
AD-A240 607

C, -rnege Mellon University

-- Software Engineering Institute

DTICS ELECTE '.
SEP 2 3 1991 "

Guide to
AddingToolkits~

This do- 'ment has been Cpproved

for p blic release aznd sale; its
di:.tibution is unlimited.

91-11235

System for User Version Date
Interface Development 1 May 1991

9 1 9 0 043

User's Guide
CMU/SEI-91 -UG-8

May 1991

Serpent: Guide to Adding Toolkits

. User Interface Project

Approved for public release.
I Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this documen should not be construed as an
official DoD position. It is published in the interest of scientific and
technical infornation exchange.

Review and Approval

This document has been reviewed and is approved for publcation.

FOR THE COMMANDER

4h~s JR nM or, USA
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the Department of Defense.

Copyright © 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific ajid technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directly: Nati nal Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161.
Use of any trademarks in this document is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1 Introduction 1

1.1 This Manual 1
1.1.1 Organization 1
1.1.2 Typographical Conventions 2

1.2 Serpent Documentation 2

2 Overview 5
2.1 The Sr ent AcVhtctro (

2.2 Shared Database 7
2.3 Inter-Process Communication 9
2.4 Toolkit Integration into Serpent 10

3 Interface Definition 13
3.1 Toolkit Selection 13
3.2 Serpent Object Definition 13

3.2.1 Object Attributes 14
3.2.2 Object Methods 15
3.2.3 Object Semantics 15

3.3 Shared Data Definition 16
3.3.1 Creating an SDD File 17
3.3.2 Processing the SDD File 18

4 Interface Binding Development 21
4.1 C Language Development 21

4.1.1 Useful C Routines 22
4.1.2 Shared vs. Local Process Data 22
4.1.3 Initializing Toolkit to Serpent Interface 22
4.1.4 Main Loop 23
4.1.5 Using Retrieved Shared Data 25
4.1.6 Modifying Shared Data 29
4.1.7 Terminating Toolkit-to-Serpent Interface 30
4.1.8 Helpful Hints 30

4.2 Execution 31

Appendix A Glue 33

A.1 What Is Glue? 33
A.2 Glue Syntax 33

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) i

A.2.1 Compiler Basics 35
A.2.2 String Definitions 38
A.2.3 Global Variables 38
A.2.4 Equivalence Types 39
A.2.5 Widget Descriptions 40

A.3 Files Generated by Glue 48
A.3.1 Toolkit File 48
A.3.2 Saddle File 48
A.3.3 Methods File 49
A.3.4 Bindings File 52

A.4 Running Glue 53
A.5 Interfacing to Glue 55

A.5.1 Data Structures 55
A.5.2 Interface Routines 58

Appendix B BNF of Glue 63

Appendix C Glue Error Messages 65

Appendix D Six Overview 73

D.1 What is Six? 73
D.2 Using Six 74
D.3 Adding New Types to Six 74

D.3.1 Changes to Glue Include Files 74
D.3.2 Changes to Glue Data Files 75
D.3.3 Changes to Glue 75
D.3.4 Changes to Six 77

Index 83

ii Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

List of Figures

Figure 1-1 Serpent D~ocuments 3
Figure 2-1 Serpent Architecture 6
Figure 2-2 Shared Database 8

Serpent. Guide to Adding Toolkits (CMU/SEI-91-UG-8) iii

iv Serpent: Guide to Adding Toolkils (CMU,'SEI-91-UG-8)

List of Examples

Example 3-1 Example Serpent Object: The Athena Command Widget
Implementation 16

Example 3-2 SDD File Major Parts 17
Example 4-1 Example C Header File 21
Example 4-2 Serpent Initialization in C 23
Example 4-3 Serpent Asynchronous Shared Data Retrieval in C 24
Example 4-4 Getting the Element Name and Change Type in C 25
Example 4-5 Processing New Elements in C 26
Example 4-6 Processing Modified Elements in C 28
Example 4-7 Processing Deleted Elements in C 28
Example 4-8 Updating Shared Data in C 29
Example 4-9 Serpent Termination in C 30

Serpent: C Application Developer's Guide (CMU/SEI-91 -UG-6) V

Vi Serpent: C Application Developer's Guide (CMTJ/SEI-91 -UG-6)

Introduction

1 Introduction
Serpent is a User Interface Management System (UIMS) that supports the development and

execution of the user interface of a software system. Serpent supports incremental
development of the user interface from the Drototypig phase through production to

maintenance or sustaining engineering. Serpent encourages the separation of concerns
between the user interface and the functional portions of an application, and is easily
extended to support additional input/output toolkits.

1.1 This Manual

This manual describes how to add toolkits to Serpent. A gzneric description of how to
integrate any toolkit into Serpent is followed by descriptions of two tools. These tools are

Glue, a generalized widget integration facilitv, and Six. a generic Serpent-to-Xt binding
driver. Readers of this guide are assumed to have programming experience in C or Ada, and
to have read and understood the concepts described in the Serpent Overniew and Serpent:
System Guide.

1.1.1 Organization

This guide is divided into the following chapters:

" Overview: A general description of the nature of toolkit integration within the
framework of Serpent.

" Interface Definition: A description of the process of defining the ,ata interface
between a toolkit and Serpent.

" Interface Mapping DevIopment: A description of the process of coding the
mapping among the Serpent interfacc data and the toolkit entities.

" Glue: A description of how to use Glue, a widget description language which, when
used with Six, make the process of integrating Xt-based toolkits easier.

" Six: A description of how to use Six, an execution engine that uses the widget
description tables produced by Glue to help make integrating Xt-based toolkits
easier.

Serpent: Guide to Adding Toolitbs (CMU/SEI-91-UG-8) I

Introduction

1.1.2 Typographical Conventions

The following conventions are observed in this manual.

Code examples Courier typeface

Variables, attrbutes. etc. Courier typeface

Syntax Courier typeface

Warnings and Caunons Bold, italics

1.2 Serpent Documentation

The purpose of this guide is to provide you with sufficient information to integrate toolkits
into Serpent. The following documents provide information about the Serpent system:

Serpent Overview

introduces the Serpent system.

Serpent: System Guide
Describes installation procedures. specific input/output file descriptions for intermediate
sites and other information necessary to set up a Serpent application.

Serpent. Saddle User's Guide
Describes the language that is used to specify interfaces between an application and
Serpent.

Serpent: Dialogue Editor User's Guide
Describes how to use the editor to develop and maintain a dialogue.

Serpent: Slang Reference Manual
Provides a complete reference to Slang, the language used to specify a dialogue.

Serpent: C Application Developer's Guide
Serpent: Ada Application Developer's Guide
Describe how the application interacts with Serpent. These guides describe the runtime
interface library, which includes routipes that manage such functions as timing, notification
of actions, and identification of specific instances of the data.

2 Serpent Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Introduction

The following figure shows Serpent documentation in relation to the Ser-

pent system:

Dialogue______
SEditor r

Saddle Sln Slang S

Processor Compiler 1- Program.

fapplication:v

program,

Transaction
application Processing dialogue presentation ly0

layerlaye layer OToolklts

hi mumo
Figure I-I Serpent Documents

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 3

Introduction

4 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Overview

2 Overview
A main goal of Serpent is to encourage the separation of a software system into im
applicatir- portion and a user interface portion in order to provide the application developer

with a toolkit independent interface. The application portion consists of those components
of the software system that implement the "core" functionality of the system. The user
interface portion consists of those components that implement an end-user dialogue. A
dialogue is a specification of the presentation of application information and end-user
interactions. During the design stage, the system designer decides which functions belong
in the application component and which belong in the user interface component of the

system.

Given this separation, it is necessary to provide a set of components that actually implement

the user interface portion. While Serpent provides most of these, the goal of the toolkit
integrator is to provide the last piece, the toolkit-specific portion. Serpent was designed so
that the implementation of this component is a relatively straightforward procedure.

Throughout this document the terms widget and object mean the following:

widget - a toolkit entity

object- an instance of Serpent shared data

There is usually a one-to-one mapping between objects and widgets when a toolkit is
integrated into Serpent.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 5

Overview

2.1 The Serpent Architecture

Serpent is implemented using a standard UIMS architecture. This architecture (see Figure
2-1) consists of three major layers: the presentation layer, the dialogue layer, and the
application layer. Each of the layers is a separate system process. Furthermore, if more than
one toolkit is used within a Serpent execution, each toolkit is a separate system process.

dialogue

interface manager . dialogue

interface

Figure 2-1 Serpent Architecture

6 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Overview

The presentation layer consists of various input/output toolkits, referred to simply as
toolkits, which have been incorporated into Serpent. A toolkit, in this sense, is an existing
hardware/software system that performs some level of generalized interaction with the end
user and supports a certain user interface style. Serpent is being distributed with an interface
to the Athena widget set and the Motif widget set, both of which run under the X Window
System (Version 11). Other toolkits that have been integrated with Serpent include a digital
mapping system and a combined video/graphics processor. This guide draws on these
efforts and general toolkit integration concepts to offer an approach to the integration of
other toolkits with Serpent.

One way of viewing the three levels of the architecture is the level of feedback provided for
user input. Roughly, the presentation layer is responsible for lexical functionality, the
dialogue layer for syntactic functionality, and the application layer for semantic
functionality. For example, in implementing a menu, the presentation layer is responsible
for such things as cursor tracking, determining and highlighting the selected menu item, and
presenting user feedback to that effect. The dialogue layer is responsible for deciding
whether another menu should be presented (and, if so, presenting it) or whether the choice
requires application action. The application layer is responsible for implementing the
underlying command corresponding to the menu selection.

The user interface for a software system within the UIMS structure is specified formally as
a dialogue, which is executed by the dialogue manager at runtime in order to provide a user
interface for the system. The dialogue specifies both the presentation of application
information and end-user interactions. The Serpent dialogue specification language (Slang)
allows dialogues to be arbitrarily complex.

The application provides the functional portion of the software system independent of the
presentation and may be developed in C, Ada, or other programming languages. The
application may be a simulation for prototyping purposes or the actual application to be
contained in the delivered system. The actions of the application layer are based on
knowledge of the specific problem domain.

2.2 Shared Database

Serpent provides an active database model to support the user interface portion of a system.
In an active database, multiple processes are allowed to access and to update the database.
Any changes made to the database by a particular process are then propagated to the other
processes using the database. This active database is shared by the application and the
toolkits and is managed by the dialogue manager. Both applications and toolkits can add,
modify, query, or remove data from the shared database.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 7

Overview

Information in the shared database may be updated by either the application or by a toolkit.
Figure 2-2 illustrates the use of the shared database in Serpent. As this figure and Figure 2-

1 show, multiple toolkits can run concurrently with Serpent.

Athe: - Widget

Application T

application techpj(
shared data IShared data

local

data

dialogue layer

Figure 2-2 Shared Database

Serpent allows the specification, in the dialogue, of constraints between data items in the
shared database. These constraints define a mapping between application data and toolkit
data. The dialogue manager enforces these constraints by operating on the information

stored in the shared database until the dependencies are met. Changes are then propagated
to either the application or the toolkits, as appropriate. (See Serpent: Slang Reference

Manual for a further discussion.)

The type and structure of information that can be maintained in the shared database is

defined externally in a shared data definition file. This corresponds to the database concept
of a schema. A shared data definition (sdd) file is required for each application and for each
toolkit.

8 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Overview

The shared data definition for a toolkit describes a set of data structures that are available
to the user interface designer. (Within Serpent, the user interface designer is more
specifically referred to as the dialogue designer or dialogue specifier, as the user interface
is specified via a dialogue). Each data structure within a toolkit sdd represents an object
template. The dialogue designer thus has a choice of object types from which to implement
a particular user interface.

Running a toolkit sdd file through the Saddle processor generates a C header file or Ada
package. Another file, called an illfile, is also generated and is included into a dialogue that
uses the particular toolkit. These files are logically equivalent but exist in different forms
for better Serpent system performance.

A shared data definition file consists of a set of aggregate (record) data structures. Any data
contained within an element are known as components and are considered part of the shared
data element. (This corresponds to the database concept of fields within records.) Serpent
does not allow nesting of records. (Further details about the specification of shared data
definitions may be found in Serpent: Saddle User's Guide.)

The record structures in the sdd file are actually templates. During a Serpent run, the
templates are used to make shared data instances that are also referred to as objects. Each
shared data instance is identified by a unique ID. IDs must be maintained by the toolkit-to
-Serpent integration code in order to map between the shared data instances (objects) and
the toolkit widgets. The dialogue manager communicates with the integration code in terms
of objects, and the toolkit communicates with the integration code in terms of widgets. This
is discussed further in Chapter 4.

2.3 Inter-Process Communication

Since the dialogue manager, the application, and any toolkits participating in a particular
execution of Serpent are separate system processes which use the shared database, they can
potentially modify the database concurrently, possibly compromising the integrity of the
database. This problem is solved in Serpent through the use of database concurrency
control techniques. Updates to the Serpent shared database are packaged in transactions.
Transactions are collections of updates to the shared database that are logically processed
at one time. Transactions can be started, committed, or aborted. A transaction which has
been started but neither committed nor aborted yet is said to be open. Multiple transactions
may be open at the same time. Committing a transaction causes the updates to be made to
the shared database. Aborting a transaction causes termination of the transaction without
any update of the shared database.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 9

Overview

Communication between the dialogue manager and a toolkit may be accomplished
synchronously or asynchronously. Asynchronous communication is usually necessary
because toolkits must respond to multiple event sources, i.e., both user interactions and

dialogue communication via transactions.

The actual physical interaction between processes is via the system-shared memory facility,
which differs from Serpent shared data. Shared memory is merely a communication

mechanism and is transient, while shared data is persistent within any execution of the
Serpent system. The toolkit integrator need not worry about the physical shared memory

facility.

2.4 Toolkit Integration into Serpent

Integrating a new toolkit into Serpent requires performing the following tasks:

1. Define the toolkit capabilities that are to be visible to the dialog'ie specifier
and cast these capabilities in terms of objects. [NOTE: The term object in this
paragraph refers to generic objects.] Many toolkits already provide a "view"
of their capabilities in an object orientation; others present their abilities as a
set of functions which can be performed on sets of entities; still others provide
a mix of these two. For example, the Athena widget set is essentially a set of
objects (widgets), which have certain attributes and predefmed behaviors,
whereas the SIGGRAPH CORE standard provides segments (akin to objects,
although not in the classic sense) and a large set of commaL-Is to manipulate
segments and other graphical entities which may or may not be contained
within segments. As will be seen later, there is nothing which precludes a
CORE implementation from being integrated into Serpent. Note, however,
that the "object orientation" of Serpent can influence the amount of effort
necessary to integrate a toolkit into Serpent. A fairly low-level toolkit that is
not based on an object-oriented mechanism, such as one based on CORE,
would take more effort to integrate because it would first have to be
"objectified."

2. Define the entities determined in the previous step as a set of Serpent shared data

elements. The combination of this task and the previous task is referred to collectively
as interface definition, which is covered more extensively in Chapter 4.

3. Define and code a mapping among Serpent shared data instances (objects). This

mapping is implied by the shared data definition created in the previous step and the
actual toolkit entities (widgets) to be used to "implement" the Serpent objects.

10 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Overview

4. Code the toolkit-to-Serpent transaction mechanism interface. This is the mechanism
for communicating with the dialogue manager as defined in the Application
Deeloper's Guide. Note that although Serpent provides both synchronous and
asynchronous communication mechanisms, the toolkit integrator would probably use
the asynchronous form because the toolkit must usually be free to respond to user
input. More details about this and the previous task are given in Chapter 4.

It is assumed that the mechanisms for interaction between the toolkit and the end user exist
and are well understood by the integrator; these concepts are toolkit-specific and are not
addressed here.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 11

Overview

12 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Interface Definition

3 Interface Definition
This chapter describes how to define the data interface between Serpent and the toolkit that

is to be integrated.

3.1 Toolkit Selection

As discussed in Chapter 2, the Serpent toolkit integration paradigm requires that the
dialogue manager view the binding to a toolkit as a set of objects. Each object is made up

of a set of attributes that describe its physical appearance and possibly its valid user
interactions. Three key points are important to consider when selecting a toolkit for
integrati, intc Serpent:

1. The toolkit capabilities must be able to be cast as a set of objects. All toolkits
have a set of entities and functions that can be performed on those entities.
However, some toolkits provide a higher abstract level of entities than others.
For example, defining a command button in CORE requires describing a
rectangular polyline and a bounding box with the same dimensions. The end
user feedback mechanism would also have to be defined, and a segment
subroutine would have to be written and invoked to handle the button
selection. On the other hand, the Athena command button already provides
most of these attributes.

2. All of the toolkit's capabilities should be exposed to t'.e dialogue specifier, at least as
a first cut at the toolkit integration process. Remember, this effort is not to provide a

specific user interface, but to give the dialogue designer a pool of capabilities from
which to draw. It will be much easier to do this with an object-oriented toolkit than
with one that is functionally oriented.

3. As with virtually any programming activity, tradeoffs must be made between the level
offunctionality and implementation ease. While CORE is much more flexible than the
Athena widget set, CORE would be much more difficult to integrate into Serpent for
reasons which have already been discussed.

3.2 Serpent Object Definition

The first task of integrating a toolkit is to abstract its capabilities in terms of Serpent objects,

or more specifically, Serpent shared data templates. These templates serve as the interface
between the toolkit binding code and Serpent, as well as define a pool of resources available
to the dialogue designer. NOTE: The terms shared data, shared data element, Serpent
object, and shared data instance are used interchangeably in this document.17

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 13

Interface Definition

An interaction object has two parts:

" a set of attributes, which describe the physical appearance of the object, and

" a set of methods, which describe the set of behaviors the object can exhibit.

3.2.1 Object Attributes

Attributes, as mentioned above, are used to define the physical appearance and behavior of
an object. There are three classes of attributes:

1. Direct attributes. These Serpent object attributes usually rv.lp directly onto
toolkit widget attributes. For example, the Athena command widget has
attributes that define the x and y location of the widget; the colors of the
background, foreground (text), and border; the thickness of the border; and the
like. Setting one of these attributes to a particular value has an obvious effect,
e.g., setting the foreground color to red causes the text label to be red.

2. Indirect attributes. There is another class of attributes whose settings may not produce
obvious results. For example, setting the attribute which controls command widget
sensitivity to false causes the text label in the widget to become gray or otherwise
changed in color (depending on the characteristics of the screen).

3. Command attributes. Finally, there is a third class of attributes which can be used for
changing the object's behavior or for otherwise downloading information about that
object to the toolkit. This type of attribute produces no immediate visible results. For
example, in the Athena text widget, a large set of actions is tied to specific keystroke
sequences, e.g., the return key, by default, causes a carriage return code to be sent to
the widget, followed by a line feed. These defaults can be changed to generate
different codes, although changing one causes no visible results at all until that key

sequence is entered.

Again, in any toolkit there is a set of widgets which can be manipulated in some way (see
Section 3.1). In general, mapping toolkit widgets, be they Athena widgets or CORE
segments, into Serpent objects is the most natural approach to defining the interface
between the toolkit and Serpent.

14 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Interface Definition

3.2.2 Object Methods

A method, in its simplest sense, is a particular value returned by the toolkit binding code to

the dialogue manager when a corresponding particular condition occurs with respect to a

given widget. What this means is that if a given action is taken on a widget, such as

selecting a command widget, a corresponding value is returned which signifies that the

action has taken place within the scope of the Serpent object corresponding to that

command widget.

It is important to note that a method is treated as a special, well-known attribute by Serpent;

i.e., any object description for which operator interaction is defined must have an attribute

called method. All information passed between methods must take the form of a string,

and the defined length of the method must be sufficient to handle the longest string that may

be passed.

For example, there is a Serpent object named xawcommand which corresponds to the
Athena command widget (see Example 3-1). Among the attributes of xawcommand is one

named method, defined as a string of length 50. One of the values that this method can

assume is "select," which signifies that the command widget corresponding to an
xawconmand Serpent object has been clicked once by the system operator.

3.2.3 Object Semantics

Inherent in the task of defining an interface description is ensuring that the semantics of the

data values that are passed between the dialogue manager and the toolkit binding code are
well understood. Careful attention vhould be paid to ensure that the toolkit integrator and

the dialogue designer(s) who will use the integrated toolkit agree on what happens when a
particular attribute value is set.

In the command widget example given above, the semantics of setting sensitive to

false are that the color of the label text is gray or otherwise altered. If there is a simple one-

to-one mapping betwcen the sensitive attribute of the command widget and the sensitive

attribute of the xawcommand object, these semantics are the same whether one is using
Serpent or programming directly in the Athena toolkit. Defined Serpent objects should

follow the same semantics as their toolkit widget counterparts for two reasons:

1. Using the same semantics exposes all of the capabilities of the toolkit widgets,
so that anyone using Serpent to manipulate those entities can count on the
entities' behavior to be the same as when directly programmed in the toolkit.

2. Using the same semantics makes the initial adoption of the widgets easier. A new set

of semantics need not be invented and implemented on top of the toolkit semantics.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 15

Interface Definition

3.3 Shared Data Definition

Once the interface has been defined in terms of objects, their attributes, and their methods,

the next step is to cast the interface in the form of a shared data definition, or simply, sdd.

Example 3-1, taken from the sdd file for the Athena widget set, is written in Saddle and

shows the Serpent object that is mapped to the Athena command widget (see Serpent:

Saddle User's Guide for a complete description of the syntax).

xawcormand: record

metho-d string[50];

parent id;

back -ru' string[80];

backgrou ndpinap buffer;

bItmap buffer;

font buffer;

string[807;

height integer;

justify integer;

label bufftr;

width integer;

X :integer;

y integer;
bottom integer;

fromhoriz id;

fromvert id;

horizdistance integer;

left integer;

resizable boolean;

right integer;

top integer;

vertdistance integer;

end record;

Example 3-1 Example Serpent Object: The Athena Command Widget Implementation

16 Serpent Guide to Adding Toolkits (CMUISEI-91 -UG-8)

Interface Definition

Some of the attributes of this Serpent object are direct, like x, y, width, and

foreground_color, while others fall into the category of indirect, such as sensitive. Still

others are command attributes, such as resizable (whether or not the widget is allowed to

be resized), font, and justify (left, center, or right justification). Note the method attribute,

which is used for passing end user indications from the command widget to the dialogue

manager.

A perusal of the command widget section in the Athena widget documentation will show

that, with the exception of the method attribute, these attributes correspond almost

directly to their counterparts in the original widget description.

3.3.1 Creating an SDD File

A complete sdd file consists of three parts: the invocation command, the shared data block,

and element declarations. Example 3-2 shows another excerpt from the Serpent object set

that implements the Athena widget set: the excerpt contains all of the major parts of an sdd

file, but most of the objects are left out for brevity.

<< saw >>

saw : shared data

xawcommand: record
parent : id;
x : integer;

y : integer;

method string [50];

end record;

end shared data;

Example -3-z SDD File Major Paris

Anything between double angle brackets (<< >>) is treated as the invocation command,

i.e., the command necessary to invoke the integrated toolkit. This command is used by the

dialogue manager to start the toolkit as an independent UNIX process. In this case, the

name of the program that runs Athena Toolkit and the Serpent binding is saw.

The end of Chapter 4 goes into more detail about executing toolkits.

Serpent: Guide to Adding Toolkitz. (CMU/SEI-91-UG-8) 17

Interface Definition

The shared data statement and the corresponding end shared data statement

constitute the shared data block, which delineates the declarations that are relevant to this
toolkit. Any name for the shared data block is valid, as long as it is comprised of less than

33 alphanumeric characters and underscore; this is also true of any other user-supplied

name in Saddle.

The rest of the file comprises the element declarations. These serve as templates from which

Serpent objects will be instantiated at runtime. Proceed by encoding each defined object

abstraction into an sdd element declaration (see the Serpent: Saddle User's Guide for the

complete syntax).

Each record description must be in the form of a flat record, i.e., a record cannot be

contained within another record. Comments, begun with an exclamation point, and ended

with an end-of-line, can appear after any semi-colon. C style comments (started with / and

ended with /) are allowed anywhere.

3.3.2 Processing the SDD File

Once the sdd file has been built, execute it with the sdd command. Assuming the file to be

processed is called tool.sdd (all sdd files must have the extension.sdd): if you plan to

integrate the toolkit using C, use the command

sdd tool.sdd

Otherwise, if you plan to integrate the toolkit using Ada, use the command

sdd -a tool.sdd

In either case, the extension (.sdd) is optional.

If there are no errors, Saddle prints a success message. Otherwise, Saddle prints an error

message, usually because there is a syntax error or because an element name or a

component name within an element is used twice. Serpent: Saddle User's Guide describes

the possible errors and how to correct them.

Running the Saddle processor has several outcomes. A C header file (or Ada package

specification file) is created in which all the sdd element declarations are converted into
their equivalents in the C (or Ada) language. This file can then be included (or WITHed)

by the interface binding code (see Chapter 4). Finally, another file is created, similar to the

C or Ada file, except that the declarations are written in an internal Serpent format called
ILL (for Interface Layer Language).

18 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Interface Definition

Note: All output files are written to the directory containing the source files. Serpent looks

in the environment variable SERPENT ILLPATH for the directories in which to find ILL

files. Append the name of the directory containing the ILL files to this environment variable

during development.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 19

Interface Definition

20 Serpent: Guide to Ad~ing Toolkits (CMU/SEI-91-UG-8)

Interface Binding Development

4 Interface Binding Development
This chapter describes how to code the toolkit binding program, which must provide:

" a map between Serpent objects and the particular toolkit's widgets

" an interface with the Serpent application developer's library

A detailed description of the development process for writing the mapping in C is provided.
A description of the use of Ada within Serpent can be found in Serpent: Ada Application
Developer's Guide.

4.1 C Language Development

Example 4-1 shows an excerpt from the C header file generated by the Saddle processor
from the sdd file in Section 3.2. The first two lines in the example define two constants used
by the Serpent runtime environment. The typedef corresponds to the record defined for
the formwidget in the sdd file. Note that method is defined as char [51]; an extra
byte is always added to the length of the Saddle string to provide for the null terminator
('N) required by C strings.

#define MAILBOX "TESTBOX"
#define ILLFILE "test ill"

typedef struct{

id-typeparent; /* (no element pointer) */

int x;
int y;

char method (51);

xawcommand;

Example 4-1 Example C Header File

This header file serves as the C description of the interface between Serpent and the toolkit
binding code. It must be included in any program component intended for accessing the
Serpent objects (shared data instances).

Serpent: Guide to Adding Toolkits (CMU/SEI-91 -UG-8) 21

Interface Binding Development

The following sections detail the code required to perform the various functions used within
the context of Serpent.

4.1.1 Useful C Routines

A package of useful C routines within the Serpent system is available to the toolkit

integrator. This support package is included with the Serpent system and implements some
more commonly used data structures, including lists, hash tables, and stacks. The package

also implements a mechanism for allocating general-purpose memory; the mechanism is

used throughout the Serpent system and is more efficient than malloc. A complete

description of this package can be found in docs/toolbox.ps within the Serpent file area.

The Serpent mechanism for sharing data also provides a set of routines for manipulating
shared data and transactions. These routines are described in Serpent: C Application
Developer's Guide.

4.1.2 Shared vs. Local Process Data

The term shared data is somewhat misleading. The data is not shared physically among
processes, only logically. The Serpent transaction mechanism is used to pass the data

between processes. If a toolkit binding requires that the shared data be persistent within the
process (as it will in most cases), the binding process must allocate local process space for
the data and copy the shared data from the transaction. When a data modification comes
through a transaction, the toolkit binding must also have a way of associating the id of the
modified data with the process local storage. The same is also true for removes via a
transaction. The examples that follow use a simple hash table; see Section 4.1.1 to associate
shared data ids with the corresponding process data space. A mechanism for mapping a
shared data id to any dataspace handle1 that is necessary for actual toolkit widgets would
probably also be necessary but is not included here because of toolkit dependence.
However, the id-to-data space hash mechanism for the Motif and Athena widget sets have

been used successfully. (Two hash tables were actually used, since the mapping has to go
both ways: shared data id to toolkit widget and vice versa.)

4.1.3 Initializing Toolkit to Serpent Interface

The first thing that must be done by the toolkit binding is to initialize the Serpent runtime

support environment. Example 4-2 shows the code necessary to perform this operation.

.A dataspace handle is a pointer to a specific data structure defining the layout of the widget.

22 Serpent: Guide to Adding Toolkits (CMU/SPI-91-UG-8)

Interface Binding Development

The header file serpent. h exposes all of the global Serpent routines and types. Assuming
the name of the toolkit sdd file is tool.sdd, the resultant header file would be named tool.h.

#include "serpent.h" /* serpent interface definition */

#include "tool.h" /* toolkit sdd */

main ()

serpent_init (MAILBOX, ILLFILE); /* register this

toolkit */

/* here would go any toolkit initialization

procedures */

/* main loop processing, described later */

Example 4-2 Serpent Initialization in C

Note: For detailed descriptions of all of the Serpent C routines and types, refer to the

Serpent: C Application Developer's Guide.

4.1.4 Main Loop

Once the Serpent support environment and the toolkit have been initialized, the toolkit

binding code will typically begin an infinite loop that performs two main actions: getting
shared data transaction variables from the dialogue manager and reacting to any
events from the toolkit proper. The events and possible reactions depend upon the toolkit,
and therefore are not described here. (See the appropriate toolkit documentation for this
implementation.)

Data retrievals can occur synchronously or asynchronously. The more common,

asynchronous transactions, are exemplified in Example 4-3:

#include 'serpent.hw
#include "tool.h'

transactiontype transaction;
id_type id;

Serpent: Guide to Adding Toolkiu (CMU/SEI-91-UG-8) 23

Interface Binding Development

while (true)
{

transaction = gettransaction no wait 0;

/* get the handle asynchronously */

if (transaction != notavailable) /* Serpent constant */
f

id = get_first changed element (transaction);
while (id != null id)

/* process the element */

id = get_next_changed-element (transaction);

purgetransaction (transaction);

/* do any necessary toolkit specific processing */

Example 4-3 Serpent Asynchronous Shared Data Retrieval in C

In Example 4-3, the t r an s act ion variable is used as the handle to the transaction, while

the id variable is used to access each of the elements in the transaction, one at a time. As

mentioned previously, the toolkit binding views the Serpent dialogue manager as an active

database manager. Thus, any time toolkit shared data is created, modified, or deleted by the
dialogue manager, the toolkit binding is automatically informed via a database transaction.
The gett rans act ion no wait routine returns immediately, regardless of whether

or not there is a transaction. If there is no transaction, it returns not available,

allowing the toolkit binding program to perform necessary functionality, e.g., responding

to toolkit specific stimuli (mouse clicks, etc.) through whatever mechanism is appropriate
for the toolkit. If there is a transaction, get transaction no wait returns the next
unprocessed transaction.

The routines get_firstchanged element and
get_next_changed_e lement return the value nullid if theendof thetransaction

is reached. After processing the entire transaction, purge_t rans act i on should be
called to free resources. Finally, as is normal in event processing systems, an infinite loop
is placed around the entire process.

Note: This looping mechanism tends to use valuable computing cycles; see Section 4.1.8
for a better mechanism.

24 Serpent: Guide to Addng Toolkits (CMU/SEI-91-UG-8)

Interface Binding Development

4.1.5 Using Retrieved Shared Data

After retrieval, data can be processed to determine its element type and the change type.

The previous section discusses one method of determining whether or not an element in a

transaction is of change type new. The other method is to examine changetype to

determine whether the element is newly created, modified, or deleted. Example 4-4 shows
how to obtain the element name and change type. (This example does not include the

computation of the variables from the previous example; it essentially replaces the

commentlabeled /* process the changes */]).

change type change; /* Serpent enumeration */
string elementname; /* name (type) of each element */

int size; /* size of the element */

caddr t addr; /* pointer to local element data */

change = get_change_type (transaction, id);

elemeat name = get elementname (transaction, id);

Example 4-4 Getting the Element Name and Change Type in C

The type change type is an ,..euwration of whether the element is new, modified, or

deleted (with values create, modify, and remove, respectively). The type

element name is a string indicating the type of the element. In example Example 4-4, if
the string xawcorrmand were sent in a transaction, the value returned from
getelementname would be xawcommand.

It is usually necessary to maintain a correlation between an element's id and the curent data
in local process memory associated with the id. In this example, it is assumed that the local
process data address of each element is maintained as a local hash table indexed by the
element id. If the element is new, space must be allocated for a local copy. The routine

get_length returns the amount of space to allocate, and make_n ode actually allocates
the space. The call to the routine add to hasht able is used to correlate the element
id with the allocated space that will hold the element data. Other routines remove entries

from hash tables and remove the memory allocated by makenode to handle shared data
remove actions. The routine get_fr omhasht able returns a pointer to the local copy

of the element that corresponds to the id.

Note: The routine makenode and the hash table routines are part of the support package
mentioned in Section 4.1.1. The routine get_length is part of the Serpent interface
package for sharing data.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 25

Interface Binding Development

The next three subsections illustrate how to process the data based on whether the element

is new, modified, or deleted.

4.1.5.1 Element Creation

Example 4-5 shows how to process a newly created element. Bear in mind that there may

be processing specific to the toolkit that must be performed when creating a toolkit widget

corresponding to the specific Serpent object.

LIST changelist; /* list of changed element

values */

LIST component_list;/* current component

(attribute) */

caddr t addr; /* ptr to local copy of data */

string component_name;

switch (change)

case create: /* Serpent constant of type

change type */

/* any toolkit specific processing */

size = getlength (elementname);

addr = (caddr t) make node (size);

add to hashtable (idtable, id, addr);

incorporate_changes (transaction, id, addr);

changelist =

createchanged_component_list (id);

componentname =

get_list_next (change_list, NULL);
while (componentname != NULL) /*loop through the

component= */
{
/* any component specific processing */
componentname = getlistnext

(change_list, component_name);

/* any toolkit specific processing */
destroychangedcomponent_list (change_list);
break;

Example 4-5 Processing New Elements in C

26 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Interface Binding Development

The LI ST type is a pointer to the list structure provided in the previously mentioned

support package for data structures. Space for the shared data is first allocated in process
memory and a mapping between the id and the address of that space is added to a hash table.
The incorporatechanges routine updates the local copy of the element associated
with the id. The routine createchangedcomponent list returns a pointer to a
list of all components in the element that have been changed.

Note: Attributes that are not set specifically in the dialogue have a default setting of

undefined. (See Section 4.1.8 for further discussion.)

The routine get list next returns a pointer to the next item in the list. (When called
with an initial value of Null, getlistnext returns the first item on the list). In

this case, as the name of each component is retrieved from the list, the component is
processed (usually in some toolkit-specific way) to set a toolkit value. When

getlist next returns a value of NULL, it is because the end of the list has been

reached.

After processing each component, further toolkit-specific processing (such as the actual

creation of the toolkit widget corresponding to the Serpent object being processed) may
occur, after which destroy_changed_componentlist should be called to free
resources.

4.1.5.2 Element Modification

Processing modified elements, depicted in the following example, is similar to processing
new elements in terms of the Serpent mechanisms used. The major difference between

creating an element and modifying one is that it is not necessary to allocate space for the
data nor to set up a mapping between that space and the element id. When an element is
modified, the space previously allocated for it is available through the id. Any toolkit-

specific processing would probably be to reflect the changed Serpent object attributes in the
corresponding toolkit widget attributes.

LIST change_list; /* list of changed element values */
LIST componentlist; /* current component (attribute) */
caddrt addr; /* ptr to local copy of data */
string component_name;

switch (change)

case modify: /* Serpent constant of type change-type*/

/* any toolkit specific processing */

addr - (caddrt) getfrom hashtable (idtable, id);

Serpent: Guide to Adding Toolkits (CMUISEI-91-UG-8) 27

Interface Binding Development

incorporatechanges (transaction, id, addr);

change-list =

create_changed_componentlist (id);

componentname =

get list-next (change_list, NULL);

while (componentname != NULL) /* loop through the

components */

/* any component specific processing */

c omponentname = get_listnext (change_list,

componentname);

/* any toolkit specific processing */

destroy_changed component_list (change_list);

break;

Example 4-6 Processing Modified Elements in C

4.1.5.3 Element Deletion

Example 4-7 illustrates the processing of deleted elements. The routine freenode frees

space created for the local copy of the object and remove_from.hashtable deletes
the entry associated with id from the hash table. Toolkit-specific processing might include
deleting the toolkit widget corresponding to the Serpent object/element being deleted.

caddr t addr;

case remove:

addr = (caddrt) get_fromhashtable

(id table, id);

free-node (addr);

removefromhashtable (idtable, id);

/* toolkit specific processing */

break;

Example 4-7 Processing Deleted Elements in C

28 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Interface Binding Development

4.1.6 Modifying Shared Data

Conceptually the opposite of retrieval, updating shared data communicates information

from the toolkit binding to the dialogue manager. Recall that the dialogue manager is

viewed by the toolkit binding as an active database manager. In keeping with that model,
Example 4-8 details the process of starting a transaction, adding data, and committing the

transaction.

transaction_type transaction;

idtype id, ida, id b;
string element-name,

component_name;

caddr t data;

transaction = start-transaction);

id = add shared data (transaction, element name,

componentname, data);

put_shareddata (transaction, id_b, elementname,

component_name, data);

removeshareddata (transaction, elementname, id a);

commit transaction (transaction);

Example 4-8 Updating Shared Data in C

The routine start_t ransaction storts the transa'ion. returning a handle to the newly
opened transaction. The addshareddata routine creates new shared data, allocates

space for it in the transaction, sets the attribute named by componentname to the value

pointed to by dat a, and returns the id of the new shared data instance. If

componentname is set to NULL, data is assumed to point to an entire element

structure. If componentname and data are both set to NULL, add-shareddata

simply allocates the space without setting any values.

The routine put_shareddata works similarly to add_shareddata, except that it

assumes that id already points to an allocated element. This routine is always used for

modifying one or more attributes in an existing element, so it is especially useful for setting

a method.

Toolkits need to be able to remove an object from shared data directly. The routine

removeshareddata simply deletes the object associated with the id of type

element name from the shared database.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 29

Interface Binding Development

Finally, the routine commit_transaction sends all updates to the dialogue manager,

which atomically performs the actual actions.

Note: Do NOT purge the transaction because the routine purge_transaction frees

the space in shared memory where the transaction temporarily resides while it waits to
fetch. The function of the routine purge_transaction is used only by transaction

receivers. Note that a transaction can have any combination of adds, modifies, and removes.

4.1.7 Terminating Toolkit-to-Serpent Interface

Before ending toolkit processing, the toolkit should terminate the toolkit-to-Serpent

interface so that no further transaction activity between Serpent and the toolkit can occur.

Termination of this interface is illustrated in Example 4-9:

main ()

serpent_cleanup ()

Example 4-9 Serpent Termination in C

4.1.8 Helpful Hints

This section offers some hints for improving toolkit integration.

4.1.8.1 Efficient Looping Through Events

Section 4.1.4 describes a looping mechanism by which Serpent transactions can be
interleaved with toolkit-specific events. Including a sleep statement in the main loop
improves performance in the execution of Serpent dialogues. However, the sleep statement

should be no longer than 100 msec; longer sleep causes the toolkit and Serpent to act

sluggishly.

4.1.8.2 Undefined Values

All attributes that are not explicitly set by either the dialogue manager or the toolkit (see

Section 4.1.5.1) are given default values. The following table presents these default values
and the names (contained in a file named serpent.h) for use within any C code.

30 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Interface Binding Development

TYPE DEFAULT VALUE C TYPE
boolean UNDEFINEDBOOLEAN boolean
integer UNDEFINED_INTEGER int
real UNDEFINEDREAL double
string UNDEFINEDSTRING string
id UNIDEFINED_ID id-type
buffer UNDEFINED_BUFFER_BODY caddrt

UNDEFINED_BUFFERLENGTH int

Note:

1. boolean, string, id_type, and buffer are all defined Serpent
types.

2. When checking for a default buffer value, it is best to check the value of its length.

3. For more information about Serpent component types. see the Saddle User's Guide.

4.1.8.3 Linking

Linking the toolkit binding requires the use of various libraries, some of which may be
toolkit-specific (see the appropriate toolkit documentation). The Serpent libraries that are
needed are libint. a, liblist.a, and libutl a, al of which are in the lib

directory of the Serpent file area.

4.2 Execution

To execute the toolkit under Serpent, regardless of the implementation language:

1. Make sure that the invocation command in the sdd file is correct.

2. Append the location (directory) of the resultant.ill file (output from Saddle) to the

SERPENTDATAPATH environment variable.

3. Append the location of the executable binding program to the SERPENTEXE PA7"H

environment variable.

Once these actions have been performed, the new toolkit can be accessed with the
statement: #include "tool. ill".

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 31

Interface Binding Development

32 Serpemi: Guide to Adding Toolkits (CMU/SEI-91-UG -8)

Glue

Appendix A Glue

Two tools, Glue and Six, are available to help with the integration of Xt-based toolkits.

Glue is a language for defining toolkit widgets so that the addition of widgets to Serpent is

simplified. Six is a generic Serpent-to-Xt driver that converts the runtime tables produced

by Glue into calls to Xt. These tables can also be used by the Serpent dialogue editor to
automate the process of adding widgets to a toolkit-to-Serpent binding.

A.1 What Is Glue?

Serpent provides facilities for interactively constructing user interfaces and then
dynamically managing the resulting interface at runtime. A requirement of Serpent is that
instances of widget classes must be described in enough detail to be visualized and
modified during the construction of the interface both through direct manipulation and
property sheets.

To make the repetitive process of adding new Xt-based widget classes easier, Glue uses a
widget description to create tables and routines that control the runtime execution of the

widget. The tables are read by Six, an Xt-based driver program, which controls the runtime

creation, modification, and deletion of widgets. (See Appendix D for a description of Six.
The generated tables can also drive other applications, including the dialogue editor (used

to create dialogues that specify widgets and their interactions).

Because Six and the dialogue editor are table driven, they can capitalize on the large

amounts of redundancy in a widget set. Consequently, adding a widget that uses existing
data types to Serpent takes approximately half an hour. If new data types are needed, the
integration time is longer, but still fairly short.

In addition, Glue and Six allow limited subclassing of existing widgets and specification
of runtime defaults. This allows different users to have different default sets for a
particular widget set. Glue also allows for widget-specific "escape" routines and for
defiiing special actions or error checking.

A.2 Glue Syntax

This section describes the syntax and semantics of the Glue language, and provides
examples of its use.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 33

Glue

The Glue language consists of four types of components, all of which may be freely
intermingled in a Glue description:

1. String definitions

2. Global variables

3. Equivalence types

4. Widget descriptions

Example A-I shows a simple Glue description for an imaginary toolkit. Explanations of
the components in this description are given in the remainder of this section.

#include 'glueXt.h"

Saddle conmnand = "six test";/* Global variables */
description = "This is a simple example";

Boolean : boolean; /* Equivalence types */

Position: integer;
Pixel string[80];

thing widget { /* Widget descriptions */
description = "This is a thing widget description";

class = XtThing;
include file = "Xt/thing.h";
attributes =

"allow user-move":

x_type = Boolean;
serpent_default - false;

access = !technology;
}

XtNx
x_type = Position;

serpent_default = 10;
description - "X location";

XtNforeground

serpentname = "foregroundcolor';
x_type = Pixel;
)

I;

methods =

move :

34 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Glue

parameters = XtNx, "allow user move";

1;
1;

Example A-1 Simple Glue Description

Processing a description file generates at least two output files, the Saddle and toolkit files.
Two optional output files, the methods and binding files, are also generated.

1. Saddle file. This file contains the Saddle description of the toolkit. The file must be
compiled into an .ill file for use by the Serpent compiler before the toolkit can be
used in any dialogue specification.

2. Toolkitfile. This file is used by both Six and the dialogue editor. The toolkit file
contains all of the information of the Glue specification, but is in a binary format for
quick scanning.

3. Methods file. This optionally generated file contains the C routine stubs necessary for
implementing the Slang method routines.

4. Binding file. This optionally generated file contains the C language bindings to X that
allow the methods code to be executed. It also contains special routine handles for
check routines and X callback routines specified by the toolkit integrator.

The default file name extension for a Glue description file is .gl; for the generated Saddle
file, .sdd; for the generated toolkit file, .tx. Thus, for a Glue description file named motif.gl,
the Saddle file would be motif . sdd, and the toolkit file would be motif . tx. If the toolkit
integrator specified that the methods and binding files should also be generated, they would
be called mot i f_met h. c and mot i f_bind. c respectively. See Sections A.3 and A.4 for
more details on the command-line switches and generated output files.

A.2.1 Compiler Basics

Most of the basics of the Glue compiler will be familiar to users of the C programming
language. With very few exceptions, the fundamentals of Glue are common to most
programming languages.

A.2.1.1 Comments

Comments in Glue follow the standard C syntax. Specifically, comments start with
the characters /* and end with the characters */. You cannot nest comments. For
example, the following is treated as one comment: /* This is /* a single

comment */

Serpent: Guide to Adding Toolkits (CMUISEI-91-UG-8) 35

Glue

A.2.1.2 Preprocessor

Before the Glue compiler begins parsing, the Glue source code is passed through the
standard C preprocessor (/ ib/ cpp). This means that the Glue source file may contain the
standard preprocessor directives, namely:

#define #undef

#ifndef #ifndef

#else #endif

#if

A.2.1.3 CaseInsensitivity

Unlike C, the Glue compiler is mostly case insensitive. Specifically, keywords to Glue may
be specified in upper, lower, or mixed case. Where values need to be passed to the toolkit
or the generated C files, the case in the Glue file will be preserved (e.g., quoted text has the
case of the text preserved).

A.2.1.4 DataTypes

Glue recognizes basic data types:

" integer

• boolean

" real

• string

" C identifier

These types are assigned to various components of a Glue description. The following
sections outline the representations of these data types.

A.2.1.5 Integers

Integer values in Glue are represented as the sequence of the digits 0 through 9. No special
recognition is made for octal numbers (in this respect, Glue differs from C syntax).
However, any number preceded by the characters Ox or OX is considered to be a
hexadecimal constant.

36 Serpent: Guide to Adding Toolkits (CMU/SEI-9I-UG-8)

Glue

A.2.1.6 Boolean

Boolean values in Glue are represented by the two special tokens true and false. In

keeping with Glue convention, the two special tokens may be entered with any

capitalization. Thus, the tokens true, True, TRUE, and tRuE are considered to be equal.

A.2.1.7 Reals

Real values are represented in Glue as any sequence of digits that include a decimal. The

use of an exponent value is not supported by the Glue compiler. The following are all

examples of real values in Glue:

2.71828 .625 98.

A.2.1.8 Strings

Strings in Glue are represented as a sequence of characters enclosed in quotation marks.

The Glue compiler allows special characters to be included in a string, provided they are
"escaped" in a manner similar to the C compiler. The following escape characters are

recognized by the Glue compiler:

\b Backspace

\f Formfeed

\n New line

\ r Carriage return
\t Horizontal tab

Vertical tab
\ \ Backslash

\-f Quotation mark
\f Apostrophe (for compatibility)
\ 0 Null (Using this is probably an error)

\nnn Any 1, 2, or 3 octal characters are interpreted as a single
character whose ascii code is nnn. Note that the strings
"\o5o8", "\508", and"(8" are equivalent.

\<newline> A backslash at the end of a line indicates that the end of line

is to be ignored. The character immediately after the end of
line is read as if it occurred at the location of the line-

terminating backslash.

Serpent- Guide to Adding Toolkits (CMU/SEI-91-UG-8) 37

Glue

A.2.1.9 C Identifiers

In some cases, the Glue compiler needs to pass the name of a C identifier to the generated
toolkit description. C identifiers are passed as unquoted sequences of upper and lower casc
letters, digits, and the underscore character (that is, the characters La-zA-Z 0- 9]). The
case of the characters representing a C identifier is preserved in the generated toolkit
description file.

A.2.2 String Definitions

Although technically only seen by the preprocessor, string definitions are an essential
component of a Glue description. In Example A- 1, the string definitions are contained in
the file glueXt. h and define the names XtNx, XtNforeground, etc. The name-to-string
mapping, which depends upon the toolkit, is defined by each widget set in a special C
include file.

Normally, an include file for a widget set resides in a toolkit-specific directory. This include
file often contains declarations of C external variables, typedefs, etc., which are unknown
by the Glue purser. To ameliorate this problem, a subset of the toolkit include file is usually
generated by the toolkit integrator with a simple Unix script. For the example in Example
A-l, the include file might be generated with the command:

grep "^#" /usr/include/Xll/Xt.h > glueXt.h

The resulting file contains only preprocessor commands (especially those defining string
equivalences) that can be safely used by Glue.

A.2.3 Global Variables

Global variables are optional variables that allow the toolkit integrator to modify general
parameters of Glue. A global variable takes a string as a modifier. The syntax of a global
variable declaration is:

globalvariable: variablename '=' stringvalue ';'

There are currently two global variables that can be set in Glue. They are:

description If set, this variable contains a description of the toolkit to
which this Glue file corresponds. An example of the use of
this variable is:

38 Serpent: Guide to Adding ToolkUts (CMU/SEI-9 1 -UG-8)

Glue

description = "Motif Glue Description";

saddlecommand If set, this variable contains the string that is passed into the
generated Saddle file as the command to be executed when

the toolkit is run. If, for example, the generated Saddle file
were to be umed with Six (the Xt interface driver), the use of
this variable would be:

Saddle command = 'six motif";

A.2.4 Equivalence Types

Equivalence types enable mapping various toolkit data types (i.e., X1I attribute and widget
types) to Serpent data types. The purpose is to allow the toolkit integrator to map toolkit
types into Serpent types so that Serpent will know how to interpret toolkit data.
Equivalence types are used in the widget description portion of a Glue description file (see
Section A.2.5 for details).

The syntax for an equivalence type specification is:

type_equiv: toolkit ":" serpenttype

serpenttype: lboolean"

I "buffer"
'integer'

'"integer" "+" 'procedure"

'real"

'string" I[" INTEGER ']"
I'%id"

The six Serpent types that may be used on the right-hand side of an equivalence type are:1

* boolean

" buffer

" integer

" real

" string

• id

" Although adi and undefined are legal Serpent types, they are not allowed in Glue.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 39

Glue

The string type is special in that it is mandatory to specify a string size; string szc :,-- the

number of characters reserved on the Serpent side of the interface to store the string. The
size of a string is represented as an integer enclosed in square braces following the word

strino.

The integer type is special in that it is used to maintain addresses. Under X, many
widgets have associated attributes that contain the address of a callback procedures list

(e.g., XrNdestroyCallback). Although there is no address type in Serpent, the address

of a callback list may be stored in a Serpent integer. To indicate to Glue that the integer

is used for a callback address (instead of simply a plain integer value), the annotation

+procedure is placed after the word integer, which changes the way in which Glue

generates the binding file. See Section A.3.4 for details.

Some examples of equivalence type specifications can be seen in Figure A-2.

Boolean boolean;

caddr t buffer;

Cardinal integer;

char string~l];

Screen integer;
Widget id;

WidgetList : BUFFER;

XtCallbackList : Integer+Procedure;

MethodName : string[50];

Figure A-2 Equivalence Type Examples

Note that the mapping is many-to-i; that is, more than one toolkit type may be equated to

a single Serpent type.

A.2.5 Widget Descriptions

This portion of a Glue description allows the toolkit integrator to enumerate the widgets
associated with a toolkit, along with the characteristics, attributes, and methods associated
with each widget.

A widget description consists of the name of the widget, followed by a list of widget
description components. The list of components should be enclosed in braces and the
components should be separated by semicolons; see Example A-3 for an example. The
name of the widget is the name that the toolkit integrator wants to be accessed in the Serpent
domain. In the toolkit domain, a widget is accessed by its handle (i.e., a pointer to a specific
data stnrcture defining the layout of the widget). In the Serpent domain, however, a widget

is accessed by its name--the name used in the Glue widget description.

40 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Glue

The syntax of a widget description component is:

component : componentname '=" value

The following is a list of all possible components of a widget description. The list of

components should be enclosed in braces and the components should be separated by

semicolons; see Example A-3. All components are optional:

attributes This component is a list of the attributes of a widget; the

attributes should be separated by semicolons and enclosed in

braces. More details on this widget description component

are covered in detail in Section A.2.5.1.

check-routine This component can be used to test the value of a widget

attribute to be sure that it is reasonable. For instance, the X

Toolkit allows the user to create a widget with a height and

width of zero. While this is legal from the Serpent standpoint,

it does not make any sense from a user interface standpoint.
The check routine can test for this condition.

The value of the check routine widget description

component is a C token, which is assumed to be the name of

a routine. References to this routine are contained in the

generated binding file, and the routine is automatically called

by Six when a widget of this type is created or modified. (The

toolkit integrator must supply the actual routine body,

however, before linking a new version of Six.)

class The value of class is the widget class; this value is specified

in the documentation for the particular widget type. For

example, in the Motif "Bulletin Board" widget, the class is

xmBulletinBoardWidgetClass.

The value of the class widget description component is a C

token. The name of this C token is placed into a special array

in the generated binding file, so that Six can access the actual

value of the widget class through the WIDG structure

described in Appendix A.5.1.3.

When this component is not specified, a warning statement
will be issued by the Glue compiler. Not specifying this

component is usually an error, so the compiler will call

attention to its absence.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 41

Glue

description This component describes the widget; its value is a quoted
string. This widget description component is optional, and is

typically used by the dialogue editor to provide help

information to the editor user. Glue does not interpret the

contents of this component at all--the toolkit integrator may

make the description as simple or complex as desired.

include-file The widget include file is the .h file that describes the

contents of the widget. This file will be #included in the
generated methods and binding files that Glue generates

from the description file.

The value of the includefile widget description

component is a quoted string containing the name of a file

that can be used in an #include statement.

When this component is not specified, a warning statement
will be issued by the Glue compiler. Not specifying this

component is usually an error, so the compier will call
attention to its absence.

methodu This component lists the methods of a widget; see Appendix
A.2.5.2 for details.

widgettype This component takes a token as its value. If this component

is not present in a widget description, the value , ldgct is

assumed.

The following are possible values:

• shell Indicates that the widget is a shell widget
(which may contain other widgets). One

example of this is the Motif

"TopLevelShell" widget. For more details

on what a shell widget is, consult the
appropriate toolkit documentation.

* override Indicates that the widget is an override shell

widget (which may contain other widgets, but

which bypasses the window manager) One

example of this is the Motif "MenuShell"

widget. For more details on what an override

shell widget is, consult your toolkit

documentation.
* widget Indicates that this is an ordinary widget. This

is the default value for this field.

42 Serpent: Guide to Adding Toolldts (CMU/SEI-91-UG-8)

Glue

none Indicates that this is not a true toolkit widget.
This mechanism is provided for creating a
new "widget" that functions outside or in

addition to the toolkit. One example of this is
the screen object in the Serpent-Motif
binding (smo), which allows the Slang user

to query the characteristics of the display
screen.

userdef This component is us to allow the specifier to communicate
with any application that reads the output of Glue. Its value
is a quoted string. This component is optional and is present
to provide some simple extensibility to the Glue interface.
Application programs may read the characters of this string
and interpret them "at whim" through the WIDG structure
described in Appendix A.5.1.3. Glue does not interpret the
contents of this component at all; thus, the toolkit integrator
may make its contents as simple or complex as desired.

A simple example of a widget description is shown in Example A-3.

Specimen {
include-file = "Xx/Saple.h";
c2 ss = =aSampleWidgetClass;
description = 'This is a sample widget";
attributes =

"parent"

xtype = Widget;
access = !technology, !set;

description " "This is poppa bear";
I

XmNhorizontalSpacing

x type = int;

serpent-default = 2;

usezdef = "IeH3err";
I

XmNrubberPositioning

x_type = Boolean;

serpent-name = "boing";

technology_default = true;

include "Part and.at"

include "Parcel.at"

methods =

select

Serpew: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 43

Glue

parameters = XmNhorizontalSpacing,

"boing";

description = "Click me";

c routine = select me;

include "move.me"

include "resize.me"

1;

Example A-3 Simple Example of a Widget Description

In this example, the name of the widget is Specimen; note that this name does not have

to be the same as the widget designer's name for the widget (in this case, Sampie). No
shell widget component is included, so the widget is assumed to not be a shell widget.
The details of the attributes and methods components are covered more fully in the

following sections.

A.2.5.1 Attributes

Each widget comprises a list of attributes, which may originate in the toolkit (e.g., the

position on the screen) or in Serpent (e.g., whether the user is allowed to move the widget
around on the screen). The attribute component of a widget description lists all of the
attributes of the widget along with their relevant characteristics. As can be seen in Example
A-3, the attributes are given as a list of optional components, separated by commas. Each

component consists of the name of the attribute (in the form of a quoted string), followed
by the characteristics of the attribute. In cases where a quoted string does not appear (as
with XmNhorizontalSpacing), a preprocessor macro has been defined that equates the

name to a string; for example:

#define XmNhorizontalSpacing "horizontalSpacing"

The characteristics of each attribute are specified as a list enclosed in braces and terminated
with a semicolon. When there are attributes common to multiple widgets, the use of

#include files is supported and encouraged. The complete list of attribute characteristics
is:

access Defines how the toolkit interface (Six) and the Slang
dialogues access the attribute. The value assigned to this

component is a list of access classes (separated by commas).
Possible access classes are:
all Specifies that all of the above accesses are

available to the attribute; all is the default
value if the access component is not included.

44 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Glue

" create Allows the attribute to be set at widget

creation.
" get Aaiows the value of this attribute to be

retrieved at any time.
" serpent Allows the Slang dialogue to access the

attribute. This access ,hould be present for all
attributes that the toolkit integrator wishes to
export to the dialogue. By not specifying
serpent access, the toolkit integrator can
hide some of the details of a widget from the
Serpent user.

* set Allows the value of this attribute to be written
at any time.

- technology Allows the toolkit to access the attribute. This
access should be present for all attributes
defined by the toolkit. (Note that in addition
to those in the toolkit widget, some attributes
are provided by Serpent. One example of this
is the allow user move attribute.
Attributes provided by Serpent should not be
accessed by the toolkit.)

Any of the components may be negated by preceding it with an exclamation mark. If only
positive access assertions are listed, Glue assumes that only those accesses are allowed. If
only negative access assertions are listed, Glue assumes that all accesses are allowed except
those listed. If both positive and negative assertions are listed, all access types must be
specified in either positive or negative form. The following three access lists are equivalent:

access = !technology, !set;
access = serpent, get, create;
access = serpent, !technology, get, !set, create;

One or both of the technology and serpent access types, and at least one of the
create, set, and get access types must be specified if the default value of all is not
used.

description Describes the attribute in a quoted string; this attribute is optional. and
is typically used by the dialogue editor to provide help information to
the editor user. Glue does not interpret the contents of this component

at all-the toolkit integrator may make the description as simple or
complex as desired.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 45

Glue

serpentdefault Specifies a Serpent-specific default value that overrides the default

value provided by the toolkit For example, a site may wish to change

the default background and foreground color for all widgets in order to

adhere to a project or company standard.

The type of this attribute must match the implicitly declared Serpent

type of the attribute (see the xtype attribute component). This means

that a string attribute must have a string as its default value, etc.

Serpent-default overrides technology-de fault. If neither a

serpent-default nor technologydefault is specified, neither will be

available to the applications, but widgets will still be created with the

toolkit default values.

serpentname Specifies a Serpent-specific name (a string value) for an attribute that

overrides the name specified by the toolkit. If serpent_name is not

specified, Serpent uses the name used in the toolkit.

technology_default Although the toolkit automatically provides a default value for each

attribute, some applications interfacing with Glue need to know what

these default values are. The technology_de fault fieldprovides

a means to explicitly note tLe technology default.

The type of this attribute must match the implicitly declared Serpent

type of the attribute (see the x-type attribute component). This means

that a string attribute must have a string as its default value, etc. If

serpent-default is also specified, it overrides technologydefault. Ii

neither serpentdefault nor technologydefault is specified, neither
will be available to the applications, but widgets will still be created

with the toolkit default values.

Note: This field does not actually change the technology default

values, but simply provides a means to access it. This means that when

a new release of the toolkit is acquired, the toolkit integrator must

verify that the values specified in the Glue description actually match

that of the toolkit.

userdef This optional component allows the specifier to communicate with

any application that needs the output of Glue. Application programs
may read the contents of this field and interpret them "at whim"

through the ATTR structure described in AppenZL, A.5.1.4. Glue
does not interpret the contents of this component at all-the toolkit

integrator may make its contents as simple or complex as desired.

x_type Declares the toolkit type of the attribute. This type is used to access the

attribute within the widget in the toolkit interface. It is mandatory that
the toolkit type of the variable be specified. Declaring a toolkit type

also impl: zitly declares the Serpent type of the attribute via the

Equivalence Types section of the Glue description (Section A.2.4).

46 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Glue

A.2.5.2 Methods

Each widget optionally has one or more methods associated with it. These methods are
reflected in routines written by the toolkit integrator, which are called when the Serpent user
performs some action (e.g., clicking in a command widget or moving a widget on the
screen). The methods component of a widget description lists all of the methods of the
widget along with their ielevant (from the standpoint of the interface) components. The
actual contents of the C routine are given in Section A.3.3 and must be written separately
from the Glue description. As can be seen in Example A-3, the methods are given as a list
of components, optionally separated by commas. Each component consists of a method
name, followed by the components of the method. The nane of each method is given as a
C token (i.e., not as a quoted string). The method name is exported to Serpent as the name
used in Slang dialogues.

The list of method components is terminated with a semicolon and enclosed in braces. As

with attributes, the use of #include files is supported and encouraged. The complete list
of method components is:

c routine Names the routine to be generated by Glue in the methods file (see
Section A.3.3 for more details). By default, the name of the routine will
be the name of the method followed by _method (i.e., the "move"
method will be accessed by a routine named move-met hod). If the
default value is not desired, an explicit name may be declared with the
optional c_routine component.

This feature is most often used when two or more widgets have
methods with identical names but different functions. One example is
using widgets from two technologies in one Serpent dialogue: the
,'move" method may be valid in both technologies, but the actions may
be radically different. Similarly, two widgets may share ohe C routine,
even though the names of the methods may be different.

description Describes the method in a quoted string. This method description
component is optional, aud is typically used by the dialogue editor to
provide help information to the editor user. Glue does not interpret the
contents of this component at all; hence, the toolkit integrator may
make the description as simple or complex as desired.

parameters Optionally lists the parameters that are to be passed between the
method and the interface. The parameters are supplied as a list of the
Serpent names of the parameters, separated by commas. (Note that
when a Serpent name is not explicitly specified with the
serpent_name attribute component, the Serpent name is the same
as the toolkit name.)

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 47

Glue

For each method that shares any given method routine, Glue ensures
that the names and number of parameters match; that is, any other
method in any other widget that uses the method routine selectme
must also have the parameters "horizontaSpacing" and "boing", and
no others. Note that the sharing of routines is determined either
explicitly via the croutine component, or implicitly via the method
name.

userde f Optionally provides some simple extensibility to the Glue interface.
Its value is a quoted string. Application programs may read the
contents of this field and interpret them "at whim" through the METH
structure described in Section A.5.1.4.1. Glue does not interpret the
contents of this component at all; hence, the toolkit integrator may
make its contents as simple or complex as desired.

A.3 Files Generated by Glue

The Glue compiler generates two or four files from a single Glue description, depending
on whether the command line option-M is present (see Section A.4 for more details). In the
following section, it is assumed that the Glue description file is the file shown in Example
A-i, and is called test. gl.

A.3.1 Toolkit File

The generated toolkit file, which has the file extension . tx (test . tx, in the preceding

example), contains all of the original Glue description in a machine-dependent, binary
representation. Use the routines and data structures described in Section A.5 to read the
generated toolkit file.

A.3.2 Saddle File

The generated Saddle file contains the shared data description necessary for the Serpent
dialogue manager to communicate with the toolkit man ger. From a Glue description file
named test. gi, the Glue compiler creates a Saddle file called test. sdd. This Saddle
file, shown in Example A-4, has to be processed with the Saddle compiler before using it
with the Slang compiler.

48 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Glue

<<«ix test>>

test : shared data

thing_widget : record

allow user move : boolean;

x : integer;

foregroundcolor : string[80);

end record;

end shared data;

Example A-4 Generated Saddle File

The first line of the Saddle file contains either a default value--the name of the toolkit (in
this case test)--or the Saddle command specified by the toolkit integrator in the Glue
description (in this case six test). Only one value appears in the Saddle command: the
value specified in the Glue description overrides the default value.

The remainder of the Saddle file contains the shared data descriptions. Each widget from
the Glue description has its own shared data record. The names of the shared data elements
correspond to the Serpent names of the widget attributes from the Glue description. Where

not explicitly defined (as in allowusermove and foreground-color), the shared
data element names are the same as the toolkit names.

The type of each shared data element is the Serpent type that was equated to the X type
named in the Glue description. For example, the attribute XtNx I has an X type of
Position. The toolkit type Position was equated to Serpent type integer in the
Equivalence types section, so in the thingwidget shared data record, the shared data
element x is of type integer.

A.3.3 Methods File

The generated methods file contains the skeleton of the C code needed to allow Six to

communicate with the Serpent dialogue manager to execute Slang methods. From a Glue
description file named test. gl, the Glue compiler creates a methods file called

testmeth. c. This methods file, shown in Example A-5, has to be compiled and linked
with Six before it can be used. Note that the methods file will be generated only if the -M
switch is specified when the Glue compiler is run. Note also that if the toolkit integrator has
edited the skeleton methods file, the edited file will be overwritten the next time Glue is run
with the -M option (see Section A.4 for more details). Consequently, the generated files

should never be edited; only the #included files (such as move. c) should be edited.

1. The name XtNx is simply a preprocessor constant. The file glueXt . h has a line containing the
command:

#define XtNx "x"

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 49

Glue

#include <Xll/Intrinsic.h>

#include <Xll/StringDefs.h>

#include "isd.h"

#include "glue-intf.h"

#include "glueinst.h"

/* Include files generated by Glue from test.gl */

#include <Xt/thing.h>
/**

* Method name: move

* Routine name: move method

* Parameters:

x integer

* allow user move: boolean
*/

void move method (w, event, params, num_params)

Widget w;

XEvent *event;

String *params;

Cardinal *nurr_params;
I

#include "move.c"

Example A-5 Generated Methods File

The methods file begins with a number of include directives. Note that the

include file specified in the widget description (that is, xt/thing. h) is listed here.

For every include file listed in the Glue description, a corresponding include directive

will appear.

Following this is a C routine. The name of the C routine is generated from the name of the
method specified in the widget. In this case, the name of the routine is movemethod, since

the name given to the method in the thing, widget was move. If the toolkit integrator
wishes to use a different name (because of slightly differing behaviors or because of name

conflict), an alternative name may be specified by the croutine method component. A
separate routine will be created in the methods file for each unique method or routine name

in the Glue description.

The body of the routine is simply an #include directive for code generated by the
interface designer. The body of this code usually contains declarations of local variables
and actions which interface with the Serpent runtime. A sample of the body of a method

routine is shown in Example A-6. The toolkit integrator does not need to follow this
template; it is merely provided as an example.

50 Serpent" Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Glue

isd trans trans;
static char *w name " "thing-widget";

INST *inst = glueget_by_widget (w);
ATTR *x = glue_get_attrfrominstance

(inst, "x", SERP NAMES);
ATTR *allowusermove = glue_getattr from instance

(inst, "allow user move", SERPNAMES);
/*

* Your method specific code goes here, presumably doing
* something intelligent with the method parameters...
*/
/*

* Send the transactions to the interface
*/

trans = isd start transaction (;
isd_put_shared data (trans, inst->id, w name, "method",

"move");

isdput_shareddata (trans, inst->id, wname,
"X ,,

&x->value.i);

isd_put_shareddata (trans, inst->id, wname,
Mallowusermove",

&allow user move->value.i);

isd commit transaction (trans);

Example A-6 Sample Method Internals

For each attribute which is potentially modified by a method (specified by the parameters
method modifier), a variable of type ATTR * is declared whose name is the same as the
Serpent name of the parameter attribute. In this case, two ATTR * variables are declared and
initialized, namely x and allow user move. Note that the names of the variables are the
Serpent names (which in this case happen to be the same as the toolkit names). If the toolkit
integrator had explicitly specified a Serpent name (such as boing in Example A-3), this is
the name that would be used in the methods code.

After the variables are declared, a space is left for the toolkit integrator to write method-
specific C code. It is anticipated that the C routine will use the variables that have been
previously initialized, although the toolkit integrator is free to add any needed variable

declarations and actions.

Once the method-specific code has completed execution, the Serpent dialogue manager
must be informed of any changes made to the method parameter variables. The generated
methods code concludes with a transaction to send the parameter variables back across the
Serpent/toolkit interface with calls to isd_putshareddata. One call will be generated

for each of the parameter variables.

Serpent: Guide to Adding Toolkits (CMU/SEI-91 -UG-8) 51

Glue

A.3.4 Bindings File

The generated bindings file contains the C code needed to interface a particular widget set
(e.g., Athena or Motif) to the Xt-based driver program Six. From a Glue description file
named test. gi, the Glue compiler would create a bindings file called testbind. c.

This bindings file, shown in Example A-7, would have to be compiled and linked with Six
before it could be used. Note that the bindings file will only be generated if the -M switch
is specified when the Glue compiler is run (see Appendix A.4 for more details).

Note: None of the entries in the generated bindings file should be altered by the toolkit
integrator. Doing so may result in erroneous behavior by the Glue interface routines.

#include <Xll/Intrinsic.h>

/* Include files generated by Glue from test.gl */

#include <Xt/thing. h>

extern void move-methodo;

int glue actions count = 1;

XtActionsRec glueactions[] =

'move", move-method },
1;

int glueClassCount = 1;

WidgetClass *glueClassList[l] =

&XtThing,

int glueSpecialPrccCount - 0;

typedef void (*PFV) ();
PFV glueSpecialProcList[O] -
);

Example A-7 Generated Bindings File

The bindings file begins with a number of include directives. Note that the
include_file specified in the widget description is listed here. For every include file
listed in the Glue description, a corresponding include directive will appear.

Following this, a list of external declarations for all the routines implicitly or explicitly
declared in the Glue description is givep. These routines include the methods routines,
check routines, and special callback routines (all of which are explained below).

52 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Glue

The variable glueactions count is used internally by the routine
glue_gettechnology (see Appendix A.5.2.1) to count the number of method routines

listed in the array glueaction. This latter array provides the hook needed by the X
Toolkit to use the method routines.

The variable glueClassCount is also used by glue_gettechnology to count the

elements in the glueClassList array. The array is used to initialize the class component

of the WIDG structure (see Appendix A.5.1.3 for more details).

Finally, the variable glueSpecialProcCount counts the elements in the array

glueSpecialProcList. This array is used to list all of the special routines declared in

the Glue description, namely the check routines and the routines declared with the

+procedure modifier in the equivalence type specifications (see Appendix A.2.4 for

more details).

A.4 Running Glue

The general format for running the Glue compiler on a Glue description is:

glue [switches] file[.gl]

When this command is issued, the named file will be processed by Glue and the appropriate

files will be generated. The file to be processed is assumed to have the extension .gl, so it

is not necessary to specify a file extension. If an extension is specified, it will be used (so

that although the default extension is .gl, other extensions may be used by the toolkit

integrator). The list of flags that Glue recognizes are:

-c This flag is passed to the Glue preprocessor (/ lib / cpp), and causes
it to keep comments in the preprocessed output. Ordinarily, comments

are stripped by the preprocessor, since they are ignored by Glue.

-D This flag is passed to the Glue preprocessor (/1 ib / cpp), and allows

a preprocessor constant to be defined on the command line. An
example of the use of this flag is:

-DTHING

which is the same as putting #define THING in the Glue source file,

and:

-DOTHER=5

which is the same as putting #define OTHER 5 in the Glue source file.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 53

Glue

-E This flag causes the Glue preprocessor (/lib/cpp) to be run
without subsequently invoking the Glue compiler. This flag is useful
for manually checking preprocessor definitions and expansion of
macros.

-I This flag is passed to the Glue preprocessor (/lib/cpp), and allows
the user to specify an alternate path to be searched when looking for
include files. An example of the use of this flag is:

-I..include -l../../data

By default, the Glue preprocessor will look in the directories listed in
the environment variable SERPENTDATAPATH, in the current
directory, and in /usr/include.

-k By default, the Glue compiler creates a file in /tmp to contain the
intermediate file produced by the preprocessor. Once the Glue
compiler is finished, this intermediate file is automatically deleted.
The -k flag causes the intermediate file to be retained. The name of
the file is printed on the toolkit integrator's terminal.

-M By default, the Glue compiler will generate only two output files: the
toolkit file and the Saddle file (see Appendix A.3 for details on the
Glue-generated files). This flag causes the Glue compiler to generate
two additional files: the methods file and the bindings file.

WARNING: The methods file is a C skeleton which #includes
files that are intended to be filled in by the toolkit integrator. The
toolkit integrator should not edit the generated methods file, only the
#included files. If the generated files are modified by the toolkit
integrator, running Glue with the -M flag will overwrite these files.

-U This flag is passed to the Glue preprocessor (/ lib/ cpp), causing it
to delete any initial definition of a preprocessor variable. An example
of the use of this flag is:

-UTHING

which would delete any initial definition of the preprocessor variable
THING.

-v This flag sets verbose mode, which prints status information as the
Glue compiler does its work.

-w This flag causes some classes of warning messages to be suppressed
(specifically, messages warning about widget description components
that are absent, but which Glue feels should be present). If this flag is
used, the Glue compiler will not print individual messages, but will
only print a summary of the number of messages that were suppressed
at the end of the compilation.

54 Serpent: Guide to Adding Toolkits (CMU/SEI-9 1-UG-8)

Glue

A.5 Interfacing to Glue

One of the files generated by Glue is toolkit description. This description file can be used
by an application to determine what features are available in a toolkit. Currently, the two
application programs that make use of this description are Six and the Serpent dialogue
editor. The format of the toolkit file will not be discussed here. Rather, what is provided is
a collection of C routines that can be linked into the application program to read the toolkit.
A brief description of each of the routines and data structures is provided here.

The reader is assumed to have a knowledge of the basics of the structure of the Serpent
libraries. includinr the ALI qT package. For full details on the workings of these routines,
refer to the code in the Glue source directory.

A.5.1 Data Structures

This section describes the data structures provided for in the Glue toolkit interface.

A.5.1.1 NameType

The NameType enumeration, shown in Example A-8, provides a switch to distinguish
whether to use toolkit names or Serpent names in the routines glueget_attribute,

glue alistallattributes, and glue_alist defaultedattributes. Both

name types are provided in the Glue description file; the user must distinguish between the
two sets of names.

typedef enum

TECHNAMES = 0,

SERPNAMES = 1

} NameType;

Example A-8 The nametype Enumerated Type

A.5.1.2 TECH

The TECH structure, shown in Example A-9, is the main mechanism to get information
about the various toolkits in the Serpent suite. A copy of this structure for a particular
toolkit is acquired via the glue_gettechnology routine (see Appendix A.5.2.1). The
caller may read (but not modify) the list of widgets contained in the TECH structure with
impunity; however, it is expected that the caller will use the faster routines provided in the
later sections rather than using a linear search algorithm.

Warning: The hook structure is for Glue internal use only.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 55

Glue

typedef struct

char *description;

char *mailbox;

char *ill file;

GTTYPE gtlast;

ALIST widgets;

struct hook *hook;

I TECH;

Example A-9 The TECH Structure

The components of the TECH structure are:

description From global variable in the Glue file, the description of the toolkit.

mailbox The name of mailbox for the toolkit.

ill file The name of .ill file for the toolkit.

gtlast The value of the last entry in the GTTYPE enumerated type when this
file was written.

widgets An ALIST (of type WIDG *) of all the widgets in the toolkit.

hook Warning: For internal use only.

A.5.1.3 WLDG

WIDG structure, shown in Example A-10, defines the way in which widgets are stored by
Glue access routines. The caller may read (not write) the attributes and methods ALISTs
here with impunity; however, ii is expected that the caller will use the faster routines
provided in the later sections rather than using a linear search algorithm.

Typedef struct I
char *name;

WidgetClass class;
ALIST attributes;

ALIST methods;

char *descripticn;
char *userdef;

PFV checkrtn;

WidgetType widgettype;

TECH *technology;

short idx;

1 WIDG;

Example A-1O The WIDG Structure

56 Serpent: Guide to Adding Toolkit (CMU/SEI-91-UG-8)

Glue

The contents of the WIDG Structure are:

name The name of the widget.

class Widget class for X access.

attributes An ALI ST (of structure ATTR *) of attributes for the widget.

methods ALIST (structure METH *) of methods for the widget.

description Description of the widget.

use rdef From same parameter with the same name in the Glue description.

checkrtn The routine to be used to check the initial values of the widget's
attributes. The tqpe PFV is "pointer to function returning void."

widgettype The type of the widget for X access.

technology A pointer back to the technology/toolkit structure.

idx Warning: For internal use only.

A.5.1.4 ATTR

The AT TR structure, shown in Example A-11, defines the way in which attributes are stored

by Glue access routines.

typedef struct f
char *tname;
char *s name;
GTTYPE x_type;
idd datatypes s-type;
ValueType valtype;
union f

int i; double r; string s; caddr t c;
I value;

short access;

char *description;
char *userdef;

short idx;
I ATTR;

Example A-I1 The ATTR Structure

The contents of the ATTR structure are:

t name The name of the attribute in the toolkit domain.

s_name The name of the attribute in the Serpent domain.

x_type C type of the attribute (i.e., the X type).

s_type Serpent type of the attribute.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 57

Glue

valtype The type of value this attribute contains (i.e., none,

toolkit default, or Serpent default).

value Defauli value of the attribute; its type is specified by va 1_type.

access A bitmap of the types of access allowed on attribute.

description Description of the attribute.

userdef From same parameter with the same name in the Glue description.

idx Warning: For internal use only.

A.5.1.4.1 METH

The METH structure, shown in Example A-12, defines the way in which methods are stored

by Glue access routines.

typedef struct {

char *s name;

char *c name;

int c index;

ALIST parms;

char *descripticn;

char *userdef;

I METH;

Example A-12 The METH Structure

The contents of the METH struclure are:

s name The name of method in Serpent domain.

u. ,,amie The name of the associated C routine.

c index The index of the address of the associated C routine in the

XtAct ionsRec array (contains 0 if toolkit is not linked with generated
methods file).

parms An ALIST (of structure ATTR *) of parameters to the method.

description A desciiption of the method.

userdef From same parameter with the same name in the Glue description.

A.5.2 Interface Routines

This section describes the routine names and parameters provided in the Glue toolkit

interface. Although the data structures can often be read directly by the application program

using the toolkit interface, it is recommended that these routines be used because they have

been optimized for speed of access.

58 Serpent: G.ide to Adding Toolkits (CMU/SEI-91-UG-8)

Glue

A.5.2.1 glueget_technology

Given a toollht name, opens the appropriate toolkit data file, initializes a TECH Structure,
and returns a pointer to the structure (similar to the way fopen returns a FILE *).

The name of the toolkit will typically be an unqualified file name. If an extension is given,
it will be used; otherwise, the file extension is assumed to be . tx. If the filename is given
as an absolute path name, that file will be used; otherwise, Serpent looks for the file in the
directories specified in the environment variable SERPENT DATA PATH.

TECH *glueget_technology(name)

char *name;

A.5.2.2 glue alist widgets

Given a toolkit, this routine returns an ALI ST of all of the names of widgets associated with
it. The widgets themselves are stored using the WIDG structure (shown in Section A.5.1.3),
and can be retrieved using other routines in this package.

ALIST gluealistwidgets (technology)

TECH *technology;

A.5.2.3 glueget widget

Given a toolkit and a widget name, returns a pointer to the WIDG structure associated with
it. The caller should use this routine to access the class and description components, and
should use the glue_get method and glue_getattribute routines to inspect the
contents of the METH and ATTR ALISTS.

WIDG *glue_getwidget(technology, widgetname)
TECH *technology;

char *widget-name;

A.5.2.4 gluealistallattributes

Given a toolkit and a widget name, returns an ALIST of all of the names of attributes
associated with the widget. The attributes themselves are stored using the ATTR structure
(shown in Appendix A.5.1.4) and can be retrieved u.,sing other routines in this package.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 59

Glue

ALIST gluealist_all attributes(technology,widgetname, t or s)

TECH *technology;

char *widget name;

NameType t or s;

A.5.2.5 gluealistdefaultedattributes

Given a toolkit and a widget name, returns an ALIST of all of the names of attributes
associated with the widget that have a Serpent-specified default value.

ALIST glue alist defaulted attributes(technology, widget-name,

t or s)

TECH *temhnology;

char *widgetname;

NameType t or s;

A.5.2.6 glue_getattribute

Given a widget and an attribute name, returns a pointer to the ATTR structure that
corresponds to the named attribute in the specified widget.

ATTR *gluegetattribute(widget, attrname, t or s)

WIDG *widget;

char *attr name;
NameType t or s;

A.5.2.7 gluealistmethods

Given a toolkit and a widget name, returns an ALIST of all of the names of methods
associated with the widget. The methods themselves are stored using the METH structure
(described in Appendix A.5.1.4.1) and can be gotten using other routines in this package.

ALIST glue_ package.

_methods(technology, widgetname)

TECH *technology;

char *widgetname;

A.5.2.8 gluegetmethod

Given a widget and a method name, returns a pointer to the METH structure that corresponds
to the named method in the specified widget.

60 Serpent: Guide IoAdding Tool! "ts (CMU/SFI-91-UG-8)

Glue

METH *glue get -method(widget, rneth name)

WIDG *widget;

char *meth-name;

A.5.2.9 glueget-attr-default

Given a widget and attribute name, returns the default value associated with the attribute.
Recall from Appendix A.2.5.1, only one of the Serpent or toolkit default values can be
present.

id&1_buffer-type *glue get attr default (widget, attr name,

t-or-s)
WIDG *widget;

char *attr name;

NameType t or s,

Serpent Guide to AddingToolkits (CMU/SEI-91-UG-8) 61

Glue

62 Serprnl (;u:dc up A dihny 't1)kits (CMIJISET-91 ic -8)

BNF of Glue

Appendix B BNF of Glue

The BNF used in this document is a modified Backus-Naur form. The differences between

it and normal BNF are:

" All literal tokens are surrounded by double quotes. Although literal token are shown

in lower case, Glue is case insensitive.

" The notation [thing] indicates an optional instance of thing.

" The notation Ithing) sep indicates one or more instances of thing, with each

instance terminated by the character sep. If sep is not specified, then the

separator is white space.

glue : {mapping);

mapping global_assign

typeequiv

I widgetdefn

globalassign: CTOKEN "=" CSTRING

type_equiv: CTOKEN ":" serpent_type

serpenttype: CTOKEN [range] [procedure]

range : '[" INTEGER "]"

procedure: "+" "procedure"

widgetdefn: CTOKEN "{" {widgetpart}; ")

widget-part: "class" "f=" CTOKEN

I 'include file" "=" C STRING

I "check-routine" "=" C TOKEN

"description" "=" C STRING

"userdef" "=" C STRING

'*shellwidget" "=" BOOLEAN

'attributes" "=" "{" {attribute); "
I 'methods" "=" ({" (method); "}"

attribute: CSTRING ":" "{" (attr_part); "

attr part: "serpentname" "=" CSTRING

I "description" "=" C STRING

I "userdef" "=" CSTRING

I "x_type" "=" C_TOKEN

Serpent: Guide to Adding T.xdkits (CMU/SEI-91-UG-8) 63

BNF of Glue

I "serpent_default" "=" default value

I"technology -default" "=" default-value

I"access" 11-1" (access),

default-value: C STRING

I CTOKEN

IREAL

IINTEGER

IBOOLEAN

access :CTOKEN

I"!" C TOKEN

method :C TOKEN ": { method_part};""

method-part: "parameters" "" C STRING),

"description" "=" CSTRING

"userdef" "=" C STRING

I"c-routine" '=" C TOKEN

64 Serpent'- Guide to Adding Toolkits (CMU/SEI-91 -UG-8)

Glue Error Messages

Appendix C Glue Error Messages

This section lists in alphabetical order all of the error messages that can be generated by
Glue, along with a detailed explanation of the message.

ACCESS denies all access!
The specified access type does not allow the attribute to be accessed. You must allow at least one of
create, get, or set, and at least one of serpent and technology.

Access type '!all' is meaningless
The access type '!all' indicates that the attribute cannot be accessed by either the toolkit or Serpent.
This makes no sense from the perspective of toolkit integration.

Are list too long
The number of command line arguments passed to Glue is too large. Either specify the command
line again, or contact the Glue compiler maintainer.

Attribute '%s' not a "string" (missing #define?)
All attribute names must be specified as a quoted string. Usually, these strings are #de fined in an
include file. Either you have forgotten to quote the attribute name specified, or the #define that
matches the name you used is missing.

Attribute '%s' of type id cannot have a default value
It is impossible for the Glue compiler to assign a default value to an attribute of type id, since the
values are not known until dialogue execution time.

Attribute '%s' must have a X_TYPE specified

The Glue compiler did not find an X type specification for the named attribute. All attributes must
specify the X type of the attribute for referencing by Six and other applications.

Cannot find source file "%s"
The Glue source file name should be the last argument in the command line. The Glue compiler
could not find the specified file name to process it.

Cannot open output file '%s'
The named output file could not be created by the Glue compiler. Either you do not have write
permission to the current directory, or a file with the specified name already exists and you do not
have write access to it.

Consistency error in gentechnologyO!
This is an internal consistency error. Please contact the Glue maintainer.

?Could not delete temp file "%s"!
The Glue compiler could not delete one of its temporary files. This is a warning only, although the
cause should be investigated with the Glue maintainer.

Duplicate ACCESS in attribute '%s' in widget '%s'
The Glue compiler encountered a duplicate access in the named attribute/widget pair. Only a
single instance of the access attribute part is allowed in an attribute.

Serpent- Guide to Adding Toolkirs (CMU/SEI-91-UG-8) 65

Glue Error Messages

Duplicate attr '%s' in widget '%s'
The Glue compiler encountered two attributes with the same name in one widget. Only one attribute
with any name may appear in a widget.

Duplicate CROUTINE in method '%s' in widget '%s'
The Glue compiler encountered two C routine ,pecifications in the named method. Only one C
routine may be associated with a method.

Duplicate CHECKROUTINE in widget '%s'
The Glue compiler encountered a duplicate checkroutine in the named widget. Only a single
instance of the check-routine widget part is allowed in a widget

Duplicate CLASS in widget '%s'

The Glue compiler encountered a duplicate class in the named widget. Only a single instance of
the class widget part is allowed in a widget

Duplicate DESCRIPTION in attribute '%s' in widget '%s'
The Glue compiler encountered a duplicate description in the named attribute/widget pair.
Only a single instance of the description attribute part is allowed in an attribute.

Duplicate DESCRIPTION in method '%s' in widget '%s'
The Glue compiler encountered two description specifications in the named method. Only one
description may be associated with a method.

Duplicate DESCRIPTION in widget '%s'
The Glue compiler encountered two description specifications in the named method. Only one
description may be associated with a method.

Duplicate INCLUDE-NAME in widget'%s'
The Glue compiler encountered a duplicate includename in the named widget. Only a single
instance of the includename widget part is allowed in a widget.

Duplicate method '% s' in widget '%s'

The Glue compiler encountered two methods with the same name in one widget Only one method
with any name may appear in a widget.

Duplicate PARAMETER list in method '%s' in widget ' %s'
The Glue compiler encountered two parameter list specifications in the named method. Only one
parameter list may be associated with a method.

Duplicate Saddle command

The Glue compiler encountered two Saddle commands in the same Glue description. Only a single
Saddle command is permitted in a Glue file.

Duplicate SERPENTDEFAULT in attribute ' %s' in widget '%s'
The Glue compiler encountered a duplicate serpent_default in the named attribute/widget
pair. Only a single instance of the serpentdefault attribute part is allowed in an attribute.

Duplicate SERPENTNAME in attribute '%s' in widget '%s'
The Glue compiler encountered a duplicate serpent_name in the named attribute/widget pair.

Only a single instance of the serpent_name attribute pan is allowed in an attribute.

66 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Glue Error Messages

Duplicate WIDGET-TYPE in widget '%s'
The Glue compiler encountered a duplicate widgettype in the named widget. Only a single
instance of the widget_type widget pail is allowed in a widget.

Duplicate TECHNOLOGYDEFAULT in attribute '%s' in widget '%s'
The Glue compiler encountered a duplicate technologydefault in the named attribute/

widget pair. Only a single instance of the technology_default attribute part is allowed in
an attribute.

Duplicate toolkit description
The Glue compiler detected two toolkit debiptions in a Glue file. Ouly a single toolkit description

is permitted in a Glue file.

Duplicate use of ACCESS type %s

The Glue compiler detected a duplicate use of the named access type. Each access type may be
specified only once for a given access specification.

Duplicate use of ACCESS type %s (use "all" by itself)
The Glue compiler encountered the access type "all" (which means all access types) in conjunction
with other access types. Using "all" in conjunction with any other access type is redundant.

Duplicate USERDEF in attribute '%s' in widget '%s'
The Glue compiler encountered a duplicate userdef in the named widget pair. Only a single
instance of the userdef widget part is allowed in an widget.

Duplicate USERDEF in method '%s' in widget '%s'
The Glue compiler encountered two user definition specifications in the named method. Only one
user definition may be associated with a method.

Duplicate USERDEF in widget '%s'
The Glue compiler encountered two user definition specifications in the named method. Only one
user definition may be associated with a method.

Duplicate widget type '%s'
The Glue compiler encountered two widgets with the same name. Only one widget with any name
may appear in a Glue description.

Duplicate XTYPE in attribute '% s' in widget '%s'
The Glue compiler encountered a duplicate x_t ype in the named attribute/widget pair. Only a
single instance of the x type attribute part is allowed in an attribute.

EOF encountered in string begun on line %d
The Glue compiler encountered the end of the input file before it found the close of the string begun

on the cited line. A closing quote may have been omitted, or the closing quote had a backslash in
front of it.

Equivalence type '%s' cannot have an associated procedure
Only equivalence types of type integer can have an associated procedure. For all other types,
specilying an associated procedure is an error.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 67

Glue Eiror Messages

Equivalence type '%s' needs a size modifier

The named equivalence type needs to have a specified size. Serpent type string must have a size
declared so the Glue compiler will know how many bytes to allocate to the string.

Equivalence type '%s' not allowed. Using 'integer'

An illegal equivalence type was detected on the right-hand side of an equivalence declaration. The
legal equivalence types are essentially the Serpent data types. These are boolean, buffer,

id, integer, real, and string. No other types (including undefined) may be used as the

right-hand side of an equivalence declaration.

ERROR: Input file will be over'hritten by output file
The name of the input file is the same as one of the files that will be generated by the Glue compiler.

The compiler does not accept duplication; you must rename your input file.

ERROR: Number of parameters for routine '%s' for method '%s' in widget '%s' differs from
previous uses of that method name (initially defined in method '%s' of widget '%s').
The number of parameters that is passed into a method routine must be the same, regardless of the

widget from which the routine is invoked. You have declared a method routine with a different
number of parameters than was specified elsewhere in the Glue description. Either change the

parameter count or use the c rout ine method component to specify a different routine name.

ERROR: Parameter %d ('%s') for routine '%s' for method '%s' in widget '%s' is not used
in previous use of that routine (initially defined in method '%s' of widget '%b')
The names of parameters that are passed into a method ioutine must be the same, regardless of the

widget from which the routine is invoked. You have declared a method routine with different
parameter names than those specified elsewhere in the Glue description. Either change the
parameter names or use the croutine method component to specify a different routine name.

ERROR: Parameter %d ('%s') of method '%s' in widget'%s' is not the name of any attribute
in the widget.

All parameters to methods must be the Serpent names of attributes of the widget for which the
method is associated. You have either specified a non-attribute name or (if you get the additional

message HINT: Use the Serpent attribute name ('%s'), not the X name) you have specified the
X name of the attribute.

?execve0 for /lib/cpp failed
The Glue compiler could not find the C preprocessor. Try executing the command again; if it fails,

contact the Glue maintainer.

Expecting one of:
The Glue compiler detected a syntax error in the Glue description file. The list of legal tokens, one
of which Glue expects in the input stream (but which was not encountered), are listed.

Expecting ')' - possible missing separator (',' or t;')
The Glue compiler encountered an unexpected token when it anticipated finding a close brace. This
syntax error is usually caused by a missing separator (i.e., a comma or semicolon) at the point

indicated by the error message.

68 Serpent- Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Glue Error Messages

Extra args after fdename "%s"

The Glue source file name should be the last argument on the command line. The Glue compiler
detected additional arguments after the Glue source file name.

?forko for /lib/cpp failed
The Glue compiler could not execute the C preprocessor. Try executing the command again; if it
fails, contact the Glue maintainer.

Illegal character in text:
The Glue compiler detected an illegal character in the Glue description. The legal characters are
upper and lower case letters, numbers, spaces, tabs, newlines, comma, and the characters ".", ";",
"':" , " , ", " [", "F", "l" 1, "1" , "T", ")", "=", "", "1+", and "W".

Invalid widgettype '%s' in widget '%s'
The legal widget types are shell, override, widget, and none. Any other type is illegal.

Missing close quote
The Glue compiler encountered the end of the input line before a string was terminated. If you wish
to have a multi-line string, you must include the newline character as the digraph \n. If you have a
string that you wish to be stored as a single line, but which may exceed a single line in your Glue
source code, end each line that is in the middle of the string with the backslash character.

Missing Glue fdename
The Glue source file name should be the last argument on the command line. The Glue compiler
did not find a file name to process.

Mixed mode ACCESS must list all types!
When an access list is specified that lists both access allowances and denials (i.e., the list contains
both names and negated names, as in: get, ! set), all types must be listed. If access allowances
are specified, only those accesses are permitted; if access denials are specified, only those accesses
are disallowed; if both types are specified, you must list all access types.

Size modifier illegal for equivalence type '%s'
Only equivalence types of type st ring can have an associated size. For all other types, specifying
an associated size is an error.

Note: Suppressed %d 'no class value' warning messages
When the Glue compiler encounters a widget without a class, it issues a warning message. If,
however, the toolkit integrator specifies the -w command line argument, these messages will be
suppressed. This note is printed to indicate how many of these messages were not printed.

Note: Suppressed %d 'no default value' warning messages
When the Glue compiler encounters a non-toolkit attribute, it issues a warning message. If.
however, the toolkit integrator specifies the -w command line argument, these messages are
suppressed. This note is printed to indicate how many of these messages were not printed.

Note: Suppressed %d 'no include file value' warning messages
When the Glue compiler encounters a widget without an include file, it will issue a warning
message. If, however, the toolkit integrator specifies the -w command line argument, these messages
will be suppressed. This note is printed to indicate how many of these messages were not printed.

Serpent Guide to Adding Toolkits (CMU/SEI-91-UG-8) 69

Glue Error Messages

Syntax error - is this a legal statement?
This error message indicates that the Glue compiler is confused by the syntax that it has scanned.
Check the Glue source file for illegal syntax.

Too many indudes in SERPENTDATAPATH
The number of components in the environment variable SERPENTDATAPATH is too large.
Either specify the environment variable again, or contact the Glue maintainer.

Type '%s' has no Serpent equivalent

The toolkit type used for an attribute does not have a specified Serpent equivalent. This means that
there is no equivalence statement earlier in the Glue description that declares an equivalence type

for this toolkit type.

Unknown ACCESS type
The Glue compiler encountered an illegal access name. The legal names are: all, create,

get, serpent, set, and technology. All access names (except all) may be
complemented (i.e., ! create, etc.).

Unknown attribute component
The Glue compiler encountered an unknown attribute component. The legal attribute components
are:access, description, serpent_default, serpent_name, userdefand

x_type.

Unknown equivalence modifier
Currently, the only legal equivalence modifier is +procedure. Any other modifier is illegal.

Unknown equivalence type '%s'. Using 'integer'.
An unknown equivalence type was detected on the right-hand side of an equivalence declaration.
The legal equivalence types are essentially the Serpent data types. These are boolean, buffer,
id, integer, real, and string. No other types may be used as the right-hand side of an
equivalence declaration.

Unknown flag %s
An unknown command line argument was given to the Glue compiler. The legal flags are: -C, -D,
-E, -k, -I, -M, -U, -v, and -w. See Appendix A.4 for more details.

?Unknown idd-type in genSaddleo

This is an internal consistency error. Please contact the Glue maintainer.

?Unknown iddtype in gen-technologyO
This is an internal consistency error. Please contact the Glue maintainer.

?Unknown iddtype in printmethodnameso

This is an internal consistency error. Please contact the Glue maintainer.

Unknown escape character ignored
The list of legal escape characters in the Glue compiler is presented in Appendix A.2.1.8. Any other
character is illegal.

Unknown keyword' s'
The named global variable is not currently known to the Glue compiler. Check for a typographical
error.

70 Serpent: Guide to Adding Toolkits (CMU/SEI-9 1 -UG-8)

Glue Error Messages

Unknown method component
The Glue compiler encountered an unknown method component. The legal method components
are: c routine, description, parameters, and userdef.

Unknown widget component
The Glue compiler encountered an unknown widget component. The legal component names are:
attributes, checkroutine, class, description, include-file,

methods, widget-type, and userdef.

Usage: %s {<cpp args>} -E -M -k -v <fde>
If the toolkit integrator incorrectly specifies a command line, this message is issued as a reminder of
the correct command line syntax.

Warning: String contains the null char
In Glue and the rest of Serpent, strings are terminated with the null character. Your string contains
the null character, so it will be terminated early. Having a null character in a string is almost certainly
a mistake.

Warning: Redeclaration of equivalence type '%s'
The toolkit name specified on the left-hand side of an equivalence statement was previously declared
in the current Glue source file. This message is only a warning-that is, the redeclaration will take
place as requested. Only those attributes of the specified type after the redeclaration will be affected.
It is probably better to declare a new toolkit type than to overload a toolkit name by redeclaration.

Warning: String too long
The internal limit of Glue string lengths has been exceeded- Either shorten the string, or contact the
Glue compiler maintainer. The default maximum string length is currently 3072 characters, so it is
unlikely that you will see this message with a correct Glue source file.

Warning: Technology default for '%s' in '%s' will be overwritten by Serpent default
When an attribute has specified both a Serpent default value and a toolkit default value, the Serpent
default takes precedence. This message warns you that the toolkit default value is being ignored.

Warning: Technology type '%s' is unknown. You may need to rebuild Glue
The toolkit type specified on the left-hand side of an equivalence statement is not known by the
current version of the Glue compiler. Chances are that you have made a typographical error in the

name. If, however, the name is correct, then the Glue compiler needs to be updated to be advised
about the new toolkit name.

WARNING! The names of X classes used in %s.gl are different from that in %s.tx. You need
to relink the technology driver or you will have erroneous behavior.
The previous version of the toolkit file that Glue generated has a different set of classes than the
newly generated version. The toolkit driver program (Six) expects some consistency between
versions, and must be relinked if correct behavior is to be expected.

WARNING! The names of X procedures used in %s.gl are different from that in %s.tx. You
need to relink the toolkit driver or you will have erroneous behavior.
The previous version of the toolkit file that Glue generated has a different set of names of
procedures than the newly generated version. The toolkit driver program (Six) expects some

consistency between versions, and must be relinked if correct behavior is to be expected.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 71

Glue Error Messages

WARNING! The number of X classes used in %s.gl is different from that in %s.tx. You need

to relink the toolkit driver or you will have erroneous behavior.
The previous version of the toolkit file that Glue generated has a different number of classes than

the newly generated version. The toolkit driver program (Six) expects some consistency between
versions, and must be relinked if correct behavior is to be expected.

WARNING! The number of X procedures used in %s.gl is different from that in %s.tx. You
need to relink the toolkit driver or you will have erroneous behavior.
The previous version of the toolkit file that Glue generated has a different number of classes thn
does the newly generated version. The toolkit driver program (Six) expects some consistency

between versions and must be relinked if correct behavior is to be expected.

WARNING: Widget '%s' should have a CLASS listed
The Glue compiler did not find an class specification for the named widget All widgets should

specify a class that identifies the widget to the X server. Failure to do so may result in erroneous
behavior by the toolkit driver program (Six).

WARNING: Widget '%s' should have a INCLUDEFILE listed
The Glue compiler did not find an include file specification for the named widget. All widgets

should specify an inciude file that defiues the C structure layout of the widget.

X_TYPE and default value type mismatch for attribute '%s'
The type of the specified default value does not match the type defined by the X_TYPE attribute part.
The types must either match, or the default value must be elided for, the Glue compilation to

succeed.

72 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Six Overview

Appendix D Six Overview

Together with Glue, Six helps with the integration of Xt-based toolkits into Serpent. Glue
is a language for defining toolkit widgets; Six is a generic Serpent-to-Xt driver that converts
the runtime tables produced by Glue into calls to Xt. These tables can also be used by the

Serpent dialogue editor to automate the process of adding widgets to a toolkit-to-Serpent
binding.

D.1 What is Six?

Six stands for Serpent Interface to X. It is an attempt to create an interface between Serpent
and any X Toolkit-based widget set (such as the Motif and Athena widget sets). The aim of
this interface is to be general, customizable, and easy to build. Widgets are described to Six
through the Glue language (see Appendix A for details).

Due to the ability to describe the characteristics of widgets independently of any
implementation through Glue, Six is not tied to a particular widget set implementat.on. It
is tied to the X Toolkit as a basis for widget sets, however.

Six treats widgets as a set of attributes. each of which has a well-known type. Six, then, is
primarily concerned with attribute types rather than particular attributes. All attributes of a
given type are treated exactly alike. This generalization is the source of Six's power-it
allows new widgets or widget sets to be integrated with a minimum of effort, since most
widgets contain attributes of the same types: Position, Dimension, Boolean, Pixel, Pixmap
and so on. These attributes will be handled in standard ways by existing code within Six.
Since most widgets can be described in terms of a fairly small set of attributes, the process
of adding new widgets is, in most cases, simply a process of describing these widgets to Six
through the Glue language.

The widget integrator only has to modify Six if he or she wants to add a widget which
contains new types. The bulk of this section will be devoted to explaining how a user can
add new widgets and especially new attribute types to Six.

Because it is impossible to characterize all of a user's interactions with widgets as attribute
setting, "hooks" were added to Six that allow the user to write special-purpose code, which
is executed when a widget is created or modified. The combination of a general purpose
widget integration tool and the ability to introduce arbitrary computation has been, in our
experience, sufficiently powerfui to integrate any widget set.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 73

Six Overview

D.2 Using Six

Six is a genera' purpose X Toolkit-based toolkit driver. A toolkit driver is defined as a
program that reads a toolkit description (in the form of a compiled Glue file) and then
accepts and dispatches interrupts from the X Toolkit and Serpent. Six's main purpose is to
staihd between the X Toolkit and Serpent events, translating between them. Widget set
interfaces that come with Serpent are executed automatically by the Serpent command.

Using SiY to integrate new widgets or a new widget set, however, requires an understanding
of the inner workings of Six, particularly how and why Six transforms Serpent data types
into X Toolkit data types. Why is easy: this translation is necessary because X-based toolkits
make use of a much greater assortment of data types than Serpent supports, and so, for
instance, an integer received by Six may be mapped into Cardinal, int, Dimension, short,
etc. before being sent to X. How Serpent handles the transformation of data types and how
users can add their own transformations is more complex. The answer involves Glue
include files, changes to Glue data files, changes to Glue, and changes to Six.

D.3 Adding New Types to Six

Adding new attribute types to Six requires defining them first in Glue. This is because

Glue checks input files to ensure that they contain only validly specified attributes and tLen
converts these attribute specifications into an internal format that 's more efficient for

computation. This internal format is stored in files with a .tx suffix, hereinafter referred to
simply as TX files. (These files are described in detail in Appendix A.)

The following descriptions are intended to be fairly specific. They refer to particular files
in the Six and Glue subdirectories of Serpent, and to particular contents of those files. In
addition, an explanation of the contents is given, so that an interested user could
conceivably create new toolkit drivers with new files, following the reasoning given here.

D.3.1 Changes to Glue Include Files

Associated with the Glue parser is a list of all valid attribute types. This lis! is a way of
assigning each attribute type a unique identifier; the list is available for use by the Glue
parser, Six, and other programs (such as the dialogue editor) and must be updated if a new
attribute type is added.

In the current implementation, this list is kept in the file gt_type. h, in the gl .e/include
director). Each attribute type is azsgned a name which consists of the data type preceded
by GT_, so, for instance, XtTranslations becomes GTXtTranslat ions, and is #define'd
to some unique integer value, as exemplified in the following:

74 Serpent Guide to Adding T)lLits (CMIJ/SEI-91-UG-8)

Six Overview

#define GTXtTranslations 27

In addition, this file contains version numbers to ensure that only the correct version of this

file is used to build Glue and the toolkit drivers. Glue, checkint f (a program that checks

the format of a TX file), and Six all check these version numbers to ensure that the program

is not being run with an out-of-date include file. Version numbers are of the form:

#define GTLASTV6 46

When new attribute types are added to Glue, the version number must be updated in order

for the consistency checking to work. Details of how to do this can be found in the file

gt_type.h.

D.3.2 Changes to Glue Data Files

The Glue parser is built to be independent of the particilars of toolkit implementation

details. In particular, it does not contain any information about the data types being used.

This information must be specified by the user, in the form of equivalence types (more

information about equivalence types may be found in Appendix A). These types equate

Serpent data types with toolkit-specific types. An example of an equivalence type is:

Accelerators buffer;

This means that the Xt attribute type Accelerators is implemented in Serpent as the data

type buffer.

In the current implementation, the equivalence types are stored in the file glue_eqv.gl, in

the six/src directory. If new types are needed to describe new widget attributes, they must

be added to this file. Exactly how these types are converted from Serpent types to Xt types

and back to Serpent types is discussed in Section D.3.4.

D.3.3 Changes to Glue

The Glue parser checks attribute definitions to ensure that only valid attributes are specified

by the user. When a new attribute is added, the parser must be updated to reflect this.

Serpent: Guide to Adding Toolkts (CMU/SEI-91 -UG-8) 75

Six Overview

Glue is currently implemented with YACC/Lex. In order to add a new type tc the parser,
the YACC file gay. y (found in the glue/src directory) must be edited, and the new attribute
type must be added to the t e c hmap structure. Techmap is actually an array of structures,
wherc cach array element contains the name of the new attribute type, as a string, and the
equivalent internal type definition, as defined in gt_type. h (see the section on changes to
Glue include files [Appendix D.3.1] for more information on the structure of this file). An
example of an entry in the techmap array is:

("Dimension", GT Dimension I

Furthermore, if a new attribute type has been added to Glue, there must Lave been a new
version number added to the include file gt-type.h. If this is the case, the version number
check in gay. y must also be updated to indicate that the two files are synchronized. For
instance, the check in Glue for V6 would be in the form:

if (GTLAST > (GT_LAST_V6 + 1)) { fputs ("Warning!

stderr) ;

When a new version number is added to gttype. h, this check will have to compare
GTLAST tOGTLASTV7.

Finally, check int f is a utility included with Glue. This utility is used to print the
contents of a TX file (which is stored in a format that is not readable by humans) in order
to inspect or validate the results of the parsing which Glue has performed. To be able to
accurately print out the contents of a Glue-produced TX file, check int f must be updated
to reflect the new type. All of the valid types are contained in a switch. Each case of the
switch simply prints out, in a form that is readable by humans, the type of the current

attribute, for example:

case GTWidget: fputs ("Widget;\n", stdout); break;

If a new type is added, this switch statement should be similarly updated. It is not necessary
for the proper working of the system to keep check_in tf up-to-date, but experience
shows that it is a useful tool and users are strongly encouraged to keep it current if they
modify Glue. In fact, if the file gt_type. h changes, check int f must be updated or it
will no longer work because it checks version numbers, as described above for gay.y, which
must be similarly updated.

76 Serpent Guide to Adding Toolkits (CMU/SEI-91-UG-8)

Six Overview

D.3.4 Changes to Six

Six consists of a core function that communicates with the X Toolkit and Serpent, reads
Glue TX files, and creates, modifies, and deletes widgets. In order to be independent of
widget sets, all widget-set dependent code resides in other routines, which are linked
together with the core module, six. c, to create executable programs that are specific to
widget sets. Currently, six. c is linked with special-purpose code for the Athena and Motif
widget sets to produce the executables sat (Six AThena) and smo (Six MOtif).

When adding attributes to Six, the routine Sixset must be modified. Six-set builds
argument lists for widget creation and modification and so must know the type of every
attribute. As with checkintf, described earlier, all of the existing types are contained in
a switch statement in Sixset, and any new types must be added to this switch.

Attributes come in many flavors. Some are quite simple, and may be directly entered into
the argument list. Others need a significant amount of pre-processing before being
acceptable to a widget. Three flavors of attributes will be discussed here: those that require
virtually no transformation; those that require simple, readily available transformations;
and those that require some ingenuity on the part of the widget integrator.

For example, boolean attributes are quite simple:

case GT Boolean:

if (cur attr->access & AXSTECH) { XtSetArg(args[*num_args],

curattr->t name, *((boolean *) dataptr)); (*num-args)++;

if (cur attr->access & AXSSERPENT) { cur attr->value.i =
*((boolean *) dataptr) ; curattr->valtype = VAICURRENT ;

break ;

What this case does is check to see whether the attribute being currently examined (called
cur attr) is accessible to the technology, as indicated by the contents of cur attr-
>access. If so, the argument list is set to point at CaLa_,tr (the location, in memory, of
the boolean attribute being currently referenced), appropriately cast. Next, if curattr is
accessible to Serpent, the current value is stored, again appropriately cast, in the attribute's
data structure. Finally, the val_type field is set to VALCURRENT, indicating that a current
value has been set for this attribute (as compared, for instance, with a default value).

Sometimes, however, the data being passed from Serpent cannot simply be cast to the
appropriate type. For instance, X Toolkit translation tables are represented as ascii strings,
and must be parsed before being used by a widget. This is accomplished as follows:

Serpent Guide to Adding Toolkits (CMhU/SEI-91 -UG-8) 77

Six Overview

case GTXtTranslations:

retstring = (char *) uc2_convert(

iddstring,

iddbuffer,

(idd buffertype *) data_ptr) ;

if (cur attr->access & AXSTECH) {

XtSetArg(

args[*numargs],

cur attr->t name,

XtParseTranslationTable (ret string))

First, the translation table is converted from a buffer (its Serpent-internal data type) to a

string, via a call to uc2 convert. Then it is set in the argument list via a call to

XtParseTranslationTable. Since XtParseTranslationTable returns the type
XtTranslations, the result of this routine call may be passed directly to the argument list

without further intervention.

Finally, Pixmaps are a very inconvenient data type to manipulate and are not readily

amenable to the dialogue model used in Serpent. To allow the dialogue writer some

distance from Pixmaps, the Pixmap attribute is treated as the name of a bitmap file. This file
is read, stored temporarily, and then converted into Pixmap form, which is the form suitable

for a widget's argument list. The code to accomplish this is as follows:

case GTPixmap:

ret string = (char *) uc2_convert(

idd string,

idd buffer,

(iddbuffertype *) dataytr)

if (curattr->access & AXSTECH) {
bitmap = sbmload bitmap(

ret string,

&bmwidth,

&bmheight,

&bm size);

78 Serpent: Guide to Adding Toolkits (CMU/SEI-91-UUj-8)

Six Overview

if (bitmap) I

XtSetArg(

args[*num args],

cur attr->t name,

XCreateBitmapFromData(

display,

RootWindow(display, screen),

bitmap,

bm width,

bmheight)) ;

Finally, if a new attribute type has been added to Six, there must have been a new version
number added to the include file gtjtype.h. If this is the case, the version number check in
six. c must also be updated, to indicate that the two files are synchronized, as described in
Section D.3.3).

D.3.4.1 CheckRoutines

Six provides check routines to accommodate the need of users to write arbitrary code to
manipulate widgets. (Not all widget interactions are mediated by argument lists.) These
check routines are specified in the toolkit's Glue file. In the current implementation, the
routines for the Athena widget set are kept in the file sac. c (Six Athena Check) in the six/
src directory and the routines for the Motif widget set are kept in the file smc. c (Six Mwotif
Check) in the six/src directory. These files are compiled and linked with six. c to produce
the executables sat and smo.

If new check routines are needed to manipulate widgets added to Six, they should be placed
into the appropriate file (sac. c, smc. c, or some other file if a new widget set is being
integrated).

Each check routine has the following parameters:

widgetinst, change, change-list

where:

widgetinst is a pointer to the current INST structure (an INST is an internal data
structure used to describe an instance of a widget) that contains, among other things, the
widget handle from X.

change is the type of operation: create or modify (check routines are not called for deletes).

Serpent Guide to Adding Toolkits (CMU/SEI-91-UG-8) 79

Six Overview

change_list is the list of changes to shared data for this widget.

Once you have acc,;s to a widget's INST structure, you can find out everything you need

to know about the widget: its attributes, its parent, its widget type, etc.

Note, however, that the check routine, if it exists, is called both before and after a widget is

created.

D.3.4.2 Methods

Glue provides the ability to define Methods for each widget. Methods are used to return

information to the dialogue in response to user events: when the user clicks a mouse button

on a widget, for example. These events are often reported to Six through the use of Action

routines, discussed below. Methods are communicated to the dialogue through the use of
shared data. For example, the notify method is sent to the dialogue by the following code

(for details on the procedure calls used in this example, see Serpent: C Application

Developer's Guide and Serpent: Ada Application Developer's Guide.)

/* Send the translation to the interface */ trans =

isd start transaction 0;

/* Send the method name */ isd_putshareddata (trans, inst->id,

inst->template->name, "method", "'notify");

/* Commit the transaction */ isd commit transaction (trans);

In some cases, a Method is sent to the dialogue in response to an event which directly

affects the state of the dialogue (changing the size of one of the widgets in the dialogue, for
instance). In these cases, the changed data-the x and y location of the widget-must also be

sent to the dialogue:

/* Send the transactions to the interface */ trans
=isd start transaction 0;

/* Send the method name */ isd_putshareddata (trans, inst->id,

inst->template->name, "method", "move");

/* Send the changed attributes */
isd_putshareddata (trans, inst->id,

inst->template->name, "x", &x->value.i);
isd put_shareddata (trans, inst->id,

inst->template->name, Iy", &y->value.i);

isd_put_shareddata (trans, inst->id,
inst->template->name, 'horizdistance', &x->value.i);
isd_putshareddata (trans, inst->id,

80 Serpent. Guide to Adding Toolkits (CMUiSEI-91-UG-8)

inst->template->name, "vertdistance", &y->value.i);

/* Commit the transaction */ isd commit transaction (trans);

To add a new Method to Six, the Method must first be defined through Glue. This will
produce a method definition in the file <tech>_meth. c, where <tech> is one of sat, smo,

or, possibly, a new toolkit which is being integrated using this mechanism.

This file contains definitions for Action, routines that can be called from a widget's
translation table in response to some user routines. six. c registers the routines that the user
has defined through Glue with the X Toolkit.

Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) 81

82 Serpent: Guide to Adding Toolkits (CMUISEI-91-UG-8)

Index
Interface Layer Language (ILL) 9

A Invocation command 17

Application 5 M
Application layer 7 METH 58
ATTR 57 Method 15

C 0

C Object 5, 15
data 22, 25 attributes 14
development 21 definition 13
execution 31 methods 15
routines 22 semantics 15

checkintf 76
S

D SDD file 16
Data, modifying shared 29 Serpent
Default values 30 documents 2
Dialogue 5, 7 Serpent transaction mechanism interface 11
Dialogue layer 7 Shared data 8
Documentation 2 block 18

E definition 16
modification 22

Element Shared data templates 13
creation 26 Six
deletion 28 adding types to 74
modification 27 using 74

Six-set 77G_
Sleep 30

Glue
BNF 63 T

execution 51 TECH 55
generated files 49 techmap 76
interacing to 55 Toolkit 7
messages 65 selection 13
syntax 33 shared data definition 9

glue-alist all attributes 59 Toolkit, integration 9
glue-alist-widgets 59 Transaction mechanism interface 11
glue.get-technology 59 Transactions 9
glue.get-widget 59 starting
gtjtype.h 76 committing

aborting 9

Serpent. Guide to Adding Toolkits (CMU/SEI-91 -UG-8) 83

U

User interface 5

w
WIDG 56
Widget

attributes 41
c-routine 47
check-routine 41
class 41
description 42, 47
include-file 42
methods 42
parameters 47
userdef 43. 48
widget-ype 42

84 Serpent -Guide to Adding Toolkits (CMU/SEI-91-UG-8)

_____________________ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .. .________________.____..._______....________......_______

UNLIMITED, UNCLASSIFIED
SECJURY C.ASSFICAION OF ThIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCIlEDLI" Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBEB (S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-91 -UG-8 CMU/SEI-91 -UG-8

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Cede)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

Sl. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIrZATION (if applicable) F1 962890C0003
SE! Joint Program Office ESD/AVS

8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Carnegie Mellon University PROGRAM PROJECT ITASK WORK UNIT

Pittsburgh PA 15213 EL EMENTNO NO. NO NO.
63752F N/A N/A N/A

11. TITLE (Include Security ClassificaUon)

Serpent: Guide to Adding Toolkits
12. PERSONAL AUI-IOR(S)

SEI User Interlace Project
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Y., Mo., Day) 15. PAGE COUNT

Final FROM 170 May 1991 -~95
16. SUPPLEMENTARY NOTATION

17. COS ATI CODES 18. SUBJECT TERMS (Continue on reverse of necesary and ideatify by block number)

FIELD GROUP SUB. GR. Serpent, UIMS, user interface management system, user

iInterface generators, toolkits, Glue, Six

19. ABSTRAT (Continue on reve'e if necetary and ide ttify by block number)

Serpent is a user interface management system (UIMS) that supports the development and imple-
mentation of user interfaces, providing an editor to specify the user interface and a runtime system
that enables communication between the application and the end user. This manual describes how
to add toolkits to Serpent. A generic description of how to integrate any toolkit into Serpent is followed
by descriptions of two tools. These tools are Glue, a generalized widget integration facility, and Six,
a generic Serpent-to-Xt binding driver. Readers of this guide are assumed to have programming
experience in C or Ada, and to have read and understood the concepts described in the Serpent

(please turn over)

20. DISTRIBLTION/AVAInABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEDAjNuMITED N SAME AS RIPT 5 DTIC USERS 1 Unclassified, Unlimited Distribution

22A. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (nclude Area Code) 22c. OFFICE SYMBOL

John S. Herman, Capt, USAF (412) 268-7630 ESD/AVS (SEI IPO)

DD FORM 1473,83 APR EDITION of I JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIRCATION OF THIS

ASTRACTr -cotnued frmi page one. block 19

Overview and Serpent:, System Guide.

