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FOREWORD

This report was prepared by John W. Lincoln from Structures Division of
the Directorate of Flight Systems Engineering, Aeronautical Systems
Division, Wright-Patterson Air Force Base Ohio. Its purpose is to provide
an analytical method for the accurate and rapid calculation of the loads on
an aircraft during landing. The report is written in two volumes. In the
first volume the equations of motion are derived and in the second volume
the computer program that was developed from these equations of motion is

documented.
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TNTRODUCTION

The analysis of an aircraft making a landing has interested dynamicists
for many years. This interest is derived from the technical challenge of
the problem and from the fact that the landing impact is an important loads
source for poth land and carrier based aircraft. The inherent nonlinear
nature of the equations of motion requires that solutions be obtained by
numerical integration. The challenge, therefore, is in establishing the
equations such that soclutions may be obtained with speed and accuracy.

Speed is required because of the need to minimize the computer costs derived
from the large number of cases that must be examined. Accuracy is essential
because it will reduce the need for ground testing to establish the forces
and the energy absorbing capability for a given landing gear geometry.
Further, and likely more important, an accurate analysis permits one to
extrapolate test conditions to design conditions that are difficult or even

hazardous to achieve by flight test.

The landing impact analysis in this report is believed to offer both
speed and accuracy. Speed is obtained through taking into account the
compressibility of the hydraulic fluid in the shock strut. The
compressibility is accounted for in the equations of motion through the
introduction of an additional first order differential equation. This, in
effect, allows the integration to proceed more rapidly than that obtainable

if the usual incompressible hydraulic fluid assumption is used.

Accounting for the compressibility of the hydraulic fluid enables the

analyst to improve the accuracy of the solution. In many shock struts,




particularly in articulated landing gears, the pressures are large enough to
be significantly affectcd by the hydrauiic fluid compressibility. The
details of the shock strut equations that account for compressibility are
found in Appendix B. Other features in this derivation that improve the
accuracy of the solution are six rigid body degrees of freedom, flexible
body degrees of freedom for the airframe and representation of the
articulated kinematics of the landing gears in combination their flexible

degrees of freedom.

The equations of motion are derived with the stroke function of each of
the shock struts used as a generalized coordinate. This feature is
especially helpful when the gear 1is articulated. In this case the gear
kinematics and gear mass, damping and stiffness terms become functionai
dependent on the shock strut stroke. The shock strut stroke function and
its derivative are obtained directly from the equations of mection instead of

deriving them from the axle displacement and velocity functions.,

The equations of motion are derived from Lagrange's equations. The
rigid body motion of the aircraft is expressed in terms of the body axis
components of the aircraft velocity vector function and body axis components
of the aircraft angular velocity vector function. These coordinates are
quasi-coordinates and the usual formulation of Lagrange's equations must be
modified to account for the fact that these coordinates are not generalized.
Lagrange's equations must also account for a non-holonomic constraint
condition on the vertical motion of a point on the tire footprint in contact
with the ground. This constraint condition is expressed by a relationship

involving the velocity and angular velocity terms. It is found that the




Lagrangian multiplier in the equations of motion is the vertical ground
reaction on the landing gear tire. The modification of Lagrange's equations
fo.. quasi-coordinates and for non-holonomic constraints is given in Appendix

C.

The aircraft flexibility is represented by orthogonal vibration modes.
The influence of this flexibility is included in the calculation of the
shock strut forces. The loading on the aircraft from the landing impact may
be calculated from the displacement or acceleration defined by the flexible

and/or rigid body cocordinates.

Finally, the equations are included for the calculation of the forces
from a cable type arresting system. It is assumed that the aircraft is
equipped with an arresting hook. The equations are derived so that the case
where the arresting hook meets the cable off center and the aircraft motion
is unsymmetrical is included. The condition under which the hook will or
will not slip on the cable is derived and the resulting cable kinematics are
incorporated in the equations. The details of this derivation are given in

Appendix F.




DERIVATION Cr THE EQUATIONS OF MOTIUN

The equations of motion for the simulation of the landing impact of an
aircraft are derived below. The following degrees of freedom are included
for the airframe:

Three translational degrees of freedom for the rigid airframe
Three rotational degrees of freedom for the rigid airframe
Flexible body degrees of freedom for the airframe represented by its

vibration modes

For each 2f the landing gears the following degrees of freedom are
included:
Rigid body motion of the gear relative to the airframe that is dependent on
the shock strut stroke only
Rigid body motion of the gear relative to the airframe that is dependent on
castoring of the gear (all gears are assumed to have this degree of freedom)
Flexible body degrees of freedom for the gear represented by its vibration
modes

Rotational motion of the gear wheel about the gear axle

The height above the ground of the ground reference point, Ca’ in the
wheel midplane, will be included as a generalized coordinate in the
formulation of the equations of motion. However, a constraint condition on
the height of the airframe reference point, N, above the ground provides the

means to eliminate this coordinate from the final equations of motion.




The six rigid body motion of the airframe may be described by several
different coordinate systems. For the landing impact prcoblem, it is
convenient to use the body axis components of the airframe velocity vector
functicon and the body axis components of the airframe angular velocity
vecter function. In general, motion associated with any one of the six
degrees of freedom can have an influence on the the landing gear and the

airframe loading.

The airframe flexibility may have a significant effect on the shock
strut forces and consequently must be included in the equations of motion.
The airframe flexible body equations are also essential if the airframe
dynamic response loading is to be computed. This flexibility may be
accounted for by several techniques, howc-er, the vibration modes which are
orthogonal appear to be che most efficient. For this derivation it is
supposed that these normal modes are available. It is further supposed that
the structural damping effects can be simulated adequately by linear viscous

damp. 1g of each mod< independently.

The shock strut stroke function is used as a gener..ized coordinate in
the derivation. Consequently, .he shock strut force functions as developed
in Appendix B are errressed in *erms of the stroke and stroking velocity
functions. Appendix B gives the neccessary equations for two of the many
possible gas and fluid shock strut configurations. For both of these shock
Struts the pressure in the high pressure s‘de is calculated from the
compression of the fluid. At a time t the rate of change of the fluid
compression with time is formulated from the shock strut stroking velocity

and the volune of fluid passing through the orifice. Consequently, another




integration is added to calculate the compression of the fluid.

Th.s approach may appear to be inefficient when compared with the usual
velocity squared damping assumpticn. However, this additional integration
provides stabliity to the numerical integration process and consequently
permits the use of a larger step size. Treating the fluid as compressible
also provides a more accurate representation of the shock strut fluid
pressure since for some shock struts (particularly in articulated gears) the

effect of compressibility is significant.

There are several unit vector systems included in the derivation of the
equations of motion. An inertially fixed set of unit vectors is used as a
basis from which the motion of the aircraft is defined. At a time t after
the aircraft has contacted the ground surface, an airframe fixed set of unit
vectors are oriented in space with yaw, pitch and roll Euler angles for the
airframe. To provide some simplification in the development of the
geomeiric data and mass terms, each gear has a set of unit vectors that
permits roll and pitch of the gear -eference axes relative to the airframe.
In addition, a unit vector system that is fixed in the castored gear
reference system is provided. Since the wheel plane, because of geometrical
constraints, may not be conveniently oriented by the gear fixed unit
vectors, a separate coordinate system is fixed in the wheel plane. These
wheel-plane unit vectors are used in the derivation of the components of the

ground force on the tire. This deri-ation 1is given in Appendix E.




Kinetic Energy Formulation

The derivation of the equations of motinn is accomplished through
Lagrange's equations. The use of these equations is believed to offer a
significant advantage over the direc: application of Newton's second law
because of the relative ease in deriving the equations for the articulated
gear geometries. At a time t after the aircraft has ccntacted the groun®
surfac- the kinetic energy of the aircraft is divided between the airframe
(i.e. the complete aircraft minus the gears) and the gears. The gear
kinetic energy 1s divided between the wheel and the gear structure minus the

wheel. The following definitions are needed:

Q is an inertially fixed ground reference point.

N is a reference point in the airframe. The derivation is made with the
assumption that this is not the aircraft center of gravity. However, if the
center of gravity i, used for N then some simplifications are realized.

’I‘a is the a gear trunnion to airframe attachment point.

Aa is the point that is common to Lhe a gear wheel midplane and the a geur

axle centerline.

CF is the point that .s contai.ed in the ground surface at the center of
a

pressure of the a gear tire,

Ca is a point that is common to the wheel midplane and the line througl. the




point CF that is perpendicular to the ground.

a
H is the point of attachment of the arresting hook to the airframe. It is
supposed that the arresting hook rotates about an axis through the point H

and parallel to the lateral axis of the airframe.

LP is the lateral pivot point in the arresting gear shank.

P is the aerodynamic reference point.

TL is a point in the engine(s) thrust line.

VB is the aircraft volume containing a set of mass points with each mass
point labeled by a Cartesian coordinate system fixed in the airframe which
for this purpose is assumed to be in a "jig" or undeformed condition. These
mass point labels stay the same when the structure is deformed as a result
of external loads, however, in this case the mass points move relative to
each other. The concept of a jig condition is useful for the definition of
certain vectors that permit the rigid body motion of the structure to be

separated from the motion of the structure due to deformation.

NG is the number of gears on the aircraft, a is in [1, NG] and VG is the a
a

gear volume excluding the wheel. The gear mass points are labeled in a

manner similar to that used in the airframe. The jig condition of the gear

is defined with the shock strut in the fully extended position.

Vw is the a gear wheel volume.

a




F% is the simpls surface such that if (xB1, sz, xBB) is in Vg,

F%(XB1, sz, xB3) is the mass density at the airframe point labeled

1 2 3
(xB » Xg s Xp ).
f) is the simple surface such that if (x ! X 2 X 3) is in V
G G "G "’ "¢ G’
a a a a a
Fé (xG 1, Xg 2, X 3) is the mass density at the a gear (without wheel)
a a a a
. 1 2
point labeled (xG » Xg 0 Xg 3).
a a a
f) is the simple surface such that if (x 1 X 2 X 3) is in V
W W ' "W ' W W'’
a a a a a
Fz (xw 1, xw 2, xw 3) is the mass density at the a gear wheel point labeled
a a a a
1 2 3
(xw y Xy e Xy ).
a a a

ﬁB is the vector function such that if (xB1, xBZ, xB3) is in V

ﬁB(xB1, sz, xB3, t) is the vector at the time t from the ground reference
point Q to the airframe point labeled (xB1, xBZ, xB3).

B and t > 0,

ﬁG is the vector function such that if (xG 1, Xq 2, Xg 3) is in VG and
a a a a a
t>o0, ﬁG (xG 1, xG 2, xG 3, t) is the vector at the time t from the point
a a a a
Q to the gear (without wheel) point labeled (xG 1, X5 2, X 3).
a a a
- . 1 2 3, .
R is the vector function such that if (x , X , X ) is in V and
W W W W W
a a a a a
t >0, ﬁw (xw 1, Xy 2, Xy 3, t) is the vector at the time t from the point
a a a a
Q to an the gear wheel point labeled (xw 1, Xy 2, Xy 3).
a a a




Therefore, if T is the simple graph such that if t > 0, T(t) is the
kinetic energy at the time t of the collection of mass points, then with the

derivative notation described in Appendix A, T may be expressed by

N l' a

G - 2

+ 2 172 v (R” 1) P” avy, -
a=1 vy aily a a

The ﬁB vector function must be expressed in terms of constituent vector
functions in order to develop the equations of motion. For this purpose the

following definitions are needed:

r is the vector function such that if t>o, r(t) is the vector at the time

t from the point Q to the jig condition location of the airframe reference

point N labeled (xB 1, Xy 2, Xg 3).
N N N

C . . 1 2
LB is the vector function such that if (xB » Xg oy X B
EB(xB1’ xBZ, xB3,t) is the vector at the time t from the jig condition

83) is in Vo and t > O,

location of the airframe reference pcint N to the jig condition location of

the airframe point labeled (xB1, xaz, xB3).

ﬁB is the vector function such that if (xB1, xBZ, xB3) is in VB and t > O,
ﬁB(xB1, xBZ, xB3, t) is the vector at the time t from the jig condition
location of the airframe point labeled (xB1, xBZ, xB3) to the actual

location of this point.

10




Therefore, the vector

1 2 3

= 1 2
R( 3 B’XB’XB’

p{Xg + Xg s X7 t) = r(t) + ﬂB(x t) (2)

1

- 2 3
+ UB(xB » Xg s Xp7, t)

can be used to derive the vector function ﬁB'

The vector functions for expansion of ﬁG are defined as follows:
a

TT is the vector function such that if t > O, iT (t) is the vector at the

a a
time t from the jig condition location of the airframe reference point N to

the jig condition location of the point Ta'

1 2 3, .
, X y X ) is in V., and
Ga Ga Ga Ga

Ga is the vector function such that if (x

t >0, §a(xG 1, Xg 2, Xq 3, t) is the vector at the time t from the jig
a a a

condition location of the point Ta to the jig condition location of the a
gear point (xG 1, Xg 2, X 3). The jig condition for the a gear
a a a

is determined with the shock strut stroke equal to zero (fully extended

gear).

sa is the simple graph such that if t > 0, sa(t) is the a gear stroke at the

time t.

G 1, X5 2, X 3) is in VG
a a a a

and t > 0, Esa(xG 1, X5 2, X5 3, sa(t), t) is that part of the vector
a a a

Esa is the vector function such that if (x

at the time t from the jig condition location of the a gear point

11




1 2

X X
G "’ ' 76
a a a

(x 3) to the actual location of this point which is derived

from the rigid body motion of the gear as result of the stroking of the

shock strut.

69G is the simple graph such that if t > 0, 696 (t) is the a gear castor
a a
angle at the time t. Normally, only tr  auxiliary gear is permitted to

castor. However, for symmetry of the equations of motion, all of the gears

in this derivation will be assumed to have this degree of freedom.

= : . 1 2 3V i s
UBGa is the vector function such that if (xGa , xGa , xGa ) is in VGa and

t>0, 0 ! 2

(XG » Xg 0 Xg 3, Sa(t), 69G (t), t) is that part of the vector
a a a a a

BG
at the time t from the jig condition location of the a gear point
1 2

X X
¢ S ¢
a a a

(x 3) to the actual location of this point which is

G
derived from the deformation of the airframe. Note that the shock strut
stroke and the castor angle dependence appears explicitly in this vector.
This provides for a simpler formulation when the deformation vector is

expressed in terms of its components.

ﬁG is the vector function such that if (xG 1, Xq 2, X, 3) is in VG and
a a a a a

t >0, U, (x T 2 x. 3, s (t) 69 (t), t) is that part of the vector
- Ga Ga ’ Ga ’ Ga ' “a ! Ga !

at the time t from the jig condition location of the a gear point

1 2
¢ "X ' *g
a a a

(x 3) to the actual location of this point which is

derived from the deformation of the a gear.

Therefore, the vector

o
4%




(3)

r(t) + iT (t)

= 1 2 3 _
RG (xG s Xg s Xg Ty t) =
a a a a a
1 2 3 - 1 2 3
+ G (xG » Xg s Xg T t) + __a(xG » Xg s Xg s sa(t), t)
a A a a a a
- 1 2 3
+ Ug, (xG » Xg 0 Xg o sa(t), égG (t), t)
a "a a
- 1 2 3
w0 (g 'y oxg 5 g s, (), é?Ga(t), £)

can be used to derive the vector function §G .
a

The final vector function needed for the kinetic energy formulation is
are defined as follows:

The vector functions used to define ﬁw
a

Rw .
a
1 2 3 .
If (x y X y X ) is the label of the a gear axle point, A , and
G G G a
A A A
a a a
if t > 0, then
- -~ 1 2 3
g, (t) =G _(x , X y X y £,
N a GA GA GA
a a a
§ ) 1 2 3
A (Sa(t), t) = _..a(xG » Xg s Xg s sa(t), t),
a A A A
a a a
- = 1 2 3
Oy, (s,(0), B, (0, 0 =0, (xg xg 5xg S s (0, B (0, v,
a a A A A a
a a a a
- = 1 2 3
O, (s,(0), B4 (), 0) =0 (xg xg Zxg b s 0), Oy (), 0,
A a a A A A a
a a a a
at the time t.
W_1is the vector function such that if (x ! X 2 X 3) is in V and
a W ' W' W W
a a a a
- 1 2
t >0, wa(xw , xwa , xwa3, sa(t), t) is the vector at the time t from the

a
axle puint Aa to the jig condition location of the point in the a gear

1
labeled (xw v Xy
a a

13




Therefore, the vector

-—

§w (xw 1, Xy 2, Xy 3, t) = r(t) + iT (t) + EA (t) + {;A (Sa(t), t) ()
a a a a a a a
s Ty (5,0, B (1), ) + T, (s, (1), B, (1), ©)
A a A a
a a
T T NSO
a a a

can be used to derive the vector function ﬁw .

a

To be useful for the kinetic energy equation (equation (1)), the

structural deformation vectors appearing in equations (2) through (4) must
be expressed in terms of generalized coordinates. This may be done through
the use of the vibration modes of the structure. Orthogonality of these
modes is assumed in this derivation since this property is typically used in
practice.

Suppose that N airframe vibration modes are used to define the

BE
airframe deformation. Further suppose that b is an integer in [1, NBE] and
that qu is the simple graph such that if t > 0, qu(t) is the bth airframe

vibration mode displacement at the time ¢t.

Also, suppose that

and t > O,

b, 1is the vector function such that if (x 1 x 2, x.3) in Vv
Bb B B B B

- 1 2
(t>Bb(xB » Xg7, XB3, t) is the bth airframe vibration modal vector at the

1 2 3),

time t for the airframe point labeled (xB » Xg 1 Xp

14




3 1 2 3
(I)BG is the vector function such that if (xG » Xg 1 Xg ) is in VG
a, a a a a

and t > o,chG (xq Y Xg 2 Xg 3 s, (t), QG (t), t) is the bth

ab a a a a
airframe vibration modal vector at the time t for the a gear point labeled

2
X , xG 3),
a a a

and

CI)BG is the vector function such that if t > 0O,
A

3y

d (s_(t), 69 (t), t) is the bth airframe vibration modal vector
BGA a G

a a
b

at the time t for the a gear axle point Aa.

Now suppose that for the a gear there are NGE gear vibration modes
a

used to define its deformation. Suppose that d is an integer in [1, NGE ]
a

and that dq d is a simple graph such that if t > 0, 9 d(t) is the dth a
a a

gear vibration mode displacement at the time t. Also suppose that

(t>G is the vector function such that if (xG 1, xG 2, xG 3) is in VG and
ad a a a a
t>0 éi) (x Vx. % x.3, s (t) 69 (t), t) is the dth a gear vibration
iy ’ G G ] G ¥ G ’ a ? G ?
a a a a a
d
modal vector at the time t for the a gear point (xG 1, xG 2, xG 3),
a a a

and

CDG is the vector function such that if t > 0, (I)G (s, (t), 9(} (t), t)
A A a
ay a,

is the dth a gear vibration modal vector at the time t for the a gear axle

point Aa.

15




Therefore, the deformation vectors may be expressed as follows:

12 3 3 1.2 3 b
¥ » Xg » Xg7r ¥ '<I)Bb(xB » Xg s XgTs B) ag (L),

U
where summation on the index b is implied.

3 -
, %5 %y s,(8), B, (1), t) =
a a a a
3 1 2 3

chG (xG » Xg 0 Xg s sa(t), GG (t), ©) qu(t).
a a a a a

- 3 b
Uy (s,(1), QGa(t), B =Gy (5,0, O, ), v g’

Aa a
v
- 1.2 _ 3
Uq (xG » Xg 0 X T sa(t), 69G (), t) =
a a a a a
Bg (g » % r xg o s (0), B (1), 0y qp dew.
ad a a a a a
- , - d
0, (s.(0), G5, 0 =P, (s,(t), B 1), ) g Lo,
A a A a a
a a.d

At this point in the derivation consideration must be given to the
order of magnitude of the deformation of the structure. The general case of
large deformations, which is described in Reference (1), could be applied.
However, this additional complication for most aircraft structures does not
appear justified. Therefore, it will be assumed that the deformation is
small enough such that terms in the kinetic energy expression involving the
qu functions and the qG d functions can be eliminated. Also, it will be
assumed that the motion :f the body axis reference axes is completely

defined by the rigid body equations of motion. This assumption is also

Justified from the assumption of small structural deformations.

Therefore, from equations (2), (3) and (4) the velocity vectors may be
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written with the aid of the following definitions:

{la is the vector function such that if t > O, fls(t) is the airframe

angular velocity vector at the time t.

(IG is the vector function such that if t > 0, §ZG (t) is the a gear
a a
castoring angular velocity vector at the time t.

-

§2w (t) is the vector function such that if t > 0, f}w (t) is the a gear
a a
wheel angular velocity vector at the time t.

Thus, with the assumption of small deformations, the velocities may be

written in the following vector format:

5 o2 3 - ~ = 1 2 3

Rz, (% + %+ X v ¥ = FUD) 8 x Tplxg's %%, %57, ©) (5)
z 1.2 3 b,

+¢Bb(xB ] xB H xB ] t) qB (t).

= 1 2 3 = = -

Ry o1 (xg % 5oxg 70 8) = Fr(e) + Q2000) x I (8) (6)
a''t a a a a

e Qpe) + 0y (1)) x B xg ' xg 2 % 3, 0
a a a a

s €ge) Qg e xE g Loxg 2 xg Y s (), 0
a a a a

= 1 2 3

[+
)
[+
[+

+Dpe (X b xg x5 s (1), B (1), ©) o)

ab a a a a
- 23 . d
v B g hxg foxg s, GGa(t), 0 ag v,
d
17




7 (x., | < 3y =ty + )00y x I
W ;I B T
a'’'t a a a a

(L) (7)

= = _ < = ¢
+ (2,00 +QGa(t)) x By (0 §2yct) +Q,Ga<t>> x S s (), )

a

M §A (sa(t’)’ t) Sa'(t) +:_bBG ("'a(‘—:; QG (t), t) qu'(t\

a;sa Ad a
b

+¢GA (s,(0), € (82, ) g (v

a a a
d

~ -~ ~ - 1 z 3
+ (§25(1) +-SlGa(t) +-§2wa(t)) X wa(xWa . x . x O s (£), t)

= 2 3 .
+ wa;s (g o Xy o Xy Ty sa(t), t) S, ().
a a a a

.+ » R, .1 and R, .. may be 2asily derived
B3I’ 651, WoST,

The vector functions R

from equations (5), (6), and (7).

Before RB;It’ RGa;It and Rwa;It are substituted intc the kinetic energy

equation (equation (1)) it is convenient to express the vectors appearing in

these functions in terms of their components. To accomplish this, several

sets of right handed orthogonal unit vector functions nced to be defined.

Suppose each of 1 b =1, 3 is a unii vector function such that if

B’
b

B (t) is the vector parallel to the airframe longitudinal zxis and
1

directed forwa:d, IB (t) is parallel to the airfram:z lateral axis and

2

t >0, 1

directed to the right relative to the pilot and IB {t) is parallel to the

3

airframe vertical axis and directed down relative to the pilot at the time t.
To orient the airframe in space relative to an inertial reference frame

defined by the unit vectors fb; b= 1, 3, a set of Euler angles is used.

For this purpose suppose that each of #j,égand Qb is a simple graph such

18




that if t > 0, Hb(t), ég(t) and QB(t) are at the time t the yaw, pitch and
roll bkuler angles of tne airframe. These Euler angles are used in the

transformation

where the components of :rgb(t) are derived in Appendix G.
c

From Appendix G it is seen that T1 and TZ are in the ground plane and

I3 is perpendicular to the ground.

Also, suppose that each of EG s b= 1, 3 is a unit vector function

3

and each of 7). and QG is a number such that 7). is the pitch Euler
a a a

angle and é(} is the roli Euler angle for the a gear relative to the
a

airframe such twat if t > 0, each of EG {(t); b =1, 3 are fixed relative

3y

to the a gear at the time t and are oriented relative to the airframe fixed

unit vectors through the transformation

a

- b -
I, (0= ¥, %1, (v,
a b
C c

where the components of ’}; b are derived in Append:ix G in terms of the

3
Euler angles 770 and QG .
a a

Suppose that each of HG ; b= 1, 3 is a unit vector function such that
a

if t > 0, each of 3G (t); b =1, 3 1s a vector fixed in the a gear at the

3y

19




tine t. The castor angle, 6; ‘s used to orient these vectors with respect

G
a
to IG (t); b = 1, 3 vecturs through the transformation

3y

- - A e - cg
g (0 =Gy % I () Sbe %8,
a a a
b g c

A
where A €(t) is defined in Appendix G.

a
g

It is also useful to define the transformation from the airframe fixed
unit vectors EB (t); b =1, 3 to the a gear fixed unit vectors
b
3G (t); b = 1, 3. This may be done through a combination of the
a
b

transformations defined above as follows:

~
o
S

1)
Qo>

v G, 4o I,V O,, O

(t).

n
e
[op]
[ %
—~
o
S
[

The components of ClG d ate given in Appendix G.

ay

Suppose that each of EG ; b= 1, 3 1s a unit vector function such that

a
b
if t > 0, each of EG (t); b = 1, 3 is fixed in the a gear wheel at the time
a
b

t and EG (t) is a unit vector parallel to the a gear wheel uxle.
2

a
Therefore, the vector RG (t) may be expressed in terms of the vectors
a

2
EG (t); b = 1, 3 by the relation

4y

20
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- . b -
Ry () = BGa t) 35 (o,
2 2 %

where fror the gear kinematics there exists a set of functions

B ; b= 1, 3 such that

L b ) b o
Pg () =B, “(s (£)); b =1, 3.

a5 35

Now suppose that each of Tw $; b=1, 3 is a unit vector function such

y

(t) is T3, iw (t) is orthogonal to EG (t) and Tw (t),
) ag i a, ] a, ag
and Iw (t) is orthogonal to Iw (t) and Iw (t) at the time t.

a, a, 3

that if t > 0, I,

The transformation from I_; I

b) (t); b =1, 3 is defined in

Appendix E and is given by

I, ¥, w1 O, O°%.
ab ag

With the aid of the unit vector functions defined above the linear and

angular velocity functions are defined by

2]




The vector functions in equations (5), (6) and (7) may be defined by

L. =1 I_,
B B Bb
- b -
lT = 1T iB s
a a b
- b =
Ga - Ga jGa i
b
b =
gAa-gAa sta)
b
— ~—~ b =
~a  —a JGa ?
b
b -
{EAa i UAa JGa ’
b
b -
Ha z wa kGa .
b
Finally, the modal vector functions for the deformation of the airframe

and the gears are defined by

~ e -
Dy ‘q)eb ig

b

b b ¢
- i o 1
CIDBG ’(1>BG G °
ab ab c
— i c -
¢G -d)G JG >
ay ab ac
- ) c -
G P g
Aa Aa a
b b ©
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Therefore, with these definitions the kinetic energy function T may be

expressed in the following form:

Vs Vg C Q580 C e
Tew2 VPV e2 L s, QGa; a=1, 5.0 @
NG O'GaSzGa 2 NG {Zwa;lwa 2
+ 172 (M Ms.1 €L )%+ 172 S (M ) ()
a G W
az=1 a az1 a
NG sa Sa X QB QB b .
Pz R e (507 2 My Ots B 5 a s 1N g™ g
N q q
G ¢ %
a a b c
+ 1725 M b o) 8 QG Yag "' 95 !
a=1 a a a
VB SIB b C
Moy s, Qca‘ a =1, N;J Vg g
Ng VBQGa b Ne Vg 5, o
+ (M b )[sa, QG Ji VB QG + 3 (M b )[Sa, QG ] VB Sa'
a=1 a a a=1 a
V. q N Vo, q
B B G B 9
+ (M b c)[sa’ 69G s a =1, NG] VBb qBC' + (M b ac)[sa’ 690 ] VBb a4
a a=1 a
Ng Qanca . Ng Qana b
b3, s, 0,100, v om s, B,19.°0,
az1 a a az=1t a a
Ng QB Sa . QB 9% b
R R LI QGa, a =1, N6 0 o
Ng ‘Q'B qca b .
+ z (M b C)[sa, QG ]QB qG !
a=1 a a
N Qs 0y, Ny Sig s,
a a
+ 3 s, 10, N, + 2 M ® s 180, s,
az1t a a az" a
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a=z=1

NG Sa qB b NG Sa qG b
+ 3 (M )[S,QG]sa'qB'+Z(M )[S,QG]sa'qG'

a=1 a az1 a a

N ay 9

G B G
a b, c,
az=1 a a

where the mass terms in the expression above are defined in Appendix D and the

bracket product notation is defined in Appendix A.

Suppose that K is a simple surface such that the kinetic energy function T

given by equation (8) may be written in the form

1 2 - 1 2
= K[VB ’ VB ’ VBJv QB ’ QB y QB3’ QG 3 s ’QG s (9)
1 NG
N
N GE
1 BE 1 NG
QW’ s 1Qw ,81', ’SN" qB" v ’qB i qG Yy e ’qG 'y
NG G 1 NG

0 ’ QGNG’ Sy » Syg!

It is seen that the function T formulated in equation (9) is expressed
partially in terms of coordinates (i.e. functions) referred to in Reference (2)
as quasi-coordinates. Namely, the body axis components of the airframe velocity
vector function and the body axis components of the airframe angular velocity
vector function are quasi-coordinates. Appendix C describes the modifications

to Lagrange's equations when quasi-coordinates are used.

Suppose that ga; a = 1, 3 are the components of r (the vector from the

24




point Q to the jig condition location of the point N) in the inertial reference
frame defined by ib; b=1, 3. It is useful (e.g. in Appendix F) to use the

symbols d, s and v as alternate designations for these components.

Therefore, if KP, Qand d)ar‘e the yaw, pitch and roll Euler angle
functions which are discussed in Appendix G, then consistent with the notation

of Appendix C, the following generalized coordinates are used for the airframe

rigid body motion:
q1- €1 d. qu-Q.
q2_ gz s. q5=¢.
3:03: S =Y.

Also, the following relations are consistent with Appendix C notation:

1 1 4 1
LANEI AR V-QB.
2 .2 5 A 2
LANEI A V-QB.
3,3 6 () 3
v e v v-.Q.B.

The transformation from the quasi-coordinates to the generalized

coordinates is

a, _pa.,db
q - b ’

where from Appendix G it is found that

/8} cos [6)] cos[“l/], B; = - sin[w] cos[d)] + /8; = sin[w] sin[(l)] +
sin[d)] sin[e] cos[\p], cos[¢] sin[@] cos[\t/],

Bf cos[C‘)] sin[‘l/], ,82 = cos[d)] cos [VJ] + ﬁg = - sin[(f)] cos[w] +
sin[(b] sin[é)] sin[lp], cos[CP] sin[@] sin[qf],

25




B3 = - sinl O, B3 = sl cost 61, 3 < coslh) cost 01,
B o, G = cosichy, B = - sinic1,

B3 -1, B2 - tant01 sinl¢h, 5 = tan(B1 costhy,
Bi

and all otherB: = 0.

w
(]

0, ﬁgg sin[qb]/cOSEéQ], ﬁgg z cos[qb]/costé;],

The elements of the inverse transformation

va: (12 qb' are
CL: = cos[@] cos[q/], Cl; = cos[@] sin [VJ], a; z - sin[@],
CL‘1? z - sin[\l"} cos{cb} + ag = cos[¢] cos[\b] + CL? z sin[¢) cos[@],

sin[d)] sin[@] cos[\p], sin[¢] sin[Q] sin[\l"],

CL? = sin[w] sin[d}] + ag = - sin[¢] cos[w] + CL3 = cos[(f)] cos[@],

cos[¢] sin[@] cosf\P], cos[d)] sin[@] sin{‘p],

a:’: = 0, ag =1, Clu = = Sin[QJ’
as - costhl, as - o, a2 = costf1 stalchy,
s S s - sin[(b], a6 = 0, ag = COS[@] COS[d)]t

and all other c1; = 0.
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For a in [1, 6] and b in [1, 6], the Qi functions which are defined

terms of a: and B: in equation (C-11) of Appendix C are

Q
{2

and all other'ﬂ: = 0.

0,

0,

Q.3
-0.2

--Q,%

3
'VB’

[

i
<3

9.

27
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The Forces Acting on the System

The quasi-coordinate force terms may be defined through equation (C-18)
of Appendix C. Included in these terms are the body gravitational force,
the arresting gear force, the ground force (parallel to the ground plane),
the aerodynamic force and the thrust force. There are also some generalized
coordinate force terms that must be included in the equations of motion.
These include the shock strut forces, the airframe modal elastic and damping
forces, the gear modal elastic and damping forces and the gear stiffness and
damping forces associated with castoring. The notation on the left side of

equation (C~18) will be used for both quasi and generalized coordinates.

Consistent with the definitions given in Appendix C and with g equal to

the gravitational acceleration the virtual work done by the gravity force is

i - 1 2 3 )
Sww(t) = VB (SRB (IXB s IxB s IxB , t) 13) N dVB
N
G
_ 1 .
S (ESRG (1, I 2, I 3. 1) I, P, « av,,
a=1 Ga a Ga Ga Ga a a
N
G
_ 1 2 .=
S B (SRw SIS S SRS i P, &av, .
a=1 wa a wa Wa wa a a

Therefore, based on Appendix C, the vector functions

Sﬁ SﬁG and Sﬁw may be replaced by
a a

Ry.;r » R and R respectively.
BiI,’ "G i1, WL,
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Thus,
Sww(t) - Jy, (ﬁB;It (Ix;, IXBZ, IxB3, v " 1) pB g dvy (10)
+N£j (R . N, %, 1 3, 6 1) P ogav
a1 Vca %ailt ¥o s, Yo, 37 76,7 G
+t§ (R r. ', 1 2,1 3, 1) P dv
= vwa L xwa ' xwa ’ xwa ' 37 W g W

If equations (5), (6) and (7) are substituted into equation (10) and if
the mass terms defined in Appendix D are utilized, then the following

functions are found to be the coefficients of the coordinate velocities:

vB VB vB
- 3 cd -
Sy (e, ) ]’Bdm ) (b =1, 3).
SlB VBS2f3 3 d
. - c -
S W se M G, QGa(t), a=1, N }’Bdm 5 =1, 3.
g Vg g 3 4
a a (o}
sy, M =g M o s (v), 9Ga(t)) 'XBd(t) e,
Sa' vB ®a
= 3 cd
Sy (M =e s, G ) XBdct) 5.
Q' Vo q
B B "B
- . g = 3, cd -
INORY R IINIIN L Qca(a), a=1, N 'XBdm 5 =1, Ny,
q, ' Vg q
G B °G
a - a 3 cd -
N O R STERU MY [AXRR = 1, g ).

These functions are the contributions from the body gravity force to
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the total quasi-coordinate force and will be used in the equations of motion

Vs

(equation C-16). For example, the simple graph S will be included on

"op

the right side of the V b

B equation of motion.

Suppose that FHP is the vector function such that if t > O, FHP(t) is
the force at the time t acting on the point HP from the arresting hiook.
The point HP is defined in Appendix F. Also, at the time t, fH(t) is the

force on the lateral pivot point, LP, from the lower arresting hook segment

and is directed along a line from LP to HP. fH(t) is equal to - fHP(t).

Further, suppose that ;Lp(t) is the vector function such that if t > 0,
;Lp(t) is the vector from the ground reference point Q to the point labeled

LP at the time t.

The virtual work done by the arresting force is therefore

Swﬂm = F(e) ° SELPm.

Now suppose that

lH is the vector function such that if t 2_0, IH(t) is the vector from the
jig condition location of the airframe reference point N to the jig
condition location of the point labeled H, which is the point of attachment
of the arresting hook to the airframe, at the time t,

ILP is the vector function such that if t 2 0, ILP(t) is the vector from the

jig condition location of the point H to the point LP at the time t,

30




&DB is the vector function such that if t > 0, &DB (t) is the bth
H H
b b

airframe modal vector at the time t for the point labeled H,

\Ph is the vector function such that if t > 0, \yé (t) is the bth
H H
b b

airframe modal slope vector at the time t for the point labeled H and

I, (t), I, (t) and I (t) are the unit vector functions such that if t > O,
1 2 3

1H1(t) has the direction of - lLP(t), iHZ(t) is iBz(t), and

I, (t) is orthogonal to I, (t) and I, (t) and is directed down
H3 H1 H2

with respect to the pilot. See Appendix F for derivation of these vectors.

Therefore, the vector FLP(t) may be written as

bt)

FLP(t) = r(t) + IH(t) + ILP(t) +<j>BH (t) g
b
s (Y (8) " I, 6)) T, (6) x I ,(8) q°(v).

Based on the assumption of small airframe deformations the vector

function FLP may be differentiated to obtain

Fp'(8) = 71(8) + QL(0) x T(t) + (Sg(t) Ty () Iy (0 x Ty (1)
*‘i)s (t) qu'(t) + ({Pg (t) ° IH (t)) IH (t) x iLP(t) qu'(t).
B, By 3 3

The vector FLP'(t) may be used as a replacement for ESFH(t) in the

virtual work equation for the arresting gear force. The following
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definitions may be used to expand the vectors in equation (11):

b

FH is the simple graph such that if t > 0,

- b - )
FH(t) = FH (t) Ib at the time t.

Each of Cch and Hd; ¢ =1, 3;d=1, 3 is the simple graph derived in
3 c
Appendix F such that if t > 0,

- c ad -
iH3(t) z CLH3(t) ’Xﬂc(t) Id at the time t.

a1 and b1 are the simple graphs derived in Appendix F such that if t > O,

iLP(t) = a1(t) EB (t) + b1(t) EB (t) at the time t.

1 3
-' - Q -
r'(t) = Vg (t) i (t).
C
- d -
lH(t) = 1. ig (t).
d
Dy (1) =y * 1 1)
Hb Hb c
1 C -
WV, (t) = \IfB i (¢)
Hb Hb o

It follows then that after the indicated vector operations on equation
(11) are performed the following coefficients of the coordinate velocities

may be interpreted as the quasi-coordinate and generalized coordinate force

contributions from the arresting force:

32




V
sy (t) = ?{B () £,°0) O, (b =1, 3.

ng
_yh g d b
sy (W) = ]’Bb(t) P ey 1.0 0T O

R Q{g(t)a i )’H"m Opg) Csar Fi (8)

)

£ d r r s
x QT ')’Hf(t) (a, () '3’310;) + b (1) )’33&)) S5  (e=1, 3.

3

|

q
B
_ f c g
sp (1) = Yoy SRS &
b c Hb
c g h p
- Wy )’Bc(t) Qe Xﬂh(t) O,

b

Q
sdr H (t)

x @y ) Yl e Yt woiw Yren 83 =, .
3 £ 1 3

Now suppose that F is the vector function such that if t 2 0,

G
a

FG (t) is the force on the a gear wheel from the ground a. the time t.
a

Also, suppose that r is the vector function such that if t >0,

CF
a

;C (t) is the vector from the ground reference point Q to the point PF
F

a
a

(the a wheel tire footprint center of pressure).

Therefore, the virtual work of the force from the ground on the tires

is
Su ). % ¢ :
Wi(t) = 3 F, (t) S’C (t)
a=1 a Fa
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It is noted that this expression is the virtual work done by the ground
forces parallel to tne ground plane. These ground forces are derived in
Appendix E. The generalized forces from the ground which are normal to the

ground plane will be derived from the potential energy stored in the tires.

To make the virtual work expression above more usable the vector

;C (t) must be expressed in terms of the system cocrdinates. This may

F
a

be accomplished as follows:

Suppose w is the vector function such that if t > 0,

c
a

GC (t) is the vecter at the time t frum the point Aa (the a gear axle
a
reference point) to the point Ca {a point that is common to the a gear wheel

centerrlane and the vertical ground force vector).

Further, suppos~ that v is the vector function such that if t > O,

W
a
Vw (t) is the vector from the point C_ to the point C; at the time t. In
a 2
addition, suppose that v is the simple graph such tnat if t > O then

W
a

<l

(c) = vy (t) T
a a

W 3°

The vector ;C (t) may be expressed as follows:

F
a
r. (t) = r(t) + I (t) +<f; (s_(t, 6’ (t), t) g 0(*) (12)
C T BG a ! G ! B
Fa a Aa a
_ b
+ g, (o) + § (s.(t), t) +D (s_it), B. (), v Pty wm. (8) + ¥
A A “Sat e G att’r Ug ’ 9 c W
a a Aa a a a a
b
If the vector function FC is differentiated and it is assumed that
F

a

(t).




the magnitude of the vector ;C (t) is independent of time then
a

Foot(t) = TL(b) +QBm x 1,

CF a
a

(t) (13)

+QE(‘-) X (éAa(t) + gAa(sa(t), LY + ;lca(t) + ;wa(t))

+ 8§ (0 x (EA (t) + 'fA (s, (t), £) + ‘-'c (t) + ;w (t))
‘a a a a a

;Qw () x (Hg (£) + ¥, (£))
a a a

¥ bv L]
+¢BGA (sa(t), 63a(t,‘, t) g (t) » §Aa;3a(t) s, (t)

3 bv T '
+q>GA (s (t), @Ga(t), t) an (t) + I, vwal (t).
a
b

Since at the time t the vector QC (t) is in the wheel midplane from

a
the point Aa to the point Ca, it follows that ;C may be expressad by a unit
a
vector times the mugnitude of ;C as shown by
a
(kGa X 13) X kGa
R— 2
C. " i,r = - c -
a i(kGa x 13) X kGa l a
2 2

As previously defined, the unit vector k (t) is parallel to the axle

2
is perpendicular to the grcund.

G
a

of the a gear wheel and T3

Therefore from the equation for EG given in Appendix G it follows

a

that
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= 2 b 22 £ ) y
c. ° c
a D a
where
b c 3.0 f e 1.2
= - a
D [ (’ﬂGa Cl. G Bc o~ Ga a’Ga /XBe)
2 3 2 £
o b c Y3 f e 7y 2,2
+ o g 'XBC ~a, aca yse)
2 % 2 £
D b c 3, 2.2 ,0.5
(- (2 7 O ?ch> ¥ 107,
2 b
and if each of wC b; b =1, 3 is a simple graph such that if t > 0, then
a
- b -
W (t) = L (t) Ib
a a
at the time t.
Thus, if ;C ' is used for ESFC in the virtual work equation for the
F F
a a

ground force and if each of FG b is a simple graph such that if t > 0,
a

FG b(t) is the bth component of the a gear ground force such that at the
a

time t

= b -
Fq (t) = Fq (t) I
a a

then after the indicated vector operations in equation (12) are performed,

the quasi-coordinate and generalized coordinate force terms for the ground

force are
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VB N

SG f.(t)

g Ng

_ g
Sg V) =3 (e )/Bf(w 1,

g d e e fth
n YeE0 Qg o) g, © s §Aa (s, (£)) O

e

Z XB(t) Bbd G (t)

a

f d b
. epgy }'Bc(t) we (0 Fg () e

a

QG
a
SG (t) =(1G
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e g
(t) )’Be(c) €ane

c d e
* eep Qg (V) Xsc(t) Ye, (t) Fgq

a3

+ €

d3b C"G

a3

Q

W

a _ p
S (1) = ey Bca (v) Qg

p
N BGa (t) g

2 a

9
Sg  p(t) = Z XG
(f =1, Ngp),

s 1

a
SG (t) =

(t) XBd(t) v, (t) F
(o} a

°(t) 73 () v (t) Fy
e a

p

a

(t)

XB%) chG

deh

£3b

a

b
Fo "(® Sbg

'S 0 vy (1) R

a a

®(t)

Beey,

’X (t)w

(t) F
Gy

(t),

a

°(s, (83, B (1) 7
a a

af‘

e g o, b
a, ‘o ¥ Ew §A (s,(6)) Fg °(0) O
ac e a a
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P(t))

(f =1, 3),

b
7o " Sbg

(c

(g, "+ §A P(s, (1)) &% F

B(t) Sbg




(o af.

where b ranges from 1 to 2.

To derive the ground force normal to the ground plane the following

functions are needed:

3

G
a

Suppose that F is the simple graph such that if t > 0,

FG (x) is an ordinate of FG only if x is an ordinate of the simple graph
a a

W at the time t and FG 3(x) TB is the normal force from the ground
a a

v

on the a gear tire if vy (t) is equal to x.
a

Now suppose that v is a number such that if x is a number greater

wa
0

~

than or equal to v then FG 3(x) = 0. Therefore, if u, is a simple graph

wa a
0

such that the point (x, ua(x)) belongs to u, only if x is an ordinate of Yy

and x is less than Vi and ua(x) is the potential energy stored in the a
a
0

gear tire corresponding to x then

or alternatively
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[v, 1(t) = - F

ua
a W a

and since the generalized force associated with the coordinate v is

W
a
defined by
1
Vwa
- - [}
SG () = u (vw (t)),
a
it follows that
]
, - 3 3
SG (¢) = - FG (vw (t)) = - FG (t).
a a a

The other two components of the ground force vector are derived in

Appendix E.

Suppose that Vw is the velocity of the wind relative to the ground.
Further suppose that (1 is a simple graph such that at the time t, Q(t) is
the angle of attack calculated from

-' - b L] ry
(rr(t) Vw) i, (t)

a() = t;an-1 3 .
(r'(t) - Vw) 1 (t)

Also, suppose that ﬁ? is a simple graph such that at the time t, ﬁ?(t)

is the side slip angle calculated from

(r'(t) - Vw) " i (t)
B(t) = tan°1 2 .
(rr(t) - Vw) i (t)
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Further suppose that each of Se’ Sa and ér is the simple graph such
that if t > 0, Se(t) is the elevator rotation, (Sa(t) is the aileron

rotation and ésr(t) is the rudder rotation at the time t.

Now if FA is the vector function such that if (xB1, sz, xB3)

is in VB and t > 0, FA(XB1’ xBZ, xB3, t) is the aerodynamic force per unit
area for the point (xB1, xB2, xBB) on the airframe surface at the time t,
then the virtual work done by the aerodynamic force over the surface of the

airframe SB is

SWA('C) = 'LB FA(IXB1, Ix 2, Ix 3, t) SRB(IXB‘I, Ix 2, Ix 3, t) dSB.

B B B B

Therefore, if q is a simple graph such that the time t, q(t) is the

dynamic pressure and if F)is the air density then
a(v) = 172 P ey - 7,5,

and If S is the reference area for the aerodynamic forces and if it is
assumed that the aerodynamic force is independent of the elastic deformation

of the airframe then there is a vector function /\A such that

= 1 2
FA(XB ] xB ’ xB 1 t)
sas A, (x5 %2 x5S, am, B, ), S, S,

~ 1 2 3
(LB (£), 145°(), QB (t), t).

For the rigid body equations of motion the aerodynamic forces and
moments are referenced to the point labeled P in the airframe., Therefore,

if INP is the vector function such that if t > O, TNP(t) is the vector from

40




the jig condition location of the reference point N to the

aerodynamic reference point P at the time t and if L. is the vector

PB
, 1 2 3, .
function such that if (xB » Xg's Xy ) is in VB and t > 0,
iPB(xBl’ sz, xB3, t) is the vector from the jig condition location of the

point P to the jig condition location of the point labeled (xBl, xBZ, xB3)

at the time t, it follows that

= 1 2 3 - = 1 2 3
LB(xB » Xgs XgTs t) lNP(t) + LPB(xB » Xg's XgTs t).

This expression may be used to modify equation (5) which is then used
o
to replace C>§B in the virtual work equation. When the vector operations
and integration are performed as indicated in the virtual work equation it

is seen that the coefficients of the velocity terms may be expressed as

\'
B c ES
SA b(t) = FP (t) be (b = 1, 3),
2, ;
c c
Sy b(t) =M, (t) Sbc te.aFp (t) lyp (b=1, 1),
95"
C —

It is evident then that the aerodynamic force at the time t is

F b(t) i, (t) and the aerodynamic moment at the time t is i, (t) M b(t).
P Bb Bb P

Further, it is seen that QAb(t) is the generalized force at the time t

corresponding to the bth airframe vibration mode.

Now suppose that each of C b; b= 1, 3 18 a simple surface (aerodynamic

force coefficient) such that the aerodynamic force component projection at
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the time t on IB (t) may be expressed by
b

beey =
Foo(e) =
a s cam, B, 8 ), & v, O, Q1) Q%0 Q1 wn

(b =1, 3).

Also, suppose that each of CMb; b =1, 3 is a simple surface (an

aerodynamic moment coefficient) and each of lAb; b =1, 3 is an aerodynamic
reference length such that the aerodynamic moment projection at the time t

on IB (t) may be expressed by
b

beey -
M () =
as1,” e, Be, 8w, §,m, S, R @, Q2m, %0
(b =1, 3).
b

Q >

aerodynamic generalized force coefficient) such that

Further suppose that each of C b=1, N is a simple surface (an

BE

by
Q" (t) =

b 2 1 2 3
as caw, B, 3,0, 8,0, 8.0, o, 220, Q2w

(b=19N )~

BE
The virtual work on the airframe from the thrust of the engine is

assumed to be independent of the airframe deformation. That is, it is

assumed that if TL is a point on the thrust line of the engine(s) then the

airframe deformation in the direction of the thrust force is zero.
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Suppose that F_ is the vector function such that if t >0,

T
FT(t) is the thrust force vector at the time t and the magnitude of ?T(t)
is a number. The thrust force vector ?T(t) may be expressed in component

form as

- b -
FT(t) = F iB (v,

T B,

with FT(t) iBg(t) = 0.

Also suppose that iT is the vector function such that if t > 0, IT(t)
is the vector from the jig condition location of the airframe reference
point N to the jig condition location of the point TL a the time t.
Therefore, if ;TL is the vector function such that if t > O, FTL(t) is the
vector from the ground reference point Q to the point TL at the time t, then

the virtual work done by the thrust force is

SWT(t) = F‘T(t) ) BFTL(t).

The vector ?TL(t) may be written in expanded form excluding the

deformation terms as

FTL<t) = r(t) + iT<t).
Thus,

;TL'(t) = r'(t) +QB(t) x iT(t)'

The vector ?TL'(t) may be used as a replacement for ESFTL(t) in the

virtual work equation. It follows then that if in component forz

- b -
lT(t) = lT iBb(t),
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the quasi-coordinate force contributions from the thrust force are
v

B
(¢4
Stop = Frp 8bc (b =1, 3),
£y
c b
Sp 2 T Fp enpe Ip

Now suppose that 1 is the vector function such that if t > 0,

3
{S (t) is the unit vector at the time t which is parallel to the a gear
a

3
shock strut axis of symmetry and directed downward with respect to the

S
a

piston as shown in Figure B-2 of Appendix B. Further, suppose that

?S is the vector function such that if t > 0, FS (t) is the shock strut

a a
force (see Appendix B for derivation of the shock strut force) at the time

t. Also, suppose that Fs is the simple graph such that
a

Therefore, the selection of the a gear stroke, sa, as a generalized
coordinate permits the virtual work from the shock strut force to be

expressed by

Sw (t) = ZG Fo (t) 83 (t)
S - S a :
a=1 a

Therefore, the contribution from the shock strut force to the

generalized force in the a gear equation of motion is

g !
a

Sg (t) = Fg (b)),
a




The deformation of the airframe and the deformation of the landing
gears are assumed to be represented by normal vibration modes.
Consequently, the stiffness matrices for the airframe and landing gear
deformation equations of motion are diagonal. For simplicity, it is assumed
that the damping is viscous and the damping matrices for these equations are

diagonal. Based on these assumptions the following definitions are made.

Suppose that b is an integer in [1, NBE] and that the number KBb is the
generalized stiffness corresponding to the bth airframe modal equation.
Further suppose that the number CBb is the generalized damping corresponding

to the bth airframe modal equation.

Therefore, the generalized force from the airframe modal stiffness and

damping for the bth mode is
L)
s - 4,50 O, - €, a;5(8) O
BF b KBb B be Bb B be®

Also, suppose that ¢ is a positive integer in [1, N is the

GE 1’ Sc
a a

fully compressed stroke of the a gear and K is a simple surface such

G
a
c

that if x is in [0, Se ], v is in [-TT, 1T}, K, (x, y) is the generalized
a

a
[

stiffness for the cth mode of the a gear corresponding to the a gear stroke

x and castor angle y. Further, suppose that C is a simple surface such

G
a
c

that if x is in [O, sc 1, ¥y is in (-7, 1T 1, CG (x, y) is the generalized
a a
c

damping for the cth mode of the a gear corresponding to the a gear stroke x

and castor angle y.
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The generalized force from the a gear modal stiffness and damping for

the cth mode is

q ]
G
a d
SGF c(t:) = - KG (sa(t), Qca(t)) an (t) Scd

a
[¢]

a
(¢

dl
- C, (s (1), (-)Ga(t)) g 1 (®) Oy

As stated previously, it is usual for only the nose gear to be capable
of castoring. However, the final equations may be written more concisely if

all the gears are assumed to have this degree of freedom.

The gear castoring moment is, in general, a nonlinear function of the

castor angle function for the a gear, 69G , and its derivative. The
a
specific functional form of this moment is usually configuration dependent.

Therefore, to simplify the current derivation it is assumed that MC is a

simple surface such that if t > 0, MC(69G (t), {ZG (t)) is the generalized
a a

moment associated with the generalized coordinate é?G at the time t.
a

Thus, the castoring generalized force may be written as

G, _
Sge (8) = - MC(&Ga(t),QGam).
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The Constraint Condition

In the previous section the coordinate vw was introduced when the
a

ground forces acting on the system were defined. As a consequence there is
a redundancy in the coordinates specifying the position of the system. This
re_.undancy may be easily handled by use of a constraint condition and a

Lagrangian multiplier as illustrated in Appendix C.

The constraint condition may be stated as follows: 1If at time t the a

gear is on the ground then the component of the velocity r

'(t), from
CF

equation (13), normal to the ground is zero. Therefore, a

As seen from equation (13) this constraint condition has the form of
equation (C-13) in Appendix C. Consequently, as seen from equation (C-14)

the constraint function may be written in the following form:

1 2 3 1 2 3
Fa[VB 1 VB ? VB ’CLB 7QB ’QB ’Q'Ga’

N N
, 1, BE 1, GE

Sy » dg 10y Qg

| AR | an a"

GE

a
GG’sa’ qB'...’qB ;QG y---’qG y V '] = 0.
a a a a

After the indicated vector operations have been performed, the terms to

be used on the right side of equation (C-16) are
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[\Y
<
o]
1]
o
(V8]

- _ 3 d S fh
I"a;QBc ® €cdh ’XBY 1 O

3 d c o] th
* eoan 0B, Qg (8 ° §A (s, D o
f a, a a

rf d
* €ra3 ’XB We o
(o] a

~ -
P e c d
Y] ech/jG Qg B “c
W a a e a
a 2 p
- e YV 3 e
a,fo' : 2/G }B 'BG. [ QG 1

c ap

Fa;s v = Qg B A (s, 1y

a a, e 2
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e Y —

Equations of Motion

All of the input terms .~ the equations of motion (equation (C-16) of

Appendix C) have now been derived. The definitions

B B B B B B
S b : Sw bt SH b * SG b+ SA b * ST b (b =1, 3),
Q Q, o, &, Qo 9
S b = Sw b * SH b * SG b * SA b * ST b (b =1, 3),
Q. Qo Q9
S = Sw + SG + SGC ’
Qwa Qwa
S = SG ’
s ' s ! s ! s
a a a a
S = Sw + SG + SS ’
L L L
g g’ g g’ g g’
- Q -
S b = Sw bt SH bt SG b * Sa b * SBF b (b = 1, NBE)’
L L ]
an an an' an
- Q .
S b = Sw b * SG b * SgF b (b - 1, NGE )y

permit the equations of motion to be expressed in the following rform:
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;v B ’B

—
~
<
w
~
1
2
n
Fe)
<
+
-
—
~
-3
n
1)
wn
w
+
>
Y
o>
o]
<3
w

B "B
§1g NZG \
s + F o~ 3.
3 az1 a ’QB
{ig A
a
(K )' - K, = S + >\ F. (a
;QG '\(ZG a ,QG
a a a
Q”a (
(K Yyt = 8 a =
iy
a
g ]
O (
(K ')' - K. = § + F- 1 a
;Sa ,Sa a ,Sa
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[}
dg Ng \ i
(K, b)' -K _b=S + F, b (b= 1, N_).
‘g ' '9p b a1 2 % B
]
qca N ;
(K, b,)' - K, b =35 + F_. b, (a=z1, N,and b= 1, N ) -
.an ,an b a a,an G GE,

These equations may be rewritten by use of the expanded expression for

the kinetic energy and the generalized and quasi-coordinate forces.

The first equation of motion above permits the calculation of the

Lagrangian multiplier kua. Since

Fog 0 = 1.0
"W

a
and

V'

W

a _ 3
SG = - FG s

a

then

_ 3
N, -,

Thus, the Lagrangian multiplier )\a is seen to be the component of the

force on the a gear tire from the ground that is normal to the ground.
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The VB1 equation is

Vo v v §1
1, B B 9 . Q <, y
o) Vgt e sy G’ a =1, Njldcg (14)

NG vB‘Q‘B Q c N§ VB‘Q‘B Q Q o
+ (M ) s_ '3 + (M ).
:E 1 a B as 1 c ,69Ga Ga B

1

NG a G | a (
v 2 W Dlsy, @G 16 '+ 2 M Dy 5"l
a=1 a a as1 'Ta a

NG B a B "a 2
b3 ow s, Gg1s e T om0 (s
as a as

a
- - c"
+ (M 1 );€G QGa sa' + (M 1 c)[s" @Ga’ a=1, NG] qB

[+V]
n
-

-
<3

Ng Vg 9

c <,
M (M 1 ) sa' 98 b :E (M 1 c);69 KZG 9
a Ga a

(o]

o
£

ov]

n
(1]
—

a=z1

B 96, 9 . No Vg %,
[} L
v sy Ug lag e PG ) s

q. &
H a
1 a a az=1 ¢ s, Ga

+
W MS®
=

-4
«
<3
o
L0

o
11
—_

52




; Vg Vg , A QB 9 )
Q7 e, s, %;a=uu@§%
L
+ S (M Hts, 6.10
2 a’ G G
as=1 a a
N vV, s V, q
G B ®a B 98
M 2 (M 2 )[sa’ QG ) sa' + (M 2 c)[sa’ QG pa=1, NG] ch'
a=1 a a
N Vg %, .
+ 3 M, Pts, G149, %
az=1
Vg Vg v 2,

Ne Venca 9
+ oMo s, U, 10,
a=1 a a
N Vs s, Vg 93 .
+ (M 3 )[sa’ QG ] sa' + (M 3 C)[sa, QG ; a = 1’ NG) qB !
a=1 a a
N Vs an .
+ 2™y s, Gy 1a, )
az=1 a a
N Vv
G B 'B
) b d 3 b
: az=1 s, (’3/31 Opy) +&8 M ) yB1 * Fp 81b
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The V 2 equation is

B
vy v, §2
B 'B ) BYYB .
[} . -
Mo Ve, s, QGa, a=1, 810, (15)
Ng vyl N vy £ .
1
. M, D s, QB £ 3 M, .0 QG QB
a=1 a a=1 Ga a
Ny VBQGa N vy QGa
L
+ 3 M, s, G100+ T w RO
a=1 a a =1 a a
Ng VB‘QGa )
+ 3 ™ ) )
2 . G
a=1 G a
a
NG vB Sa NG vB sa 2
i [}
+ 3 M, s, @180+ )ia (3,1
az=1 a a=1 a
N Vg3, Vs 93 .
L » - n
* M, 0.9 g s, v, sy, Oc i a1 N g
a=1 Ga a a
NZG Vg 93 N}ci Vg 9 0 .
+ (M ) s ' q, ' + M ). Q, !
ac 2 ¢ ,sa a a=1 2 e ,é;Ga Ga B
No ) an . No ) qca .
n
+ M5 Tlsy, QG Jg, ™"+ 2 M, o)is 83" 9
a=1 a a a=1 a a
NG VB q . ( .
+ (M ). L. oq,
a=1 2 ¢ ’6)0a Ga Ga
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B B B "B

1 3 s a = ¢
SQ e sy, @Ga,a-uulﬂ

B 'B
b Y d 3 .0
o (:YBZ Opa) +8 M | ) }/Bz + Fp

FHb (’XB: de)'
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3

The VB equation is
Vg V5 5 vy S5 .
M, ) Vg7 o+ (M 3 c)[sa' Qca; a=1, NI ‘Q'B ' (16)
NZG vy 24 Q.o ’;cf vp {1y 0 qc
+ (M ) s ' + (M )
a=1 3 ¢3S a B a=1 3 Qca G B
No Vs Qca N Qca qQ
L3, s, G 1R+ 3 Mg D 8 Mg
a=1 a az a a
N Vg ‘Qca )
£+ ™MD €25 )
a=1 ' Ga a
Ng Vg 8, Ng Vg S, »
a=1 a a=1 a
No Vg %, Vs g
+S M .. K s+ Vs, B.;a=1, N1a°"
az? 3 ’QGa Ga 3 ¢ a G G" B
Ng Vg 9 N Vg 95
+ 3 (M ). s 'a’ '+ 3 (M y 0 . a.°
a=1 3 ¢ 8, 2 B a=1 3 ¢ ’@Ga Ga B
N VY % Ne V3 9
a Cy a .
+ 2™ 3 c)[sa’ QG ] % o 3 c);s Sa' g
az1 a a a=1 a
NG V. q
+ z (M a ). ) q !
az1 3 ¢ ’@G G Ga
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Vs Vs Vs {25 0 .
+ (M 1 c)[sa’ Ga; az1, NG]‘QB

Ng VBQ‘Ga
+3 oM, s, 6,10,
azl a a
Ne Vg3, Vg 9 .
S s, B ls e is,, O sas, N e
a=1 a a
No Y %, .
30, 20rs, G5 1 q %)
a=1 a a
: Vg Vg ) vy {1 .
sQg L DVE e s, @Ga; a=1, N0,
No VB‘QGa
+ z (M 2 )[sav @G ]QG
az1l a a
N Vg3, Vg 9p .
+ Z (M 5 )[sa, QG ] sa' + (M 5 c)[sa' QG i a =1, NG] ag '
az=1 a a
No Vg %, .
s oMo, 20s, G515
az1 a
N V. v
G B 'B
) b d 3 b
= az=1 FGa (’XB3 8bd) +e M ) 753 + Fy 83b

+ Fy° (XB: de) + Frb 83b'
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The ‘QB1 equation is

05805 Ny 2584
c' c 1
(M 1 c)[sa’ QGa; a =1, NG] ‘Q‘B * az-‘:1 (M 1 c);sa‘QB sa a7
Ng QB‘QB . VB‘Q'B b
+ 3oy g Ry Qg s M DIs,, Oc s 2=t 81"
a=t Ga a a
N, V5§ No Vg {2p 0 .
+ 3 (M ) s' Vo' + Y (M ) v !
a=1 b ! 19, @ B a=1 b ! ’696 Ga B
N, Q0 . Ng QBQGa
+ S sy, G 10 T o s 0
asz=1 a a a=1 a a
Ng 'Q’B‘Q‘Ga , Ng ‘Qsﬂwa
fZow o g @t es m Dis, 10,
a=1 Ga a a=1 a
N 2504 N, 258,
a , a
2 M s, Qy +2 m ),@ Q¢ Ly
a=1 a a=1 Ga a a
NG SzB sa NG (2B Sa
" L} 2
£ 3 M s, Gl e S M) (s
a=1 a a=1 a
Ny Slps, $25 9p .
* :E (M 1 );6; KZG Sa' + (M 1 c)[sa’ 69G 2=, NG] 9 "
a=1 Ga a a
Ny g g NZG {25 9 0
+ (M ) s ' q; ' + (M ). q '
Z 1 ¢’;s %a 98 Z, 1 e ,@G ¢ I
Ny §2p 94 N, 5 qg
a n a 1 ] c'
FT o0 Pl Oglaog ™+ | 2D s q
= as} a
NG QB qG
+ (M a ) Q q c,
az1 1 ¢ ’69G Ga Ga
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- 3((M2 )s @G;a-hN]Qc
a

Ng Vg KZG N Vg s,
T oM, s, G 10, v W, s, Gg1s,

a=1 a =1 a

V., q N V. q

B 9B G B g
c Moy Jls, Ggia=tiNglagt e I M, >[s,96a1qc°'>

U

Ng vBQG N Vp s,
+ 3 Mg )[s,QJQG+Z(M3)[s,QG]sav
az1 a az1 a
Vg 9 N Vg %,
s )[s,@c,a-lN]qB'+z1(M A ls,, QJqG'
2505
3 c
Q2w Dts, Ggia=, NN
vy g .
+ (M b Js_, é;G ;a=1, N.] VB
g 09 g 02,0
+ Mo, Ds, B 10 + T ™M, s, G, 10,
az=1 az=1 a a
No Qg s, 2p %
s M, s, B Ts e, Ols,, Cgia= 1, NG g
a=1 a
Ng Qaqc
+Z (M 2 c){s’(CG]qG’)
a=z1 a a
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VB‘Q‘B b
RIS QGa; a=1, NV,
Ng QBQGa 0 Ng QBﬂwa
Mo, s, G180, T om o, s, 6,10,
az=1 a a as=} a a
Ne Q‘B %a Q13 g .
2 (M 3 )[Sa’ QG ] sa' + (M 3 c)[sa’ QG pa=1, NG:| B '
a=1 a a
Ny §2 %,
S (M s, B, 1a, ")
3 c a G G
a=1 a a
Ng
b g d fh
2 Fo o (egyy ’XB L Sbg 8
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e

a
£ d £
€rab }/B] ”Ca * C3p ’XB1 "wa)

VBQB
g (M e 1)[33, QGa; a=1, NGJ ’XBj SCd

FHb (e1dn 'Xai lHd Sbg o™
h
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£ Yd d b
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The (2.2

equation is

B
Q.0 o Qg8
c, ¢ []
M, sy Bgsas, NI S2pT e T, s Slp o,
a a=1 a
Ng 2,8, . vp 14 .
I M, 09 Q5 Qp v, i, Oc i 2=t g v
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Ny V582 No  VpQ2g
' bv b'
£ 3 M 2. 8" Vg '+ Z M 2)'9 .QG Vg
az1 a az1 Ga a
Ne 2582 N 250,
a [ ] 1 ]
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Ng Qa Sa ‘Q‘B Qg
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: (MQB an ( ]
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az1 a=1 a
V., q N V. q
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c a e,
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a as a
1 VB 5213 e
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Initial Conditions

The aircraft is assumed to be oriented at t = 0 such that one point of
the aircraft has just made contact with the ground surface. The candidate
points for contact are the landing gear tires and the arresting hook. There
are some cases when there are multiple points of simultaneous contact at the

time t = 0.

The transformation ’);b(O); b=1, 3and ¢ = 1, 3 may be established
¢
from the Euler angles qb(O), 69(0) and Qb(O) which are the initial yaw,
piteh and roll angles of the airframe. Appendix G defines the elements of

this transformation.

The rigid body translational velocity of the airframe reference point N

at t = 0 is

= - ¢ T - gb' T - At T [ T v

r'(0) = V;7(0) 180(0) = (0) Ty =d'(0) I, + s'(0) I, +v'(0) I3.
Normally, the horizontal velocity, the vertical velocity or sinking

velocity and the lateral velocity of the point N with respect to the ground

surface (i.e. g1'(0) T1, ?:',2'(0) TZ and €3'(0) -1'3) are specified at t = 0.

Therefore, the body axis components of the initial velocity are
£

v %) = Gy ¥ O &,

B Bd bf

Also, when the initial angular velocity is not zero, the components of
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the initial angular velocity may be expressed in terms of the initial Euler

angle rates as follows:

Q.o

. - 43'(0) - sin(B0)) Voo,

Q,2(0) = cos(P0)) B1(0) + cos(B0)) sinpioy) V(o).

3
.QB (0)

- sin(qB(O)) 69'(0) + cos(é;(O)) 003(45(0)) q"(O).

The following bth airframe modal displacement for b in [1, NBE] at
t = 0 is derived from equation (20). It is assumed that there may be cases
where the initial castor angle is not zero. It is further assumed that the
functions that are dependent on the stroke of the landing gears can be
evaluated with the initial stroke equal to zero then
Vp 9B

a0 =g & 1 )00, O 0 a1, m) Y3 8% 0.

Bb d e

The initial position of the point N with respect to the ground

reference point Q is defined as follows:

(=]

§‘<o) = d(0) = F(0)

L20) = s(0) = 7o) * 1,

—

—

L0y = v(o) = 7o) * 1.

The number d(0) is normally zero, the number s(0) is used to orient the

point N laterally with respect to the point S (see Appendix F) and the
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number v(0) may be derived from equation (12) for the case where the a gear
tire has just contacted the ground surface. It is found from equation (12)

that

- b 3 c Y d 3 b
v(0) = - 1, ° Y30 -dy, %o, B, o Y, Y30 ol
a b Aa a a d

b c

b c .
-g, Qg SO Yo
a ab c

c d 3 b 3
-, S0, B 0 ag Yo Y0 a, P - 30y - v,
a a d a a a

A
ab ¢ 0

The equation for v(0) may be obtained a- folilows for the case where at

t = 0 the arresting hook =3 just nade coutact with the ground surface:

- b 3 . 3 3, s
v(0) = - lH erb(O) - ( - 1Hv 81n(quO) 3YB1(O) + 1HV cos(qSHo) 1*83(0,).

The a gear stroke at t = 0 i= determined fron the following equation

which is derived from equation (21) and the equation for the number F

(0)

S
a

from !ppendix B:

1
s (0) = —— (- p, (3_(0)) A
a KBG Aa a Aa

a

§1580
. _ b, Qe
2 M c);sam, QGd(O), d =1, N §2,°(0) g (0)
LR . .

ECEN C);Sam, Qde); d= 1, N v .°0) 2 %0)

‘B 3

ca o, 0, B o0 Yo 8.
a d




The hydraulic fluid expansion in the a gear fluid chamber and the a

gear snubber chamber may te obtained at t = 0 from Appendix B as follows:

p, (3,(0)) Vy (0)

ﬁgaio) . - a KH a

P, (s,(0)) v, (0)
a S

a
£33a<o> -

The following a gear bth modal displacement for b in [1, NGE Jat t =0
a

is derived from equation (23):

\'f qG
b 1 . : -d
QG (0) = K—_ (S (M o ab)\O, 90 (0)) XB?’(O) 8(: ).
3 G a d

3y
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Summary of Vector Function Relations
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SIMPLIFICATION OF EQUATIONS

The equations of motion (equations (14) through (24)) in combination
with the equations developed in the Appendices provide considerable
flexibility for calcul-=ting the loads associated with landing impact. A
minimum of assumptions were made during the course of the development of
these equations to help ensure this flexibility. In many cases, however,
the equations may be simplified by virtue of the gear design. For example,
for the case where the nose gear power steering unit is engaged and is able
to maintain the castor angle at zero, then considerable simplification may

be realized.

There are several simplifications that may he made to the equatioas of
motion if tb: mears are not articulated {i.e. there is a one to one
correlation of the shock strut stroke and axle motion). These
siaplifications are readily determined from an .amination of the equations

of motion.

There uare other simplifications that may be realized. For example, it
i3 usually permissible to assume that the airframe vibration modal effective
masses are independent of the shock strut stroke. Therefore, when this
approximation is used in conjunction with airframe normal modes that are

orthogonal to the rigid body motion, the complexity of the equations of

mo.ion is reduced.

Further, it may be possible to delete other terms by computing the mass




terms in Appendix D ana estimating the contribution of the terms involving
these masses with approximations of the multiplying functions which are

found in the equations of motion.
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APPENDIX A

MATHEMATICAL NOTATION

In the text of the report there is frequent use of the terms simple
graph and simple surface. This is done to emphasize their functional and

geometrical significance.

The statement that "f is a simple graph" means that f is a point set no
two members of which have the same abscissa. The number f(x) is the

ordinate of that point of the simple graph f whose abscissa is x.

The statement that "T is a transformation" means that T is a collection

of one or more ordered pairs no two of which have the same first term.

The statement that "F is a simple surface” means that F is a
transformation from a point set to a number set. If the point P = (x, y)

and the number z constitute a point of F then z = F(x, y).

The use of the bracket product notation has been used extensively in
this report. The following definition of a bracket product may be used to

illustrate the essential features of this important functional description.

The statement that "the simple graph F[g1, 32] is the bracket product
of F of g, and g2 (F is a simple surface and each of g, and g2 is a simple
graph)" means that there is a number x such that (g1(x), gz(x)) is in the
X,y projection of F and if x is such a number,

FE81, 82](X) = F(g,(x), gz(x)).
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An extremely useful concept in the handling of functions and their
derivatives is the identity graph. This graph contains the point (0,0) and
has slope equal to one. Consequently the statement that I is the identity
graph means that if x is a number then I(x) = x. The iderntity graph I
appears in the text with a subscript to provide clarity when used in

combination with simple surfaces.

With the help of the identity graph the definition of the derivative of

a simple surface may be stated as follows: The statement that F1' is the

l-derivative of the simple surface F means that F,' is the simple surface to

1
which the point ((x, y), z) belongs only if

z = {F[I, yl}'(x).

In addition the statement that FZ' is the 2-derivative of the simple surface

F means that F2' is the simple surface to which ((x, y), z) belongs only if

z = {F[(x, I]}1'(y).

These definitions lead to the notation used in the text of the report
for partial derivatives. To illustrate this suppose that each of f, g4s and
82 is a simple graph and F is a simple surface such that
£ =Flg,, 8,].

The statement that F‘.g is the partial derivative of F with respect to g,

’
1
means that
- ]
Further, the statement that F_ is the partial derivative of F with respect

1‘2
to g2 means that

- ?
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The identity graph is also useful in the integration process. In the
general case f is a simple graph bounded on the interval (a, b] and the
simple graph g is nondecreasing on [a,b] then f is g integrable on [a,b]
(Reference (3)). This is denoted by

b
f dg.
a

In the special case where g = I (the identity graph) this integral

(1.e. the integral of f with respect to I) is the well known Reimann

integral.

Vectors are denoted by a bar over the symbol. When the vector is
expressible in terms of a unit vector set, for example, Ta; a =1, 3 such
that if F is such a vector and
= a =

F=F Ia (sum on a is implied),

then each of Fa; a =1, 3 1s referred to as a component of the vector F.

Frequent use is made of the "e system" for representing vector
operations. This system is discussed in detail in Reference (4). The e

system may be defined in the following manner:

If each of r, s and t is an integer in the interval {1, 3] then e is -1,

rst

0 or +1 according to the formula

e

rst 1/2 (r = 8) (s =-1t) (t =r),

u

and

rst
e -

t
{®

rat’

87




It is seen that erst is skew-symmetric in each pair of its indices.

The e system is used in the main body of the report to express vector

cross products in terms of vector components. For example, if

A= AS i

s
and
§ - gt i,
then
AxB.I =e S BY.

r rst

The Kronecker deltas used in the text are defined as follows:
Sabc _ eabc
rst = Trst ‘

b b
835 = 8?‘32'

O = 12 &,

Bab = Sab =1 if a is equal to b and

Esab _

)
6%
W
o
1]
o

if a is unequal to b.
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APPENDIX B

DERIVATION OF THE SHOCK STRUT FORCE EQUATIONS

The following shock strut characteristics are assumed for the
derivation of the equations for the shock strut pressure and force functions
in terms of the quasi-coordinate velocity component functions of the
airframe and the generalized coordinate displacement functions for the

landing gear:

(1) The shock strut contains a hydraulic fluid and a gas.

(2) During shock strut compression energy is stored in the gas.

(3) During shock strut compression and extension energy is dissipated
in the hydraulic fluid and the coulomb friction forces from the shock strut
bearings.

(4) The shock strut is equipped with an orifice for control of the
hydraulic fluid flow during compression and the area of the orifice is
assumed to be dependent only on the stroke of the shock strut.,.

(5) The shock strut is equipped with a snubbing chamber (see Figure
B-1) for energy dissipation during extension of the shock strut and the
orifice area of the snubbing chamber is controlled by a pressure relief
valve.

(6) The shock strut has a single stage air chamber.

(7) The hydraulic fluid is compressible and the bulk modulus of the

hydraulic fluid is assumed to be a number.

To provide some additionmal flexibility for modeling potential shock

strut configurations, two shock strut geometries that have the
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characteristics described above will be included in the derivation.

The terms used in the shock strut force derivation are defined below.
Figures B-1 and B-3 may be referred to for illustration of the geometrical

quantities. The required numbers are defined as follows:

PaMB is the ambient pressure,.

AH is the hydraulic area of the a gear fluid chamber.
a

AA is the net area exposed to the gas pressure in the a gear.
a

AO is the area of the hole in the main orifice plate in the a gear.
a

AH is the hydraulic area of the gear snubbing chamber in the a gear.
3
a

KH is the bulk modulus of the hydraulic fluid.

FL is the mass density of the hydraulic fluid,

VA 1s the gas volume in the a gear gas chamber with the shock strut fully

0
a

extended.

VH is the volume in the a gear fluid chamber with the with the shock strut

0
a

fully extended.
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K is the spring rate of the a gear piston-cylinder interface when the

BGa
strut is fully extended.

CBG is the damping rate (assumed viscous) of the a gear piston-cylinder

interface when the strut is fully extended.

VFL is the fluid volume in the a gear shock strut.
a

CD is the main orifice coefficient for the a gear.
a

CD is the snubbing chamber orifice coefficient for the a gear.

S
a

Mw is the mass of the rotating parts on the a gear axle.
a
SC is the stroke of the a gear when fully compressed.
a
}LBU is the upper shock strut bearing friction coefficient.

ﬁLBL is the lower shock strut bearing friction coefficient.

The vector functions needed to define the shock strut force are

as follows:

IS is the unit vector function such that if t > 0, 1
a

s (t) is the

3 23

defined

unit vector which at the time t is parallel to the shock strut axis of

symmetry and directed downward with respect to the piston as shown in Figure
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[vé]
i
[AV]

FS is the vector function such that if t > O, ﬁs (t) is the <hock

a a

strut force on the a gear piston at the time t.

Fs is the simple graph such that if t > O,
a

FS (t) = FS (t) is (t) at the time ¢t.
a a a

3

H is the vector function such that if t > O, vy
a a
hydraulic fluid passing through the a gear orifice at the time .

v (t) is the velocity of the

VK is the simple graph such that if t > 0,
a
Vy (¢) = - vy (L) ig (t) at the time t.
a a a
3
v, is the vector function such that if t > O, vy ()
S S
a a

is the velocity of the hydraulic fluid passing through the a gear snubbing

orifice at the time t.
v is the simple graph such that if t > O,

v. (t) = -v,. (t) I. (t) at the time t.

FF is the vector function such that if t > 0, FF (t) is the shock

a a

strut friction force on the a gear piston &t the time t.

Fr is the simple graph sucn that if t > 0




F is the vector function such that if t > O, F (t) is the a gear

GA GA

a a

axle force from the axle-wheel interface at the time t.

Each of FG :b=1, 31is a simple graph such that if ¢t > O,
A

= "o = be
F, (t) = F (t) j. (t) 8 at the time t.

G G G

ha B s

b

ﬁG is the vector function such that if t > 0, ﬁG (t) is the a gear

A A

a a

axle moment from the axle-wheel interface at the time t.

MG and each of MG ; b =1, 3is a simple graph such that if t > O,
A A
a, ay

~

M (¢) I, (t)
A GA wa
a a 1

X
—~
T
St
(1}

"
=

= bec
G (t) jG (t) 8 .
A a

ab c

The additional simple graphs required to determine the shock strut

force are defined below:

sa is the simple graph such that if t > O, sa(t) is the a gear stroke at the

time t.

AP is the simple graph such that if x is in [0, Sc 1, AP (x) is the
a a a

area of the metering pin at the a gear stroke x. AP {x) is the cross
a

sectional area in the plane where the orifice plate hole area A0 is
a
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measured.

AN is the simple graph such that if x is in [0, S¢ 1, AN {(x) is

a a a

the a gear net orifice area of the main orifice at the a gear stroke x.

A is the simple graph such that if x is a number, A

N (x) is the

S NS
a a .

a gear net orifice area for snubbing at the snubber orifice differential

pressure X.

fga is the simple graph such that if t > 0, ﬁga(t) is the volumetric

expansion of the hydraulic fluid in the a gear fluid chamber at the time t.

ﬁgs is the simple graph sucn that if t > 0, ﬁgs (t) is the volumetric expansion
a a

of the hydraulic fluid in the a gear snubbing chamber at the time t.

VH is the simple graph such that if t > O, VH (t) is the a gear fluid
a a

chamber volume at the time t.

') is the simple graph such that if t > 0, V

H (t) is the a gear snubbing

S HS
a a

chamber volume at the time t.

Py is the simple graph such that if x is in [0, Sq 1, Pa (x) is the
a a

pressure in the a gear gas chamber at the a gear stroke x.

pT is the simple graph such that if t > O, pT (t) is the pressure in the a
a a

gear fluid chamber at the time t.
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Py is Pp - P, [sa]
a a a

is the simple graph such that if t > 0, Pr (t) is the pressure

S S
a a

Py

in the a gear snubbing chamber at the time t.

pH is pT - pA [sa] for the type I strut configuration shown in
S S a

9
a a
Figure B-1.
pH is pT - pT for the type II strut configuration shown in Figure B-3.
S S z
a a

BFUab is the simple graph such that if s, is in [0, Sc 1, BFUab(sa) is the
2

shock strut upper bearing a gear reference system force coefficient for a
unit bth force component on the point Aa of the a gear.

BFLab is the simple graph such that if s, is in [0, Sc 1, BFLab(sa) is the a

a
gear reference system lower bearing force coefficient for a unit bth force

component on the point Aa of the a gear.

BMUab is the simple graph such that if s, is in (O, S¢ 1, BMUab(sa) is the a
a
gear reserence system upper bearing force coefficient for a unit bth moment

component on the axle of the a gear.
BMLab is the simple graph such that if s, is in [0, Se ], BML b(s ) is the a
a a
a

gear referearca system lower bearing force coefficient for a unit bth moment

component in the a gear reference system on the axle of the a gear.
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If the a gear stroke, S, is in [0, S¢ ] and if t > 0, the shock strut
a
force , FS (t), may be expressed in terms of the forces and pressures acting
a

on and in the shock strut. This may be accomplished by isolating the piston
of the type I shock strut as seen in Figure B-2. From this figure the
following expression for the number Fs (t) mav be derived from a summation

a
of the forces on the piston:

Fq (t) = pyyp By = Pp (t) (A - A5 (s (t)))
a a a

a a
+D (t) (a - A (p (t)))
Ts Hg Ng THg
a a a a
-p, (s (t)) (A, + A - A, (p, (t)) - A, )
Aa a Aa HS NS HS Ha
a a a
- Py (sa(t)) AP (sa(t)) + FF (t).
a a a
With

Pr (t) = Py (t) + Pa (sa(t))
a a a

and

S S
a a

it follows that

T (t) + pAa(sa(t))

Fg (t) = Ppyp AAa - PHa(t) (A - Ap (s,(1)))

a a a
+ Py (t) (AH - Ay (pH L))y - Py (sa(t)) Ay + Fg (t)
S S S S a a a
a a a a
where
AP (t) = AO - AN (Sa(t))-
a a a
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When the shock strut has bottomed (i.e. the shock strut stroke 13 less
than zero) it is assumed that the bottoming load is derived from a linear

spring and a linear (viscous) damper. Thus, for this case

FS (t)

Ay - py (v) (Ap - Ay (s, (t)))
a a

= Pamup "
a a a

+ P
HS S NS S a Fa

a a a a

- Kgg 85,(t) = Cpg 3," (1)
a a

(t) (AH - Ay (py (t))) - pAa(Sa(t)) A, +F (t)

It is now required to derive the equation for the pressure in the shock
strut fluid chanber It is supposed that at the time t this pressure is
directly related to the volumetric expansion of the hydraulic fluid and

inversely proportional to the volume in the fluid chamber.

This rzlationship may be expressed by

- K
H
Pp (t) = — Ba(t) if Ba(t) is <0
a v, (t)
H
a
and
pTa(t) =0 if Ba(t) is > 0.

The volumetric expansion at the time t, ﬁga(t), may be obtained from an
integration of the sum of the functions that define the fluid volume leaving
the fluid chamber through the orifice and the rate of of change of the

volume in the fluid chamber. Thus,
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is the function to be integrated where at the time t the velocity of fluid

through the main orifice, v, (t), is derived from the principle of

H
a
conservation ot energy and the number vH {t) 18 therefore
a
A
pHa(t' 0.5
v, (t) = (2 Yo fer o, (8 00,

—)7 for p, vty < 0,

H [ oL — A { [ t
¥H "ty z (AH AP \Sa\tl)) sa(t) .
& a a

A similar approach is used to determine tih.: pressure at the time t in

Lr.e snubbing chamber. The required equaticns ure

- KH R
pr (8) = ——— [ (1) £ f3, (1) is < 0,
'S v, (t) a Ya
a H
S
a3
Pr (¢) = C it #35 (t)r >0,
S a
a
where

,8 (L)' = C. A, (p, (t)) v, (t) + V., '(L},
Sa DS S HS HS HS
a a a a a

and
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p (t)
s
2 0.5
v, (t) = (2 ) for p, (t) > 0,
Hs P Hg
a H a
‘vH (t) =0 for pH t) =9,
S S
a a
p (t)
Hg
a 0.5
v, (t) = - (-2 )y for p, (t) <O,
s P By
a H a

It is assumed that the gas volume in the shock strut at the time t is

defined by

A0 Aa
a

VA (t) =V - A sa(t).
a

It is further assumed that n is a positive number such that the
thermodynamic process of the gas in the shock strut gas chamber during

compression is represented by

For the type II shock strut at the time t shown in Figure B-3 the

pressures p, (t), py (t) and Py (t) are calculated from the relations
a S a
a
derived for the type I shock strut. There is, however, a different

equilibrium equation from which the number Fs (t) is derived. The following
a
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expression for FS (t) may be derived from Figure B-U:
a

(£)))

Fs (t) = PaMB Ay = Pg (t) (AH - A (sa(t))- Ay (DH
a a a a a S S
a a
+pp (8) Ay - Ay (py (£))) - p, (s (t)) A, (s (t)) + Fp (t) for s (t) >0,
S S S S a a a
a a a a
and since

pp (£) = py () + py (5,(1)),
a a a

p. (t) =p, (t) + p, (t),
TS HS Ta
a a
and
AA = AH - AH y
a a S

Fg = Dpyp By - Py (8) (A = A, (s,(£)) = A, )

a a a a a S
a

+py (B) Ay - Ay (py () - pAa(sa(t)) B, +Fp (v) for s_(t) > 0.

S S S S
a a a a

F
a a

For the case where sa is less than zero, the same stiffness and damping

terms that were used for the type I shock strut are to be included.

Also, the rate of change at the time t of the volume in the fluid

chamber is

Vg (Ot = -Cp Ag (py (8)) vy (B) - (A - APa(sa(t))) s, '(t).

a 8 S S S a
a a a a

To compute the shock strut friction force function it is first
neccessary to calculate the force and moment functions for the gear axle.
This may be done using Newtonian mechanics. From this method it seen from

equation (C-1) that the axle force for the a gear may be expressed by
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F.oo= - (B, ). P, -B)yav, +F, .
GAa .I:Ha Ha’It ’It Ha wa Ga

The a gear axle velocity function in the parenthesis of this equation
may be found in an expanded form in equation (7) in the Derivation of the

Equations of Motion section in the main body of the report.

If the indicated differentiations and integrations are performed and
the terms involving the rates of change of gear and airframe deformations
are omitted, then the following expression for the numbers

FG (t); b= 1, 3 is obtained:
R,
b

Fo () = =M, Qg (8) (e « Q% v3 - Q3w v 2

A a a
ab b

2 2, 3 1 1 3
Mwa aGa (t) (V7' () +QB () Vg (t) -QB (t) Vg7(t))
b

3 3 1 2 2 i
- My Qg S(8) (Vg7(n) + Qg (1) V() - Fce) Vo))
b

g hed e, q
- ag B QP SCP (1,

a a a
b

+

f q f q
g8, Qg (&) + §A (s (£)) Qg “(t)) qu Sgh
a af‘ a af.

a

g Pq f c
My Qg B SPI Q) Q0
b

u d
+ gAa CLGa (t) «+ §A
u

a

V(s (t)) aG: () 84 8gq O™ O
v

h3d , q q
G U ORI §Aa (5,(8)) Oy, Oy,
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d
- M’w 83; (QG (t))z (gA d + an (Sa(t))) qu 8!‘8 Sbs
a a a

g hed o f, ' q
(t) e ‘QB (t) Scp §Aa (sa(t)) s, (t) (IGa (t) qu Sgh

2 M, Qg
a b £

a

h3d q' \J
-2 Mwa e QGa(t) §Aa (s (£)) s '(t) qu Sbh

M, &, M e (s en? Oy, - M fA Pris (1) s "(6) O,
a a

a a

f r, A h
My Spe (8,0, 6)0 (t)) qg "(t) A, "(t) Sbh
a Aa a af

r

f r,
IR TIRCREY QGa(t)) ag " O,

a
a
r

+

g c d 3 d,.
Fo B0 ¥t ag der S e e Yl ag Y.

a d a a d a

b b

The contribution of the axle moment from the accelerzlion of the wheel
mass typically has a negligible influence on the strut friction forces.
Therefore, this moment contribution will not be formulated. However, the
axle moment from the ground forces may in some cases have a significant
effect on the strut friction force. It is assumed that the axle moment from

the ground force is parallel to Tw (ty.

3,

Thus, the axle moment from the ground force is

M. Tw (t) = (fw (¢) ° (;C (L) + ;w (t)) x F’G (t)) fw (t).

Aa a1 A1 a a a a1

Therefore, 1t is found that
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d

z b c
a0 = J D) e (i S6) w vy (00 F o).

A a a a a
a1 1

The moment components at the time t in the a gear reference system are

determined from

MG (t) = MG (t) Iw (t)y ° JG (t)

Aa Aa a1 ab

b 1
or
- ¢ d 1

M () =M, (8) Qg ) 7, ) 7, .

A A a c a

a a b d

b 1

The next step in the derivation of the shock strut friction force is to
determine the bearing reactions between the piston and the cylinder. When
computing these reactions the assumption will be made that the forces on the
piston (and axle) from the acceleration of this mass can be omitted. This
permits the bearing reactions to be computed from a simple expression
involving the axle forces and moments. Therefore, it follows that the

number FF (t) can be determined from the following equation:
a

sa’(t)

b c
Fp (8) = = ——— (Mg (BFU (s (£)) Fy  (t) + BMU_°(s_(£)) My (£))
a s, (0] A A,
b c

d e
+ LLBL(BFLa (sa(t)) FGA (t) + BML_ (sa(t)) MGA (t))).
ad ae
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Pp (sa(t) AP (sa(t)) is (t)

‘a a 33

pp (L) (Ay - A (s, (t)) -
a a a

Ay (py  (£)) is (t)

/ Ng THg a
a

[
w

TR
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a a
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3
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ig (t)
3
Figure B-4. Free Body of Type Il Shock Strut
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APPENDIX C
MODIFICATION OF LAGRANGE'S EQUATIONS FOR NON-HOLONOMIC CONSTRAINTS

AND QUASI-COORDINATES

Suppose that V is a volume in E3 space containing a collection of mass
particles and that S is the surface of this volume. Further, suppose that Q

is a point fixed in space or moving with a constant velocity and that r is a

2

vector function such that if t > 0 and if (x1, x, x3) is a point

in V, F(x1, x2, x>

2

, t) is the vector at the time t from Q to the point

labeled (x1, X, x3) in V.

Now suppose that 8? is the vector function such that if t > 0 and if

2

(x1, x°, x3) is a point in V, 8F(x1, x2, x3, t) is a vector which at the

time t is tangent to the constraints (which are assumed to be fixed at the

2

time t) on the point labeled (x’, x, x3) in V but otherwise arbitrary in

magnitude and direction.

Further suppose that

P is the vector function such that if ¢t 2 0 and if (x1, x2, x3) is a point
in Vv, F(x‘, x2, x3, t) is the body force per unit volume at the time t at
the point labeled (x1, x2, x3) in V,

V is the vector function such that if (x‘, x2, x3) is a point on the surface
7,1 . .
of V, Vi(ix, x2, x3) is the unit vector normal to the surface at the point

labeled (x1, x2, x3) on the surface of V.
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TV is the vector function such that if t > 0 and if (x1, x2, x3) is a point

V, 1 2 3

on the surface of V, T"(x', x%, x”, t) is the surface force per unit area

at the time t on the surface point (x1, x2, x3) where the normal vector is

V(x1, x2, x3),

2

Pis the simple surface sucu that if (x1, x, x3) is in V, P(x1, x2, x3)

is the mass density of the collection of mass particles at the point labeled

2, x3) in V, and

(X1, X
Sw is the simple graph such that if t > 0, Sw(t) is the (virtual) work
done at the time t by the component of the body and surface forces

in the direction of the vector 8?‘('0) acting through the distance ISF(t)I ,
then from Reference (1), the Principle of Virtual Work states that

) '8F av + S(TV‘ 8?) ds = 0, (c-1)
t

SW = Jy (P - (r';I );I
t
The principle of Virtual Work may be used as a basis for the derivation
of Lagrange's equations. However, before Lagrange's equations can be
derived, the vector function 8?‘ must be rewritten in terms of the

coordinates (i.e. functions) that describe the motion of the collection of

mass particles.

A vector function that could be used for this purpose is a modification
of the velocity vector function. To develop this vector function suppose
that n is a positive integer, each of qa; a =1, nis generalized coordinate
and R is a vector function of class C1 such that if t > 0 and (x1, x2, x3)

is in V,
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3 3

F(x', X2, x3, t) = B(x', x%, x3, t, q*(t); a = 1, n)

at the time t.

The velocity vector is therefore
r.1 (', o2, 0, ) = ﬁ.qb(x1, x%, %3, t, @®(t); a = 1, n) q°r(¢)
1 t ’

3

+ ﬁ'l (x1, x2, x°, t, ¢@(t); a = 1, n).

Tt

In this expression the R,

1 term has a contribution to the velocity for
H

t
the case where the constraints are time dependent. However, for the
calculation of ESF, this contribution is not included since the constraints

are fixed when 85 is determined.
Therefore, the expression

ESF(x1, x2, x3, t) = ﬁ_qb(x1, x2, x3, t, qa(t); a=z1,n) qb'(t) (c-2)

may be used to derive the vector function ESF that could be used in equation
(C-1) where it is understood that (within the constraints) that each of the

coordinate derivatives are independent and arbitrary in magnitude.
This substitution for the ESF in equation (C-1) will provide the
formulation needed for the derivation of Lagrange's equations for the case

where the motion is expressible in terms generalized coordinates.

For this purpose suppose that T is a simple graph such that if t>0o0,

T(t) is the kinetic energy of the collection of mass particles at the time
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~

t. Further, suppose that K is a simple surface such that 1

T = K[Q%; ¢ =1, n, ¢°; ¢ = 1, nl. (C-3)

Therefore, if each of Qa; a =1, nis a simple graph such if t > O,
Qa(t); a = 1, n are the generalized forces acting on the collection of mass
particles at the time t and the acceleration function term is expressed in
terms of the kinetic energy function as iilustrated in Reference (5), then
the Principle of Virtual Work may be rewritten in the form of power rather

than work as follows:

. ] o a' -
((K;qa,) - K;qa - Qa) qQ ' = 0. (C-4)

Lagrange's equations may be easily derived from equation (C-U4) for the

case where the velocity functions are independent.

In some cases it is preferable to write the equations of motion in

terms of non-generalized (aouasi) coordinate velocity component functions.
For example, it is frequently desirable to have the rigid body motion of a
collection of mass points be determined from the body axis components of the
velocity vector function and the angular velocity vector function. These
are not, however, generalized coordinate velocity component functions since
the position of the body cannot, in the general case, be determined from an

integration of these velocity component functions.

Suppose that each of Va; a =1, n is a quasi-coordinate velocity

a
b’

surface of class C1 at each of its points and

component function and that each of A a =1 n; b=1 nis a simple
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Ve = A:[q ;s ¢ =1, n] qb'. (C-5)

a

Further, suppose that each of Bb; a=1,n; b=1, nis a simple

surface such that

q ' = B:[q ; ¢c=1, n}] V.

It follows then that if

a a
Q, = Afla’; ¢ =1, n]
and
a c
ﬁgb = Bb[q s ¢ = 1, nl,

then c1§,5}2 is unity for the case where a is equal to ¢ and zero for the

case where a is unequal to ¢. Also, it is seen that

qa' =B: Vb. (C-6)

If equation (C~6) is substituted into equation (C-4) and if each of

S.; b=1, n is a simple graph such that

b’
a
s+ B2 9, (e
then
a - , a_, a b _
ot (K. 1) -B: K. % - §) V= 0. (C-8)

~

It remains now to replace K.qa, and K.qa with functions expressible in
’ ’
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terms of quasi-coordinate velocity component functions. For the purpose,
suppose tinat X is a simple surface such that

T = K[qc; c =1, n, Vc; c =1, nl. (C=9)

The kinetic energy functions in equations (C-3) and (C~9) may be

differentiated to yield

-~

T' =K, aq"' +K,
’

qa, qa" (C-10)

= K, a qa' + K ,a Vi,
’ » ¥

But, from equation (C-5)

a, _ ,a b, ¢, ar d, b,
Vo o= Ab;qc qQq'q ' + Ab[q ; d=1, n] q°V.
Therefore, by comparison of like terms in equation (C-10) it is seen
that
- d, ¢
K.2r = K.yd Alas e =1, n],
ﬁ a=K a+ K _d Ad aq'
I iV b
If these expressions are substituted into equation (C-8) then it is
found that

a, d . d c e
Bb[ g (K@)t + K d g, e Be v

d c
- K - e, _
jq® K;Vd Ac;qa ﬁge V1= Sb’

and if
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d a d d c e
24 -Bb (Ag, g2 - Aa;qc)Be ve, (C=11)
then
(x..b) -0« ad-Bik a-s) vo= o (C-12)
'} b ;V b T;q b

is the Principle of Virtual Work expressed in terms of quasi-coordinate

velocity component functions.

Now suppose that m is a positive integer, but less than n and that each

of a =1, m is a simple surface such that if t > O,

ab’
e . b

(ks @ (8); ¢ =1, 0) V(b)) =0 (C-13)

is a constraint on the collection of particles at the time t. Note that the

constraint relation is linear in terms of the quasi-coordinate velocity

component functions.

Further suppose that Fa is a simple surface such that if t > 0,

~

F (¢, a(t); ¢ = 1, n, vP(t); b = 1, n) (C-14)

= I;b(t, qc(t); ¢ =1, n) Vb(t) = 0

at the time t and if each of )\a; a =1, n is a simple graph (a Lagrangian

multiplier) such that

[}
(o]

A2y F(t, @(t); ¢ = 1, n, ¥V2(8); b = 1, n) (C-15)

at the time t.

It follows then that for the case of non-holonomic constraints
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expressed in the form of equation (C-13), Lagrange's equations may be

written as follows:

d a a .
t - = . -
K. yb) Q) K, yd Bb K. 3= 5+ A F_.yP (C-16)

The use of equation (C-7) to find the S ; b = 1, n functions is often

b’
difficult. A more direct approach is to develop another candidate for ESF

in equation (C-1) in terms of the quasi-coordinate velocity component

functions. Suppose that /\b is a vector function such that if t > 0 and

2

(x1, x, x3) is in V, then the the sum

/\b(x1, x2, x3, t, qa(t); a=1,n) Vb(t) (c-17)

is this candidate for éS?(x1, x2, x3, t) at the time t for the point labeled

2, x3) in V. Note that the vector in (C-17) is the same as the vector

(x1, X
in (C-2). However, the vector sum in (C-17) arises naturally from the
differentiation of the vector function r when quasi-coordinate velocity

component functions are used. It follows then from equation (C-1) that

S = (?’Ab)dv»,

=V . A
b v (T Ab) ds. (C-18)

S
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The mass terms which appear in equation (8) are defined below.

APPENDIX D

DEFINITION OF THE MASS TERMS

These

terms are derived from the operations required when equations (5), (6) and

(7) are substituted into equation (1).

Ng
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a

C,r c b
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N
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APPENDIX E

DERIVATION OF THE GROUND FORCE EQUATIONS

The derivation for the component of the ground force on the tire that
is normal to the ground plane was given in the body of the report. It was

established as being functional dependent only on the simple graph vy The
a

gronnd force components in the ground plane are somewhat more complicated.
One of the complications is that the ground forces are dependent on whether
or not the tire footprint is slipping on the ground surface. Prior to "spin
up” of the wheel the tire footprint is slipping on the ground surface and
the force in the ground plane is in the direction opposite to the velocity
vector of the tire footprint. The magnitude of this force is determined by
multiplying the magnitude of the ground force component normal to the ground
plane by the friction coefficient which may be defined in the following

manner.

Suppose first that Ra is the simple graph such that if t > 0, Ra(t) is
the slip ratio of the a gear tire at the time t (i.e. the ratio of the
magnitude of the tire footprint skidding velocity to the magnitude of the
velocity of the axle parallel to the ground). Also suppose that }LG is the
simple graph such that if x > 0, FLG (x) is the friction coefficientabetween

a

the a gear tire and the ground at the slip ratio x.

After spin up (i.e. the slip ratio is zero) the forces on the tire in
the ground plane change their functional dependence. The drag force
component on the tire in the ground plane is assumed to be a number times

the normal ground force component. The side {or cornering) force component
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is defined through the following functions.

Suppose that L% is the simple graph such that if t 20, b% (t) 1is
a a
the cornering angle of the a gear tire at the time t. Suppose further that

FC is a simple surface such that the point (x, vy, FC (x,y)) belongs to FC
a a a
only if at a cornering angle x and a normal ground force component vy,

FC (x, y) is the side force component on the tire.
a

Also, at a time t after spin up of the a gear wheel the component of
the ground force parallel to the unit vector fw (t) (i.e. the drag force

a4

component on the tire) is determined by multiplying the normal ground force

component by the rolling resistance LLR which is assumed to be a number.
a

The vector functions needed to define the kinematic relations are

described as follows:

;A ' i8 the vector function such that if t >0, ;A '(t) is the velocity of
a a

the a gear axle point Aa with respect to the point Q at the time t.

;FA ' 18 the vector function such that if t 20,

a
the a gear tire footprint reference point C

- [}
rFAa (t) is the velocity of

¥ with respect to the point A‘

a
at the time t,

Each of fw ; b=1, 3 is a unit vector function such that if t 20,
a
b

Iw (t) is f3, iw (t) is the cross product of ;G (t) (see Appendix G) and
a a a
3 1 2

I, (t), and I, (t) is I, () x1

W (t) at the time t.

a a a wa
3 2 3 1
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The derivation of the kinematic relations may now be accomplished with
the help of the unit vector systems and the transformations defined in the

main body of the report and Appendix G.

The a gear right hand orthogonal unit vector functions fw ; b=1, 3

3y

for the wheel-ground reference system may be expressed by the following

functional relations:

- Gaz 3
Iwa ) |E x I |
1 Ga2 3
b 2 = 1 =
/86 ag ° ()/B Iy - ’XB 12)
a, a, c e
[(/80 b aG c ’XB1)2 . (BG b a(; ¢ ‘XBZ)ZJO.S
3.2 ab C 32 ab C
f3 X (EGa x TB)
- 2
Iw = T = =
a, |13 x (kGa X 13)|
2
b 1 = 2 =
BG C‘GC(YB 11"]/13 L)
32 ab C [¢]
[(/80 baG c ’XB1)2 . (BG baG c 'X82)2]0.5
32 ab (o] 32 ab [¢]
I = I
waB 3
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The axle velocity of the a gear may be obtained from the terms in

equation (7) in the main body of the report. This velocity is expressed by

FAa'(t) = V() +Q8(t) X (1Ta(t) + gAa(t) + §Aa(sa(t), t))

+ 80, (8) x (g, (8) + §A (s, (), £))
a a a

Py b' L
+¢BGA (s,(6), @5 (), ©) a.”'(8) » §A o (3,(8), 8) 5 0(1)
a a a a
b
Iy b
+<1>GA (s, (), B, (1), © ag V1 (b,
a a

ay

or in expanded form

-, T f - fph e d
R, B 2 T 0 10+ T 0 Q0w Oep Oan

- fph e d c c
+ iBf(t) e PN 2.5 aGa (t) (gAa + §Aa (s () 8,p Sdh
e

3 d3f c c
O PO RN 'an (s () O,
d

- d f
+ 1, () Py (s, (1), @G (t)) qp '(t)
a A a
d a
f
d' 1
(t) StA (s (t)) s '(t)

ad a

+

e

- d b,
* %, (t) chA (s (1), QGa(t)) %G, (t).

d ab

Thus, with

7 d =
“b = 'Xw (t) Iw (t)’
ab a
(o]

the axle velocity is
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- T b ¢ £ fph e d
F,0) = T (PR Y e ot « PP QLS
a ac f ab a

vag de @ 0§, e o) Oep Oun
a a

a

+ acab(t) XB:“) %‘ac(t) ed3fQGa(t) (gAaq . §Aaq<sa<t)>) SQI.
d h

b yh d £,
* ’XG ¥s (t) I "oy Pe. (51 Oc (41 ag ' (0)
ad b ay ae a

b h c d, :
+a; vs (0 Y, ) fA (s (£)) s, " (¢)
ad b a a

h
b h e d b,
Qg o) }'Bb(t) 'Xwa (1) Do, (5820 B (01 g5 Tren.
d h a

b

With the assumption that the stroking velocity has a negligible effect

on the velocity r '(t), this vector may be approximated by

FA
a

ey '(8) = (I, (©) (SZB(t) x W, (t) + (QB(t) TRg () Kg (0) x v, (©)
a a1 a 32 82 a

+§_ZG (t) x W, (t) *‘Qw () x W, (t) +S_)w (t) x v, (£)) " I, (&)
a a a a a a a1

(I, () (0 x W, (0) « Q4 (0) x i, (£) " I ()
A2 a a a a,

+ Iw (t) L
a a

3

(t).

After the indicated vectorr operations are performed it is found that

C(r) of8D }’B:(t) Sdz S, )’wa‘(t) 8’;)
r

1
b ¢ d

+ Qg (t)BGa (® ag % O g
2 e

- , = b
oy '(8) = I (t) <(QB () w,
a a a

x (g (© Bcafm a, & ¥ 38 'Xwa'(w I8

2 ap £ o
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a

s Qg (0w S ag Y XBZ(t) S, 3, Y, w89
a a a
3 g

L@, o S B Pm ag fo KT S, 8., Y, T 69
a a a, ay d s ¢ az

“Qy @ vy © BG:(t) aGa"m }’i(t) 3 8., }’wa‘(w 58
2 b [*4

a

) b c d fgh 2 m
LI 0 Q) o *() )’Bb(t) e Sdg S 'Xwa 0 &H
2 m

c 2 f rst 2 m
© € 0 v S ag fw }/Bdm et O, O, X“a () &™)
3 m

+ 1 (L) Vi '(t).

wa a
3
The a gear wheel has reached a spin up condition at the time tSU if
> ot ' * T -
(rA (tSU) + Tpg (tSU)) I (tSU) =0
a a a

For t < tSU the ground force parallel toe the ground plane is in the

direction of the vector

v (£)

a a1 a 81 31

+ (- ;A () TW (t) - ;FA (t) T TW (t)) Tw (t)
a a, a a, a,

(- ra '(t) "1 (t) - oA '(t) T I (t)») I

= - A(t) I, (t) - Bt) Ty (t).

a1 32

Now suppose that La is the simple graph such if t is in [0, t_ )

su’?
-1 B(t)

vV (t) = tan
a ACt)
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at the time t.

Therefore, since the slip ratio at the time t is defined by

(rA (L) + FFA (t)) ° I,

a a a

R_(t) = -
a - -

ry (t) Iw
a a,

and since the ground force vactor may be expressed in terms of its

components in the wheel plane reference system by

= A ) -
FG (t) = FG (t) Iw (t),
a a a
b
it follows that
; ! = - FL [R] F 3 cos[ V.1
G G a G a’’
a a a
Fo2=-fl, [R] F. > sin[V ]
G G G a’
a a a
3 3
FG = FG
a a

For t > tSU the ground force component parallel to Tw (t)
a

1
is derived from the wheel and the tire rolling resistance. The ground force

component parallel to Tw (t) is derived from the tire cornering effect.

a

If each of C and D is a simple graph such that if t > tSU’

Clty =r, "(t) " I (),
a a

and
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D(t) = FA (v) "I, (t)
a a

at the time t, the cornering angle of the a gear tire at a time t may be

approximated by

Ve (t) = tan™ D—(ﬂ.
a C(t)

It follows, therefore, that

1 3
Fo. =~ Mg IFG |,
a a
Y 2 _ . 3
Fe = = - Fe iV s Fg 71
a a a a
5 3 3
Fo ~ = Fg
a a
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APPENDIX F

DERIVATION OF THE ARRESTING HOOK FORCE EQUATIONS

The following derivation of the arresting hook force equations will
accommodate yawed, rolled and drift landings in addition to landings where
the arresting hook engages off the midpoint of the cable. In this
derivation it is assumed that the arresting hook and the cable are massless.
Therefore, the orientation of the arresting hook and the cable may be
completely determined from the dynamics of the airframe and the geometry of
the arresting hook and the cable arresting system. The arresting force from
the cable is assumed to be a function of the cable runout only. It is
further assumed that there is friction between the arresting hook and the
cable interface. The derivation of the equations for the arresting hook
forces accounts for both slipping and not slipping of the arresting hook on

the cable.

Some of the equations involved are nonlinear algebraic and
trigonometric relations for which a closed form solution is not viable. For
these cases an iterative approach is described that may be used to obtain a

solution.

The points on the arresting hook, cable and the ground that need to be

identified 1re described as follows:

H is the point of attachment of the arresting hook to the airframe.

HP is in the arresting hook plane of symmetry and at the center of the cable
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cross section subsequent to cable engagement.

HC is the point on the ground such that the straight line perpendicular to

the ground containing the point HP contains the point HC.

LP is the lateral pivot point in the arresting hook shank.

SL is the point of exit of the cable from the left hand cable sheave.
SR is the point of exit of the cable from the right cable sheave. The

straight line containing SL and SR is assumed to be parallel to the straight

line containing the ground fixed unit vector I, which is defined in the main

2
body of the report.

S is the midpoint between SL and SR.

Q is the ground reference point.

N is the airframe reference point.

The numbers required for the calculation of the arresting force are

defined as follows:

te is the time at which the arresting hook engages the cable.

dBAR is the horizontal travel (parallel to il) of the point HP from time

equal to zero to time equal to tC.
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ROM is the maximum runout of the arresting cable system.

qSH is the initial (i.e. at a time t before contact with the ground or
0
cable engagement) angle between the arresting hook shank and airframe unit

vector i (t).
By

ﬁLC is the friction coefficient between the cable and the arresting hook.

bc is the cable semispan (half of the distance between the points SL and

SR).

The following vector is required to establish the cable geometry:

;S is the vector parallel to i3 from the point S to the ground and Vg is the

minimum distance from the point S to the ground. Therefore,

The following vector functions are required in the derivation of the

arresting hook force equations:

I,, I, and I, are orthogonal unit vector functions such that if t > O,
H1 H2 H3 =

iH (t) and TH (t) are fixed in the plane of the cable with I () =1 ,
1 2 H, 2

iH (t) is normal to the plane of the cable and directed down relative to
3

the pilot and IHI(t) = IHZ(t) X IH3(t) at the time t.

IL is the vector function such that if t > O, IL(C) is the vector from the
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point HP to the point SL at the time t.

1L is the simple graph such that if t > 0, lL(t) is the magnitude

of the vector TL(t) at the time t.

IR is the vector function such that if t > 0, IR(t) is the vector from the

point HP to the point SR at the time t.

1R is the simple graph such that if t > 0, 1R(t) is the magnitude

of the vector TR(t) at the time t.

{0 is the vector function such that if t>o0, RO(t) is the vector parallel

to the unit vector TH (t) from the straight line containing the
1

points SL and SR to the point HP at the time t.

RO is the simple graph such that if t > 0, RO(t) is the magnitude

of the vector ﬁb(t) at the time t.

ﬁH is the vector function such that if t > 0, ﬁH(t) is the vector from the

point S to the point LP at the time t.

{SH is the vector function such that if t > 0,

€ (0 = (o) - Ty () Ty (o).

éfH is the simple graph such that if t > 0,

§H(t) z §H(t) TH1(t) at the time t.
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77H is the vector function such that if t > 0.

T (6) = (Ry(t) ° Ty () Ty (8.

77H is the simple graph such that if t > 0,

77H(t) = 77H(t) THZ(t) at the time t.

r is the vector function such that if t > 0, r(t) is the vector from the
point Q to the jig condition location of the airframe reference point N at

the time t.

d is the simple graph such that if t > 0,

a(t) = r(t) ° i1 at the time t.

s is the simple graph such that if t > O,

s(t) = r(t) °* i2 at the time t.

FH is the vector function such that if t > 0, FH(t) is the vector from the

point Q to the jig condition location of the point H at the time t.

IH is the vector function such that if t > 0, TH(t) is the vector from the

jig condition location of the point N to the jig condition location of the

point H at the time t and each of le; b = 1, 3 is a number such that

lﬂ(t) =1, 1, (¢).
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;HP is the vector function such that if t > 0, FHP(t) is the vector from the

peint Q %o the ooirt HP at the time t.

;H is the vector function such that if t > 0,

vH(t) = (rH(t) ' 13) 13.

v, is the simple graph such that if t > O,

H

VH(t) = vH(t) I3 at the time t.

IHP is the vector function such that if t > 0, THP(t) is the vector, with

magnitude the number 1 from the point LP to the point HP at the time t.

HP’

ILP is the vector function such that if t > 0, ILP(t) is the vector, with

magnitude the number 1 from the jig condition location of the point H to

LP’
the point LP at the time t.

THV is the vector function such that if t > 0, iHv(t) is the vector, with

magnitude the number 1 from the point H to the point HP at the time t.

v’

aHP is the vector function such that if t > 0,

EHP<t) = (FHP(t> I I

1 1°

dHP is the simple graph such that if t 2> 0,

dHP(t) = dHP(t) 11 at the time t.
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;HP is the vector function such that if t > 0,

VHP(t) = (rHP\t) ) 13) 13.

VHP is the simple graph such that if t > 0,

vﬂp(t) = VHP(t) I3 at the time t.

I,, I, and I, are the unit vector functions such that if t > 0,

" TH Hs
i (t) has the direction of - IHP(t), ig (t) is ig (t), and
1 2 2
I, (t) is orthogonal to I, (t) and i, (t) and is directed down
H3 H1 H2

with respect to the pilot at the time t.

FHP and FH are the vector functions and FHP and FH are the simple graphs

such that if t > 0, the force on the point HP from the arresting hook is

FHP(t) = (FHP(t) : 151(t)) iH1(t) = - ?H(t)

= FHP(t) iH1(t) = - FH(t) 1H1(t) at the time t.

FH is the vector function and FH and FH are the simple graphs such that
1 1 1
ift >0, FH is the component of the vector FH such that

1

F.oo(t) = (F, (¢) ° I, (¢t)) I, (t)
H1 H1 H1 H1
= F 1(t) IH1(t) = FH1(RO(t)) IH1(t) at the time t.

Each of FHa; a = 1, 31s the simple graph such that if t > 0,
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Fo(t) = FHa(t) I at the time t.

T is tne vector func.ion sucii that if ¢ » G, TL(L) is the force on the

point HP from the cable segment between the points HP and SL at the time ¢t.

e
-}

is the vector function such that if t > 0, TR(t) is the force on the

point HP from the cable segment between the points HP and SR at the time t.

In addition, the following simple graphs are needed in the arresting

force equations:

kBAR is the simple graph such that if t > O,

kgap(t) = [I (0] = |Tp(6)] at the time t.

45H is the simple graph such that if t is in [0, tC], QBH(t) is the angle

between the arresting hook shank and the unit vector EB (t) at the time t.
3

~

FT is the simple graph such that if x is in [0, ROM], FT(x) is the magnitude

of the arresting force at the cable runout x.

ClL.is the simple graph such that if t > 0, Cl[ft) is the angle measured
clockwise from the straight line that includes the points HP and SL to the

straight line that includes the points SL and S at the time ¢t.

ClR is the simple graph such that if t 2_0, Cln(t) is the angle measured

counterclockwise from the straight line that includes the points HP and SR
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to the straight line that includes the points SR and S at the time t.

€ . is the simple graph such that if ¢ > 0, 2EC(t) is the angle measured

C
counterclockwise from the straight line that includes the points HP and SL

to the straight line that includes the points HP and SR at the time t.

The cable bisector line is the straight line that is in the plane of the
cable and contains the point HP and at the time t, Ec(t) is the angle
measured clockwise from this line to the straight line containing thc points

SL and HP.

QH is the simple graph such that if t > O, GH(t) is the angle measured
clockwise from the cable bisector line to the straight line that includes

the points LP and HP at the time t.

GH is the simple graph such that if t > O, |€H (t)l is the largest number
L L
for the magnitude of the angle GH(t) for which the hook will not slip on

the cable at the time t.
A N
€H is the simple graph such that if t > O, EH(t) has the magnitude
|€H (t)‘ and the sign of €H(t) at the time t.
L
ClC is the simple graph such that if t > O, Clc(t) is the angle, measured
positive from the ground plane, that is formed by the intersection of the

ground plane, the cable plane and plane which is normal to both the ground

and cable planes at the time t.
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If the effects of the airframe deformation are neglected, the
orientation of the hook at the time t 2= 0 may be represented by the diagram

below. 1In this diagram the point N, H and HP are coplanar.

IHV(O)

arresting
hook

(0)

<1\

HP

ground surface ) G

Therefore, it is seen that if

- b -
IH(O) =1 iB (0),

i By

then

- . = . b 10
dp(0) = Fy(0) * T = ac0) + {1° - 5 1 sin(¢Ho)

+ O 1, cosip, N Yy (0.
0 b

If the hook is above the ground for t < tC then the diagram below may

be used to orient the hook.
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arresting

I, (t)

(t)

<\

HP

ground surface HC

From the diagram above it is seen that

FHP(t) = FH(t) + I (0,

and it follows that

- . = b 1b
dp(t) = Fo(e) * T = a(e) + (10 - S Loy sin(q5H0)

+ 553b IHV cos(qSH )) ?X£1(t).
0 b

If the hook is in contact with the ground at a time t < tc then the
angle qu(t) is determined as follows: Suppose that each of a and b is a
simple graph such that if t is in [O, tC], the vector iHV(t) may be
expressed by

iHV(t) = a(t) IB1(t) + b(t) IB3(t) at the time t,
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and if it assumed that the point HP remains a fixed dJdistance above the

ground until the cable is picked up by the arresting hook, that is

vap(t) = vp(te)s

then
V() = T (0) " T = T(e) T I - v () T I = v(e) + 10 })’B;(c).
Thus, it is evident that
v (£) = = a(t) }’Bi’(c) - b(E) )’Bim - vp(te)
and
L] = a? + b()? = a, %
Consequently,
3 3 3
Y (©) . 2 vy(v) Yl @) 2 )’Bl(t> V(£ )
a“(6) a2 + 1] + a(e) | + ]
V> (c) Y en? Y en?
3 3
vp(e) 2 v (e) vyp(te) vap'te)
2 2 2
U= -1, + + ( )71 =0,
Yoo B Y en? PSS
3 3 3
and
= (vg(e) + vt - ae) Y ke
b(t) = ,X 3 S
(t)
%3

Therefore,
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a(t)

tan(@ (£)) = - e

The position of the hook at the time of cable engagement with the hook

(L.e. at time t = tC) is shown below.

arresting
hook

ground surface

At this time the point HP is at the height VHP(tC) above the ground and

also

dyplte) = ryplte) 1

b 1b . 3b /1
= a4ty + - S Ly sin(@,(t.) + S Ly cos(cjbn(cc)) ')Bb(cc).

The number dBAR is defined as

) - d;,(0).

d =d,( up

Bar - %ue'tc

After the cable has made engagement with the hook, it may now pivot




abo.t the lateral pivot point LP. The simple graph éEH may now be

determined from the geometric arrangemeént shown in the diagram below.

ground surface

It is seen that

(1Lp(t) + §H(t) ) 13 = - vH(t) -~ Vg
and
(le(t) + gfﬂ(t)) ' I1 = - (rH(t) ) I1 - dHP(tC)).

Also, it is supposed that

(iBz(t) X lLP(t)) ) éEH(t) = 0.

Thus, with
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|ILP(t)| = lLP,

|§5H(t)| = €EH<t),

and

- . = b 1
4 (t) = F(t) * T = d(t) + 1y ?Yab(t>.

[l ]

(t)

a1(t) IB (t) + b1(t) i (),

LP 1 3

€

az(t) I1(t) + b2(t) 13,

it follows that

3 3
a,(t) :X;1(t) + b (1) ?{BB(t) + by() = = v (t) - v

S,

1 1
a,(t) 'XB1(t) £ b (1) ?/53(@ + a(t)

2 2 2
a1 (t) + b1 (t) = lLP ,

- ’XB;(t) a, (t) a,(t) + XBl(t) b, (t) a(t)

3 3
- ’XB3(t) a1(t) b2(t) + XB1(t) b1(t) b2(t) = 0,

2 2 2
éfH (t) = a,°(t) + b5(t).

The following procedure is used for solution of these equations:
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(F=2)
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(1) Assume a number for b1(t).

(2) Calculate a1(t) from equation (F-3) (it is assumed that a1(t) is
negative).

(3) Calculate bz(t) from equation (F-1).

(4) Calculate a2(t) from equation (F-2).

(5) Calculate a new candidate for b1(t) from equation (F-U4).

(6) Go to step (2) of this process.

This procedure is terminated when the change in b1(t) is within the

required precision.

The simple graph 77 is determined from the equation

H
T)H(t) = (r(e) + T(0) + I () © 1

2’

from which the following expression is derived:
M. = st6) + 1.°6) Yo2e) + a8y Y2 + bty ¥L2e)
H H Bb 1 B1 1 B3 :

The cable geometry at a time t in the plane of the TH (t) and TH (t)
1 2
vectors is shown in the diagram below.
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bisector

be

Therefore, since

- ‘fﬂm,
£

- (be + T (1)),

(1HP(t) + lL(t)) I (t)

(1p(t) + 1p(t)) I (b))

(1HP(t) + 1L(t)) T I, (t)

(1p(t) + 1(t)) S I, ()

1]

(be - ], (D),
it follows that after the indicated vector operations are performed,

lip sin(Q L(t) + Gc(t) - GH(t)) + 1, (t) sin(aL(t)) gﬂ(t), (F-6)

IHP sin(ClL(t) + éc(t) - GH(t)) + lR(t) sin(ClR(t)) §H(t), (F-7)
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1p 08(Q (£) + €.(£) = €,(8)) » 1, (t) oos(@ () = be + ], (%), (F-8)

1gp €08(Q (£) + €.(t) - €,(t)) + 1(t) cos(A (t)) = be = T) (t). (F-9)

From equations (F-6) gnd (F-8) it is seen that

2 (bc + 77H(t)) lL(t) cos(aL(t)) + 2 gn(t) lL(t) Bin(ClL(t))

s (2 - §H2(t) - (e + T ()% - 1580 = o,
and with

x(t) = 2 (be + 7] (£)) 1,(t),

y(t) =2 §H(t) 1, (v,

2(t) = (1% - fﬂz(t) - (be + M 202 - 1 %8N,

it follows that
x(t) cos(ClL(t)) + y(t) sin(CIL(t)) z(t) = 0,
and consequently
OF(t) + y2(6)) win® (A (8)) + 2 y(t) 2(t) sin(@ (¢)) (F-10)
« (22(t) - x2(£) = o.
If equation (F-6) is substituted into equation (F-7) and equation (F-8)
is substituted into equation (F-9) it is found that
1 (t) sin(@ (£)) = 1.(¢) sin(Q@ (¢)) = 0,

lL(t) cos(ClL(t)) + 1R(t) cos(ClR(t)) = 2 ba.
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Thus,

sin(ClL(t))
tan(Q _(t)) = , (F-11)
R %—29— - cos(ClL(t))
L(t)
and
lL(t) sin(ClL(t))
1R(t) = . (F-12)

sin(ClR(t))

Suppose that |€H (t)‘ (the limit hook angle with respect to the cable
L
bisector at the time t) is the largest number for ‘ékﬁt)| for which the

hook will not slip on the cable.
Therefore, if
|€li(t)\ is less than or equal to |€H (t)‘,
L

then the hook will not slip on the cable and consequently

lL(t) - lR(t) = kBAR(t). (F-13)

The numbers lL(t), lR(t), CIL(t) and CIR(t) for this case may be

obtained as follows:

(1) Assume a number for lL(t).
(2) Calculate ClL(t) from equation (F-10).

(3) Calculate CIR(t) from equation (F-11).
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(4) Calculate lR(t) from equation (F-12).
(5) Calculate a new candidate for lL(t) from equation (F-13).

(6) Go to step (2) in this process.

This procedure is terminated when the change in lL(t) is within the

desired precision.

The angle Gc(t) may be determined from the equation

A (&) Qg

- —— (F-14)

o
Ec(t) =5

Further, the angle €H(t) may be found by combining equations (F-7) and

(F-8) above as follows:

Equations (F-6) and (F-8) may be rearranged to determine

§H(c> - 1L(t) sin(C(.L(t))

b4

sin(QL(t) + Gc(t) - GH(t))
lup

and

be + T),(t) - 1 (£) cos(@(t))

cos(ClL(t) + Gc(t) - GH(t))

lHP

Therefore,

sin(GH(t)) z sin(aL(t) + GC(t)) cos(ClL(t) + éc(t) - GH(t))

- cos(@ (t) + €C(t)) sin(ClL(t) + GC(t) - GH(t)),
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cos(EH(t)) = cos(ClL(t) + €.(t) cos(ClL(t) + Ec(t) - GH(t))
+ sin(aL(t) + Ec(t)) sin(ClL(t) + €C(t) - GH(t)),

and

sin( EH(t)

tan( GH(t)) z —
cos{GH(t))

In the event that lEH(t)l as found from the equation above is greater
than the limit angle |€H (t)| then the following definition is needed:
L

A

Suppose that € is a simple graph such that if t > 0,

H

le,, (t)] at the time t.
(o] R

With GH(t) substituted for EH(t), equations (F-6) and (F-8) above may

be combined to derive the following equation for the number 1L(t):
2 g e 2
= () - - -
1L (t) = ( gl lup sin(Cl.L(t) + Gc(t) €H(t))) (F-15)

A
+ (e + T (8) - L cos(@ (1) + €,(t) - €,(t)))7

The simple graph 1, may be determined from the following procedure:

L

(1) Assume a number for lL(t).
(2) Calculate CLL(t) from equation (F-10).
(3) Calculate O.R(t) from equation (F-11).

(4) Calculate lR(t) from equation (F-12).
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(5) Calculate €C(t) from equation (F-14).
(6) Calculate lL(t) from equation (F-15).

(7) Go to step (2) in this process.

This procedure is terminated when the change in lL(t) is within the

desired precision.

The cable tensions and hook forces may be computed from an examination

of the forces on the point HP as shown in the diagram below.

(t)

-
[al)
=]

From this ‘iagram it is found that
FHP(t) + TL(t) + TR(t) = 0,
or

[Fup(t)] cosC €, (e = |Tpced] cos( € (e) + [T ()] cosC€ (t)),

- IFHP(t)l sin( € (b)) = |TR(t)| sin( € (t)) - |TL(t)| sin( €,(t)).
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With FLC the friction coefficient between the hook and the cable the

limiting condition for the hook to slip on the cable is determined from

[T )] = |Tp0)] exp(phy (-2 €,()))

T (0] exp(lh, (@ (8) + Qg(t)))

for the case when GH(t) is greater than zero and from

|TR(t)| ITL(t)l exp(ll, (TT- 2 €,(t)))

1T, ()] exp(fh, (@ () + A (t)))

for the case when GEH(t) is less than zero.

It is supposed that at a time t greater than t ., there is a component

c

of the vector FH defined as F, such that
1

F.(t) =I, (¢)F, (),
H1 H1 H1

and it is further supposed that with

RO(t) = 1R(t) sin(O.R(t)).

there is a prescribed simple graph FH such that
1

~

FH1(RO(t)) = FH1(t)'

From this definition it follows that

F _ = . - .
H1(t) z ITR(t)l 31n(C1R(t)) + |TL(t)‘ sin(@, (£)).
In the case winere the cable is slipping on the hook and éli(t) is
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greater than zero,

F, (t)
5

|7 ()] = .
! (exp(flo (A (£) + A (£))) sin(@ (t) + sin(A (t))

For the case where the cable is slipping on the hook and €H(t) is less

than zero,

F, ()
HT

(exp(fLg (A (1) + AR(+)) sin(@,(t)) + sin(@ (£)))

1T, 0 -

Thus, the magnitude of the axial force in the arresting hook shank is
g (vl == 1oy - IF 2 T 2 T 7 2
lF el —m e s 1T ]2« [T % + 2 |To] 1T ] cosc2 € (1)),

and the number éH (t) is calculated from
L

dr ) - [T 0] sinC€ ()

ain( GH (t)) =

L IF'HP(t)|

In the case where the cable is not slipping on the hook,

F. (t)
H1

sin(Q, (t) + €(t) = €,(t))

IF (0] = Fo(t) =

) Iﬁﬁpml sin( €, (t) + €.(t))
|TL(t)‘ =

sin(2 Ec(t))
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FH1(t) - [1.(0] sta@ (e))

T (t)] =
ITp0] sin(Q (1))

The diagram below shows the relationship at the time t between the unit

vectors iH (t); b = 1, 3 and the unit vectors Tc; c=1, 3.
b

i

(t)

w
(]

From this diagram it is seen that

Iy (8) = cos@c(0) T - sin(@(e)) Iy,
-I- (t) = i,,

H2 2

fH3(t) = sin(ClC(t)) I, + cos(ClC(t)) I3,
where

- bz(t)
tan(ClC(t)) 5 —
a2(t)

This transformation may be written in the form

- b -
I, (v = f 1,
a a
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where

7{H1(t) = cos(ClC(t)),
Y3 = - sin(@ (1)
H1 C '
2
() = 1,
H2
1
}'H (t) = sin(@ (t)),
3
3 -
')’H3(t) = cos(@ (),

and all other ’Xﬂa(t) = 0.
b

The transformaiion from the the unit vectors TH (t); a = 1, 3 to the
a
unit vectors IH (t); b = 1, 3 may be expressed by

b

I, ) =@ () T
Hb Hb Ha

(t).

From the definition of the unit vector function iH it follows that
1

1H1(t) = sin(ClL(t) + éc(t) - GH(t)) TH1(t)

+ cos(@ (t) + €,(t) - GH(t)) TH (t),

2
where
aﬂlm = sin(Q (t) + €. (t) - €,(t)),
(lﬂf(t) = cos(@ (1) + €,(t) - €,(t)),
(153(t) = 0
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Therefore,

- a o} -
i, (0 =@ 7 (t) :fg (¢) I..
b b a

The unit vector function 1 may be determined from the vector

3

equations
i (t) "1, (t) =0, (F-16)
B, Hy
iLP(t) IH (t) =0,

3
or
(a (t) IB (t) + b (t) IB (L)) IH (t), (F-17)

1 2 3

and
I, () ° 1, (t) = 1. (F-18)
i3 H3

After the vector operations in equations (F-16), (F-17) and (F-18) have

been performed, they may be rewritten as follows:
b d c
)’Bz(t) ayl )’Hdm Ore - o,

c c d £
(a,(t) ’XB1(t) + b (1) ’XBZ(t)) @yl ')’Hdm O, = 0.

a b
CIH3(t) GH?)(t) Sab = 1.

These equations may be used to find the direction cosines
a
aH (t); a = 1, 3.

3

From the definition of the vector function FH’

le6l




FH(t) = FH(t) iy (¢) = - F

1 HP

In addition, FH may be determined from

Fo(t) = FHa(t) T,

H

where
1 ,

F (t) = - FHP(t) cos(@ (t)) sm(OL(t) + EC(t) - GH(t)),
2

Fy (t) = - Fpo(t) cos(ClL(t) + Ec(t) - GH(t)),

FH3(t) = Fp(t) sin(@ (1)) sin(Q (£) + €.(£) - € (£).

Since these relations are true for each number t greater than t it

C!
follows that

5]
"

-F p cos[(lC] sin[GL + GC - GH]’

H H
b
FH z - FHP cos;[(lL + GC - EH],
3 _ . .
FH = FHP 31n[CLC] sn’m[CLL + EC - EH].
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APPENDIX G

TRANSFORMATIONS

The orientation of the airframe relative to the ground is shown in the
diagram below. The point Q is the ground reference point and the point N is

the airframe reference point.

e TS e Airframe
T A R T
. - - 4%
/43 Forward 1 N 2 '
5 x\
i, ()
= B
SR, _ 3
~ e DT s ‘r(‘t)
= ST "o ) Ground
— o Plane
Q "2
I {in ground
1 plane)

(in ground
plane)

f3 (perpendicular to ground—iiiiii“’J///

The transformation from the ground based unit vectors (I b =1, 3) to

b’
the airframe fixed unit vectors (IB ; ¢ =1, 3) may be established through

c
the use of the yaw, pitch and roll Euler angles. This may be accomplished

with the aid of the diagram below.
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Ot
- Oty 70 /qS/(\)
.7 t

L

ég(t) airframe

AN \<“//// longitudinal axis

: N (t)
3* [
AN

N

To illustrate how these Euler angles are used in the transformation
from the ground based unit vectors to the airframe fixed unit vectors

suppose that if t > 0, the airframe unit vectors {B (t); b =1, 3 are
b
initially oriented the same as the ground based unit vectors fc; ¢c =1, 3.

Now suppose that the unit vectors IB (t) and I_ (t) are rotated as shown by

1 B2
the "yaw angle" qj(t), with the unit vector IB (t) held fixed. 1In this
3

position it is seen that

EB (t) = cOS(\lJ(t)) f1 + sin(w(t)) TZ’
1

EB (t) = - sin(Lp(t)) f1 + cos(ll"(t)) i2’
2

IBB(t) = 1.
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From the orientation described above now suppose that the airframe unit

vectors IB (t) and IB (t) are rotated as shown by the "pitch angle" 6;(t),

with the u;it vector ;Bz(t) held fixed. 1In this position it is found that
IB1(t) = cos(ég(t)) cos(\b(t)) T1 + cos(f?(t)) sin(liQt)) Tz - sin(é:(t)) T3,
IBZ(t) z - sin(#j(t)) I+ cos(qj(t)) I,

EBB(t) = sin((;(t)) cos(q/(t)) I, sin(é?(t)) sin(qj(t)) I+ cos(ég(t)) T3.

Finally, suppose that the airframe unit vectors EB (t) and EB (t)
2 3

are rotated as shown by the "roll angle" q5(t), with the vector IB (t)

1
held fixed. 1In this position the airframe unit vectors are aligned with the

airframe as defined in the main body of the report and the transformation
from the ground based unit vectors to the airframe unit vectors is found to

be

IB (t) = cos(ég(t)) cos(gj(t)) 31 + cos(é;(t)) sin(\p(t)) TZ
1

- stn(Gen) I
IB (t) = (- cos(gt(t)) sin(\b(t)) + sin((f%t)) sin(é;(t)) COS(qj(t))) 51
2

+ (cos(dg(t)) cos(\b(t)) + sin(qg(t)) sin(é?(t)) sin(\p(t))) T2

+ sin(@(6) cos(Ge) 1,

IB (t) = (sin(ﬁb(t)) sin(yb(t)) + cos(Qb(t)) sin(éJ(t)) cos(\p(t))) T1
3
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+ (- sin(QE(t)) cos(q/(t)) + cos(qg(t)) sin(éQ(t)) sin(q/(t))) 12

+ cosﬂiit)) cos(é&t)‘ 33.

Now suppose that IﬁBh; ¢ =1, 3 1s a simple surface such that

the transformation above may be written in the form

T he /) , -

ch(t) = I-‘Bc[é, ¢1 \l/](t) Ih’ (G-1)
or

- h

Iy (1) - }’Bc(t) i. (G-2)

In the Kinetic Energy Formulation r was defined as the vector function
such that if t > 0, r(t) is the vector from the point Q to the jig condition

location of the point N at the time t. Further, r(t) was defined as
- b -
Fe) = P 1,

It follows then that

=, _ b' - _ b -
Fren) = CPe Io= V20 iBb(t), (G-3)

where VBb(t) was defined as the bth body axis component of the velocity

vector.

From equation (G-3) it is seen that

b = . c,
v, (t) de = (1 1Bd(c)) Lo .
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But, from equation (G-2) it is found that
- . = f
(1, " I, (o = YT O,
d d
Therefore,

vo(t) = )’Bj(t) Bcf &b AUOF

In the Rinetic Energy Formulation the transformation from the
generalized coordinate velocities to the quasi-coordinate velocities was

given as

It follows therefore for a in the interval [1, 3] and b in the interval

{1, 3] that
a d ac
ab' ,)/Bc Sbcl8 *
The transformation from the quasi-coordinate velocities to the

generalized coordinate velocities was given by

a, a b

q = bV.

Therefore, for a in [1, 3], b in [1, 3] and ¢ in [1, 3] it follows that

,8: : %:'
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The C1: terms where a is in [4, 6] and b is in [4, 6] may be determined
as follows: Since the relation in (G-1) is true for each positive number t

then the vector function iB may be differentiated to obtain
c

IBC' = (FB:;Q @' + rB:;¢¢' + FB:;\P l’b') Ih'
But,

I, = ’XBZ th 8“ ip
r

and

-
w

"

ol
w

®

-l
w

bdf -
€ ‘Qaz 8cf Sdg iBb'

Consequently,
°bdeBg 8cf Sdg (G-4)
- (Fa:;@ AREN FB:;¢¢.' . FB:;LP Wy )’BZ ghf S bd.
When the operations in equation (G-4) are performed it is found that
B -qf>' - sin[é)]‘//',

SZBZ COSIQb] 69' + cos[f?] lin[qﬁ] 4/',
B - Sin[Cb] (9' + cos[é‘] cos[¢] ‘JJ'.

Q

e~
«

(U]
1}

les




It is evident then from the definition of Clg, as given in the main

body of the report, that the following terms may be derived:

4
Clﬁ:o (lg= 1 O.6=-sin[Q].
Cli = cos[(’)]. Clg =0 Clg = cos[Q] sin[¢].
Clg z - sin[(b]. (16 =0 Clg = cos[@] cos[(P}.

Further, for a in [4, 6], b in [4,6] and ¢ in [4, 6],62 is defined by

s - 8¢

e’

Therefore, the following relations are determined:

B. B = costpr. Be

i
(=]

- sin[¢].

u
—
.

B2 B3 = tantB1 stnipl. B2 - tant B cosipl.

i
(@]
1]
n

816; . ,Bg sin[¢]/cos[9]. /82 cos[¢]/cos[9].
In many cases it is desirable to have a reference system that is fixed
relative to the airframe but rotated to be aligned with a gear component

such as a shock strut. Such a reference system can be defined through the

use of the Euler angles 770 and QG defined in the main body of the report
a a
and illustrated in the diagram below.
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7
- 7 Mg
lG (t) / a a
a, 77 ) iB (t)
2
G / Ga IG (t)
a
- 2
i (t) Bl ~
B1 / \\'\_\
/ =~ \(
/ gG\ -
'y a =
i, (t)/
a3 _
/ ViB (t)
3

To establish the required transformation suppose that the at a time t

the a gear unit vectors IG (t); ¢ = 1, 3 are aligned with the airframe
a

[¢]

fixed unit vectors IB (t); b =1, 3. Now suppose that the a gear fixed unit

b

vectors 1 (t) are rotated as shown below through the pitch

G (t) and i,

a1 a3
Euler angle 77G , with I (t) held fixed.
a

2

G
a

this position it is seen that

e
—~
cr
~
n

IB (t),

i, cos(77G ) IB (t) - sin(77G )
a 1 a 3

I, (¢) =1
Ga B2

(),

(ot
~~
ct
~—

n

) iy (B).

sin(7). ) i; (t) + cos(7]
Ga B1 G‘ 3
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From this orientation now suppose that the a gear unit vectors i

G (t)
a

2
and IG (t) are rotated to their final position as shown in the diagram
a

3

below through the roll Euler angle QG , with 1
a

G (t) held fixed.
a

1

In this alignment it is found that

[
—~
<t
~—
1]

cos(7), ) Iy - sin(7), ) I (),
a 1 a 3

g
—~
T
~—
]

= sin(T]G ) sin(QG ) IB (t) + cos(‘);;G ) IB (t)
a a 1 a 2

+ cos(7). ) sin(gG ) I (B,
a a 3

iG () = sin(T]Ga) cos(éG ) ig (t) - sin(gG ) i-B (t)

a a 1 a 2
3

+ cos("]G ) cc:s(z;G ) 1 (v),
a a 3
which may be written in the form

- b -
I, () = )/G I (t). (G-5)
ac ac b

The EG (t); ¢ = 1, 3 unit vectors are illustrated in the diagram

a
C

below for the case where it is desired to have the shock strut piston

centerline aligned a time t with the vector IG (t).
a

3
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[l
~
ct
'

(o]

(t)

Ta

shock strut

/L‘,———”’ piston centerline
Y4

/
A

a

For gears with a castoring degree of freedom it is convenient to have a

set of unit vectors fixed in the gear. These unit vectors,

3G (t); b = 1, 3 are shown relative to the iG (t); b = 1, 3 unit vectors
a a
b b

in the diagram below.

. i, &)
i (%) a
%, 2 G,
a
‘jGa(t)[ JGa (t)
2
1, () — {
a1 \\

172




It is seen that

I, () =cos(Pg () I, () - sin(@y 1) I, @,
a a a a a
1 1 2
I, (0 =sin(@ () I, () +cos(@, ) I, (o),
32 a al a 32
iGa (t) =3, (b)),
3 %3

which may be expressed as

- A b -
iG (t) = CIG (t) ig (t). (G-6)

a a a
c c b

Now suppose that if t > 0, ¢ is in [1, 3] and d is in [1, 3] that

. , c
there is a transformation )\G (t) such that

44

(t) = >\G C(t) IG (t) at the time t.

a

JGa a
d d c

It is evident that

ry e T [ A b
o © T ©=A %0 0, =A% O,
ad ag ad ag

Thus,

a

c A~ f cg
Ag So) = g Hw) Sy OE.
d g

Therefore, it is found that

- A -
Jo, (= Qg O, O 1, (. (6-7)

ad g ac
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Equations (G-5) and (G-7) may be combined to obtain the transforma‘ion

- A e b (N cg =
o (0 =0 ¥ P O, 0% 1, (v.
ad ag ac b

Thus, if

b _A e b cg

a, % =a; Y, " o, &%,

a a a
d g o]

then

b -
(t) =CLG (t) i (t). (G-8)

ad ad b

e
Equation (G-8) may be rewritten in an expanded form as

g (t)

a 1

:
s sin(@, (£) cos(éG ) I (v

a a 2

-jG (t) = (cos(@ca(t)) cos(T)Ga) + sin(@Ga(t)) sin(T)Ga) sin(gca)) i

+ (- cos(@G (t)) sin(??G ) + sin(@G (t)) cos(T)G ) sin(gG ) EB (t),
a a a a a

3

Jg (0) = (- sin<@G () cos(??Ga) N cos(QGa(t)) sin(T)Ga) sin<§Ga>> I, ()

a2 a 1

v cos(@, (40 cos (L) 1, (1)
a a 2

g (t),

+ (sin(@G (t)) sin.(??G ) + cos(@G (t)) cos(‘}')G ) sin(gG ) 1
a a a a a 3

3G (t) = sin(T)G ) cos(gG ) IB (t) - sin(gG N iB (t)
a3 a a 1 a 2

+ cos(T)G ) <:oss(§G ) EB ().
a a 3

The a gear wheel fixed unit vectors are oriented as shown in the
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diagram below

~ axle
centerline

At a time t the vector EG {(t) is aligned with the axle centerline
a
2

and is expressed in terms of the a gear fixed unit vectors

30 {(t); b = 1, 3 by the relation

’ [ b 3
ko, (L) = t}G (L) 35 (¢, (G-9)
22 22 %p
where theyégc (t); b = 1, 3 are direction cosines determined from the
a
2

rotation of the axle that is due to stroking of the a gear shock strut. The

general relationship between these two sets of unit vectors is

- b -
kg () = 13 (t) 3. (t),
a G G
c a a
c b

where the unit vectors k. (t) and k. (t) are orthogonal to each other and
2
a,

! aj
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to EG (t), but otherwise arbitrary. For the case where the a gear

a

castors, it is usual for EG

(t) to be orthogonal to 3G (t).
a a

2 3
The wheel-ground reference system unit vector functions

Iw ; b = 1, 3 are defined in Appendix E in terms of the vector functions

At a time t the transformations ?(Hb(t) and Cch(t), which are defined
c d

in Appendix F, are used to relate the unit vectors I b=1, 3,

b;
IH (t); ¢ =1, 3and I, (t); d = 1, 3 through the relations

c d

- b -
It = Y0 1,

(o] [¢]
Ity =@ty T, (v,
Hd Hd HC
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