the span of the test

surface. Similarity in every other pattern is apparent because of the staggered

nature of the film-cooling holes in the two separate rows. As x/d increases, the

injectant from the different holes coalesces together to form a continuous

protective film over the surface. Comparing these figures to those obtained at
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m=0.5, it is evident that lift-off occurs at x/d=9.4 for m=1.0. Consequently,

better surface coverage exists for m=0.5 at small x/d. At x/d=43.7 and larger,

higher effectiveness values evidence better surface coverage at m=1.0 than at

m=0.5.

6. Two rows of film cooling holes with m=1.5

a. Heat Transfer Measurements.

Figures 164 - 169 present St/Sto vs 0 for x/d=6.8, 17.4, 33.2, 54.4,

75.6, and 96.7. Figures 170 and 171 present 1l and Stf/Sto vs x/d, respectively.

Figures 172, 173, and 174 show streamwise and spanwise variations of 71, St/Sto,

and Stf/Sto, respectively. Spatially resolved plots of rI at x/d=6.8 in Figure 172

show spanwise periodicity which becomes less pronounced with streamwise

development. Compared to results obtained for m=1.0, effectiveness is lower at

x/d values below 33.2 due to lift-off effects at the higher m. At x/d greater than
33.2, effectiveness values are higher than at m=1.0 due to the larger amounts of

injectant along the test surface.

b. Five Hole Pressure Probe Surveys.

Figures 175, 176, and 177 present the streamwise velocity surveys

for x/d=9.4, 43.7, and 85.2, respectively. Figures 178, 179, and 180 present

total pressure surveys for these same locations. Again, velocity/pressure deficits

are evident at the spanwise locations of injection holes due to accumulation of

injectant. These deficits are circular and spanwise periodic near the wall.

c. Injectant Distributions.

Figures 181, 182, and 183 show temperature survey results which

provide information on distributions of injectant. Again, near the wall, injectant

distributions are circular, and spanwise periodic across the span of the test
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surface. Similarity in every other pattern is apparent because of the staggered

nature of the film-cooling holes in the two separate rows.

C. COMPARISON OF RESULTS FROM THE SIMPLE ANGLE AND

COMPOUND ANGLE FILM-COOLING HOLE CONFIGURATIONS.

Experimental results for compound angle injection system, plate 1, and for

simple angle injection system, plate 2, are compared in this section. The effects

of blowing ratio, injectant temperature, and position (x/d) are discussed for

results obtained downstream of both one and two rows of holes.

Figure 184 presents effectiveness vs x/d, measured downstream of 1 row of

plate 1 compound angle holes for various blowing ratios [Ref. 6]. Figure 185

presents iso-energetic Stanton number ratio vs x/d, measured downstream of 1

row of plate 1 compound angle holes for various blowing ratios [Ref. 6]. Figure

186 presents effectiveness vs x/d, measured downstream of 2 rows of plate I

compound angle holes for various blowing ratios. Figure 187 presents iso-

energetic Stanton number ratio vs x/d, measured downstream of 2 rows of plate

I compound angle holes for various blowing ratios. Figure 188 presents

effectiveness vs x/d, measured downstream of 1 row of plate 2 simple angle holes

for various blowing ratios. Figure 189 presents iso-energetic Stanton number

ratio vs x/d, measured downstream of 1 row of plate 2 simple angle holes for

various blowing ratios. Figure 190 presents effectiveness vs x/d, measured

downstream of 2 rows of plate 2 simple angle holes for various blowing ratios.

Figure 191 presents iso-energetic Stanton number ratio vs x/d, measured

downstream of 2 rows of plate 2 simple angle holes for various blowing ratios.
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In general, for a given m, for all the configurations tested, effectiveness is

greatest at low x/d values, and decreases with increasing x/d as convection takes

place between the injectant and the plate, and as diffusion of the injectant occurs.

As blowing ratio increases, effectiveness generally decreases, particularly at low

x/d values, as the increase of momentum flux ratio causes lift-off of the injectant

from the surface. Iso-energetic Stanton number ratios vary between 1.0 and

1.25 for all cases, and generally increase with increasing blowing ratio at any

given x/d. This is probably because of increases of boundary layer turbulence

levels. Effectiveness values measured downstream of two rows of holes are

higher than values measured downstream of one row of holes. This is evident

after comparing Figures 184 and 186 for the compound angle injection system,

and 188 and 190 for the simple angle injection system. With two rows of holes,

the spanwise distance between holes is half that with one row, and thus, there is

significantly more injectant coverage along the test surface.

Figures 192 through 195 present the above data on composite graphs. In

Figure 192, effectiveness data are given which are measured downstream of one

row of holes. In Figure 194, effectiveness data are given which are measured

downstream of two rows of holes. With equal spanwise hole spacing it is

expected that the effectiveness of the compound angle injection will be

comparable or higher than for the simple angle injection system.

D. CORRELATIONS OF ADIABATIC FILM-COOLING

EFFECTIVENESS DATA.

In Figures 196 through 205, adiabatic film-cooling effectiveness data for

both the compound angle injection system and the simple angle injection system
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are presented in several different types of plots. Log-log coordinates are used in

each case. Figures 196 and 197 show rl/m vs xI/s. Figures 198 and 199 show rj/I

vs xI/s. Figures 200 and 201 show il vs x/(ms)*Re**-0.25. Figures 202 and 203

show Ti vs xm/s. In each case, data are given which are measured downstream of

one row of holes and two rows of holes. Of these correlations, Figures 196 and

197, Tl/m vs xl/s, collapse the data with the least amount of scatter.

E. DIRECT MEASUREMENT OF ADIABATIC FILM-COOLING

EFFECTIVENESS.

In this section, the adiabatic film-cooling effectiveness determined using the

principle of superposition is compared to a direct measurement of the same

quantity. The adiabatic film-cooling effectiveness is given by:

. -T.d _ 1
' f - Tm 6ad (Equation 1.6)

The comparison is made for measurements made downstream of one row of

holes with m=0.5. For the direct measurement, the injectant is heated to about

50 degrees Celsius, with no power is supplied to the test bed. All temperatures

are then measured, including wall temperatures. The adiabatic effectiveness is

then calculated using an equation given by:

T -T Q.___
fla -w f + QTf-Tm h(Tf-Tm) (Equation 3.1)
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This equation is based on Mick and Mayle [Ref. 11 ]. In Equation 3.1, Qcorr is the

sum of the conduction and radiation flux losses from the test surface:

Qcorr=Qcond+Qrad+Qccv (Equation 3.2)

Conduction and radiation losses are estimated using equations given by Ortiz

[Ref.2]. For conduction;

D)cond=0.683+0.954(Tav-Tamb)-0.01 6(Tav-Tamb)* *2 (Equation 3.3)

For radiation;

Qrad=2.169*10**-8(Tav**4-Tamb**4) (Equation 3.4)

Qccv in Equation 3.2 accounts for additional convective, radiative, and conductive

losses. With this term;

Q,, =0.03
h(Tf - Tm) (Equation 3.5)

Figure 206 shows effectiveness values from direct measurement to be in

agreement with ones determined using superposition. The deviation between

direct measurement and superposition, is about 7 percent, except at high x/d

values for m=0.5, where the deviation is 15 percent.
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IV. SUMMARY AND CONCLUSIONS

Experimental results are presented which describe the development and

structure of flow downstream of single and double rows of film-cooling holes

with both simple and compound angle orientations. Two configurations are

investigated, a simple angle injection system in which the injectant is introduced

into the freestream parallel to the main flow (as viewed in streamwise/spanwise

planes), and a compound angle injection system in which the injectant is

introduced with spanwise velocity components. The effects of blowing ratio,

injectant temperature, and downstream position are determined.

For plate 1, four configurations are used : (1) two staggered rows of film-

cooling holes with a blowing ratio of m=0.5, (2) two staggered rows of film-

cooling holes with a blowing ratio of m=1.0, (3) two staggered rows of film-

cooling holes with a blowing ratio of m=1.5, and (4) two staggered rows of film-

cooling holes with a blowing ratio of m=1.74.

For plate 2, six configurations were used: (1) one row of film-cooling holes

with a blowing ratio of m--0.5, (2) one row of film-cooling holes with a blowing

ratio of m=1.0, (3) one row of film-cooling holes with a blowing ratio of m=1.5,

(4) two staggered rows of film-cooling holes with a blowing ratio of m=0.5, (5)

two staggered rows of film-cooling holes with a blowing ratio of m=l.0, and (6)

two staggered rows of film-cooling holes with a blowing ratio of m=1.5.

Results indicate that effectiveness depends mostly on four parameters: simple

or compound angle injection, spanwise hole spacing, one or two rows of holes,

and blowing ratio. In general, for a given m, for all the configurations tested,

effectiveness is greatest at low x/d values, and decreases with increasing x/d as
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convection takes plae betwee, the injectant and the plate, and as diffusion of the

injectant occurs. As blowing ratio increases, effectiveness generally decreases,

particularly at low x/d values, as the increase of momentum flux ratio causcs lift-

off of the injectant from the surface. Iso-ene-getic Stanton number ratios vary

between 1.0 and 1.25 for all cases, and generally increase with increasing

blowing ratio at any given x/d. This is probably because of increases of

boundary layer turbulence levels. Effectiveness values measured downstream of

two rows of holes are higher than values measured downstream of one row of

holes. With two rows of holes, the spanw:'se distance between holes is half that

with one row, and thus, there is significantly more injectant coverage along the

test surface. Adiabatic film-cooling effectiveness data for both the compound

angle injection system and the simple angle injection collapse with minimal

scatter in rl/m vs xl/s coordinates.

Effectiveness values determined from direct measurement are in agreement

with ones determined using superposition. The deviation between these, is about

7 percent, except at high x/d values for m=0.5, where the deviation is 15 percent.
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APPENDIX A

FIGURES

Appendix A contains all of the figures gcxerated for this thesis. These

figures include the test set-up, hole configurations, plots of Stanton numbers

versus position, and spanwise plots of velocity, pressure and temperature for the

ten configurations used.
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APPENDIX B

UNCERTAINTY ANALYSIS

An uncertainty analysis, by Schwartz [Ref. 8], was accomplished on the

input parameters and variables used for this study. A 95% confidence interval

was utilized. Table I contains a summary of the parameters and their

uncertainties

TABLE I. EXPERIMENTAL UNCERTAINTIES FOR MEASURED
QUANTITIES

Typical Experimental

Quantity (units) Nominal Value Uncertainty

T- (0C) 18.0 0.13

Tw (OC) 40.0 0.21

Pambient (mm Hg) 760 0.71

P. (kg/m3) 1.23 0.009

U (m/s) 10.0 0.06

Cp [J/(kg K)] 1006 1

qwA (W) 270 10.5

h [W/(m 2 K)] 24.2 1.03

St 0.00196 0.000086

St/Sto 1.05 0.058

A (m 2 ) 0.558 0.0065

m 0.98 0.05

x/d 54.6 0.36
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APPENDIX C

DATA ACQUISITION, PROCESSING AND PLOTTING PROGRAMS

1. Mean Velocity " urvey Software:

FIVEHOLE1 : This program acquires pressure data from each of the five

transducers associated with the probe. The FIVEHOLEI program controls the

MITAS motor controller which, in turn, controls the automatic traversing device

on which the five hole probe is mounted. An 800 point pressure survey is

conducted in the Y-Z plane normal to the freestream flow. Two data files, FIVx

and FIVPx, are created. The FIVx data file consists of mean velocity, center

port pressure, average pressure of the four peripheral ports, and the yaw and

pitch coefficients for each of the 800 locations sampled. The FIVx data file

consists of the pressures P1 through P5 sensed by each of the five pressure probe

sensing ports, the average pressure of the four peripheral ports and the mean

velocity, for each of the 800 survey locations.

PADJUST : This program accesses the FIVPx data file created by

FIVEHOLEI and adjusts the pressures to account for spatial resolution

problems. Pressure correction is performed using a curve fit to move the

measurement location to the center sensing port location. The output file of

PADJUST is FIVxA.

VELOCITY : This program accesses FIVxA, the data file created by
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PADJUST, and computes Ux, Uy and Uz velocity components. The output file

of VELOCITY is Vx.

UX3 : This program accesses Vx, the data file created by VELOCITY, and

plots streamwise velocity (Ux) contours of the Y-Z plane surveyed by the five

hole pressure probe.

PTOT3 : This program accesses Vx, data file created by VELOCITY, and

plots total pressure contours of the surveyed Y-Z plane.

2. Mean Temperature Survey Software :

ROVER1 : This program acquires flow temperature data from the

"roving" thermocouple mounted on the automatic traversing device. The

traversing device is controlled by the MITAS controller which is, in turn,

controlled by this program. The output data file consists of differential

temperatures (Trover - T ) for each of the 800 survey locations in the Y-Z

plane. The output file of ROVER1 is TEMx.

PLTMP3 : This program uses the differential temperature data file TEMx,

created by ROVER1 and plots differential temperature contours of the surveyed

Y-Z plane.

3. Heat Transfer Measurement Software (No Film Cooling)
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STANTON3 : This program acquires multiple channel thermocouple data

for heat transfer measurements with no film cooling. It creates two output data

files, TDATA and IDATA. The TDATA file consists of the 126 test plate

thermocouple temperatures. The IDATA file records run number, test plate

voltage and current, ambient pressure, pressure differential, ambient

temperature, freestream velocity, air density and freestream temperature.

STANTON4: STANTON4 accesses TDATA and IDATA files created by

STANTON3 and calculates heat transfer coefficients and Stanton numbers for

each of the 126 thermocouple locations. This program also calculates the

average Reynolds number for each thermocouple row. STANTON4 creates

three output files. These files are HDATA, SDATA, and STAV. The HDATA

file consists of the local heat transfer coefficient, the Stanton number and the X

and Z coordinates for each of the 126 test plate thermocouples. The SDATA file

contains only the Stanton number values calculated for each thermocouple

location. STAV contains the X location and the average Reynolds and Stanton

numbers for each of the six thermocouple rows.

4. Heat Transfer Measurement Software (with Film Cooling)

SETCONDV2: This program is used to set conditions for heat transfer data

acquisition when film cooling is employed. SETCONDV2 determines injection

velocity, Reynolds number, blowing ratio (m) and non-dimensional temperature

(0). It requires user input from the terminal of freestream conditions, rotometer

percent flow and injection plenum differential pressure.
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STANFC1B : This program is used when film cooling is employed to

acquire multiple channel thermocouple data for heat transfer measurements.

STANFC1B creates three data files : a temperature data file (Tx), a terminal

input data file (Cx), and a film cooling data file (CFCx). The temperature data

file consists of the 126 test plate thermocouple temperatures. The terminal input

data file records the identical information contained in the IDATA file of

STANTON3, as discussed earlier. The film cooling data file contains the

injection rotometer percent flow and the injection plenum differential pressure.

STANFC2A : This program accesses the temperature, terminal input and

film cooling data files created by STANFC1B. The program calculates Stanton

number values for the 126 thermocouple locations and creates a single output file

(FCx) containing these values.

EFFFC2B : This program is a modification of STANFC2A. This program

accesses the temperature, terminal input and film cooling data files created by

STANFC1B. In addition, it accesses an output file created by STANFC2A,

(FCx), and d, ectly calculates adiabatic effectiveness without power being applied

to the test bed.

STANRI : This program reads three Stanton number data files and creates

a single output file containing two Stanton number ratios for each of the 126

thermocouple locations. The required input data files are : SDATA file created

by STANTON4 containing baseline Stanton numbers for no film cooling and
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two FCx data files created by STANFC2A containing Stanton numbers with film

cooling. The output file of STANRI is STRx.

FLMEFFV2 : This program processes Stanton number data and calculates

the local and spanwise averaged film cooling effectiveness and iso-energetic

Stanton number ratios. The program reads several files and creates two output

files. The program reads the SDATA file created by STANTON4 which

contains the baseline Stanton numbers for no film cooling, and up to six FCx,

Tx and Cx files created by STANFC2A, and STANFC2B. One of the two output

data files contains the local effectiveness and iso-energetic Stanton number ratios

and the other output file contains the spanwise averaged effectiveness and iso-

energetic Stanton number ratios.

3DSTGETA : This program accesses the files created by FLMEFFV2 and

plots the spanwise variation of effectiveness in three-dimensional form.

3DSTGSTI This program accesses the files created by FLMEFFV2 and

plots the spanwise variation of the iso-energetic Stanton number ratio in three-

dimensional form.

3DSTRST : This program accesses STRx, the Stanton number ratio file

created by STANRI, and plots the spanwise variations of the Stanton number

ratios in three-dimensional form.
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APPENDIX D

DATA FILE DIRECTORY

1. Heat Transfer Data:

A. STANTON3 / STANTON4 data files -- (no film cooling):

pTDATAxx ---- temperature data file

pIDATAxx ---- user terminal input data file

pHDATAxx ---- heat transfer coefficient data file

pSDATAxx local Stanton number data file

Data Run # Data File Experimental Conditions
100490.1415 TDATA I Compound Angle

IDATA1 Tp-Tf=20.3 deg C
HDATA1 no film-cooling
SDATA1

101390.1436 TDATA3 Compound Angle
IDATA3 Tp-Tf=5.3 deg C
HDATA3 no film cooling
SDATA3

121490.1027 2TDATA1 Simple Angle
2IDATA1 "l'T-Tf=19.8 deg C
2HDATA1 no film cooling
2SDATA 1

101390.1436 2TDATA9 Simple Angie
2IDATA9 Tp-Tf=7.7 deg C
2HDATA9 no film cooling
2SDATA9

B. STANFCIB /STANFC2A data files -- (film-cooling)
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pTxx temperature data file

pCxx user terminal input data file

pCFCxx ---- film-cooling parameters data file

pFCxx ---- local Stanton number data file

COMPOUND ANGLE, 2 ROWS

Data Run # Data File Experimental Conditions
102990.1434 T46 Compound Angle

C46 2 rows, m=0.5, theta=0.02
CFC46
FC46

102990.1600 T47 Compound Angle
C47 2 rows, m=0.5, theta=0.81
CFC47
FC47

102990.1730 T49 Compound Angle
C49 2 rows, m=0.5, theta=1.09
CFC49
FC49

102990.1848 T50 Compound Angle
C50 2 rows, m=0.5, theta=l.26
CFC50
FC50

103090.1233 T51 Compound Angle
C51 2 rows, m=0.5, theta=2.67
CFC51
FC51

103090.1507 T53 Compound Angle
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C53 2 rows, m=0.5, theta=3.30
CFC53
FC53

100990.1552 Ti11 Compound Angle
Cil. 2 rows, m=1.0, theta=0.54
CFC11I
FCI I

100990.1856 T16 Compound Angle
C16 2 rows, m=1.0, theta=1.08
CFC16
FC16

100990.2018 T18 Compound Angle
C18 2 rows, m=1.0, theta=1.44
CFC18
FC18

101090.1313 T-21 Compound Angle
C21 2 rows, m=1.0, theta=2.30
CFC21
FC21

100990.1607 T25 Compound Angle
C25 2 rows, m=1 .0, theta=3.0
CFC25
FC25

102290.1334 72 8 Compound Angle
C28 2 rows, m=1.0, theta=0.20
CFC28
FC28

102490.1429 T3 0 Compound Angle
C30 2 rows, m=1.5, theta=0.52
CFC30
FC30
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102490.1552 T32 Compound Angle
C32 2 rows, m=l1.5, theta=0 78
CFC32
FC32

102490.1804 T34 Compound Angle
C34 2 rows, m=1.5, theta= 1.00
CFC34
FC34

102590.1438 T40 Compound Angle
C40 2 rows, m=1.5, theta=1.430
CFC40
FC40

102690.1227 T42 Compound Angle
C42 2 rows, m=1.5, theta=2.54
CFC42
FC42

102690.1416 T44 Compound Angle
C44 2 rows, m=1.5, theta=3.11
CFC44
FC44

103190.1143 T55 Compound Angle
C55 2 rows, mn=1.74, theta=1.36
CFC55
FC55

110190.1645 T57 Compound Angle
C57 2 rows, m=1.74, theta=0.95
CFC57
FC57

110190.1857 T58 Compound Angle
C58 2 rows, m=1.74, theta=0.75
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CFC58
FC58

110190.2018 T59 Compound Angle
C59 2 rows, m=1 .74, theta=0.59
CFC59
FC59

110290.1206 T60 Compound Angle
C60 2 rows, m=1.74, theta=3.43
CFC60
FC60

110290.1342 T61 Compound Angle
C61 2 rows, m=1.74, theta=2.78
CFC61
FC61

SIMPLE ANGLE. 1 ROW

010491.1019 2T14 Simple Angle
*2C 14 1 row, m=0.5, theta=-0.02

2CFC14
2FC14

010491.1242 2T15 Simple Angle
2C15 1 row, mn=0.5, theta=0.47
2CFC15
2FC15

010491.1436 2T16 Simple Angle
2C16 1 row, m--0.5, theta=1.17
2CFC16
2FC16

010491.1556 2T17 Simple Angle
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2C17 1 row, m=0.5, theta=1.48
2CFC17
2FC17

010491.1718 2T18 Simple Angle
2C18 1 row, m--0.5, theta=3.12
2CFC18
2FC 18

010491.1811 2T19 Simple Angle
2C19 I row, m--0.5, theta=2.53
2CFC19
2FC 19

122090.1128 2T2 Simple Angle
2C2 1 row, m=1.0, theta=0.36
2CFC2
2FC2

122090.1237 2T3 Simple Angle
2C3 1 row, m=1.0, theta=0.72
2CFC3
2FC3

122090.14C 2T4 Simple Angle
2C4 I row, m=1.0, theta=1.12
2CFC4
2FC4

122090.1601 2T5 Simple Angle
2C5 1 row, m=1.0, theta=1.64
2CFC5
2FC5

122190.1506 2T6 Simple Angle
2C6 1 row, mn=1.0, theta=3.19
2CFC6
2FC6
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122190.1624 2T7 Simple Angle
2C7 1 row, m=1.0, theta=2.56
2CFC7
2FC7

010291.1145 2T8 Simple Angle
2C8 1 row, m=1.5, theta=0.09
2CFC8
2FC8

010291.1304 2T9 Simple Angle
2C9 1 row, m=1.5, theta=0.40
2CFC9
2FC9

010291.1428 2T10 Simple Angle
2C10 1 row, m=1.5, theta=1.15
2CFCIO
2FC1O

010291.1508 2T11 Simpk. Angle
2C11 I row, m=1.5, theta=1.63
2CFC 11
2FC 11

010291.1621 2T12 Simple Angle
2C12 1 row, m=1.5. theta=3.40
2CFC12
2FC 12

010291.1658 2T13 Simple Angle
2C13 1 row, m=l.5, theta=2.57
2CFC 13
2FC 13

SIMPLE ANGLE, 2 ROWS
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011191.1039 2T30 Simple Angle
2C30 2 rows, m=0.5, theta=-0.05
2CFC30
2FC30

011191.1115 2T31 Simple Angle
2C31 2 rows, m=0.5, theta=0.41
2CFC31
2FC31

011191.1209 2T32 Simple Angle
2C32 2 rows, m=0.5, theta=I.09
2CFC32
2FC32

011191.1247 2T33 Simple Angle
2C33 2 rows, m=0.5, theta=1.45
2CFC33
2FC33

011191.1419 2T34 Simple Angle
2C34 2 rows, m=0.5, theta=2.90
2CF. '34
2FC34

011191.1505 2T35 Simple Angle
2C35 2 rows, m=-).5. theta=2.31
2CFC35
2FC35

011091.1103 2T24 Simple Angle
2C24 2 rows, m-1.0, theta=0.18
2CFC24
2FC24

11091.1"95 2T25 Simple Angle
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2C25 2 rows, m=1.0, theta=0.53
2CFC25
2FC25

011091.1301 2T26 Simple Angle
2C26 2 rows, m=1.0, theta=1.12
2CFC26
2FC26

011091.1413 2T27 Simple Angle
2C27 2 rows, m=1.0, theta=1.50
2CFC27
2FC27

011091.1540 2T28 Simple Angle
2C28 2 rows, m=1.0, theta=2.70
2CFC28
2FC28

011091.1619 2T29 Simple Angle
2C29 2 rows, m=1.0, theta=3.10
2CFC29
2FC29

011591.1113 2136 Simple Angle
2C36 2 rows, m=1.5, theta=0.37
2CFC36
2FC36

011591.1154 2T37 Simple Angle
2C37 2 rows, m=1.5, theta=0.71
2CFC37
2FC37

011591.1301W 2T38 Simple Angle
2C38 2 rows, m=1.5, theta=1.08
2CFC38
2FC38
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011591.1411 2T39 Simple Angle
2C39 2 rows, m=1.5, theta=1.57
2CFC39
2FC39

011591.1453 2T40 Simple Angle
2C40 2 rows, m=1.5, theta=3.00
2CFC40
2FC40

011591.1542 2T41 Simple Angle
2C41 2 rows, m=1.5, theta=2.43
2CFC41
2FC41

C. FILM EFFECTIVENESS DATA

Generating Program : FLMIEFFV2

pFCxx ---- local effectiveness data file

pSPAxx spanwise average effectiveness data file

COMPOUND ANGLE, 2 ROWS

Data Run # Data File Experimental Conditions
102990.1434 FEFF5 Compound Angle.
102990.1600 SPA5 2 rows, m=0.5
102990.1730
102990.1848
103090.1233
103090.1507
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100990.1552 FEFF2 Compound Angle
100990.1856 SPA2 2 rows, m=1.0
100990.2018
101090.1313
101090.1607
102290.1344

102490.1429 FEFF4 Compound Angle
102490.1552 SPA4 2 rows, m=1.5
102490.1804
102590.1938
102590.1227
102690.1416

103190.1143 FEFF6 Compound Angle
110190.1645 SPA6 2 rows, m=1.74
110190.1857
110190.2018
110290.1206
110290.1342

SIMPLE ANGLE 1 ROW

010491.1019 2FEFF3 Simple Angle
010491.1247 2SPA3 1 row, m=0.5
010491.1436
010491.1556
010491.1718
010491.1811

122090.1128 2FEFFI Simple Angle
122090.1237 2SPA1 1 row, m=1.0
122090.1401
122090.1601
122190.1506
122190.1624
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010291.1145 2FEFF2 Simple Angle
010291.1304 2SPA2 I row, m=1.5
010291.1428
010291.1508
010291.1621
010291.1658

SIMPLE ANGLE 2 ROWS

011191.1039 2FEFF4 Simple Angle
011191.1115 2SPA4 2 rows, m=0.5
011191.1209
011191.1247

011191.1419
011191.1505

011091.1103 2FEFF5 Simple Angle
011091.1205 2SPA5 2 rows, m=1.0
011091.1301
011091.1413
011091.1540
011091.1619

011591.11 2FEFF6 Simple Angle
011591.1154 2SPA6 2 rows, m=1.5
011591.1301
011591.1411
011591.1453
011591.1542

D. FILM EFFECTIVENESS DATA FROM DIRECT MEASUREMENT

Generating Program : EFFFC2B

pNFCxx ---- local effectiveness data file

256



SIMPLE ANGLE. I ROW

Data Run # Data File Experimental Conditions
010791.1636 2NFC20B Ilrow, m=0.5
021391.1719 2NFC44B Ilrow, m=1.0
010891.0821 2NFC22B Ilrow, m=1.5

E. STANTON NUMBER RATIO FILES

Generating Program :STANRI

pSTRxx --- Film-coolig data file

COMPOUND ANGLE, 2 ROWS

Data Run # Data File Experimental Conditions
102990.1848 STRI 2 rows, m=0.5, theta=1.26
100990.2018 STR2 2 rows, m=1.0, theta=1.44
102590.1438 STR3 2 rows, m=1.5, theta=1.43
103190.1143 STR4 2 rows, m=1.74, theta=1.36

SIMPLE ANGLE. 1 ROW

Data Run # Data File Experimental Conditions
010491.1556 2STR3 1 row, m=0.5, theta=1.48
122090.1601 2STR1 1 row, m=1.0, theta=1.64
010291.1508 2STR2 1 row, m=1.5, theta=1.63

SIMPLE ANGLE. 2 ROWS
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Data Run # Data File Experimental Conditions
011191.1247 2STR5 2 rows, m=0.5, theta=1.45
01 109 1. 1413 2STR4 2 rows, m=1.0, theta=1.50
011591.1411 2STR6 2 rows, m=1.5, theta=1.57

F. MEAN VELOCITY DATA:

COMPOUND ANGLE. 2 ROWS

Generating Experimental
Data Run # Data File Prop-ram Conditions
112590.0905 FIV2 HIVEHOLE1 2 rows, m=1 .0

FIVP2 FIVEHOLEI x/d = 9.4
FIV2A PADJUST
V2 VELOCITY

112090.0900 FIVJ FIVEHOLE1 2 rows, m=1.0
FIVP1 FIVEHOLEI x/d = 43.7
FIVIA PADJUST
vi VELOCITY

111590.1400 FIVO FIVEHOLEI 2 rows, m=1 .0
FIVPO FIVEHOLEI x/d = 85.2
FIVOA PADJUST
VO VELOCITY

SIMPLE ANGLE. I ROW

Generating Experimental
Data Run # Data File Program Conditicns
011491.0844 2F1V7 FIVEHOLBI I row, m--0.5

2FIVP7 FIVEHOLEl x/d = 9.4
2FIV7A PADJUST
2V7 VELOCITY
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011291.0831 2FIV5 FIVEHOLE1 1 row, m=0.5
2FIVP5 FIVEHOLE1 x/d = 43.7
2FIV5A PADJUST
2V5 VELOCITY

010991.1106 2FIV3 FIVEHOLE1 1 row, m--0.5
2FIVP3 FIVEHOLE1 x/d = 85.2
2FIV3A PADJUST
2V3 VELOCITY

122390.1646 2FIV2 FIVEHOLE1 1 row, m=1.0
2FIVP2 FIVEHOLE1 x/d = 9.4
2FIV2A PADJUST
2V2 VELOCITY

122290.1815 2FIV1 FIVEHOLE1 1 row, m=1.0
2FIVP1 FIVEHOLE1 x/d = 43.7
2FIV1A PADJUST
2V1 VELOCITY

122290.0655 2FIVO FIVEHOLE1 1 row, m=1.0
2FIVP0 FIVEHOLE1 x/d = 85.2
2FIVOA PADJUST
2V0 VELOCITY

011691.0737 2FIV8 FIVEHOLE1 1 row, m=1.5
2FIVP8 FIVEHOLEI x/d = 9.4
2FIV8A PADJUST
2V8 VELOCITY

011291.1922 2FIV6 FIVEHOLE1 1 row, m=1.5
2FIVP6 FIVEHOLE1 x/d = 43.7
2FIV6A PADJUST
2V6 VELOCITY

010991.2125 2FIV4 FIVEHOLE1 I row, m=1.5
2FIVP4 FIVEHOLE1 x/d = 85.2
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2FIV4A PADJUST

2V4 VELOCITY

SIMPLE ANGLE. 2 ROWS

Generating Experimental
Data Run # Data File Program Conditions
011891.0734 2F1V9 FIVEHOLE1 2 rows, m=0.5

2FIVP9 FIVEHOLEl x/d = 9.4
2FIV9A PADJUST
2V9 VELOCITY

012091.0857 2HIV12 FIVEHOLE1 2 rows, m=0.5
2FIVP 12 FIVEHOLEI x/d = 43.7
2FIV12A PADJUST
2V12 VELOCITY

012291.1632 2FIV15 FIVEHOLE1 2 rows, m=0.5
2HIVP15 FIVEHOLE1 x/d = 85.2
2IV I 5A PADJUST
2V 15 VELOCITY

011891.1838 2HIV1O FIVEHOLEl 2 rows, m=1.0
2FIVP1O FIVEHOLE1 x/d = 9.4
2FIVIOA PADJUST
2V 10 VELOCITY

012091.1924 2IV 13 FIVEHOLE1 2 rows, m=1.0
2FIVP13 FIVEHOLE] xld = 43.7
2FIV1I3A PADJUST
2V 13 VELOCITY

012391.1758 2FIVI16 FIVEHOLE1 2 rows, m=1.0
2FIVP16 FIVEHOLE1 x/d = 85.2
2FIV16A PADJUST
2V16 VELOCITY
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011991.0735 2FIV11 FIVEHOLE1 2 rows, m=1.5
2FIVP1 1 FIVEHOLE1 x/d = 9.4
2FIV11A PADJUST
2V 11 VELOCITY

012191.0808 2FIV14 FIVEHOLE1 2 rows, m=1.5
2FIVP14 FIVEHOLE1 x/d = 43.7
2FIV14A PADJUST
2V14 VELOCITY

012491.0821 2FIV17 FIVEHOLE1 2 rows, m=1.5
2FIVP17 FIVEHOLE1 x/d = 85.2
2FIV17A PADJUST
2V17 VELOCITY

G. Mean Temperature Survey Data:

Generating Program: ROVER1

COMPOUND ANGLE

Data Run # Data File Experimental Conditions

120590.1535 TEMO 2 rows, m=1.0, x/d=9.4

120590.1535 TEMI 2 rows, m=1.0, x/d=43.7

120690.1045 TEM2 2 rows, m=1.0, x/d=85.2

SIMPLE ANGLE. 1 ROW

Data Run # Data File Experimental Conditions
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120590.1535 2TEM5 1 row, m=0.5, x/d=9.4

120590.1535 2TEM4 1 row, m=0.5, x/d=43.7

120690.1045 2TEM3 1 row, m=0.5, x/d=85.2
12050.135 TEMOI rw, =1.0 x/=9.

120590.1535 2TEMO 1 row, m=1.0, x/d=9.

120690.1045 2TEM2 1 row, m=1.0, x/d=85.2

120590.1535 2TEM6 1 row, m=1.5, xld=9.4

120590.1535 2TEM7 1 row, m=1.5, xld=43.7

120690.1045 2TEM8 1 row, m=1.5, xld=85.2

SIMPLE ANGLE. 2 ROW

Data Run # Data File Experimental Conditions

012691.0943 2TEM 1 2 rows, m--0.5, x/d=9.4

012591.1211 2TEM1O 2 rows, m=0.5, x/d=43.7

012591.086,f 2TEM9 2 rows, m=0.5, x/d=85.2

012691.1425 2TEM12 2 rows, m=1.0, x/d=9.4

012691.1033 2TEM 13 2 rows, m=1.0, xld=43.7

0!12791.1505 2TEM14 2 rows, m=1.0, xld=85.2

012991.1125 2TEM17 2 rows, m=1.5, x/d=9.4

012891.1542 2TEM16 2 rows, m=1.5, x/d=43.7

012891.1125 2TEM15 2 rows, m=1.5, x/d=85.2
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