
AD-A240 605

- ' le K, Mell:nr University

- Software Engineering Institute

DTIC
SEP 2 3 1991

System
Guide

his document has been approved
or public release and sale; its

distribution is unlimited.

91-11240

0.e...0 0 0 0 g o ego 00 0 oe*0 o 0 0 0 0

System for User Version Date
Interface Development April 1991

User's Guide
CMU/SEI-91 -UG-2

April 1991

Serpent: System Guide

I User Interface Project

I -

Li7

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

OHN S. HERMAN, Capt. USAF
I SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency pefsonnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA. Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

1 Introduction 1
1.1 This Manual 1

1.1.1 Organization 1
1.1.2 Typographical Conventions 1

1.2 Other Serpent Documents 2
1.3 Installing Serpent 4

2 System Configuration 5
2.1 Environment Variables 5
2.2 File Types and Na;ii4 Conventions 6
2.3 Layout of Programs and Data Files 7

3 System Components 11
3.1 Saddle Compiler 11
3.2 Slang Compiler and Linker 12
3.3 Dialogue Manager 14
3.4 Toolkit Interface 15

3.4.1 Glue and the Six Interface 16
3.4.2 Other Paths for Toolkit Integration 16

3.5 User Application Program 17
3.6 Running A Dialogue/Application 17

4 Example Dialogue/Application 19
4.1 First Stage of Developing Clock 20

4.1.1 Slang Dialogue 20
4.1.2 Makefile 25

4.2 Second Stage of Developing Clock 25
4.2.1 Slang Dialogue 28
4.2.2 External C Routines 34
4.2.3 Makefile 34

4.3 Third Stage of Developing Clock 35
4.3.1 Saddle Description 35
4.3.2 Slang Dialogue 36
4.3.3 Application Program 42
4.3.4 Makefile 45

4.4 Fourth Stage of Developing Clock 45
4.4.1 Slang Dialogue 46
4.4.2 Makefile 47

Serpent: System Guide (CMU/SEI-91 -UG-2)

ii Serpent: System Guide (CMU/SEI-91 -UG-2)

List of Figures

Figure 1-1 Serpent Documents 3
Figure 3-1 Key to Illustrations 11
Figure 3-2 Saddle Compiler 12
Figure 3-3 Slang Compiler and Linker 13
Figure 3-4 Dialogue Manager 14
Figure 3-5 Glue and Six 16
Figure 4-1 Picture of Executing Dialogue 19
Figure 4-2 Initial Clock Dialogue Layout 20
Figure 4-3 Clock Dialogue, Revised Layout 25
Figure 4-4 Revised Layout Showing Date Enabled
Figure 4-5 Revised Layout Showing 12-Hour Mode Enabled 27
Figure 4-6 Revised Layout Showing "Set" Buttons Enabled 28
Figure 4-7 Alternative Interface for Clock 45

Serpent: System Guide (CMU/SEI-91-UG-2) iii

iv Serpent: System Guide (CMU/SEI-91-UG-2)

List of Examples

Example 4-1 Slang Dialogue for Sample Clock 25
Example 4-2 Slang Dialogue for the Second Stage in Developing the Sample

Clock 34
Example 4-3 Slang Dialogue for the Third Stage in Developing the Sample

Clock 42
Example 4-4 Application Program 44
Example 4-5 Slang Dialogue for the Alternative Dialogue 47

Serpent: System Guide (CMU/SEI-91-UG-2) v

vi Serpent: System Guide (CMU/S EI-91 -UG-2)

Introduction

1 Introduction
Serpent is a user interface management system (UIMS) being developed at the Software

Engineering Institute (SEI). Serpent supports the development and implementation of user

interfaces, providing an editor to specify the user interface and a runtime system that

enables communication between the application and the end user.

1.1 This Manual

Designed as a prelude to other, more detailed Serpent documents, this manual introduces

the environment variables used by Serpent, the file naming conventions and expected file

types, and how to build a Serpent dialogue/application from scratch. It is not designed as a

reference guide for any of the Serpent system components-these can be found in other

Serpent documentation. Rather, this document outlines the layout of the Serpent system

and, in general, how to use it. It should be read after the Serpent Overview and before other

Serpent documentation.

1.1.1 Organization

This guide is organized into the following chapters:

* Introduction. Presents information about installing Serpent.

* System Configuration. Outlines the layout of the Serpent system.

* System Components. Describes the interaction between the various

components of the Serpent system.

• Example Dialogue/Application. Presents a four-stage example.

1.1.2 Typographical Conventions

The following conventions are observed in this manual.

Code examples Courier typeface

Variables, attributes, etc. Courier typeface

Syntax Courier typeface

Warnings and Cautions Bold, italic statementv

Serpent: System Guide (CMU/SEI-9 I -UG-2)

Introduction

1.2 Other Serpent Documents

The following documents provide infomiation about the Serpent system.

Serpent Overview

Introduces the Serpent system.

Serpent: Saddle User's Guide

Describes the language that is used to specify interfaces between an application and Serpent.

Serpent: Dialogue Editor User's Guide

Describes how to use the editor to develop and maintain a dialogue.

Serpent: Slang Reference Manual

Provides a complete reference to Slang, the language used to specify a dialogue.

Serpent: C Application Developer's Guide

Serpent: Ada Application Developer's Guide
Describe how the application interacts with Serpent. These guides describe the runtime interface
library, which includes routines that manage such functions as timing, notification of actions, and
identification of specific instances of the data,

Serpent: Guide to Adding Toolkits

Describes how to add user interface toolkits such as various Xt-based widget sets to Serpent or to
an existing Serpent application. Currently, Serpent includes bindings to the Athena Widget Set and
the Motif Widget Set.

2 Serpent. System Guide (CMU/SEI-91-UG-2)

Introduction

The following figure shows Serpent documentation in relation to the Ser-

pent system:

Dialogue p Sntation

Saddle 1-1 Sern Usecuments

U ser'st Syutee G uide (C U / EIg -U -2

W..'

Sadelang Slang San
Processor Compl-ir Program.-Rfeec

rTransaction
application Processing dialogue presentation 1 /0

layer Librar layer layer Tolkt

Figure 1-1 Serpent Documents

Serpent: System Guide (CMUISEI-91-UG-2) 3

Introduction

1.3 Installing Serpent

Serpent runs on most versions of Unix that support the AT&T Interp'ocess Communication (IPC)
system. Typically, these Unix versions are based on either AT&T System VR2 (or later revisions),
or BSD 4.3 (or later revisions), and include releases by Sun Microsystems, Digital Equipment
Coporation, Hewlett Packard, IBM, and others.

Most examples in this document address applications written in C. Serpent also supports an Ada
based interface, but for ease of description, the examples used in Chapter 4 of this document are
written in C.

The Serpent system is automatically installed with the tar utility and the INSTALL C-shell script
that is provided with Serpent. The installation script checks for all the required programs, and
registers the installation site as a Serpent user. Once the installation procedure has completed, the
directory hierarchy will exist as outlined in Section 2.3.

Other than running tar and INSTALL, usually no special installation actions need be done by the
system administrator.1

If the IPC is not configured in the Unix kernel, the system administrator may need to regenerate the kernel to include this
facility.

4 Serpent: System Guide (CMU/SEI-91 -UG-2)

System Configuration

2 System Configuration
This section outlines the layout of the Serpent system - the environment variables used by
Serpent, the file formats and naming conventions, and the Serpent directory hierarchy.

2.1 Environment Variables

Serpent uses three environment variables that must be set before Serpent can be used. It is
advisable to set these variables in your . cshrc or other shell initialization file. These
variables are used by both the C-shell scripts and the executable programs within Serpent.
The variables are:

SERPENTBASEPATH

This environment variable establishes the root of the Serpent hierarchy.
It contains a single absolute path name, which is the location of the
directory containing all of the Serpent subdirectories. The user may
change this variable as necessary, but should be aware that changes to it
may necessitate changes to the settings of the following two variables.

SERPENTDATAPATH

This environment variable specifies the data search path used by
various Serpent components. It contains a space-separated list of the
directories where referenced files may be located. The types of files
that are located with this environment variable include: included files,
All files, iconic bitmaps, etc. As specified in the Serpent distribution,
the three components of this environment variable are: "." (the
current directory), $SERPENT BASEPATH/data, and
$SERPENTBASEPATH/include. The user may add directories to
this search path as desired.

SERPENTEXEPATH

This environment variable specifies the search path used to locate
executable programs used by the Serpent system. It contains a space-
separated list of directories to be searched to locate Serpent executable
programs (note that this is different from the PATH environment variable

established by the shell). As specified in the Serpent distribution, the two
components of this environment variable are: "." (the current directory)

and $ SERPENTBASEPATH/bin. The user may add directories to this

search path as desired.

Serpent: System Guide (CMU/SEI-9 I-UG-2) 5

System Configuration

IMAKE INCLUDE

This environment variable tells the imake program where to find its included
files (other than in whatever happens to be the current directory). As specified in
the Serpent distribution, this variable is defined as the string
I$SERPENTBASEPATH/config".

2.2 File Types and Naming Conventions

The Serpent system maintains a number of different types of files with different file name
extensions. In the following, the file name ba z is assumed.

1. Slang source file (ba z. s) - the source language (Slang) description of a Serpent
dialogue. Slang source files describe the layout and interaction of a dialogue. The user
may write directly in Slang or may use the dialogue editor to build a Slang dialogue.

The Slang compiler will generate six or eight files from a compilation. The user should
not attempt to modify any of these files (they are created with a leading period character
to make them "invisible" to the 1s command. Given a source file named ba z . s 1, these
files would be named: .baz.c, .baz.h, .baz.t, .baz.x, .baz.z, .baze.d,
.bazi.d,and .bazt.cLThefile baz.o will be produced from the C compilation of
the file .baz .c.

If dialogues are both compiled and linked (see Section 3.2 for details), an additional file
will be generated: baz, an executable version of the dialogue.

2. Externals definitions (ba z .ext) - a special type of include file used by the Slang
compiler. Externals files are provided by the Slang compiler as a way of defining
commonly used external functions, such as the Serpent string-handling library.

3. Saddle source file (baz . sdd) - the source language description of the Serpent shared
data description. Shared data can serve two functions:

- Shared data descriptions are used to describe the format (but not the layout in
memory) of items to be shared between components of a running Serpent appli :.tion,
specifically, between the dialogue and the application, and between the dialogue and
the toolkit interface program. Shared data elements are dynamically created and
destroyed by either the dialogue or the application.
* Shared data descriptions are also used to describe the format of dynamically created
elements used exclusively within the dialogue. Although these elements are not shared
with any other component of the Serpent system, the source description and the
interface model are identical. The term dialogue shared data is reserved for this private
"shared" data.

6 Serpent: System Guide (CMU/SEI-91-UG-2)

System Configuration

4. Interface language layer file (ba z . i 11) - one of the files generated by the

Saddle compiler, this file is the internal representation of the shared data

description. It should not be edited by the user.

5. Glue file (ba z . gl) - the source level description of the toolkit interface. It is

compiled by the Glue program into a technology file. A Glue description lists

all of the widgets within a technology. For example, for the Motif widget set,

the Glue file describes all of the Motif widgets.

Two other file extensions are used within the Glue source. These are used as
parts of a Glue description, but since they are incomplete portions of a

description, they are assigned a different extension. These file extensions are:

" Attribute list (baz. at) - a list of technology specific attribute/value pairs.

" Method description (baz. me) - a technology-specific method description.

6. Technology file (baz. tx) -one of the files generated by the Glue compiler. It

is a binary representation of the technology definition and should not be

modified by the user.

2.3 Layout of Programs and Data Files

As shipped, the Serpent system contains source and include files for a number of programs.
These files are automatically placed by the installation/register program. The directory

hierarchy is as follows (refer to Section 3 for details on each section):

bin

The directory containing the executable images of all of the generated

Serpent programs.

ctoolkit

The directory containing the Zimmermann list, hash, and tree packages.

The C toolkit is used internally by most Serpent applications. This

directory has two subdirectories, ctoolkit/include and

c toolkit/src.

compiler

The directory containing the Slang compiler. The compiler translates a
Slang dialogue into a set of interpretable tables, which are used by the

dialogue manager. The compiler directory has two subdirectories,
compiler/include and compiler/src. The compiler is detailed in

Section 3.2, and can be invoked with the serpent command.

Serpent: System Guide (CMUISEI-91-UG-2) 7

System Configuration

data
This directory contains all the technology files generated for use by the toolkit

interface (Six) and the . 11 files for the same technologies, bitmap files for the

dialogue editor, include files defining technology specific constants, etc.

de

This directory contains the dialogue editor. It has two subdirectories,

de/include and de/src. The dialogue editor is detailed in the Serpent:

Dialogue Editor User's Guide (CMU/SEI-91-UG-4).

demos

This directory contains a number of demonstration programs of varying

complexity that illustrate the features of Serpent. This directory contains three

subdirectories, demos / sat, demos / smo, and demos / sol, for dialogues written

for the Athena Widget set, the Motif widget set, and the OpenLook widget set,

respectively. Each demo is in a further subdirectory sorted by demo name.

Documentation for each demo is contained within the README file in the demo

subdirectory.

dim
This directory contains the source files for the dialogue manager. The dialogue
manager is used to execute a compiled dialogue and realize it on the user's

display. This directory has two subdirectories, din/include and dm/src. The

dialogue manager is detailed in Section 3.3. It is not invoked directly, but as part

of the overall execution of a dialogue.

docs

This directory contains PostScriptTM images of all of the Serpent documentation.

Source files for Serpent documents are not provided.

externs
This is the source directory for Slang-external functions. i.e., functions provided

with Serpent which are referenced via the EXTERNALS declaration in Slang. This

directory contains two subdirectories, externs/include and externs/src.

glue

This is the directory containing the Glue program. Glue is the tool that builds

technology bindings from descriptions. This directory has two subdirectories,
glue/include and glue/ s rc. The glue system is described in greater detain
in Section 3.4 and in the Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-

8), and is invoked with the glue command.

8 Serpent: System Guide (CMU/SEI-91 -UG-2)

System Configuration

include

This directory contains all of the globally accessible include files for

building the Serpent applications. It is also used by the user building a

dialogue (via the environment variable SERPENT.DATA.PATH) to locate

the necessary. ill files.

int

This directory contains the source and include files for the inter-process

communication interface between the technology, application, and

dialogue manager in the Serpent system. This directory has three

subdirectories: int/include, int/src, and int/ada. The first
two contain the C source and include files. The directory int /ada

contains the Ada type declarations for Serpent and Ada bindings to the

C object files, with a subdirectory for each Ada compiler - currently
int/ada/alsys and int/ada/verdix.

lib

This directory contains all of the generated libraries used in the Serpent

system.

man

This directory contains all of the manual page entries for the Serpent
system, using the standard -man package. Two subdirectories,
man/man 1 and man / cat 1, follow the Unix manual page standard.

masterctags

This file is a tags file for all of the Serpent system. All tags are

automatically generated by the Makefiles by using the ctags utility.
Each source directory also maintains its own tags file, but this file
encompasses all of the Serpent source. To use both the local and master

tags files within vi, the following command must be issued:

:set tags tags\ $SERPENTBASEPATH/master ctags

To use Gnu EMACS, the Makefiles must be changed to use the tags
utility. Within Gnu EMACS, the command:

Meta-x visit-tags-table

must be used to specify the correct tags file set.

Serpent: System Guide (CMU/SEI-91-UG-2) 9

System Configuration

saddle

This directory contains the source and include files for the Saddle processor. This
directory has two subdirectories, saddle/include and saddle/src. Saddle

is explained in greater detail in Section 3.1 and in the Serpent: Saddle User's

Guide (CMU/SEI-91-UG-3), and is invoked with the sdd command.

six

This source directory contains the source for the Six toolkit, as well the generated
files for the Motif, OpenLook, and Athena widget sets. Six is the Serpent
Interface to X. and is described in more detail in the Serpent: Guide to Adding
Toolkits (CMU/SEI-91-UG-8). This directory has two subdirectories, s ix/s rc
and six/include. The toolkit uses Glue, Saddle, and hand-tailored C code to
implement a Serpent interface to a technology. The individual toolkits are not
executed directly, but rather as part of a general dialogue execution.

tools

This directory contains the source files for various tools used with Serpent,
including the preprocessor, dialogue debug tools, shared memory debug tools,
and the serpent command. This directory has two subdirectories,
tools/include and tools/src.

utilities

This source directory contains utility routines used throughout the Serpent
system, including a general symbol table management package and assorted
string and data management routines. This directory has two subdirectories,
utilities/include and utilities/src.

10 Serpent: System Guide (CMU/SEI-91 -UG-2)

System Components

3 System Components
This section outincs the interaction between the various components of the Serpent system.

These interactions are more fully described in Section 4, where a complete example

dialogue and application are constructed using all of the components of the Serpent system.

The key in Figure 3-1 shows the shapes of objects used in all of the following figures:

User Input Files or Serpent or Object or
Generated Files System Program Library Files

file. ext

File I/O Optional Components D
D F Shown in Gray Interfigure Cross Reference

Data Flow

Figure 3-1 - Key to Illustrations

Interfigure cross references are used for files that are generated by one component of the
Serpent system and used by another. For example, .ill files are generated by the Saddle
compiler (described in Section 3.1) and used by the Slang compiler (Section 3.2) and by the
dialogue manager runtime (Section 3.3). To facilitate your understanding of the

relationships between the various components, the .ill files are tagged with the letter .

3.1 Saddle Compiler

The Saddle compiler is used to translate an editable description of a shared data layout (a
Saddle file) into an internal form (an .ill file). Saddle descriptions are used to define the
components of shared data records that the dialogue or application can create and share

between them.

The Saddle description also describes the way in which the associated application program

is executed (this can be a toolkit interface or a user application program). When the Slang
compiler reads the .ill files, it determines which programs must be run to instantiate the
user-defined system.

Serpent: System Guide (CMU/SEI-91-UG-2) 11

System Components

The path from Saddle source file to .ill file is illustrated in Figure 3-2. The Saddle compiler reads
the user-created Saddle source file 2 and creates two output files. The first is an .ill file (iabe.ld a.,
which is used later by both the Slang compiler and the dialogue manager runtime. The .ill file is
created in a binary format that is not designed to be edited by the user. The second file is a C include
file (or an Ada spec, labelled !D, which may be used by the application program. The include file
creates a set of typedefS which are equivalent to the declarations made in the Saddle file. In this
way, the application program can use a data format that is identical to that known by the dialogue
for all shared data transactions.

.ili File

stuff. ill
Saddle Source

Saddle Compiler

stuff.said

N Include File

stuff.h

Figure 3-2 - Saddle Compiler

If an application program exists, the only way it can share data between itself and the dialogue is
through shared data described in a Saddle description. However, not all dialogues need an
application program. The counter demo is one such example. It is also important to note that the
Saddle description does not declare any shared data - it merely defines the format of the various
shared data types, which then allows either the dialogue or the application to create instances of
those tynes at runtime.

3.2 Slang Compiler and Linker

The Slang compiler is used to translate a user-written Slang dialogue into an executable form. A
Slang file describes four aspects of the dialogue:

1. Which programs must be run to instantiate the user dialogue (this information is
obtained in the .ill files)

2. The layout of and relationships between objects on the screen when the dialogue is
executed

2 Saddle files can also be created by the Glue compiler (Section 3.4). The Saddle compilation process is identical irrespec-

tive of source.

12 Serpera: System Guide (CMU/SEI-91-UG-2)

System C,nponents

3. The interactions between objects in the dialogue layer, interactions between
the dialogue and the user application program, and actions the dialogue should
take in response to user actions

4. Conditions under which groups of objects (i.e., view controllers) are created
and destroyed

The pathway for compiling a Slang dialogue into an executable image is illustrated in
Figure 3-3. The user-created dialogue (in this example, named baz. sl) is run through the
compiler and linker to produce an executable image (labelled 2, and in this example,
automatically given the name baz). The compiler also generates a number of other

Symbol Table CDialogue So-rce File Interpreter Code

ba z. s Execution Setup
Slang

Compiler ----

Technology,
Dialogue, and Function References

Application. i 11
Files

Figure 3-3 - Slang Compiler and Linker

"invisible" files (enumrerated in Section 2.2): interpreter source code fties, an execution
initialization file (containing the execution instructions from the .ill files), and symbol table
files. 3 The compiler also reads in the .ill files (labelled .) needed for this compilation. The

.ill files can be for a technology (e.g., sno . iii. for the Motif widget set), for application
shared data, or for dialogue shared data.

Serpent: System Guide (CMUSEI-91-UG-2) 13

System Components

Compiling a dialogue is accomplished with the serpent command. The -c switch is used to
compile a dialogue (producing the symbol table, interpreter code, exe-',tion setup, and external
function reference files), while the -1 switch is used to process an existing function reference file
and link it with. the dialogue manager runtime libraries to produce an executable image of the
dialogue. Both the -c and -1 switches may be specified together, which will cause the dialogue to
be compiled and linked in the same command. The serpent command is described in more detail
in its manual page.

3.3 Dialogue Manager

Once a dialogue is compiled, it must be executed to visualize the dialogue. This can be done either
through the serpent command with the -g switLh, or by simply typing in the name of the dialogue
itself. When a dialogue is executed, two or more programs are started automatically. One program
is run for each technology that the dialogue uses (e.g., smo for the Motif toolkit, sat for the Athena
toolkit, etc.), one (or more) for the user application program(s) (if present), and one for the dialogue
manager.

The dialogue manager is not a separate program per se, but is a collection of library routines which
are linked with a compiled form of the user-specified dialogue. Figure 3-4 shows the actions of the
dialogue manager during the execution of a dialogue. The executable version of the dialogue,

Technology,

A Dialogue, and
Application .ill Files ~Tool-kits

EecutableImg

of Dialogue

Symbol Table _D

Interpreter Code
Execution Setup -- ppitions

Figure 3-4 - Dialogue Manager

generated by the Slang compiler and linker (labelled Q, reads in the .ill files specified in the
Slang source (labelled a and the symbol table and interpreter code generated by the Slang compiler

3 The user should not change the name of the executable file directly; the names of all of the generated files are bound into
the executable image. These files (labelled L are later used by the dialogue manager runtime (see Figure 3-4).

14 Serpent: System Guide (CMU/SEI-91-UG-2)

System Components

(labelled _0. The dialogue manager does not generate any files, but communicates with the
technologies (that were generated through Glue, Six, or other methods's and the
application(s) (described in Section 3.5) to cause the dialogue to te- executed.

3.4 Toolkit Interface

The toolkit interface is the mechanism by which a dialogue communicates with the display
medium. Each toolkit interface is a separate program, a copy of which must be executed for
each running dialogue. Toolkit interfaces are .sed, for example, to visualize and interact
with toolkit widgets so that the dialogue (and dialogue writer) need not be concerned with
the mechanics of the toolkit.

A toolkit interface may be written in one of two ways: either by writing it from scratch,
using the Serpent shared memory interface, or by describing the toolkit with Glue, and
writing a minimal amount of C code to produce a Six binding. Ordinary Serpent users do
not need to concern themselves with toolkit integration. Only when a new toolkit (or a new
release of an already bound toolkit) is released does a toolkit interface need to be
constructed.

Serpent: System Guide (CMU/SEI-91-UG-2) 15

System Components

3.4.1 Glue and the Six Interface

If a toolkit is based on the standard X Toolkit model, it is fairly easy to build a toolkit interface with
the programs Glue and Six. Figure 3-5 shows the pathway followed for toolkit integration in

Toolkit
Interface

Glue Source (smo. tx)
Description ofGleCmir

T oo lk it (s m o .g l)
T c n l gSTechnology

Method and Binding
Files

Saddle File I

Figure 3-5 - Glue and Six

Serpent.The Glue program reads in a description of an Xt-based toolkit and creates a toolkit file
(labeled D and (optionally) some ancillary C files. The Serpent interface to X (Six), is linked with
the ancillary C files to produce a toolkit-specific interface.

3.4.2 Other Paths for Toolkit Integration

Two toolkit interfaces are provided with the Serpent distribution: Motif and Athena. Because the
underlying toolkits are Xt-based, each of these interfaces was created through the use of Glue and
Six. However, not all toolkits are Xt-based, and other methods can be used to create a Serpent toolkit
interface.

Two examples are a digital mapping system and a gesturing system. Although both of these
interfaces have been created with Serpent, they were done on an experimental basis and are not
distributed with Serpent. Refer to the Serpent: Guide to Adding Toolkits (CMU/SEI-91-UG-8) for
full details on toolkit integration.

16 Serpent: System Guide (CMU/SEI-91-UG-2)

Sytem Components

3.5 User Application Program

Depending on the complexity of the system, a dialogue may have an application program
associated with it. The application is responsible for performing those actions which are
outside of the aegis of the user interface. It is certainly possible to place application code in
the dialogue, just as it is possible to put user interface code in an application. Serpent was
designed, however, with separation of concerns in mind. As a simple example, an
application program can be a database system - the user interface can be textual, button
oriented, or some other mechanism. The application is tasked with accessing the database,
irrespective of the user interface characteristics.

The relationship between me application program and the dialogue is shown in Figure 3-4.
The application is free to perform any manner of calculations and accesses of external files
it wishes. In the current version of Serpent, application programs may be written in C or
Ada, or in any language that can interface with either C or Ada. The only restriction is that

the application communicate with the dialogue manager (and thus the running dialogue)
through the Serpent interface routines. These routines are described in detail in the Serpent:
C Application Developer's Guide (CMU/SEI-91-UG-6) and in the Serpent: Ada
Application Developer's Guide (CMU/SEI-91-UG-7). Section 4.3.4 outlines the steps
needed to link the interface routines with the application program.

3.6 Running A Dialogue/Application

Once the dialogue (and optional application program) have been compiled and linked,
running the dialogue is a simple matter of typing the dialogue name. The user may also type
serpent -g <dialogue>, and achieve the same result (full details can be found in the
manual page for the serpent command). In both cases, the serpent command initializes
the Serpent environment and executes the required programs. Although the initialization
actions of the Serpent system are automatic, it is useful to understand what happens when
a dialogue starts executing.

Serpent: System Guide (CMU/SEI-91-UG-2) 17

System Components

The following steps occur when running a dialogue and application. Assume that the dialogue is
named baz:

1. The serpent command looks for a file named, bazi. d in the directories specified in
the environment variable SERPENT EXE PATH. This file contains the names of . ill
files and the associated mailboxes that are used by the dialogue. Mailboxes are the
mechanism that Serpent uses to communicate between processes. Although it may not
be explicitly listed, the name DMBOX will be used if there is no specific application
mailbox.

The serpent command creates a Unix message queue for each mailbox listed in
.ba z i. d (and one for DM_BOX), as well as Unix shared memory segment(s) and a Unix
semaphore set for controlling access to the shared memory. The Unix IPC handles for
each of these resources are passed through environment variables to the programs that
are executed in the following steps.

2. The serpent command next looks for a file named . baze . d. This file contains the
files which must be executed to realize the dialogue. Each program name (and
arguments) is preceded by the name of an environment variable. If the user has an
environment variable with this name, the string contained in the environment variable
will be executed instead of the command in the file named . baze. d. This is one way
in which one of the programs in a dialogue may be debugged - by substituting a
debugger execution instcad of the normal command execution.

Note that the environment variable SERPENT EXE PATH is used to find the executable
image and not the variable PATH. This means that in order to run a debugger, there must
be a symbolic link to the debugger from somewhere in SERPENTEXEPATH.

3. The programs listed in .baze .d are executed. Typically, this will include the dialogue
manager (which for this example would be named ba z), one or more toolkit interfaces
(typically smo, sat, or sol), and if the user has specified any, one or more application
program. Once executing, a dialogue appears as shown in Figure 3-4. Each of the
running programs communicates through the message queues, semaphores, and shared
memory established in Step 1.

18 Serpent: System Guide (CMU/SEI-91 -UG-2)

Example Dialogue/Application

4 Example Dialogue/Application
To best understand the interaction of the various components of a Serpent dialogue, and to

better understand how a dialogue and application can be created using a stepwise

refinement technique, this document concludes with a sample dialogue and application.
Rather than show just the completed system, however, the example constructs the system

from scratch, Tnuch as a prototype system would be developed into a fully functional

system.

This particular example builds a clock which displays the current time of day and allows its

user to optionally set the time. The user will also be able to optionally display the date along
with the time. The example is broken into four stages:

1. A layout of the dialogue is constructed, with all objects visible and none of the
object interactions constructed. There is no application program interfaced
with the dialogue.

2. The object interactions are more fully specified, so that objects are made
visible under certain conditions and hidden under others. Although there is no
application program (that is, the date and time will be hard-wired constants in
the dialogue), the user will be able to exercise the "show date" and "set time"
features of the dialogue.

3. An application program is constructed. With almost n,) change to the dialogue,
the application program will supply the current time and date to the dialogue,
and the dialogue will communicate changes made by the user back to the
application.

4. A completely different dialogue is constructed using the application program
written for stage 3. This final stage shows one aspect of the flexibility of
Serpent, where different user interfaces can be evaluated for a single
application program.

A picture of the running dialogue in its final form is shown in Figure 4-1:

Figure 4-1 - Picture of Executing Dialogue

Serpent: System Guide (CMU/SEI-9I-UG-2) 19

Example Dialogue/Application

4.1 First Stage of Developing Clock

In its first stage of development, the sample clock is simply a layout that can be used to show the
placement of objects in the dialogue. None of the controls actually do anything to affect the dialogue
or layout, although the toggle buttons can be tumed on and off due to the behavior of the technology
(in this case, the Motif widget set).

The layout of the first stage as it appears on the screen is shown in Figure 4-2. Note that even though
the "Show Date" toggle has not been selected, the date is shown. This is because the dialogue is used

.

J* 24 Hour
11 Show Date

1'12 Hour]

February 12, 1991

Figure 4-2 - Initial Clock Dialogue Layout

only as a layout example - the controls are just "dummied up" to appear as they will in the final
dialogue. Note also that the arrow buttons to the right of the minutes indicator overlaps the AM/PM
indicator. This is intentional, and is in anticipation of the AM/PM indicator being movable,
depending on whether the arrow buttons are present or not.

Finally, note that all objects have been drawn with borders around them. While this is the default
for some objects, for other objects (such as toggle buttons), the borders have been added to
emphasize visibility and placement. These borders are removed in the final version of the dialogue.

4.1.1 Slang Dialogue

The Slang dialogue for the sample clock is shown in Example 4-1. This dialogue may also be found
as the file demos/smo/clock/one. sl in the Slang source hierarchy.

20 Serpent: System Guide (CMU/SEI-91 -UG-2)

Example Dialogue/Application

Note that the first line of the Slang dialogue includes the file smo. ill, indicating to Slang
that the Motif toolkit will be used throughout the dialogue. The file glueXm. h is also
included. This file defines the constants XmARROW_UP, XmACKCOLUMN, etc. Although a
different toolkit could have been used, all widgets in this example dialogue are from the
Motif toolkit.

#include "smo.ill"

Ill

#include "glueXm.h"

OBJECTS :

palette : XmBulletinBoard I
ATTRIBUTES :

height 200;
width 375;

quit : XmPushButton I
ATTRIBUTES :

parent : palette;
labelstring : "Quit";
height 35;
width 40;
x palette.width - width - 10;
y palette.height - height - 10;

METHODS :
notify : { exito; }

hours XmLabel
ATTRIBUTES :

parent : palette;

fontlist : "*-courier-bold-r-*-*-34-*"1;
labelstring : "13";
recomputesize : false;
borderwidth : 1;
height 25;
width 40;
x 115;
y 15;

Serpent: System Guide (CMU/SEI-91-UG-2) 21

Example Dialogue/Application

colon :XmLabel
ATTRIBUTES:

parent :palette;
fontlist : *courier-boldr-*-*34-*";
labelstring :""
recomputesize :false;

borderwidth 1;
height 25;
width 15;
x 155;
y 15;

minutes XmLabel
ATTRIBUTES:

parent :palette;
fontlist : *cuirbldr**3-"
labelstring :"05";
recoruputesize :false;
borderwidth :1;
height 25;
width 40;

X 170;
y 15;

AM PM XmLabel
ATTRIBUTES:

parent :palette;
fontlist : *cuirbldr**2-"
labelstring :"AM";
recomputesize :false;
borderwidth :1;
height 23;
width 40;
x :215;
y :17;

hrsup XmArrowButton
ATTRIBUTES:

parent :palette;
arrowdirection XmARROWUP;
shadowthickness 0;
borderwidth 1;
height 12;
width 12;
X 100;
y 15;

22 Serpent: System Guide (CMU/SEI-91.-UG-2)

Example Dialogue/Application

hrs-down :XinArrowButtofl
ATTRIBUTES:

parent :palette;
arrowdirection XmARROWDOWN;
shadowthickness 0;

borderwidth :1;
height 12;
width 12;
X 100;
y 30;

rins_up XmArrowButton
ATTRIBUTES:

parent :palette;
arrowdirection YimARROWUP;

shadowthickness 0;
borderwidth :1;
height 12;
width 12;

x 213;
y 15;

Mins-down :XrnArrowButtoflI
ATTRIBUTES:

parent :palette;
arrowdirection XmARROW DOWN;

shadowthickness 0;
borderwidth :1;
height 12;
width 12;
x 213;
y 30;

date :XrnLabelI
ATTRIBUTES:

parent :palette;

labeistring :"February 12, 1991";
recomputesize :false;
borderwidth :1;
height 35;
width 200;
x :85;
y :130;

Serpent: System Guide (CMU/SEI-9 I-UG-2) 23

Example Dialogue/Application

FormatSelector XmRowColun
ATTRIBUTES

parent palette;
height 100;
width 200;
X 95;
y 65;
packing :XEUPACK_-COLUMN;
numcolumns 1;
orientation XmVERTICAL;
radiobehavior true;
radioalwaysone true;

Buttoni XrToggleButton
ATTRIBUTES:

parent :FormatSelector,
labeistring :"12 Hour";
indicatortype :XmONEOF MANY;
borderwidth :1;
width 75;
height 30;
set :false;

Button2 :XmToggleButton
ATTRIBUTES:

parent :FormatSelector;
labelString " 24 Hour";
indicatortype :XmONEOF-MANY;
borderwidth :1;
width 75;
height 30;

set true;

ShowDate XmToggleButton
ATTRIBUTES:

parent :palette;
labelString "Show Date";
borderwidth 1;
x 200;
y 80;
width 80;
height 20;
set :false;

24 Serpent: System Guide (CMU/SEI-9 1 -UG-2)

Example Dialogue/Application

SetTime : XmToggleButton
ATTRIBUTES :

parent : palette;
labelString : "Set";
borderwidth : 1;
x 320;
y 20;
width 40;
height 20;
set : false;
I

Example 4-1 Slang Dialogue for Sample Clock

4.1.2 Makefile

The Makefile for this dialogue is very simple. It needs only to compile the dialogue file with
the Slang compiler, and needs no application program or external C routines.4

one: one.sl
serpent -cl one

4.2 Second Stage of Developing Clock

In the second stage of development, the dialogue for the clock still exists without an
application (that is, the time and date are still hardwired), but the interactions between
objects have been defined, and the controls now actually do something. Figure 4-3 shows

13:05 0Set

24 Hour
1 H Show Date12 Hour

Figure 4-3 - Clock Dialogue, Revised Layout

the revised layout of the clock program as it appears at program start-up.

4 The actual Makefile for the dialogue is more complicated than this, due to ima ke complexities and the fact
that the Makefile contains instructions for all four examples shown in this document. However, for this single
dhi:gue, t1 , are the only requirements.

Serpent: System Guide (CMUISEI-91-UG-2) 25

Example Dialogue/Application

There are a few important things to note about the appearance of the dialogue as it is initially
presented. The first is that the borders have been removed from most of the objects, and that the
shadow border around the "Quit" button has been enhanced to improve its visibility. One advantage
of Serpent is that it allows incremental refinement of the appearance or behavior of a dialogue
during the specification or development stage of a project.

The second thing to note is that the visibility of the "set" buttons (the arrows to the left and right of
the time fields), the AM/PM indicator, and the date have all been tied to the actions of the
corresponding controls. This is done by placing them in Serpent view controllers whose creation
conditions (and implicitly, destruction conditions) are based on the values of variables or of
attributes within other objects.

Figure 4-4 shows the display that the user sees when the button labelled "Show Date" (the
ToggleButton object named ShowDate) is pressed. The toggle method associated with the object

13:05 3 set

24 Hour
1H Show Date12 Hour

February 12, 1991

Figure 4-4 - Revised Layout Showing Date Enabled

is activated, which simply sets the variable doShowDate to the value of the set attribute within the
object. The date (still hardwired in the dialogue) appears in its specified location. Note that the
BulletinBoard widget (called palette) which encloses all of the objects, grows to allow the date
to fit. This is because the height of palette depends upon the variable DatePlus in the dialogue,
which in turn depends upon the value of the doShowDate variable. Note also that the "Quit" push-
button shifts downwards to accommodate the change in palette's size. This is because the "Quit"
button's x and y attributes depend on the height and width attributes of palette (that is, the
location of "Quit" is specified relative to the bottom right comer of the BulletinBoard widget to
which it is parented).

26 Serpent: System Guide (CMU/SEI-91-UG-2)

Example Dialogue!Application

Although the ToggleButton turns black to indicate that it is selected, this action is not
directly specified in the dialogue; rather, this action is provided by the toolkit interface, in
this case, smo, the Serpent/Motif interface. When the "Show Date" button is pressed a
second time, the button will once more turn white (and the toggle method will be
activated to reflect the new value of the set attribute).

Figure 4-5 shows the same dialogue with the "Show Date" button deselected, but with the
radio button for "12 Hour" mode selected. Because the variable DatePlus now has a value
of 0, the palette shrinks back to its original size, and the "Quit" push-button moves
upwards again. When the "12 Hour" radio button is pushed, the toggle method associated

1:05 PM oSet

024 Hour
1H Show Date12 Hour

Figure 4-5 - Revised Layout Showing 12-Hour Mode Enabled

with the button being pressed (and the button being "unpressed") are called. In this case,
both actions set the variable MilitaryTime to false. The double action is redundant here,
but does not harm anything in the dialogue.

Because the creation condition for the AM_PM view controller is specified as not
MilitaryTime, when MilitaryTime becomes false, the view controller is created.
Since the value of hours text is greater than 12, the labelst ring associated with the
A _PM object within the vicw controller of the same name becomes "PM". Note that the
definition and assignment of the labelstring attribute is only performed after the view
controller is created; no actions are performed in the object if the creation condition for the
view controller is not satisfied. Note also that if the "24 Hour" button is pressed (which will
cause MilitaryTime to become true), the view controller and all of its associated objects
will be deleted.

Figure 4-6 shows the same dialogue with the "Set" ToggleButton depressed. When the
Set-Time object is clicked in the first time, the variable doSet Time is set to true. This
causes the set-buttons view controller to be created, which causes the four arrow

Serpent: System Guide (CMU/SEI-91-UG-2) 27

Example Dialogue/Application

buttons to appear. Note that the AMPM object shifts to the right to make room for the buttons. (The

S1:O5 PM MSet

<Z 24 Hour
1H Show Date12 Hour

Figure 4-6 - Revised Layout Showing "Set" Buttons Enabled

x attribute of the object is dependent on the variable SetPlus, which is in turn dependent on the
variable doSetTime.)

When the up and down buttons are pressed by the user, the value of hourstext or
minutestext are incremented or decremented in the notify methods associated with each of
the ArrowButton objects. The method code is responsible for keeping the hours within the range of
0 and 23, and for keeping minutes between 0 and 59. The code snippet associated with the hours

object is responsible for displaying the hour value in the proper (12 or 24 hour) format.

4.2.1 Slang Dialogue

The Slang dialogue for the sample clock is shown in Example 4-2. This dialogue may also be found
as the file demos/smo/clock/two. sl in the Slang source hierarchy.

One predominant change from the last example is that the AM/PM indicator, the "set" buttons, and
the date display have all been moved into view controllers. This Serpent paradigm allows objects to
be created and destroyed, based on conditions within the dialogue (so that, for example, the date
may appear when the value of the variable doShow._Date is true). Another major change is that the
controls are now live, in that the method code has been filled in and that the values of certain
attributes (the labeistring attribute of the hours object) are now dcpendent on complex code
snippets instead of static text.

The AM/PM indicator now has its location based on the presence of the set buttons (which is to say,
it shifts over to make room for the buttons). Additionally, a shell widget was added to allow the
display to grow when the date is shown.

28 Serpent: System Guide (CMU/SEI-91-UG-2)

Example Dialogue/Application

Another change worth noting is that the dialogue now uses an external C routine, called
i2str. This routine is described in greater detail in Section 4.2.2. Finally, compare the way
in which the toggle method in the Buttoni and Button2 objects is used to accomplish
actions similar to that using the set attributL in the ShowDate and SetTime objects.

Note: change bars are used to show where the code in this example differs from the
previous example.

#include "smo.ill"

#include "glueXm.h"

EXTERNALS :
string i2str(integer);

VARIABLES :
hours-text : "13";
minutes text : "05";
DatePlus : I

IF (Show Date.set) THEN
DatePlus 50;

ELSE
DatePlus 0;

ENDIF;

SetPlus
IF (Set Time.set) THEN

SetPlus 12;
ELSE

SetPlus 0;
ENDIF;

MilitaryTime : true;

OBJECTS :

shell : XmTopLevelShell I
ATTRIBUTES :

height palette.height;
width palette.width;

allowShellResize : true;

palette : XmBulletinBoard I
ATTRIBUTES :

parent shell;

height 150 + DatePlus; I
width 375;

Serpent: System Guide (CMU/SEI-91-UG-2) 29

Example Dialogue/t)plication

quit :XxPushButtonI
ATTRIBUTES:

parent :palette;
labeistring :"Quit";
borderwidth 1;

shadowthickness :3;
height 35;
width 40;
x palette.width - width - 10;

y palette.height -height - 10;
METHODS:

notify {exit();

FormatSelector XmRowColun f
ATTRIBUTES

parent :palette;
height :100;
width 200;
x :95;
y 65;
packing :XrPACK_-COLUMN;
numcolurifs 1;
orientation XmVERTICAL;
borderwidth 0;
radiobehavior true;
radioalwaysone true;

Buttoni : XmToggleButtonI
ATTRIBUTES:

parent : FormatSelector;
labeiString :"12 Hour";
indicatortype : XmONEOFMANY;
width :75;
height 30;
set :false;

METHODS:
toggle : I MilitaryTime :=not set;I

Button2 :XxnToggleButtonf
ATTRIBUTES:

parent :FormatSelector;
labelString : "24 Hour";
indicatortype :XmONEOFMANY;
width 75;
height 30;
set :true;

METHODS:
toggle : I MilitaryTime :=set; I

30 Serpent: System Guide (CMU/SEI-91-UG-2)

Example Di alogue/Appl ication

Show_-Date :XrToggleButton
ATTRIBUTES:

parent :palette;
labeiString :"Show Date";
x 200;
y 80;
width 80;
height 20;
set false;

Set Time XmToggleButton
ATTRIBUTES:

parent :palette;
labelString :"Set";
x 320;
y 20;
width 40;
height 20;
set :false;

hours :XmLabel
ATTRIBUTES:

parent :palette;
fontlist : *cuirbldr**3-"
labeistring:{

IF (MilitaryTime) THEN
labelstring :=i2str(hours text);

ELSIF (hours text = 0) THEN
labelstring :=12;

ELSIF (hours text <= 12) THEN
labelstring hours_text;

ELSE
labelstring hours-text - 12;

END IF;

recomputesize :false;
alignment :XmALIGNMENT END;
height 25;
width 40;
x 115;
y 15;

colon XmLabel
ATTRIBUTES:

parent :palette;
fontlist :"*-courier-oold-r-**34*";
labelstring :-"
recoinputesize :false;
height 25;
width 15;
x 155;
y 15;

Serpent: Syst em Guide (CMU/SEI-91-UG-2) 31

Example Dialogue/t pication

minu es :XmLabel
A-'RIBUTES:

parent : palette;

fontlist : *cuirbldr**3-,

labeistring :i2str(minutes-text);
recomputesize :false;
height 25;
width 40;
x :170;
y 15;

VC :AMPM
CREATION CONDITION (not MilitaryTime)

OBJECTS:
AMPM :XmLabel

ATTRIBUTES:
parent :palette;
fontlist : -*cuirbldr**2-"
labelstring:

IF (hours text >= 12) THEN
labelstring "PM";

ELSE
labelstring :="AM";

ENDIF;

recomputesize :false;
height :23;
width :40;
x :215 + SetPlus;j
y :17;

ENDVC AMPM

VC :today
CREATION CONDITION (ShowDate.set)

OBJECTS:
date : XmnIabel

ATTRIBUTES
parent :palette;

labelstring : "Eebruary 12, 1991";
recomputesize : false;
borderwidth : 1;
height :35;
width :200;
x :85;
y :130;

ENDVC today

32 Serpent: System Guide (CMU/SEI-91 -UG-2)

Example Dialogue/Application

VC : set buttons
CREATION CONDITION : (SetTime.set)

OBJECTS :
hrs_up : XmArrowButton {

ATTRIBUTES :
parent : palette;
arrowdirection XmARROW UP;
shadowthickness 0;
height 12;
width 12;
x : 100;

y : 15;
METHODS :

notify
hours text := hours text + 1;
IF (hourstext > 23) THEN

hours-text := 0;
ENDIF;

hrs down XmArrowButton I
ATTRIBUTES :

parent : palette;
arrowdirection XmARROWDOWN;
shadowthickness 0;
height 12;
width 12;
x 100;
y 30;

METHODS :
notify

hours text := hours text - 1;
IF (hourstext < 0) THEN

hours text "23";
ENDIF;

mins up : XmArrowButton
ATTRIBUTES :

parent : palette;
arrowdirection XmARROW UP;
shadowthickness 0;
height 12;
width 12;
x 213;
y 15;

METHODS :
notify

minutes text := minutes text + 1;
IF (minutestext > 59) THEN

minutes-text := 0;
ENDIF;

Serpem System Guide (CMU/SEI-91-UG-2) 33

Example Dialogue/Application

mins down : XmArrowButton I
ATTRIBUTES :

parent : palette;
arrowdirection: XmARROWDOWN;
shadowthickness 0;
height 12;
width 12;
x 213;
y 30;

METHODS :
notify

minutes text := minutes text - 1;
IF (minutestext < 0) THEN

minutes text := "59";
ENDIF;

ENDVC set buttons

Example 4-2 Slang Dialogue for the Second Stage in Developing the Sample Clock

4.2.2 External C Routines

When Serpent converts integers to strings, it does so in the most compact form possible. This means
that the number "5" will be displayed as "5" in a Label object. While this is often desirable, people
are used to seeing clocks display their time as "13:05" (with a leading 0), and riot as "13: 5". To get
Serpent to display the time fields in the desired format, an external routine is used to explicitly
convert the integer into a string, instead of using the built-in mechanism Serpent provides. The
routine is declared through the EXTERNALS section in the dialogue, and referenced by using it in-
line. The code for the routine is shown below, and may be found in the fie
demo/smo/clock/threeE.c.

#include "serpent .h"

string i2str (in)
int in;

static char out[3];

(void) sprintf (out, "%02d", in);
return out;

4.2.3 Makefile

The Makefile for the augmented dialogue is slightly more complicated than for the simple display
dialogue. This is necessitated by the presence of the extemal routine, which has been placed in the
file twoE. c.

34 Serpent: System Guide (CMU/SEI-91 -UG-2)

Example Dialogue/Application

two: two.sl twoE.o
serpent -cl -L twoE.o two

twoE.o: twoE.c
cc -c $(INCS) $<

4.3 Third Stage of Developing Clock

Once the dialogue and its behavior have been developed to some degree of satisfaction, the
next logical step is to attach an application program to provide real functionality. In this
case, the application is the program that will feed the dialogue the current time of day.
Before an application can be developed, a format for communication between the dialogue
and application must be defined. This is done through a Saddle description, which specifies
the format of instances of shared data. Note that Saddle does not create any instances of
shared data, it only defines the layout of instances that can be created by the dialogue or by
the application program.

Once this is done, the application program and the dialogue can communicate by reading
and writing the instances of shared data that are created at runtime. All communication is
done through transactions (explicit in the application program and implicit within the Slang
dialogue). Figure 4-1 (page 19) shows the interactions between the components of the
running dialogue. More details on using the shared data interface can be found in the
Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) and in the Serpent: C
Application Developer's Guide (CMU/SEI-9 I-UG-6).

In the clock example, the application program will send the current time of day to the user,
and allow the user to change the time of day using the "set" buttons of the dialogue. Because
only the super-user can change the system time, the application program maintains a "user-
delta," which is the amount of time that the clock is to be fast or slow. This way the user is
given the appearance of changing the clock without actually doing so.

4.3.1 Saddle Description

The Saddle description which follows (and which can also be found in the file
demos / smo/clock/threeA. sdd) is used to define the format of the data shared between
(in this case) the dialogue and the application. Because this is a rather simple example, only
one shared data type is defined for this interface. Naturally, more complex interfaces could
have just as easily been defined.

The Saddle description starts with the command to be used to start up the application
program. In this case, the application is called threeA, and the command line takes no
special flags or arguments. The first line of the description states this. The remainder of the
Saddle description defines the shared data types. In this example, a single shared data type

Serpent: System Guide (CMU/SEI-91-UG-2) 35

Example Dialogue/Application

called sd_time is defined It contains two integer fields, hrs and mins, and a 20-character string
called date. It should be noted again that the Saddle file only defines the layout of instances of
shared data records (it is somewhat similar to the typedef declarations in a C include file). A Saddle
description does not actually declare or create any of the instances. This latter task is left to the
dialogue or the application.

<< threeA >>

whatever : shared data

sd time : record
hrs: integer;
mins: integer;
date: string[20];

end record;

end shared data;

In this example (and as shown later in Section 4.3.3), only a single instance of this shared data record
is created. This is not a fundamental restriction of Serpent - any number of instances of a shared
data record may be created.

4.3.2 Slang Dialogue

The Slang dialogue for the third stage in development of the sample clock is shown in Example 4-
3. This dialogue may also be found as the file demos/smo/clock/three. sl in the Slang source
hierarchy.

The differences between this example and the previous one are fairly small, although they are
pervasive. First, the current time has been moved into a view controller that is bound to an instance
of the shared data type sd time. Rather than using the hardwired variables hourstext and
minutestext, the objects in the currenttime view controller all refer to the components of
the shared data element, namely sd time .hrs and sd_time.mins. Reading from these
components references the current value in shared data; writing to them automatically causes a
transaction to be created (which is then processed by the application, as shown in Section 4.3.3).

The only other significant change to the dialogue is that it now includes the file threeA. ill, a fie
which defines the layout of the shared data used by both the dialogue and the application.

36 Serpent: System Guide (CMU/SEI-91 -UG-2)

Example Dialogue/Application

Note: change bars are used to show where the code in this example differs from the

previous example.

#include "smo.ill"
#include "threeA.ill"

III

#include "glueXm.h"

EXTERNALS
string i2str(integer);

VARIABLES :
DatePlus

IF (ShowDate.set) THEN
DatePlus 50;

ELSE
DatePlus 0;

ENDIF;

SetPlus
IF (Set Time.set) THEN

SetPlus 12;
ELSE

SetPlus 0;
ENDIF;

MilitaryTime : true;

OBJECTS :

shell : XmTopLevelShell I
ATTRIBUTES :

height palette.height;
width palette.width;
allowShellResize : true;

palette : XmBulletinBoard f
ATTRIBUTES :

parent shell;
height 150 + DatePlus;
width 375;

Serpent: System Guide (CMUISEI-91 -UG-2) 37

Example Dialogue/Application

quit :XrPushButton
ATTRIBUTES:

parent : palette;
labeistring "Quit";
borderwidth 1;
snhduuwthicAiie~ss 3;

height 35;
width 40;
x palette.width - width - 10;
y palette.height -height - 10;

METHODS:
notify {exito;

FormatSelector XmRowColun

ATTRIBUTES
parent palette;
height 100;
width 200;
x 95;
y :65;
packing :XmPACK -COLUMN;
nuxncolumns :1;
orientation XmVERTICAL;
borderwidth 0;
radiobehavior true;
radioalwaysone true;

Buttoni : XmToggleButton
ATTRIBUTES:

parent :FormatSelector;
labeiString :"12 Hour";
indicatortype : XmnONEOFMANY;
width 75;
height :30;
set : false;

METHODS:
toggle {MilitaryTime := not set;

Button2 :XmToggleButton
ATTRIBUTES:

parent : FormatSelector;
labelString : "24 Hour";
indicatortype : XmONEOFMANY;
width :75;
height :30;
set :true;

METHODS:
toggle :(MilitaryTime :=set;

38 Serpent: System Guide (CMU/S E[-91 -UG-2)

Example Dialogue/Application

Show Date : XmToggleButton
ATTRIBUTES :

parent : palette;
labelString : "Show Date";
x : 200;
y 80;
width : 80;
height 20;
set false;
I

Set Time : XmToggleButton
ATTRIBUTES :

parent : palette;
labelString : "Set";
x 320;
y 20;
width : 40;
height 20;
set : false;
I

VC : current time
CREATION CONDITION (new("sd time")

OBJECTS:
hours : XmLabel I

ATTRIBUTES :

parent : palette;
fontlist : "*-courier-bold-r-*-*-34-*";
labelstring : {

IF (MilitaryTime) THEN
labelstring := i2str(sdtime.hrs);

ELSIF (sdtime.hrs = 0) THEN
labelstring := 12;

ELSIF (sdtime.hrs <= 12) THEN

labelstring sdtime.hrs; I
ELSE

labelstring := sdtime.hrs - 12;
ENDIF;

recomputesize : false;
alignment : XmALIGNMENTEND;
height : 25;
width : 40;
x : 115;
y : 15;

Serpent: System Guide (CMU/SEI-91-UG-2) 39

Example Dialogue/Application

colon :XmLabel
ATTRIBUTES:

parent :palette;
fontlist : *cuirbldr**3-"
labelstring :""
recompucesize fise;
height 25;
width 15;
x 155;
y 15;

minutes XmLabel
ATTRIBUTES:

parent :palette;
fontlist :*courierbold-r**34*";
labelstring :i2str(sd -time.mins);
recomputesize :false;
height 25;
width 40;
x 170;
y 15;

VC :AMPM

CREATION CONDITION (not MilitaryTime)

OBJECTS:
AMPM :XmLabel

ATTRIBUTES:

parent :palette;
fontlist : *cuirbldr**2-"
labelstring:

IF (sd time.hrs >= 12) THEN
labelstring "PM";

ELSE
labelstring 'AM";

ENDIF;

recomputesize :false;
height :23;
width :40;
x :215 + SetPlus;

y :17;

ENDVC AMPM

40 Serpent: System Guide (CMUISEI-91 -UG-2)

Example Dialogue/Application

VC :today
CREATION CONDITION (ShowDate.set)

OBJECTS:
today : XmLabel

parent :palette;

labelstring : sd time.date;
recomputesize : false;
borderwidth : 1;

height : 35;
width : 200;
x :85;
y :130;

ENDVC today

VC : set buttons
CREATION CONDITION : (SetTime.set)

OBJECT^
hrsup : XmArrowButtoil

ATTRIBUTES:
parent : palette;
arrowdirection :XmARROWUP;
shadowthickness :0;

height : 12;
width : 12;
X : 100;
y : 15;

METHODS:
notify:

sd time.hrs :=sd time.hrs + 1;

IF (sd tirne.hrs > 23) THEN
ad time.hrs :=0;

ENDIF;

hrs-down :XmArrowButton

ATTRIBUTES:

parent : palette;
arrowdirection :XmARROWDOWN;
shadowthickness 0;
height :12;
width :12;

X: 100;
y :30;

METHODS:
notify

ad time.hrs := d time.hrs - 1;
IF Cad time.hra < 0) THEN

ad time hrs := "23";
ENDIF;

Serpent: System Guide (CMU/SEI-91-UG-2) 41

Example Dialogue/Application

minsup : XmArrowButton I
ATTRIBUTES :

parent : palette;
arrowdirection XmARROWUP;
shadowthickness :0;
height 12;
width 12;
x 213;
y 15;

METHODS :
notify

sdtime.mins := sd time.mins + 1;
IF (sd_time.mins > 59) THEN

sd_time.mins 0;
ENDIF;

mins down XmArrowButton
ATTRIBUTES :

parent : palette;
arrowdirection XmARROWDOWN;
shadowthickness 0;
height 12;
width 12;
x 213;
y 30;

METHODS :
notify

sd_time.mins := sdtime.mins l
IF (sd_time.mins < 0) THEN

sd_time.mins := "59";
ENDIF;

ENDVC set-buttons

ENDVC current time

Example 4-3 Slang Dialogue for the Third Stage in Developing the Sample Clock

4.3.3 Application Program

The newly created application program (found in the file demo/smo/clock/threeA. c in the
Slang source hierarchy) is responsible for feeding the dialogue the current time of day (perhaps
offset by a user-induced delta). It is also tasked with creating the shared data element that is used to
communicate this information. The inclusion of the file serpent. h defines the routines and data
types used by Serpent, while the inclusion of the file threeA. h defines the shared data types
specified in the Saddle file.

42 Serpent: System Guide (CMU/SEI-91 -UG-2)

Example Dialogue/Application

The routine findtime gets the current time of day, converts it to local time, and places

the current time in the hrs and mins field of the passed-in sd_t ime structure. It also uses

the sprint f library routine and an array of month names to format the date in the standard
form shown in the figures earlier in this chapter. The routine adjusttime is used to add

(or subtract) the difference between the "real" time of day and the user-perceived version.

This application program does not actually change the time of day - only the super-user can
do that. Instead, the application program remembers how fast or slow the clock should be,
and adjusts the visualized time accordingly.

#include "serpent.h"
#include "threeA.h"
#include <sys/time.h>

#define NOCHANGE 999

void findtime (curtime)
sd time *cur time;

struct timeval tv;
struct timezone tz;
struct tm *now;
static char *month[] =

"January", "February". "March", "April", "May",
"June", "July", "August", "September", "October",
"November", "December" :

gettimeofday (&tv, &tz);
now = localtime (&tv.tvsec);
cur time->hrs = now->trn hour;
cur time->mins = now->tm min;
(void) sprintf (curtime->date, "%s %d, %d",

month[now->tmmon], now->tmmday, now->tm-year+1900);

void adjust_time (curtime, delta)
sdtime *curtime, *delta;

cur time->hrs += delta->hrs;
cur time->mins += delta->mins;

main ()

sdtime curtime, from_dlg, delta;
transactiontype trans;
id_type id;

serpent_init (MAILBOX, .ill_FILE);
trans = start transaction 0;
findtime (&curtime);
id = addshareddata (trans, "sd time", NULL, &curtime);
commit transaction (trans);

delta.hrs = delta.mins - 0;

Serpent: System Guide (CMU/SEI-91-UG-2) 43

Example Dialogue/Application

while (1)
sleep (5);
findtime (&curtime);
from dlg.hrs = fromdlg.mins = NOCHANGE;
while (trans = gettransaction no wait ()) f

id = get_firstchanged element (trans);
incorporate_changes (trans, id, &from_dlg);
if (from dlg.hrs != NOCHANGE)

delta.hrs = from dlg.hrs - curtime.hrs;
if (from dlg.mins != NO-CHANGE)

delta.mins = fromdlg.mins - curtime.mins;
purge_transaction (trans);

adjust_time (&curtime, &delta);
trans = start transaction 0;
putshareddata (trans, id, "sd-time", NULL, &cuj time);
committransaction (trans);

Example 4-4 Application Program

Finally, the ma in routine is responsible for transmitting the current time to the dialogue and reading
the changes to the time made by the user. It first creates a shared data record of type sd_t ime in a
transaction and references the particular shared data instance with id. The shared data element is
initialized with the values contained in curtime, which is in turn initialized with the routine
find time.

Once this is done, the application cycles indefinitely, waking up every five seconds to examine
transactions from the dialogue and to send the current time-of-day transaction to the dialogue. The
period of five seconds is a comfortable compromise between absolute, to-the-second accuracy and

program efficiency.

Within the loop, the application checks to see if any transactions have been sent from the dialogue. 5

If there have been any, the application processes them by successively calling
get transaction no wait and other interface routines. Once the user-induced delta to the
current time of day has been adjusted, the dialogue transmits the current (potentially adjusted) time
of day back to the dialogue in its own transaction. The dialogue automatically reads the transactions,
and the (potentially updated) time of day is displayed on the screen.

5 A transaction from the dialogue happens automatically whenever the dialogue changes a value in the shared data element
bound to the current time view controller.

44 Serpent: System Guide (CMU/SEI-91-UG-2)

Example Dialogue/Application

4.3.4 Makefile

The Makefile for the dialogue with an associate-' tppihcaLion program is only slightly more
complicated than before. The dialogue portion of the Makefile is essentially the same (in
fact, the external C routine used is identical to the second stage). All that is new is the
instructions needed to compile the Saddle description and the application program.

LIBS= $ (LIBDIR) /libint.a $(LIBDIR) /libutl.a\

$(LIBDIR)/iiblist.a -im

.SUFFIXES: .ill .sdd

.sdd.ill .sdd.h:
sdd $<

three: three.sl threeA.ill twoE.o
serpent -cl -L twoE.o three

twoE.o: twoE.c
cc $(CFLAGS) -c $(INCS) $<

threeA: threeA.o
cc $(CFLAGS) -o $@ $? $(LIBS)

threeA.o: threeA.c threeA.h
cc $(CFLAGS) -c $(INCS) $<

4.4 Fourth Stage of Developing Clock

One of the great strengths of Serpent is the ability to test different user interfaces (i.e.,
dialogues) without changing the application program. The fourth stage in the development
of the clock example demonstrates this ability quite nicely. Figure 4-7 shows a completely

15

Figure 4-7 - Alternative Interface for Clock

different clock interface. The time of day is represented as a pair of sliders, with the tp
slider being hours, and the bottom slider being minutes. The time shown, therefore, is
15:37. Moving either of the sliders to the left or right will adjust the current time of day in
the same way as the "Set" buttons did in the previous example.

Serpent: System Guide (CMU/SEI-91-UG-2) 45

Example Dialogue/Application

It is important to note that no changes were made to the application program shown in Section 4.3.3
(page 42). So long as the interface is unchanged, the dialogue may take any form at all.

4.4.1 Slang Dialogue

The slang dialogue for the alternative dialogue is shown in Example 4-5 (it may also be found in
demo/smo/lock/four. sl in the Slang source hierarchy). This example quickly and simply
shows a different user interface to the clock application program.

The creation of a ne% sd time shared data instance causes a view controiler to be created, as
before. In this case, however, to-scale widgets are used to represent the values of hrs and mins
within the instance. Changing either value by moving the slider causes the valuechanged
method to be invoked, which causes the value in the shared data instance to be changed. This creates
a transaction that is picked up by the application program.

#include "smo.ill"
#include "threeA.ill"

III

#include "glueXm.h"

OBJECTS :

palette : XmBulletinBoard I
ATTRIBUTES :

height 100;
width 300:

quit : XmPushButton I
ATTRIBUTES :

parent : palette;
labelstring "Quit";
borderwidth 1;
shadowthickness : 3;
height palette.height - 40;
width height;
x palette.width - (width + 20);
y palette.height - (height + 20);

METHODS :
notify : exito;)

46 Serpent: System Guide (CMU/SEI-91 -UG-2)

Example Dialogue/Application

VC : current time
CREATION CONDITION : (new("sd time")

OBJECTS:
hours : XmScale

ATTRIBUTES :
parent : palette;
minimum : 0;
maximum : 23;
value : sd time.hrs;
showvalue : true;
orientation : XmHORIZONTAL;
processingDirection : XmMAXONRIGHT;
height : 15;
width : 200;
x : 10;
y : 5;

METHODS :
value changed : { sd time.hrs := value;

minutes : X:,, le

ATTRIBUTE- :

parent : palette;
minimum : 0;
maximum : 59;
value : sd time.mins;
showvalue : true;
orientation : XmHORIZONTAL,
processingDirection : XmMAXONRIGHT;
height : 15;
width : 200;

x : 10;
y : 55;

METHODS :

valuechanged : { sdtime.mins := value;

ENDVC current-time

Example 4-5 Slang Dialogue for the Alternative Dialogue

4.4.2 Makefile

All that is different in the Makefile for the fourth and final stage in the clock development
are the dialogue building instructions. The application program does not change, so the

Makefile does not change here. Also, since the dialogue no longer needs an external C
routine to do formatting, the file twoE. c is no longer referenced.

Serpent: System Guide (CMU/SEI-91-UG-2) 47

Example Dialogue/Application

.SUFFIXES: .ill .sdd

.sdd.ill .sdd.h:
sdd $<

four: four.sl threeA.ill
serpent -ci four

48 Serpent: System Guide (CMU/S EI-91 -UG-2)

Index 0
OpenLook 8

A S
Ada 9, 17 Saddle compiler 10, 11
Application program 17 Saddle source file 6
Athena 8 Sat 8
Attribute list 7 Semaphores 18

Serpent
C documents 2

C routines 34, 37 Serpent command 18
C tags 9 SERPENTBASEPATH 5
Creation condition 27, 32, 33, 39, 40, 41, 47 SERPENTDATAPATH 5, 9

SERPENTEXEPATH 5, 18
D i Shared data descriptions 6Debugging 10, 18 Shared memory 18

Dialogue editor 8 Six 8, 10, 15

Dialogue manager 8, 14 Slang compiler 7, 12

Directory hierarchy 7 Slang source file 6

Documentation 2, 3, 8 Smo 8

E Sol 8

Environment variables 5, 18 T
External C routines 34, 37 Tags 9
External definitions file 6 Technology file 7

F Technology interface 9

File names 6 X

G Xt-based toolkits 16

Glue 16
Glue compiler 8, 16
Glue file 7

I

ILL file 7, 12, 14, 18
IMAKEINCLUDE 6
Installing Serpent 4
Interprocess communication 4, 18
Invisible files 6

L
Linker 12

M
Message queues 18
Method description 7
Motif 8

Serpent: System Guide (CMU/S EI-91-UG-2) 49

50 Serpent: System Guide (CMU/S EI-91 -UG-2)

UNLIMITED, UNCLASSIFIED
SECURITY OLASSUICAMION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUITION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIATON REPORT NUMBER(S)

CMU/SEI-91 -UG-2 CMU/SEI-91 -UG-2

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

&a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(if applicable) F1962890C0003

SEI Joint Program Office ESD/AVS

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENT NO NO. NO NO.

63752F N/A N/A N/A
1I. TITLE (Include Sectuty Clasification)

Serpent: System Guide
12. PERSONAL AUTHOR(S)

SEt User Interace Project

l3a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

Final FROM TO April 1991
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 8. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

FIELD GROUP SUB. GR Serpent, Serpent dialogue, UIMS, user interface generators,

user interface management system

19. ABSTRACT (Continue on reve=se if necessary and identify by block number)

Serpent is a user interface management system (UIMS) that supports the development and imple-
mentation of user interfaces, providing an editor to specify the user interface and a runtime system
that enables communication between the application and the end user. This document introduces the
environment variables used by Serpent, the file naming conventions and expected file types, and
how to build a Serpent dialogue/application from scratch.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSFIED/UNLIMITED fl SAME AS RPT ["3 DTC USERS fl Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL

John S. Herman, Capt, USAF (412) 268-7630 ESD/AVS (SEl JPO)

DD FORM 1413, 83 APR EDMON of I JAN 73 IS OBSOLETE UNLIMITED. LNCLASSIFIED
SECURITY CLASSIRCATION OF 7I

STRACT -ccwnlinued from page one, block 19

