
AD-A240 022

lID: An Intelligent Information
Dictionary for Managing
Semantic Metadata

Stephanie Cammarata, Darrell Shane, Prasad Ram

DTIC
ELECTE
SERo 199tJl

abt~ue Uniftd

91-09340
_______________________lit 111111l illlllllll H , $: '; '



The research described in this report was sponsored bv the )efense Advanced
Research Projects Agency. The research was conucted in RAND's National
Defense Research Institute, a federally funded research and development
center supported by the Office of the Secretary of Defense and the Joint Staff,
Contract No. MDA903-90-C-0004.

Library of Congress Cataloging in Publication Data

Cammarata, Stephanic.
lID : an intelligent information dictionary for managing semantic

metadata / Stephanie Cammarata, Darrell Shane, Prasad Ram.
p. cm.

"Prepared for the Defense Advanced Research Projects Agency."
ISBN 0-8330-1125-1
1. Data base management. 2. Relational data bases. 3. liD

(Computer filt) 4. fluman-computer interaction. 1. Shane, Darrell,
1961- . 11. Ram, Prasad. Ill. United States. Defense Advanced
Research Projects Agency. IV. Title.
0A76.9.D3C364 1991
005.75'65---dc2O 91-9480

CIP

The RAND Publication Series: The Report is the principal publication doc-
umenting and transmitting RAND's major research findings and final research
results. The RAND Note reports other outputs of sponsored research for
general distribution. Publications of RAND do not necessarily reflect the opin-
ions or policies of the sponsors of RAND research.

Published 1991 by RAND
1700 Main Street, 1"-' "A 21..., -. 1L0 Monica, CA 94tt)-21: S



R-3856-DARPA

lID: An Intelligent Information
Dictionary for Managing
Semantic Metadata

Stephanie Cammarata, Darrell Shane, Prasad Ram

Prepared for the
Defense Advanced Research Projects Agency

RAND
Approved for public release; distribution unlimited



PREFACE

This research was sponsored by the Defense Advanced Research Projects Agency under
the auspices of RAND's National Defense Research Institute, a federally funded research and
development center sponsored by the Office of the Secretary of Defense and the Joint Staff.
RAND has been investigating the use of semantic data models in object-oriented and
knowledge-based simulation under these sponsorships and within RAND's Information Pro-
cessing Systems Program as part of the Intelligent Databases Project. The research described
in this report is one aspect of intelligent databases addressing the derivation of simulation-
specific databases from external database.

This report serves two purposes. First, it discusses the "data flow" gap between (1) exter-
nal databases acquired from public agencies and (2) datasets derived from these databases to be
used as input to specific simulation models. This gap refers to the lack of interoperability
between external databases and simulation databases and to the transformations that are
necessary to derive compatible datasets. The second goal of this report is to present the com-
puter software system developed to bridge this data flow gap. The report should be of interest
to database administrators, simulation developers, and researchers in database management
and information processing technology.

Aecession For

NTTS GRA&I
DITC TABs
U L: IIunII, ¢ d

I I. . ,: 
d '," -



SUMMARY

This report describes a research project whose objective is to improve the interaction
between a database user and a relational Database Management System (DBMS). With the
advent of workstation environments, interactive computing, and public domain databases, the
use of DBMSs is no longer limited to database administrators, operations managers, and appli-
cation programmers. Personnel in many facets of diverse workplaces are experimenting with
DBMSs for organizing, maintaining, and sharing data. Unfortunately, current DBMS tools
and languages do not have facilities to tid these tiontechnical users in understanding and
accessing the information they need. One of our research goals was to enable the acquisition of
domain-specific information from an application expert and incorporate it within the DBMS
environment. Another goal was to represent knowledge about relational database operations,
such as join operations, to support automated query construction. By augmenting an existing
relational database with domain-specific semantics and knowledge of relational database opera-
tions, casual DBMS users can manipulate a database without the need for a DBMS specialist
or domain expert.

This project was motivated by deficiencies associated with the interactive creation of
simulation-specific databases from large monolithic databases in the domain of military simula-
tion and modeling. By observing modelers interacting with relational databases, we have iden-
tified four distinct phases of database use that simulation builders and analysts engage in.
Each phase reflects a category of functionality that should be provided by a database and
modeling environment. The first phase addresses the scrubbing or cleaning of external data-
bases represented as flat files. The second phase deals with the derivation and preparation of
simulation databases from external databases. The third phase requires a dynamic communi-
cation link among the external flat files, the corrected external databases, and the derived
simulation databases for maintaining consistency. The fourth phase integrates simulation data-
bases with simulation programs. In practice, these activities are not identified explicitly or
conducted methodically. Rather, modelers derive the datasets they need in an ad hoc fashion.
One of our goals is to make these activities more systematic by developing computational tools
and aids to assist modelers in each of these phases.

We have focused on developing a methodology for automating two of the four database
phases: scrubbing of external flat files and derivation of simulation databases. During our
requirements analysis, we recognized three distinct cognitive activities that contribute to the
scrubbing and derivation phases performed manually by simulation builders: mental modeling,
conceptual retrieval, and semantic validation. Three categories of capabilities supporting these
activities are explanation and browsing, automated data manipulation, and interactive con-
sistency checking. Each capability requires domain-specific metadata, rarely provided in practi-
cal DBMS settings.

We have developed the Intelligent Information Dictionary (IID) software system, which
serves as a semantic-based interface between a database user and a relational database
management system. IID extends the traditional roles of a data dictionary by enabling a user
to view, manipulate, and verify semantic aspects of relational data. IID operates as a domain-
independent kernel augmented with domain-specific knowledge bases. IID represents and
maintains these knowledge bases as semantic metadata necessary for correcting external data-
bases and deriving required abstractions and aggregations from these databases. Explanation



Vi

and browsing, automated data manipulation, and consistency checking are the main capabili-
ties supported by liD's interactive environment. These capabilities are supplied by both pas-
sive and active information management facilities. The passive facilities, which are user
initiated through a menu-based interface, enable explanation and browsing by making 'Ise of
an object-oriented repository for semantic metadata. IID's active facilities are initiated trans-
parently by the system during normal data retrieval. Facilities for automated data manipula-
tion and interactive consistency checking tall into the category of IID's active capabilities.

IID facilities, augmented with domain and database knuwledge, streamline the interactive
preparation of simulation databases by (1) partially automating the scrubbing activities, (2)
eliminating duplication of effort by individual users who manually scrub derived datasets, and
(3) establishing value consistency for all users of the databases. We also expect other benefits,
such as improved shareability and reusability of derived datasets.

The facilities offered by lID are intelligent because they aid a modeler in data manipula-
tion tasks by (1) providing domain knowledge for presenting an intelligible self-desc-ilin- view
of the data, (2) partially automating data manipulation, and (3) detecting invalid and incon
sistent data. By combining a DBMS environment with semantic metadata, we have attempted
to produce a complete information management system supporting the use of external data-
bas-, in application software.

One critical activity that we conducted during 1ID testing was using IID for a "real-world"
application and dat base. At RAND, one of the most heavily used databases for simulation
and modeling applications is the Air Order of Battle (AOB) database. Three characteristics of
the AOB database make it a particularly good test case for IID ?xperimentation. First, no sup-
plemental source of information exists explaining how AOB entities are related. Second, many
abstractions and generalizations exist implicitly within the AOB data. And finally, the major-
ity of data in the AOB comprises encoded abbreviations and acronyms. We found that the
most valuable capability in the AOB domain was IID's verbose mode. Because most of the
AOB data are symbolically encoded, interpreting the value of fields in a relational tuple is
impossible without looking up the acronym meanings. With verbose mode enabled, all codes
are expanded during retrieval.

When using IID for representing AOB semantic metadata, we gained valuable insights
into the benefits of developing and using an information dictionary system such as IID. One
early realization we made was the need for a conceptual model of the databases being
represented. We also learned that user acceptance of computer systems is heavily affected by
the interactive user interface. Ideally, an interface that was more graphical would serve a
better role in lID than one that was more textual. Finally, we discovered that building and
integrating an information dictionary is a long-term process. Initially, the costs of conceptual
modeling and knowledge base development will exceed the costs of former manual efforts for
scrubbing and derivation. However, in the long run, the benefits become obvious. For exam-
ple, with lID-like capabilities, the scrubbing and validation processes are performed only once
and they are facilitated b,: an interactive computer system. This compares favorably with indi-
vidual manual validation applied time and again by each database user. Another clear lID
benefit is the consistency of the validation process. If two different simulation projects vali-
dated the same dataset using IID, the error reports would be identical. Users cannut be
assured of such consistency without facilities similar to those supported by IID.

lID is an evolving system. It can be extended along many different dimensions including
system enhancements, user customizations, and domain specializations. One decision we made
early in the design of IID was to develop our own object-oriented repository for maintaining



vii

and reasoning about semantic metadata. However, in a next-generation IID, we envision a
semantic data management system as an underlying IID framework. One major IID extension,
which is orthogonal to the lID framework, concerns the generation of "objects" from relations
and associated metadata. lID was designed to augment the semantics of a relational database;
however, our long-term objective is the use of IID as an active information dictionary within
an object-oriented simulation language. In this role it will provide a dynamic communication
channel between an object-oriented semantic schema and the corresponding relational
instances of many diverse external databases.



CONTENTS

PREFACE........................................................1ii

SUMMARY v......................................................v

FIG U R E S ... ..... ....... .... ..... .. ... ... .. .... ......... ....... . xi

Section
L INTRODUCTION ............................................. 1

2. BACKGROUND 3..............................................3
2.1. The Problem We Are Addressing ............................... 3
2.2. Necessary Functionality . ................................... 4

3. MOTIVATION AND RATIONALE .................................. 7
3.1. Mental Modeling .......................................... 7
3.2. Conceptual Retrieval . ..................................... 8
3.3. Semantic Validation ........................................ 9

4. INTELLIGENT INFORMATION DICTIONARY ....................... 10
4.1. Explanation and Browsing .................................. 11

4.1.1. 1ID Metadata ........... .......................... 11
4.1.2. Verbose Mode in IID .................................. 25

4.2. Automated Data Manipulation ............................... 25
4.2.1. Intelligent Join Processing . ............................. 27
4.2.2. Metadata Network Facilitating IJ ........................ 29
4.2.3. Limitations of IJ . .................................... 33

4.3. Interactive Consistency Checking ............................. 34
4.3.1. Value Checking . ..................................... 35
4.3.2. Referential Integrity Checking .......................... 37

4.3.2.1. Unique tuples . ................................ 39
4.3.2.2. Non-null keys . ................................ 40
4.3.2.3. Unique keys .................................. 41
4.3.2.4. Inclusion dependencies .......................... 42

5. 1ID ARCHITECTURE ........................................... 43
5.1. 1ID Kernel . ............................................ 44

5.1.1. L ingres . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 44
5.1.2. Lquel . ........................................... 45

5.2. 1ID Knowledge Bazcs. ..................................... 45
5.3. lID Relationship to Simulation Environment ..................... 48

6. RELATED RESEARCH . ........................................ 49
6.1. Metadata Management ..................................... 49
6.2. Integrating Expert Systems with DBMSs ....................... 49
6.3. Automated Query Composition ............................... 50
6.4. Integrity Checking ........................................ 51

ix



x

7. CONCLUSIONS...................... ......................... 521
7.1. Applications.............................................. 52

7.1.1. AOB Knowledge Acquisition............................. 53
7.1.2. Benefits of IID-AOB Facilities............................ 53

7.2. Scope of the IDI Prototype................................... 53
7.3. Lessons Learned.......................................... 54
7.4. Future Directions........ ................................. 55

REFERENCES...................................................... 57



FIGURES

1. Data flow gap between databases and application programs .. .. .. .. .. .. .. .. .... 4
2. Four phases integrating database and modeling environments .. .. .. .. .. .. .. .. ... 5
3. "woRTn') database with anomalies. .. .. .. .. .. .. .. .. .. .. ... .. .. ... .. .. .. 12
4. 11D user interface. .. .. .. .. .. .. .. .. .. .. ... .. .. ... .. .. ... .. ...... 13

7. Describe column: -AVGLIFE ... .. .. .. . . ... . .. .. . .. ... . . ... . . ... . .. ..... 17
8. Describe column: "~COUNTRY ...................................................... 19

12. Quel retrieve command. .. .. .. .. .. .. .. .. .. ... .. .. ... .. .. ... .. .. ..... 26
13. 11D retrieve command using verbose mode .. .. .. .. .. .. ... .. .. ... .. .. ..... 26
14. Join clauses, for joining "COUNTRY" and "VEGETATION ... .. .. ... ..... ..... .... 29
15. 111D metadata network for "'.WOR!.D- database .. .. .. .. .. .. .. .. .. ... .. .. ..... 31
16. Metadata network with potential for Join ambi, uity .. .. .. .. .. .. .. ... .. .. ... 33
17. Value checking during retrieval trorn "VEGETATION" relation .. .. .. .. .. ... .. 36
18. Value checking during retrieval from "EcoNOMY" relation. .. .. .. .. .. .. ... ... 37
19. Checking for duplicate tuples .. .. .. .. .. .. .. .. .. .. ... .. .. ... .. .. ... .... 39
20. Checking for null keys. .. .. .. .. .. .. .. ... .. .. ... .. .. ... .. .. ... .. . .. !)
21. Validating uniqueness of keys .. .. .. .. .. .. .. ... .. .. .. ... .. .. ... .. .. .. 41
22. Verifying inclusion dependencies. .. .. .. ... .. .. ... .. .. ... .. .. ... .. ... 42
23. 11D architecture . .. .. .. .. .. .. .. .. .. .. ... .. .. ... .. .. ... .. .. ... .... 43
24. Lquel hierarchy of 'instances. .. .. .. .. .. .. .. ... .. .. ... .. .. ... ... ..... 46
25. 11D knowledge base declarations .. .. .. .. .. .. .. .. .. .. .. ... .. .. ... .. .. .. 47
26. 11D within a simulation environment .. .. .. .. .. .. .. ... .. .. ... .. .. ... ... 48
27. Profile of AOB database relations. .. .. .. .. .. .. ... .. .. ... .. .. ... .. .. .. 54

xi



1. INTRODUCTION

With the advent of workstation environments, interactive computing, and public domain
databases, the use of Database lanagement Systems (DBMSs) is no longer limited to database
administrators (DBAs), operations managers, and application programmers. Personnel in
many facets of diverse workplaces are experimenting with DBMSs for organizing, maintaining,
and sharing data (McCarthy, 1982). Unfortunately, current DBMS tools and languages do not
have facilities to aid these nontechnical users in understanding and accessing the information
they need (Curtice, 1981).

Interactive use of a DBMS requires a user to have knowledge of the application semantics
represented in the database in order to express and compose queries reflecting desired transfor-
mations and abstractions. These semantics play a major role in data manipulation operations
performed by users; however, most often DBMS query languages cannot easil, or directlv
express these transformations and abstractions. The major purpose of a database and
corresponding management system is to model an enterprise (real-world or hypothetical;
therefore, the database should include all constraints, relationships, and specifications that are
necessary to accurately capture that model. Furthermore, to manipulate the data in a manner
consistent with the intended model requires the availability of this semantic "inetadata." For
example, when a numeric value represents the length of a runway, it is important to know if
the value represents miles, kilometers, or feet. Similarly, if aircraft equipment should not
exceed a certain weight, it is imperative that users of these data know the exact weight limit
being modeled. Finally, if the relationship between an aircraft mission and an aircraft type is
dependent on the aircraft equipment, then a representation of that relationship should be
explicit in the database. These are all examples of serantic metadata needed bv potential
database users who are not trained in the application field and are not DBMS experts. A
recent National Science Foundation study has identified the management of metadata as one
of the primary issues in scientific database management (French, Jones, and Pfaltz, 1990). In
current DBMSs, there is no repository for semantic metadata and no user support for access-
ing and updating the desired data in a fashion consistent with these semantics. Although com-
mon attributes among tables are based on underlying semantic interconnections among rela-
tions, the relational model and its various implementations place no rpstrictions on the naming
of attributes. Experienced users may establish their own conventions for relation and attribute
names but no relational DBMS represents or enforces such conventions. Therefore, without
an explicit conceptual model to express schema and metadata semantics, it is difficult for users
to access and validate the information they ieed (Blum et al., 1997). In particular, such tasks
as database browsing, ad hoc query formulation, and real-time consistency checking are bewil-
dering for an interactive user. Developing a conceptual model during database design is one
means of expressing this information. However, commitment to such a formal effort is infre-
quent and the resulting model is usually a paper documentation aid, unavailable to interactive
users. Our approach recommends generating an information dictonarsv to capture previously
implicit semantics of an existing relational schema and database.

In this report we discuss an Intelligent Information Dictionary (111)) system, which we
developed as a semantic-based interface between an interactive user and a relational DBMS.
II) aids a user in understanding the organization of a relational database by providing
application-specific explanations of domains, attributes, relations, and constraints. 1i1) was



developed to combine knowledge of the application, usually cimtrioted b a domain specialist,

with knowledge of relational database co ncepts, such as relations, attributes, ard constrai at s.
The resulting system provides computational tools fo tr aiding an uninformed or casual user to

interact with a relational )BMS. Three categories of' database activities are probleinatic for
such users: (II browsing through a database to) acquire a lgh-lievel understanding of its (on-

tents; (2) accessing and manipulating relational data to retrieve the in formation desired and
Cli verifying that additions, deletions, andi modificat ions to the database do not affect its ctm-
sistency and integrity. This report discusses tiir analysis of these interactive l)BMS activities

and the development of lID to stpport such activities (Cam noarata, 1988: (Camniarat a.

hamachandra, and Shane, 1989).
Development of' II) grew out of a larger project that addresses the use of' large betero-

gen -us database,; in object-oriented simulation systems. We recognize that current data
manipulation procedures stem fron attempts to view flat relational databases as object-
oriented hierarchies of simulation entities. Because different uses of the data require different
perspectives, database adrntiistrauors cannot generate database views sufficient tor all p)otential

users. Instead, IID allows a u.sr to build customized views not capt ured in the logical schema
of a relational model. IID 1strives to present the mapping between relations and domain enti-
ies more explicitly than current systems do and to provide automated tools to hell) uisers

manipulate those mappings.

In the past, data dictionaries or Information Resource Dictionary Systems IRD) have
served as an interface between the DBMS and application programs that access the data. This

close coupling of data dictionaries, DBMSs, and application programs excludes facilities for
interactive access by a casual user (Allen, Loomis, and Manning, 1982). IID differs from tradi-
tional data dictionaries and IRDS by enabling an interactive user to view, manipulate, and ver-

ifv semantic aspects of data not expressed in a relational database.
In the next section we present one scenario that motivated this research within the

domain of military simulation and modeling. Section 3 describes three categories of database-
related activities performed by a simulation developer when preparing databases as input to
simulation models. Section 4 discusses II) capabilities supporting these interactive database

"preparation" activities and presents examples of their use. The IID architecture is outlined in
Sec. 5. and Sec. 6 discusses relatt- research. We conclude with limitations and directions for

future work.



2. BACKGROUND

We have focused our efforts on the needs of researchers conducting policy analysis on
national security issues. Their work depends on the heavy use of military modeling and simu-
le'ion, such as battle management and command-and-control studies. It is imperative that
their models u.e large quantities of real-world data that are valid and consistent. Therefore,
their studies use many classified and unclassified databases that are distributed by government
agencies and other external sources such as the DIA (Defense Intelligence Agency) and the
DMA (Defense Mapping Agency). As part of our research, we observed and analyzed the use
of these "external" databases as input to specific simulation models.

2.1. THE PROBLEM WE ARE ADDRESSING

When simulation developers attempt to use these databases, they face some major obsta-
cles. Most of the external databases are acquired from federal agencies that distribute data to
a wide variety of clients and customers. When the databases arrive at a client's site, they are
generally organized as record-oriented flat files that are subsequently "relationalized" and
loaded into a DBMS. In most cases, established database design or modeling principles are not
applied and the resulting relational schema is not developed with the assistance of domain
experts. The organization of relations is not necessarily consistent, and many data values are
missing or erroneous. Semantic integrity constraints that should apply to the external data-
bases are rarely expressed in the relational schema organization or reflected in the data
instances. No configuration management is enforced for these databases; therefore, modelers
cannot determine which data items are updated by new versions of external databases. Fur-
thermore, little or no documentation is provided for these databases.

In our laboratories at RAND, thesp external databases are maintained in the Ingres rela-
tional DBMS. In theory, the datasets used as input to the simulition models are derived from
these Ingres databases. However, upon closer examination of database use, we discovered that
the relationship between the Ingres databases and their simulation-specific counterparts is not
at all obvious. Rarely are systematic procedures used for producing simulation-specific
datasets. Furthermore, the ad hoc manipulations are not recorded for subsequent reference
and use. Therefore, it is difficult, if not impossible, to trace and track derived simulation data
eh ments that originated in external databases. Figure 1 exhibits the gap between external
databases (on the left) and application programs using these data (on the right). Most of the
external databases contain more data than are necessary for a particular study; therefore, a
simulation builder commonly extracts a subset of the Ingres databases for use as input to a
specific simulation model. Furthermore, modelers and analysts require data that are tailored to
their own specific simulation needs. Their requirements usually entail a combination of
transformations to the Ingres databases to derive a database with the desired profile.

Few interactive tools aid the use of external databases in simulation systems. Bridging
the gap shown in Fig. 1 requires the services of three types of individuals: an application
expert, a database specialist, and an application programmer. The application expert uses his
or her domain expertise to decide how data records should be integrated and abstracted and to
make necessar corrections and additions to erroneous data; the database specialist provides

:3



4

Discrete
event

simulation

Analytical
modeling

System
analysis

Process
control

External
databases Stand-alone

application
programs

Fig. 1-Data flow gap between databases and application programs

knowledge about database operations to achieve the desired view; and an application program-
mer is needed to write programs embedding iterative and recursive queries, which query
languages cannot support. The goal of IID is to streamline this activity. IID begins to narrow
the gap between external databases and simulation models during simulation development and
testing.

2.2. NECESSARY FUNCTIONALITY

By observing modelers interacting with relational databases, we have identified four dis-
tinct phases of database use in which simulation builders and analysts engage. Each of these
phases, depicted in Fig. 2, reflects a category of functionality that should be provided by a
database and modeling environment. In practice, these phases are not identified explicitly or
conducted methodically. Rather, modelers derive the datasets they need in an ad hoc fashion.
One of our goals is to make these activities more systematic by developing computational tools
and aids to assist modelers in each of these phases.

The first phase (labeled 1 in Fig. 2) addresses the scrubbing or cleaning of external data-
bases represented as flat files. Data values in these flat files are often erroneous or omitted
because data collection agencies and facilities are distributed throughout the world and little
consistency checking is performed among overlapping datasets. Techniques and facilities for



c CD

E3 C u-

0 0)
cu . C

if -c

a0

W Cu v

75 -0

0 ECc

C

CUu

0. cu

;cuu
C r CM 0)~ E

0 C0 ro

0) E c

Z5Cu

0u -70 D E

ca OETcu

a)Q) a

2 (T u,
o 0 10 V

O4) <~ ccu

a.C

cau x CU

w ;-



6

correcting the data would be primarily used by database administrators while populating the
DBMS. Currently, no such activity is performed on a global database level; therefore, individ-
ual database users must verify and scrub their own private datasets. Clearly, local scrubbing of
individual datasets results in much duplicated effort.

The second phase (see 2 in Fig. 2) deals with the derivation and preparation of simulation
databases from external databases. This process requires a user to have a clear understanding
of the contents and semantics of the database. In most cases, simple selection of database
tuples is not sufficient. Rather, derivation entails integration and aggregation of database ele-
ments. Establishing semantic consistency within the derived simulation database is also neces-
sary during the preparation phase.

The third phase of database use (identified as 3 in Fig. 2) requires a dynamic communica-

tion link among the external flat files, the corrected external databases, and the derived simu-
lation databases for maintaining consistency. Data updates in new versions of the external flat
files must be reflected in both the external databases and derived simulation databases; like-
wise, it may be desirable to store new simulation data acquired for a particular model (not
represented in the original databases) back into the external databases.

The fourth phase (labeled 4 in Fig. 2) integrates simulation databases with simulation
programs. This functionality allows simulation processing to transparently access and modify
data and knowledge bases and to record output data for future analysis. In older simulation
models, derived databases were "hard-coded" into the simulation implementation. This tight-
coupling of code and data makes it difficult to distinguish simulation processing from input
data, thereby hampering sensitivity analysis and data reusability.

IID has been developed to specifically address phases 1 and 2: scrubbing and derivation.
The third phase, maintaining consistency between external and local internal databases, relates
to version management, which we will be pursuing in the future. We are researching the
fourth phase, integrating simulation languages with databases, as a separate project focused on
persistent object systems (Burdorf and Cammarata, 1990). In the remainder of this report we
will present IID and its capabilities as a means toward supporting the scrubbing of external
databases and the derivation of simulation databases.



3. MOTIVATION AND RATIONALE

In this section we describe the processes, operations, and data manipulations we have
observed during the scrubbing and derivation of simulation databases. Our goal was to capture
the essence of those processes and to develop a methodology to help automate them.
Throughout our observat. - of interactive database use, we found that the source of many of
the problems we identified was the lack of well-defined schema, metadata, and database design.
Concerns for update anomalies and consistency maintenance, addressed in theoretical discus-
sions of relational database management, are rarely addressed in the practical data manage-
ment activities of many organizations. Often, a database administrator simply "relationalizes"
a flat file into an intuitive set of tables. The resulting first-normal-form database implicitly
relates tables through common attributes among the relations.

In spite of these observations, one major premise underlying our analysis and recommen-

dations required that we retain the design and organization of the original relational databases.
We did not want to recommend that a complete database design effort and database generation
phase be undertaken. This constraint is a restriction that we imposed to address the pragmatic

limitations and costs of a database design effort faced by most computer and DBMS installa-
tions. Instead, any new tools or environments supporting simulation databases should aug-
ment or extend current DBMS capabilities and databases.

IID research has focused on a methodology for helping to automate the scrubbing of

external flat files and the preparation of simulation databases. During our analysis of this
problem, we recognized three distinct cognitive processes that contribute to the scrubbing and

derivation phase performed manually by simulation builders: mental modeling, conceptual
retrieval, and semantic validation. The IID capabilities we have developed address each of
these three cognitive activities. Below, we discuss (1) how a user currently performs each pro-
cess and (2) the limitations of interactive DBMS facilities toward supporting each cognitive
activity. Our objective was to remedy these deficiencies by providing an interactive environ-
ment enabling more automated database preparation and scrubbing.

3.1. MENTAL MODELING

Query languages allow flexibility in searching and selecting records based on syntactic
pattern matching and efficient indexing techniques; however, they do not provide an overview

or general presentation of the data. If a potential user is familiar with a database and is an
experienced DBMS user, then it is much easier to browse through a database in search of
specific concepts and entities. However, for the casual user, few tools or interactive environ-
ments support this modeling and synthesis process.

When users are confronted with the task of browsing through a database, they tend to

preview the data in a fashion that helps them mentally abstract major concepts and relation-
ships. The first phase of this process is usually scanning the relational tables and attribute
names to arrive at a central organizing theme. For someone unfamiliar with the specific rela-
tional database, this activity is difficult because attribute names are non-intuitive acronyms
listed in a relational schema with no description of meaning or use. After a user tries to glean
an overall organization of the relational structure, he or she begins looking at rows of values in



8

the relational tables. The relational model does not naturally represent hierarchical concepts;
therefore, users frequently search through the data and the schema hoping to find some
hierarchical organization as a basis for abstracting the flat relational tables. Furthermore,
most data are encoded and unformatted, providing little evidence that their mental model of
the structural organization is valid and consistent. By iteratively reviewing the relational
structure and selected data values, a user begins to synthesize a conceptual image of the enti-
ties and relationships represented in the database and how these entities and relationships map
to the necessary simulation concepts.

For example, if a simulation builder needs information about the 2nd Armored Division,
he or she may approach this query by searching all tables for the string "2nd Armored Divi-
sion." It is unlikely that this query will retrieve any useful information. First, "2nd Armored
Division" is probably abbreviated or encoded, so a syntactic search may not produce any
matches. Second, many different kinds of information exist that a user may desire about an
armored division, such as its general characteristics or the subordinate units it commands. A
simple text search, however, would not provide any explanation of what is retrieved, only
specific data values.

3.2. CONCEPTUAL RETRIEVAL

After a user has gained some familiarity with the organization, structure, and content of a
particular database, he or she must determine what data to retrieve for deriving a specific
simulation database. The user compares his or her mental model of what is in the database
with a semantic profile of the desired data. Based on this comparison, the user must retrieve
those relational entities that map onto the desired semantic profile. Suppose a user wants to
retrieve all "reconnaissance" aircraft data. Unfortunately, "reconnaissance" is probably not
explicitly represented in the database; therefore, the user must mentally compose a semantic
description for the concept of a reconnaissance aircraft, such as the missions that are sup-
ported by reconnaissance aircraft and the required equipment found on reconnaissance aircraft.
The user then maps the semantic description onto the attributes and data available in the
external databases, i.e., "retrieve all aircraft whose primary mission is <x> and whose equip-
ment is <y>." Finally, a syntactically correct DBMS query must be constructed that
integrates data from various sources, and that retrieves those items which collectively describe
the concept of a reconnaissance aircraft.

With existing DBMS facilities, this process of conceptual retrieval dictates that a user
first identifies semantic concepts needed by the simulation (e.g., reconnaissance aircraft), then
determines what data correspond to the semantic entities, and finally accesses the data
corresponding to those entities. Although many of these capabilities can be performed by pro-
grams using an embedded data manipulation language, we should not expect that casual
DBMS users must become DBMS experts simply to browse through the data and retrieve
relevant conceptual entities. View mechanisms are similarly geared toward interfacing applica-
tior programs with the database and ignore the needs of interactive users. In effect, the user
must navigate through the database relations to establish the desired correspondences and
translate the semantic profile into standard DBMS selection, projection and join operations. It
is interesting to note that when the relational model was introduced, declarative query
languages were cited as an important benefit. Indeed, we have come a long way from tracing
record pointers and maintaining currency indicators. Nevertheless, a notion of "navigation"
still remains. Navigation in a relational context implies navigating through a "conceptual"
model rather than a "physical" model.



9

Ideally, users would like to access and retrieve "macro" descriptions of semantic concepts,
such as reconnaissance aircraft, whose descript:ons and values collectively represent conceptual
entities or relationships, including information about mission types and equipment associated
with reconnaissance aircraft. Query languages alone provide only a microscopic view of data
entities and elements. In addition to individual data elements, domain knowledge must be con-
tributed by the user in order to generate the macro descriptions. This knowledge should be
incorporated within the database environment so that every user who wants to retrieve recon-
naissance aircraft data would be provided with the identical data elements; and furthermore, a
user could inspect the macro definition to determine how the system derived the required data.

Another significant factor that simulation builders consider is the granularity or resolu-
tion of the information. Most often, external databases represent a finer resolution than is
needed for the resulting database. Therefore, improved methods for conceptual retrieval
should also include better facilities for automatic integration and aggregation of data elements.

3.3. SEMANTIC VALIDATION

The final activity performed when constructing a simulation database is to validate the
correctness of the structure and content of the derived database. In many cases, the data that
have been selected may not be consistent or correct. Numeric cro-. tabulations may be
incorrect if only a subset of the database is retrieved. Existence dependencies between entities
may also need to be verified. For instance, a user may want to enforce a constraint stating
that if there is a nuclear launching site on an airbase, then there must be at least one nuclear
weapons depot associated with that airbase. This validation rule would be activated whenever a
user adds a nuclear launching site to a simulation database. If a nuclear weapons depot associ-
ated with the same airbase does not exist in the derived database, the user would be notified
that a constraint rule has been violated. In addition, the simulation developer may want to
add to the derived local databases the constraints that did not hold for the external databases.

We have observed this validation process being carried out jointly by a database specialist

and domain expert. This task is usually performed by manually searching through data
records, looking for suspect or erroneous values. Often, simply the presence of a data record
will trigger, in the mind of the domain specialist, a condition or constraint that should be con-
sidered in the simulation database. Augmenting the resulting database is also common when
necessary data are not available from the external databases.

When validation is applied to the whole external database, it serves the role of perform-
ing global scrubbing. However, validation can also be applied to a derived subset representing
the database for a particular simulation model. IFo, local scrubbing, users may watt to express
additional rules about the content of their derived database and be notified if the rules are
violated.

In this section we have focused on the problematic issues confronting an interactive data-
base user. In the next section we detail IID to help support the cognitive processes entailed in
the scrubbing and derivation phases discussed above.



4. INTELLIGENT INFORMATION DICTIONARY

The observations and analysis described above have indicated that by augmenting a tradi-

tional relational DBMS with semantic metadata and better data manipulation facilities, a
casual interactive user can begin to explore, understand, and use external databases as input to
simulation models. Our objective was to construct interactive DBMS capabilities that would
help automate the processes of mental modeling, conceptual retrieval, and semantic validation.
Toward this goal, we have identified three categories of facilities supporting the three cognitive
processes of interactive DBMS use: explanation and browsing capabilities aid mental modeling,

automated data manipulation contributes to improved conceptual retrieval, and interactive con-
sistency checking streamlines semantic validation.

The development of the IID is an effort to provide the necessary functionality supporting

these needs. The facilities offered by the IID are intelligent because they aid a modeler in data
manipulation tasks by (1) providing domain knowledge for presenting an intelligible self-
describing view of the data, (2) partially automating data manipulation, and (3) detecting
inval;i and inconsistent data. By combining a DBMS environment with semantic metadata.
we have attempted to produce a complete information management system supporting the use
of external databases in application software. In this section we provide a detailed discussion
of IID, including examples of its use for explanation and browsing, automated data manipula-
tion, and interactive consistency checking.

IID supplies both passive and active information management facilities. The passive

facilities, which are user-initiated through a menu-based interface, enable explanation and
browsing by making use of an object-oriented repository for semantic metadata. IID's active

facilities are initiated transparently by the system during normal data retrieval. Facilities for
automated data manipulation and interactive consistency checking fall into the category of
IID's active capabilities.

The kernel IID software is database-independent and DBMS-independent. It is aug-

mented with object-oriented knowledge bases representing domain-specific knowledge acquired
from an application specialist. Because the knowledge bases are loosely coupled to the IID ker-
nel, it is possible to combine more than one knowledge base or to customize a user's private
knowledge base by modifying domain-specific semantic information. IID has been imple-
mented in two dialects of Lisp combined with a corresponding object system. Our original
implementation was in Berkeley Franz Lisp using Flavors as the object language. The exam-

ples presented in this document reflect the Franz/Flavors implementation. Most recently, we
have ported IID to a combination of Allegro Common Lisp and a PCL (Portable Common
Loops) implementation of the Common Lisp Object System (CLOS). Both implementations
reside on Sun/3 and Sun/4 workstations. IID communicates with the Ingres relational
DBMSs, also resident on a Sun machine, through a Lingres (Ingres in Lisp) interface that we
developed. Lingres can be replaced with interfaces to other relational DBMSs, thereby making
IID available for most Unix-based' relational DBMSs. Details of the LID architecture are
presented in Sec. 5.

1Unix is a trademark of Bell Laboratories.

t0



Figure 3 shows the schema and extensional data of our test database, WORLD. This geog-
raphy database consists of seven relations, each with one or more primary keys (which are dou-
ble underscored in Fig. 3). In most relational database applications, users are supplZd vith
only the information shown in Fig. 3. (In many relational DBMSs, identification of primary
key attributes is not even required.) For discussion purposes, the WORLD database was designed
to include many of the typical anomalies found in first-normal-form databases. Throughout
the remainder of this report, our examples will be taken from this database.

Below, we describe each category of IID's functionality by presenting snapshots of a
workstation screen and isolated examples of the system operation. The goal for the first phase
of IID development was to provide the underlying framework and basic operations. Although
the user interface is a critical consideration for a successful software product, our initial aim
was to build a "proof of concept" prototype demonstrating the functionality. Consequently, for
some activities, interaction with IID requires the use of a mesoag -passlig comm nd language
instead of more desirable menu or graphical input procedures. For describing IID facilities, we
reserve the use of courier font to refer to specific IID text or constructs found in the system.
Courier text that is surrounded by double quotes (" ") highlights text that can be found verba-
tim in the user interface, e.g., a textual menu item or window label.

4.1. EXPLANATION AND BROWSING

Explanation and browsing is enabled in IID by presenting a collection of metadata to
users to guide them through the maze of relations and attributes. Metadata in IID does not
refer strictly to information needed by the DBMS, such as data type and field length. Rather,
it refers to semantic information about the data, which users rely on when making decisions
about (1) how entities relate to each other and (2) whether the data are relevant to their appli-
cation. IID aids a user in understanding the organization of a relational database by represent-
ing the constructs of a relational database, such as relations and attributes, and also domain-
specific knowledge acquired from an application specialist. In this way, IID augments an
existing relational schema with supplemental metadata.

4.1.1. 1ID Metadata

A complete IID environment requires the construction of an IID knowledge base
corresponding to each relational database. In Fig. 4, we show the user interface when IID is
initiated. During initialization, an IID metadata file is processed for the WORLD database. The
subsequent seven figures in this section show the state of the user interface when activating
different menu selections. We describe IID's browsing capabilities by discu ing the informa-
tion presented to the user in each snapshot. For many of the figures, we also present a portion
of the IID metadata file that serves as the domain-dependent knowledge necessary to produce
the user display.



12

fauna table

country animal !at long , dist featu

India !tiger 60. 5iDurnlng eyes
ussr penguin 73' 10,Majest!c
usa ! dog 40 00 up-t -t rtcs
canaaa penguin (3 1 CO sloppy
,chIna dog 40, 125 listless
australIa kangaroo U30, 130 (,; pS

:e~ehaot 60 25 t runed
I .dia 601 3

6C 715

ind-a -091 75 , noae

ap. n t 0, e , " b0 - y
r -a - qcr 6 : " e o dy-st r~pe

............................................................
:0;r ro y t s lo

uoo..-:ry .a3'r z<s . r nleus . c--go'.

o n Ia '8 8C

. n:n r ! a e

4s 8 361 2c nar 55 2 T5 r

r'at r n-croy 030e

go: hat at uoc o i.*s .c @ t" z n v 30? r

.. . . . . . .. .. . .. .. . .

< : 2400 83<

or41? 12: 201 260J 2

-- usa 4200 12206

.rc 4r --St trW.- nazo- -c2.(-3:.t 100.u>

4} C5z} I -:'J it ~ T ' n, n

01'rrogoy 5 2 30 : 5 3

- -it a e- - - - - - -- - ---- --- - - - - - - - - - - - - -

'.5 ,a sa.s no: a 192

a gst o pr ! a a t <y , sa, 3

r50055, ;sa n. 275 601

Y a7D"a r ' r-- -0 p,1 a

... .. .. .. ... ................. ..... ..s. ........ 2

K.......................... .

,2 CC

bFig.u 3-OLD da tabas wth a noal: iesId ' s .esnS n, d - i vo. . 3 31

zone avqr.a - a.te, -P, -" p t ree:'re 7. 1 -r-11

.. ............... . . ....... . ............. . ... ... . . . . ... .......... . . .

Fig. 3---"ORLD" database with anomalies



Et3

Figure 4 shows the general layout of the IlI) interface. The )ottom "help" window pro-
vides instructions for users interacting with the menus. The horizontal menu above the "help"
window is used to select the basic facilities of the 1I) browser. The windows and menus across
the top of the screen supply database-dependent overview information, helpful to the new user
of a database. In most of these windows and menus, the order in which the items are listed is
irrelevant. However, in the "INTERLINKS" window, duplicate interlink names are allowable;
therefore, interlinks are identified by their ordinal number. The window labeled "LISP WIN-

DOW" is used to interact with lID using a message-passing command language. For most expla-
nation and browsing activities, the Lisp window is not necessary.

The organization of the user interface is modeled after a hypertext system (Smith and
Weiss, 1988). Our implementation, however, is not a general-purpose hypertext system, and
therefore each layer has been built directly into IID as part of the user interface. In IID much
opportunity exists for extending this model of interaction. Much of the metadata information
displayed through menu interaction is maintained strictly within the information dictionary
without accessing the relational databases. Active IID capabilities, discussed in subsections 4.2

R1 I AFg I4D; I uIer! INKS

Fig. 4-1ID user interface



14

and 4.3, access the extensional relational data more frequently than passive explanation and
browsing do. IID is intended to serve the users' need for extended database capabilities, not to
serve as a data model. However, because IID represents and uses the semantics of the data-
base, considerable overlap exists between the capabilities of lID and those of ER (Entity-
Relationship) or semantic models (Hull and King, 1987).



15

Figure 5 shows the screen after selection of the action "describe relation," followed
by selection of "FAUNA" in the relations menu. The results of selecting any "describe ... "

menu item are displayed in a "description" window positioned in the upper right of the display.
This relation description reports, in addition to general explanatory information, the "key-

list" indicating those columns that compose the relation's key. Below we show an excerpt
from the 1ID metadata file corresponding to the user's selections in Fig. 5. This metadata for-
mat is used for describing any database relation. Additional explanatory information can be
included in a relation's description by adding it to the metadata file.

(defrelation fauna

:flavor-type 'Relation-supplement-extension

:name-explanation "The FAUNA relation contains descriptions

of animals in particular regions"

:description "Each record associates a country with an animal."

:key-list '((country animal)))

DATARAM WOIRtO A"

RF t AT i nNs INTERLINKS: Costr, . r Jr

Fi . n -eylara' C: Ir, FA5ft e' >.D. .ta', relati "p'n A Jr'a

Fig. 5-Describe relation



16

After a user is familiar with the semantics of the relations stored in the database, he or
she will probably want to browse through column names and descriptions. In Fig. 6, we have
selected the action "list columns" followed by selection of the relation "ANIMAL." The
window positiot e(, in the center of the screen displays the list of column names represented in
the "ANIMAL" relation.

7 A I A R A M tR D C L U

' ' ,a..,: ,- the aoo.e *enu by C}r:,lng any .ouse bu.tton on Tre Cesred yte.

Fig. 6--List columns

-~ ~ ~ -- 10- NS- INTF, INK %,nmmlm mnmnmi mM L l



17

Figure 7 results from selecting "describe column" and then choosing the column name
"AVGLIFE" from the column window. Included below is the IID metadata for the column
description shown in Fig. 7. Column descriptions represent typical data dictionary information
such as data type and field length but also include semantic metadata such as value con-
straints, units information, and reliability and data source. This metadata information consti-
tutes the semantics that users require for selecting the data they need, that is, for conceptual
retrieval. For example, if a user is selecting airtuases for a particular mission, knowing whether
the values for the length of the runways are in feet, meters, kilometers, or miles is critical.
Similarly, knowing the limits or constraints of a particular value (such as runway length) is
important for access and update. A descriptor named "val idation-explanat ion" not only
provides a textual statement of a vaiue constraint but also has a corresponding IID program
function for interactively validating column values. Subsection 4.3 discusses how the underly-
ing validation function is used for integrity checking.

DATABASE: WORLD COLUMNS:
I 'a.e: AVGLIFE

RELATIONS: INTERLINKS: IAL description: average life span
______________ ~~tFG~ oP data-type: integer

CtOLaNT f ielO 1 d- ln1 h: 4
tATHER (1) e,hiots (--> ,s-exhibited-by units-of-asuresent: years

RSPEED
cou'Nry (2) IS-inhabttOd-by -- llVIS-In PE inforeetion- urce: Royal Geographic Society

year-recorded: 1085

ECFNOfY (3) has <--> 13-associated-with vaitdation-eopianatlon: The value o avglle ust ebeienes I and 100.

vrtiosI ty-explanati 
on:NT LLI (4) has-Inhatiltans(-h 1ysa

m J~~m (5) suppo.... (--) is-supported-byJ

V5,-TaATION (6 is-conuct*ve tO -n a grows tn

FAUFA 7b) cs-representen-by - represents

GROUPS: (0) haS-foatures (--> Is-known-by

i (9) resembles e--> resembles

POSITION -VE O

CLI. t

d-o...b d--¢$ elrbe i, o dl-clb 9-op d.srtb. Ir1nt , r, ( -ouN.- ~ :, l d crb o

Seel , a lton in the alove menu ty ¢Ckzng ary louse button on the desired Ite.,

Fig. 7-Describe column: "AVGLIFE"



18

(defcolumn avglife

:flavor-type 'Column-supplement-extension

:description "average life span"

.data-type 'integer

.field-length 4
:information-source "Royal Geographic Society"

.year-recorded 1985
units-of-measurement "years"

:validation '(interval 1 100)
:validation-explanation "The value of avglife must be

between 1 and 100."

:myrelations '(animal))



19

Our analysis of the schema of external relational databases has shown that many fields in
a relation are coded attributes. In Fig. 8, which displays a description of the column "COUN-
TRY," the "validation-explanation" indicates that the value of the "COUNTRY" column is
encoded. Occasionally, the codes and their expansions are stored in their own binary relation.
However, in frequent cases, other documents must be referenced to interpret the abbreviations
and acronyms. III provides facilities specifically designed to easily record and reference
encoded columns using its codetable facility. The relevant metadata shown below also make
references to III codetables.

(defcolumn country
flavor-type , Codetable-column-supplement-extension
:description "country name"

:data-type 'character

:field-length 8
:information-source "Defense Mapping Agency"

naLMN : e: COUNTRY

RELATIONS: INTERLINKS: description: country name
____________ P data-tyPe: character

PEteCoeTn I IIId-lengih:S
WEATHER (1) exhibits <--> is-eohibi ted-by ".hrai~ -s burcs: Defense Mapping Agencya

COUNTY (2) ts-thhabited-by <--> lioesi-in year-recorded: 19e5
validation-explanation,: The value of country must be a 2 Character abbreviationJ

(3) hes <--> tS-associated-with found tn the coaetable -countryCode'.
V rbosity-explanation: In *VhE ifO-ODE the column COUNTRY ts expanded from Its

NATVILOLIFE (4) has-1Inhabitants <--> tives-at Zbranastion to the full country nab, using the Codetable -COUiIORYCODE'.

rte.

Select an action an the above menu by clicking any aouse button on the desired ate.

Fig. 8-Describe column: "COUNTRY"



20

.year-recorded 1985

:validation 1(codetable *COUNTRYCODE*)
.validation-explanation "The value of country must be

a 2 character abbreviation found

in the codetable *COUNTRYCODE*.11

* codetable *COUNTRYCODE*
:verbosity '(codetable *COUNTRYCODE*)

.verbosity-explanation "In *VERBOSE-MODE*, the column COUNTRY

is expanded from its abbreviation to

the full country name using the
codetable *COUNTRYCODE*."

*myrelations '(country economy natwildlife FAUNA))



21

In Fig. 9, by selecting the menu item "describe code" and then selecting "COUNTRY"

in the columns menu, a list of codes and their corresponding expansions is displayed in the
description window. In this example, the country codetable corresponds to the internal relation
"countrycode." These internal relations are not included in the list of relations available to
the user because they are strictly binary relations and are not considered part of the domain
database. A codetable entry is not limited to the value of a single column; an entry may be the
aggregation of more than one field. For instance, an employee number may be the concatena-
tioai of an employee's social security number and the year the employee was hired. The use of
IID's complex codetables supports such aggregated encoding schemes. In subsection 4.1.2, we
discuss the use of codetables to support IID's verbose mode.

DATABASE: WO)RLD CLMS
I us United states

RELATIONS: INTERLINKS: AU A ustralia

GN $U :Ussr

PERCOPItO CH China
WEATHER (1) exhibits <--> is-exhibited-by IN I ndia

COUNTRY (2) t$-Inhabltod-by <-- cives-in CA Cinada

S(3) has <--u is-associate o-o hth

NATrLDLIFE (4) has-inhabitants F--. liv9 sb-at

ANIMAL (5) Supports <--:> 13-supported-by

vEGETATION (6) is-conducive-to <->groaws-In

FAUNA (7) is-represented-by (->represents

GROUPS: (8) has-features <-- t-knoln-by

(9) resembles <->resembles

describe d-~b- it ... -b. r.1-tO. describe group describe ntelink 11t c.u-n$ d-srtb. C.1Ul -

l

Select in action in the above menu by Clicking any mouse button on the desired item.

Fig. 9-Describe code



22

One important component of an III knowledge base is information about "interlinks."
Interlinks represent the semantic information prescribing exactly how two or more relations
are implicitly related. This information is generally referred to as referential constraints,
expressing structural conditions of a relational database. Knowledge of semantic interlink
information and key attributes is essential for interactive users when joining relational tables
(Gray, Storrs, and du Boulay, 1988). However, without a facility like IID, no repository exists
for this information. In Fig. 10, we show interlink metadata describing the relationship
between relations COUNTRY and FAUNA. From the information displayed in Fig. 10, a user
learns to relate (or join) data tuples in the FAUNA relation with tuples in the COUNTRY relation
through the attribute named COUNTRY. Additionally, the cardinality metadata indicate that "a
country has zero-to-many fauna inhabitants" but "a fauna lives in only a single country."
Below we also present the corresponding segment from the III metadata file. Specification of
common columns or "join fields" are indicated in the "from-column-li st" and "to-
column-li st." Information contained in interlinks, combined with the attribute "key-

R'OL'TINS: INTERLINKS: from-relalton: COUNTRY
_____________ rom-coluen-ttot: COUNTRY

r . A,-ER (7 ) exhibits <--) lo-exhibited-by to-coh,.n-list: COUNTRY

COUNRY 2) 6-1habted-y <-> ive-incardi nality: :ZERO-o4ANY

ECONOMY (3) has <--> iN-aooociatesd-tt, se:l 110,-at

froa-columO-itT: COUNTRY
ANlIMAL ()to-relation: COUNTRY

()supports < - n-upported-by tO-C~lUan-tiut: COUNTRY

YEGYTTICN (6) 19-conduclys-to gow- i ~n cardillatity: :ORE

Se FtiAUiN in) Iise prsntme by repri e nymse t o nTeUe~e tm

GROUPFig (8Decr) interlink I-kn-b



23

list" found in the relation metadata, makes explicit the knowledge needed by users for checking
the referential consistency of a relational database and for manipulating the underlying data.

(definterlink

:flavor-type 'Interlink-supplement
:name '("has-inhabitants" "lives-at")

:link-flavor-type 'Link-supplement
:from-relation 'country

:from-column-list '(country)

:to-relation 'FAUNA

:to-column-list '(country)
:cardinality '(:ZERO-MANY :ONE))



24

The last descriptional entity we discuss is the III "group." A group construct begins to
provide abstraction capabilities in III. In the current III system, a group declaration associ-
ates columns from a single relation into a group entity. For example, Fig. 11 shows a descrip-
tion Of "POS ITION -VECTOR," a set of columns that collectively refer to a geographical area
bounded by latitude and longitude specifications. In the WORLD database, POSITION-VECTOR

is found in the relations WEATHER and COUNTRY. Although the capabilities associated with
group entities are currently limited to expressing an abstraction within a single relation, groups
will be the basis of future IID extensions including semantic aggregation and generalization
serving as the foundation for semantic and object-oriented modeling.

name: POSITION-VECTOR
RELATIONS: INTTERLII4KS: description: A country'. geogr-aphical position in terms of latitude and longitude.

*yr elattons: WEATHER COUNTRY
A ATHER (1) exhibits -- i-ottitod-by cosponent-1lnll LATNORTH LATSOUTH LONGEAST LSNGWST

.OU (2 is-cri b e bo <->desinop asrb ne ik i~Cii~ tiie~
0

n aerb oeq

SECNM (3n ahininte asv *enu by citneaymus uto n n dsrd t.

HATVILDLIFEFig 11De4rb groupbtat -- ~vsa



25

4.1.2. Verbose Mode in IID

The explanation and browsing facilities discussed above must be initiated by a user
through interaction with the windows-based interface. IID offers an additional feature, verbose
mode, which is integrated into IID's query processing to transparently help a user understand
the contents of a relational database. Verbose mode uses IID codetables, discussed in the pre-
vious section. During a retrieve command, if verbose mode is enabled, any abbreviation or
acronym that has a corresponding codetable will be automatically expanded into its full textual
name or identifier. Without verbose mode, much of the encoded data retrieved from a relation
is unintuitive and unintelligible. In Figs. 12 and 13 we show scripts retrieving the same infor-
mation using both Quel and IID. Figure 12 displays country codes and the corresponding per
capita income retrieved using a Quel command. Figure 13 (in which IID's verbose mode has
been enabled) presents the output of the same query showing country names instead of their
abbreviations.

The explanation and browsing capabilities we have discussed here help a user interact
with a DBMS in a more natural fashion and help distance the user from the unintelligible
codified aspect of databases maintained by a DBMS. Other research efforts are also addressing
issues related to DBMS interfaces, which, for the most part, are unsuitable for casual users.

The Rabbit system, for example (Tou et al., 1982), aids user interaction through an iterative
process of query reformulation. Both IID's browsing capabilities and Rabbit's "retrieval by
reformulation" attempt to facilitate the user's understanding of schemata and instance data.
Other related work treats browsing as a viewing technique aimed at gaining knowledge about
the database (Motro, 1989; D'Atri and Tarantino, 1989).

4.2. AUTOMATED DATA MANIPULATION

In this subsection we address the second functional area of database use, that is, concep-
tual retrieval. In subsection 3.2, we identified conceptual retrieval as part of the data manipu-
lation process that retrieves conceptual units or entities rather than accessing simple records or
rows of data in a table. Manipulating conceptual entities reduces the "impedance mismatch"
(Tsur and Zaniolo, 1984) between simulation data and simulation processing, especially object-
oriented and knowledge-based simulation (Rothenberg, 1986).

Automated data manipulation is one approach to facilitate conceptual retrieval. Auto-
mated data manipulation makes use of IID metadata to help a user compose queries which out-
put conceptual entities from monolithic data records. Without automated data manipulation,
users must emulate conceptual retrieval by repeatedly navigating through relations to retrieve
the desired data. In ID the main feature supporting automated data manipulation is the Intel-
ligent Join (1J).

In two widely used relational query languages, Quel and SQL, the user retrieves desired
data by first deciding what data items should be selected and then composing a qualification
clause to join the necessary relations. In many cases, more than one equijoin (a join where
"equals" is the comparison operator) over the relations is necessary to retrieve the required
information. For example, in the WORLD database, suppose a user wishes to retrieve the tree-
type found in India. Ideally, the user would like to submit a query such as:



26

INGRE$ UNIX Version 5.0/01 (sun.u42/02) Togin Wed Aug 2 16:12:

Copyright (c) 1Q66, Relational Technology Inc,

INGRES/UNIX Version 5.6

range of e Is economy\g
xecuting

ontinue
retrieve (e.country, e.percapita) where e.percapita < 10000\g
xecuting . . .

Icountry Jpercapit I

JIN I 3881
ISU I 83781
ICH I 2601
I-------------------
(3 rows)
ontinue

Fig. 12--Quel retrieve conunand

enerating a path between WEATHER & COUNTRY.
enerating a path between WEATHER & VEGETATION.
enerating a path between COUNTRY & ANIMAL.
enerating a path between COUNTRY & NATWILDLIFE.
enerating a path between COUNTRY & FAUNA.
enerating a path between COUNTRY & ECONOMY.
enerating a path between NATWILDLIFE & ANIMAL

enerating a path between ANIMAL & FAUNA.
i)

-> (load "/u/steph/Idb/Papers/R/demo")
[load /u/steph/Idb/Papers/R/damo,1]
t
-> (send ODB-SUPPLEMENT* ':set-range 'e 'economy)
(E "ECONOMY")
-> (send "DB-SUPPLEMENT* *:retrieve 'print-country-percapita

'((column e country)(column e percapita))
(< (column • percapita) 18088))

IN 388

U 8370

H 268
il

-> (setq *VERBOSE-MODE* t)
t
-> (send "De-SUPPLEMENT

° 
';retrieve 'print-country-percapita

'((column e country)(column e percapita))
' (column a percapita) 18800))

India 300
Jasr 6370
hina 268

il
->|

Fig. 13-IID retrieve command using verbose mode



27

ret rlev= kcountry.country, vegetation.Lleetype)

where country.country = "india"

However, this request requires a join across an intermediate relation, namely, weather.
Therefore, to retrieve the desired data, the following query is necessary:

retrieve (country.country, vegetition.treetype)
where country.country z "india" and

country.latnorth = weather.latnorth and
country.latsouth = weather.latsouth and

country.longeast = weather.longeast and
country.longwest = weather.longwest and
weather.zone = vegetation.zone

In the example above, the user must know implicit interlink information relating the relations
country and vegetation, and the user additionally needs to compose the query to join the
relations country, weather, and vegetation. (In the remainder of this report, use of the
term "join" implies "equijoin.") Selecting data from more than one relation requires knowledge
such as key and foreign key declarations and relationships among tables in the database.
Although this information is stored in an IID metadata network (described in detail in subsec-
tion 4.2.2), the role of these semantics is subtle and complex compared with other uses of
metadata for explanation and browsing discussed earlier.

The IJ capability we have developed uses IID metadata to perform navigation through a
conceptual model of the database and to compose join clauses automatically for the user. IJ
allows a user to identify only the "target" data, which are to be retrieved without the need to
additionally specify "join clauses." During IID query processing, IJ first navigates through
relations by referring to interlink metadata, then translates the user's query into the equivalent
Quel command including necessary join clauses, and finally submits the complete query to
Ingres. IJ is supported by a metadata network constructed from IID metadata, specifically
interlink information. The IJ facility is particularly useful for casual database users where (1)
the database has many relations, (2) mnemonics have not been used in attribute naming, or (3)
typical database manipulation requires high interrelation activity. With IJ, much of the bur-
den of composing retrieve queries is shifted away from the user and onto the system.

In the following subsection we present our analysis of the components of a Quel "retrieve"
command and demonstrate the basic IJ functionality. (Although our examples use Quel syn-
tax, analogous components and syntax are found in SQL.) Next, we detail the problems intro-
duced by an environment supporting IJ and describe how we have scoped the IJ task into
manageable issues.

4.2.1. Intelligent Join Processing

To help discuss the algorithms necessary for IJ, we have identified the components of a
Quel retrieve statement as follows:

retrieve t where 8 l and S2 and ... .,, and J1 and ...

where t is a target attribute list of the form: ( t . t, .-. t,,) and each t, is a legal Quel target
item representing a projection



28

s, is a legal Quel selection clause such as employee.age > 21

Ji is a legal Quel join clause of the form: Rm , a. Rn . a,, such that R, is a relation (or
range variable) in the database and a, is an attribute in R,

For example, in the Quel query introduced earlier,

the target list is

(country.country, vegetation.treetype)

the selection clause is

country.country = "india"

the join clauses are

country.latnorth = weather.latnorth

country.latsouth = weather.latsouth
country.longeast = weather.longeast

country.longwest - weather.longwest
weather.zone = vegetation.zone

The goal of IJ processing is to eliminate the need for the user to sui ply any join clauses.
Conceptually, we transform retrieval queries into a sequence of joins followed by selections and
projections. For instance, the algebraic representation of the above retrieval is the following
(where superscripts denote derived relations and subscripts indicate original database rela-
tions):

R= country W4 weather Wx vegetation

R2 O'country~india(R 1 )

R 3 l 7rcountry , treetype(R2)

The algebraic representation for the semantically identical, yet incomplete, query is

R 1 = country W R, W R 2 Wx • W• vegetation

R 2 = O'country~india(R 1
)

R 3
= 1rcountry, treetype(R

2
)



29

We have limited our IJ research to the problem of joining relations to produce R, e.g., deter-
mining a path through the network between nodes COUNTRY and VEGETATION. We define a
path between nodes as a sequence of arcs that connects the nodes and has no cycles. Once IJ
has determined the path, common attribute sets from the network are used to identify the join
attributes. Figure 14 shows the two join clauses produced by IN to join COUNTRY and VEGETA-

TION. The syntax produced in Fig. 14 is the prefix form of a Quel join clause where (column
R, a,) denotes the Quel syntax R, . a,. To compose a complete query, lIJ builds a conjunction
of the derived join clauses and the user-specified selection clauses. Although this example
shows path generation between only two relations, our implementation allows input of more
than two relations.

4.2.2. Metadata Network Facilitating IJ

Intelligent Join is facilitated by information stored in IID interlinks. However, because
IJ processing requires extensive navigation through the relations of a database, we augmented
our object-oriented IID representation with data structures corresponding to the network-like
organization of a set of relations in a relational database. (We are not implying that a relation
is similar to a network; rather, we are referring to the network organization of a relational data-
base schema.) The resulting network representation, generated directly from IID interlinks, is
constant throughout the life of the database (unless schema modifications are allowed); there-
fore, the overhead incurred by building the network is a onv-time cost. Below we describe the
derivation and representation of metadata networks and discuss an example using the world
database.

Given a relational schema, exactly one network can be produced that represents the data-
base schema. The uniqueness of the network contributes to computational efficiency in this
way: when the network is being traversed and processed, the problem of recognizing and ma-
nipulating isomorphic networks is eliminated. Although each relational schema maps to a sin-
gle network, it is possible for more than one schema to map to a common network. This situa-
tion occurs when the databases have the same "meta-schema," that is, the same number of
interlinks and the same kinds of constraints over those interlinks. In the remainder of this
section, references to a "relational schema" inciude supplemental metadata, such as keys and
interlinks, and references to a "network" denote an IID metadata network.

Nodes in the network represent relations, and arcs capture interlink information between
the nodes. If n interlinks are defined between two relations, then the corresponding nodes
are connected by n arcs. For example, Fig. 4 (in subsection 4.1.1) displays nine interlinks for

- (enerat e-jo n-cla sps " (c:our ry veqeoat ior))

C- (cclmn WEATHER ZONE) (column VEGETATION ZONF)

(and (- (coiumrn WEATHER LATNORIH) (cnlurn COUNTRY LATNORTH))

( (column WEATHER LATSOUTH) )column COUNTRY LATSOUTH))
(cocurn WEATHER LONGLASI) (colu.n COUNIRY ,ONGEAST))
(ccl umn WEATHER LONOWFEST) ()column COUNTRY LONGWESI)))

Fig. 14-Join clauses for joining "COUNTRY" and "VEGETATION"



30

the WORLD database; therefore, nine arcs are represented in the corresponding network. Arcs
not only represent an abstract relationship but also encode attributes that the two relations
have in common. The network supports three different arcs depending on the characteristics
of the common attributes in the relations denoted by the connected nodes. These characteris-
tics distinguish between common attributes that are a key in one, both, or neither of the rela-
tions. We identify the corresponding arc types as singly directed, doubly directed, or undirected.
Below we detail the specifications f each arc type.

In a database with k relations, R1 , R..... Rk. the corresponding metadata network has
nodes, n1, n2 . nk, where the ith relation, R,, is represented by n,. An undirected arc
between two nodes, n, and n), indicates that a set of attributes exists common to both rela-
tions, R, and R, that is a key in neither relation. A doubly directed arc between n, and n) sig-
nifies that a common set of attributes exists that is a key in both R, and R). A singly directed
arc emanating from n, indicates that a set of common attributes exists between R, and R) that
is a key in R. A singly directed arc also implies that the common attributes are a foreign key
in R,. While there can be at most one undirected arc between two nodes, there can be zero or
more singly and doubly directed arcs. Multiple singly directed arcs denote multiple foreign
key/key relationships between two relations. More than one doubly directed arc between two
relations occurs only when multiple candidate keys exist in both relations.



31

The network corresponding to the WORLD database is shown in Fig. 15, indicating nodes,
arcs, and common attribute sets prescribed by the above rules. In Fig. 15, we have also under-
lined key attributes participating in each arc. A doubly directed arc (indicating key attributes
in both relations) is illustrated by an arc with arrows on each end. An arc with a single arrow
portrays a singly directed arc such that the arrow points to the relation containing the key
attributes. Finally, an arc with no arrows signifies an undirected arc relating common attri-
butes that are keys in neither relation. In this example, only one doubly directed arc is found
between any pair of nodes because we have defiaed only a single primary key for each relation
in the WORLD database. For some arcs the common attributes have the same name, for
instance, country identifies the common attribute in both the COUNTRY and NATWILDLIFE

relations. However, attribute names are assigned for convenience and no restriction exists on
naming conventions. For example, the common attributes between the relations ANIMAL and
NATWILDLIFE are named animal and natanimal, respectively. Therefore, the network must
explicitly name the common attributes for both relations, and if more than one arc exists

Fzo n erECONOMY WEATH ER (oe

{£,ount[y} {tatnorth latsouth Iongeast Ionawest}

Z
{(cour }) (latnorth latsouth longeast longwest}

\COUNTRY cuty

(country) (country) ATW II D I F E

F.AUNA dsfature} ( natanimal}

Fig. 15-IID metadata network for "WORLD" database



32

between two nodes, proner correspondences must be maintained. We also note that the con-
tents of the database are not reflected in the network. Instead, the network captures the struc-
ture of the database among abstract entities such as relations and attributes. When it is neces-
sary to refer to the contents of the database, for example, during semantic validation, IID
accesses the relations directly through Ingres.



33

4.2.3. Limitations of IJ

In the example presented above, only a single path exists between COUNTRY " Id VEGETA-
TION (in Fig. 15). However, between relations FAUNA and NATWILDLIFE, more than one pos-
sible (acyclic) path exists. If more than one path exists, we have currently adopted the sim-
plest solution, namely, choose the path with the least number of arcs. In cases where there is
only one minimal path, this approach is a reasonable decision criterion. However, when join-
ing two nodes that have multiple minimal paths or that have more than one arc directly
between them, such as in Fig. 16, it is necessary to resolve the ambiguity using more sophisti-
cated rules. In these situations, the semantics of the join clause is radically different depend-
ing on the selected path.

Consider the following example in Fig. 16, which shows a network corresponding to the
following relational schema:

EMPLOYEE (ename, eaddress, eschool)

SCHOOL (sname, saddress, sprincipal)

The first query below requests the name, home address, school name, and school address of
every employee. The second query requests, for every school, the school name, school address,
name of the school's principal, and address of the school's principal.

Query 1:

retrieve (employee.ename, employee.eaddress,

school.sname, school.saddress)
where employee.eschool = school.sname

Query 2:

retrieve (school.sname, school.saddress,

employee.ename, employee.eaddress)
where school.sprincipal = employee.ename

The semantics (and resulting selection) of the two queries are very different depending on the
attributes that are joined. However, the items in the target list are identical for both queries.
Therefore, if only the target list of these queries was submitted to IJ, it would be impossible to

{eschool} (sname)

Fenatae) fsprincipalm

Fig. 16-Metadata network with potential for join ambiguity



34

determine (without further information) which join clauses were intended by the user.
Research is continuing on these issues.

We have strived for transparency of IJ processing from a user's point of view. This goal
requires integration of IJ as part of an IID retrieve command. With full transparency, an
interactive query would fit into one of four categories: (1) a complete query including all
necessary join clauses; (2) a partially complete query containing some, but not all, required join
clauses; (3) a query with no join clauses where the relations lie on a network path; or (4) a
query (with or without join clauses) where the relations do not lie on a network path. IJ pro-
cessing initially determines if user-supplied join clauses produce a connected path. If a con-
nected path is not reflected in the user's query, then user-supplied join clauses help prune the
set of potential paths. When a connected path between the necessary relations cannot be
derived, a cross-product operation must be used to join two nonconnected nodes.

The theoretical foundations of Intelligent Join resemble most closely the Universal Rela-
tion Model (URM) developed by Ullman (Maier, Ullman, and Vardi, 1982; Maier and Ullman,
1983). Although URM was proposed for relational database design, IJ uses the same theory to
help users compose queries. IJ's join criteria (as in the URM) are based on the conceptual
design of the database. Limitations faced by both IJ and URM are discussed in Sec. 7.

4.3. INTERACTIVE CONSISTENCY CHECKING

Many knowledge base management systems and intelligent database systems are provid-
ing facilities to automatically verify semantic constraints through the use of triggers and alert-
ers (Stonebraker and Rowe, 1985). However, for interactive database users deriving personal
databases from large external databases, these approaches to constraint specification and
enforcement do not apply. To use triggers and alerters, constraints must be built into the data
dictionary by a database administrator and data modeler. Instead, these users would like to
express new structural and value constraints and to modify those declared for the external
databases.

Interactive consistency checking, which supports semantic validation, is the third category
of functionality provided by IID. Semantic validation capabilities allow interactive "scrubbing"
of data values in private databases that have been derived from incorrect or inconsistent exter-
nal databases. IID maintains knowledge about obligatory fields, default values, and value and
structural constraints. For instance, if the number of aircraft owned by a squadron is set to
"20," the user would be notified that "20" is an incorrect value because of a domain rule stating
that the number of aircraft owned by a squadron must be a multiple of 6. A user may also
want to express an existence constraint of the following form:

If there is a nuclear launching site on an airbase, then there must be at least one nuclear
weapons depot associated with that airbase.

Interactive consistency checking in IID supports both value constraints and referential depen-
dencies. If the above rule had been entered and validation mode enabled, then a validation
procedure would su)spquently be invoked corresponding to the above rule. If a nuclear
weapons depot did not exist in the derived database, the user would be notified that a con-
straint rule had been violated.

Constraint management is receiving much attention in the context of expert database sys-
tems and knowledge base management systems. In many cases, researchers are advocating
constraint specification, propagation, and satisfaction as an underlying formalism driving the



35

entire processing of the system (Shephard and Kerschberg, 1986). In IID, however, consistency
checking is approached from a localized perspective, that is, a user's derivation of application-
specific databases. IID's validation procedures report invalid data but currently make no
attempt to correct inconsistencies. Value checking and referential integrity checking are
activated differently. Value checking is transparent to the user, whereas referential integrity
checking must be invoked explicitly by the user or periodically by the system. In the following
two subsections, we address the functionality of both value checking and referential integrity
checking and provide examples of their use.

4.3.1. Value Checking

Value checking is an IID mode that can be set any time during IID interaction. With
validation mode turned on, any data retrieval request is channeled through a validation pro-
cedure derived from the "validation" attribute retained with the column metadata. Simply by
activating validation mode, validation procedures are transparently applied to retrieved data.
If the retrieved data are free from errors, the user sees no difference interacting while valida-
tion mode is or is not set. However, if erroneous data are retrieved, the user is notified in real
time during the retrieval, and the erroneous data are also logged in an error file. The error
report provides enough information to enable the user to correct the erroneous data. In the
examples below, we illustrate the use of validation mode for value checking in the WORLD data-
base.



36

In Fig. 17, "(retrieve-vegetation)" is an IID access function that retrieves all
tuples from the vegetation relation. In the first invocation of "(retrieve-vegetation),"
validation mode is not enabled and all tuples are retrieved. Before the subsequent call to
"(retrieve-vegetation)," we have enabled validation mode. During the second invoca-
tion, the user is notified of invalid values found in three of the four records for the fields
MAINCROP and AVGRAIN. Only the record for "tundra" contains all valid entries; therefore, it
is the only record that is retrieved and printed as is among the error messages.

To verify that the validation process was applied correctly, we have displayed the va 1 i -
dation and validation-explanation metadata for these two fields of the VEGETATION

relation. The metadata for column MAINCROP are

:validation

'(lambda )
(let ((nvalue (string-right-trim value)))

(or (string-equal nvalue "none")
(string-equal nvalue "corn")

(string-equal nvalue "rice")

(string-equal nvalue "wheat")
(string-equal nvalue "oats"))))

:validation-explanation "The value of maincrop must be

one of the following: corn,
rice, wheat, oats, none."

The metadata for column AVGRAIN are

:validation '(interval 0 500)

:validation-explanation "The value of average rain must
be between 0 and 500 inches."

We can see by reviewing the IID metadata that neither bamboo nor carrots constitute an
allowable value for MAINCROP, and 600 is outside the allowable range for AVGRAIN.

term MU

-> VALIDATE-MODE-

-> (retrieve-vegetation)

temperate 30 100 -30 deciduous carrots
tropIc 600 I1o 0 evergreen rice
tundra 20 60 -60 coniferous none
e quatorial 75 110 40 evergreen bamboo

-> (setq "VALIDATE-MODE- t

t) (retrieve-vegetation)

arning: carrots is an Invalld value for the MAINCROP colun of relation VEGETATION.
arning: 600 is an invalid value for the AVGPAIN column of relation VESETATION.
tundra 20 80 -60 coniferous none
arning: "bamboo is an invalid value for the MAINCPOP column of relation VEGETATION.

-> (e

Fig. 17-Value checking during retrieval from "VEGETATION" relation



37

In Fig. 18, we show another example of value checking where the column COUNTRY is an
encoded attribute. In this example, "AS" is not found in the codetable for COUNTRY and there-
fore is an illegal code.

The above examples illustrate how interactive value checking can be achieved during the
derivaL ion if sfiulca.:un (or Jihe: i.pplicdtio.,) ut a In most commercial DBML S, .,

facilities are available for validation during retrieval. Furthermore, users can augment lID
knowledge bases to add constraints or override existing constraints. For instance, in the exam-
ple in Fig. 17, a user could modify the val idat ion predicate for the attribute "MAINCROP" to
allow for the values "carrots" and "bamboo."

4.3.2. Referential Integrity Checking

This subsection describes capabilities focusing on referential integrity constraints. These
constraints help describe the structural integrity of a relational schema and database. Unlike
"value" constraints, which encode information about allowable values and are enforced with
predicates, referential integrity constraints focus on allowable mappings between relations.
Although the particular values of an attribute are irrelevant, the use of those values for map-
ping across relations reflects the structural requirements of the database schema.

Validating referential integrity involves two categories of constraints: key constraints and
referential constraints. A key constraint is implied by the existence of candidate keys and
requires unique and non-null key values. Referential constraints are entailed by the relation-
ship between a key in one relation and a foreign key in another. At any given time, the value
of a foreign key in the first relation must be either null or a key value in some tuple of the
other relation.

Most application databases are not designed using theoretical principles of relational nor-
malization; therefore, the consistency of such databases is questionable. Furthermore, in most
relational DBMSs, users are not prevented from changing the value of a key attribute or
violating inclusion dependencies. Deferred referential integrity checking (RIC) does not
prevent these anomalies; however, it will subsequently detect the errors and notify the user of

,,term"tl
-> *VALIOTE-MODE-

-> (retrleve-econmg)

IN 210 300
sU 2400 83/0
uS 4200 17220
CA 450 17430
CH 275 260
as 231 12000
uS 4.-)0 17220

nil
-> (setq *VALIDATE-MOnr. t)

-) (retr ee-econmy)

IN 210 300
SU 2400 8370
US 4200 17220
CO 450 17430
CH 275 260
0arning: "AS ' Is an invalid value For the C'UHTRY column of relation ECONONY.
US 4200 17220

_~1>) 0

Fig. 18-Value checking during retrieval from "ECONOMY" relation



38

inconsistencies. In IID, deferred RIC checks for uniqueness of tuples, non-null keys, unique-
ness of keys, and inclusion dependencies. Deferred RIC can be initiated randomly by the user
or by the system at predetermined points in time.

Opponents of deferred validation argue that processing an entire database is expensive.
I.,c -'^F, -r-ed ch-ckdng is a dedicated, time-intensive orccess. T' wever. in most laboratories
developing simulation models, validating an entire database is a task that can performed over-
night when the database is idle. Local databases are often small enough that they can be vali-
dated during a lunch hour. Although we have not yet performed extensive studies or timings,
our initial results suggest that many interactive database applications resemble the situations
we have observed.

Referential integrity checking in IID entails four rules: The first rule requires non-null
key values. The second restriction, also regarding key attributes, insists that key values be
unique. The third rule addresses inclusion dependencies between foreign key and key attri-
butes. However, before applying these rules to a database, deferred RIC first checks for dupli-
cate tuples in each relation. Although the set-oriented theory underlying relational databases
precludes duplicate tuples, relational DBMS implementations do not enforce their uniqueness.
The need for this type of validation check was motivated directly by a simulation study where
duplicate tuples were responsible for extreme errors during selections that involved aggregation
functions, such as count and sum.

RIC algorithms corresponding to the above four criteria have been incorporated into IID.
These procedures use information, such as keys and interlinks, encoded in the metadata net-
work described in subsection 4.2.2. Because interlink mappings are identified by syntactic pat-
tern matching across common attributes of relations, the RIC facility automatically generates
the procedures necessary to validate referential integrity for any given relational schema.

In the following four subsections, we explain the method we have adopted for implement-
ing each RIC rule. We also provide examples in each subsection demonstrating an application
of the rule's procedure to the WORLD database. The entire RIC process produces four error files
corresponding to each RIC rule. The examples shown below are extracted from these output
error files.



39

4.3.2.1. Unique tuples

The algorithm for validating uniqueness of tuples uses the Lingres (and corresponding
Ingres) functions "count" and "countu[nique]." Both count and countu must return the same
number of tuples to ensure uniqueness. We present portions of the error file, recording dupli-
i t . -i, . ,- Fig. 19. Li he WORLz database, tileie .1y wit v DCuifidnCt of k duplic.te
tuple, found in the ECONOMY relation.

Checking for duplicate tuples in all relations

Relation COUNTRY:

There are no duplicate tuples in COUNTRY.
Check completed

Relation ECONOMY:

There are duplicate tuples in ECONOMY.
Check completed

Fig. 19--Checking for duplicate tuples



40

4.3.2.2. Non-null keys

To check for a null value among key attributes, the procedure constructs a retrieve com-
mand selecting those tuples with a null key value. If the retrieve is successful, that is, if it
returns at least one value, then this integrity constraint is violated in the selected tuple. Oth-
ervvvbt, t L ,•Aa1 -c_ ~ : . , nen-nu'l keys is satisfied. In Fig 20, we apply this
constraint to the FAUNA relation. For relations with multi-attribute keys, such as FAUNA, this
procedure identifies tuples where any of the key attributes are null.

Chck-ing for null values in key attributes of the relation FAUNA.

The key attrlb'tes are ("COUNTRY" "ANIMAL"):

LONG: 75
LAT: 60
DISTFEATURE: trunked

ANIMAL: elephant
COUNTRY:

LONG: 75
LAT: 60
! STFEATURE:

ANIMAL:

COUNTRY: Indla

LONG: 15
LAT: 60
DISTFEATURE:
ANIMAL:
COUNTRY:

End of null-key check.

Fig. 20-Checking for null keys



41

4.3.2.3. Unique keys

Validating key uniqueness requires a retrieve command that selects all tuples where (1)
key attributes have the same value and (2) non-key attributes have different values. Selected
tuples are flagged as corrupt. This procedure will not identify duplicate tuples because
nonuniqueness of non-key attributes also holds. Therefore, for duplicate tuples the qualifica-
tion is not fulfilled. Figure 21 shows uniqueness checking for the relations VEGETATION and
FAUNA. No violations were identified in VEGETATION, but two tuples were found in FAUNA

with the same value for the key attributes ANIMAL and COUNTRY.

Verifying Uniqueness of Keys for all relations

Checking for non-unique values of the key ("ZONE") in the relation VEGETATION
Pass completed for the key ZONE")

Checking for non-unique values of tne key ("COUNTRY" "ANIMAL") in the relation FAUNA
LONG: 75
!AT: 60
DISTFEATURE: burning eyes
ANIMAL: tiger
COUNTRY: india

LONG: 75
LAT: 60
CISTFEATURE: body-stripes
ANIMAL: tiger
COUNTRY: india

- .... eted for the Key ("COUNTRY. "ANIAL")

Fig. 21-Validating uniqueness of keys



42

4.3.2.4. Inclusion dependencies

Inclusion dependencies, unlike the previous three constraints, involve the comparison of
attribute values between two relations. This constraint uses interlink relationships expressed
between foreign keys and keys in the metadata network. The procedure verifies that the value
of qch n"--null f'reign key of one relation is a key value in the other relation participating in
the interlink. Our approach collects foreign key values by accessing attribute sets correspond-
ing to singly directed arcs in the network. Membership of each foreign key in the correspond-
ing set of key values is then verified. Verification of inclusion dependencies between the rela-
tions WEATHER and VEGETATION is demonstrated in Fig. 22. In this example, ZONE is a key in
VEGETATION and a foreign key in WEATHER. The procedure recognizes that the foreign key
value "mediterranean, " found in WEATHER, is not a key value iii VEGETATION.

Above we have discussed three categories of IID functionality in terms of the phases of
DBMS use for deriving private databases:

(1) explanation and browsing to support mental modeling
(2) automated data manipulation to facilitate conceptual retrieval
(3) interactive consistency checking to enable semantic validation

In each category, the representation and maintenance of semantic metadata constitute the
basic foundation for specific IID capabilities. The underlying object-oriented representation
for the requisite metadata, including the general IID architecture, is the subject of the next sec-
tion.

Verifying inclusion Dependency over all links

Inclusion Dependency Check for the path between the relations WEATHER and VEGETATION

Relation WEATHER:

ZONE: med" terzanean
ZONE: temperate
ZONE: t roplc
ZONE: tundra

Pelation VEGETATION:

ZONE: equOatorial
Z ON: temperate

ZONL: tropic
7f1:.': tujndra

The followmq key values do not- ex;ist in tne relation VEGETATCN:
Fig. 2- n i drrar uans e .

Fig. 22-Verifying inclusion depen' encies



5. IID ARCHITECTURE

The IID software system is composed of three major components: the user interface, the
ID kernel system, and IID knowledge bases. These components are shown as shaded modules
in Fig. 23. The user interface is a self-contained set of window and menu routines that provide
a graphical interface to underlying liD modules. All lID interaction through the graphical user
interface can also be achieved interactively and programmatically using lID commands. The
IID kernel system, an object-oriented conceptual framework, serves as the primary processing
component. The kernel system itself consists of two layers: the Lingres layer, which tightly
couples Lisp and Ingres; and Lquel, which is an extended dialect of Quel with a Lisp syntax.
The third major component of the IID comprises the object-oriented knowledge bases. These
information sources model the semantics of the database domain. Explicit representation of
these semantics is necessary for IID processing.

liD kernel

Private KBII

! I
I I Lquel

t Public KB !

! I

! I

User interface

Control flow._( )

Data flow

Fig. 23-IID architecture

43



44

IID is implemented primarily in Lisp, with a small portion of code written in C. The

decision to implement lID in Lisp was made early in the development stages and was based on

a number of factors. One important benefit is Lisp's interactive nature, which includes both

an interpreter and a compiler. By implementing Ingres DBMS commands in Lisp, the com-

mands can be invoked interactively or called from a program. This feature not only aids in

debugging code, but also supports incremental program development. Another consideration in

favor of using Lisp is the availability of an integrated object-oriented language for each dialect

of Lisp: Flavors for Franz Lisp, and Common Lisp Object System tor Common Lisp. These

object systems combine multiple inheritance with a rich set of method combinations into a sin-

gle object system. Above, we presented many snapshots of the user interface corponent; in

the following subsections we focus on a discussion of the IID kernel and knowledge bases.

5.1. IID KERNEL

Commands issued to IID through the user interface are passed or. to IID's object-oriente,

kernel. This Lu,,, ,nent provides a domain-independent environment for modeling and reason-

ing about relational database entities. In the IID kernel, only the Lingres layer is DBMS-

dependent and serves as the interface between Ingres and Lisp. All other modules of the lID

kernel are DBMS-independent. The dictionary kernel incorporates knowledge about DBMS

generic concepts such as relations, attributes, and joins. During lID user interaction, kernel

processing combined with domain-specific IID knowledge bases instantiates these generic con-

cepts with entities from an application database. By reasoning about database structures and

domain entities, this combination enables facilities like verbose mode, consistency checking.

and intelligent join.

5.1.1. Lingres

The Lisp to Ingres substrate (Lingres) provides low-level access to an Ingres DBMS for

manipulating relational entities, such as creating and destroying relations; retrieving, append-

ing, and deleting tuples; and modifying permission controls. As shown in Fig. 23, Lingres insu-

lates the remaining IID components from the Ingres DBMS; therefore, all communication with

Ingres is channeled through Lingres. Its capabilities are similar in functionality to those

offered by Kee Connection, an expert system tool interface (Intellineis, 1987). However, lID

exhibits additional capabilities that Kee Connection does not support. The most time-

consuming operation of lID is communicating with Ingres; therefore, Lingres improves lID effi-

ciency by duplicating Ingres metadata, thereby reducing communications with Ingres. Further-

more, because most of liD's specialized processing (e.g., referential integrity checking and

Intelligent Join) involves tuple retrieval, lID supports "interactive retrieval control." This

feature allows a combination of "set-at-a-time" and "tuple-at-a-time" processing. Query opti-

mization and navigation are conducted (in Ingres) as usual; however, after each tuple is

retrieved, control is returned to IID. At that point, a user or application program may decide

how to process the tuple. For example, if lID was interfaced to an object-oriented simulation

system, the tuple could be used to instantiate an instance of an object class, thereby generating

an instance from a relational tuple. The user or application program can also decide whether

to continue or abort the retrieval process. Often, only a subset of the retrieved tuples are actu-

ally needed. The flexibility and robustness of Lingres' query processing makes possible lID's

active scrubbing and derivation capabilities.



45

5.1.2. Lque4

Although Lquel and other preprocessors are similar in functionality, the design of Lquel
significantly differs from those of preprocessors such as Embedded Quel or Embedded SQL.
Lquel is neither a preprocessor nor a set of macros. Rather, Lquel combines an oj,.c-nriented
hierarchy of database schema entities with a collection of methods that implement DBMS
commands for the database entities represented in the hierarchy.

In IID's kernel component, the layout of a relational database is captured as an object-
oriented model. Class objects are created for "databases," "relations," and "columns." At the
root of the hierarchy is a database manager, whose task is to manage the various databases
that have been "opened" and initialized by IID. (Although previous examples _tave dealt only
with a single database, IID can interface to more than one database during a single IID ses-
sion.) Each time the current database is set to an unopened database, a database instance is
created and added to the set of opened databases. By retaining a model of the databases
opened, the user can switch IID's focus among multiple databases by setting the current data-
base to another database instance. A database instance has the task of managing its relations'
instances and range variables. DBMS commands (for example, to create a relation or edit
some of its tuples) can only be performed upon the current database or one of its relations.
When a relation is referenced for the first time in an Lquel command, a relation instance is
created and added to the database instance's list of managed relations. Likewise, a relation
instance has the task of managing its columns' instances. Relation creation automatically
triggers the creation of column instances, one per relation column. Thus, Lquel's object-
oriented model is an n-ary tree of depth 4, as shown in Fig. 24.

Lquel's public interface facilities consist of messages in Flavors or generic functions in
CLOS. The advantage of these facilities (over conventional functions) is that they can be
easily tailored by a programmer. Using Flavors or CLOS method combinations, a programmer
can modify the operation of an Lquel command by adding new methods. Furthermore, public
commands are associated with specific classes so that the Lquel layer is a natural represunta-
tion of a relational schema and database. For example, commands for creating and destroying
a relation are governed by methods associated with the class "database"; however, methods for
adding, deleting, and modifying tuples are associated with the Lquel class "relation."

Central to Lquel's processing is a parser that translates Lquel expressions into equivalent
Quel syntax, which is subsequently transmitted to Ingres. The parser not only checks the syn-
tax of Lquel expressions, but a-o verifies the semantics of the query. For example, if a column
in a particular relation is referenced, then (1) the relation must exist, (2) the relation must
include the named column, and (3) the column must be of the proper type. Lqtel implements
a full set of arithmetic operators, comparison operators, and functions including aggregate
functions, which can be used ;n - targetlist or qualification.

5.2. ID KNOWLEDGE BASES

The IID componeits we have discussed so far are both domain-independent and
database-independent. Knowledge and semantics that are database-specific are maintained
separately in IID knowledge bases. The IID kernel, specifically the Lquel processor, makes
extensive use of database semantics for processing IID user requests. Domain-dependent infor-
mation for a particular database resides in at least three se -rate data and knowledge bases:



46

(Slots:

DatabasesDataase Current-database
M g Generic Functions:

Sef current-database

Slots:
Relations
Range-variables
Owner

Generic Functions:
Slots:se Database n Find-relation

Range
Owner Create
Mydatabase Destroy

Relation Relation m Generic Functions: Retrieve
Find-column Retrieve-into

I IInsert

Mr EliminateI I Change
I \Permit

F-'--J-"-, fSlots:
(Column11 } ( Column1 ,),, Type

| Bytes
\ Myrelation

Fig. 24-Lquel hierarchy of instances

the relational database maintained in Ingres, the "public" knowledge base represented as
object-oriented information, and one or more "private" object-oriented knowledge bases. Fig-
ure 23 depicts these domain-specific repositories as modules.

The relational data correspond to an external database that is distributed by agencies to
particular sites. This database is the source of all "value" data retrieved in response to lID
queries.

A "public" knowledge base corresponding to a domain database is one of many possible
knowledge sources representing the semantics of the relational database. A single public
knowledge base exists for each database, and it can be regarded as the default semantics appli-
cable to the domain database. This information must be collected from application specialists
who understand not only the domain, but also how domain entities are represented in the
extensional data. Because the external databases are usually distributed without a schema or
conceptual model, acquiring consistent and complete semantics is a major effort. However, if
such an effort is not undertaken, the responsibility for understanding the database semantics is
left up to each individual user and is rarely performed in a thorough or consistent fashion.

The second source of knowledge, "private" knowledge bases, represents semantic informa-
tion derived by a user for a specific application such as a simulation model. These knowledge
bases augment the public knowledge base and will override its default semantics. In a private
knowledge base, views can be derived to store aggregated information necessary by a particular
user. We envision users building many private knowledge bases representing different views of



47

the domain database. These different views provide different perspectives of the external data-
bases and aggregate data at different levels of abstraction. In total, the set of public and
private knowledge bases can be regarded as a library that is an integral part of the III
environment.

The knowledge bases are organized as object-oriented instances representing semantic
information. These instances are read by the IDI kernel and used to populate the ILquel
hierarchy shown above. In Fig. 25 we present portions of the knowledge files that correspond
to information presented during browsing in Figs. 5, 8, and 10. Once the knowledge bases are
loaded and initialized by the III kernel, all III processing is applied to the Lquel hierarchy.

;;Relation Declarations

(defrelatlon fauna

:flavor-type 'Relation-suppiernent-extension
:nare-explanation "The FAUNA relation contains descriptions of animals

in particular regions"
:description "Each record associates a country with an animnal."

:key-list '((country animal)))

Interlink declarations

(definterlink

:flavor-type 'Interlink-supplement
:name '("nas-inhabitanits" "lives-at)
:link-flavor-type 'Link-supplement
:from-relation 'country

:from-columrn-list I'(country)
:to-relation 'fauna

:to-columrn- list ' (country)
:Cardina "ty ' (:ZER0-mANY :ONE))

Column dec'arat'ons

(de fool umn country

:flavor-type 'Codietable-columnn-supplement-extension,
:descrlptlon 'country name"
:data-type 'character
:field-length 8
:inforrration-source "Defense Mapping Agency"

:year-recorded 1985
:validation ' (codetable *COCNTRYCCDE')
:validation-explanation "The value c! cc~ntry 7-ist on a 2 ca.co

abbreviation found in the c-ndetable
*count rycu~de*.

:codet able 'COUNTRYCODE'
:verbosity ' (codetable -CO' NTRYCODE,'
:verbosity-explanatlon "in 'VERBODSE-MCDE*, the c o 'um CCCNTRY i

expat:d-d .- xits aib reulat ion tot *hef,:
'ontry nare usI'1c the codetable

:-ryrelations ' (cou,' ry enononry riaw-d7 fe faina))

Fig. 25-IID knowledge base declarations



48

5.3. IID RELATIONSHIP TO SIMULATION ENVIRONMENT

Above, we presented a "micro" view of IID, its system architecture, and its Lisp imple-
mentation. In closing this section we also "zoom out" and describe a "macro" perspective of
where IID fits into a simulation environment. In Fig. 26, we show how IID serves as an inter-
face between derived simulation databases and simulation systems. In this role, the dictionary
will operate transparently to (1) hide access to the external databases and (2) automate com-
munication between simulation databases and simulation control processing. This diagram
identifies a "simulation builder," who interacts with IID to generate the required simulation
database. After the necessary databases have been derived and scrubbed and the simulation
system has been developed, the "simulation analyst" interacts directly with the simulation sys-
tem and indirectly with IID and the simulation databases. Although this depiction represents
a simplified view of IID, it is intended to illustrate the role that IID plays in a simulation and
modeling environment. In subsection 7.1, we present the use of IID in a specific application
environment and discuss the benefits that it has afforded simulation develoners.

Simulation Simulation
builder analyst

Intelligent Information
DictionaryNo Smltn

Serves as semantic-based system
interface between external

databases and userisimulation

Control flow
Derived

External simulation Data flow

databases database]

Fig. 26-IlID within a simulation environment



6. RELATED RESEARCH

The research we have conducted during the development of IID relates to work in four
areas: metadata management; metadata use to interface expert systems and DBMS systems;
automated query composition; and integrity checking. The following four subsections discuss
how IID contributes to each of these topics and how it contrasts with other efforts in these
related fields.

6.1. METADATA MANAGEMENT

Other research, similar to IID research, that addresses browsing and explanation is often
referred to as metadata management. Mark and Roussopoulos (1986; 1987) approach metadata
management through self-describing data models. They are developing capabilities, similar to
IID capabilities, to initially browse through a schema to learn about the database and then
proceed to access the data. They are applying their model to facilitate standardized informa-
tion interchange. In their application, however, they are not dealing with semantic aspects of
the data and therefore have not incorporated domain-specific knowledge for explanation and
validation.

Information Resource Dictionary Systems have also been the subject of considerable
research (Dolk and Kirsch, 1987; Kerschberg, Marchand, and Sen, 1983; Navathe and Kersch-
berg, 1986). The scope of IRDS embodies the major activities, processes, information flows,
organizational constraints, and concepts of an "Enterprise Model." In the past, IRDS were
considered primarily as a design tool for information modeling and database design. Only
"active" data dictionaries were used during batch DBMS operation or real-time transaction
processing. Goldfine (1985) describes IRDS specifications according to the National Institute
of Standards and Technology (NIST). This standard describes a kernel set of basic data dic-
tionary capabilities plus a collection c idependent optional modules. So far, three additional
modules have been specified dealing with security, application program interface, and docu-
mentation. Because interactive use of a DBMS and data dictionary has not been feasible until
recently, traditional information management processes do not cover casual users exploring a
database, deriving new databases, or sharing personal databases. The emphasis on program
interfaces and the neglect of interactive tools are evident in the specification. However, we are
seeing efforts extending the kernel IRDS specification to support interactive environments
(Kossman, 1987), and we expect that the functionality offered by IID will become necessary as
interactive information systems proliferate.

6.2. INTEGRATING EXPERT SYSTEMS WITH DBMSs

The functionality that IID provides applies not only to simulation processing but also to
the use of databases for expert systems processing. Until now, database systems and expert
systems have lived in their own worlds. Although a general consensus exists that these two
technologies could benefit each other, implementation of turnkey versions of such a combined
system is unlikely in the near future. Current efforts toward the development of expert system
knowledge bases are requiring extensive knowledge acquisition and hand coding.

49



50

An alternative approach is to find a convenient way for an expert system to interact with
an existing database system in an efficient and effective manner. Research efforts toward
integrating DBMSs with expert systems have adopted techniques similar to those in lID, that
is, the use of semantic metadata to bridge the data-flow gap between expert system and DBMS
technology (Brodie, 1988; Lafue, 1983). Commercial products such as Intellicorp's Kee Con-
nection are starting to address the need to interface databases with expert systems (Schur,
1988). Academic efforts in this direction include Kadbase and Difead. Kadbase is a distrib-
uted network database interface between database management systems and knowledge based
system components of an integrated CAE (Computer Aided Engineering) system (Howard and
Rehak, 1989; Rehak and Howard, 1985). Difead (Dictionary Interface for Expert Systems and
Databases) couples a medical diagnosis system with a relational system (AI-Zobaidie and Grim-
son, 1987). In these systems, which concentrate on integrating DBMSs with other application
systems, it is important to maintain a clear distinction among the components of the interface
that are (1) DBMS-dependent, (2) application-dependent, and (3) independent of the systems
being integrated. In lID, the knowledge bases (shown in Fig. 23 as "Public KB" and "Private
KB") are the domain-dependent system components. The Lingres subsystem (also shown in
Fig. 23) is the only DBMS-dependent module in lID.

6.3. AUTOMATED QUERY COMPOSITION

Providing tools to help DBMS users compose ad hoc queries is a topic getting more atten-
tion with the increased interactive use of DBMSs. liD's Intelligent Join facility is one effort
in that direction. The basis for IJ processing is similar to that of other automated query com-
position approaches, namely, the universal relation model.

The universal relation model aims to achieve complete access-path independence by
relieving the user of the need for logical navigation among relations. It assumes that for every
set of attributes there is a basic set of relationships that the user has in mind. In lID, those
basic relationships are represented as metadata in the form of interlinks. Research by Neuhold
and Schrefl (1988) addresses the dynamic derivation of personalized views based on the univer-
sal relation model. Their approach uses an intelligent knowledge-based system to assist a user
in concretizing a hypoth tic user view when queries are processed. The results of their work,
as well as of IJ, free the user to a large extent from having to learn about the sometimes com-
plex database schema and navigate on the logical level through that schema.

Other query composition efforts, which do not rely on the universal relation model, have
incorporated a knowledge-based component representing the semantics of the database domain.
The prototype language INQUEL (INtermediate QUEry Language) is a pseudo-intelligent
front-end retrieval system (Jones and Shave, 1987). INQUEL allows the pre-definition of
retrieval instructions corresponding to a user concept. INQUEL requires two types of domain
knowledge: explic;t schema metadata found in traditional data dictionaries, and implicit rela-
tionships between relations expressed in a syntax similar to liD's interlinks. Another project,
conducted by Park, Teorey and LaFortune (1989), is using semantic knowledge of data
integrity and information on access paths for the collective processing of multiple queries in a
distributed database environment.

The Rabbit system, an intelligent database assistant, relies upon a novel paradigm for
retrieval, namely, retrieval by reformulation. In this approach, the user composes a query by
incrementally constructing a partial description of the items in the database that are desired.
Rabbit responds with an example fulfilling the user's partial description. The user then



51

interacts in a dialogue with Rabbit to interactively reformulate the query until it fulfills the
user's description. Rabbit uses a database represented in the KL-ONE (Brachman and
Schmolze, 1985) knowledge representation language. Therefore, all necessary semantics for
query reformulation are incorporated directly within the database.

6.4. INTEGRITY CHECKING

Two different approaches can be applied to enforce referential integrity. One method,
immediate integrity checking, prevents integrity violations through the use of triggers and
demons and is intimately integrated into the data manipulation routines of the database. With
the exception of Sybase (Howe, 1986; "Sybase for the on-line enterprise," 1990), we know of no
commercial DBMS (excluding PC-based DBMSs) that enforces referential integrity in real
time during database manipulation. Sybase supports immediate integrity checking by the
inclusion of triggers. A trigger is a stored procedure that is invoked transparently by the sys-
tem during database modifications such as insert, delete, or update. Triggers can cascade
changes from one relation to another; likewise, triggers can disallow or "roll back" changes that
would violate referential integrity, thereby canceling the attempted modification transaction.
While this approach ensures a consistent database at all times, the associated overhead is
usually high and does not always justify the excessive cost (Hatoun, 1988).

The second option, which we have adopted for IID, supports deferred referential integrity
checking. In this approach, update anomalies are not blocked or prevented. Rather, deferred
RIC performs a complete "sweep" of the database at regular intervals notifying the user of
inconsistencies. Research conducted by Casanova and Tucherman (1988) approach deferred
RIC by the use of a front-end monitor to the DBMS that enforces inclusion dependencies and
referential integrity. The monitor traces the operations a user submits during an interactive
session and can either modify an operation or propagate it, depending on semantic metadata
provided during database design. Propagation is implemented by executing new operations
when the session terminates, using summary data collected during normal processing.

Delayed integrity checking developed by Lafue (1982) focuses on value constraints rather
than on referential integrity. Nev-rtheless, Lafue presents results from experiments conducted
with both immediate and delayed checking and characterizes the databases that are good can-
didates for delayed checking. In particular, he argues that CAD (Computer Aided Design)
databases closely match the characteristics needed for using delayed checking most effectively.



7. CONCLUSIONS

In this final section we discuss our testbed application and the observations and results
derived from our domain analysis. Then we present the scope of this work and potential direc-
tions for future research. We close with some "lessons learned" and general remarks about the
potential contributions of a "production version" system in the spirit of IID.

7.1. APPLICATIONS

At RAND, one of the most heavily used databases for simulation and modeling applica-
tions is the Air Order of Battle (AOB) database. The AOB is acquired from the Defense Intel-
ligence Agency and is a data repository representing (1) military air resources such as aircraft
and airfields and (2) military command units in charge of those resources. The AOB stores
information for countries throughout the world. Because it is a classified database, we cannot
present specific examples of its schema or data. Nevertheless, we can describe our experiences
using the AOB as an IID testbed database and provide results on the performance of IID with
a "real-world" database.

The AOB is distributed in flat fiies on magnetic tape. Consistent with the manner in
which most publicly acquired databases are organized, very little conceptual modeling or data-
base design is performed. The data are organized into three general categories: airgroups, air-
fields, and units. These categories are the source of data for three main AOB relations in the
Ingres database management system. These relations contain approximately 2000, 7000, and
11,000 tuples, and the number of fields per relation ranges from 29 to 36.

Three characteristics of the AOB database make it a particularly good test case for IID
experimentation. First, no supplemental source of information exists explaining how airgroups,
airfields, and units are related. Although a cryptic manual exists, this manual is not available
to general users. Furthermore, no global schema or conceptual model of how entities are
related is included in the manual. Second, many abstractions and generalizations exist within
the AOB data, and without additional browsing facilities and query tools, these abstractions
cannot be identified or extracted from the monolithic mass of data. Finally, the majority of
the data in the AOB comprises encoded abbreviations and acronyms. Although the expanded
codes can be found in the manual, without IID there is no electronic explanation of these
codes.

One example of an abstraction that is ubiquitous in AOB applications is the hierarchy of
commanding units. In the AOB database, navigating from a superior unit to its subordinates
requires the interpretation of a complex binary encoding scheme, which originated with the use
of sorting machines for 80-character punched cards. Without automated facilities, retrieving
subordinate units is a nontrivial task. During our analysis of the AOB database we also
uncovered two anomalies related to the interpretation of encoded data. In the first case, the
interpretation of a field in a relation depends on the value of a field in another relation. In
another instance, the interpretation of a code value depends on the value of a field in another
record. Although these may be common practices in relational database organization, docu-
mentation explaining the adopted conventions is imperative. Our conclusions in this exercise
confirmed our convictions about the importance of semantic metadata in understanding and
retrieving fromn external databases.

52



53

7.1.1. AOB Knowledge Acquisition

Development of the IID public knowledge base included a preliminary knowledge acquisi-
tion activity. We conferred with users who had various levels of experience with the AOB
database and the Ingres DBMS. In all cases, users expressed the importance of working with a
"domain" expert, that is, a person who is very knowledgeable of the domain that the database
is trying to model. These experts do not necessarily understand how the AOB database is
organized, but they are well informed about air resources, such as command hierarchies, mis-
sion planning, aircraft equipment and modifications, and troop strength. We used their
knowledge to build a conceptual model of the AOB without regard for the Ingres AOB organi-
zation. Once the conceptual model was clearly documented, we began mapping entities and
relationships in the conceptual model to DBMS entities (relations, columns, etc.) in the Ingres
AOB database. We augmented our global expert knowledge with local information from the
AOB manual, such as descriptions of record fields, interpretations of encoded values, and legal
values and ranges for record fields. As a result of this effort, we built the object-oriented AOB
knowledge base representing the domain-dependent component of lID.

7.1.2. Benefits of IID-AOB Facilities

During the development and use of IID for the AOB database, we observed how different
IID capabilities were used and which were the most valuable under certain conditions. Because
the AOB was delivered with essentially no documentation, IID's passive browsing facilities
were extremely helpful, especially the descriptions of interlinks, columns, and codes. Without
interlink descriptions, users unfamiliar with the AOB domain had no information to guide
them in query composition and join processing. In addition, column and code descriptions
were ..:, We in helping users build a conceptual model of what the AOB contained.

The active capability that was most valuable was IID's verbose mode. Most of the AOB
data are symbolically encoded; therefore, interpreting the value of fields in a relational tuple is
impossible without looking up the meaning of the acronyms. With verbose mode enabled, all
codes are expanded during retrieval. Because the AOB database contains only three significant
relations and two interlinks between pairs of relations, the Intelligent Join facility was not
exercised as often as it would be with many more relations and interlinks. Nevertheless, it
could be used for submitting queries consisting of only target lists, excluding necessary join
clauses. We executed deferred referential integrity checking on a diskless single-user Sun 3/50.
By applying deferred RIC, we uncovered one airfield tuple that was recorded without its key
field, the "Basic Encyclopedia" number. For the three relations profiled in Fig. 27, RIC con-
sumed 36 cpu (central processing unit) minutes and 162 clock minutes. Although we have only
collected performance data for the AOB relations, our results provide a rough estimate of time
requirements. IID-AOB has been installed in our simulation and modeling laboratory and is
being consulted by AOB users.

7.2. SCOPE OF THE IID PROTOTYPE

IID was developed as a "proof of concept" prototype to demonstrate the need and benefit
of a facility representing semantic metadata. To this end, it was not feasible to deliver a "pro-
duction version" product. The shortcomings we discuss below are not inherent flaws in the
conceptual design of IID but rather the result of a development environment with limited
resources.



54

relation # tuples # chars/tuple # attributes I attributes/key

unit 7767 180 31 4
airfield 2387 100 29 1
airgroup 11198 150 36 2

Fig. 27-Profile of AOB database relations

The user interface is one component that could be extended to provide more sophisticated
giaphical presentation of metadata and explanation facilities. In many external databases,
spatial location of entities is a major determinant in whether or not the entity is included in a
simulation database. Ideally, an IID user interface should have facilities to plot spatial geo-
graphical data and to access and aggregate data corresponding to graphically displayed data
points (Neuhold and Stonebraker, 1988).

Limitations of Intelligent Join processing are reflected in both performance and func-
tionality. We have recognized that IJ processing is a variation of graph traversal problems
that are nondeterministic polynomial-time complete (NP-complete). However, we assume that
the number of relations in realistic situations will be small enough that our implementation of
network traversal will be within the limits of our computational resources.

In terms of IJ functionality, the structure of our metadata network expresses interlink
relationships between two relations but does not derive other more complex relationships. For
-- ample, the equijoin of two relations may result in a derived relation that expresses a new
"key/foreign key" relationship with a third relation. This situation arises when two (or more)
attributes in the dp-ivd relation form the foreign key for a multi-attribute key in a third rela-
tion. Currently, these "second order" relationships are computed dynamically during IJ pro-
cessing by navigating through the IID metadata network. In the future, we will be exploring
the option of capturing and representing all relationships (including "second order" relation-
ships) when the metadata network is generated. We expect the computational performance
benefits of pre-storing all relationships to outweigh the costs of additional storage.

Although a theoretical discussion of referential integrity does not include the problem of
duplicate tuples (since the relational theory does not allow duplicates), we have recognized that
duplicate tuples can occur in practical DBMS settings. Therefore, we have included the detec-
tion of duplicate tuples in our referential integrity checking. Currently, the pro,.tdure to verify
tuple uniqueness determines only the existence of duplicate tuples. It would be desirable to
have an algorithm that could help identify these duplicate tuples without having to incur the
heavy cost associated with a naive implementation of it.

7.3. LESSONS LEARNED

Throughout the entire IID development process, we have been faced with challenges
relevant to the database scrubbing and derivation problems we were addressing. Our goal in
this section is to relate the lessons we have learned during the entire project life cycle.
Although we have not evaluated the success of the project and prototype in terms of improved
manpower productivity (or other quantitative measures), we have gained some insights into the
benefits of developing and using an information dictionary system such as IID. Our comments
are directed toward potential developers and users of information dictionary systems.



55

Early in the project we realized the need for a conceptual model of the databases being
represented. Although a conceptual model would not affect the physical or logical organization
of the databases, the modeling effort was necessary for establishing the entities, relationships,
aggregations, and generalizations that would be reflected in the metadata knowledge. To build
a conceptual model, we needed first to conduct a knowledge acquisition effort. Because many
AOB users were heavily influenced by the way the data were organized in Ingres, only the true
"experts" could give us an overall picture of the domain we were trying to model. This was one
activity of the IID development effort that consumed more time than we anticipated. When
we initiated this project, one of our original premises was that the physical organization of the
databases would not be changed. This premise was motivated by two factors. First, reorganiz-
ing the database to solve the derivation problem required a (nonexistent) conceptual model.
Second, existing applications would require modifications in order to be able to use the new
organization. However, during the course of this project we learned that a conceptual model is
necessary whether or not the databases are reorganized. Therefore, development of a concep-
tual model should not be the limiting factor; rather, the cost of revamping the applications
should be the main criterion in deciding whether to reorganize the databases.

One critical factor that affects user acceptance of computer systems is the interactive user
interface. This component of any interactive software system deserves its own design and
development effort whereby researchers in the field of human/computer interaction are
involved. Unfortunately, because of limited resources we could not embark on a sophisticated
user interface effort. Ideally, an interface that is more graphical would serve a better role in
IID than one that is more textual. Additionally, where the application lends itself to graphical
dispiay oi the data, those displays are key elements of the overall product. For example, in the
AOB database many entities had associated latitude/longitude values, and users expressed a
desire to see those points plotted on a geographical display. Although our underlying architec-
ture was robust and general, we underestimated the influence of a user interface in aiding tech-
nology transfer.

We also learned that building and integrating an information dictionary is a long-term
process. Initially, the costs of conceptual modeling and knowledge base development will
exceed the costs of former manual efforts for scrubbing and derivation. However, in the long
run, the benefits become obvious. For example, with lID-like capabilities, the scrubbing and
validation processes are performed only once, and they are facilitated by an interactive com-
puter system. This compares favorably with individual manual validation applied time and
again by each database user. Another clear LID benefit is the consistency of the validation pro-
cess. If two different simulation projects validate the same dataset using LID, the error reports
will be identical. Users cannot be assured of such consistency without facilities similar to
those supported by lID.

7.4. FUTURE DIRECTIONS

The Intelligent Information Dictionary is an evolving system. It can be extended along a
number of different dimensions including system enhancements, user customizations, and
domain specializations. Below we identify directions for future work to broaden the capabili-
ties and applicability of LID.

Early in the design of LID we decided to develop our own object-oriented rep-sitory for
maintaining and reasoning about semantic metadata. Because the volume of metadata is
minute compared with the quantity of extensional data, LID (in its current state) does not need



56

the indexing and secondary storage capabilities of a database management system. Instead,
IID requires rule representation and reasoning capabilities for its active derivation facilities.
In a next generation IID, however, we can envision at least two reasons to consider a data
management system as an underlying IID framework. First, semantic and object-oriented
DBMSs are becoming commercially available, thereby fulfilling our need for knowledge
management capabilities. Second, we wish to extend the concept of semantic metatata to
include not only schema information but also knowledge about individual data values. For
example, the "date last accessed," "date last modified," or "value reliability" are all attributes
of a particular data value. If metadata are associated with individual values, the quantity of
metadata will increase substantially, requiring the maintenance capabilities of a DBMS.

Closely related to the issue of extended value metadata are IID capabilities for version
and configuration management. Configuration management of both external and simulation
databases is a desirable feature. Users would like to be notified if any of their simulation data
have been invalidated by a new version of the external databases. Furthermore, they hope to
be able to pose queries about the changes that were enforced by a new version, such as: What
is the difference between the old and new versions of the F-14 aircraft data? To support this
feature, it is necessary (1) to extend IID to incorporate a version or temporal hierarchy for
organizing multiple versions and (2) to track and log the derivation of simulation databases
and to reason about operations that produced the resulting data. Another natural extension is
to consider the use of IID for distributed or heterogeneous data management. IID could
represent both a global schema and additional information about accessing and interfacing to
individual databases.

One major extension, which is orthogonal to issues described above, concerns the genera-
tion of "objects" from relations and associated metadata. IID was designed to augment the
semantics of a relational database; however, our long-term objective is the use of IID as an
active information dictionary within an object-oriented simulation language. In this role it will
provide a dynamic communication channel between an object-oriented semantic schema and
the corresponding relational instances of many diverse external databases. Although a great
deal of research has concentrated on mapping object schemata onto a relational model, little
work has been pursued toward a derivation of object hierarchies from relational schemata.

In the above discussion, we have focused on IID architectural enhancements. However,
IID can also be customized by a user for different application needs. By selecting the AOB
domain as our testbed application and building an IID-AOB knowledge base, we have
discovered the kinds of metadata that are useful to represent and maintain for modeling air
resources. Other domains may exhibit different needs from the kinds of semantics included in
the IID-AOB knowledge base. For example, IID's verbose mode proved very useful because of
the prevalence of encoded data values; applications that do not rely on acronyms and abbrevia-
tions would reap fewer benefits from verbose mode. In contrast, because the AOB database is
fairly static (i.e., it is not updated by its consumers), the need for histories of updated values
would not be great. However, a Computer Aided Design application may find the management
of temporal metadata to be valuable. IID was designed to be easily extensible by allowing
users to add slots to the descriptional templates for relations, columns, interlinks, and groups.
Therefore, not only the knowledge base can be customized but also the IID metadata frame-
work for different categories of semantic metadata.



REFERENCES

Allen, F. W., M. E. Loomis, and M. V. Manning, "The integrated dictionary/directory system,"
ACM Computing Surveys 14(2), June 1982, pp. 245-286.

Al-Zobaidie, A., and J. B. Grimson, "Expert systems and database systems: how can they serve
each other?" Expert Systems 4(1), February 1987, pp. 30-37.

Blum, B. I., S. D. Diamond, M. G. Hammond, M. E. Perkins, and R. D. Semmel, "An intelli-
gent navigational assistant for a decision resource database," Proceedings of the Third
Annual Expert Systems in Government Conference, Washington, DC, October 1987,
pp. 19-25.

Brachman, R., and J. Schmolze, "An overview of the KL-ONE knowledge representation sys-
tem," Cognitive Science 9(2), 1985, pp. 171-216.

Brodie, M. L., "Future intelligent information systems: Al and database technologies working
together," Readings in Artificinl rntc!ligence and Databases, Morgan Kaufmann Publishers,
Inc., 1988.

Burdorf, C., and S. Cammarata, "Prefetching simulation objects in a persistent simulation
environment," Proceedings of the Society of Computer Simulation Multiconference on
Object-Oriented Systems, San Diego, 1990.

Cammarata, S. J., "An intelligent information dictionary for the semantic manipulation of rela-
tional databases," Advances in Database Technology-EDBT '88, Springer-Verlag, Venice,
Italy, Marcli 1988, pp. 214-230.

Cammarata, S., P. Ramachandra, and D. Shane, "Extending a relational database with deferred
referential integrity checking and intelligent joins," Proceedings of the 1989 ACM SIG-

MOD International Conference on the Management of Data, Portland, OR, 1989,
pp. 88-97.

Casanova, M. A., and L. Tucherman, "Enforcing inclusion dependencies and referential
integrity," Proceedings of the 14th International Conference on Very Large Data Bases, Los
Angeles, 1988, pp. 38-49.

Curtice, R. M., "Data dictionaries: an assessment of current practice and problems," Proceed-
• -gs of the 7-.h Conference on Very Large Data Bases, Cannes, France, September 1981,
pp. 564-570.

D'Atri, A., and L. Tarantino, "From browsing and querying," Database Engineering 12(2), June
1989, pp. 46-53.

Dolk, D., and R. Kirsch, "A relational information resource dictionary system," Communica-
tions of the ACM 30(1), January 1987, pp. 48-61.

French, J. C., A. K. Jones, and J. L. Pfaltz, "Scientific database management (final report),"
Computer Science Report No. TR-90-21, Department of Computer Science, University of
Virginia, 1990.

Goldfine, A., "The information resource dictionary system," Proceedings of the Fourth Interna-
tional Conference Entity-Relationship Approach, Chicago, IL, October 1985, pp. 114-122.

Gray, P., G. Storrs, and J. du Boulay, "Knowledge representations for database metadata,"
Artificial Intelligence Review 2(1), 1988, pp. 3-39.

Hatoun, T., "Deferred vs. immediate checking for consistency of databases," Management
Information Systems Week, June 6, 1988.

57



58

Howard, H. C., and D. R. Rehak, "Kadbase: interfacing expert systems with databases," IEEE

Expert 4(3), 1989, pp. 65-76.
Howe, L., Sybase Data Integrity for the On-Line Applications, Sybase, Inc., Emeryville, CA,

1986.
Hull, R., and R. King, "Semantic database modeling: survey, applications, ,nd research

issues," ACM Computing Surveys 19(3), September 1987, pp. 201-260.
Intellinews 3(2), Intellicorp, Menlo Park, CA, January 1987.
Jones, P., and M. Shave, "A language for simple interactive retrieval from a database system,"

Data and Knowledge Engineering 2(4), 1987, pp. 303-321.
Kerschberg, L., D. Marchand, and A. Sen, "Information system integration: a metadata

management approach," Proceedings of the Fourth International Conference on Informa-
tion Systems, Houston, TX, 1983, pp. 223-239.

Kossman, R., "An active information resource dictionary," Proceedings of Ingres User Associa-
tion Meetings, San Francisco, CA, April 1987.

Lafue, G. M., "Semantic integrity dependencies and delayed integrity checking," Proceedings of
the 8th International Conference on Very Large Data Bases, Los Angeles, 1982,
pp. 292-299.

Lafue, G. M., "Basic decisions about linking an expert system with a DBMS: a case study,"
Database Engineering 6(4), December 1983, pp. 56-64.

Maier, D., J. Ullman, "Maximal objects and the semantics of universal relation databases,"
ACM Transactions on Database Systems 8(1), 1983, pp. 1-14.

Maier, D., J. D. Ullman, and M. Y. Vardi, "Equivaience of universal relation definitions,"
Report No. STAN-CS-82-940, Computer Science Department, Stanford University, 1982.

Mark, L., and N. Roussopoulos, "Metadata management," Computer 19(12), December 1986,
pp. 26-35.

Mark, L., and N. Roussopoulos, "Information interchange between self-describing databases,"
Data Engineering 16(3), September 1987, pp. 46-52.

McCarthy, J. L., "Metadata management for large statistical databases," Proceedings of the 8th
International Conference on Very Large Data Bases, Los Angeles, September 1982.

Motro, A., "A trio of database user interfaces for handling vague retrieval requests," Database
Engineering 12(2), June 1989, pp. 54-63.

Navathe, S., and L. Kerschberg, "Role of dictionaries in information resource management,"
Information and Management 10(1), January 1986, pp. 21-46.

Neuhold, E. J., and M. Schrefl, "Dynamic derivation of personalized views," Proceedings of th.-
14th International Conference on Very Large Data Bases, Los Angeles, 1988, pp. 183-194.

Neuhold, E., and M. Stonebraker, "Future directions in DBMS research," TR-88-001, Interna-
tional Computer Science Institute, Berkeley, CA, 1988.

Park, J. T., T. J. Teorey, and S. LaFortune, "A knowledge-based approach to multiple query
processing," Data and Knowledge Engineering 3, Elsevier Science Publishers B.V., North
Holland, 1989, pp. 261-284.

Rehak, D. R., and H. C. Howard, "Interfacing expert systems with design databases in
integrated CAD systems," Computer Aided Design, November 1985.

Rothenberg, J., "Object-oriented simulation: where do we go from here?" Proceedings of 1986
Winter Simulation Conference, Washington, DC, December 1986, pp. 464-469.

Schu, S., "Intelligent datahises." Database Pogramming cnd Design 1(6), June 1988,
pp. 46-53.



59

Shephard, A., and L. Kerschberg, "Constraint management in expert database systems," Expert
Database Systems, L. Kerschb( g (ed.), Benjamin/Cummings Publishing Company, Inc.,
Menlo Park, CA, 1986, pp. 309-331.

Smith, J., and S. Weiss, "An overview ,i hyp~rtext," Communications of the ACM 31(7), July
1988, pp. 816-819.

Stonebraker, M., and L. A. Rowe, "The design of POSTGRES," Memorandum No. UCB/ERL
85/95, University of California, Berkeley November 15, 1985.

"Sybase for the on-line enterprise," Corporate and Market Background, Sybase, Inc., Emery-
ville, CA, 1990.

Tou, F. N., M. D. Williams, R. Fikes, A. Henderson, and T. Malone, "Rabbit: an intelligent
database assistant," Proceedings of the Third Annual National Conference on Artificial
Intelligence, Pittsburgh, 1982, pp. 314-318.

Tsur, S., and C. Zaniolo, "Ari implementation of GEM-supporting a semantic data model on a
relational back-end," Proceedings of SIGMOL) 84, Boston, June 1984, pp. 286-295.


