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ABSTRACT

Lightning is a hazard to ground operations, missile launch
operations and recovery of the Space Shuttle at Cape Canaveral.
The Air Force is responsible for providing the forecasts of
lightning for these operations. In an effort to improve the
forecastin of cloud-to-ground lightning, neural networks are
being applied using the large data bases from the Cape Canaveral
area which includes Cape Canaveral Air Force Station (CCAFS),
Kennedy Space Center (KSC) and peripheral locations.

The initial study [1-3] employed the wind data from a
number of different levels on 32 towers to predict lightning
strikes in 16 blocks over Cape Canaveral for four time periods;
0-15 min., 15-30 min., 30-60 min. and 1-2 hours. The network was
trained by backpropagation using the data from one aay, z4 July
1988, nd wa- u-rified nn in8Pn~n8Pnt- riata frnm 9 .inv IQRR-
Comparisons were made with the convergence method of Watson et
al [4] and were found to give similar results. The neural net-
work results should improve with larger training sets and with
the addition of more of the readily available meteorological
data. Results of further training and the addition of ground
based field mill data are discussed.

INTRODUCTION

ANS is a sub-discipline of artificial intelligence which
deals with the relationships between sets of data. The excellent
meteorological and field mill data sets from Cape Canaveral are
being used as inputs and the lightning strike data from the
Lightning Location and Prediction, Inc. (LLP) system are used as
the output (predicted) data to train the networks. The objective
is to predict lightning location and time from the meteorologi-
cal and field mill data.
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The purpose of this paper is to report on four additional
extensions of the initial study. First, the training was expand-
ed to include two days; second, the wind convergence values of
Watson et al [4) were added as an input; third, five minute mean
values from the ground-based electric field mills were added as
input values; and forth, neural networks with two rather than
one hidden layers were investigated.

ADDITIONAL TRAINING DAY

The initial study trained on just one day, 24 July 1988,
and verified using independent data from 25 July 1988. Compari-
son with the Watson convergence was good as is shown in Table 1.

Table 1. Comparison of results

TYPE OF MEASURE WATSON ET AL INITIAL NETWORK

Probability of Detection 0.41 0.47

False Alarm Rate 0.57 0.56

Critical Skill Index 0.26 0.29

Two days, 21 and 23 July 1988, were added to the training
base. This larger data base improved the results. (Limitations
on the software and hardware of the MAC IIx restricted the
t-zai n " dat files Ito ilst two~ dqays W,.% "1 n n i-

restriction by connecting to large vax files through an ether-
net.) Figure 1. shows the probability of detection (POD) on the
independent data set, 24 July 1988. The hidden layer was run
with 5, 6, 7 and 8 nodes, and the line WLHD shows the POD
performance of the Watson convergence method. Note that there is
substantial improvement at 1 hour for the networks with 6,7, or
8 nodes in the hidden layer.

DIVERGENCE AS AN INPUT

Watson et al [4J shuwed that convergence over the CCAFS/KSC
area was a good predictor of lightning within 63-120 minutes,
and this technique is presently available and being used by the
Air Force forecaster. By adding these values as inputs to the
neural networks, improvements were made in the POD az sh1c.n in
Figure 2.
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USE OF ELECTRIC FIELD MILL DATA

The success of the networks with the 1 hour predictions
pointed out how poorly the predictions were for short lead
times. We felt that data from the ground based electric field
mills would help to improve the forecasts in the two shorter
time period prediction epochs. Inspection showed that these
field mill data were not very clean, so it was decided to take
five minute averages which is the same time average used for the
other data. Results of adding the electric field data are shown
in Figure 3.

The results for the two shorter epochs were iisappointing.
This is attributed to the fact that the data are rather noisy
and the impression that most of the information is in the rapid
changes of the signals rather than in the five minute averages.
This suggests that short term means and variances of the elec-
tric fields be used along with the LLP data to train a complete-
ly new ANS for short term forecasts of lightning employing just
the ground based field mill data.

These electric field mill results are preliminary but it
should be noted that one of the networks, the one shown with 10
nodes in the hidden layer in Figure 3, performed fairly well in
the "NOW" time epoch.

USE OF TWO HIDDEN LAYERS

ANS with two hidden layers are more powerful than ANS with
only one hidden layer. To quote trom the DARPA Neural NeLwork
Study [5, pages 79-80] "The utility of the backpropagation algo-
rithm stems from the surprising computational power of three-
layer perceptrons with two hidden layers. These networks can
form any desired decision region. ... They can thus emulate any
traditional deterministic classifier by producing the decision
region required by that classifier. Kolmogorov also proved a
theorem described in Lorentz (6] which, in effect, demonstrates
that a three-layer network can form any continuous nonlinear
function of the inputs. This proof requires carefully specified
nonlinearities with wide dynamic ranges. More recent theoretical
work [7] has demonstrated that continuous nonlinear functions
can be approximated to arbitrary precision using three-layer
perceptron with sigmoidal non linearities. A three-layer percep-
tron can thus create any continuous likelihood function required

a classifier, given enough nodes."

Tab !c 2. lists the steady state pass error for difrerent
training runs using wind data, convergence values, and field
mill data from the 21st and 23rd of July 1988.
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Table 2.

Nodes in Nodes in Steady state pass
1st layer 2nd layer average error

3 3 600

5 5 500

8 6 350

8 8 250

12 12 200

Since all these networks used the same data, the smaller
value pass average errors show improvements with increasing num-
bers of nodes. Comparisons on independent data will be necessary
to ascertain which of these networks is the best predictor.
Those with the larger number of nodes are not necessarily the
best predictors since they may be training specific and not have
generalized.

Figures 4 and 5 are derived from exactly the same neural
net program run on exactly the same data. The only differences
are that they were run on two different MAC IIx at different
times which meant that the initial weights, which were randomly
chosen, were different. The training runs seem to be similar to
about the 200th pass through the training data at which point
the pass errors starts to fluctuate. These fluctuations in pass
errors imply that both of these networks have wandered into
rough-textured regions of the error surfaces near minima but not
at minima. On the other hand, we do know that both are near
minima because the pans errors dropped and flattened out before
the fluctuations started. Since both runs exhibit the same
characteristic, it would indicate that both are at the same
minimum on the error surface which would suggest that they are
near the global minimum. This could be further investigated by
employing simulated annealing in the training.

CONCLUSIONS

Prediction of cloud-to-ground lightning using ANS improved
with a second day's worth of data used in the training. The
addition of the Watson convergence values improved predictions
at 1 hour. Five minute averages of electric field data did not
improve the short term predictions significantly, and perusal of
the data suggests that short term electric field variations be
used to improve the forecasting of lightning for periods up to
one hour. Details are provided in [8] and [9]. In addition, ANS
with two hidden layers were investigated and the results suggest
that a global minimum is being approached on the error surface.
Simulated annealing should be used in the training to test this.
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