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ABSTRACT

Our exploration of the histories of scientific discoveries have made it eminently clear
to us ihat scientists set themselves many different kinds of tasks. These include tasks
of formulating significant scientific pi:oblems, of discovering interesting
phenomena, of finding laws that are hidden in data (with and without the help of
theories for guiding the search), or inventing ncw representations for phenomena
and their accompanying theories, of inferring the logical consequences of theories

and testing them.
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The Scientist as Probiem Solver

Herpert A Simon
Carnegie-Meilon University

The thes:s of this paper can be stated succinctly simply by replacing the "as”
in its tle by s a”  The Scientist is a problem solver. it the thesis i1s true then
we can dispense with a theory ot scientfic discovery -- the processes of discovery
are just applicattons of the processes of problem sofving However. since the thesis
1§ Not Obvious to everyone. and since the topic of sciennhic discovery has Interest in
its own right, perhaps it is worth while saying a little more about it

In a recent book (Langley. Simon. Bradshaw. and Zylkow. 1987). my co-authors
and ! have said a great deal more about discovery. and Deepak Kulkarni and | have
added ye! another chapter \n a paper that has been submitted for journal publication
(Kulkarni and Simon. 1986) There s no need 10 repeat these accounts here beyond
the brietest summary of what we concluded and how we supported Our conclusions
We concluded that the thesis is. indeed. valid As evidence. we adduced careful
reports of a substantial number of histonical scientific discoveries. together with
com.puter simulations that. staring with essentially the same initial conditions as dig
the human discoverers. made the same discoveries Thus. the computer programs
cortained a set of processes that were sutficient for making the discoveries. and
therety provided a possible explanation for the success of the human scientists.

Qur expiorations of the histories of screnuicc hscoveries have mace it eminently
clear 10 us that scientists set themselves manv ditferent kinds of tasks These
include tasks of formulating significant scientfic problems. of aiscovenng inmeresting
wnenomena. o finding the laws that are hidden n data (with and without the heip of
Or GUICING 1Ne searcn). ol wvEauig MR representanons ‘or ohenomena and

therr accompanying theories of internng the logical consequences of theories ang
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testng them. of designing expenments. of tinding explanatory mechanisms to account
for empincal generalizatons. and of inventing new instruments for observation and
measurement Undoubtedly there are others

what s common to all of these tasks 15 that they appear 10 employ the same
general xings of probiem solving processes as are employed by chesspiayers in
choosing moves. by subjects in the faboratory confronted with the Tower of Hanoi or
the Missionaries and Cannibals problem. by physicians making dlagnoses. by
computer salesmen configuning systems for clients. by architects designing houses. or
by organic chemisis synthesizing new molecules. Mostly. they engage in heuristic
search in a number of problem spaces: the spaces of theories and experiments
mentioned by Klahr and Ounbar (this volume). but also spaces.of problems. of
phenomena. of representations. of instruments. ang others.

Moreover. the "insight” that is supposed 1o be required for such work as
discovery turns out 10 be synonymous with the familiar process of recognition. and
other terms commonly used in the discussion of creative work -- such terms as
“judgment.” “creativity.” or even “genws” .- appear either to be wholly dispensable
or to be definable. as insight is. in terms of mundane and well understood concepts.

Until rather recent times. much of the published work about scientific discovery
has consisted of anecdotes. frequently autobiographical. about specific discoveries and
their finders If discovery requires creativity, or even genws. it would be immodest
for anyone to claim that he or she had mede a discovery. and futile to try 10
Ggescribe how 1t had been done.  But f dscovery is plain. garden-vanety probiem

solving. then there s no immodesty. and perhaps not even futiity 1n adding to tre

anecdotal evigence i shall use this opportunity o think atoud aibeit retrospectively
abcut some of my own screntific work. ang to see whether 1. tco. fits the problem-
soiving moid




The Sciertst as Prodblem Solver 1 July 1967

i say "albeit retrospectively © but backward preaictions are really the only ones
we can irust when we are deaiing with a theory of human behavior  After all when
we make forward predictions. Our scienusts may have been influencead by the very
theonies of discovery we are trying to test The theory may fit thexr pehavior Cnly
because =2y “ave read about BACON or DALTON. and think they will do better

science if they simulate those programs We will avoig at danger of spunous

venficabon by pregictung events from a tume when the theory cid not exist

Formulating Problems

it 1s usually thought that a prerequisile 1o answering a question is 10 state it
Or. to change the metaphor. tor something to be found. somemmg'must have been
lost. But is that always true? When one finds a vein of gold, was it Nature who
lost 1?7 if we can find gold we havent lost. perhaps we can answer Qquestions we
haven't asked.

Let's try again. We may find gold (even gold we haven't lost) by searching for
it.  But that means that the question has aiready been asked: "Where can we find
some gold?” But what about the gold we find when we are not looking for gold.
when we are engaged in some quite different actwvity (gathering wildflowers on the
mountain. say)? At the very leas!. we must notice the gold: it must attrac! our
attention. distracting us from the flowers Do we account for this by postulating a
need tor goig? Or will an attention-attracting gropensity of shiny yellow objects do
the job? And how s the attraction of these yellow objects enabied by cur
distractabilitv from the Hower-gatherng task?

Now let's rewrn from gold-seeking 1o problem-seeking If we take our
metaphor sernousfly. f suggests that one way to hnd a problem. and perhaps even its

solution. 1S to try to solve sume other problem  That doesn’t tell us where the other
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problem came from byt one problem at a ume' We are gealing wih the
phenomenon of surpnse Searching for wildflowers. wg are surpnsed 10 see

something shining and golden in the rocks To De surpnised we must attend to the
surprising phenomenon Hence the dictum of Pasteur “Accidents happen 10 the
prepared mingd.” And now we have a new problem How does a ming become
prepared? Perhaps 1 s tme tor the anecdote

My first prece of scientfic work begun as a paper in an “independent

projects” course at the Uriwversity of Chicago n the Winter and Spring of 1935 was

ao‘ study the administration of public recreation in the City of Miwaukee (Simon.
1935). Never mind why that was a problem it was relevant to a research project of
my protessor, Jerry Kerwin. on the relations of school boards with City governments
A standard topic in studies of orgamzations is the budget process. which in this case
involved the division of funds between piayground maintenance. administered by one
organizational unit. and playground activity leadership. administered by another. How
was this division (which was a frequent subject of dispute) arrived at?

My previous study of economics provided a ready hypothesis: divide the tunds
s¢ that the next dollar spent for physical maintenance would produce the same
refurn as the next doilar spent for leaders’ salaries | saw no evidence that anyone
was viewing the decision in this way. Was | surpnsed?  Perhaps. imtially. bul on
reflection. | didn't see how 1t could be done Haw were the values po! belier activity
leadership 10 be weighed against the values of more atiractive and better-maintained
neighborhood playgrounds”?

Now | ha? a new research problem how do human beings reason when the
conditions for rauonalty postulaled by the mode! of neoclassical economics are not
mel .- for exampie when no one can define the appropnate utibty function  or

suggest how the contnibution of expenditures 1o ulilly 1s to be measurec”®
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investigating further the particular situation before me. | thought | could see a rathe,
simple pattern of the mental processes Those who were organ:zationally responsible
tor playgr0und~supervusmn wanted more money spent for leadership. those who were
responsible for the physical condition ot the playgrounds wanted more spent for
maintenance Generalizing. people n orgamzations bring decision problems within
reasonable bounds by igentfying with the partial (and more nearly operationat) goals
that are the particular responsibiity of therr own organizational units (Simon 1947
ch. 10

Of course this is only a partial answer It defined and labeled the
phenomenon of organizational identitication. a concept that has proved valuable In
administrative theory. but it did not explain how higher levels of the organization
adjudicated betwecn the claims arising from competing identifications at the lower
levels. That subject has subsequently been addressed by other researchers. among
them John P. Crecine. who wrote his dissertation on this topic some thirty years after
the events | am describing (Crecine. 1969)

The broader guestion -- how do people make decisions when the conditions for
the economists’ global rationality are not met (or even when they are)? -- remams an
active frontier of research today. although large pieces of an answer have been
provided through research Dy cognitive scienusts on problem solving. Here the
central concept s what economists call “bounded rattonalty.” and what cognmitive
scientiste would more likely label "computational constraints on human thinking © A
large part of the answer 1S that when people dont know how 10 optimize. they may
very well be able to sausfice -~ to fing goog-enough soiutions Ang good-enougn
solutions can often be foung by -eunstic search (Simon. 1853 1982)

Now what does this anecdote say about finding problems as an essential

component n the process of scientific discovery? One thing it says is that a
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problem | found in 1935 nas iasted me tor fifty two years | have never had to fing

another. More accurately. this very broad problem of accounting for human
rationality has served as a powerful generator tor an endiess series of subproblems
(e g. how do people solve the Tower of Hanco problem how do they choose chess

moves. how dc they make sciennfic discoveries?) (Newell and Simon, 1372 Simon

1979. sections 4 7. Langiey et ai  1987)

Another lesson to be drawn from the anecdote 5 that scientitic discovery s
incremental.  An explanaton for a parucular act of discovery must take everything
that has gone before as initlal conditions What we seek to explain is how these
initial conditions led 10 the next step -- 1N this case how my knowledge of elementary
price thecory, and Jerry Kerwin's desire to know how the school board and the public
works depariment cooperated 10 provide public recreation services in Milwaukee. led
me 1o observe a phenomenon that imitiaily surprised me: and how that surprise led !0
new observations that could be explained by the concepts of identfication and
bounded rauonality Steps taken twenty years later ifed from bounded rationality 10
satisficing. and from satisficing to heuristic search

Third. the anecdote adds another to the long list of examples where surpnse
was a key eiement in discovery. But what was “prepared” about this particular
mind? My training 1in economics. and the evocation of that traiming in the context of
2 budge! situaton. disclosed a contradiction belween what theory taught me ought to
be happening and what my eyes and ears showed me to be actually happening
Without the training In economics the observed behavior would have appearec entirely
“natural ©  Without the observations. | could have continued in the happy illusicn that

the neoclassical theory of utilty maximizaton explains human behavior 1in the comain

of budgetng

Nothing mystical Nothing magical. Can we simulate t? The heunstcs indeed
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resemble quite closely those of KEKADA the program that Deepak Kulkarmi angd !
have used to simulate the research strategy of Mans Kreps who found the chemica!
path for the » vivo Synthesis of urea. a program that ras now been generahized 10
other discoveries (Kulkarmi and Simon 1986 The program experiences surprise
when 11s expectauons are not met ang reacts 10 s surpnse by seeking explanauons
for the surprising phenomena But ncw | am waving my hangs (Or am | hand
simulaung”)  We have npt yet investgated whal heunstics would have to be acded
to KEKADA in order 10 simulate the discovery of bounded rationality. But i think |

might have saved myseit a iot of work :n 1935 it | had had KEKADA 10 advise me

Laws trom Data

In our book. Scienutic Discovery (Langley et al. 1987). my cclieagues and !
gave pnmary attention 10 the problems of inducing generalizations. quantitative and
gualltauve. trom empincal data Our programs BACON and DALTON, were systems
of heuristics for inducing quantitative laws. and our programs STAHL and GLAUBER
systems for inducing qualitative laws

Data are not the only pessible tmital conditons for the induction of new laws.
Iheories can also be used. 'n conjunclion with data or independently  in gur BACON
simulations wa showed that Dby incorporating in BACON heunstics that search for
symmetries anrd conservaton laws. we could substantially improve the effhiciency with
which it found laws in empincai data In the bhmui. it may be possible to fing a
cescnptive faw direclly. ty denving it from a more fundamental explanatery law  Fer
example New!lon showed that Keplers Thirg Law of Planetary Motion (the period ¢f
revofution of a piaret vares as the 3/2 power of its gistance from tne Sun) cculd Ce
cerived mathematcally frecm the inverse square ‘aw of grawitaucnal attracthon  (Eut

note that Newton was working backwarg from 1he faw that Kepler had alreacy
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discovered by data-dnven search )

Before one can tnd mathematicar ftunctions that fit empincal data. ore musy
nave appropriate data that look as though a smooth mathematca' tunctern could
generate them  its ing recipe for rabbu stew all cver again  fust catch 1ne rabon
Exampies of sucn data have been much easier 10 come by n the physical sciences
thar 1n the biological or social sciences When we findg social science data of thig
king. we shc.!d pnze them

On only one occaswon in my ffe have | run on to such data. and | cannpt
recall exaclly when ! first encouniered them .- possibly as early as about 1936 in
Lotka's Eflements of rhysical Biology (1824). a fascinating book that the economist
Henry Schultz always called to the attention of his siudents Lotka reports data.
compiled by one Dr J C. Willis, showing that when the number of species
belonging 0 each genus in some order of plants or animals (beetles. say) are
cocunted. and the genera are then arranged in order. according to the number of
their species. the genus with the nth largest number of species will have about 1/n
as many species as the genus with the largest number

Similarly. when the trequencies with which diffe ent words appear 1IN a book are
ccunted. and words are then arranged in order of thewr frequency. the nth most
frequenrt word will occus about 1/n tmes as trequently as the most frequent woid
Moreover about half ot all the words that occur in a book will occur exactly once
about one sixth exactly twice one twelfth three tmes arcd S0 on Trhese relatons
hold tor books in any alphabetc larguage and i1e deoa-tures trom regulanty are
small

Otner data show a similar reguiarity in the populations of cites in the United
States the nth largest city 1s about 1/n tmes as large as New York These

regulanties are easily seen f the data are plotted on log-log papér. whereupon they
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fall on a straight line with a slope of minus one

What does one do with regularties like thus -- regularities that at first biush
can only be described as astonishing” What one does (or should do) 1S 10 behave
in a BACON-like fashion until one finds a formula that ‘its the data Then ke
DALTON cne sncuid see f one can postulate 3 mechanism whose operation would
proguce the regulanty described by the formula

It wish | could say that this was my immediate response 10 the data Memory

tals me i recall my fascination with them but not whether | pondered over them.
and «f 1 aid. for how long | do recall that. when | returned to Chicago after 1942
I thougrt about them again -- | have a clear picture of sitting in the Biology Library
i the Unmwversty of Chicago reading a paper referenced in Lotka's book. | also

recall mentioning my interest in the matter 1o Alien Newell while visiting him an:d_ Nee#— )
in therr Santa Monica apartment between 1952 and [954. But | was doing many
other things during these years The starting data on word frequencies and city
sizes were not a constant preoccupation. but were more ke a recurring itch that
needed to be scratched occasionally

Sometime dunng 1954 | found the answer My recotlections of just how |
found 1t are sketchy. with no scraps of paper 1o bolster my memory, but a few
aspecis ot the discovery are recoverable now First. | looked for a function to fit the
data | was especially impressed by the regulanty of the word-frequency data at the
low end of the frequency range The simple fractions seemed 10 point to a formula
Invoiving ratios of integers In fact the simple formula fi) = 1/[iti« 1)) gives the
réquired numbers. 1/2. 1/6 1/12 ang so cn  For large i we have approximately. f(1)
= 11 The rank which 1s simply the integral of the frequency will then gve Fh =
11 so that on a loganthmic scale the relation between rank ang frequency will be

'near with a slope of minus ore
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Finging an equaton that fits tnese magic numbers sets the stage for a new
problem: tinding an explanation for the equation a plausibie mechamsm {(hat wiil
provide a ratlo;ﬁale tor the phenomena My reccliections of how ! did this are even
sketchier than my recollect.ons about the previous stage The ratios of integers were
agamn the key Where can you get ratos of integers? Ratios of tactorials are one
possible source 1/6 can be written as the product of 1/2 and 1/3. and 1/12 as the
product of 1/2. 1/3. and 2/4 In general. the formula (1-1)!/! produces the required
numbers The next step is llkely 1o occur only 1o someone who has a little
mathematical knowledge. and who sees in these ratios of tactorials something like the
Beta function., or at least sees the kinds of expressions one IS accustomed 1o
encounter in problems on combinations and probabilities. {In fact. | discovered that
the Beta function was what | wanted by searching through my copy of Peirce’'s A
Shornt Table of Integrals. where | vaguely remembered having seen some ratios of
factorials )

Are there any other reasons for thinking that the situation may call for a
probability model? Ingeed there are. What do word frequency distributions and cCiy
size distributions (as well as a rumber of quite different phenomena where this same
faw applies) have in common? Nothing very obvious. unless they can be viewed as
instantiations of the same urn scheme. So let us see whether we can interpret ihe
formula as representing the steady stale of some siochashic process

Here | recall being aided by a metaphor It we think of a book as being
created word by word. and «f a word 1s added that has already occured k times. (he
number of words cciunng k+1 umes each wil be ncreased by one and the number
of words occuring k tmes each decreased by one For a steady-state equilibrium
the rate at which words are created that had previously occured k times must be

equal to the rate at which words are created that had previously occured k-1 times

10
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In tus way the "k” bin wil be replemshed as rapudly as 1t IS depieted At some
point | began 10 visuahize this as a cascade. with successive pools of water each
marntained at a constant level by flow in from the pool above. and flow out to the
pool next below Working back from our answer -- the distnbut'on that we know
describes the phenomena -- it 1s not 100 hard to show that the equilibnum condition
requites that the probabiity of creatng a word that has already occured k tumes
must! be proporuonal to k

We are ready for the tinal step 1o interpret the probability assumption. In the
case of word distributions. 11 can be interpreted to mean that the chance ot a word
being chosen as the next word in a tex! is proportional, because of association, to
the frequency with which it has been used aiready. and also proportional. because of
fong-term associations stored in memory, 10 the lreguency with which it is used in
the language. In the case of city sizes. it can be interpreted 1o mean that birth and
death rates are approximately independent of city size. while the probabillty that a
city will be the target for any given mugration is also proportional to its size (Simon.
1955).

| don't propose !0 defend these interpretations here My purpose is to
understand tne process that reached them ! my accoun! through the filter of thirty
to filty years of torgetting. has any relation to reality. then we see a process for
arriving at the initial formula that looks very BACON-like. tollowed by working-backward
search processes that are guided by the evocation of prestored mathematical and
real-world knowledge -- BACON as the front end to an expert sysiem

Again. my hands are waving widly  You will not have ftailed to notce that |
have not accountec at all for the cascade metaphor. yét at some tme i1 was evoked
and heiped me to formulate the steady-state relations So there 1s stli work to be

done on the theory of discovery. still theses to be written and papers published. But

11
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| see in this little history. or imagined history. no magic and no mystery Each step
appears to proceed. if not inexorably at least plausibly from the preceding one

i the data cried out so loudly for explanation. and 1If the discovery process
proceeded in such a plausible succession of steps. why did not others discover this
jaw and s stochastc explanation? Indeed they did. The first was G. Udny Yule.
the English statistician. who in 1924 published "A mathematical theory of evolution
pased on the conclusions of Dr. J. C. Willis, F.R.S.” Yule constructed a modei very
similar 10 the one | have just described to explain Willis' data. mentioned earlier. on
the distribution of species among genera. (I could have been led to this paper by a
footnote In Lotka, but | wasn't) A second was the English economist.
D. G. Champernowne, who published "A model of income distribution” in 1953,
describing a quite similar process. A third was B. Mandelbrot. who, in 1953,
published "An informational theory of the statistical structure of language.” There
were some differences between Mandeibrot's model and mine, which later occasioned
heated dispute belween us{. but the basic ideas were closely retated.

| learned about all of these partial anticipations when | searched the literature
and inqgulred among my friends prior 10 publishing. in 1955, my own paper on the
topic (Simon. 1855%).

That sull 1sn’t quite the end of the story. for again. the solution of one
scientific problem created a host of new problems In the book by Yuji Ijin and
mysell. Skew Oistnbutions and the Sizes of éus:ness Firms (1977). you can find a
series of essays applying the same stochashc mechanism. and generalized versions of
it. to the task of uncerstanding the size distnbutions of business hrms and the

economic imphcatiens of these distnbutions

12
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Representations

Mention of the cascade metaphor that | used to find the stochastic process
underlying  word-frequency and city-size  distnbutons  raises  the  question  of
representations What kings of represemations are used Dby scienlists in thinking
about ther research problems. and where do these representations come from? One
naliowed form of the question is whether scientisits (and others) think in words. or
whether thoughts take some qune difterent shape -- whether they employ “mental

pictures.” say.
Words ang Pictures

The French mathematician, Jacques Hadamard. in his de|igmful essay on The
Psychology of Invennon in the Mathemaucal Fielg (1945). comes down heavily on the
side of images and against words Among the many distinguished mathematicians
and scientists testifying for him is Albert Einstein, who in a letter to Hadamard stated
that "the words or the language. as they are written or spoken, do not seem to play
any role in my mechanism of thought. The psychical entities which seem to serve
as elements in thought are certain signs and more or less clear images which can
be ‘'voluntarily’ reproduced and combined.”

What is good enough tor Hadamard and Einstein is good enough for me |
too. have ditticulty in finging any presence of words when | am thinking about
dithcull matters, especially mathematical ones. Even as | sit here at the keyboard
composing this essay. | cannot really detect the words 1n my thoughts (or much ct
anything eise. for that matter) unul they come out the ends of my tingers But
perhaps | am not thinking. but just recording previously composed ideas that resige
somewhere 1n my subconscious mind ‘

Even if we do think in images rather than words, neither Hadamard nor f

13
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Einstein nor | had much success In describing just what these images were or how
they were represented in a biological structure hke the brain  However [ believe that
Jit Larkin and | have recently made substantual progress in expfaining these matters
(in why a Diagram s (Somenmes) Worn Ten Thousang Words) (Larkin and Simon.
1987) in order to deal with the difficulies one by one we fudged a bit alleging
that we were talking about diagrams on paper rather than mental pictures, bu_t most
of our argument carnes over in a straightforward way The basic ideas. which | will
not elaborate upon here. are (a) that in the course of transforming verbal proposiions
into images. many things are made explicit that were previously implicit and hidden.
and (b) that (learned) inference operators facilitate making additional inferences from
the images In computationalily etficient ways.

We also show. as a byproduct of our analysis. that diagrams are representable
as list structures (alias "schemas.” “scripts.” “frames.” “labeled directed grapnhs.” et
cetera). hence are programmable in Sstandard list-processing languages. hence are
readily seen 1o be representable in systems of neuron-like structures. Since the
surface structures and the semantics of natural languages can also be represented
as list structures. we can conclude that propositions and p:clyres {or at least
diagrams) can use common machmery in the brain -- that both are bes! viewed as
specializations of a common flist-structure mode of representation (I do not wish to
deny that we may also. as Kosslyn (1980. and also this volume) has argued. possess
a specialized raster-like organ for more literal representation of visual images -- a
ming's eye. But | would prefer 10 put that guestion aside here)

Now just as there has iong been a debate as !0 whether we use words of
images n our thoughts. so there has been a debate (perhaps the same debate) as
to whether our nternal represer~tations of protlems lock like collections of

propesimons or like models of the provlem situations Each of these views has been
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held by an imporitant segment of the cogmtive science community. and the wo
segments do not often communicate with each other except sometimes {0 quarrel

One segment, under the banner of "let language fead the way " lakes vertal
reasoming as s merzphor tor the problem-sciving process. and thinks of reasoming as
some kng <t PROLOG-ike theorem-proving procedure The bOOk by Miller and
Johnson-Laird on Perception and Language (1876} 1s an excellent represeniative of
this point of view. aithough Johnson-Laird. in his more recent book. Mental Mogels
(1987). takes a long step of apostacy toward the alternative viewpoint. That he does
SO withoul any apparen! awareness that he s mowving onio well-expiored ground
exemplifies the mutual insulation of the two segments.

The second segment of the cognitive science community uses heuristic search
through a problem space (a mental mode! of the task domain) as its metaphor for
problem solving. Human Problem Soiving (1972) adheres strictly to this viewpoint it
has been ciaimed. by Pylyshyn (1873) among others. that the two viewpoints cannot
be distinguished operationally. but this claim rests on a confusion between the
informational equivalence and the computauonal equivalence of representations. Even
if two representations contain exactly the same information. it may be far cheaper.
computationally, 1o make some of this information explicit using'one rerpresentation
than using the other. The incorrectness o! the claim of computational egquivaience s

demonstrated by the examples given in the Larkin-Simon paper menuoned above
Representing a Dynamic System

| am atraid that | have been diverted from my mam topic. which iS providing
anecdolai evidence abou! the problem solving processes used n scienufic discovery
Let me return with an example that | will present rather sketchily. to avoid techmical
detatl Econormusts frequently use what they call “partal equilibnum analysis.” n

which they avoid talking about ever,.ming at once by making a host of cetens paribus
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assumptions  They examine the impact of a disturbance upon a smaill segment of
the economy while assuming no interaction with the rest of the economy

if challenged on the legitimacy of what they are doing. economisis using garual
equllibrium methods may oefend themselves by saying that. of course. interactions are
not completely absen! but they are small. hence unimportant That 1s an argument
we know not only n economucs. but throughout all of science But s o a
satisfactory argument?  Small effects. persisting over a long period of tme. may
integrate into large effects

Thoughts of these kinds (represented as words or as images?) went through my
mind while | read, in the early 1950s. a paper by Richard Goodwin. Dynamic
Coupiing with Especial Feference to Markets Having Progduction Lags. published in
Econometnica in 1947 Again. | cannot claim any clear recollection of the precise
steps |} ook 10 formulate and scolve the problem that his paper evoked. | did
conceive of it as a matter of analysing the behavior of a large dynamic system
divided into sectors. with strong interactions among the components in each sector
anad weak interactions among sectors. | remember also that | worked very hard for
several months to get answers, and that | worked. without paper and pencil. while
taking fong walks.

My representation. at least much of the tme. was an image of the matrix of
coeftictemts of such a dynamic system .. hardly surpnsing. since this is the way
dynamic systems are normally represented in mathematcs DOOKS Al some point |
saw that the rows and columns of the matrix could be permuted so that the new
matrix would consist of a number of diagonal blocks with large coefficients in them.
and only small coefficients in the matrix outside the cagonal blocks The matrix was
“nearly block diagonal © The image was vague. in that the number of blocks and

therr sizes were not seen in detail If forced to give numbers. | might say that there
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could have been three biocks. each three rows by three columns in size -- but the
answer is surely a fabrication.

At some later point in ume. | acgured a metaphor | wisualized a building
divided N0 rooms. each of which was divided. in turn. o cubicies You can see a
diagrammatic interpretation of my metaphor on page 212 of The Sciences of e
Arficial (1981). Second Eamion We start out with an extreme disequilibnyum of
temperature. each cubic foot of each cubicle being at a different temperature from
its neighbors

Several things now seemed obvious. Throughout each cubiCle, a constan
temperature wou!ld be established very rapidly by exchange of heat between adjoining
volumes. At some later tme. each room wouid attain a constant temperature by
heat diftusion through the v:alls of the cubicles Al a stull later time  the entire
building wou!d reach a constant temperature by exchange of heat between the
thicker walls of the rooms

Moreover. because of the diffe'rences in the durations involved. each of these
processes of equilibration -- within cubicles. among cubicies, and among rooms -- can
be studled independently of the others. In studying the equilibration of each cubicle.
we can ignore the other cubicles. In studying the equilibrauon' of rooms. we can
represent each cubicle by its average temperature. anc igncre the other rooms. In
studying the egquilibration of the buiding. we can represent each room by its average
temperature. As a resull. the mathematcs of the problem can be simpiified
drastically

There still were some difficult mathematical steps from this picture of the
situation to rigorous proofs of the (approximate) validity of the simpliicanon. but the
result to be attained was clear The reasoning | have oescribed was carried out

mainly 1n the summer of 1956, and incorporated. together with the mathematics. in a
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paper wrtten with Albert Ando later that year. and published in 1961 (Simon and
Ando. 1961)

| can throw no further hight on the source of the heaf-exchange metaphor. or
on now if at afl. ( drew inferences from the image of the nearly block diagonal
matrix  Block diagonal matnces were not unfamihar to me. for they had played an
important role in the thecretca!l work | had done on causal ordernng in 1952 ang
1953 The mamem;ucs required for the proofs. which was tairly standard. would
nave been evoked. ! think. n the mind of any mathematician who had put the
problem 1n the form we did Our results were rediscovered by some Russian
mathematicians in the late 1960's. bu! apparently had not been anticipated earlier
(Korolyuk. Polischuk and Tomusyak, A A 1969).

Our theorems and methods (which may be used to invert mairices that are
nearly block diagonal) have attracied the attention of numerical analysts, and of
natural scientists who are concerned with hierarchically organized systems. The
aggregation methed we introduced has also now been recognized 10 be closely
related 1o the so-called “renormalization” procedures that play an important roie in
several parts of physics. and which were also invented guite independently of ours.

Even with this sketchy account. the discovery process appears gute
unremarkabie. The problem was found in the literature {(Goodwin's paper). and it can
be represented N a quite standard way by matnces having a certain special
structure. The metaphor, by showing how such a system would behave. made clear
the nature of the thecrems to be proved. Aithough nothing s reveated ac.ct the
source of the metaphor. it is not at all esotersic. The proofs. while intricate. would
not pose any great dithculty for a professional mathematician A case of normatl

problem solving. we would have to conclude
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Finding an Explanatory Model

The last two sections provided two examples of the process of finging an
explanatory model -- a model tor the rank-frequency relation and a model of nearly
decomposable dynamiC Systems The reader may be interested however in an
example a little closer 1o home How could one discover an explanatory model of
human problem solving? One answer might be “By observing some problem solving
behavior ¢closely and inducing the model directly from your observations.”

There is a good deal of ment in that answer, and in a later section | will show
that something like that happened when the General Problem Solver was invented.
But even in this case. the empirical observations were not the sole source of
information that ¢..Jded the discovery The inventors also had some notions of the
shape of the thing they were looking for

Explanatory theories take a variety of forms. For example. the behavior ot
gases is commonly explamned by supposing that they consist of a cloud ot energetic
particles, interacting with each other in accordance with the laws of mechanics
Magnetic attraction between two bodies 1s explained by a field of magnetic force in
the space between them

One very common form of explanaton. in both natural and social science.
employs systems of differential equations or ditference equatons 10 determine the
values of the time derivatives of System vanables At any gwven tme. the system s
supposed to be in a specitied “state © and the differential equations then determine
to what state it wil be moved a "moment” later Thus. n mechanmics. the state 1s
defined in terms of positons and velocities. and the differential equations show how
the action of forces 1o produce accelerations brings abcut a continuing change 0
state through time.

Building an explanatory model involves a choice among these or other
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representations of the phenomena Will 1t be a particle mode!l or a continuum
model? Wil it represent static equilibrium. a steady state or dynamic change? The
representation has to be chosen prior t0. Of simyuttaneously with the induction of the
model from the data

When Allen Newell Cuft Shaw and | began the construction of a thecry to
explain problem solving. around 1955 we were already committed to a representation
in fact. it was our recogniton that such a representation had become avaiablie wih
the invention of the diginal computer that motivated us 10 undertake the study of
human thinking. A reader can find detailed accounts of the background for this
recognition in Newell and Simon. 1972 pages 873-886. and in McCorduck. especially
Chapters 3 and 6.

What we observed -- we have told the story before (Newell and Simon. 1872) -
was that the program of a computer is formally eguwvalent to a set of difterence
equations. At each operation cycle. the program determines the new state of the
machine as a function of its previous state (the contents of all i1s memories) together
with any new input # has received. Moreover. these difference egQuations were noct
limited to manipulating numbers. but could process symbols of any kind

The explanatory task. then. was to find a dynamic theory of the processes of
problem soiving in the form of a computer program  The data we could muster on
the behavior of human problem solvers had to be examined for clues as 10 the
nature of that program. This reguirement piowided very sirong guigelines both for
the kinds of data that would be valuable (preferably cata that tollowed the course of
problem solutien as closely and minutely as possible) and for the best ways cf
examming the data (searching out the succession of “actions” the problem solver
executed. and the cues that motivated each action)

Of course. there was more to the representation than simply the specificaticn
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that 1t be a computer program It had 1o conmtain symboi structures that could
represent 1he structures n human memory which were known o be in sgme sense
associative The important poiNt was that there was a continuing wo-way interacton
between ‘re gracua! ccrstruchicn of the representation and the construction of the
theory that used o Sametimes programming convemignce (Cr necessi!ty) dictated
choices someumes psychoiogical requrements  Some aspects of the representation
that were ninally concewved mainly 1o meet programming needs (tor exampie. the hst-
processing languages and data structures in the torm of lists and description Iists).
were later seen !o have psycholog.cal interpretations as networks of associations.

The empincal part of the undertaking which | will discuss later in connection
with the topic of experimental gesign  went hand n hand with the design of the
representation of the explanatory modse!

Once some expenence hac been gamned with information processing models in
the form of computer programs. they became a readi'y avalable tool tor bulding
theories of other aspects ¢! human thinking S0 Kctovsky and | interested n

explaining simple iaw-giscovery processes as a first step toward a theory of scientfic

discovery  “natuyrally” framed our mode! as a computer program n a list processing
language. capaole cf discovenng and extrapoiating the patterns in Thurstone letter.
sequence problems (Kotovsk, and Simen in Smon 1979 ch 51 52) Nc
alternative representanons were even ccnsidered

In the past few years with the avalabity ¢of a3 wnele new menu of vanants
preguchion systems mocers of memory waith spreading activaticn  connexigmist Mcce's
SCAR e PRCLDOG language -- choices of representalicn have again beccme ar

meortant and cithcy pant of ine modcl-bullding process
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Designing Good Experiments

Expenm_ems are supposed to be aimed at tesung hypotheses or Celler ye!
znoosing tetween contending hypotheses (“cnucal” expenments)  That an expenment
mee!s one or doth of these aims 5 neither a necessary nor a suthicient congition for
s tbeng a good experment

it 15 not a sufhiciert condition because testing weak-lea hypotheses of the form
“vanable X affects varable Y.” or its negation. s not usually very interesting. and
does not often contnbute much 10 our understanding of the world  (But if | continue
in this vein. | will trespass on Allen Newell's noted "Twenty Questions” essay (Newell
1973))

Testing stronger quanttative hypotheses (e g.. the periods of the planets are as
the 3/2 power of ther distances from the Sun) 1s much more interesting, and very
interesting indeed it the hypotheses are closely connected with broad explanatory
theories (e.q . with the inverse square'law ot grawvitation)

We are on safer ground if we aim expenments at testing models instead of
tesung hypothéses. but when we do that we must remember 1o throw away the
whole standard apparatus of significance tests which is no longér appiicable. (See
Gregg and Simon. and the references crted there un Simon. 1979 ch 5.4)) We
mus! aiso remember that models are multi-component creatures. and when our dala
dont fit a model. we are faced wih a difficult diagnestic task to determine what 10
cthange -- or whether 10 discard the entre mogde!

So much for suthiciency. what about necessity? s modcei-testirg the only
reason for experimenting” Surely not  One good reason for running an experiment
- or tor spending cnes tme just observing phenomena closely - 15 that you may te
surprised  The bes! things that come out of expenments are things that we didn!

expect to come out .- especially those that we cculdnt even have imagined N
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agvance as g.ssibiimes  Of such swi are many Ncoel Prizes made

Lest | be accused of advocaung planning experiments Dy casting dice let me
sugges! that there are heurnstcs for planning both kings cf expenments excenmenrts
1o tes! models and expenments 1o generate surprise  and let me dlysirate the
reurnsncs wiih some exampies I will begin with the more tradiional modei-testing

category
Testing Models

A few years ago. | found occasion 1o begin the study of the Chinese language
I ¢id it just tor tun and because | planned 1o visit China. but to put a more solemn
face on things | called 11 “"exposing myself to new phenomena ” That allowed me
to do some cof 1t on company tme. with a good conscience Finding myself in
China working with Chinese psychologists. we decided to rephcate with Chinese
language materials some standard short-term memory experiments. The motive was

to test a model Does Chinese have a magical number” And is it seven? The

answer !0 both questons was “yes” -- no great surprise
Meanwhile. | had learned a strniking fact about the Chinese language (no
surprise to my Chinese colleagues. but a surprise to me) A Chinese college

graduate can recognize about 7.000 Chinese characters (hanzi Each character 1s
pronounced with a single syllabcle  But in the Chinese language there are only about
1.200 disunct syllables (even taking account oi lone disiinctions) Hence. ©on average.
there are about six homophc-es for each character

Semehow (imtuion  or recogmtion at work) | remembered that shori-term
memory was generally thought !0 be accustcal in modality but only because ct
Conrad's rather indirect ewvidence that errors in recall generally nvciveas simifanty in
scund rather than similarity in appearance In Chinese. we could put the acoustical

hypotnesis to direct test  After establishing that the STM span 1s about six or seven
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unrelated and non-homophomc characters we presented the same subjects with
strings of wisually distinct homophonic characters The result was dramatic - the
STM spanned oropped 10 about two confirming Conrad s result (Zhang and Simoen
1985 VYu. Bohn et al 1985

Similar methodological predisposiions underlie the experments that Bill Chase
and | dig on memory tor chess positons. building on the earher work of De Groot
ang others (Chase and Simon in Simon. 1879 ch 64 65) Here the question was
whether the differences 1in chess memory bdetween experts and novices could be
accounted for by diiferences in their vocabularies of "chunked” chess patlerns. The
answer that came out of our expenments was “qualitatively yes. bul quantitatively
no.” an answer that. # shghtly disappointing. was much sharper than if we had
simply asked whether experts chunks were larger than novices’

The qualitied aftirmative answer has led to much subsequent research which is
gradually giving us a more precise model of how chunks are constructed and
organized in memory. This research 1s strong represented in this conference by the
paper of Charness. and that by Encssfm and Staszewski. while closely related
questions are examined by Carpenter and Just in ther use of eye movements and a
memory mode! to Study the role of working memory in reading

The expenments with Chase on chess memory like those with Chinese
Characters. were designed Dby asking what quanttative predictions a current mode!
made and how we could make the measurements necessary for testing these
predictions  The problem solving search. it there was one 1ock place in the space
ot 1he characterstics of the task domamn. and was facitateg by looking for
“surpnsing” or “interesting” features of the domain  In the Chinese language case.
the surprising feature was found first and the model it was relevant to was fourd

second In the chess case. the order was reversed
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The experiments just described all have an experimental and a control
condition. just as a well-designed experiment s supposed to in the Chinese
language experiments we compared homophomc with non-homophonmce strings  of
characters In the chess expernments. we compared the performance of experts wilh
the performance of novices. and chess posiions from well-played games with random
positions The expert-novice dichotomy has also served me in good stead in some
more recent expernments on problem solving in physics (Simon and Simon. 1978
Larkin et al. 1980). and has been used by Hayes (this volume) and his colieagues in
research on wriing  An incidental benefit of using this paradigm is that being abte
10 point to clearcut experimental and control conditions seems to soothe the savage

breast of reteree and editor
Problem Isomorphs

To conclude my list of expenmental manipulations. | will mention just one other,
which has provided us with almost unhimited mieage -- the idea of problem
isomorphs.  fts tistory 1s as obscure as that of many of the other things | have
been talking about | think | invented the dea of problem isomorphs apout 1969, or
a little earher: for 1 do not have any evidence of earlier mention by myselt or anyone
else. | have a conjecture about its aniecedents Dbut it 1S a reconstruclion. not a
recollection. although John Michon. without prompung. corroborated it

Saul Amare! was one of the first researchers in artficial inteiligence 10 point
out that changing the representation of a problem .- the problem space and
operators .- could somenmes greatly faciitate its solution Amarel Newell. and !
parucipated 1n a semester-long seminar at CMU in 1866. the main topic of which was
problem representation  Now 1t 1s only a small step (at least by hingsight) from the
'dea that a subject can solve a problem easily by finding the nght representaton 1o

the i1gea that an expernimenter can make a problem harder or easier for a subject by
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presenting 't In one or another guise

So much for the antecegents Soon problem somorphs -- problems with
dentical task domains and legal-move operators. but descnibed by afferent sers of
words -- were a topic of discussion in the Understand Semmar (atias the Cognritive
Science Seminar) which has run weekly in the Psychology Depariment for twenty
years The first example was number scrabble. an isomorph of uc-tac-lice. and John
Michon then added another member. JAM. 10 this set. John R Hayes rapidly
became the most protfic and ingenious designer of problem isomorphs. providing us
with somewhere between z dozen and two dozen isomorphs of the Tower of Hanoi
puzzle. most of which have been used in one or more experiments (Hayes and
Siron. in Simon. 1979 ch 7 1-7.3).

We have used isomorphs to discover what charactenstics of a problem, other
than the size of the task domain, account for its difficuity. Early work in problem
solving. our own included. had focused on the combinalorial explosion of search as
the main source of probiem ditficulty Yet we had found that the Tower of Hano:n
with a relatively small and easily exhaustble domain. and the Missionaries and
Cannibals puzzie. with a tiny one. could cccupy human adults for ﬁfteen minuies or
a half hour before they found a solution.

The 1dea that only the size of the task domain couid affect problem difficulty
sometimes died hard. One referee for a funding agency gave a project propesal low
marks because he or she thought that. on these grounds our experiments couid
have only negative results. since all isomorphs must be of the same difficulty (Al
the time we were told of this objection. we had already demonsirated differences in
average solution times 10 various 1somorphs of the Tower of Hanor in the ratio of 16
to 1) Our theoretical account of problem difficulty 1s sull very incomplete. although

we have been able to model some of the phencmena (Kotovsky. Hayes and Simon

26




The Scientist as Problem Solver 1 July 1987

1985 Kotovsky and Fallside this volume) (The UNDERSTAND program. for example.
constructs different representations of problems when presented with ditterent
isomorphs (Ha;/es and Simon. «n Simon. 1879 ¢ch 7 )}

Tne expermeniar stiaieg, Fere 'S zlear denving from the single 1dea of
isomorphism .- and that 1dea has at least a plausible hineage  The power of the
idea would be enhanced it we had more systematic ways of designing isomorphs with

specihc teatures designed n advance 1o test particular putative sources of gitficully
Experimenting Without an Independent Vanable

The experiments descnhibed up 1o this point all compare performance under two
or more ditterent congdlliens -- they all invoive marmpulation of an indepengent
variable. When | examine my publications beyond the limited set aiready mentioned.
I find t0 my embarrassment that this fundamental condition for sound experimentation
is seldom met in them. What have | been up 10?7 What can | possibly have
learned from ill-designed experiments?' The answer (it surprised me) is that you can
test theoretical models without contrasting an experimental with a control condition.
And apart trom testing models. you can ofien make surprising observations that give
you ideas for new or improved models

Let me start with an example of the latter kind Many summers ago (about
1965) Jetfery Paige and | decided 1o take thinking-aloud protocols from high-schoo!
students solving algebra word probtems (Paige and Simon. in Simon. 1879, ch. 4 &)
Our main motvation | think. was just 1o see how they did M -- whal processes they
used Perhaps we had in mind comparing therr behavior wih Bobrow's STUDENT
program (Bobrow. 1968). which solved such problems Or perhaps we thought we
might build a Drogran;\ ourseives that would do a better job of s'mulating the human
processes. If those were our intentinns. my memory does not retain them

Jett conceived of a fine idea (at least. | have always remembered it as his)
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We construcied some “impossible” problems -- problems that could not De given a
real physical interpretation because therr solutions involved boards of negative length
or nickels that were worth more than dimes We then asked our subjec!s 10 set up
the eguaticns corresponding 10 the problem statements. but not to solve them

The outcome was wholly unanticipated Qur subjects fell into three groups.
rather consistently over the set of three problems. Some set up the eguations that
corresponded literally with the verbal statements of the problems. Some translated
the problems inaccurately, always ending up with equations that corresponded 10 a
realizeable physical situation. Some said. "Isn’'t there a contradiction?” -- meaning,
"] dgraw inferences from the problem statements that conflict with my knowledge of
the real world.”

Because we were trying to get as dense a set of data as we could, in order
1o trace processes in detall. we had asked the subjects both to think aloud and 1o
draw diagrams of the problem situations. The diagrams drawn by subjects in the
first group were generaily incomplete and unintegrated. and did not reveat the
“contradiction.” The diagrams drawn by subjects in the second group
misrepresented the situations in just the way their eguations did -- so as 1o make
them physicaily realizeable The subjects in the third group drew diagrams that
revealed the contradictions

The direction of the causal arrow IS not clear. but one can take these results
as at least presumptive evidence that subjects in the second ancg third groups used
imagery to represent the information from the word problems btefore transiating into
the language of algebra Subjects n the first group gave ewvidence o! translating
directly 10 equations using only syntactic information.

With this kind of information in hand. one can begin 1o construct mogels for

the simulation of these sorts of behavior. and 1o explore what other predictions could
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pbe made about systems behaving in these ways The ISAAC program. written by
Gordon Novak to solve physics problems presented in natural language s an
exampie of a system 1hat uses an internal diagram of the problem situation to
mediate between the verpal stmulus and the equatons it finally constructs (Novak.
1976) The UNDERSTAND program that John R Hayes and | constructed around
1872. 10 show how verbal problem instructions could be converted into inpuls
appropnate for a GPS-like problem solver. also borrowed this insight from the aigetra
expenments (Mayes and Simon. in Simon. 1979. ¢ch. 7.1)

But the most massive set of examples of the expermental strategy of " just
looking” is to be found in Human Problem Solving.” Density of data was the name
ot the game. and protocol analysis the way of ptaying it. In 1956, the Logic Theors!
(LT) had demonstrated the teasibility of solving difticult problems by highly selective
heuristic search (Newell and Simon, 1958) 8u! is that the way people did it? The
General Problem Solver. LT's successor. was our answer -- a heuristic search system
that used means-ends analysis as its principal heuristic (Newell and Simon. 1972).

Both Al Newell and | agree that the core of GPS was extracted directly from a
particular protocol that we can identify. We aiso agree as to 'the week in the
Summer of 1957 when it was done. On the details. the ewidence 1$ not wholly
concordant. but sometime. when we have leilsure to examine the papers we have
preserved. we may get it all straightened out (See McCorguck. page 212) The main
lesson s clearr GPS. a theory of human problem solving. was extracted by direct
inguction from the thinking aloud protocol of a faboratory subject. without benefit of
an “experimenial” and a “control” condition

What. in adadition to luck. entered into the resuft? First. as | have ponted out
N an eariier section. we already knew that we wished 10 represent our mogdel as a

computer program in a fist-processing language Second, a data gathering method
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was used that obtained the densest record of the subjects behavior that we knew
now to get We were able 10 discover what he had done each few seconds ©of ume
during which he worked on the task Third. some care hag been taken in selecting
the task 't »2Z aiready been used by O K Moore and his .coHeagues at Yale ang
we had access !0 both their experience and ther dgata The task was symbolic
hence made for easy verbahzation and seemed 1o call for a minimum of pictonal
visualization. It was a hard enough task o evoke genuine problem solving behavior
from intelligent subjects.

Application of these criieria o the selection of problem solving tasks accounts
for a substantial fraction of the knowledge that has been collected about problem
solving processes during the past thirty years. and a substantial part of the
theoretical efforts that have succeeded in building modeis to account for behawior in
many kinds of tasks. The metaphor of chess. cryptarithmetic and the Tower ot
Hanoi serving as the green peas. Drosophila and E. colt of cognitive science is as
near to literal truth as it is to fancy.

Do these expenments really lack independent variables? Can't we consider the
task domain or the subject to be just that? Of course we can. but to no particular
end The principal knowledge we gained from these expernmenis did not come out
of comparisons between tasks or subjecls It came out of pamstakingly analyzing
individual protocels and inducing tfrom them the processes that probiem solvers
employed in their work Once this had been done. we could tes! the generality of
our results by comparnng over tasks ang over subjects. But detailed longitudinal
analysis of the behavior of singte subjects was the foungation stone for the
information processing theories we have bult of what goes on in human problem
solving.

It the methodology troubles us. it may be comforting to recall that detailed
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longitudinal  analysis of the behawvior of a single solar sysiem was the ftoungation
stone for Kepler's Laws. and ulnmately for Newtons. Perhaps 1 1S no! our
methodology that needs revising so much as the standard texibook methodology
which perversely warns us agamnst running an expernment untl precise hypotheses
nave been formulated and experimental and control condione defined  How do such
experiments ever create surprise -- not just the all-too-common surprise of hawing our
nypotheses refuted by facts. but the delight-provoking surprise of encountering a
whoily unexpected phenomenon? Pernaps we need 1o add 10 the textbooks a
chapter. or severai chapters. describing how basic scienufic discoveries can be made
by observing the worig tently, in the laboratory or outside it, with controls or without

them. heavy with hypotheses or innocent of them.

The Scientist as a Satisficer

My economist friends have Jong since given up oOn me. consigning me 10
psychology or some other distanmt wasteland. [t { cannot accept the true faith of
expected utility maxmizanon, it is not the faull of my excellem education in
economics -- in fact. the educaton was repeated tour times. often enough even for a
sfow fearner. First. as a high schoo! student. | read the works o% Richarg Ely and
Henry George in order to meet the arguments of opposing debaung 1eams on such
issues as the rariff or the single tax. Then. at the Umversity of Chicago. | learned
price theory from Henry Simonds ang Walrasian equilibnum ang econometrics from
Henry Schunz

Next, at Berkeley. my colieagues. Kenneth May and Ronaid Shepard. students
ot Grittith Evans. revealed to me the inference-drawing powers of the second-orger
conditions of maximization. while | learned about Neyman-Pearson statstics from Jerzy

Neyman himsett Finally. on returming to Chicago. | was exposed to Samueison s
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Founcations and Hicks on value in the briliant discussions at the Cowles Commission
seminars among Jascha Marschak. Tjalling Koopmans. Ken Arrcw. Larry Klein. Franco
Modigliant. Gerard Debreu and other superbly keen ang wellanformed minds

Alas 11 did not take My traumatic exposure in 1935 1o the buogenhng process
in the Miwaukee recreation department had immunized me agamnst the sdea that
human beings maximize expected utlily. and had made of me an incorngble
satisficer And that same imprinting experience supplied me with the problem -. the
cornucopia of problems -- that has kept me occupied ever since. | have sketched
here the theory of scienufic discovery to which my study of these problems has led
me it is not a theory of global raticnality. but a theory of human limited
computation in the face of complexity it views discovery as problem solving, and
problem solving as heuristic search. and heuristic search as the only fit actwity for a
creature of bounded rationahty

Some scientists believe that theories should be judged by their ability to make
correct predictions. This paper provides some tests of the predictive power of this
problem-solving theory of discovery The anecdotes | have provided from my own
scientific tife are instances where it gives a pretty good account of the processes
that are visibie in my research

It describes me. like KEKADA. formulating a new problem n response 1o my
surprise at encounterning an unexpected ghenomenon 1 traces my BACON-lke
progress toward discerming a fawful regularty n data. and the evocaton of
knowledge. n expert-system style. to find an explanation for the regularnty. n
accounts for my use of diagrams to gawn a grasp of complex phenomena in a
dynamic system it dluminates how the availabiity of representations and the invenhon
of new ones has influenced my efforts to construct explanatons It characterizes 2

number of my strategies for designing experiments. and perhaps even explains why |
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am frequently unconcerned about such things as “expermental controis”™ or even
independent variables

Ot course | am exercising poenhc license n talking of predictions A
comprehensive SIMPLE SIMON has not been programmed. only pieces of him exst
It would be more defensible 1o talk of explanatory accounts rather than prediciions
But you will not be misted by the metaphor. which 1s as useful as one can expect a
metaphor to be

The information processing theory of discovery that | have been describing has
one other virtue. it 1s not only a descriptive theory. but a normative one as well
Not only does it predict (explain) my behavior successfully, but. unbeknownst to me.
it has served me for flifty two years as a reliable set of heuristics for conducting
research Quite unwittingly. | have been following the instructions of BACON. of
STAHL. of GLAUBER. of DALTON. and of KEKADA. | couldn't have had better
guidance.

However. one heunstic that has been of first importance 1o my work is missing
from these programs. | will mention 1. because you 100 may find it useful. [f you
want to mare interesting scientific discoveries, be sure to acquire as many good
friends as possible. who are as energetic. intelligent. and knowiedgeabie as they can
be. Form partnerships with them whenever you can. Then sit back and relax. You
will find that all the programs you need are stored in your friends. and will execute

productively and creatively as long as you don't interfere too much
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