AD-A240 673
ARG

RL-TR-91-166
Final Technical Report
August 1991

TECHNOLOGY ASSESSMENT OF THE
SOFTWARE LIFE CYCLE SUPPORT
ENVIRONMENT (SLCSE)

The MITRE Corporation

R.W. Baldwin and D.E. Emery

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

91-11296
ATV

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

3o 20 37

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-91-166 has been reviewed and is approved for publication.

wrsoven: baod (1, Grino

DEBORAH A. CERINO
Project Engineer

4 7 70\
oot /g 3—
FOR THE COMMANDER:

RAYMOND P. URTZ, JR.
Technical Director
Command & Control Directorate

If your address has changed or if you wish to be removed from the Rome Laborator.
mailing list, or if the addressee is no longer employed by your organization, please

notify RL(C3CB) Griffiss AFB NY 13441-570C. This will assist us in maintaining
current mailing list.

Do not return copies of this report unless contractual obligations or notices on 4
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | cB a& 6s0401e8

Pubic reporting burden for this colecton of formation 15 estrmited toaverage 1 hour per 1esponss, Nouding the tme for reviewsng NStChons, searchg

A 3 st 0Xa sosces
mmmmhmmmmmlmmmddmSmmsmmwmm:unmmdi’ﬁ
cdgdmddmmﬂgwfurthmmWMWnWDmuhﬂmOmm aCReporns, 1215 Jeftersor
Davis Higrway, Sike 1204 Arington, VA 222024302, and to the Offics of Maregemere and Budget, Paperwork Reduction Propt (0704-0188), Waesrengton, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1991 Final Sep 89 - Sep 90
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
TECHNOLOGY ASSESSMENT OF THE SOFTWARE LIFE CYCLE C - F19628-89-C-0001
SUPPORT ENVIRONMENT (SLCSE) PE - 63728F
6. AUTHOR(S) PR - 2327
R. W. Baldwin, D. E. Emery ;ﬁ - 8;
- 24
7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
The MITRE Corporation REPORT NUMBER
Burlington Road
Bedford MA 01730-0208
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Laboratory (C3CB) AGENCY REPORT NIUMBER
Griffiss AFB NY 133%41-5700 RL-TR-91-165

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Deborah A. Cerino/C3CB/(315) 300-2054

12a. DISTRIBUTION/AVAILABILTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maamum 200 werds)

This report summarizes the technology assessment of the Rome Laboratory Software Life
Cycle Suport Environment (SLCSE) performed by the MITRE Corporation. MITRE assesses
the SLCSE for applicability to Electronic Systems Division (ESD) System Program
Offices (SPOs) and their contractors, and identifies changes required to tailor

the SLCSE to ESD requirements. The report alsc includes a plan for transfer of

the SLCSE from the Command Center Evaluation System (CCES) to various SPOs and
changes that may be necessary to productize SLCSE, in particular, for use on

large scale C3I software development efforts.

Prescrived by ANSI St 22918

298102

14. SUBJECT TERMS : 15 NUMBER OF PAGES
Software Engineering Environment 28
16 PRICE CODE
17. SECURITY CLASSIFICA
AR LA TION 18. (S)E%F'%ggA%LEASSIFICATION 19. (s)%CALé%r%A%L‘FSSIFICAHON 20. UMITATION OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED U/L
NSN 7540-01 -280-5500 — Starcarc F orm 298 (Rev 7 60

EXECUTIVE SUMMARY

BACKGROUND

The Software Life Cycle Support Environment (SLCSE) is a computer-based environment
framework consisting of software tools integrated with an entity-relationship-attribute
database which is intended to support the acquisition, full-scaie development and post-
deployment support of Mission Critical Computer Software (MCCS).

PURPOSE

This report provides a technology assessment of the Software Life Cycle Support
Environment (SLCSE) based on use of the version of SLCSE that was installed at the
Electronic Systems Division (ESD) Command Center Evaluation System (CCES) and
MITRE’s knowledge of System Program Office (SPO) and contractor requirements for
software engineering support capabilities and software engineering environment technology.
It provides an assessment of the suitability of SLCSE for Air Force acquisition and software
development support, recommendations about directions for future SLCSE-related research
and development, recommendations for productization of the current capability to support
large scale projects, and a recommended approach to the transfer of the productized SLCSE
to ESD SPOs and their contractors.

ASSESSMENT

SLCSE is a modem software engineering framework substantially conforming to the
requirements expressed in software engineering environment reference models. It provides
many of the capabilities necessary to conduct a software acquisition and development effort
and has the potential to substantially improve the productivity of software engineers. A
centralized database captures all of the data required to automatically generate documentation
in conformance with the DOD-STD-2167A software development standard. Tools are
provided to populate and analyze the contents of the database for completeness, consistency,
and to generate the required documentation.

The current implementation of SLCSE is not without shortcomings. - It is currently available
only for a VAX/VMS environment. It uses a centralized processor model whereby almost
all tools must be resident on the host VAX/VMS cluster to be used, accessible only by
VT-100® class terminals, or equivalent. Yet its most (potentially) powerful tool (ALICIA)
requires a VAXstation, a graphics workstation with a high resolution bit-mapped display, to
use. The SLCSE interface is modeled after a popular personal computer’s graphical user
interface, but does not provide all of the ease of operation and convenience implied by, and
expected of, that interface.

SLCSE has just passed beyond the status of laboratory prototype, having gone into beta test
at three USAF sites. Additional testing of SLCSE is necessary to determine its usability by

iii

many concurrent users and to identify as yet undiscovered bugs in the software. The
Productization Plan identifies the steps Rome Air Development Center (RADC) should next
take to improve both the software and the SLCSE documentation. These include fixing
known bugs, improving the user interface, providing the ability to dynamically modify the
database schema, developing a Concept of Operations guide and a training manual
illustrating how to design and build the database effectively.

The Technology Transition Plan identifies the ways in which RADC can transition SLCSE
from RADC to USAF ESD, AFLC, and their associated contractors. A transfer agent should
be established to work with RADC and the potential recipients to provide the support
required to establish SLCSE as the preferred operating environment. A support organization
must be established, trained, and staffed to provide the same kind and degree of technical
support expected of commercial tool vendors.

iv

ACKNOWLEDGEMENTS

This project was sponsored by and performed under the direction of the USAF Rome
Laboratory (COEE), Griffiss AFB, Rome, N.Y. The project officer was Deborah Cerino.

The authors wish to thank D. Cerino and Frank Lamonica of Rome Laboratory (formerly
Rome Air Development Center) for their careful review and suggestions, which greatly
improved the organization and content of this report. Thanks are also extended to T.K.
Backman, J. C. Fohlin, M. Hazle, R. Hilliard, S. D. Litvintchouk, and S. F. Stanten for their
comments and suggestions, and to L. Gaudet and J. E. Lavery for editing this document.

Accession For
NTIS GRA&I o
DTIC TAB 0
Unanncunced N
Justification |

By
| Distribution/
Availability Codes
~Avall spd/or
Special

,
i
Al

SECTION

TABLE OF CONTENTS

1 Introduction

1.1 Background
1.2 Purpose

2 Status of Task

2.1 SLCSE Installation
2.2 SLCSE Training
2.3 Technology Investigations

3 Assessment of SLCSE

3.1 Definition of Technology Assessment
3.2 Evaluation Approach

3.3 Factors to be Considered

3.4 SLCSE Assessment

3.4.1 Conformance to the CASEE Reference Model
3.4.1.1 Operating System Services

2 Data Repository Services

3 Data Integration Services

4 Tools

5 Task Management Services

6 User Interface Services

.1 Message Server Network Services

8 Distribution

9 Target Service

10 Users of a CASEE

rmance to Other Factors

.2.1 Capabilities of SLCSE

.2.2 Ease of Learning SLCSE

.2.3 Productivity Improvements Gained Usmg SLCSE

2.

2.

1.
1.
1
1.
1.
1
1.
1
1.
O

O WL LI L LI LI L) LI W L

342 C f

4 Robustness and Stability of SLCSE
5 Capacity of SLCSE
Its of SLCSE Usage
.3.1 Production of Documentation
.3.2 Mapping to an Object Oriented Design

A&AAAD Abébhhbh&

WWWLw

343 Re

[4]
[=]

S

W w
&#

PAGE

fa—y

OO O 00~ ~ bW w

SECTION PAGE

4 Technology Transfer Approach 31
4.1 Background 31
4.2 Technology Transfer Models 31

4.2.1 MCC Experience with Technology Transfer 32
4.2.2 SEI View of Planning Technology Transfer 33
4.3 Approaches to Transitioning into ESD 36
4.3.1 The Government-Contractor Relationship 36
4.3.2 Transitioning to ESD Contractors 36
4.3.3 Transitioning to ESD SPOs 37
4.4 Issues in Transferring to ESD SPOs 38
4.5 Tasks to be Accomplished by RADC 40
4.6 Tasks to be Accomplished by the Recipient 41
4.7 Other Transfer Activities 42
4.8 Lessons Learned for Future Technology Transfers 43

5 Productization Approach 45
5.1 Background 45
5.2 Industrial Experience in Productization 45
5.3 Productization Process 45

5.3.1 Initial Productization 45
5.3.2 Beta Testing 47
5.3.3 Reproductization 47
5.3.4 Ongoing Support 48
5.3.5 Costs and Schedule Experience 48
5.4 Specific Productization Recommendations 49
5.4.1 Technical 49
5.4.2 Other 51

6 Future Directions 53
6.1 Framework Technologies - 53
6.2 User Interface Capabilities 36
6.3 Software Development Tools 57

7 Summary 61

Appendix List of Tools Available for SLCSE 63

Glossary 67

vii

SECTION PAGE
Trademarks 69

List of References 71

viii

LIST OF FIGURES

FIGURE PAGE
1 Example Inputs, Outputs, Controls and Resources of a CASEE 10
2 Overall Reference Model Structure 11
3 A Misleading Help Message 20
4 SLCSE Cannot Access the ShareBase Server 22
5 SLCSE Terminates Abnormally 23
6 SLCSE Fails to Access the Database Due to a Smartstar Error 24
7 EditER aborts 25
8 BaselinER Crashes 26
9 SLCSE Crashes 27
10 The Technology Transfer Gap and Three Major Types of Technology

Transfer Activities 33
11 Technology Transition Context 34

12 Stages of Adaptation to New Technology 44

ix

SECTION 1
INTRODUCTION

1.1 BACKGROUND

The Software Life Cycle Support Environment (SLCSE) is a computer-based environment
framework consisting of software tools integrated with an entity-relationship-attribute
database which is intended to support the acquisition, full-scale development and post-
deployment support of Mission Critical Computer Software (MCCS).

SLCSE was developed by General Research Corporation (GRC), Software Productivity
Solutions, Inc. (SPS), and Intermetrics, Inc., under contract to the United States Air Force
(USAF) Rome Air Development Center (RADC). The project began in 1985 as a research
and development effort to create a modern framework that would capture all of the technical
design, documentation, and administrative information generated by a software development
project in one, comprehensive database. The database could be manipulated to automatically
generate all of the appropriate technical and administrative documentation required by
Department of Defense (DOD) contracts, as well as to provide automated support for
configuration control and management, requirements analysis, and requirements traceability
through design, coding, testing and integration.

The final prototype was delivered to RADC in August 1989. Currently, SLCSE has been
installed at three USAF Logistics Centers and at Charles Stark Draper Laboratories for beta
testing.

1.2 PURPOSE

The MITRE task on Project 5360 provided a technology assessment of the Software Life
Cycle Support Environment (SLCSE). This assessment was based on use of the version of
SLCSE that was installed at the Electronic Systems Division (ESD) Command Center
Evaluation System (CCES) and MITRE’s knowledge of System Program Office (SPO) and
contractor requirements for software engineering support capabilities and software
engineering environment technology. The results are an assessment of the suitability of
SLCSE for Air Force acquisition and software development support, recommendations about
directions for future SLCSE-related research and development, recommendations for
productization of the current capability to support large scale projects, and a recommended
approach to the transfer of the productized SLCSE to ESD SPOs and their contractors.

All of the specific tasks in the Technical Objectives and Plans (TO&P) on this project have
been completed. Due to the breadth of scope of this investigation, some tasks were given a
lesser degree of emphasis to complete this assessment on schedule. In particular, the hands-
on assessment, and productization and technology transfer tasks were emphasized.

SECTION 2
STATUS OF TASK

2.1 SLCSE INSTALLATION

The Software Life Cycle Support Environment, version 3.7.2, has been installed at the Air
Force Systems Command (AFSC) Electronic Systems Division Command Center Evaluation
System, building 1704, Hanscom AFB, MA. Version 3.7.2 was the most current release
available from GRC at the time of installation. Access to SLCSE from MITRE was arranged
through the use of modems and dial-in telephone lines until the CCES local area network
(LAN) could be connected to the main ESD LAN. Originally scheduled for completion by

1 June 1990, the network connection was completed in late July 1990.

Installation of SLCSE required the leasing of a ShareBase Server, model 300, the purchase of

an Ethernet® processor board for the Server, and the purchase of a license for SmartStar, a
software product that provides an SQL interface to the Server. The SLCSE software provides
the environment framework, the user interface, the database schema definition, and specific
tools to manipulate the database. SLCSE also provides access to VAX/VMS resident tools,
both standard and layered products, that are acquired separately and independently of
SLCSE.

The 1nstallation of the Server, however, was fraught with problems. Initial attempts to install
the Server failed due to a faulty ShareBase cartridge tape. Certain system files could not be
read causing installation to abort. A new tape was obtained which corrected that problem; we
then discovered that a hardware fault had occurred. Inspection of the interior of the Server
revealed a badly damaged cable. This, too, was replaced by ShareBase, but it still did not
solve the hardware problem. After two days of repair efforts by the CCES System Manager,
and two days of on-site repair efforts by a ShareBase technician, the Server was returned to
the ShareBase factory for repairs. Upon return of the Server, after both the processor and
hard disk drive had been replaced, and with the Server software installed at the factory, an
attempt to boot the Server generated both similar and new error messages compared to the
previous installation attempt. Repeated boot attempts and calls to ShareBase, did not reveal
the solution to the problem, but ShareBase suggested we try reseating the processor board, as
this had worked in the past at other sites. After six tries at reseating the board by two
different people, the problem was resolved and the Server was able to boot. The SLCSE
software installation was then completed and configured to work with the Server.

Once the installation of the Server was successfully completed, and after the training course
was finished, an additional problem developed. The Smartstar software became unable to
access the Server. Repeated attempts to reconfigure the software were unsuccessful, and it
ultimately was necessary to reinstall the Smartstar software, and reconfigure SLCSE to

correct the problem. In contrast, the installation of SLCSE with VAX/Rdb®, the
configuration used during the training course was free of problems.

These problems have been reported in detail to highlight the fact that quality control
problems and support issues will have a major impact on whether SLCSE is accepted at ESD.
Requiring the use of components that are beyond the control of the SLCSE vendor to deliver
and maintain will require the site administrator to act as systems intcgrator, vendor
coordinator, and troubleshooter. When a problem occurs that the site administrator cannot
handle, there is no single point of contact available to resolve the problem.

It should be noted that, while a sample of one installation is not statistically significant, these
problems are not uncommon according to the information provided by the Sharebase
technical support staff and GRC’s own experiences. This makes continued reliance on the
Server and the Smartstar software a risk. For SLCSE to become a widely used product at
ESD, such installation and operational problems must be minimized or eliminated. Short-
term enhancements to SLCSE should, therefore, be targeted toward reducing or eliminating
dependence on both the Sharebase Server and the SmartStar software.

2.2 SLCSE TRAINING

A training course on the concepts and use of SLCSE was held at the CCES for MITRE
Bedford personnel involved in the SLCSE assessment task, MITRE Houston personnel
involved in an evaluation of SLCSE for the National Aeronautics and Space Administration
(NASA), and for interested ESD personnel. General Research Corporation provided the
instructor and the course materials, per their conwract with MITRE.

The course lasted three and one-half days and covered the major functions of SLCSE,
including the user interface, project management, software analysis, programming,
configuration management, and SLCSE environment management. Also covered, but in
much less detail, were the schema definition language, integration of tools into SLCSE, and
the generation of documentation compliant with the data items associated with DOD-STD-
2167A, the Defense System Software Development Standard.

The training course was given with SLCSE installed on a MicroVax I, but, due to the
installation problems with the Server mentioned above, used VAX/Rdb as the underlying
database management system. This proved not to be a problem as the training database was
small and we were able to use two MicroVaxes clustered together, with two teams logged
into each, to reduce system load and minimize performance concerns.

GRC'’s other responsibility under this task was to provide telephone éuppon to MITRE on an
as-needed basis. GRC was not required to perform any maintenance or make enhancements
to SLCSE during this assessment.

2.3 TECHNOLOGY INVESTIGATIONS

Review of professional journals, trade journals, commercial product literature, and
evaluations of existing government-sponsored and privately-developed software engineering
environments have updated our knowledge of environment technology. Attendance at
technology and product seminars and informal interviews with other technically qualified

staff with experience in software research and development have also been used to gain an
understanding of the current work being done in this field, and to establish a technology
baseline. For a technology baseline we defined what is considered state-of-the-art, and what
is considered state-of-the-practice in software engineering environments. We have also
looked at government projects that address other aspects related to software development on
govermnment cont acts.

SECTION 3
ASSESSMENT OF SLCSE

3.1 DEFINITION OF TECHNOLOGY ASSESSMENT

Technology assessment, as we understood it for this task, required examining the technology
from two different perspectives. First, it involved taking a broad, overall view of the
technology in question, analyzing it, critiquing it, and evaluating its intrinsic value and its
general potential contribution to a specific field of science. Second, it required analyzing and
evaluating the technology as specific solutions to potential or existing problems.

SLCSE is a software technology that implements engineering framework and project
database concepts that have evolved from both basic software engineering research and from
practical industrial experience. We evaluated SLCSE to ascertain not only its modernity vis-
a-vis the state of the art in software engineering environments, but also, and perhaps more
importantly, its total functionality and applicability in providing a usable, practical,
environment with which to develop and maintain software.

3.2 EVALUATION APPROACH

The evaluation of integrated software environments can occur at different levels. A
traditional approach to an evaluation consists of detailed testing of each of the various
components of the environment to determine its level of functionality, completeness,
robustness, etc. The Ada Language System (ALS) and the WIS Software Development and
Maintenance Environment (SDME) are two examples of environments that were evaluated in
this manner by MITRE.

Our approach to evaluating SLCSE, because it is a technology assessment, took a different
tack. Because SLCSE was developed as a framework, rather than a monolithic integrated
environment, it was evaluated from a higher, conceptual viewpoint to determine if it does (or
could in the future) provide the desired capabilities.

We drew on the latest work in this field to provide general background guidance and
objective criteria with which to assess SLCSE. Specifically, the Ada Programming Support
Environment (APSE) E&V Guidebook and APSE E&V Reference Manual, developed for the
Ada Joint Program Cffice, and the CASEE (Computer Aided Software Engineering
Environment) reference model work being performed at Hewlett Packard Laboratories, were
used to identify the specific requirements and criteria against which modern software
environments and frameworks are being evaluated.

The APSE E&YV guidelines have been developed specifically to assist government and
industry in gaining an overall understanding of APSE assessment and in evaluating Ada
specific software environments. The E&V guidebook contains information to assess APSEs
from a “whole APSE” perspective as well as from an individual components perspective.

Additionally, assistance in assessing certain non-technical issues, important to the successful
use of an APSE, such as cost, maturity, and licensing issues are covered.

The CASEE Reference Model provides a definition of services that ought to be available in a
modern software engineering framework. While a CASEE reference model is not itself a
standard, it nevertheless provides a useful model with which to assess SLCSE against current
and future trends in CASE tools and environments.

The assessment of SLCSE, however, was still primarily oriented toward evaluating its
suitability for use by ESD SPOs and contractors. We also based our assessment of SLCSE
on the hands-on experience obtained through the training course and by running an
experimental project. This project was representative of software development efforts
undertaken by ESD contractors. The project went through the requirements and design
phases of the software life cycle, as defined in DOD-STD-2167A, developing the requisite
information appropriate to each phase, and storing it in the SLCSE database. In this manner,
we determined if the SLCSE database schema was logically complete, and could support
software development and management as generally performed by an ESD contractor. We
were then able to make recommendations regarding improvements in data collection and
reporting capabilities.

3.3 FACTORS TO BE CONSIDERED

For SLCSE to gain acceptance and become a widely used tool at ESD and ESD contractor
sites, it must provide the necessary functionality, as discussed above. It must meet certain
other criteria, as well. The factors that we took into consideration during the assessment of
SLCSE were the following:

Capabilities Provided - SLCSE must provide the necessary tools to perform
project management, requirements analysis, software design, coding, testing,
integration, document generation, configuration management, €tc., in the manner
that is consistent with the general way that contractors and DOD SPOs carry out
their work. New tools, from third party sources that are in widespread use, must be
able to be easily integrated into SLCSE and be able to populate the database as if
they had been specifically designed to do so.

Ease of Learning - SLCSE must be easy to learn and use. .While this seems like an
obvious point, it cannot be over-stressed. Any large, complex tool suite, especially
one with a complex underlying database, that is expected to be used by both
technical and non-technical staff, must be simple to learn and intuitive to use.

Productivity Improvements - For SLCSE to be adopted, it must provide a
measurable increase in the productivity of the staff who use it. For managers, that
implies being able to more closely (but unobtrusively) monitor the status of ongoing
work, and identify and report problems earlier than would otherwise be possible; for
technical staff, it implies being able to analyze, design, review, implement and test
software systems, either faster or with higher quality, or (preferably) both. These

gains must be sufficient to justify the overhead expenses involved in installing and
maintaining SLCSE and associated hardware and software, and training project
personnel in its use.

Robustness/Stability - Of prime impon .:ice to project personnel, at both ESD and
contractor sites, is the robustness and stability of SLCSE. For SLCSE to be used on
real projects, it must be available for use on an almost nonstop basis, subject only to
the availability of its underlying hardware base, with only short scheduled
downtimes interrupting service. Unscheduled downtime, e.g., software crashes,
must be kept to a minimum. SLCSE must not permit internal system errors or user
errors to cause it to abruptly crash, perhaps losing much work, but provide graceful
degradation and recovery. Maintaining consistency of the database is pasticularly
important.

Supportability - Its robustness notwithstanding, SLCSE must be a supported
product. When the inevitable problems do arise, adequate technical support must be
available to the user community. Serious bugs must be fixed and new versions
released on a regular basis, and workarounds developed and provided in the interim.
New capabilities and enhancements to existing functions must also be provided on a
regular basis.

Capacity - SLCSE must be capable of supporting large as well as small projects.
By large, we mean projects with upward of 300-500 people at any given time
requiring concurrent access to SLCSE. Short response times for interactive work
and reasonable turnaround times for batch-oriented activities must be supported.
While the maximum capacity will also be dependent on the hardware base used,
there should be no inherent limiting factors built into SLCSE.

3.4 SLCSE ASSESSMENT
3.4.1 Conformance to the CASEE Reference Model

The CASEE Reference Model is a conceptual framework describing and providing the high
level requirements necessary or desirable in a Computer-Aided Software Engineering
Environment (CASEE). Viewing a CASEE as a black box, figure 1, taken from the CASEE
Reference Model, illustrates the types of information and resources input to a CASEE, and
the type of information that is output.

CONTROLS

Request for Tender
Policy
Plans

INPUTS y OUTPUTS
Requirements ————»
Design > % Project History

r—b Resources Used

Documentation ———————
|__p» Status Reports
Shippable Object Code

Source Code B —
Tests —_

mmwr>o

Responsibilities ————p +—» System Representations

Capabilities — —® Documentation
Specifications ~ —————»

Error Reports ————

Hardware T People
Software

RESOURCES

Figure 1. Example Inputs, Outputs, Controls, and Resources of a CASEE [Earl, A.]

From this perspective, we conclude that SLCSE conforms well, in principle, to this view of a
CASEE. As we have ascertained by reviewing the SLCSE documentation, SLCSE accepts as
inputs the types of information specified, and can produce outputs of the types listed. This
view, however, does not deal with the internals or structure, of a CASEE.

The overall structure of the CASEE Reference Model is shown in figure 2. As indicated, a

CASEE is described in terms of the services provided. We now evaluate the degree to which
SLCSE provides the specified services.

10

/ Operating System Services

/ Data Repository Services

Data Integration Services

~HITIT)

Task Management Services / /
User Interface Services A/
/ Message
Server
Network

Figure 2. Overall Reference Model Structure [Earl, A.]

3.4.1.1 Operating System Services

The CASEE reference model provides no detail about Operating System Services, as they are
presumably well-understood, except to make a distinction between operating system kemel
services and networking services. As SLCSE uses and indirectly makes available the
services of the underlying VMS operating system for both kernel and networking services,

11

SLCSE is consistent with the CASEE model, to the extent that VMS and DECnet provide the
appropriate services. SLCSE currently is not operating system independent, being available
only on VAX/VMS.

3.4.1.2 Data Repository Services

The management and maintenance of data entities and the relationships among them is the
general purpose of the data repository. Data repository services are comprised of the
following services:

Data storage service - SLCSE provides the capabilities necessary to be consistent
with the reference model. All primary services relating to entities are supported:
create, read, update and delete. A complete data model is provided along with the
capability to modify that model by changing the type of an entity or adding and
deleting attributes.

Relationship service - SLCSE provides the capabilities necessary to be consistent
with the reference model. Relationships (or links) between entities are supported.
Relationships are typed and have attributes and cardinality. In addition, the
semantics are defined such that a relationship cannot exist unless both the domain
and range entities exist. Currently, a relationship is not automatically deleted when
both domain and range entities are deleted, but this will be corrected in a future
release.

Version service - SLCSE provides a versioning capability that is consistent with the
reference model. Creation and management of different versions of entities is
supported, as is the ability to baseline a set of entities per DOD requirements.

Name service - SLCSE supports the use of *“‘surrogates,” i.e., unique system-
generated identifiers that are never reused. This eliminates the possibility that
inconsistencies will occur in the identification of entities and relationships. User
naming of entities is supported as well to provide a more readable representation.

Configuration service - SLCSE supports the concept of configuration service.
Composite entities are supported wherein a composite entity is the union of a set of
individual entities. An entity can be treated as a single item or as a structured
collection of entities. Also supported is the ability to define a configuration for
baselining purposes. This service is well integrated with the version service.

Archive service - The reference model states there has to be a service which allows
on-line information to be transferred to an off-line form and yet provide visibility to
the user for retrieval of archived data. In a large project, it may not be feasible to
keep all development data on-line for long periods of time. SLCSE does not
provide such an archival service.

Data transaction service - SLCSE supports this service to the extent that the

underlying database management system provides a transaction processing
capability, with commit and rollback operations defined in the traditional sense.

12

Concurrency service - SLCSE supports the ability to allow users to lock and unlock
entities to avoid the lost update scenario whereby the second update to an entity
unwittingly overwrites the first update. There is, however, an outstanding problem
trouble report at GRC concerning this which should be addressed in any future
updates.

Security service - SLCSE supports access controls at the tool and entity level that
conform to the type suggested by the reference model. In particular, access controls
can be set based on who the user is and what role he is playing. We did not find any
information to suggest that violations are logged and notifications issued (perhaps to
a system or program manager) as recommended in the reference model. Other
security issues, such as covert channels, performance, and operating systems
security are only mentioned in the reference model as topics for discussion at a
future date. SLCSE could not currently support classified software development in
compartmented mode because it lacks the capability to tag objects with a security
level.

Backup service - SLCSE supports a database load and unload capability that,
combined with standard VMS backup and restore procedures, provides services
consistent with the reference model. Backup of the SLCSE database is limited to
full backup and restore. It would be advantageous to have an incremental backup
capability.

3.4.1.3 Data Integration Services

Support should be provided for metadata and services for both metadata and data. Data is the
specific information, or values, stored in the database. Metadata is data about data, and
enables the user to change the structure of the database by modifying existing data types and
relationships and adding new data types and relationships. The proper utilization of these
services allows for the “plug compatibility” of tools as it relates to data. Data integration
services are comprised of the following services:

Query service - SLCSE provides limited support for users to define their own data
interrogation commands. When in the EditER, a “query-by-example” function,
where the example is user-defined, can be invoked to search the database for entities
meeting a specific set of conditions. Support for querying metadata is not provided
to the end user.

Metadata - SLCSE supports the definition and use of metadata. New entity types,
new relationships, and new attributes can be defined and added to the database
schema. Existing definitions of entity types and relationship types can be changed
by modifying the Metaschema. A limiting factor, however, is the restriction on the
types of data that can be represented directly by the underlying relational database
management system. Much data that is required to be captured in a software
development effort is in the form of composite record types and various forms of
graphic diagrams. Direct support for these would be desirable.

13

. State monitoring - SLCSE does not provide this service yet. Also called
“triggering,” this service enables the definition and specification of database states,
and actions to be taken should these states occur. There is no capability for defining
states of data or metadata, or for sending notification that such a state has been
achieved. Currently, only a limited form of event monitoring of tools is provided.

. Sub-environment service - SLCSE provides this service by enabling the SLCSE
Environment Manager to set user access rights to the database subschemas and
environment tools. Users will then see just the data in their own workspaces and in
assigned subschemas and have access to only the tools required for that particular
role.

3.4.1.4 Tools

The CASEE Reference Model defines a tool as “an artifact which automates some function
or activity, performing it on behalf of the user who operates within his task.” Tools are
envisioned as “plugging-in” to the environment between the task management and data
integration services. A tool is permitted to store (almost) no data within its own code or, at
the other extreme, store all of its data within its own private database. Tools may be added to
an environment by encapsulating them with software to make them work in that environment
without having to modify the tool. At a minimum, an environment should identify which
tools exist and describe the purpose and facilities of each tool.

SLCSE provides full support for the description and integration of tools provided in the
reference model. Tools are supplied with SLCSE which automate many functions that
previously would have been performed manually. An encapsulation capability is provided,
through the Entity-Relationship Interface (ERIF) package and the windowing tools, to
integrate new tools into SLCSE and provide a conforming interface as well as enable the
tools to utilize the database appropriately for that tool’s purpose. A description of each tool’s
function is available in the documentation for SLCSE and on-line in the help facility for some
of the tools. While the reference model does not categorize tools, e.g., “management” tcols,
or “requirements analysis” tools, tools in SLCSE are categorized according to the
phases/activities of the life cycle they support or as general purpose. For convenience, a
complete list of tools available in SLCSE is included in the appendix.

3.4.1.5 Task Management Services

Task (or activity) management is defined in the reference model as services that allow the
CASEE to be task-oriented, i.e., to support process modelling. A layer of abstraction is
provided which allows the user tc deal with tasks as opposed to accomplishing a job by a
series of invocations on individual tools. The following services comprise task management:

. Task Definition Service - SLCSE does not provide a task definition capability as
defined by the reference model. All SLCSE activities are carried out by individual
tools. There is currently no way of defining and providing a higher level abstract
activity.

14

. Task Execution Service - SLCSE provides limited support for this service to the
extent that executing tools can be considered primitive tasks executing in the
SLCSE environment. Multiple tools cannot be executed concurrently in an
interactive mode by a single SLCSE user.

. Task Transaction Service - This enables the user to execute a task which consists of
many sub-tasks, each of which does useful work that is saved even though some
sub-tasks fail. SLCSE does not provide this service. Individual tools may provide a
form of this service in that a tool might provide a sequence of primitive operations,
some of which may fail, but the results of those which are successful are not
discarded.

. Event Monitoring Service - SLCSE provides a limited form of this service. Rules
can be defined which act as triggers when specific tools are invoked (pre-condition)
or complete operations (post-condition). Other types of events are not supported.

. Audit and Accounting Service - SLCSE does not directly provide this service.
However, VMS-based auditing and accounting tools external to SLCSE are
commonly used to provide cost and performance information. These tools could
easily be made accessible in SLCSE should a project manager require it.

. Task History Service - SLCSE does not support this service since task definition is
not supported.

. Role Management Service - SLCSE supports this service by defining user roles and
requiring SLCSE users to play a specific role based on the work to be performed,
e.g., software analysis, project management, configuration management. This
service could be expanded in SLCSE to provide additional information such as what
roles each SLCSE user is capable of playing (vs. what roles they are currently
assigned), relationships between roles, e.g., “all software analysts can also carry out
the programming role.”

3.4.1.6 User Interface Services

The CASEE Reference Model notes that the subject of user interfaces is a complex issue
which is more general than integration frameworks. It allows that a consistent user interface
may be adopted for a complete framework. A layered reference model for user interfaces,
based on the X Window System®, has been taken from the Open Software Foundation.
From this model it can be inferred that an important characteristic of a user interface is the
separation of the presentation of information from the application level functionality that
generates the information.

SLCSE supports this service by implementing a user interface that provides a consistent
“look and feel” when accessing file system objects and invoking tools. It does this by

providing a separate window management package which implements a Macintosh®-like
interface on a character-based terminal. Further, it standardizes on a single editing function

1S

(EditER), which all tools that manipulate the database use. Creation, modification and
deletion of database entities and relationships have the same “look and feel” regardless of the
tool in use.

This support is limited in that the user interface only provides a shell around an installed tool.
The SLCSE windowing interface expects a VT-100® compatible text stream as input. Tools
to be integrated that will be accessed from the SLCSE menu and run from the standard
SLCSE terminal must provide a VT-100 interface. _he form of the interface is not separated
from the function, as recommended in the reference model. This will become a serious
limitation as more tools are becoming available that have graphic interfaces and generate
graphic displays.

3.4.1.7 Message Server Network Services

The CASEE Reference Model is incomplete regarding these services. However, tool
registration and standard communication services such as inter-tool and inter-service
communications are identified as the primary services to be provided.

SLCSE supports the tool registration service in that a well-defined set of procedures and
interfaces exist to incorporate new tools into the SLCSE environment.

SLCSE does not directly provide the communications services described in the reference
model. Tool-to-tool communications is indirectly supported by using the database to store
information common to many tools. Service-to-service and tool-to-service communications
are not supported as SLCSE does not provide services in the manner assumed by the
reference model. However, SLCSE uses VMS extensively to provide the underlying
communications capabilities expressed in the reference model. Therefore, SLCSE
substantially conforms to the reference model in this area.

3.4.1.8 Distribution

Suppon for distributed software development is firmly established as a requirement in the
reference model. All services in the CASEE should be “available over a distributed
collection of heterogeneous processors and storage devices.” SLCSE does not fully conform
to this view of software development. The current SLCSE model of computing is based on a
central processing system being accessed by timesharing users with “dumb” terminals. All
tools, with the exception of two that are hosted on a Macintosh, run in the VAX/VMS
environment. Distribuied development is supported only to the extent that multiple
VAX/VMS systems, either networked or clustered, can be used concurrently.

3.4.1.9 Target Service

Target service provides a means of communication and control between the development
environment and a target environment where the software under development will be
executed. SLCSE does not support this service. It is currently a self-hosted and self-targeted
environment. New tools which would support cross-compiling, downloading of software to a
target environment, and execution control can be integrated into SLCSE. These tools would

16

then have to rely on the communication services of VMS to provide the linkage between the
host and target. As an example, RADC has integrated the J73 toolset which supports the
MIL-STD-1750A target processor.

3.4.1.10 Users ¢i a CASEE

The reference model defines several roles that are associated with CASE development,
management, maintenance, and customization. They are:

. Project managers - supervise definers, environment builders, developers, etc.

. Definers - define customized environments supporting a specific software
engineering methodology.

. IPSE (or CASEE) managers - supervise tool writers and project managers employed
by manufacturers.

. Manufacturers - vendors of CASE tools and utilities.

. Tool writers - develop CASE tools and utilities.

. Developers - build targe: systems.

. Environment builders - produce customized environments.

. Customers - provide the software requirements for the target systems.
It is clear from the brief descriptions given that the user role definition capability in SLCSE
already supports this service and that specific roles mentioned above that may not be
specifically defined could easily be added.

3.4.2 Conformance to Other Factors

In this section we provide an assessment of SLCSE, evaluating its overall capabilities, ease of
use, potential productivity improvements, robustness, and capacity.

3.4.2.1 Capabilities of SLCSE

The current implementation of SLCSE provides database capabilities and tools, from various
sources, that adequately cover the software development life cycle. The entity-relationship-
attribute database captures the data required in documentation conforming to the current
DOD software development standard, DOD-STD-2167A. The database input and analysis
tools provide the necessary functionality to create undate and delete entities and
relationships. The reports generated by the database analysis and verification tools enable a
user to list the entities and the current values of their attributes in the database and the
relationships between them. Potentially missing relationships can also be reported providing

17

a capability for checking for completeness. Project documents, with formats conforming to
DOD-STD-2167A data item descriptions, are easily created. Customized documents can also
be created for project specific purposes.

Other capabilities provided by SLCSE are specific to tools installed within or accessible
through SLCSE and will not be discussed individually.

3.4.2.2 Ease of Learning SLCSE

Overall, we found learning the mechanical aspects of using SLCSE to be quite easy. The
user interface is easy to understand, and the keypad mappings, used to invoke various
functions within a tool, are consistent across all tools developed specifically for SLCSE.
Accessing tools and user-created objects is a simple procedure due to the pull-down menus
invoked when choosing an item in the menu bar. Scrolling through a long list of tools can be
tedious, however, so the capability to re-order the items on the tools list, to place the most
often accessed tools first, is an advantage, as well as being able to scroll to the tool by typing
the first few characters of the tool name.

Tools created for SLCSE that provide access to the database were easy to learn to use. Those
tools, e.g., McdifyER and VerifyER, that provide a graphical view of the database
subschemas utilize the same EditER function to create, update, and delete entities as those
tools, e.g., Requirements and Design, whose interfaces are completely textually based. It is
not possible however, to enter the attribute values of a relationship created between two
entities at the time the relationship is created, thus requiring a two-step process which
complicates the learning process. Time-consuming operations, €.g., database updates and
document creation, are performed in batch mode, with a textual message displayed when the
operation is complete.

There are, however, a number of areas in which SLCSE could be improved. In some cases,
system responses are misleading, ambiguous or nonexistent; in other cases, presentation of
information is confusing, awkward, or difficult to read. The following examples will
illustrate what we mean:

. When using tools that provide a graphical view of a subschema, such as ModifyER,
entities and relationships are chosen by using the arrow keys to navigate around the
subschema graph. Due to the way the windowing system works, however, the
direction traversed is not always along the relationship links. In many instances,
pressing an arrow key caused the cursor to go in a direction orthogonal or opposite
to what was expected.

. After creating relationships between entities, the user exits that function by pressing
keypad-0, invoking the Done command. There is no feedback at this point to
indicate how or whether the newly created relationships will be saved (they are).

. When an entity is highlighted by the cursor in a menu list, it is ambiguous to the
user whether or not it has been selected.

18

When a list of endties are highlighted in a menu showing the potential values the
range entity of a relationship may be assigned, all entities that have current
relationships with the domain entity are highlighted, not just the entities that are
related by the specific relationship chosen.

When a user tries to update an entity to which he does not have update privileges,
the resulting messages indicate that the update was successful, even though the
update did not occur.

Long names in menu windows and in the Current Objects field often get obscured
and become difficult to read. Sometimes this prevented us from being able to
distinguish between two similarly named entities because the latter part of the name
was cut off. With the windowing system providing the capability to keep open
multiple, overlapping windows, it would be advantageous to be able to move the
windows around on the screen so that one does not obscure the other.

When multiple entities or relationships are marked for deletion, a save request will
perform the first deletion. The next deletion terminates the save operation with the
following message: “Database synchronization error; save stopped.” As many save
commands must be issued as there were entities marked for deletion to effect the
complete operation, but after each, the above error message is generated.

After entering a set of entities into the database, and creating the “CSCI_Capability
Utilizes Required_Data_Element " relationship, keypad-0 is pressed to return to the
previous menu. At this point, the screen shown in figure 3 is displayed. The
message at the bottom states “press Gold PF3 to insert rel. attributes ...” But
pressing Gold PF3 brings up a template to edit the attributes of the relationships just
created. The FQT reference is misleading.

When editing attributes of a relationship, a domain entity is first chosen. Then the
relationship type is chosen. After editing the appropriate relationships for the
specified entity, continued use of the forward key (keypad-4) retrieves all
relationships for all entities. While this may be desirable for small databases, it
could pose a problem in a large database when scrolling through a menu with many
relationships listed, if one only wants to deal with a small, selected subset.

19

IADS : SYSTEM CONTROL FUNCT | O g R3S A am s

ENTITIES

FELATIONZHIFS HELP DONE

Select Relationship:
pability Operates_in Mode
Utilizes Fequired_Lata_Flement

CSCl_Capability Partitions_Into CSCi_Lapability

RE
RE

Press <RETURN> to retrieve instances for current entity, press Gold
PF3 to insert rel. attributes between current entity and an FQT.

Figure 3. A Misleading Help Message

The most difficult aspect we discovered in using SLCSE was determining the specific type of
data that should be entered in the attributes of both entities and relationships. No help is
given, either on-line or in the SLCSE documentation, to explain the semantics of attributes
that are listed in an EditER template, but are not part of the entity schema definition. For
example, the type definition for CSCI_Capability is:

entity type CSCI_Capability is
PUID : string(20);
Purpose : text;
Performance : text;
Control_Flow_Diagram : text;
Data_Flow_Diagram : text;
end entity;

On the entry form for defining CSCI_Capabilities, however, “Access Name,” “Desc Name,”

“Version,” and “Key” are also displayed, as well as fields for storing information about its
creation. Little help is available to explain why these fields exist or how to make best use of

20

them other than a short example illustrating the “Query by Example” function in the EditER
User’s Manual. A description and paradigm for use of these fields and a naming/numbering
convention to follow on an actual project would be of great help.

Similarly, to understand exactly what data should be input in specific (entity or relationship)
attributes, we had to continuously refer to the Document Generation Language (DGL) code
for a given document, e.g., the SRS for software requirements data, to determine where the
data in that attribute would appear, i.e., in what section, in a document produced by
DOCGEN_2167A. Thus, a complete understanding of the defined schema; the access,
descriptive and search keys; and the requirements of DOD-STD-2167A are necessary to
correctly create a project database.

3.4.2.3 Productivity Improvements Gained Using SLCSE

We believe, based on this assessment and on our prior development experience in industry,
that SLCSE has the potential to improve both the productivity of users and the quality of their
work. Automating the generation of project documentation from its constituent parts in the
database should reduce the amount of manual labor associated with producing the
documentation. Performing traceability studies should reduce the number of inconsistencies
and gaps often found in delivered documentation ensuring, for example, that no requirements
are left uncovered by the design. Impact analyses could reduce the time necessary to
determine the scope of changes required by a proposed modification. The latter two
capabilities would be particularly useful by SPOs.

Because our hands-on evaluation was not intended to be a detailed beta test, and was
hampered by limited access to SLCSE, we are unable to positively confirm that the
productivity gains specified above would actually be realized by a project. In fact, our
experience leads us to believe that productivity would initially be lower due to the education
and training necessary to properly design and construct a project database and use the tools
properly. Once that learning curve has been overcome, we believe gains will be realized. It
is unknown at this time whether the gains that can be realized will be sutficient to justify the
expense involved establishing a SLCSE-based development environment.

3.4.2.4 Robustness and Stability of SLCSE

Overall, we found SLCSE to be stable. It only crashed catastrophically once, and then it was
as a result of a failure of the underlying hardware. We define a “catastrophic crash” as one
where SLCSE becomes completely inaccessible and causes or results in a large loss of work.

The MicroVAX crashed unexpectedly prior to a database update being completed. We were
never able to gain multiple user access to SLCSE so we are unable to determine how stability
is affected, if at all, by multiple, concurrent use of the database. Concurrency control and
deadlock issues should be tested further in a more detailed beta test of SLCSE. There were a
number of instances when the Sharebase Server became inaccessible to SLCSE due to
network or Smartstar problems. Network problems are beyond the scope of SLCSE to
resolve, but problems with Smartstar should be addressed. Figures 4 and 5 are a pair of
screen dumps which illustrates a failure to access the Server due to a problem with either the
network or Smartstar (we were not able to determine which was at fault).

21

Helcome to the
Software Life Cycle

Support Environment U3.7.2

Initializing, please wait...

1

X
% OPNSELCH: Cannot open database on SELECT channel 2. SHARTSTAR: #IDM-E-ID
Press <Return> to continue. i

Figure 4. SLCSE Cannot Access the ShareBase Server

22

Welcome to the
Software Life Cycle

Support Environment U3.7.2

Initializing, please wait. ..

I

A
Problem encountered opening Project Database. SLCSE session will terminate.
Press <Return> to continue.

Figure 5. SLCSE Terminates Abnormally

This problem occurred repeatedly during our evaluation of SLCSE, severely hampering our
ability to build the Icelandic Air Defense System (IADS) project database (see section 3.4.3).

23

In figure 6, the error message clearly indicates a problem with Smartstar. An incorrect SQL
statemnent is the apparent cause, yet there should be no reason for this to occur at SLCSE
start-up time if no system modifications have been made.

Welcome to the
ngtware Life Cycle

Support Environment U3.7.2

Initializing, please wait...

Press <Return> to continue.

8 ILLFORMC: TABLE operation failed due to SQL error. SMARTSTAR: %IDNM-E~iDM@

Figure 6. SLCSE Fails to Access the Database Due to a Smartstar Error

There were also a few instances when (sometimes) unknown errors caused a tool to abort,
returning the user to the main SLCSE window or, in the extreme case, all the way back to a

Digital Command Language (DCL) prompt. Figures 7 and 8 illustrate the former and
figure 9 illustrates the latter problems.

24

4

D _INTERHAL _INTERFACE _FED TRANSFORTS REONGED_DATH_ELENENT
DOMAIN ACCESS NAME

DOMAI

DOMRI| Unknown exception raised, EditER terminated.
DOMAI

RANGE

RANGE

RANGE Hit <RETURN> to continue.
RANGE

CREATED CREATOR

MODIFIED MODIFIER

LOCKED OLNER

Figure 7. EditER Aborts

In figure 7, EditER abruptly terminated while trying to view the instances of the selected
relationship type. Pressing the Return key returned the user to the main SLCSE window.

This operation had been performed prior to and subsequent to this failure, so it is not known
what caused it as it was not consistently reproducible.

25

ERROR IN WWREAD ¢ WINDOW SO) WINDOW HAS NO FORMS
Carnfiyiration Easeline Setug

I NVOKE SETUP DONE

Configuration Name:

pasel ine Type: FUNCT 1 ONAL

Press <Return> to select an item, use arrow keys to navigate.

Figure 8. BaselinER Crashes

In figure 8, an error in the window setup caused BaselinER to completely hang up, forcing
the use of the Control-Y command to abort the tool. This problem should be easily fixed.

In figure 9, an unknown error occurred while in EDT Setup mode which caused SLCSE to
completely abort, thmwing the user back into the VMS command shell. This error was also
not consistently reproducible. We did note that EDT is not accessible from the DCL prompt
once SLCSE is installed. Perhaps there is a link.

26

ECT SETUF

Programming

INVOKE SETUP

DONE

SADA-F-CONSTRAINT_ERRO, CONSTRAINT_ERROR

-ADA-1-EXCRAIPRI, Exception raised prior to PC = 8026D4ASITH SELECTED OBJECT

STRACE-E-TRACEBACK, symbolic stack dump follouws

module name routine name line rel PC abs PC
| Enter Filename to Edit:
00291E26 00291E26
————— above condition handier called with exception 080318324:
SADA-F-CONSTRAINT_ERRO, CONSTRAINT_ERROR
-ADAR-1-EXCRAIPR!, Exception raised prior to PC = 0026D4AS
————— end of exception message
0029SACB ©0295SACB
0026D4RS ©026D4AS
15 0827CAGD ©027CARBD
ADARSELAB_CE_DRI ADASELAB_CEZDRIVER 00000009 ©01DD009
00284075 00284075
00291BB2 00291BB2
ADASELAB_CE_DR|1 ADASELAB_CE_DRIVER 00000 1B ©01DDO1B—
00284050 00284050

?ZDZHH::S

Figure 9. SLCSE Crashes

Additional testing for stability should be performed by a team of users accessing SLCSE
concurrently to uncover additional situations in which problems similar to the above might
occur and fixes should be made.

3.4.2.5 Capacity of SLCSE

In reviewing the documentation and in using SLCSE, we discovered no inherently limiting
factors to supporting large projects. A large amount of disk space is required for the
installation of SLCSE and tools such as ADL, AMS, Tex, and ATVS, in addiuon to the
normal VAX-layered products, Ada, Fortran, EDT, CMS, MMS, etc., that would be used on
a project. Due to the design of SLCSE-attribute information too large to be stored directly in
a field in a Server table is stored in a VMS file under a user’s account—a large amount of
VAX disk space must be dedicated for each SLCSE user in addition to the disk space that is
provided by the Server. Since almost all of the tools in SLCSE currently run only on VMS, a
large amount of processing power must be provided by the VAX system.

The host of our SLCSE system was a MicroVax II. It supported the training course
adequately, with three concurrent users, but only because steps were taken to eliminate
concurrent access to the same parts of the database. A MicroVax Il was also used during the
hands-on assessment, with the ShareBase Server used as the database engine. Performance

27

was very slow, especially when doing database saves or searches involving many entities at
one time. Based on this, we believe that, when sizing a configuration, the performance
equivalent of a VAX 3100 workstation (a VAX 3100 provides approximately three times the
performance of a MicroVAX II) be allocated for each SLCSE user. This may be done by
clustering an appropriate number of large VAXes, such as the VAX 6000, as multi-user
timesharing systems, or by using single user workstations networked to a single, powerful,
central VAX acting as the database server. This VAX would also control access to the
ShareBase Server, if used.

3.4.3 Results of SLCSE Usage

For the hands-on evaluation of SLCSE, we chose the IADS Software Engineering Prototype
(SEP) program. We chose this project because it is a new project and has requirements and
design documentation available in electronic form. It is using a tailored version of DOD-
STD-2167 reflecting the object oriented design approach being taken. It might also use
SLCSE if the results of the evaluation indicated the benefits derived would justify its
installation at MITRE and its continued use on the project.

3.4.3.1 Production of Documentation

It was important to have the documentation on-line to minimize the purely mechanical
aspects of inputting a large volume of existing data. By using a Macintosh as both a word
processor to read the document (which was in Microsoft Word format), and as a terminal
emulator (to access SLCSE) we were able to cut and paste text from the on-line document
into the appropriate attributes of the entities as they were created. Even so, this took a
considerable length of time. We were slowed down by the fact that we were never able to
access SLCSE through the ESD local area network, relying solely on a 2400 baud modem
link to access SLCSE. Due to an address resolution problem, the ESD gateway computer
would not allow telnet access to the computers in the CCES. Although we had expected it to
be, this issue was not resolved in time for us to enable multiple users to access SLCSE
concurrently. Thus, we had the equivalent of one person working full-time for four menths
to build the database.

To properly populate the SLCSE database, we had to input the correct information from each
section of the existing IADS documentation into instances of the appropriate entity types in
the database. This primarily involved dissecting the IADS Software Requirements
Specification (SRS) and mapping each section, subsection, or paragraph in the functional
requirements chapter into the CSCI_Capability and Required_Data_Element entities and then
constructing the appropriate relationships. Since the SRS was developed in accordance with
DOD-STD-2167, each major function was documented in an input, processing, output
format. This required us to analyze and recombine where necessary, the input and output
data to put it in a form that conformed to the Required_Data_Element entity type definition.
A Required_Data_Element entity was then created for each of the data elements described.
CSCI_Capability entities were created for each identified major function.

The processing information for each major function was hierarchically decomposed in the

SRS and we followed the same structure in creating CSCI_Capability entities that were
partitions of the major functions. One function in particular, the Radar Data Processing

28

Function, required a partitioning depth of five levels to adequately capture all the
requirements. Since the number of horizontal branches at the second partitioning level for
each major function was generally between three and five, the entity structures rapidly grew.
It became difficult to visualize the structure created in the database solely from viewing the
relationships on-line because the SLCSE tools such as Requirements highlight all entities that
have a relationship between the two entities in question. The reports provided by ReportER
and VerifyER were somewhat helpful in checking the consistency of the database, but to do it
correctly, requires a two-step process. First, we would generate a report listing all the entity
pairs that have that relationship and examine it for correctness. We would then generate a
report listing all the “missing” relationships for a given type, e.g., CSCI_Capability
Partitions_Into CSCI_Capability, and determine which entities were really missing that
relationship, and which are reported because that entity is at the bottom of the decomposition
hierarchy and should not have that relationship. This process was very time-consuming
because both types of reports are generated in batch mode only and, depending on system
load and size of database, can take hours to complete. In addition, the on-line display within
the Requirements tool was misleading. Before we realized the tool was displaying all range
entities that have a relationship with the chosen domain entity, not just the specified
relationship, we deleted and rebuilt the desired relationships several times. Further
complicating this process was our lack of understanding of the purpose of some of the
attributes presented when in the EditER, as mentioned in section 3.4.2.2. We found it
necessary to revamp our naming convention to make the search and retrieval functions more
efficient and to be able to read the names on the screen. This required re-creating those
entities with new names and deleting the original entities because SLCSE prohibits
modifying “Access_Name,” Desc_Name,” and PUID once a value is assigned.

Additional information was entered into the Contract subschema to provide the system name,
contract number, etc., required for the title page and boiler plate text of a printed SRS. We
then attempted to generate the SRS from the database. We discovered, however, that due to
disk space limitations on the CCES VAX cluster, LaTeX was not installed.

To generate the document, we installed a copy of OzTeX (another public domain version of
Tex for the Macintosh) on our Macintosh and downloaded the SRS.TEX file generated by
Docgen_2167A, along with the necessary style files. We then printed the SRS locally. We
had set the Print Location Tags option to yes so we would be able to identify and trace any
missing information or information that was in the wrong place.

The document created contained many TBDs, of coutse, as we concentrated on CSCI
requirements and required data, which are sections 3.2 and 3.4 of an SRS conforming to
DOD-STD-2167A. The printed document, however, contained no requirements information
in section 3.2. None of the requirements information from any of the CSCI_Capability
entities was input into the section. A table of data elements internal tc the CSCI was properly
generated, but did not contain all of the expected data. We do not fully understand why the
problem occurred although we believe it was, at least partially, due to the way the document
generation code accesses the database by using particular keys such as the PUID. We were
unable to fix the database and make another attempt due to ime constraints.

29

3.4.3.2 Mapping to an Object Oriented Design

Our attempt to map the IADS object oriented design into the SLCSE design database was
limited and only partially successful. The IADS software design document format was
heavily tailored to capture both the CSCI design information and the definitions of 76 classes
of objects. In that document, objects were mapped to computer software components (CSCs)
and operations on the objects were mapped to computer software units (CSUs). Objects may
also be further decomposed into smaller CSCs. We tried to follow that mapping in the
database. Since each class is separately defined, each would be represented by a CSC entity.
Projecting forward, however, there would be no way to create instances of each class in the
database and represent them in the design subschema. Neither of the existing relationships,
CSC Partitions_Into CSC and CSC Interfaces_with CSC, seemed satisfactory. We also
found no satisfactory way to distinguish between classes if specific objects were represented
as instances of the CSC entity type. The major problem here is that there is no way to
represent the class of which objects are instances. In either case, there seemed no way to
represent the concept of inheritance in the the current database schema. We were also
hampered in this mapping because the IADS SDD was incomplete and did not contain
sufficient information regarding their proposed mapping of CSCs and CSUs to classes and
objects. Thus, we were unable to input sufficient data to attempt the generation of an SDD
from the SLCSE database.

We believe further definitional work in extending the SLCSE schema to support object
oriented design representations is warranted.

30

SECTION 4
TECHNOLOGY TRANSFER APPROACH

4.1 BACKGROUND

What is technology transfer? A common sense definition suggests that technology transfer is
the process by which a specific, identifiable piece of technology is moved from a laboratory
research project to practical government or commercial use, i.e., from being state-of-the-an
to becoming state-of-the-practice. An example of successful technology transfer, in the
domain of computer science, is the UNIX® operating system. Developed at AT&T® Bell
Laboratories initially, as a single user, interactive multi-tasking operating system designed to
provide a more productive environment (than batch processing) in which to do computer
programming, UNIX has since become a de facto standard operating system, offered by

every magr computer vendor on every size platform, from Macintoshes (A/UX®) and PCs

(XENIX™) to SUN®_class workstations and IBM®-class (UTS®) mainframes. Unix was
able to do so because it was available from AT&T for only a nominal licensing fee, and
because it was viewed as an open system, easily tailorable to new hardware platforms. Many
universities acquired UNIX source code and used UNIX as a basis for further research and
development. As a result, many computer science graduates had considerable experience
with UNIX in their academic environment.

Each implementation of UNIX, however, is somewhat different, leading to incompatibilities
in operating system calling conventions. Because of this and industry’s desire to improve
portability of tools and applications between UNIX systems, the POSIX effort was
established to define a common set of UNIX-derived operating system interfaces. On the
other hand, it must be noted that it has taken 20 years for UNIX to make the transition from
initial concept to its current wide acceptance.

The technology to be transferred can take many forms. It may be a software or hardware
product to be purchased outright as an end in itself; a manufacturing or management process
to be installed in a factory or implemented 1n an office; it may be a software architecture; it
may be in the form of knowledge itself, e.g., a formal design technique; or it may be a
combination of the above.

As described in the above example, the transfer of UNIX technology is primarily ir: the form
of a source code product (and license), but also in the knowledge of “what” UNIX is, what
operating system services should be provided in general, and how they should be
implemented on various computers.

4.2 TECHNOLOGY TRANSFER MODELS

To provide a basis for discussing the transfer of SLCSE, we are using two technology
transfer models/approaches. The first approach was developed at the Microelectronics and
Computer Technology Corporation (MCC) by Babcock, Belady and Gore, and is described in

31

[Babcock, James D., Laszlo A. Belady and Nancy C. Gore. “The Evolution of Technology
Transfer at MCC'’s Software Technology Program: From Didactic to Dialectic,” MCC TR
STP-404-89, published in the proceedings of 12th International Conference on Software
Engineering, Nice, France, March 1990]. The second was developed at the Software
Engineering Institute by John Maher and is described in [Maher, John H, Jr., “Planning for
Technology Transition,” Seventh WAdaS Tutorials, June 1990]. The MCC paper, in
particular, documents some of the problems that the MCC has had in transitioning its
prototypes to its industrial affiliates.

4.2.1 MCC Experience with Technology Transfer

The MCC paper describes the set of activities that MCC originally performed to transfer
technology to its affiliates, and then describes where this model failed. The primary failure
occurred when the MCC-developed prototype was “thrown over the fence” to the recipients,
and failed to meet the user needs, both functional and in terms of reliability and usability.

According to MCC, “success” is defined by either of the two following events:

. A technology is fully integrated into a comprehensive design application or process
used by affiliates to create profit-generating products. Domain-specific knowledge
must be wrapped around the tool for this to be the case. In this case, success is
measured by process improvement; the company has learned a new technique and is
using it in producing products.

. The technology has been the basis for a “productization” that has generated profit
for an affiliate company. In other words, the affiliate has tumned the technology into
a product in its own right.

The empbhasis in the new MCC model, shown in figure 10, is on a collaborative approach to
“fill the gap” and effect technology transfer between the developer and the recipient. In this
approach, the developer and recipient work together on a series of evolving prototypes. Each
prototype moves closer to meeting the recipient’s needs, including functional needs, user
interface requirements, and prototype stability and reliability. As a result of this
collaboration, the direction taken by the developer often changes from the developer’s
original plans. This arrangement will continue as long as the recipient believes that there is
still chance for “success” as defined above, and is willing to work with the developer to bring
the technology closer to the recipient’s needs. The recipient commits to spending the time to
evaluate prototypes and provide the developer with feedback, and the developer commits to
enhancing the prototype to better meet the recipient’s needs.

32

Full-Scale
Prototype
Embodies the idea
@ Scales up to nearly
Elaboration realistic level
@ Demonstrates usefulness

Basis for production

Experimentation ¢ De N Indus
Documcnt” B Process or &

(Prototype) JEESES Product

MCC/STP & Shareholders

STP researchers & shareholders

< <—The GAP >
Collaboration | Technology Transfer
-} &, -
1. Field studies 2. Joint Projects 3. Collaborations toward

Industrialization

Figure 10. The Technology Transfer Gap and Three Major Types of Technology Transfer
Activities [from MCC TR STP-404-89]

4.2.2 SEI View of Planning Technology Transfer

The Software Engineering Institute (SEI) approach actually consists of two models. The first
model establishes the “product” view of the technology, answering the question “What are
you transferring?”” The second model shows the process, answering the question “Who is
doing what to make this happen?” Figure 11 graphically illustrates the context in which
technology transfer occurs. New technologies are produced and advocated or marketed by
various organizations. Receptors are generally advocates and agents of the new technology
in the using organizations who champion the use of the technology.

The SEI tutorial material contains a set of questions that must be answered by the various
people involved in technology transfer [Maher, J.]. Answers to these questions can be
viewed as the preconditions for successful transfer.

The set of questions that define the “product” include the following (paraphrased):

. What is the user’s need that this product will satisfy?

. What is the current mode of operations performed by the intended user? How will
this mode change with the new product? (Clearly the intended user must be willing
to change if the transfer is to be effective.)

. What constraints (e.g., budget, personnel, time) does the user have?

. How will the user measure successful transition of the technology?

Push ———» Pull

Technology
Users

Technology

Producers Advocates Receptors

Marketers Software Process
Universities ~ Industry Ass. Groups, Tool DOD Contractors
Vendors Prof. Societies Committees Services, &
Users Educators Gartner Group, Suppliers

SEI Arthur Anderson

SEI l

Change Management

Figure 11. Technology Transition Context [Maher, J.]

The SEI process model for technology transfer identifies four roles in technology transfer:

. Sponsors: Individuals or groups who can legitimize the transition effort.

Champions: Individuals or groups who want the new technology, but w! o have no
power to legitimize the effort. They are often called product champions.

Agents: Individuals or groups charged with implementing the effort.

Targets: Individuals or groups who have to use the technology; those who must
change the way they work.

The SEI tutorial emphasized the importance of obtaining the right sponsors. It is essential to
obtain strong sponsors, and to maintain their commitment during the transition. Among the
requirements for the sponsors are:

The sponsors must have strong communication skills.

The sponsor must have strong management skills and the ability to accept and
tolerate uncertainty and change.

The sponsor must demonstrate his support for the transition, and must make the
transition a priority.

The sponsor must understand the resource requirements for the transition, and be
committed to providing necessary resources.

Targets are the other critical part of the SEI model. The main objective is to overcome the
target’s resistance to change and to demonstrate (in large part via support from sponsors) the
positive results of making the change.

The people who help the targets overcome their resistance to change in the SEI model are the
transition agents. Here are some of the characteristics of effective transition agents:

Agents are considered extremely competent in their job duties and are
knowledgeable of the targets.

Agents have earned the trust of the sponsors.

Agents have a high tolerance for stress and uncertainty, and are effective in working
in unstructured environments.

Agents understand the formal and informal power structures in an organization, and
understand how people change and react to change.

Together, we believe that these two approaches to technology transfer provide the basis for
planning successful technology transfer of SLCSE from RADC to ESD. The MCC model
emphasizes the need for collaboration between RADC and the SLCSE developers and ESD
and the SLCSE users. The SEI models provide a framework for identifying critical people in
the technology transfer, and provide an outline for the tasks to be performed by each role
during the transition process.

35

4.3 APPROACHES TO TRANSITIONING INTO ESD
4.3.1 The Government-Contractor Relationship

In general, the introduction of a new technology into an organization requires the
organization to make changes. Changes in policies, procedures, support, personnel training,
and the costs associated with these changes, create inherent resistance to adopting the new
technology. At contractor organizations, financial constraints caused by the need to
minimize overhead rates and bid costs also minimize the funds available to invest in capital
improvements and training of personnel. To introduce a new technology, additional training
costs must be allocated, a support system must be established, and experience and confidence
must be gained before the technology will be applied on a real project. Thus, new tools are
thoroughly scrutinized, evaluated, and a critical need for the technology is established, before
any investment is made. Also heavily considered in the acquisition of a new technology is
the viability of the vendor and the potential for long-term support.

When the government is the developer of the technology, the maturity and support issues
become even more critical. The government is usually not prepared or willing to provide the
long-term support necessary to successfully establish a product at a using organization. In
general, when the government provides a product as GFE to a contractor, the government can
be held liable for problems caused by the failure of that product. To avoid this, the contractor
is usually required to assume all responsibility for the product. Yet, to ensure a successful
transition, initial training must be provided, and a support organization that can provide a
high degree of "handholding" to assist the end user in using the product properly, must be
established. The end user must be guaranteed that deficiencies discovered during use of the
product will be fixed, with workarounds provided in the interim. Support may also have to
be provided to assist the using organization in integrating the use of the product into the
organization's standard development methodology.

4.3.2 Transitioning to ESD Contractors

Because of the lack of support for government furnished equipment (GFE), contractors are
reluctant to use GFE software on real projects that have to meet stringent cost and schedule
requirements. They fear that if a serious deficiency develops, and the product fails to
function properly, successful completion of that contract may be jeopardized. Generally, a
company will only use GFE software if the company can be indemnified against the failure of
the software to meet requirements. ESD, as a matter of policy, rarely provides as GFE
software to contractors because ESD does not want to be held responsible for any problems
that may occur in the use of the product, nor open the door to the possibility of the contractor
demanding cost and schedule relief as a result of problems, real or perceived, caused by the
government.

Even with all the impediments to transitioning technology into ESD and its contractor
community, we still believe there are some approaches to explore that may be successful.

One approach to getting SLCSE used by ESD contractors would be to contract for an
experimental, perhaps throwaway, product where SLCSE must be used as the development

36

environment. The contractor would be required to follow his normal policies and procedures
and use his traditional techniques, but with SLCSE providing the automated support, instead
of his in-place system. Feedback from the contractor, on how well SLCSE fits his way of
development and what changes might be needed or recommended, would be gathered.

Another approach would be to require the use of SLCSE as the development environment
during a planned research and development effort, using 6.2 or 6.3 funds, to continue
development of one of the prototype tools in SLCSE. For example, we suggest in section 6
investing in further development in ALICIA. ESD contractors, needing such a tool, might be
very interested in bidding on such a job. Using SLCSE as the environment for this work
could potentially have a synergistic effect in determining host and target improvements for
both SLCSE and ALICIA as both are being used. This approach could be implemented by
GRC or SPS in enhancing ALICIA or to make improvements to SLCSE. MITRE could also
be tasked to use SLCSE as the development environment in a separate ESD project
involving prototyping an application in Ada or other supported language.

Another approach would be to modify an existing contract at ESD, which will be developing
a real product, to require SLCSE as the development environment, but provide additional
funds to the contractor through the SPO for the initial training of contractor personnel, and
for ongoing technical support to the project.

Yet another alternative vehicle for supporting the transition of SLCSE to ESD contractors is
the »mnibus contract, formally known as the Command Center(s) Requirements Contracts.

To reduce the cost and time 1t usually takes to develop command center systems, ESD is
planning to implement a process by which new command center systems can be developed
through reuse and redevelopment of existing command center software. Following the
STARS (Software Technology for Adaptable, Reliable Systems) model, three contracts will
be competitively awarded to qualified bidders who will be tasked to develop generic,
reusable components out of existing command center software. When a new command
center is to be developed or an existing system is to be updated, a prototype system will be
developed in the CCES using the generic components. Once agreement is reached with the
user/requester, final specifications will be developed and a task issued to one of the three
contractors to develop the full system. If extensive new development is required, then an
open competitive source selection will be performed. The three contractors will also perform
sustaining tasks to operate the Command Center Evaluation System, the Multi-Level Secure
Laboratory and develop computer resources management technology. The omnibus contracts
are expected to be awarded in the first quarter of fiscal year 1992 by ESD/AVS.

4.3.3 Transitioning to ESD SPOs

ESD SPOs are just beginning to use automation in their jobs. One of the reasons for this is
that few systems support system acquisition, rather than system development. Much of the
software currently used by SPOs was developed in-house, or by other government agencies.
The Contract Data Management System, for example, was developed at Aeronautical
Systems Division, and acquired by ESD. This software is often unsupported, non-
commercial products, and the users do not have much time to devote to customizing or
supporting the software.

37

One traditional weak point in the SPO shops is their ability to manage and examine the large
quantities of documentation that they receive. DOD-STD-2167A defines the documentation
set for software acquisition, but, despite the level of automation in industry, these document
deliveries are most often made via trailers of paper copies. The task of evaluating the
documentation is reduced to a proofreading drill, by poring over paper copies of the different
deliverables. For instance, doing a requirements traceability audit requires the auditor to
manually move from the system requirements specification to the software requirements
specification to the software design specification.

We believe that SLCSE could have much to offer to an ESD SPO, as a repository for
contractor-developed and SPO-developed products. Initiatives such as DOD-STD-2167A
and the Computer-aided Acquisition Logistics Support (CALS) provide the framework for
automating the SPO functions by defining the content and format of data to be delivered.

The SPO users can use the information stored in the SLCSE database to do much of their
consistency checking and auditing, and could also use tools such as ALICIA to study the
impacts of requirements and design changes that are now performed without much automated

support.

We think a pilot application in a SPO organization to support the SPO project management
and technical review activities, performed as a shadow project, could demonstrate the
advantages in using SLCSE. Such a project could occur subsequent to the SLCSE
Technology Exploitation task and be performed by MITRE or SPO personnel applying
SLCSE on a real acquisition. Separate funding from RADC could be used to eliminate
funding issues with the SPO and provide further incentive. The shadow project could be
done on a low or non-interfering basis; it would collect data, anecdotes, and testimony from
project and contractor personnel, while performing the task, to determine the effectiveness of
using SLCSE and the contributions it might have made. Training and on-call support, as
needed, could again be provided by GRC to minimize support concerns.

4.4 ISSUES IN TRANSFERRING TO ESD SPOS

For the rest of this section, we will concentrate on planning the transition of SLCSE into an
ESD SPO organization. The reason for this is that we think a transfer to a SPO, rather than to
a contractor, is most feasible. Given the need for interaction and for sponsorship documented
in the MCC and SEI technology transfer models, a SPO shop is much more likely to provide
the necessary support, without the contractual impediments that would interfere with an
initial transfer to an ESD contractor.

One of the primary needs of the SPO is to receive and process the large number of
deliverables specified by DOD-STD-2167A. Typically, the SPO is responsible for reviewing
the documents, and ensuring that they meet both the “syntactic” requirements of the DID, and
also the “semantic” requirements of consistency and traceability with other project
deliverables. As mentioned earlier, this has traditionally been a proofreading performed by
the SPO or support organizations such as MITRE. By placing the contractor deliverables into
the SLCSE database, the SPO can run the variety of automated tools provided by SLCSE (or
developed separately and integrated with SLCSE) to analyze contractor products. Code

38

deliveries can be placed in the database and analyzed for complexity, structure, timing issues,
etc. Traceability links from the code back to the design and requirements specifications are
required to enable a SPO to determine the impact of a proposed change.

A very rough process description for the SPO is as follows:

Develop the System Specification

Develop the RFP and the SOW

Conduct Source Selection

Monitor Contractor Work

Conduct Reviews IAW DOD-STD-2167A and MIL-STD-1521B
Prepare and Conduct IV&V

Prepare and Conduct FQT

Transition Project to Using & Maintenance Organizations

For SLCSE to be successful, it must be useful to the SPO in several of these activities, and
also must not adversely affect the SPO in other activities. Therefore, it is important to
identify how SLCSE will support these SPO activities. Prior to the actual transition of
SLCSE to a given SPO, it will be necessary to develop a much more comprehensive process
model of the SPO's functions, and identify, for each step, how SLCSE will support the SPO's
requirements, and what the SPO personnel must do at that point to work with SLCSE.

For instance, prior to PDR, the contractor should deliver a preliminary version of the SRS to
the SPO. This version should be entered into the SLCSE database. SPO personnel can then
use the SLCSE database to examine requirements traceability and to identify any
requirements in the System Specification not covered in the SRS. Additionally, the SPO
personnel can examine specifications such as the timing and sizing data, and comparing the
contractor’s estimates to estimates developed by the Government. Particularly for an
acquisition where there are multiple PDR’s on different parts of the system, it will be very
useful for the SPO to see the new SRS as compared to the old SRS, and to compare the SRS
for one CSCI to the SRS of another CSCI, and the IRS that specifies the interface between
the two.

A significant problem for integrating SLCSE in an existing SPO shop is that effective use of
SLCSE by the SPO will require some changes to how the contractor delivers documentation.
SLCSE will be ineffective if the contractor’s deliverables cannot be easily incorporated into
the SLCSE database. This means that the contractor must deliver his documentation on tape
in a format that can be quickly entered into the SLCSE database. Depending on the SLCSE
requirements for loading an entire deliverable into the database, it may require substantial
work on the part of the contractor (or SPO) to transform the documentation from the
contractor’s internal format to the format required for entry in SLCSE. At the very least, the
Government must be willing to pay the contractor for any additional charges the contractor
incurs to meet this new requirement. This is less of a requirement for a new project, where
the delivery format can be worked into the contract. However, both the SPO and the
contractor must understand the SLCSE format and how it will be used to ensure that the
contractor’s deliverables provide SLCSE with the right information in the correct format.

39

4.5 TASKS TO BE ACCOMPLISHED BY RADC

To ensure a suceessful transfes of SLCSE, there are several tasks thai must be compleied by
RADC. These include “productizing” SLCSE, identifying the specific SPO (or contractor) to
receive SLCSE, working with the recipient to define the recipient’s transfer plan, establishing
a joint improvement/support activity for SLCSE, and developing a training program for the
recipient. From the RADC perspective, the activities comprise three phases:

. Selecting recipient(s) and preparing SLCSE for delivery. This phase will take about
one year, with most of the time being used to “productize” SLCSE prior to delivery
to the recipient.

. The initial delivery, instaliation and beta-testing of SLCSE. This should take about
six months.

. Ongoing maintenance and enhancement of SLCSE. Given the average three year
life-cycle of an ESD project, RADC should expect this phase to last another two
and 1/2 years after the initial delivery to the SPO/Contractor.

Productization of SLCSE is covered in section 5.

RADC must work with ESD to identify a SPO or contractor (or both) to receive SLCSE.
Initially, SLCSE will be in a beta-test mode, where the recipient and RADC are working
together to resolve problems with SLCSE. This should last about six months. During this
time, the SLCSE recipient must be willing to accept the fact that there will be bugs in the
product, and that some rough edges remain to be resolved. To be successful, the recipient
must be able to manage the risks posed during this initial period.

Once the recipient has been identified, one of the first actions that RADC must do with the
recipient is establish a joint group to work out the details of the transfer. This group will be
responsible for several activities, including:

. Writing an implementation plan that includes schedule, resources, and training.

. Establishing procedures for resolving questions, bugs, and improvements.

. Establishing funding for SLCSE hardware, software, and maintenance/support.
To be able to evaluate the effects of the transfer, RADC should work with the recipient as he
develops a description of his current process. In particular, RADC should look for ways to
measure improvements in the recipient’s process brought about by using SLCSE.

Finally, RADC needs to develop a training program for the recipient. This training program
should provide several levels of training, including:

. User Training (emphasis on using SLCSE to support software development).

. Maragemen Trairing {emphasis on how SLCSEC supports the existing process, and
on using SLCSE to get management information).

. System Administration (including administration of COTS components of SLCSE).
» Database Administration/Tool Integration (emphasis on customizing SLCSE).

One of the requirements to productize SLCSE is to prepare generic training courses and
materials. Here the emphasis is on taking those training materials and customizing them for
the specific recipient. A fully developed sample problem in the user’s domain illustrating all
aspects of constructing the database, and a detailed sample Software Development Plan, if the
user is a contractor, illustrating where and how SLCSE is used could be developed.

4.6 TASKS TO BE ACCOMPLISHED BY THE RECIPIENT

There are two critical tasks for the recipient of SLCSE if the transfer is to be successful.
First, the recipient must understand his process and how SLCSE fits into this process. This
includes an understanding of how to measure the benefits of SLCSE. Second, the recipient
must have a champion-someone who is committed to the SLCSE technology transfer and
who has sufficient organizational power and influence to overcome the hurdles that may
occur.

Both technology transfer models that we have reviewed emphasize understanding the
recipient's current process and how that process will change with the new technology. In
some respects, this is obvious. If you don't know what you're doing now, you won't know
how to improve. The requirement for understanding the recipient's process goes deeper than
a simple overview of what the recipient does day-to-day.

There are a thousand impediments to successful technology transfer within an organization.
Many of these are due to human nature, particularly reluctance to change. Also, any new
technology presents a risk that must be accepted and managed. The recipient must have a
champion who is willing to work within the organization to overcome user resistance, and
who is willing to accept the risks involved with the new technology. This champion has to be
able to implement the necessary changes to schedule, personnel, etc. that can occur as a result
of problems learning or using SLCSE.

There must be overall support from the recipient's management team. The champion cannot
single-handedly change the organization. In particular, the management team must be
willing to work with the champion to motivate the users to use SLCSE effectively, and also
must work with the champion to overcome the risks and problems that occur when using a
new technology.

The recipient and RADC need to form a joint committee to plan and monitor the SLCSE

insertion. From the recipient's side, this is the forum for identifying issues with SLCSE and
working with RADC to resolve the issues. One of the first products of this joint committee is

41

a plan that shows both how SLCSE will be physically installed in the recipient's facility, and
also the new process model that shows how the recipient will use SLCSE. The recipient must
work with RADC to provide the resources for running SLCSE, and the funding sources for
supporting SLCSE (hardware, software and training/consulting support).

4.7 OTHER TRANSFER ACTIVITIES

We believe SLCSE, or portions of SLCSE, could be put into the various government
repositories, e.g., STARS repository, SIMTEL-20, a possible ESD RAPID repository, if one
is established. The STARS and SIMTEL-20 repositories have been established to provide
storage and access to government-owned software that may be of specific interest to
government contractors. The STARS repository wiil hold the products of the STARS
program being developed to improve the practice of software engineering in DOD
contractors. SIMTEL-20 is a general repository, managed by the US Army and accessible to
the DOD community at large, which contains much software developed at government
expense and which may be acquired and reused at the user’s own risk and expense. RAPID
is an US Army project to develop a center dedicated to providing a full-service reuse library.
Users will be able to classify, store, analyze and retrieve reusable Ada software components.
A similar center at ESD would be capable of providing access to reusable components for
command and control applications and also tools to develop those applications. With the
emphasis in DOD to improve the software engineering capabilities of contractors, this would
permit and encourage the general contractor community to obtain and experiment with
SLCSE on an informal basis. IR&D funding could be used to support its evaluation and trial
application on internal efforts. Licensing, copyright and data rights to SLCSE must be
clarified, particularly with respect to proprietary software (WINNIE, MOO) developed by
GRC and used in SLCSE.

Finally, we believe that other government centers need to become familiar with SLCSE. This
could be accomplished by arranging briefings and demonstrations, and if warranted,
installing SLCSE for test and evaluation. RADC might consider funding the installation at
selected sites in the near term to minimize the possibility of refusal. The following places
should be considered:

. STARS Technology Center - The STARS program has been established by DOD to
develop and make available to industry, new or improved software technologies and
products that may improve a contractor’s software development process and
resulting delivered products. Repositories have been established by each of the
three STARS contractors. SLCSE should be included as a technology and as a
product which can be provided to a contractor to improve his software engineering
capabilities.

. USAF Computer Resources Acquisition Course (CRAC), Brookes AFB, TX -
Students of the acquisition process should become aware of tools which may be of
use to them in the performance of their jobs.

. USAF Institute of Technology, Wright Patterson AFB, OH - USAF officers
studying software engineering and related technologies need to be exposed to the

42

latest technologies and become familiar with tools and technologies that might be
potentially useful to them when assigned to acquisition or logistics commands.

. USAF Academy, Colorado Springs, CO - Cadets should be exposed to software
technology work in the USAF as a general part of their education.

. Software Technology Support Center, Ogden AFB, UT - The USAF logistics
centers are potentially the most important sites for SLCSE to be installed, as they
will require a modern software engineering environment to maintain flight software.

. SDI Software Center, Nationai Test Facility, Falcon AFB, CO - This has been
established to evaluate products and technologies potentially useful to the SDI
effort. As the SDI software development effort is estimated to be as large as
10,000,000 lines of code, an appropriate development environment will be required.

4.8 LESSONS LEARNED FOR FUTURE TECHNOLOGY TRANSFERS

We believe that SLCSE is not unique in its requirements for technology transfer from RADC
to ESD. There are several lessons leamed that RADC could use for future technology
transition efforts.

We recommend the establishment of a single technology transfer agency at RADC, and a
counterpart at ESD. The RADC agency should start the planning for technology transfer, and
should have a source of funding to support efforts like the “productization” of SLCSE. For a
software project like SLCSE (or the RADC Knowledge-Based Software Assistar* (KBSA)
work), the RADC transition agency should include people experienced in training
requirements, analysis of computer systems, configuration management, computer system
administration and software process modelling. The agency should report to senior-level
management at RADC, to assist in overcoming the administrative hurdles that both the SEI
tutorial and the MCC report document. The transfer agency at ESD should employ
individuals experienced with acquisition and the contracting process for ESD systems, and
individuals skilled in computer system acquisition and installation. Like the RADC transfer
agency, the ESD agency should also have sufficient authority in ESD to overcome
administrative hobbles. Funding is less important to the ESD agency than this authority; with
sufficient authority it can obtain funding from the supported project.

As both technology transfer models point out, continued interaction with the techr.ology
recipient is essential. RADC and ESD should investigate ways for RADC to interact with
ESD SPOs and ESD contractors on a continuing basis. One approach used by several
research consortia, such as the SEI, MCC and SPC, is the notion of “resident affiliates.” For
instance, at the SEI, a company sponsors one of its employees at the SEI for a period of six
months to a year, to work on a specific SEI project. This gives the SEI the benefit of the
employee’s experience, and the employee is exposed to the wide set of technologies (not just
his individual project) available to his sponsor from the SEI. Another approach is to
periodically give briefings by RADC personnel to ESD, MITRE, and ESD contractors. This
is analogous to the “member meetings™ at MCC and SPC.

43

Finally, as noted earlier, there is a tremendous amount of support that must be provided by the
technology developer during the technology transition. Figure 12 illustrates the stages an
organization goes through in adapting to a new technology. It may take many months for an
organization to reach the Adoption/General Use stage for a specific technology. Yet, it is still
possible that a technology transfer effort can fail at any point prior to the Institutionalization
level of commitment.

In addition to the requirement to productize SLCSE, there are the requirements for consulting
and troubleshooting, maintenance and enhancement, and training. As the SLCSE experience
shows, RADC does not currently have the mission or the funding to provide these services on
an ongoing basis. The Air Force needs to identify a productization/support agency for
laboratory products, particularly if those products are to enter general, widespread use.
RADC can establish a technology transfer group with ESD, to move RADC products out of
the laboratory into ESD, but then the Air Force as a whole needs to decide how to support a
product such as SLCSE once it gains widespread use at ESD. At some point in the
technology transition life-cycle, the RADC involvement will wind down, and sore other
organization will need to take over the support of products such as SLCSE.

Institutionalization

Adoption/General Use

Installation

<OIé$®MZmMm

Understanding

Awareness

Contact

TIME

Figure 12. Stages of Adaptation to New Technology [Mabher, J.]

SECTION §
PRODUCTIZATION APPROACH

5.1 BACKGROUND

The Technical Objectives and Plans for this task state that the productization plan should
“detail the changes that are necessary to ‘productize’ SLCSE for use on large scale C31
software development efforts, under the PE64740F or equivalent program.” This implies
detailing enhancements to SLCSE necessary to be used on large scale programs.
Productization in the commercial market carries a somewhat different connotation, however.
There, productization generally means doing all the things necessary to prepare a product for
sale and subsequent support, most of which do not involve functicnal improvements to the
software. Non-technical preparations include writing installation, users, and system
administration manuals; preparing training manuals; and organizing, staffing, and training a
support organization. Technical preparations may include “bullet-proofing” the software to
make it more robust, improving the way operations are accessed or performed without
changing the functionality of the operation, and providing minor performance improvements.

5.2 INDUSTRIAL EXPERIENCE IN PRODUCTIZATION

To gain the benefits of industrial experience with developing and supporting products,
MITRE interviewed executives at several companies who have been involved in developing
products or converting prototypes into products within the Ada community. Stowe Boyd,
Vice President of R&D, Meridian Software; Steve Deller, Vice President of Product Support,
Verdix; Jim Bladen, Vice President, Telesoft; and Karl Nyberg, President of Grebyn Corp.
(and formerly of Verdix) provided much valuable information in this area.

5.3 PRODUCTIZATION PROCESS

The experts that MITRE interviewed all stated that there are four phases to the product life-
cycle (after the initial prototype is developed). These four stages are Initial Productization,
Beta Testing, Reproductization, and Ongoing Support.

5.3.1 Initial Productization

Initial productization starts when the prototype is complete and a decision has been made by
the company to market the product. For SLCSE, this is the current state of the project as the
prototype SLCSE system has been delivered to the Air Force and the Air Force has (for the
purposes of this report) decided to “market” SLCSE to ESD. Activities during this phase
include fixing known bugs, Quality Assurance Testing, improving the user interface,
preparing documentation and training materials, and developing a support organization.
Section 5.5 of this report covers some specific recommendations for work to be accomplished

45

during the initial productization. Several of the people MITRE interviewed stressed that it is
important to determine if the market will justify the costs of productization before
committing the resources to productize a prototype.

The length of this phase is mostly dependent on the condition of the prototype. One of the
experts interviewed by MITRE stated that in one instance where his company productized a
prototype received from a third party, they ended up completely redesigning and
implementing the system from scratch. In another project, they had to do substantial redesign
and reworking of the system, to make the system more reliable and to fix problems with the
user interface.

The user interface is particularly important. One expert observed, “The best tool in the world
won’t be used if the user interface gets in the way.” Since many prototypes have been
incrementally developed, clien the user interface has grown and changed as the prototype has
developed. In other instances, where there are several different independently developed
components, the problem is specifying a common interface covering the various components.
SLCSE exhibits both tendencies in places, but overall the user interface for GRC-developed
parts of the system is generally consistent. Instead, SLCSE has the problem that it includes

several components not developed by GRC, such as the commercial DBMS, DEC® VMS®
compilers and language-sensitive editors.

An issue related to the user interface is documentation. Like the machine presentation, the
documentation presentation must also be consistent. Where the system consists of
independently developed parts, the documentation for each part must be welded into a
consistent manual set. In particular, it is important that the documentation for a component
part be understandable and support the documentation for the whole system. For instance, in
SLCSE, the database documentation should be presented so that the user of SLCSE
understands how the database features work in SLCSE, and not in general. Where the system
uses only part of the underlying components, then the best approach is for the system
documentation to completely replace the component documentation. In SLCSE terms, this
means that the SLCSE manuals must cover those parts of the DBMS (and only those parts)
used by SLCSE. The end user should not need to go to SLCSE manuals and to DBMS
manuals to use SLCSE.

It is also important that the system accept responsibility for its components not directly
implemented by the developer. In the case of SLCSE, the underlying DBMS has a major
impact on the entire system. Whoever productizes SLCSE must take responsibility for the
reliability and usability of the DBMS. When a customer has a problem, he expects to get it
fixed by the SLCSE vendor, and not have to take his problems to a third party.

Besides the “productized” system and initial documentation, an important product of this
phase is a set of tests to be used later on for regression testing. Failure to develop a system
for regression testing is a common mistake made by companies when they develop a
commercial product the first time. Regression testing goes hand-in-hand with adequate
configuration management.

46

5.3.2 Beta Testing

Every expert interviewed by MITRE stressed the importance of beta testing. When asked if
one could skip beta testing, one expert replied, “Well, you might be lucky, but I wouldn’t try
it.” The goals for beta testing are to identify needed improvements in the tool, and to provide
stress testing that cannot be adequately duplicated by the developer’s Quality Assurance
program.

In many respects, beta testing is the single greatest risk during productization. The “worst
case” scenario mentioned by one of the experts is when known problems are fixed going into
beta testing, and one get S00 bug reports and improvement requests. These are fixed, the
system is rereleased, and 1,000 more bug reports and improvement requests are generated.
This reflects a situation where the product has been too narrowly focused, or is not flexible
enough to support the beta user’s needs. Often what happens is that the assumptions about
how the product would be used are incorrect, and it becomes a major effort to redo the
product with the beta user’s assumptions.

The beta testing period evaluates both the product and its support. One of the critical parts of
beta test is feedback on the documentation. Quite often the documentation is not well done in
the rush to get a product to beta test. Another commron problem is that the documentation
assumes knowledge of the product (or how it will be used) on the part of the user that the user
does not have. Usually, the beta test identifies gaps in the documentation.

5.3.3 Reproductization

Beta Testing and Reproductization are partially overlapping activities. The typical cycle is to
send out a version for beta, receive bug reports, fix the problems, and send out a new version.
This is where the developer can get caught in the loop of increasing the numbers of bug
reports. The goal of the Beta Test/Reproductization cycle is to achieve convergence on zero
outstanding problem reports, but this is rarely achievable in practice.

In general, Reproductization is oriented towards customer-generated changes. A large part of
the work done in Reproductization is regression testing, to ensure that a change to one part of
the system does not break other parts of the system.

Configuration Management is very important during Reproductization. With multiple beta
sites, it is easy to get a large number of incompatible systems, as bugs are fixed and new
versions of the system are released to the beta test sites. A related problem can occur when a
customer reports a bug in one version of the system. The bug is fixed in a new version of the
system, but in the meantime the user has developed a workaround. The problem occurs when
the customer’s workaround is incompatible with the fix in the system, and the customer has
grown to depend on his workaround. When a customer uses beta test versions of systems for
product development, he is often unwilling to test a subsequent release because of the impact
on his own work.

47

5.3.4 Ongoing Support

The final phase of productization occurs when the product has completed beta testing and is
released to the general user community. Preparing for and conducting ongoing support is a
critical part of productization, and planning for support starts when the decision has been
made to turn a prototype into a prcduct. As mentioned before, Quality Assurance and
regression testing must start with the initial productization of the system and be ongoing
through the beta testing period.

One of the challenges for the supporting organization is to know when to fix bugs and issue
new versions of the system. Each user wants his bugs fixed immediately, but does not want
to go through the struggle of upgrading to a version that does not fix his bugs. Industry
experience seems to be that semi-annual releases work best, with a provision for sending a
special release to a customer to fix critical bugs. As bugs are fixed, the regression test must
grow to include the customer bugs. Customers lose faith in a product when today’s bug fix
reintroduces a bug that was fixed in yesterday’s release. Conversely, they will lose faith
when their bugs are not fixed at all.

Ongoing support includes more than simple bug fixes. It also includes maintaining and
improving the documentation and providing special services for customers, such as training
and customization. Another mistake made by companies on their first product is not
developing and providing training in the product to the customer base. With SLCSE, this
training should include cour<es for SLCSE users and database administrators, and the
supporting organization should be ready to provide consulting services for customizing the
SLCSE database, modifying the SLCSE schema, and integrating new tools into SLCSE.

5.3.5 Costs and Schedule Experience

Although each expert had his own “‘rules of thumb” for productizing an existing prototype,
each person also had different assumptions about the state of the system when productization
starts and included different tasks in the estimate.

The rough estimate of how much it costs to productize an existing system runs from the cost
of developing the prototype to 10 times the cost of the prototype. For SLCSE, this would
yield a cost in the range of $2.5M to $25M. This is one reason why it is important to
determine the actual market for a product before spending the additional money to productize
it. These estimates generally include the “technical” costs, but do not include the additional
costs of marketing the product. An additional proactive marketing effort, coordinated with
the ongoing support effort, would also be recommended to publicize the advantages of
SLCSE and to gamer feedback from users for future enhancements and potential users to see
if they are impressed enough to consider using it.

The time required to productize a prototype also varies. However, there was general
agreement among the experts MITRE talked to that the minimum time was close to a year,
regardless of the costs and personnel applied to the product. It takes this much time to do the
initial productization and conduct a thorough beta test/reproductization. Usually beta test
periods last three months, with at least one month for reproductization before full release.

48

For SLCSE beta testing, we believe a longer period should be allowed due to its nature. Six
months to a year should be allowed to be able to thoroughly exercise all tools and all
subschemas in the database.

The size of the support organization also varied. One expert said he plans on one support
person per 200 users, while a second expert said that his goal would be one support person
per 10 users, at least during beta test. One organization has an installed base of about 7,000
users for their product running on 2,400 machines. They have eight full-time customer
support personnel (who mostly answer phones and investigate bug reports), three people
doing bug fixing and customization, and another four people who do Quality Assurance and
" preparation for delivery. They also have one person who maintains the customer database,
showing what sites have what versions of the software.

5.4 SPECIFIC PRODUCTIZATION RECOMMENDATIONS
5.4.1 Technical
The following technical improvements should be made to productize SLCSE:

. A bulk load capability should be provided. There should be a mechanism provided
that will enable an existing project to format and enter existing project data into a
SLCSE database in a batch-oriented, automated way. This would permit existing
projects to retrofit their data into SLCSE without requiring large amounts of manual
labor.

. All known problems with SLCSE should be fixed. GRC has a list of open
problems, some of which adversely affect the integrity of the database. Other
problems, which we have reported in section 3, should be further investigated and
fixed, and any problems resulting from the beta tests should also be corrected.

. Eliminate reliance on SmartStar software as the interface between SLCSE and the
underlying database management system. The acquisition and maintenance costs of
SmartStar software can be very expensive when licensing such software for
multiple, large VAX computers, as would be required for large projects. Also, our
experience thus far has indicated the SmartStar software can be easily corrupted and
lose access to the database.

. Improve the navigation capabilities of tools that provide a graphic representation of
a subschema, such as ModifyER,and VerifyER. Currently, when using the arrow
keys to move around the screen, the entity the cursor moves to is not always
intuitively obvious. The cursor keys should allow navigation along relationships to
simplify selection of objects on the screen.

. Add an incremental or dynamic schema modification capability. It should be
possible to make additions to the schema, e.g., adding new attributes to an entity,

49

adding new types of relationships between entities without having to unload the
database, recompile the entire schema, and reload the entire database if these
additions do not affect existing data.

Simplify the process of adding new tools to SLCSE. A dynamic window
numbering allocation scheme and dynamic linking in addition to the schema
modifications mentioned previously should be considered.

Correct misleading or incorrect prompts that were discussed in section 3.4.

In database access tools (Requirements, Design, etc.), when the relationships
function is chosen, modify the pop-up window displays to highlight only those
entities that have the specified relationship with the domain entity.

Provide a way to easily move or resize windows that overlap on the screen. Long
object names are often partially obliterated by an overlapping window. When there
are multiple versions listed, the distinguishing aspects of the name, i.e., the version
number, is often covered by an overlapping window.

Provide an alternate means of highlighting a menu item. When the cursor is on an
item, it looks exactly the same as a menu item that is chosen. Colorizing menu
items when appropriate terminals, personal computers, or workstations are
supported would reduce confusion.

Provide an option to remain in SLCSE and choose another project. Currently, when
a user wants to change from one project to another, the user has to completely exit
SLCSE and reinitialize. If multiple projects share the same logical database, it
should be possible to switch projects without exiting SLCSE. Also, if SLCSE
cannot access a particular project, it quits.

In the AMS_Analyze tool, a component type is referred to as a TLCSC. This
nomenclature was used in DOD-STD-2167, but not in DOD-STD-2167A. The
documentation should reflect the change to CSCI.

Provide additional prompt information to state that when finished making the
selections, pressing Keypad-0 will save the choices made as well as returning to
previous screen. New users found it disconcerting that after making selections,
there was no explicit way mentioned to save and act on the chosen information.

Increase the length of the DESCR_NAME attribute. The specification title of an
External_Document is stored in this attribute and it is too short for many of the long
titles used on current systems.

The DGL code for the 17 documents should be thoroughly exercised. We

discovered a section formatting code in the SRS DGL was missing, causing
incorrect section numbers to be generated. The sample database provided with the

50

training course was not complete enough to exercise all sections of the code for the
SRS. Based on this and scanning the other sample documents, we believe this will
hold true in the DGL for the other documents as well.

Make the tool list object sensitive. When an object is selected, consider
highlighting in bold the tools in the menu which operate on the sclected object.
Alternatively, gray out those tools which would not be chosen at that point.

5.4.2 Other

The following non-technical improvements should be made to productize SLCSE:

[]

A Concept of Operations document should be developed detailing the general way
in which SLCSE can be, or should be used on a large project. Specific examples
should be provided to highlight the benefits gained from using SLCSE.

Additional training material should be developed to provide in-depth training in the
concept and use of tne database schema. Specific examples should be provided to
explain what type of information each entity type is designed to capture, what goes
into each of the attribute fields, what format the data should be in, how to create
customized reports using the document generation language, etc. For cxamge,
SLCSE requires that data and control flow diagrams be stored in Postscript

format, but that fact is not stated anywhere in the documentation. The
Access_Name and Descr_Name fields of entity types are defined as string data
types, modifiable and unprotected. This is misleading as once a value is entered
into one of these fields, that value is not modifiable.

A support organization should identified and established that will provide the on-
going support to users of SLCSk.

Help screens should be provided in tools that currently do not have them.
Database_Insert, ATVS_Source_Reader, and TexPrint were three we discovered.

51

SECTION 6
FUTURE DIRECTIONS

Based on our investigations to date, our study of the SLCSE documentation, and the hands-
on experience, we believe the technologies described below warrant further investigation for
possible incorporation into SLCSE. In some instances, we make a firm recommendation for
a technology insertion that we believe is necessary to increase the probability of SLCSE
being adopted by ESD or its contractors. In other instances, we describe technologies that
look promising, but need further investigation.

6.1 FRAMEWORK TECHNOLOGIES

Our initial assessment of the SLCSE framework is that the entity-relationship-attribute model
incorporated into SLCSE is a good start toward capturing and organizing the large quantity of
data generated by a project. The database schema, which models the data requirements of
DOD-STD-2167A, is sufficient to support a full-scale development effort. The ability to
generate the requisite documents directly from the database is a significant feature. A major
limiting factor, however, appears to be the small number of legal data types that can be
supported by the underlying relational database management system. For example, dataflow
diagrams generated by a CASE tool are stored as text strings, either directly in the table field
or, if too long for the table, stored in a text file within VMS, with a pointer to the file stored
in the attribute field. In either case, the database does not reflect the true nature of that
attribute.

A fruitful area for future research then, is in the area of Object-Oriented data modelling and
the use of an object oriented database management system to implement it. Direct
management of the data objects would eliminate the necessity of maintaining the two
different modes of storage described above. Direct object management would also improve
access controls to the objects within SLCSE. Currently, it is possible to directly access a
SLCSE object stored in a VMS file, through VMS, without going through the SLCSE
interface and controls. SLCSE utilizes VMS files to store objects created by SLCSE tools.
This VMS file is stored in a subdirectory in the users account, and is accessible to the user by
using the OBJECTS menu or by using VMS commands to access that directory directly. The
user can then use a VMS tool such as EDT to edit that object file, and create a new version.
This new version will not be known to SLCSE and not show up on listings of the object.
This could potentially compromise the integrity of the data stored within SLCSE by
permitting direct modification of objects without going through a controlled procedure.
Object-oriented DBMS have strong data typing capabilities, are capable of managing
arbitrarily typed objects, and provide complete protection by storing the object in a directory
controlled by the database and not accessible to the user. Also, it would then be possible to
directly map object-oriented designs into the SLCSE database.

The SLCSE database is capable of automatically generating, in hardcopy form, the 17

documents required by DOD-STD-2167A. Currently, DOD-STD-2167A does not address
electronic distribution of the documentation it mandates. There is, however, another DOD-

53

sponsored effort, the Computer-aided Acquisition and Logistic Support (CALS) effort, which
is developing common standards for transferability, storage, and accessibility of information
in digital format. We believe that tools should be developed for SLCSE to automatically
generate CALS compliant documentation, on electronic media specified in MIL-STD-1840A,
Automated Interchange of Technical Information. This would entail the development of
document type definitions (DTD), and translators to generate CALS compliant Standard
Generalized Markup Language (SGML) documents, which also conform to DOD-STD-
2167 A requirements, directly from a SLCSE database. Projects would then be able to
transfer project deliverables (CDRLs) electronically without necessarily generating the paper
copies. Additionally, it would be useful to be able to preview documents on-line, in final
printable format, prior to printing the hardcopy. This would reduce turnaround time, paper
usage, and speed up internal reviews of documents prior to delivery. It would also permit
incremental data transfer from a contractor site using SLCSE to a SPO site using SLCSE.

Another area for future development is the expansion and generalization of the import and
export capabilities in SLCSE to simplify the integration of CASE and other tools that run on
non-VAX/VMS computers, e.g., SUN workstations, Apple Macintoshes, and IBM PCs. For

example, ICONIX PowerTools® and Excelerator/RTS® are two popular personal computer-
based CASE tools in use at various ESD contractor sites. Other products, hosted on various

computers, are aiso in use. Currently, only the VMS-based MentorCase® tools,

AnalystRT® and Designer® from Mentor Graphics Corporation, are integrated into SLCSE.
Tight integration of a CASE tool will likely require the modification of the SLCSE database
schema, holding open the possibility that different users of SLCSE, who have standardized
on different CASE tools, will need to modify the schema in different. possibly mutually
incompatible ways. This would reduce the transportability of data between sites, such as
from contractor to Government.

SLCSE is currently designed around a centralized processor model, with user access provided
via DEC VT-100 terminals or equivalent. SLCSE provides various levels of support for the
integration of tools which reside on the VAX/V MS® configuration on which SLCSE is
hosted, but only minimally supports the integration of tools which reside on other computer
platforms. Since personal computers have come into widespread use at ESD and at its
associated contractor community, and engineering workstations are being used more
frequently, we believe the trend in the industry is heavily oriented toward a truly distributed
client server architecture. The current SLCSE model then, would not make it attractive to use
in many contractor organizations, unless it can be adapted to their environments.

By implementing a client server model in SLCSE, with possibly an object-oriented database,
and generalizing the import and export capabilities, tools running on personal computers and
workstations could not only store (import) their data in the SLCSE database, but also have
the capability to retrieve (export) data in the appropriate formats, while still retaining a
logically centralized, integrated database. This would also facilitate porting SLCSE database
functionality to another host operating system/DBMS combination. As Unix becomes the
predominant open operating system, many organizations have adopted it as the corporate

54

standard for supporting software development efforts, particularly on workstations. Also,
many of the same database products are available on Unix systems as well as VMS. Making
SLCSE available on Unix would broaden its potential customer base to many companies with
a different infrastructure in place than VAX/VMS.

The database schema is the single most important feature of SLCSE. It makes possible the
capture and analysis of the myriad information generated by a software project. We believe
that to require the use of either the ShareBase Server or VAX/Rdb will be a limiting factor in
acceptance of SLCSE. The Sharebase Server is designed as a special purpose box,
containing a uni-processor accelerator and disk drives, which requires access to the host
computer via Ethernet. Performance characteristics of Ethernet networks — heavily loaded
networks often reach only 20% of theoretical capacity — and of the single processor may
severely limit the maximum performance the Server can achieve on a large project. If one
adds to that the cost of acquiring and maintaining a suitably large configuration, and it
becomes a less viable alternative to acquiring and dedicating a large, fast VAX as a database
server. The Server currently holds a very small share of the database market, and it is
unlikely to improve its market position given the advances being made in both software-only
DBMS implementations and the research being done on parallel processor architectures for
database machines.

VAX/Rdb currently holds a 20% share of the VAX/VMS based DBMS market, while

Oracle® holds another 20%. Other relational and non-relational DBMS systems comprise
the remainder. Companies that have already invested in a relational DBMS will be unlikely
to want to switch to VAX/Rdb. Even though VAX/Rdb is now distributed free with VMS,
SLCSE still requires the SmartStar software to interface to the database. SmartStar licenses
are scaled to the size of the VAX to which it is being licensed, which can be a considerable
extra expense. So to enhance the prospects of SLCSE being adopted by a site that already
has a different database system in place, consideration should be given to porting SLCSE to
other relational database systems which are in use by contractors, e.g., Oracle, Sybase®, etc.
We believe that making the schema available on other DBMSs, with improved import/export
capability, will permit organizations with development environments based around another
DBMS to install a customized version of SLCSE.

Another basic improvement that should be considered is the addition of color output to the
screen displays, which can be used effectively to highlight important or exceptional
information. For example, when using project management software, PERT charts, showing
CDRLs delivered, delivery dates, task start and end dates, and schedule slips can be color
coded to enhance readability and highlight problem spots. Trend data from management
metrics tools can be displayed in green for example, with abnormal statistics displayed in a
contrasting yellow or red, depending upon severity. During software development, tools such
as Ada Test and Verification System (ATVS), AnalyzER, and ALICIA could provide color
coded displays to highlight hot spots in analyzed code, inconsistencies in the database,
traceability threads through the database. With low-cost color terminals becoming readily
available as replacements for VT-100 terminals, and color capable personal computers
already in widespread use, we believe further enhancement in this area could be very fruitful.

55

The rule-based process support should be extended and generalized to operate on entities,
activities and time-critical events as well as tools. Trigger mechanisms can be provided to
track schedules of deliverable documents, code, technical and management reviews to issue
notifications a set period of time prior to the event, and to alert project management that a
delivery has slipped. Entities and source code units could be tracked to provide notification
to other users when updates are made. Further work in the area of the Knowledge-Based
Software Assistant (KBSA) program should be done only as a continuing research effort and
kept separate and distinct from the productization efforts discussed in section 5. Many of the
recommended improvements to SLCSE made in this report will establish a better platform to
incorporate knowledge-based enhancements. A dynamically modifiable object-oriented
database schema, simplified tool integration procedures, and better graphical user interface
(see next section) are all required to be able to effectively integrate knowledge-based
development tools. If SLCSE is to be successfully transitioned into ESD and contractor
shops, the near term focus should be on the conventional improvements discussed above and
establishing an effective technology transition program as discussed in section 4.

6.2 USER INTERFACE CAPABILITIES

As already discussed, the primary access to SLCSE is through a DEC VT-100 compatible
terminal or terminal emulator. The user interface presented, however, is not quite the
standard, character-based, command line oriented interface that a VT-100 terminal implies.
SLCSE dces provide a menu-driven, window-oriented interface that looks very much like a
standard Macintosh interface. We found it to be intuitive and easy to use. For contractor and
government sites witn VT {3/220s as the standard desktop terminal, this interface should be
quite acceptable. We did notice a certain awkwardness in using arrow keys and keypad and
return keys in various combinations to navigate and select items on the screen that a pointing
device, such as a mouse or trackball, would alleviate.

We have found, however, that the trend in industry is moving away from the character-based
class of terminals represented by the VT-100. We have observed a concerted push by the
major computer manufacturers to incorporate windowing standards requiring bit-mapped
graphics terminals and pointing devices as standard equipment. The X Window System, in
fact, has rapidly been adopted as the de facto standard. Because of this trend, we recommend
that an X Window System interface be developed for SLCSE. This would permit the use of
X terminals, workstations, and personal computers, with bit-mapped screens and pointing
devices to remotely access SLCSE, and still take advantage of the advanced built-in
windowing and graphics capabilities.

Another user interface, one that SLCSE already resembles, is the proprietary Macintosh
windowing system. This is accomplished by using the GRC-developed windowing software,
WINNIE. In using a Macintosh to access SLCSE, terminal emulation software, such as
Macterminal, must be used to make the Macintosh respond as a VT-100 to SLCSE. Thus, a
Macintosh look and feel is provided, but at the cost of running emulation software on both
the VAX and the Macintosh, and sacrificing the use of the mouse. This raises the issue of a
government sponsored product using the “look and feel” of a proprietary interface, perhaps
violating Apple Computers’ copyright.

56

SLCSE also enables data generated by selected Macintosh applications to be integrated into
the SLCSE database. Project management functions, using Micro Planner®, outlining and
presentation functions, using More I®, are already available. We believe further
development expanding this integration is warranted, given the capabilities and tools
available on Macintosh II class computers. RADC, under the SLCSE Project Management
System (SPMS) contract is currently integrating MacProject® 11, Microsoft® Excel, and
Microsoft Word into the SLCSE project management system. The Macintosh is utilized as a
DECnet® client, and directly accesses the built-in graphics and mouse via the toolbox. The
user interface is run directly on the Macintosh and tools are invoked on either computer, as
~ppropriate, with all the data being stored in the SLCSE database. With the client server
architecture, data can be retrieved from the database and manipulated by the Macintosh-
based tools while maintaining the data under configuration control.

6.3 SOFTWARE DEVELOPMENT TOOLS

The standard set of software development tools currently available in SLCSE mainly support
the detailed design, coding, and testing phases of the life cycle. Tools in these phases are
numerous, well developed, and readily available from many vendors for the VAX/VMS
environment. The tools available for the initial phases of the life cycle, concept formulation,
and requirements analysis, appear to be fewer in number and also less well developed. Based
upon our examination of the documentation for ALICIA, and the brief demonstration of it at
the course, we believe it is the kind of tool that is necessary, even vital, on large software
developments, and even more important for maintenance. We would recommend that further
research and development be pursued in this area. We feel, however, that requiring a
VAXstation II/GPX, with VAX Workstation Software (VWS)®, and the Graphical Kernel
System (GKS) providing the graphics support, to host ALICIA will severely limit its
availability. This is due partly to the different hardware requirements, and partly due to DEC
transitioning to DECwindows®, a DEC implementation of the X-Window System as the
primary means of providing a graphical user interface on its workstations. Thus, a site with
SLCSE installed on a VAX system would also have to obtain an appropriately configured
VAXstation® to run ALICIA. A large project might have to acquire a number of
VAXstations to support the number of project and task managers needing access to ALICIA.
This hardware would be an additional cost burden for organizations on limited budgets which
are paying for the large central VAX computer and any personal computers being acquired.
For sites at USAF Logistics commands, which may only have VAXes and VT-100 class
terminals for software development, it would prevent them from using ALICIA at all. Yet,
an impact analysis tool would be of major benefit to a maintenance organization. Requiring
only an X interface to SLCSE would enable personal computers, running an X package, to be
used to run ALICIA. Also, X Window System terminals, which are now available from DEC
(VT-1200), as well as other vendors, will most likely become the de facto terminal type in the
future and should be easier, and much less costly, to acquire than VAXstations.

We believe enhancing ALICIA to run with an X-Window System interface would
substantially improve its availability, by permitting it to be run on any VAX using either an

57

X terminal or a personal computer with an X interface. Either of these alternatives is much
less expensive than a properly configured VAXstation.

On-line visualization of the entity structures created would be very useful when populating a
database. When a requirement is partitioned into multiple functions, each of which is further
partitioned, being able to see the tree structure graphically on-line would simplify the
completeness and verification checking. Similarly, graphically displaying other entity
relationships, e.g., CSCI_Capability Utilizes Required_Data_Element, will simplify the
verification checking of non-hierarchical relationships among entities. Being able to generate
hard copy output of these graphs would also be desirable. The DGL for the SRS and SDD
could be modified to automatically include such graphs in the hard-copy documentation
generated by SLCSE, providing a model for tailoring DOD-STD-2167A data item
descriptions. These types of graphs would also be useful at the code level to provide
structure charts generated automatically from the database.

A great deal of government attention is being given to software quality metrics. The data
collected in the SLCSE database appears to be sufficient, and of a fine enough granularity, to
be used as input to tools that can generate software quality metrics and software management
metrics, and create the appropriate reports through the documentation generation capability.
We believe further tool development in this area is warranted. One approach might be to
devclop thc export capability further to search the database and download the appropriate
data into spreadsheet and presentation tools residing on either the VAX or on personal
computers. Microsoft Excel, for example, is widely used by managers to plan and track
budgeted and actual costs and labor hours expended for individual tasks within a project.
The built-in graphing functions can then be used to create charts to illustrate progress, do
trend analyses, and highlight problem areas. This is partially accomplished via the SLCSE
Project Management System (SPMS) contract.

Another aspect of program management that we believe needs to be considered is the use, by
many organizations, of stand-alone project management tools such as Artemus. In the
general SLCSE project management tool, the SPMS, consideration should be given to
ensuring that the data requirements and schema modifications that may need to be made are
compatible with data available from these other tools. By doing so, it permits the possibility
of integrating these tools into SLCSE without further schema modification.

Cost estimation tools are often used by SPOs to determine a cost estimate before Request for
Proposals are issued to industry. Such tools, particularly if they are government-owned,
could be incorporated into SLCSE and provided as part of the basic system.

Documentation and source code analysis comprise much of the work a SPO does during a
contract. Gnu Emacs, an advanced editor which is available as “free software” and is widely
used in the industrial and research community, should be included in SLCSE as a basic
element of the tool suite. The ability to open multiple buffers simultaneously and its
extensive search capabilities would provide users a better code and documentation analysis
tool than currently exists in SLCSE.

Source code analysis by SPOs also includes “reverse engineering” the code to extract the
code structure and measure code complexity and performance. The government owned

58

version of ATVS should be included as a basic part of the SLCSE tool suite. This would give
users the opportunity to use the tool and see whether it provided the specific functionality
needed for that project. They then could upgrade, at additional expense, to the commercial
version from GRC as project needs dictate.

In large software development efforts, much of the effort expended is related to travel,
meetings ,and document preparation and production. Providing support in SLCSE for secure
teleconferencing capabilities and multimedia electronic mail could substantially reduce the
need for travel and face-to-face meetings. Adapting current tools, or developing new tools, to
support on-line collaborative work on requirements analysis, design, and document
preparation could substantially reduce labor hours expended in travel, meetings, reviews, etc.

59

SECTION 7
SUMMARY

The Software Life Cycle Support Environment is a modern software engineering framework
incorporating many of the tools and technologies necessary to provide a powerful and robust
software development environment. It utilizes a significant number of commercially
available products to minimize the amount of custom development required to provide the
capabilities expected in a modern environment.

SLCSE development has reached the point where, with the additional capabilities specified in
sections 3 and 6, a focused productization effort described in section 5, and a concerted effort
at technology transfer, described in section 4, it could be transitioned to ESD and used
initially on small to medium-scale software acquisition and development programs. As more
experience is gained with SLCSE, further tailoring and enhancements will be identified and
incorporated. Additional tools will be integrated into SLCSE. The database schema will be
expanded to support additional design representations.

Because SLCSE is a framework, a longer period of transition should be expected. Unlike an
individual CASE tool, vhich could be acquired, tested, arid used by only one person and, if
found deficient, replaced with only a minimal impact on the development, SLCSE must be
adopted by an entire team or project to be beneficial. This will naturally cause a SPO or
contractor’s project manager to proceed cautiously before fully committing to its use.

SLCSE has the potential to improve the way ESD and its contractors manage and develop

software. To realize that potential, future SLCSE development and support must be managed
in the same manner as a commercial product.

61

APPENDIX
LIST OF TOOLS AVAILABLE FOR SLCSE

Tools Developed Specifically for SLCSE:

Requirements Tool Creates, modifies, and deletes entities, relationships, and attributes
in the System Requirements and Software Requirements
subschemas.

Design Tool Creates, modifies, and deletes entities, relationships, and attributes
in the Software Design subschema.

Test_Manager Creates, modifies, and deletes entities, relationships, and attributes
in the Test subschema.

AnalyzER Entity/Relationship analysis and reporting tool.

ModifyER A general purpose database tool used to access subschemas,
entities, relationships, and attributes.

ReportER A general purpose database report generator.

VernfyER A gencral purpose database consistency checker.

BaselinER Creates and modifies configurations, baselines configurations, and
generates reports describing the contents of configurations.

EditER A form-based database access utility program used by several tools
to create, modify, and delete entities, relationships, and attributes.

Docgen_2167A Creates DOD-STD-2167A compliant documents from the
database.

Docgen_Report Creates custom reports from the database.

SDF_Create Creates a Software Development Folder (SDF) and associates it

with a specific CSCI, CSC, or CSU entity instance.
SDF_Delete Deletes a Software Development Folder (SDF) and all of its

contained files associated with a specific CSCI, CSC, or CSU
entity instance.

63

SDL Compiler

SDL_Convert

Get_File

Put_File

Add_File

Import

Export

Micro_Import

Processes schema specifications written in Schema Definition
Language (SDL) and produces the SQL necessary to create the
relational database tables which implement the SLCSE database
model.

Translates a subschema specification written in SDL into a form
acceptable to AnalyzER.

Provides controlled access to source and PDL files under SLCSE
configuration management control (baselined).

Returns files acquired via Get_File to SLCSE database and placed,
once again, under database control.

Inserts new files into the SLCSE database and places them under
configuration control.

Copies files from the external VMS system into SLCSE.

Copies files from the SLCSE Objects window to the external VMS
system or to a Software Development Folder.

Populates Project Management subschema with information
extracted from the Macintosh-resident tools, MicroPlanner Plus,
and More II.

Problem Change Report Processor (PCRP) Populates and modifies entities and relationships

in subschemas relevant to problem change reporting and tracking.

SLCSE Environment Manager (SEM) Provides SLCSE system administration functions;

TexPrint

defines projects, tools available, and legal users and assigns user
roles; defines computer resources available; defines rule-based
methodology to be followed.

A DCL command file used in conjunction with LaTeX and TeX. It
converts the device independent output file generated by LaTeX
into a device dependent file and outputs that file to a user-specified
device.

GRC Proprietary Products Incorporated into SLCSE:

WINNIE

MOO

Interactive tool for constructing window-oriented interactive user
interfaces for VT-100 type terminals.

Menu Operations Organizer used in conjunction with WINNIE.

SmartStar Proprietary Products Incorporated into SLCSE:

SDesign
SQL
SQuery
SReport

Designs and creates applications for a relational database.
An interpreter for the Structured Query Language (SQL).
Executes database applications created by SDesign.

Creates reports from the database applications created by SDesign.

Public Domain Products Incorporated into SLCSE:

Kermit

LaTeX

A public domain file transfer program.

A document formatting system built on top of the public domain
TeX document formatting system.

Macintosh-Based COTS Products Usable with SLCSE:

MacProject 11

MicroPlanner +

Microsoft Excel
Microsoft Word
MORE I

A general purpose project management tool from Claris® Corp.

A general purpose project management tool from MicroPlanning
International, Inc.

A general purpose spreadsheet tool frotn Microsoft Corp.
A general purpose word processing tool from Microsoft Corp.

An outlining and presentation tool from Symantec Corp.

SLCSE-Independent Products Usable in SLCSE:

ATVS
AMS
ALICIA
ADL
SDDL

CAVS
Jovial J73

J73AVS
PIGMY
MentorCase

RXVP80

Ada Test and Verification System (from GRC).

Automated Measurement System (from Harris Corp.).
Automated Life Cycle Impact Analysis (from SPS).
Ada-Based Design Language (from SPS).

Software Design and Documentation Language (from K2
Associates).

COBOL Automated Verification System (from GRC).

A compiler for Jovial J73 (from Proprietary Software Systems,
Inc.).

A Jovial J73 Automated Verification System (from GRC).
An Interactive Graphics Utility (from GRC).
Computer-Aided Software Engineering tools (from Mentor
Graphics).

A Fortran Automated Verification System (from GRC).

65

VAX/VMS Products from DEC Usable in SLCSE:

VAX/Ada Compiler

VAX/Ada Compilation System (ACS)

VAX-11 COBOL Compiler

VAX FORTRAN Compiler

Digital Standard Runoff. A document formatting system
VAX/Language Sensitive Editor (LSE)

VAX/EDT Editor

VAX/EVE Editor

VAX MACRO Assembler

VAX/VMS DCL Utilities Usable in SLCSE:

Copy
CPU
Create
Delete
Directory
Mail
Print
Purge
Rename
Run

Type

ALICIA
AFSC

SLCSE

GLOSSARY

Automated Life Cycle Impact Analysis

Ada Language System

Air Force Systems Command

Ada Programming Support Environment

Ada Test and Verification System

Automated Weather Distribution System
Computer-Aided Acquisition and Logistic Support
Computer Aided Software Engineering

Command Center Evaluation System

Command Center Processing & Display System-Replacement
Contract Data Requirements List
Commercial-Off-The-Shelf

Command, Control, Communications and Intelligence
Database Management System

Digital Command Language

Digital Equipment Corporation

Document Generation Language

Department of Defense

Document Type Definitions

VAX/VMS - hosted text editor

Electronic Systems Division

Government Furnished Equipment

Graphical Kernel System

The General Research Corporation

Icelandic Air Defense System

International Business Machines, Inc.

Independent Research and Development

Joint Surveillance Target Attack Radar System

Local Area Network

Military Airlift Command/Information Processing System
Microelectronics and Computer Technology Corporation
Mission Critical Computer Software

National Aeronautics and Space Administration
Preplanned Product Improvement

Program Evaluation and Review Technique

Portable Operating System Interface

Rome Air Development Center

Reusable Ada Packages for Information System Development
Radar Software Improvement Program

Survivable Communications Integration System
Software Design Document

Software Development and Maintenance Environment
Software Engineering Institute

Software Engineering Prototype

Software Life Cycle Support Environment

67

SGML

SPS
SRS
STARS
STP
SQL
TO&P
USAF

VMS
VAX/Rdb
VWS

WIS
WWMCCS

Standard Generalized Markup Language

System Program Office

Software Productivity Solutions, Inc.

Software Requirements Specification

Software Technology for Adaptable Reliable Systems
Software Technology Program

Structured Query Language

Technical Objectives and Plans

United States Air Force

A computer manufactured by DEC

Virtual Memory System

VAX/VMS-hosted relational database from DEC
VAX Workstation Software

WWMCCS Information System

Worldwide Military Command and Control System

68

TRADEMARKS

UNIX and AT&T are registered trademarks of American Telephone and Telegraph.

Apple, Macintosh, and A/UX are registered trademarks licensed to Apple Computers, Inc.
IBM and IBM PC are registered trademarks of International Business Machines Corporation.
XENIX is a registered trademark of Microsoft Corporation.

Postscript is a registered trademark of Adobe Systems, Inc.

ICONIX and Power Tools are registered trademarks of ICONIX Software Engineering, Inc.
Excelerator/RTS is a registered trademark of Index Technology Corporation.

Mentor Case, Analyst/RT and Designer are registered trademarks of Mentor Graphics
Corporation.

DEC, VAX, VMS, VT-100, Rdb, VWS, Vaxstation, DEC windows, and DECnet are
registered trademarks of Digital Equipment Corporation. ’

Oracle is a registered trademark of ORACLE Corporation.

X Window System is a registered trademark of Massachusetts Institute of Technology.
UTS is a registered trademark of Amdahl Computers, Inc.

SUN is a registered trademark of SUN Microsystems, Inc.

SYBASE is a registered trademark of SYBASE Corporation.

Micro Planner is a registered trademark of Micro Planning, Inc.

MORE Il is a registered trademark of Symantec Corporation.

Ethernet is a registered trademark of XEROX Corporation.

Claris and MacProject are registered trademarks of Claris Corporation.

69

LIST OF REFERENCES

E&V Guidebook, Version 2.0, 30 September 1989, Technical Report. US Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB.

E&V Reference Manual, 30 September 1989, Version 2.0, Technical Report. US Air Force
Wright Aeronautical Laboratories, Wright-Patterson AFB.

Earl, A., January 30-31, 1990, A Reference Model for Computer Aided Software Engineering
Environments: A Conceptual Viewpoint. International CASE Architectures and Standards
Course, National Technological University.

Bryan, M., 1988, SGML: An Author’s Guide to the Standard Generalized Markup Language,
Addison-Wesley Publishing Company.

Grau, J. K., Software Productivity Solutions Inc., SLCSE’s Relationship to CALS, Briefing
presented at CALS Expo, ‘89, Orlando, FL.

Jones, T. C., August 1990, Seminar on Productivity, Boston Computer Society.

Software Life Cycle Support Environment, August 1989, Software Programmer’s Manual,
General Research Corp.

Software Life Cycle Support Environment, August 1989, Software User’s Manual, Vol. I,
General Research Corp.

Software Life Cycle Support Environment, August 1989, Software User’s Manual, Vol. I1:
SLCSE Environment Manager, General Research Corp.

Software Life Cycle Support Environment, October 1989, DOD-STD-2167A Schema,
General Research Corp.

Software Life Cycle Support Environment, October 1989, Document Generation Language
(DGL) for the Software Design Document (SDD), Software Productivity Solutions, Inc.

Software Life Cycle Support Environment, February 1990, On-the-Job Training Course,
Voiume I: Management Overview, General Research Corp.

Software Life Cycle Support Environment, February 1990, On-the-Job Training Course,
Volume I1: User Orientation, General Research Corp.

Software Life Cycle Support Environment, February 1990, On-the-Job Training Course,
Volume I11: Support Orientation, General Research Corp.

Software Life Cycle Support Environment, February 1990, On-the-Job Training Course,
Appendices | - VIII, General Research Corp.

71

Automated Interchange of Technical Information, 22 December 1987, Department of
Defense, MIL-STD-1840A.

Defense System Software Development Standard, 29 February 1988, Department of Defense,
DOD-STD-2167A.

Evaluation of Ada Environments, March 1987, SEI Tecinical Repori, CMU/SEI-87-TR-1,
ESD-TR-87-101.

Babcock, J., D. Laszlo, A. Belady, and N. C. Gore, March 1990, “The Evolution of
Technology Transfer at MCC’s Software Technology Program: From Didactic to Dialectic”
MCC TR STP-404-89, Proceedings of 12th International Conference on Software
Engineering, Nice, France. ‘

Mabher, J. H, Jr., June 1990, “Planning for Technology Transition” Seventh WAdaS Tutorials.
Schaefer, A. L., June 1989, CALS - The Computer-Aided Acquisition and Logistic Support

Initiative and its Implications for Software Acquisition, MTR-10584, The MITRE
Corporation, Bedford, MA.

72

OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C3I) activities

for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and enywneering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3I systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

