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Final Report on DARPA Contract Number
N00039-84-C-0211
Common Prototyping Language

Richard P. Gabriel
July 23, 1991

The CPL project produced 5 results:

1. one of its members served as the technical editor for the CPL report,
producing the report enclosed, which was published in Sigplan Notices

2. the group explored some language extensions that are useful for prototyp-
ing

3. the group explored an architecture for a prototyping environment that
would serve as the basis for an open architecture using nearly off-the-shelf
tools

4. the group explored the theoretical foundations of the key feature of the
prototyping environment architecture

5. the group explored some ideas in visual prototyping based on the key
features of the prototyping environment

This final report includes copies of all publically presented or published ma-
terial that is a result of this project. The paper “Using CLOS-like Concepts in a
Prototyping System” was presented at the Common Lisp Object System Work-
shop, ACM Conference on Object-oriented Programming Systems, Languages,
and Applications, October 1989. The paper “Ten Ideas for Programming Lan-
guage Design” was presented as the keynote address at the High Performance
and Parallel Computing in Lisp Conference in Twickenham, England, Novem-
ber 1990. It also will be published in a forthcoming book. Material from both
papers was presented at the Second Workshop on Programming Languages and
Compilers for Parallel Computing in Champaign-Urbana, August, 1989.

Some of the material in “Annotations and Functors” has been presented in
the above conferences. The architecture very roughly described in this paper
has been transferred to a commercial group which has implemented it.

The other material has not been presented or published anywhere.
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Executive Summary

Prototyping is the process of writing programs for the purpose of obtaining information prior to
constructing a production version. Prototyping is used to increase the probability that the first
production version will be satisfactory. It is thus a tool for reducing risk. Prototyping differs from
production programming in that efficiency and completeness are often sacrificed in the interests of
rapid development and ease of obtaining information.

At present there is no widely available language or system designed explicitly to support proto-
typing. Prototypes are built using conventional implementation languages and software develop-
ment tools.

Recently, DARPA-ISTO indicated its interest in a research and development program leading to a
widely applicable and well-engineered, prototyping facility, preferably within four years. Though
the primary users of this facility are to come from the Ada community, the facility is to support
interoperability between prototypes and multiple implementation environments, particularly
Common Lisp. This draft report identifies some of the main technical requirements of such a
facility. This draft report identifies some of the main technical requirements for such a facility,
and is intended to provide a basis for involving broad segments of the software community in the
process of refining these preliminary requirements.

None of the individual requirements seems beyond the range of current technology. The challenge
lies in bringing together disparate technologies and integrating them into a single coherent well-
engineered system. The major difficulties are as follows:

e Wide Applicability: This forces the prototyping language to have an extremely broad scope
including parallel, distributed, real-time, and knowledge-based applications.

e Maulti-Language Interoperability: This forces the runtime environment to couple with target
environments beyond Ada, handling their data formats, invocation and argument passing
conventions, and exceptions.

o Four Year Time Frame: This limits the amount of preparatory research and new system
development that can be undertaken.

e Prototyping: The unique aspects of prototyping impose additional constraints and result in
new technological requirements some of which currently have no known complete solution.

Given these difficulties, the report suggests adopting an iterative approach in which interim
systems are built, each embodying different subsets of the identified requirements. An important
aspect of this will be to adopt a flexible, open architecture.

Prototyping 5
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Background

It is widely believed that the “waterfall® software lifecycle often used commercially and required
by DoD has served to exacerbate the problems of software development and maintenance by
delaying the discovery of incorrect or inappropriate specifications and requirements until the
testing phase that follows implementation. It has been estimated that the cost of correcting
such an error or bad decision increases by a factor of 10 for each phase of the waterfall lifecycle
through which it passes undetected.

One of the groups that recently considered this issue was the Defense Science Board Task Force
on Military Software 1987. That Task Force observed that writing a specification is like writing
a program without the benefit of a computer to help check your work. Current software systems
are so complex that even the most diligent thought process cannot envision them precisely and
thoroughly enough that a correct and appropriate specification can be produced. Two common
errors are to specify over-rich functionality and to poorly envision user interfaces. The trade-offs
that need to be made during detailed design and implementation cannot be foreseen by even the
best human specifier. [Brooks 1987

The Task Force therefore proposed the use of operational prototypes to refine and validate specifi-
cations through trial use and feedback, and an increased role for it within the lifecycle of military
software,

However, despite the apparent importance of prototyping and despite the fact that this discrep-
ancy had been noted in previous studies [Brooks 1987] [Packard 1986], no strong prototyping
tradition exists within either the commercial or the military software communities. In fact, the
importance of prototyping contrasts sharply with the existing fragmented support for prototyp-
ing. No widely available languages or environments exist specifically to support prototyping.
Most prototypes are written in a conventional language, usually the expected implementation
language for the final product. There are few tools for extracting information from prototypes or
for integrating prototypes with other prototypes and existing systems. Finally, few tools exist for
directly reusing existing components (either prototype or target language) or for encapsulating
them to adapt them for reuse. In short, with few exceptions prototyping relies on conventional
implementation languages and software development tools. This limits both the use of and bene-
fits from prototyping.

Recognising this state of affairs, DARPA-ISTO indicated its interest in a research and devel-
opment program leading to a widely applicable, widely accessible, well-engineered, prototyping
facility supporting the development, evolution, and use of prototypes for software products ulti-
mately to be developed in the Ada target language.

They invited the authors of this report to work together and with the software community to:

1. Determine whether technology exists or could be developed to build such a common prototyp-
ing system within four years and, if so,

2. Identify requirements that such an integrated language and environment ought to satisfy.

6 Common Prototyping System
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The authors of this report decided that it was important to answer these questions and that it
would be beneficial to involve broad segments of the software community in the process. Toward
that end, the authors organised themselves into a Common Prototyping Working Group and have
prepared this draft report to provide preliminary responses to these questions to solicit comments
and suggestions from the research, development, and user communities.

We have set up an electronic forum for anyone interested in providing comments and sug-
gestions on these issues or in monitoring such discussions. Send your electronic address to
CPS-REQUESTOISL.EDU to be put on the mailing list for this forum. The forum itself is
CPSQVAX.DARPA.MIL; messsages for distribution should be sent directly there. In addition, we
will be hosting sessions at the Software Development Environments and Principles of Program-
ming Languages Conferences to discuss these issues.

After a period of discussion, we expect to issue a final report. In the meantime, we see great ben-
efit from raising these issues, involving the community, and providing access to these discussions
to DARPA-ISTO and others interested in pursuing prototyping.

What is Prototyping?

Prototypes are often developed in order to determine whether some functionality may be obtained
in a software product, or to determine the possibility of effectively programming some task. Some
people refer to this as “exploratory programming.” In such situations, prototyping is part of the
discovery and invention process.

Prototypes are written in order to enhance the exploration process that goes into designing the
specification of a software. In the spiral model advocated by the Defense Science Board Task
Force, prototyping is used to assess risks associated with proposed solutions, algorithms, expected
performance, and coding strategies. In the exploratory programming model, prototyping is used
as an instrument to extend one’s understanding of the problem area and solution space. We call
this “prototyping to learn.”

Prototypes also provide a means for a group of designers, developers, customers, and users to
build a consensus and a shared context for understanding and discussing the software. Often
there is & tradeoff between the operational needs for particular software and the technical capabil-
ities of the designers and developers. Prototyping is a means of assessing the best tradeoff.

Prototyping is a tool for checking designs and for obtaining information about the nature of and
requirements for the final program. Prototypes are routinely used throughout the engineering dis-
ciplines, where they are called mockups, breadboards, or simulations. Given a proposed solution
to a problem, prototyping is used to answer three types of question: is it in fact a solution to the
posed problem; does it have acceptable performance, production cost, and reliability; and is it a
solution to the right problem?

From these considerations we are able to propose the following definition of prototyping:

Prototyping 7
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Prototyping is the process of constructing software for the purpose of obtaining
snformation about the adequacy and appropriateness of the designers’ conception of a
software product. Prototyping is usually done as a precursor to writing ¢ production
system., and a prototype 1s distinguished from a production system by typically being
more quickly developed, more readily adapted, less efficient and/or complete, and more
easily snstrumented and monitored. Prototyping is useful to the extent that st enables
information to be gained quickly and at low cost.

For prototyping to be most effective, it must be possible to quickly build the prototype (possibly
using existing software components), to easily gather data during its use, and to rapidly modify it
based on what was learned during its use.

Primary Distinguishing Characteristics of Prototyping

Kinds

We separate the discussion of prototyping into a discussion of the distinguishing characteristics of
prototypes, the kinds of prototypes, and their lifecycle roles. In our discussions of these issues we
will often contrast prototypes and prototyping with systems and programming.

Prototyping is distinguished from other software development activities by two basic characteris-
tics:

s Prototypes are used to obtain information about the behavior and performance of a
running system. To provide such information, prototypes should be capable of being fully
instrumented; the result of such instrumentation is that the execution of the prototype results
in the generation of data that either supplies or enables the inference of the needed informa-
tion. Examples of relevant instrumentation data are: what the prototype did, the relative
performance of tF< components, the frequency of use of components and data structures, and
information about control flow.

e Prototyping is a quick process. In a well-supported prototyping environment, producing
a working prototype should take significantly less time and effort than it would to produce a
working deliverable program with the same functionality.

The main things that can be sacrificed to achieve these capabilities are prototype efficiency and
completeness. Neither can be sacrificed completely, but each can be sacrificed to the extent that
the resulting models contain the necessary behavior and structure needed to answer the posed
questions while retaining sufficient performance under instrumentation to gather that information.
Occasionally one or the other cannot be sacrificed at all.

of Prototypes

Because prototypes are primarily used to obtain information, it is natural to categorise them on
the basis of the kinds of information they provide: behavioral and structural. In general, real
prototypes combine elements of both. Over their lifetime this mix may change as the questions
being asked of the prototype change. The flexibility implied by this changing mix is important.

8 Common Prototyping System
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Many of the requirements concerning ease of change, the ability to couple to other languages, and
the first-class nature of many things are derived from the need for this degree of flexibility.

Behavioral prototypes model what the system being prototyped is supposed to do. These black-
box models exhibit responses to stimuli. They include both functional models and user in-
terface mockups and may employ a variety of mechanisms—such as table lookup and human
intervention- -to provide those responses. They are the most common type of prototype and are
used to test whether the user's informally stated needs have been satisfied, i.e. for validation.

Structural prototypes model Aow the system being prototyped will accomplish its black-box
behavior. These clear-box models exhibit aspects of the internal structure and org isatioa of the
system being prototyped. They are used to determine feasibility, explore design alternatives, and
estimate implementation and execution costs.

Prototyping Lifecycle Roles

In the waterfall model common practice is to regard prototypes as throw-aways. There are,
however, many additional benefits to treating prototyping as an iterative process that begins
with system defnition and continues through the development and maintenance phases. As

a simplified high-level model of a system, a prototype can continue to answer many questions
about a system throughout the life of that system, but only if the prototype tracks the system.
Therefore, this prototyping process needs tools to help designers and programmers economically
coordinate prototypes and production systems.

During the lifetime of a prototype, the concerns of different parts of the prototype may repeatedly
and independently move between behavior and structure. In general, prototypes will not be able
to answer every question; frequently questions about performance of the production versions of
the program’s components must be answered by the production versions themselves. Therefore, to
be most effective in this situation, the protctyping process must be able to accommodate mixtures
of production and exploratory level components. This also facilitates reuse of com:ponents,
adaptation of existing systems, and prototyping components embedded in another system.

There are three basic ways of coupling the prototype into the software lifecycle:

o The prototype could be the basis for writing a specification. This is the coupling currently
employed in software practice where prototypes simply provide insight for subsequent but
decoupled specification and development.

o The prototype is the specification itself. As a formal model any prototype is at least a partial
specification of a system. Further, since it is written in a language that is executable, it can
be validated by testing. However, as a specification it is likely to be over-determined.

o The prototype is the initial implementation. Frequently, a prototype has components that are
quite inefficient and so may be far removed from production versions. There is, however, the
possibility of moving to a generative basis in which production implementations are derived
from prototypes by applying transformations to improve efficiency. Currently, such generative
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processes are almost exclusively manual, but formal processes such as transformations,
annotations (compiler pragmas), and special purpose application generators are beginning to
be used, and have the advantage of automatically preserving functionality.

These last two options pull prototypes in opposite directions. A prototype used as an initial
implementation might be more specific and operational, while a prototype used as a specification
might be more abstract and declarative. Because we believe that prototypes should be specific
and operational to answer behavioral and structural questions, we have eliminated the goal of
using prototypes as formal specifications. Henceforth, when we use the term specification in
conjunction with prototyping, it should be understood in its informal, non-technical sense.

Relationship to Programming Languages

Almost all the experience the software community has is with programming languages—that is,
languages used to produce operational production programs. Over the years, these languages have
become higher level by incorporating abstractions whose implementations are determined by the
languages’ compilers, thus freeing the programmer from this level of concern. This progression
will surely continue.

Many programming languages have been used for prototyping. Most prototyping experience
has been pragmatic and opportunistic, making use of existing technology because no alternative
existed.

A good prototyping facility must include a good prototyping language in order to be able to
express both behavioral and structural prototypes. But it must also support prototyping-specific
capabilities (detailed later in this report) for handling incompleteness, for supporting both early
and late bindings, for permitting easy modification, for allowing both imperative and declarative
styles, and for tight coupling with a target language. In addition the prototyping language

may not be a good programming language because it doesn’t meet production requirements for
performance and/or robustness.

Ideally, no language or environment boundary should be crossed in moving from a prototype to a
delivered system. But rather than doing prototyping in production languages and environments
as is the practice today, we envision developing, delivering, and maintaining software products in
prototyping languages and environments. This means raising our languages and environments to
the prototyping level, incorporating all the capabilities described in the rest of this report, while
simultaneously maintaining the current production qualities. This is one of the most promising
research directions and is described more fully in the Chapter “Related Research.”

Relationship to Specification Languages
The research community is developing specification languages and experimenting with integrat-
ing them into the software lifecycle. This is a young but rapidly emerging field, developing, in
our view, its own distinct progression of languages. These languages differ markedly from pro-
gramming languages: Rather than addressing efficiency concerns, they have abandoned efficiency
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entirely in an effort to describe the desired effects and properties of computations.

We are not attempting to advance the specification language progression. An important purpose
of prototyping is answering questions concerning the dynamics of a system, relating to both its
behavior and performance. To answer those questions the prototype must be executed, and its
execution must be sufficiently rapid to support gathering data. Prototyping thus emphasises
executing models, not describing them, and is therefore distinct from specification efforts.

Executable specification languages were developed to meet the needs of prototyping during
specification. Experience indicates that prototyping can be done in executable specification
languages, but many prototyping concerns (such as the ability to create structural prototypes,
handling incompleteness, supporting both early and late bindings, allowing both imperative and
declarative styles, and tightly coupling with a target language) are inadequately addressed by the
predominately descriptive nature of specification languages.

Feasibility

Much research remains to be done to understand the nature of prototyping and the support it re-
quires. One eventual outcome could be that prototypes could be evolved into deliverable systems
within a single language and environment that supports both prototyping and programming.

The problem of raising our application languages and environments to the prototyping level is

a long term research effort. But even if there were such a language and environment suitable

for both prototyping and programming, little inmediate benefit would be realised unless some
ezisting application language and environment were a subset of that language. That is, because of
the large investments in existing application systems, significant immediate prototyping benefits
only arise from systems that support the prototyping of software that ultimately will be delivered
in an existing application language.

DARPA-ISTO'’s short-term (four year) goal of constructing a widely applicable, widely accessible,
well-engineered, prototyping facility for software ultimately to be developed in Ada satisfies this
criteria. The Working Group felt that it would represent a big step forward in the availability of
prototyping capabilities for the Ada community and could act as a bridge between the Ada and
Common Lisp communities via its interoperability between those two languages. If properly done,
such an interim system could serve as a framework in which to incorporate future advances.

This report identifies requirements that such a system should satisfy. They are summaried at
the end of this chapter and detailsd in Chapters 2, 3, and 4. Our criteria were that each was an
important part of such a prototyping facility and that each was individually feasible, using either
existing technology or advances we could envision from a focussed research effort within a few

years.

Much of the technology needed to support these requirements already exists and has been incor-
porated and used in some running system, and the remainder appears manageable with respect to

Prototyping 11




Draft

Nov 11, 1988 17:12

both effort and time scale.

However, the challenge is in bringing together all these separate technologies and integrating them
into a single coherent well-engineered system rather than in satisfying any particular individual
requirement. In total, this challenge is daunting because of the breadth of issues covered. The
main sources of difficulty arising from the DARPA-ISTO goal are as follows:

e Wide Applicability: This forces the prototyping language to have an extremely broad
scope including parallel, distributed, real-time, and knowledge-based applications. Many
languages have addressed these application areas individually. but few except our most
general purpose languages has tried to cover them all.

e Multi-Language Interoperability: This forces the runtime environment to couple with
target environments beyond Ada, handling their data formats, invocation and argument
passing conventions, and exceptions.

e Four Year Time Frame: This limits the amount of preparatory research and new system
development that can be undertaken.

e Prototyping: The unique aspects of prototyping impose additional constraints and result in
new technological requirements some of which currently have no known complete solution.

To reduce some of these difficulties, the Working Group adopted an open-architecture approach
in which we limited the scope of many requirements or merely noted their desirability without
requiring them, with the expectation that over time more advanced versions of those capabilities

could be incorporated.

Thus we envision the growth of the prototyping facility to itself follow the prototyping paradigm
both during the definitional phase and during later enhancements.

Nevertheless, because we did not take overall cost and effort into account in determining
requirements—only their individual technical feasibility—the aggregate scope and magnitude
of the engineering is quite aggressive and unlikely to be feasible using a waterfall approach at-
tempting to embody all these requirements.

However, by adopting the iterative prototyping approach, we believe many useful interim systems
could be built, embodying different subeets of the identified requirements, which satisfy the
general goal of providing immediate significant benefits by prototyping software ultimately to be
delivered in Ada. Choosing appropriate subsets involves both technical and policy considerations.
For instance, as the understanding of prototyping improves, these requirements will evolve and
be refined. We are also concerned that the aggregate scope and magnitude of the engineering
needed to satisfy too many requirements in a single system may induce too conservative a design,
omitting the technical advances we feel are crucial for success.

An important task not carried out by the Working Group was to carefully evaluate existing lan-
guages and environments with respect to the set of requirements for prototyping. Although it is
felt that it is unlikely that any one existing language or environment meets all the stated require-
ments in its current form, it is clear that a number of languages and environments, including for

12 Common Prototyping System
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example Lisp, Prolog, SETL, APL, SmallTalk, ML, and others meet many of the requirements. A
careful analysis in each case will be helpful both in the task of better understanding the require-
ments as they stand, and in determining whether one or more of these languages or environments
might serve as an appropriate design base for a prototyping facility.

Objectives

We are concerned both with the language issues involved in a prototyping system and with
support for the process of developing and using prototypes. We believe the following are the key
objectives to be addressed by prototyping:

Ability to provide information: The main use of prototyping is to extract information from
executing a prototype or from the process of creating it. This information includes the
functionality of the prototype, its performance, its structure, and the design decisions it is
based on. This information must both be comprehensible and accessible. Tools and facilities
for gathering, analysing, and presenting both static and dynamic information are required.

Ability to quickly and easily produce a prototype: Prototyping will only be used if the benefit
to cost ratio is favorable. An important cost factor is the ability to use existing modules and
programs as components of the prototype; another is the expressiveness of the prototyping
language.

Low Inertia: Obtaining information from a prototype sometimes requires further changes to
the prototype. The language and environment must facilitate such changes by minimising the
effort required to make them and perform experiments.

Mixed Behavioral and Structural Use: To facilitate the use of prototypes throughout the iter-
ative exploratory and definitional phases, the language must support mixtures of behavioral
and structural prototypes and provide mechanisms to enable this mixture to vary over time.

To this list of prototyping objectives, we add the following growth objective:

Anticipatory: To facilitate incorporation of future improvements in prototyping technology, a
prototyping facility must be engineered to be adaptable.

Summary of Requirements and Desired Features

We have determined that the focus should be on prototyping systems, where a prototyping
system PS is a prototyping language PL, along with a prototyping environment PE.

This section summarises our key requirements and remarks on desired features. In the following
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chapters, we describe the reasoning that support these requirements and remarks, and provide the
complete set of such requirements and remarks on desired features.

We require something when we believe that leaving it out will seriously or fatally affect the
success of PS as a prototyping system. We remark that something is a desired feature when
we believe that it will improve PS as a prototyping system. We will always use the word shall to
mean that the statement is a requirement.

A rsquirement statement shall have the following format:
Requirement: [Requirement Format] All requirement statemens shall have this form.
A remark regarding a desired feature will have the following format:

Remark: [Desired Features] All remarks regarding desired features should be pithy and
interesting.

A System
We address in this section those issues that are not wholely contained in either PL or PE.

Architecture

The success of PS will depend as much on the degree of engineering put into it as on the scientific
advances it represents. The primary challenge for P§ is in integrating existing technology into a
coherent well-engineered system.

But PS is an example of a system which is far too complex to be fully envisioned in advance. Fur-
thermore, many of the capabilities it should ultimately contain can only be partially supported
initially. It must therefore support and facilitate growth.

We note that the most successful systems in terms of evolutionary growth are those that employ
an open architecture, facilitate user additions and modifications, and provide some facility for
fortifying, integrating, and incorporating user prototypes into the evolving system. An open
architecture is one with visible, coherent, open-ended internal and external interfaces. Examples
of such systems include X-Windows, GNU Emacs, Lisp, Smalltalk, Unix, and Tenex.

PS shall employ an open architecture and for its implementors to accompany it with a facility for
fortifying, integrating, and incorporating user prototypes into the evolving PS.

Multi-Language Interoperability

Prototyping does not exist in a vacaum: A typical organisation engaged in prototyping has
already produced a volume of software in the target language or languages. It has a number
of modules and other pieces of software that will form parts of future production software. To
minimise the effort to construct prototypes and to maximise their accuracy, it is desirable to
reuse these components.
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Such reuse should neither be restricted to source text nor to single-language systems. That is,
it should be possible to separately compile parts of a large system and use those parts in the
prototype. The process of putting together fragments of existing code in a prototype is called
composition, and this functionality should be expressible in the prototyping language PL and
supported by the prototyping environment PE.

This support shall enable components written in PL to invoke components written in the imple-
mentation languages (Call-Out) and vice versa (Call-In), and shall support all forms of invocation
supported by those implementation language as well as all value and/or exception passing mecha-
nisms.

PS$ shall provide this coupling to both Ada and Common Lisp, and it is desirable to include other
implementation languages as well. Because this facility is intended only to support prototyping
composition, such coupling is required only between PS and such implementation languages, not
between the eventual Ada-based software and these languages.

The ability to compose existing code as part of the prototype addresses the need to quickly and
easily produce a prototype. It provides at least one means to mix behavioral and structural com-
ponents in a prototype. Further, it provides a means for evolving a prototype into its production
counterpart by substituting target language modules for prototyped modules.

We believe that PL should allow prototype code to be written at appropriate levels of abstraction
and should enable prototypers to reuse existing components, such as Ada components. It should
be possible to express incomplete prototypes in PL and to test and instrument them in PE.

PE should integrate design, coding, testing, debugging, and information extraction.

Persistent Object Management

If our hopes about the software lifecycle are fulfilled, prototypes will continue to exist beyond
their use in the specification phase. In this case, all documentation, specification, and informal
data that is derived or produced during the early phases of prototyping will need to continue
to exist for long periods of time. In addition, the use of prototyping throughout the software
lifecycle will be facilitated if there are tools that assist in maintaining the linkages between
changes in the production implementation and the prototype.

In our view, persistent object support is the means of achieving these benefits in a safe and
controllable manner. We feel that prototyping will be more broadly accepted if prototyping tools
facilitate the long-term nature of the software lifecycle.

Persistent ohject management is the management of structured values or objects that persist

beyond the execution of the programs that created them. In a prototyping system there are three
classes of objects that need to be persistent. One is the class of objects that prototypes create and
which are subsequently used by prototypes or other systems.

The second class of objects are the prototypes themselves along with the database of information
maintained by PE. Prototyping involves the rapid evolution of programs and their components
using a variety of tools provided by the prototyping system. This evolution is possible only
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if there is a way to preserve the prototypes outside the individual tools that create, compose,
analyse, translate, execute, or otherwise manipulate them. These tools also will maintain a set
of information discovered during their execution. This information should persist beyond any
prototyping session.

Among this second class are objects required by P$ for configuration and version management.

The third class of objects are the definitions of the types and abstractions used or produced

by a prototype. These should be persistent first-class objects because the validity of the data
instances depend on them, and they are themselves components subject to reuse and sharing.

In PL, it should be possible to build abstractions of any kind of entity. A first-class object is
one that can be passed to or returned from a procedure, stored in a data structure, or made
persistent. As these definitions evolve, facilities must exist for managing their existing persistent
instances.

Thus persistent object management involves a combination of mechanisms for type integrity,
object identity, version management, and configuration control.

Binding Management

Binding is the process of associating values with names. In traditional programming languages, a
value is bound to a name for some period during the evaluation of a program. There are several
dimensions to the binding process: Binding can occur at different times, a particular binding can
occur all at once or in stages, and bindings can be mutable or immutable.

From a prototyping viewpoint, the distinctions between the various binding times not only
influence performance but also the ease and rapidity of implementation and modification of
programs. The more requirements imposed by the language for early binding the more difficult to
describe prototypes and the smaller the set of applications that can be implemented with ease.

Binding can occur all at once or in stages: Certain properties of a value can be bound at the
point of type definition, others when subtypes are defined, still more when the type of a variable
is declared, and the remainder when the value is specified. The ability to specify the various
properties of values separately in a succession of states permits separation of issues and increases
the ease and likelihood of correctnees of s modification. We believe the ability to specify bindings
in many stages is even more important to prototyping languages than to programming languages.

Bindings of value to names can be mutable or immutable. Immutable bindings make it easier to
analyse and reason about programs, characteristics that are very important to prototyping. On
the other hand, a prototype with only immutable bindings may be harder to write and modify. A
prototyping language should provide both.

This flexibility of binding management has important systemic implications on the nature of £S.
It means that functionality that has usually been statically allocated to just one portion of the
system (such as the compiler, loader, or runtime system), should now be dynamically shared
between them on the basis of the particular bindings chosen by the prototyper. Consider for
example type safety and abetraction security. Both are required within PS. However, it is poesible
that neither could be completely handled by a PL compiler as they can in a compile-time type

16 Common Prototyping System




Draft

Nov 11, 1988 17:12

inferencing language if types (and abstractions) are first-class objects that can be dynamically
bound to names at runtime. Hence, some runtime checking might be needed to ensure type safety
and abstraction security. On the other hand, we simultaneously demand that the compiler should
do as much safety and security checking as possible.

A Language

The major requirements on PL arise from its being a prototyping language, from the need to
support dual implementation languages, and from the need for it to be widely applicable.

Prototyping Language

It must be possible to construct both behavioral and structural prototypes in PL. Therefore, PL
must model both the functionality and the organisational structures and interfaces of the target
languages. Furthermore, it must be possible to mix behavioral and structural components and
have the mixture vary over time.

Since Ada is imperative, we believe that PL should be imperative but with declarative or func-
tional constructs. The two most prominent examples of mixing the styles are ML and FX. We
make no requirements regarding non-strict (lasy) versus strict semantics. However, if a non-
strict semantics is chosen for any component of PL, we require that they be reconciled with the
imperative component of the language.

To retain its operationality so that prototypes can be executed to extract information, no com-
ponent of PL should be non-effective (except those involving human intervention). However, PL
should consistently incorporate the highest level, most expressive constructs that remain effective.
Mathematics represents an idealised extreme in which effectiveness is not required, but many
mathematical notions are effective, and they ought to be incorporated and broadly used. To the
extent that expressiveness conflicts with target language integration, we felt that expressiveness
should have the greater weight, i.e. the target language ought not overly influence the design of

PL.

PL should also allow non-determinism (an arbitrary choice over some spectrum of poesibilities)
to be explicitly expressed. Furthermore, it should be designed so that it will have acceptable
operational performance when implemented using existing technology—a large prototype should
run no worse than an order of magnitude slower than the same program in Ada.

In PL, it should be possible to build abstractions of many kinds of entities, such as data values,
expressions, commands, declarations, and L-values. These abstractions and all data values should

be first class.

There will be a single abstract syntax and a single concrete syntax for PL. The standard concrete
syntax shall be used in all publications to reduce the difficulties that are associated with multiple
concrete syntaxes for a single language.
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Wide Applicability

To maximise the applicability of PL for the wide variety of military systems that use Ada, PL
should incorporate constructs for parallel, distributed, real-time, and knowledge-based appli-
cations. While this requirement pushes the state of the art in none of these areas individually,
integrating them together into a single coherent language provides one of the moset difficult chal-

lenges for the designers of PL.

Included under wide applicability is the ability to construct system tools and components, in
particular portions of PS itself. This implies the capability in PL to treat types and abstrac-
tions interpretively as rantime bindings so that P$ tools (such as debuggers and information
extractors) can operate on the types and abstractions contained in user prototypes.

We suggest that major portions of PS be built in PL. It is not required in order to avoid boot-
strapping problems and unrealistic efficiency requirements on PL.

An Environment

As with PL, PE has both a component that it shares with programming systems, and an addi-
tional prototyping-specific component that is unique.

Programming Environment

A programming environment is a set of tools for helping a programmer get a program written
and running. Often, the more advanced the programming environment the more open and
scalable it is, and the more integrated are its tools. By integration we mean that the tools are
interconnected in such a way that moving from tool to tool during a programming session is easy
and that tools operate on common representations.

There are two distinct parts to the generic programming component of P£. The first is the
runtime system which supports the semantics of PL. It performs memory management, ensures
runtime type consistency, provides linkage among procedures and functions written in supported
languages, and supports instrumentation and monitoring. We will always refer to this aspect

of PS as the runtime system. The second is the development environment, which provides
programming tools like editors, debuggers, and browsers, along with the user interface, the
dynamic loader, the window system, and presentation tools for instrumentation and monitoring.

The prototyping environment, P£, should encompass the most up-to-date programming environ-
ment techniques. It should be window-based, dynamic, incremental, and well integrated. Several
existing systems, including the Lisp Machine, Smalltalk, APL, Cedar, and Rational Computer’s
Ada environment illustrate the current state of the art.

In addition to the capabilities found in these systems, P{ should be built on a persistent object
base, should support multiple versions of prototypes (both chronological and variants), and should
support multiple users.
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Prototyping Environment

Extracting information is one of the two activities that distinguishes prototyping from program-
ming. This information is used to show what, how, and how well the prototype is doing. It can
also be used to determine whether the prototype is functioning as intended and, if not, why
not. That is, this information is used both for testing and debugging. Supporting information
extraction requires mechanisms to do the following:

e building test harnesses needed for tests

e  constructing scenarios to drive tests

e writing test evaluators

e reinitialising the state of an executing prototype in preparation for a test

It should be possible to instrument the prototype and its data in such a way that the instrumen-
tation has access to the entire state of the computation including performance information.

It should be possible to satisfy the following additional higher-level instrumentation requirements:
e Specification: It should be possible to monitor changes to data satisfying a PL predicate.

e Composition: The user should be able to define compound events and to instrument those
compound events. The presentation of instrumentation should be in those terms specified by

the user.

e Low Inertia: The user should be able to quickly and easily turn instrumentation on or off
and to change what is instrumented.

It should be easy for the user to run incomplete prototypes and to specify and change how P¢€
handles unsupplied or incomplete components. A prototype is incomplete if not all procedures,
functions, or types are defined or if they are partially defined. The following are examples of how
PE might handle unsupplied or incomplete components:

e Invoke a condition handler

¢ Query the user

e Entering a break loop

This list is not intended to be exhaustive.

PE will need to enable the prototyper to modify running prototypes by altering data structure
and procedure definitions.

PE should support the rapid development of sophisticated user interfaces employing windowing
systems, pointing devices, high resolution graphical screens, and laser output devices. Because
there is a trend towards designing the user interface before designing the rest of the system, user
interface support is extremely important. Requirements engineering often entails providing a user
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interface that can be tried out by a sample of users. Currently there are available user interface
toolkits that are designed to help programmers design user interfaces by providing commonly
used components along with a user interface to customise those components. We expect that P¢
will need to supply such a user interface building kit.

Research Issues

The development of PS raises certain research issues related to prototyping which should be
investigated in a broader context and on a longer term basis.

Suitability of PL as a production programming language: As described above, a
good prototyping language necessarily includes a good programming language. But whether
a prototyping language can/should be used as a production programming language is an
important open question.

Mechanised Optimisation and Translation: Alternatively, efficient production programs
in the target language might be mechanically derived from the prototypes. But much work
remains to make this approach practical.

Relationship between Specification and Prototypes: It is tempting to hope that
given a suitable prototyping language one could avoid separate specifications by treating the
prototype as the specification. It appears, however, that specifications and prototypes are
complementary. Understanding the nature of these complementary roles and determining
what information needs to be contained in the specification of PL modules to facilitate their
reuse and composition is important for the continued growth of prototyping.

Indexing Reusable Libraries: Libraries are not useful without indices. No semantics-based
indexing and retrieval mechanism exists. Such a facility is sorely needed to support reuse.

Parallel and Distributed Systems: Though we require a machine model that is both
parallel and distributed, we realise that it is premature to insist that the first PS support it.
This type of machine will play a more major role in the future. Particularly important will be
research into new parallel and distributed programming languages.

Programming Languages and Environments: In addition to their prototyping specific
aspects, PL and P€ both are envisioned to have extensive generic portions that rely heavily
on existing programming languages and programming environments. Continued growth of
these generic portions of PL and PE rely upon continued research in these areas.
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Introduction

The Prototyping System P§ comprises a prototyping language PL and a prototyping environment
PE which are the subjects respectively of the next two chapters. This chapter focuses on those
issues which are not wholely contained in either.

Architecture

Requirement: [Ada Target Language] PS shall be a single prototyping system that can be
used for prototyping software ultimately to be developed in Ada.

Requirement: [Static Analysis] PS shall support extensive static analysis of prototypes.

Large systems are difficult to manage not only because their behavior is poorly understood by
programmers, but also because their structure and composmon is poorly understood. It should
be possible, for example, to gather information summarising the usage of abetra.ctlons, types, and
modules. It should be easy to check correctness and consistency of a prototype.

Requirement: [Open Architecture] PS shall employ an open architecture and its imple-
mentors shall accompany it with a facility for fortifying, integrating, and incorporating user
prototypes into the evolving PS.

The success of PS will depend as much on the degree of engineering put into it as on the scientific
advances it represents. The primary challenge for P§ is in integrating existing technology into a
coherent well-engineered system.

But PS is an example of a system which is far too complex to be fully envisioned in advance. Fur-
thermore, many of the capabilities it should ultimately contain can only be partially supported
initially. It must therefore support and facilitate growth.

We note that the most successful systems in terms of evolutionary growth are those that employ
an open architecture, facilitate user additions and modifications, and are 2ccompanied by some
facility for fortifying, integrating, and incorporating nser prototypes into the evolving system.
An open architecture is one with visible, coherent, open-ended internal and external interfaces.
Examples of such systems include X-Windows, GNU Emacs, Liap, SmallTalk, Unix, and Tenex.

We envision the growth of PS to follow the prototyping paradigm both during the definitional
phase and during later enhancements.
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Multi-Language Interoperability

PS is intended to be of practical use to software developers whose principal implementation
language is Ada; this is the primary target language for PS. In some cases, target language
software—either already developed or developed during prototyping—can provide a rich basis

for effective prototyping; in fact, the knowledge to be gained by a particular prototyping exercise
may be contingent upon the use of target language software. For example, critical performance
analysis might be possible only when the prototype is built using components of the production
program. In other situations, certain software rapidly developed using P§ may give rise to a need
for functionally equivalent code written in the target language.

These considerations illustrate the need for some special properties of PL and PS. PS must
accommodate not only PL but also the target language and other implementation languages with
which it interoperates in such a way that the following requirements are satisfied:

Requirement: [Composition] PS shall enable the construction of prototypes from components
written in PL and any of the implementation languages with which it interoperates, including at
least Ada and Common Lisp.

PS must interoperate with both Ada and Common Lisp, and it is desirable to include other
implementation languages as well. Ada interoperability is required to get target language in-
tegration, and Common Lisp interoperability is required to provide prototyping access to the
knowledge-based capabilities developed by the Common Lisp community and to help create a
technical bridge between the Ada and Common Lisp communities.

Because this facility is only intended to support prototyping composition, such interoperability
is only required between PS and such implementation languages, not between the eventual Ada-
based software product and these languages.

Requirement: [Call-Out] PS shall enable the invocation of components written in any of the
interoperative implementation languages by components written in PL; all forms of invocation
provided by that interoperative implementation language shall be supported.

Requirement: [Call-In] PS shall enable the invocation of components written in PL by com-
ponents written in any of the interoperative implementation languages; all forms of invocation
provided by PL shall be supported.

Target Language Discussion

All control and data passing protocols provided by any of the interoperative implementation
languages must be supported by P$§ for either Call-Out or Call-In.

For Ada, it should be possible to define an interface between a PL component and an Ada
package that enables the PL component to interact with the package using whatever protocols
are established in the package specification. Thus it should be possible to have the PL component
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invoke procedures, functions, or task entries defined in such a package specification. It should

be possible to have PS handle any exceptions that propagate from the invocation of the Ada
components. It should be possible to pass to or receive from the invoked routine a value of a type
defined in the routine’s signature. It should be possible to refer to the value of an object declared
in the package specification within the PL component.

Operationally, this means that it should be possible to establish a linkage mechanism that pro-
vides the context required by the target language components and enables their interaction with

PS components.

It should be possible to define an interface between an Ada component and a PL component

that enables the Ada component to interact with the PL component as if it were another Ada
component, say a package. If the mechanism were to enable emulation of any Ada package then
it should be possible for the Ada component to access capabilities provided by the PL component
according to a specification of such a package. It thus should be possible for the Ada component
to invoke PL capabilities as if they were procedures, functions, or task entries, and have them
return exceptions. It should be possible for the Ada component to pass to or receive from the PL
component a value of a type defined in an appropriate signature.

For Common Lisp, it should be possible to define an interface between a PL component and a
Common Lisp function or generic function. It should be poesible for PS to handle any conditions
signaled during the invocation of a Common Lisp function or generic function. It should be
possible for Common Lisp to handle any conditions signaled during the invocation of a PL
component. It should be possible to pass arguments to or to receive values from the invoked
Common Lisp function or generic function. These values includes functions and closures. Thus,
PS$ should provide an interface that will handle coercion of types between Common Lisp and PL.

It should be possible for Common Lisp programs to use PL components as functions, generic
functions, macros, method combiners, and methods.

There are some open questions regarding the relationship of the £ and the Common Lisp
type systems. Common Lisp types are apparent at runtime, and users can extend that system.
It might make sense for PS to support mechanisms to import Common Lisp types to avoid a
potentially expensive boundary-crossing protocol.

One problem to solve is that of notification after garbage collection. Common Lisp is, and Ada
may be, a garbage collected system, and many collectors transport (i.e. change the location of)
objects. PS may need to be notified when objects are transported by Common Lisp or Ada.

These requirements establish a rich, component-based Call-in/Call-out capability for PS that
enables a highly fluid use of pre-existing interoperative implementation language components in
the development of new prototypes. This is essential in order to maintain the economic incentives
to use PS. Of particular importance is the removal of a typical multiple-language intercommuni-
cation restriction to a fixed predetermined set of base types. Such a restriction cripples the utility
of typical existing mixed language systems to an extent not tolerable for widespread, large-scale

prototyping.
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Requirement: [Encapsulation] PS shall provide the means to fully encapsulate target lan-
guage or PL modules.

An encapsulationing wrapper is code that is invoked before and/or after the code it encap-
sulates. For example, a function can be traced by encapsulating the function with code that will
be invoked before and after the function. The code that runs before the function will receive the |
same arguments as the function, and the code that runs after the function will receive the value
returned by the function. The encapsulating code might store these arguments and values in a
data structure as a form of instrumentation, or it might display them as the program executes.
Because encapsulating wrappers are able to form the interface to the encapsulated code, wrappers
can be used to change or adapt the interface of the encapsulated code to a new situation.

The encapsulating wrappers potentially mediate every interaction of a module with its external
context; they arise from the specification of every possible interface between the module and the
capabilities it employs or that employ it.

These wrappers establish the mapping functions needed for full interoperability, and they fa-
cilitate splicing arbitrary computation and instrumentation at any such interface. Thus this
capability supports the ability to reuse pre-existing software components for rapid development
of prototypes; it also uniformly supports late binding of instrumentation functions to established
intermodule interfaces within a prototype.

Requirement: [Reusable Target Components] PS shall support resuable components at
least as well as Ada does

Requirement: [Target Language Migration] PS shall provide automated assistance for the
translation of PL-specified prototypes to the target language.

This assistance need not be in the form of a PL-to-target language compiler, but it might take the
form of special advisory notations in PL analogous to Ada Pragmas.

Prototypes specified in PL and developed within the PS§ may embody several components that

by themselves are appropriate for use in a final target language program. If they are used in the
program, PS will need to be used throughout program evolution and maintenance; in many cases,
using PL components directly may require the inclusion of components of PS itself within the
program. While the continued use of PS during maintenance may be acceptable or even desirable,
embedding PS§ or parts of it in the program is much less likely to be acceptable. Whenever
inhibitions against such inclusion arise, a need to migrate the functionality of P§ components to
the target language correspondingly arises.

In some cases, the migration is conceptually easy but involves exceasive trivial work. In these
cases, automated assistance of the migration effort can be a substantial help and might be
necessary to gain acceptance in some communities. In other cases, where the semantics of PL are
much more powerful than the target language, providing direct translation capabilities may only
be possible by distorting the target language version beyond the ability to maintain it. In this
case, there will either be pressure to inhibit the power of PL or to ignore the maintenance costs of
obscure target code. Neither of these is acceptable,
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Therefore it is not sufficient to simply compile into the target language; at least some structure

of the original PL version of the prototype should be reflected in the target language version, and
that structure should be sufficiently natural as a target language idiom to permit knowledgeable
programmers to be able to change it purposefully. This is especially true of structural prototypes
designed to be initial implementations of a capability that must be able to evolve naturally in

the target language. In such cases the prototype has a predictable future history of extensive
adaptation. To the extent that P£ provides maintenance support tools based on both the original
PL and the target language versions, it may be possible to maintain a lesser degree of structural
conventionality in the target language code.

It is not required that auxiliary documentation (such as would normally be required for
production-quality software) be automatically derivable from the PL prototype, although ad-
vanced environment capabilities might someday provide such capabilities.

Persistent Object Management

Requirement: [Persistent Store] PS shall support the persistent storage of arbitrary PS
structured values or objects.

Persistent object management is the management of structured values or objects that persist
beyond the execution of the programs that created them. Coordinating and managing these val-
ues is essential for the coherence of P§ or any other software development environment. Though
such capabilities are just beginning to be tightly integrated into programming environments as
replacements for file-based systems, we feel that only by committing to such a capability would
the open architecture, tight integration, and evolutionary growth requirements of P§ be realised.

Requirement: [Prototype Data Persistence] PS shall persistently maintain data required
by a prototype, or data produced by a prototype and subsequently required by that or another
prototype or system.

Sometimes, one goal of prototyping is to gather permanent data for some other use, such as the
initial or permanent parameters to some program. Alternatively, a series of prototypes might be
written and run on a common base of data. P§ should facilitate the retention and later access of
data communicated between prototypes and/or target-language systems.

Requirement: [Prototype/Configuration Persistence] PS shall persistently maintain the
prototype components themselves together with relevant configuration P information.

Prototyping involves the rapid evolution of programs and their components using a variety of
tools provided by the prototyping system. This evolution is possible only if there is a way to
preserve the prototypes outside of the individual tools that create, compose, analyse, translate,
execute, or otherwise manipulate them. These tools also will maintain a set of information
discovered during their execution that should persist beyond any prototyping session. A well-
designed persistent object system should address crash-proofing and multi-user systems.
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Among this class of persistent objects are those required by P§ for configuration and version
management. If S is to support quick development of prototypes, PS should remove the burden
of versioning and configuration from the sphere of concern of the prototyper. However, the
prototyper should be provided with tools to operate on these version and configuration spaces.

Persistence Discussion

PS should persistently maintain the definitions of the types and abstractions used or produced

by a prototype. These must be persistent because the validity of the data instances depends

on them, and they are themselves components subject to reuse and sharing. Whether they are
included in the class of persistent data values, or persistent prototype components, or both, seems
rather arbitrary. What is important is that they be maintained and managed in the persistent
store. As these definitions evolve, facilities should exist for managing their existing persistent
instances. This issue is discussed in the Incremental Development section of Chapter 3.

Thus persistent object management involves a combination of mechanisms for type integrity,
object identity, version management, and configuration control.

Traditional programming languages have not dealt directly with these issues, but instead have
depended on conventions together with external mechanisms including operating systems (files)
and database systems. For a variety of reasons these approaches are inadequate for an effective
prototyping system. When persistence is supported only by mechanisms outside the language,
there is no way to guarantee integrity of the data involved. This is a serious problem for any
application that depends on complex data that must be shared among many different programs
or must be combined in a variety of ways by many different users. This is exactly the case

that prevails in prototyping. Prototypes are shared by tools that are used in the prototyping
process. The speed of building prototypes depends on how easily they can be composed from
persistent components. That in turn requires a large repertoire of shared components, efficient
mechanisms for identifying and retrieving components of interest, and automated means to ensure
the compatibility of the components in & composition.

As noted, there are two places to look outside of PS for persistent object support: operating
systems and databases. Operating systems provide persistent storage for arbitrary data, but do
not protect its type or identity. Operating systems may provide some rudimentary form of version
control, but typically such mechanisms are one dimensional and reflect only the development
history in a single chain. Database systems provide type integrity but are typically limited to

a small fixed set of base types. Databases do not usually deal with the problems of version and
configuration control, nor are they typically optimised for the the performance profile needed for
interactive use. Neither operating systems nor databases provide special support for programs
and program components.

There are several areas of concern that should be left to the designers of PS. One is whether the
management of persistent data should be explicit or implicit. Implicit persistence would render
persistent every data value declared persistent, while explicit persistence would require specific
actions to save data values in persistent storage at the desired time. Another is how to maintain
identity over multiple sessions, multiple computers over networks, and multiple computers not
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over networks. A third is how to best handle persistent data that is both shared and mutable,
especially regarding performance of any consistency algorithms used.

Binding Management

Binding is the process of associating values with names. In traditional programming languages, a
value is bound to a name for some period during the evaluation of a program. There are several
dimensions to the binding process. In Ada, binding can occur at compile-time, at link-time, or
during execution. In Common Lisp, binding can occur at read-time, at compile-time, at load-
time, or at runtime. Binding can occur all at once or in stages. Once bound the binding can be

fixed or mutable.

The distinctions among the various times at which a binding takes place is very important in
traditional programming languages because of its impact on performance in execution. The later
the binding the greater the execution cost. Language requirements for early binding thus shift
costs from execution- to compile-time. In programming languages intended for implementation

of applications that are executed many times per compilation, early binding is an important
requirement. In a prototyping language, however, we expect frequent change to the program and
possibly fewer executions per compilation. Thus performance trade-offs between compile-time and
runtime are possibly of less significance in prototyping than in production programming.

From a prototyping viewpoint, the distinctions between the various binding times not only
influence performance but also the ease and rapidity of implementation and modification of
programs. The more requirements imposed by the language for early binding the more difficult
to describe prototypes and the smaller the set of applications that can be implemented with ease.
PS should not impose requirements for early binding.

Binding can occur all at once or in stages. In early programming languages most bindings were
simply associations between names and complete values. As our understanding of types has im-
proved, languages have permitted more and more stages of partial binding. In strongly typed
languages for example, variables are first bound to types and later to specific values. In more
modern languages such as Ada, certain properties of a value can be bound at the point of its type
definition, others later at a subtype definition, still more at the time of declaration of an object
(i.e., constant or variable) of that subtype; all of these are prior to association with a specific
value. The ability to specify the various properties of values separately in a succession of states
permits separation of issues. It also increases the ease and diminishes the error-proneness in mod-
ification. The ability to specify bindings in many stages is even more important to prototyping
languages than to other programming languages.

Bindings of values to names can be fixed or alterable. This distinction goes by a variety of names:
constant versus variable, inmutable versus mutable, or R-value versus L-value. Regardless of

the nomenclature, the use of dynamically unalterable values significantly improves our ability to
analyse and reason about programs, characteristics that are very important to prototyping. At
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the same time, imposed restrictions to unalterable values can go diminish the applicability of a
language that it may not be practical for prototyping purposes. A prototyping language should
provide facilities that encourage and enable the easy use of constant bindings while providing
variable bindings for situations where their need is dictated by the application.

Prototypes are used for several different purposes which lead to a spectrum of binding-time
requirements that can be in conflict with one another. The times at which decisions should be
bound in the development and evolution of a prototype include the following:

e Before Modeling. In behavioral prototyping for complex applications, rapid development
and acceptable performance can be achieved by having application-specific primitives that
are bound to efficient implementations prior to construction of the prototype. This might be
accomplished through a library mechanism that allows importation of application components
implemented in other languages.

e Early Binding. Structural prototypes share with implementation languages the need to
exploit early binding. To be effective for structural prototyping, a prototyping system must
have mechanisms for expressing early binding properties and should have processors that can
exploit those specifications in ways which reflect their time, space, or other resource costs in a
full implementation.

o Late Binding. The earlier a binding decision can be expressed in a language the more it can
be exploited throughout the program and therefore the more difficult and more pervasive the
consequences of changing that decision later. A prototyping system should not require the use
of early binding mechanisms. The binding features should permit independent specification
of small granularity so that changes to a particular binding will not require redesign or
restructuring of major portions of the model. Ideally, any change in the design of a prototype
will require modification only at a single point in the prototyping program, though this is an
ideal that can only be approached.

e Incomplete Binding. Prototypes are models that are intended to answer questions about
aspects of the systems they are modeling. Thus they are seldom complete. Unlike traditional
programming languages, L should not require programs to be complete. £$ and its pro-
cessors should support the translation, analysis, execution, and testing of prototypes that
are incomplete. Users of a prototyping system should be able to extract any behavioral,
structural, or expository information that can be determined from a prototype specification
independent of the degree of its completeness.

In a prototype, modifiability and flexibility in the design are generally more important than
performance in execution. Therefore, PS should emphasise ease of modification of its programs,
even when that is at the expense of performance. This is in strong contrast with programming
languages such as Ada.

In a prototyping system, unlike an implementation environment, there is a high expectation

for frequent change. Consequently, P§ should not require bindings to values to be monolithic
specifications, but should instead allow separate independent specification of the properties of a
binding (such as its type) so that they can be identified and isolated from one another during the
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evolution of a prototype.

These differing requirements for binding can be accommodated in a single PS. That P§ permits
incomplete specifications or specifications for which there are no known automatic translation
methods does not imply that complete and/or executable programs cannot also be described in
the language. That PS has a rich set of abstraction mechanisms, abstractions, and late-binding
features does not mean that it cannot provide a compatible set of implementation features with
early binding characteristics. That PS supports built-in or user-definable libraries of application
specific prototyping primitives does not preclude simultaneous support for easily composable
general purpose primitives as well.

These differing requirements for binding should be accommodated in PS§. It is inherent in the
prototyping process that the models themselves are dynamic objects which constantly undergo
change in both their form and use. The various prototypes of a given system should be accessible
in a common form so that they can be analysed and processed together, so that inconsistencies
can be recognised, and so that they can be integrated to contribute directly to the development
and maintenance of the systems they model.

Requirement: [Mutable and Immutable Bindings] PS shall provide mechanisms for both
mautable and immautable bindings.

The ability to specify immutable properties enhances our ability to understand, analyse and
reason about programs. The ability to specify mutable properties greatly expands the class of
application that can be easily prototyped.

Requirement: [Early and Late Bindings] PS shall provide arbitrarily late binding of any
prototyping decisions, but must simultaneously permit specification of early binding. That is,
PS must allow late binding, while permitting early binding to be described and exploited, for
example, by its compilers. In addition, binding decisions regarding components of P§ used in a
prototype shall be permitted to made early or late.

For behavioral purposes, it is important that PS provide a rich set of mechanisias that can be
easily and rapidly composeed to build operational models that display the functionality and/or
interface characteristics of the intended system. The goal here is neither readability nor perfor-
mance in the prototype, but writability; that is, the ability to rapidly and reliably build models.

This goal can be met in two contrasting but complementary ways. PL can provide a set of very
general data and control primitives that can be easily composed to build arbitrarily complex
behavioral prototypes. The price for this approach is a requirement for late binding and its
accompanying performance costs, and a requirement for significant user training experience before
facility is gained in effective use of the system.

The alternative, which is available only when much is known about the common characteristics of
the behavioral models to be built, is to provide direct access to specialised primitives that already
model the component behavior of the intended prototypes. Although more special purpoee, this
extremely early binding of decisions common across many prototypes can provide performance
and expository benefits not otherwise achievable in rapidly prototyped behavioral models.
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For structural purposes, it is important that P§ provide a capability for explicit early binding of
any decision that can affect the structure, resource requirements, or performance of its models.
This clear box model of a system can be described only in a PL that permits detailed specifica-
tion of representation and implementation decisions and that has mechanisms that can act to

create efficient executable implementations of the model.
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2. A Language
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Introduction

The three major factors influencing PL are the commitments made to make it be a prototyping
language, to support multiple implementation languages, and to make it widely applicable.

The first forces it to be a wide spectrum language so that both behavioral and structural pro-
totypes can be constructed, to incorporate high-level and non-deterministic constructs while
avoiding any non-effectiveness, to support multiple computational models, and to support incom-

plete prototypes.

The multiple implementation language commitment forces PL’s abstraction constructors to
address data sharing among a variety of programming language implementations, but especially
Ada and Common Lisp.

The wide applicability commitment forces PL to have an extremely broad scope to encompass
parallel, distributed, real-time, and knowledge-based applications. Only the most general purpose
languages have attempted such a broad scope. This scope requirement is exacerbated by also
requiring PL to be capable of constructing system tools and components, particularly portions of
PS itself.

This chapter identifies the individual language requirements that arise from these commitments
and discusses the issues involved.

Computation Model

By computation model we mean the underlying mechanisms and structures through which one
understands and reasons about a program, in particular prototypes written in PL. A computation
model is by and large operational, akin to a virtual machine, and contrasts with a denota-
tional model which gives a declarative reading of a program. All programming languages have a
computation model (and possibly more than one), whether explicitly and formally stated or not,
and it is usually reflected faithfully in the language itself. The computation model is important in
that it can greatly influence the way one thinks about programs and, more importantly, the way
one conceives solutions to problems.

Unfortunately, many of the general goals of prototyping place conflicting constraints on the com-
putation model and language. The difficulty lies primarily in the multiple roles that prototypes
might play. For example, a goal such as having low inertia or modifiability seems to conflict with
the desire for safety, and the goal of incompleteness may to conflict with the option of having a
prototype serve as a specification. Ideally an effective PL will be flexible enough to satisfy all of
the resulting constraints, but this may be too much to ask. For example, a language that utilises
effective type inference instead of relying solely on explicit typing satisfies the desire for both low
inertia and safety with respect to typing, and may thus be a suitable language feature for a PL,
but this kind of solution may not be feasible for each of the desirable characteristics of PL.
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We might begin by looking at the existing classes of popular computation models. In fact there
are many:

e Conventional imperative models.

e Object-oriented models.

e Purely functional (lambda calculus) models.

e Pure logic (predicate calculus) models.

e Abstract data type models.

e Equational and term-rewriting models.

e “Knowledge-based” models and other artificial intelligence models.

Rather than study these individually, we focus on certain qualitative characteristics that each
model may have. In the following paragraphs the more interesting characteristics are examined,
with an emphasis on their relationships to the goals of prototyping.

Imperative versus Declarative

This is one of the most fundamental distinctions in classes of computation models and languages.
An imperative computation model is characterised as having an smplscit state component

that is modified or side-effected by constructs or commands in the source language. As a result,
such languages generally have a notion of sequencing of the commands to permit precise and
deterministic control over the state. Most languages in existence today are imperative, including
Ada.

In contrast, a declarative computation model is characterised as having no implicit state, and
thus the emphasis is placed entirely on programming with expressions or terms. State-oriented
computations are accomplished by carrying the state around explicitly, rather than implicitly.
The resulting programs are usually easier to reason about equationally—because referential
transparency is maintained—but the lack of implicit side-effects can impact modularity in that
the addition of a small piece of state might involve modifications to many parts of a program.

Requirement: [Blended Computation Model] PL shall allow both imperative and declara-
tive or functional styles of programming.

Because Ada is imperative, we believe it will be natural for PL to also be imperative so that
structural prototypes can be constructed. However, many applications (largely but not entirely
behavioral in nature) do not require the use of side-effects, and are more succinctly prototyped
using a declarative or functional style. Since P£ must support arbitrary mixtures of behavioral
and structural prototypes, its computation model should blend the two and allow one to pro-
totype both declaratively and imperatively. For example, PL could be an imperative language
with constraints on the way side-effects are used (such as limiting their scope) with a simpler
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imperative semantics than traditional imperative languages (thus facilitating program comprehen-
gion) and with a very expressive declarative sub-language (permitting predominantly declarative
programming if desired). The two most prominent examples of mixing the styles are ML and FX.

Sequential versus Parallel
Requirement: [Concurrency] PL shall allow the expression of concurrency.

Parallel and distributed systems are becoming increasingly important, and thus the need for
expressing concurrency in the prototype may arise from the inherent concurrency of the problem
specification. On the other hand, the solutions to many problems often involve the conception
of concurrent or at least independent activities, regardless of whether it was part of the problem
specification. Thus, PL should allow the expression of concurrency to support either kind of
activity.

The requirement for concurrency interacts strongly with the requirement for a blended computa-
tion model. In this regard we note the following:

e  The sequentiality of traditional imperative programming languages (i.e. ones without parallel
constructs) is at odds with the goal of expressing parallelism, although special parallel
constructs, like those in Qlisp and CSP-like solutions to the problem, like thnse in Ada, are
feasible. If such a solution is adopted for PL, the expression of such parallelism should be as
natural and effortless as possible, and should support all levels of granularity.

e A declarative language, which is non-committal with respect to sequential or parallel eval-
uation, may seem like a better alternative, since the parallelism is limited only by data
dependencies. However, there are still pitfalls, the most significant being that just as such
languages have no explicit sequentiality, they also have no explicit parallelism—in such lan-
guages parallelism is usually left smplicst. If such a solution is adopted for PL we remark that
it is desirable for to include explicit operational constructs to “emphasize” the parallelism or
process granularity.

Strict versus Non-Strict (Lazy) Evaluation

Non-strict or lagy evaluation is characterised operationally as computing as little as possible
to determine the result of a program. A demand driven evaluation policy is consistent with this
idea. The notion of how little to compute is model dependent, and implementations achieve
lasy evaluation to varying degrees. Nevertheless, it contrasts sharply with the more traditional
computation strategy, strict evaluation, in which the constructs of the source language dictate
when values are computed rather than relying more exclusively on data dependencies.

In many ways lasy evaluation seems ideal for PL, since it is consistent with the following notions:
e Delayed binding, since the decision of when to evaluate things is postponed.
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e Rapid implementation, since it frees the programmer from concerns of evaluation order.

o Formal reasoning and transformation, since it allows broader and simpler forms of equational
reasoning.

e Expressiveness, since it allows programming with unbounded data structures which are
non-effective in other models.

On the other hand, lasy evaluation may conflict with certain other characteristics, in particular
side-effects. A model with side-effects must have a notion of stavic sequencing in order for the
programmer to control side-effects, whereas lazy evaluation results in a dynamic sequencing,

one controlled only by data dependencies. We know of no general solution to this fundamental
conflict, although mixed strategies have been attempted with s- : success, such as providing
explicit sequencing constructs in an otherwise order-independent. language, or defining order-
independent sublanguages within otherwise strict languages. Another potential problem with
lasy evaluation is that its dynamic notion of sequencing makes reasoning about efficiency more
difficult, although efficiency in a prototype may not be an overriding concern (see the section On
Efficiency below).

Because of these conflicting concerns, we make no remarks with respect to non-strict (lasy) versus
strict semantics.

Requirement: [Lasy Compatible with Imperative] However, if a non-strict semantics is
chosen for any component of PL, the semantics shall be reconciled with the imperative component
of the language.

Non-determinism

Requirement: [Non-Determinism] PL shall allow non-determinism.

Non-determinism is the ability to specify an outcome as being arbitrary over some spectrim

of possibilities, as opposed to an angelic choice of the known best or correct choice from among
several alternatives. That is, if a program can successfully complete only if the correct choices are
made at every point of non-determinism, then we say that the choices are angelic if somehow
exactly those correct choices are made. This is especially important in the context of many
defense-related projects in which real-time response to non-deterministic events is common. In
addition, there is an important motivation beyond these inherently non-deterministic applications:
being able to express non-determinism can be a liberation from over-specification. For example,
many problems are insensitive to the order certain operations are applied (the reduction of a
binary associative operator over a sequence is one example), yet most programming languages
require the over-specification of the order. Being able to express non-determinism allows the
programmer to avoid non-essential detail, thus speeding up the development and evolution of a

prototype.

Remark: [Explicit Non-Determinisra] It is desirable for PL to allow non-determinism to be
explicitly expressed.
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A more difficult question is how the non-determinism should manifest itself in PL. Since non-
determinism can complicate reasoning about programs, we suggest an approach in which the non-
determinism is expressed explicitly, since it allows isolating the non-deterministic components
of the system. A language supports implicit non-determinism if non-determinism is part of the
underlying computational model but no explicit diction is required to express it.

Remark: [Non-Determinism Pragmas] It is desirable for PL to support pragmas for making
the implementation of non-determinism tractable.

A related issue concerns the realisation of the non-determinism. If it is in the language, then
implementations must support it, although it is unreasonable to expect completely fair implemen-
tations of non-determinism, especially on a sequential machine. Pragmas offer one way to make
such implementations tractable; for example, a pragma could specify a randomised implementa-
tion of non-determinism that may be good enough for test purposes.

Non-effective Computations

Most programming languages are capable of ezpressing non-effective (i.e. non-computable) com-
putations to some degree—for example, in most languages one can try testing for the equivalence
of the values returned by two non-terminating programs. However, if the semantics {or com-
putation model) for that language insists that the answer to that question be true (as opposed
to undefined), then the language is said to be non-effective. Another example of possibly non-
effective diction is quantification over an infinite set.

Requirement: [No Non-Effective Constructs] PL shall only employ effective constructs.

Although it is true that some specifications are non-effective, PL and its computation model must
only employ effective constructs. In fact, we can take this to be the hallmark difference between
a general specification language and PL: specifications are not generally executable, whereas
prototypes must be.

On Formality

Remark: [Formality] It is desirable for PL to be as formally defined as is reasonable.

Some prototypes will require formality in the semantics of PL and its computation model, others
will not. A prototype acting as an executable specification or one that is expected to system-
atically evolve into a final product needs to have enough formal underpinnings to guarantee
correctness. At the same time, these formal underpinnings should not preclude writing throw-
away prototypes whose formality is not required or desired, or expository prototypes which may
be sketchy and incomplete. However, although these two scenarios seem to conflict, it should

be pointed out that a formal model does not necessarily imply a complete model. There may be
certain semantic components that, because of other goals such as the desire for delayed binding,
are purposely left undefined. Such incompleteness, if carefully specified, will not interfere with

formal reasoning about those portions of the prototype that do not depend on the incompleteness.
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On Efficiency

Requirement: [Efficiency] PS shall be designed to have acceptable performance when imple-
mented using existing implementation technology—a large prototype should run no worse than an
order of magnitude slower than the same program in Ada.

The various computation models and the other design considerations raised in this chapter may
imply varying degrees of efficiency, in that state-of-the-art implementation techniques vary for
each of them. Although the efficiency of a PL program should not be an overriding concern, it
can have a significant impact on the usability of PL. Small constant factors in efficiency should
not drive the definition of PL, but factors so large as to make a qualitative difference in the
prototyping process must. The design choices made in PL must not impose so large a quantitative
performance penalty as to impose a negative qualitative effect on the f -ototyping process.

On the Impact of Change

A final, but not insignificant, consideration is the impact a possibly unfamiliar computation
model might have on the intended community of users, which in our case is primarily traditional
defense contractors using Ada. For example, a model which is at odds with Ada’s imperative
state- and object-oriented computation model may cause problems such as the following:

e Significant training and education may be required.

e Systematic transformation (whether automated or not) from a prototype to final product may
be difficult.

e The psychological transition between building a prototype and buiding a real system may be
difficult, or at least awkward.

On the other hand, we should point out the following:

e There may be good technical reasons for abandoning the Ada computation model in favor of
other models seen as better suited to prototyping.

e Thoee having experience with verification, specification, and annotation methods (such as
those embodied in Anna) may not find the dichotomy bothersome.

e There may be perfectly satisfactory (and automatic) ways to transform the new computation
model into more traditional ones.

We suggest that the designers of PL recognise that PL will only be successful if it is widely used
by a diverse community and that abrupt changes in the way such users must think may prove an
insurmountable problem.
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Abstraction

Abstraction in programming is the process of identifying common patterns that have systematic
variations; an abstraction represents the common pattern and provides a means for specifying
which variation to use. The most familiar example of this is procedural or functional abstrac-
tion, in which the common pattern is a computation which varies according to input values. The
abstraction is called a procedure, and is applied by supplying actual input values. Abstraction
yields very high code density, and provides a simple means to alter common behavior. Therefore,
abstraction is a means of providing low inertia and rapid construction of prototypes.

An abstraction facilitates separation of concerns: The implementor of an abstraction can ignore
the exact uses or instances of the abstraction, ard the user of the abstraction can forget the
details of the implementation of the abstraction, so long as the implementation fulfills its inten-
tion or specification. Creating abstractions to provide a common behavior is sometimes called
“abstraction via parameterisation.” Creating abstractions to hide implementational details is
sometimes called ®“abstraction via specification.”

Good abstraction mechanisms can speed the creation of prototypes, enhance the clarity of the
resulting prototype, and provide a means to reuse components. Therefore, PL should have
powerful abstraction mechanisms.

Values and Abstraction in General

Requirement: [First-Class Data Values] All data values shall be first-class.

We will use the term data value to refer to values that are manipulated at runtime, including
procedures, functions, and, depending on choices made by the designers of PL, modules and
types. Whatever choices the designers make, all PL data values must be first-clags. A data value
is first-class when it can be passed to a procedure, returned from a procedure, or stored in data
structures or persistent objects.

Remark: [Abstraction Genericity] It is desirable for PL to support the abstraction of any
kind of entity.

Because one may wish to express patterns over any kind of entity, not just patterns over com-
mands or expressions, PL should allow such generality. For example, one should be able to
abstract declarations and L-values.

Requirement: [Secure Abstractions] PL abstractions shall be secure.

An abstraction is secare if the behavior of a program that uses it is independent of the choice of
implementation of that abstraction, assuming that the alternative implementations satisfy the
specification of the abstraction. An absetraction is still secure if different implementations have
different performance or cannot be instrumented the same way, or if behavioral differences are the
result of explicit non-determinism. Another way of expressing this concept is that abstractions
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should be representation-independent.

Data and Data Abstraction

Requirement: [Representation-Independent Data Abstractions] PL shall support
representation-independent data abstractions.

Requirement: [Enforcement of Abstraction Levels] PS shall enforce abetraction levels:
It shall enforce the constraint that values of an abstract type are accessed only through legal
operations on that abstract type.

If a data value is built using data abstraction, then there are at least two views of the value: one
as a value in the abstract type and the other as a value in the concrete type. For example,
if an abstraction representing queues is built using lists as the underlying representation, all
instances of the queue abstraction are also instances of the type list. Typically, not every value
of the concrete type is a reasonable value in the abstract type; reasonable values must pass an
additional criterion, sometimes called the concrete invariant, which is maintained by the

defined operations on the abstract type. In our example, not all lists are queues.

Remark: [Safe Representation Access] At the same time, it is desirable for PS to allow the
representation to be accessed when it is both safe and necessary to do so.

This is conventionally done via an abstract data type mechanism, such as CLU clusters. PL
should also provide for procedures that are operations on several abstract types. That is, PL
should provide mechanisms for procedures to access the representations of several abstract types
(e.g., a Common Lisp Object System generic function or a C++ function that is a friend of

)-

several

Procedural and Object-Oriented Abstraction

Requirement: [Procedural/Functional Abetraction] PL shall include a traditional mech-
anism for procedural or functional abstraction: that is, the abstraction of an expression over a
value.

Flexible mechanisms for passing parameters and returning values should be provided, including
the return of multiple values.

Object-oriented versus Procedural

Remark: [Object-oriented and Procedural Abstractions] It is desirable for PL to have
both object-oriented and procedural abstraction mechanisms.

These already co-exist in several modern programming languages. Both kinds of abstractions have
their merits: an object-oriented approach distributes functionality, and a procedural approach
centralises it. Having a choice for such organisational abstractions is useful.
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The procedural model is well-known, but the object-oriented model has become popular only
in recent years, especially in the construction of large systems. The object-oriented component
should provide a mechanism for assembling generic operations, which are functional or proce-
dural abstractions whose application may invoke different procedure bodies (sometimes called
methods) depending on the classes of the arguments. When the method invoked depends on
the class of exactly one argument, the object-oriented model is isomorphic to SmallTalk-style
message-passing; when the method invoked depends on the classes of several arguments, the
object-oriented model is similar to the generic function model of the Common Lisp Object Sys-
tem.

Requirement: [Object-oriented Extensibility] If an object-oriented abstraction is adopted,
PL shall allow new generic operations and new method-class associations of those operations.

Regardless of the object-oriented model selected, such extensibility is important. We explicitly
make no remarks regarding whether PL should support SmallTalk style message-passing or

the Common Lisp Object System style generic functions. The language should also include
mechanisms for inheritance, that is, the definition of a new class whose behavior under the generic
operations is some disciplined combination of the behavior of some previously defined classes. We
explicitly make no remarks regarding whether single inheritance or multiple inheritance should be
supported.

Requirement: [Runtime Object Instantiation] If an object-oriented abstraction is adopted,
PL shall enable instances of object classes to be dynamically created.

Control Abstractions

Some programming languages provide mechanisms for control abstractions, but we were unable to
come to any conclusions about whether PL must have such mechanisms. The following are some
examples of control abstractions:

e The ability to define iterators over programmer-defined aggregations. This may be included
as part of the data abstraction facility.

e The definition of sublanguages for rule-based programming.
e The definition of demon-based or event-based invocation of procedures.

e The existence of an Lisp-like eval procedure for executing data structures representing PL
code.

Syntactic Abstraction

Remark: [Syntactic Abstraction] It is desirable for PL to include a syntactic abstraction
facility.

Syntactic abstraction—sometimes called macros—are provided by some programming languages.
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In many programming languages, syntactic abstraction facilities are primitive and easily misused.
Programs that use these facilities are often less perspicuous than programs that do not use them.
On the other hand, within the Common Lisp community syntactic abstraction is used extensively,
and there is a well-understood and controlled set of conventions for their safe and clear use. It
may be worthwhile for the designers of PL to address the issue of syntactic abstraction.

Behavioral Abstraction and Typing

Requirement: [Rich Type System] PL shall have a rich type system.

A type may be regarded as an abstraction of the behavior of a data value. Types of data objects
can serve as tokens that indicate their acceptability as potential parameters to or results of
procedures; procedures, in turn, have types that indicate the types of their parameters and
results. For example, a fanction might have a type notated as follows:

list(int) x (int — bool) — list(bool)

This specifies that the function takes a list of integers and a function that mape integers to
booleans, and returns a list of booleans.

The type of an abstraction is a necessary component of its specification. A type system in which
a rich set of behaviors is expressible is an important aid to the effective use of abstraction.

Remark: [Typed Values] It is desirable for every data value in PL should have a type, and for
that type to be available at runtime.

Requirement: [Strong Typing] PL shall be strongly typed: that is, PL should ensure that
every data value is used only in ways that are consistent with its type.

This may involve runtime checks. PL should, however, use static typechecking to the extent
that early binding of types permits, that is, the static typechecking system should not force the
premature binding for the types of values and program fragments.

The static typechecking algorithm must be sound: that is, if 8 program phrase is assigned a
certain type, then the value of the phrase must have behavior consistent with that type. The
PL typechecking algorithm should use type inference to allow the programmer to avoid writing
deducible type information whenever possible; it should, however, always be possible to include
type declarations for redundancy.

Remark: [Dynamic Typechecking] It is desirable for static typechecking to not be used to
eliminate runtime or load-time typechecking except in situations where performance would be

prohibitively poor.

The goal of low inertia implies that early commitments be quickly and easily revocable, and this
can be best if re-compilation and re-typechecking of unchanged code is unnecessary.

Requirement: [Polymorphic Types] The PL type system shall allow the specification of
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polymorphic types. That is, it shall be possible for procedural abstractions to be applied to
parameters of varying types, and it shall be possible to describe this application in the type

system.
For example, one should be able to specify a procedure with the following type:

V T,U list(T) x (T — U) — list(U)

Whenever possible, the type inference algorithm should yield the most general such type for any
piece of code.

The type system should have a smooth interface with the data abstraction facility, and also with
the inheritance system.

Modularity, Scalability, and Libraries

PL is to be used for developing both small- and large-scale prototypes. As ~ith any large-scale
program, a large-scale prototype will be dominated by issues of communication between sections

of the program.

Requirement: [Modules] PS shall include a module system that allows the aggregation of
abstractions and other program components into larger groups.

The module system should include convenient mechanisms for assembling program fragments
into packages, for indexing and retrieving packages and their components, and for assembling
programs from the retrieved components.

Requirement: [Module Specification Language] PL shall include a module specification
language.

A module is itself an abstraction that encapsulates its contents. Therefore, PL must provide a
module specification language for describing the contents of modules. The module specification
language should allow the description of the names of the objects in the module, their types, and
the permitted operations on the objects. The module specification language may also describe
other components which may be utilised by the library and reuse system.

Remark: [Module Indexing System] It is desirable for P§ to provide some mechanism for
indexing a library of modules.
A library of modules is of limited utility unless there is a useful indexing system, ideally one

based on semantic content of the modules in the library (though such systems require further
research). We believe that facilities for well-cataloged libraries will be an important adjunct to

Ps.

2-12 Common Prototyping System




Draft

Nov 11, 1988 16:54

Scope

Wide-spectrum Language

Requirement: [Wide-Spectrum] PL shall support both high and low level constructs.

To allow both behavioral and structural prototypes, PL must allow a wide range of styles in

specifying computations, which might loosely be characterised as ranging from very high level to

much lower level. The following are some examples of points along the spectrum that might be

useful in a prototyping context:

e PL should permit high level functional style programming at one extreme, and the introduc-
tion of variables and imperative notions at the other extreme.

e PL should permit high level data structures such as sets and maps, but should also accommo-
date lower level notions such as pointers and arrays.

e Storage allocation and layout should be elided entirely at a high semantic level, but PL
should be able to accommodate explicit consideration of storage allocation and mapping of
data onto storage units.

Requirement: [Expressiveness] PL shall consistently incorporate the highest level, most
expressive constructs that remain effective.

Mathematics represents an idealised extreme in which effectiveness is not required, but is also
offers a rich body of highly expressive and effective notions.

Requirement: [System Tools] PL shall be capable of constructing system tools and compo-
nents, in particular portions of PS itself.

This implies the capability in PL to treat types and abstractions interpretively as runtime bind-
ings so that PS tools (such as debuggers and information extractors) can operate on the types
and abstractions contained in user prototypes.

It is not required that PS be constructed in itself, at least initially.

Real-time and Concurrent Computation

Requirement: [Real-Time] PS shall support the prototyping of real-time, concurrent applica-
tions.

We recognise that it is difficult and probably impractical to capture all aspects of real-time con-
siderations, such as determining whether a prototype meets its deadlines. A high level prototype
by its nature is unlikely to be able to model at a sufficiently low level to provide meaningful data
on such issues. Prototypes that directly reflect low level real-time concerns possibly can be writ-
ten only at the same level as its final implementation, and probably only by using the production

A Language 2-13




Draft

Nov 11, 1988 16:54

2-14 Common Prototyping System

compiler and target system environment. The prototype may in this case be able to omit many of
the eventual details. However, PL is by its nature not intended to encourage prototyping at a low
level and might not meet this need.

On the other hand, it is certainly possible to model the logical aspects of a real-time system,
including such things as division of the work among separated tasks and the commuaication
between such tasks at a high level. To achieve this, PL must contain appropriate linguistic
features to represent concurrency. Furthermore, these must bear a reasonable resemblance to
the features of the target implementation language. One simple approach is simply to graft the
tasking semantics of Ada onto PL. It should be possible to do better than this and find higher
level constructs that can be used to model multiple task applications, but which nevertheless can
be appropriately mapped onto the lower level features of the target language in the case where
the prototype is used as a model for the eventual implementation.

It should also be noted that even in applications where concurrent use of multiple tasks is not
expected in the final application, it is often useful to model interaction between separate parts of
a high level solution using concurrent models. For example, in a complex office control system,

a high level prototype might use separate tasks to represent different functions to be performed,
interacting in specified manners, while the final low level implementation might be expected to be
implemented as a single process reading a quene of operations to be performed.

The following are typical questions that might be asked of a prototype modeling real-time and
concurrent processes:

e How much task switching overhead is present?
e Do all cyclic tasks meet their deadlines?
e  Are the priorities assigned optimal?

e How much spare CPU capacity is available at various cyclic frequencies? On average? In the
worst case?

®  Are there any time-dependent race conditions?
e  What system clock frequency is needed for adequate response?
e Is an event-based scheduler or a priority scheduler the appropriate approach?

e If a particular scheduling policy is used (e.g. rate monotonic scheduling), how close is the
system performance to that predicted by theory?

e Is the handling of specialised devices correct?

e  What are the worst case hardware interrupt handling situations? Are interrupts missed?
With what frequency? Does the program handle missed interrupts gracefully?

It is unlikely that prototypes written in PL will be able to provide answers to these questions,
and it is ambitious to expect that PS will be initially powerful enough to provide these answers
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from prototypes put together using target language components. We would be pleased to see such
a pPS§.

Parallel Computation
It is likely that an increasing number of computation problems will be addressed using special-
ised parallel architectures. The possible range of such architectures is very wide. PS should
accommodate writing prototypes for such systems.

Remark: [Implemented on Parallel Architectures] It is desirable for PL to be able to be
effectively implemented using parallel architectures.

One of the important approaches in prototyping is to run the prototype on a fast machine to
make up for the inefficiency of the prototyping approach. In particular, taking advantage of
highly parallel machines is an attractive option for running prototypes at an acceptable level of
efficiency.

Remark: [Prototyping Parallel Architectures] It is desirable for PL programs to be able to
model computations performed on a wide variety of parallel architectures.

In other words it should be possible to write an operable PL prototype that acts as an appro-
priate implementation specification for later efficient implementation on a specialised parallel

architecture.

Remark: [Implementation Architecture] It is desirable for PS to be designed to run on a
network of heterogeneous parallel processors.

Although such architectures are not prevalent today, we believe that it would be wise to antic-
ipate movement in this direction. P$ should also be suitable for degenerate systems from this
class, including distributed uniprocessors, various parallel processors, and single uniprocessors.
We are aware that this is ambitious, but nevertheless suggest that the designers consider this
option.

Parallel Computation Discussion

We recognise that this is a difficult problem, because of the wide variety of possible architectures,
but it is important that P§ be as flexible as possible in this regard. In particular, P§ should have
features for the following:

e Running large numbers of tasks in parallel

e [Establishing restricted models of communication between parallel tasks
e Operating with shared memory or local memory models

¢ Modeling both SIMD and MIMD computation.
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Distributed Computation
Requirement: [Distributed] PL shall support the prototyping of distributed applications.

The use of distributed computation can also be expected to become more important, and P§
maust be able to model distributed computations effectively. Among consideration in this area are

the following:

e Separate tasks may have quite different capabilities, corresponding to execution on heteroge-
neous processors.

e Communication between tasks needs to be able to reflect realistic communication across
networks, including simulation of network traffic flow, and communications failure.

e Such techniques as fault tolerance and redundant processing should be able to be specified
and prototyped.

These are somewhat open-ended, and it is unlikely that all these considerations can be accommo-
dated, but the design of PS should make an attempt to allow effective and realistic prototyping
of distributed systems at a high level. Of course it is not intended that PL necessarily have prim-
itives to directly support these features, but the abstraction facilities should be capable of being
used to build the necessary primitives.

Knowledge-based

Requirement: [Knowledge-based] P$ shall support the prototyping of knowledge-based
applications,

To date, knowledge-based applications have been poorly supported in conventional programming
languages. Most such applications have been built in Lisp, Prolog, shells built upon them, or in
other special purpose languages. Recently, interest has been expressed for supporting knowledge-
based applications in Ada.

Most of the capabilities needed to support knowledge-based applications have already arisen
as PL requirements from other considerations. The major exceptions are inferencing, rules,
constraints, and contexts.

How such capabilities should be supported is still an open issue. We therefore do not require

any specific PL language capabilities, nor even that knowledge-based applications be directly
supported by PL constructs rather than indirectly by a library of modules. Instead, we merely
require that PS somehow facilitate the prototyping of knowledge-based applications. However, we
feel that the designers of PS should consider providing explicit mechanisms to support some or all
of the following:

o Representation primitives for key knowledge programming types, including facts, rules,
imperative blocks, classes, instances, type hierarchies, frames (structures, iuheritance and
demons), predicates, constraints, instance generators, patterns, and contexts.
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e Representation for key meta-knowledge types: logical moods (e.g, certainty, plausibility,
conditionalities), applicability restrictions or conditions, authorship, and priority.

e Efficient and general inference engines for pattern matching, unification, data-directed for-
ward chaining, goal-directed backchaining.

e Aids for incremental knowledge changes, including automated testing and semi-automated
configuration management.

e Capability for quickly building application-specific knowledge representation, inference,
instrumentation, and management capabilities.

e Capability for modifying built-in knowledge programming capabilities and for dropping out
capabilities or adding new-ones.

Syntax

The following three issues are to be addressed:
o Should PL have a specified abstract syntax? If 2o, how should it be defined?

e Should PL have one or more specified surface or concrete syntaxes, or should the concrete
syntax be flexible? CIP-L is an example of a language which has taken the latter approach.

o If there is a specified concrete syntax, what general style is desirable?

Concrete Syntax
Requirement: [Single Concrete Syntax] PL shall have single a well-defined concrete syntax.

Since PL is a notation for communication of ideas between people, as well as communicating
with machines, it is important that everyone adopt a similar, mutually comprehensible style of
programming, and using the same syntax is a required component of such similarity. In practice,
either by fiat (as in COBOL), by suggestion (as in Ada), or simply by custom (as in C), the
commonality extends beyond the syntax issues per se and includes such issues as layout and nam-
ing. The question of the extent to which the language definition should address such subeidiary
questions is left open.

Another reason for this requirement relates to tools. Although many tools will operate at the
abstract syntax level, there will be a number of tools that legitimately will work at the concrete
syntax level, including for example reformatting tools and source maintenance tools, and poesibly
PL compilers. It is important that such tools be fully portable and usable in all contexts. Requir-
ing such tools to be parametrised by syntax definition would considerably complicate them and in
some cases be impractical.
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Concrete Syntax Style

Given the requirement that PL should have a primary concrete syntax, the issue is what this
syntax should look like. In designing this syntax, the general aim should be to stress the coupling
between language and environment, and to improve the analysability and readability of the

program.

This leads in the direction of a publication type syntax which takes maximum advantage of
specialised notations such as set former notation, as in the following example:

{f(a) | a € 4}

Such a publication syntax is intended for communication of PL programs to readers, although PL
processors should support this syntax fully.

The PL design should deal with the issue of usability of specialised notations that are incorpo-
rated into the syntax, for example, with notations for the design of specialised display and printer
fonts, along with convenient tools for inputting programs in this form.

Abstract Syntax
Requirement: [Single Abstract Syntax] PL shall have a single well-defined abstract syntax.

Part of the PL definition is a standardised abstract syntax, which will be used by all P£ com-
pilers and other tools. By standardising an abstract syntax, PL tool components will be more
interchangeable, and such tools as pretty printers, cross-reference, and other analysis tools using
the abstract syntax will be portable across implementations.

The abstract syntax should be in the form of an attributed tree. The extent of the attribution
may vary depending on the use of the syntactic object. For example, if PL includes some kind of
type inference mechanism, then in one view, perhaps prior to this inference operation, the tree
would not contain type annotations, but it would contain such annotations after type inference.
The abstract syntax tree should be representable in the following two manners:

e  As an abstract data type, using the standard abstraction mechanisms of PL, so that it can be
manipulated as a data object in PS. In particular, PL programs may create other programs
or program fragments in this form. Since the abstraction mechanisms ¢ PL provide for
multiple views of abstract types, the various levels of detail, corresponding to different sets of
attributes, can be represented using this mechanism

e In character string form, so that abstract syntax trees (AST’s) can be transferred across the
boundaries of the PL system in a form conducive to easy transfer by existing mechanisms
such as mail messages and magnetic tapes. This allows transfer of AST’s from one PS to
another one which uses different internal representations for AST’s.

At the simplest level of abstraction, the character string representation of a PL AST might
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look very similar to Lisp.

Tools for converting from the concrete syntax to AST’s (translators) and vice versa (pretty
printers), can be standardised across different instances of PS.

Note that since tools exist for dealing directly with AST’s expressed in character form, it is
possible that this form could be used directly by other non-PL programs or by programmers

in communicating PL texts to the system. The extent to which similar usage patterns in PL
will depend both on the design of concrete syntax, and on the habits of programmers using the

system.

Syntax Discussion

We considered the idea of PL specifying an abstract syntax and providing mechanisms for easily
describing concrete syntax as a customisation of PL. This idea was rejected for several reasnns.

CIP-L is a language that adopted this approach. In the case of CIP-L, what happened in practice
was that three variants were developed—an ALGOL variant, a Pascal variant, and a Lisp variant.
The first two were essentially identical, the main issue distinguishing them was the hotly argued
difference over the use of semicolons. The Lisp variant has been used much less. Many people
connected to the project seemed to indicate that the original decision was made for essentially
political reasons, and that in retrospect it made little technical sense.

On the other hand, the Working Group recognises that the experience of such a small community
as the CIP-L community possibly does not apply directly to this situation.

If there were no defined syntax, then standards would certainly develop, but the development
would be haphasard, compared to the advantage of initial standardisation. Syntax is something
well understood, so there is no real merit in deferring decisions on the concrete syntax.

One idea we considered was that all communication between different users of PL be at the
abstract syntax level. This would work fine for communication between PL processors, but it
would not work for communication between people in the Ada community. Even in the case of
communication between processors, lack of syntax standardisation means that effort is wasted on
generating maultiple front ends which are not sufficiently strongly needed.

A system is weak whose main feature is that it is customisable without providing a recognisably
useful set of defaults. Acceptance of PS will be hindered or severely delayed if a lengthy period of
customisation and default standardisation is required.

All these considerations add up to suggesting that the PL design should include a standardised
concrete syntax.
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Target Language Modeling

Behavioral Prototypes of Target Components

Requirement: [Behavioral Prototypes] PS shall provide the ability to develop behavioral
prototypes of target langunage components.

Either through capabilities provided in PL itself or through the interoperability capabilities,

the entire functionality of the target language must be available to the behavioral prototype
developer. It is desired, but not required, that PL itself have the capability to be at least as
expressive as Ada, mainly through suitable abstraction capabilities. It is up to the designers of
PL to decide how much of the target language to model in PL and how much to provide through
interoperability.

In contexts where there is substantial ongoing development in a target language, this might
be a typical use for PL. It is hard to imagine that PL would be acceptable to a large target
community without satisfying this requirement.

Structural Prototypes of Target Components

Requirement: [Structural Prototypes] PL shall provide the ability to develop structural
prototypes of target language components.

In target languages such as Ada which has clear aggregation units or component modules the
structure of the program is largely revealed in the module selection and the interrelationships
among the modules; PL ought to be capable of modeling that component structure, including the
relevant aspects of the module interfaces. Any of the component modules may be modeled by a
behavioral prototype, so structural prototypes must be able to incorporate behavioral prototypes.

In contexts where there is substantial ongoing development in a target language, this is another of
the most typical uses for PL. It is hard to imagine that PL would be acceptable to the Ada target
community without satisfying this requirement.

User Interface Support

Requirement: [User Interface Prototyping] PS shall support the rapid prototyping of user
interfaces.

One of the characteristics of modern computing environments is a much more sophisticated
input/output environment, including the use of high resolution graphical devices, windowing
systems, and laser output devices. We feel that many prototypes will be of systems that make
use of these devices. Of particular importance is the ability to support rapid development of user
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interfaces. Because there is a trend towards designing the user interface before designing the rest
of the system, user interface support is extremely important. Requirements engineering often
entails providing a user interface that can be tried out by a sample of users.

We note this particular point because few language designers focus on user interface issues,
leaving that up to the environment or a library.
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Introduction

PE is a set of tools for helping a prototyper get a prototype written and running. In general,
the more advanced the prototyping environment the more open and scalable it is, and the more
integrated are its tools. By integration we mean that the tools are interconnected in such a way

that moving from tool to tool during a prototyping session is easy.

As with PL, PE has both a component which it shares with programming systems, and an
additional prototyping-specific component that is unique.

This chapter identifies the requirements pertaining to these portions of PS.

Programming Environment

There are two distinct parts to the generic programming component of P€. The first is the run-
time system which supports the semantics of PL. It performs memory management, ensures
runtime type consistency, provides linkage among procedures and functions written in supported
languages, and supports instrumentation and monitoring. The second is the development envi-
ronment, which provides programming tools like editors, debuggers, and browsers, along with the
user interface, the dynamic loader, the window system, and presentation tools for instrumentation
and monitoring.

Requirement: [Modern Baseline] P shall encompass the most up-to-date generic program-
ming environment techniques.

Modern programming environments are window-based, dynamic, incremental, and well integrated.
They contain many capabilities detailed below that are needed for both programming and pro-
totyping. Several existing systems, including the Lisp Machine, SmallTalk, APL, Cedar, and
Rational Computer’s Ada illustrate the current state-of-the-art.

Remark: [Existing Platform] It is desirable for these and other similar programming environ-
ments to be considered as an implementation base upon which P£ is constructed.

These environments represent enormous implementation investments, usually several times that
required for the language they support. A significant proportion of the implementation effort goes
into engineering these capabilities into a smooth, responsive, and coherent system. Because they
contain so many capabilities in a single well-engineered, integrated system they offer the potential
of a high leverage platform upon which further capabilities can be built.

With respect to the generic capabilities, major additions to these existing systems are needed
to support a persistent object base, multiple versions of prototypes (both chronological and
variants), and multiple users.
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In the rest of this section we identify some of the tools already part of these advanced program-
ming environments and which must also be included in P€.

Editor
Requirement: [Editor] P shall contain an modern screen-based editor.

A programmer interacts with a computer through the keyboard, the screen, and the mouse. An
editor is a program that manipulates text and other material on the screen using the keyboard
and the mouse.

A good editor will be engineered to aid the programmer with the mechanical tasks of entering his
program. The editor should be able to check syntax, to determine well-formedness of programs, to
detect type errors, and to check that the module structure of the program is consistently followed.
That is, there is no reason that the editor should not be able to handle the actions normally
associated with the syntactic and semantic phases of the compiler.

The syntax checking performed by the editor should be unobtrusive.

System Definition Tools

Requirement: [System Definition] P shall contain a facility for defining systems, for locat-
ing the various versions of the components they contain, and for rebuilding it after modification.

Many modern programming environments provide a module and library facility, but beyond that
facility is the need for mechaniams to enable the programmer to find the definitions of routines
and data structures within those modules and libraries. When a programmer wants to look at
some definition he does not want to spend time and attention locating that definition. Keeping
track of such definitions is something that the programming environment should be able to easily
do.

When some definitions are altered, the programmer will want to have those changes incorporated
in his running system. A good system definition tool will be able to determine the quickest route
to that situation. Only under the most extreme situations will it be necessary to re-compile or
re-load the system.

Supporting multiple versions of parts of some moduiz helps achieve the goal of low inertia—
changes to the prototype can be quickly and easily made. This facility might be supported by PL,
but it is typical for such things to be supported by the environment. The programmer should be
able to write special compilation or redefinition protocols using this tool. That is, if there is some
means for the programmer to specially compile or load some part of his program, it ought to be
possible for him to write a PL program to do so. This is one example of utility of the requirement
that PL be capable of expressing PS tools.
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Debugging

Requirement: [Debugging] P shall provide a modern source level debugger which is capable
of interactively evaluating arbitrary PL expressions or statements in the current context, modi-
fying bindings and values within the prototype, and alterning the point at which an interrupted
computation will continue.

Unfortunately programmers make mistakes. In this case it is often useful to be able to examine
the state of affairs while in the erroneous situation, possibly using a PL debugger. A common
style of debugger uses a listener, which is a loop that reads expressions, evaluates them in the
current environment, and prints the results.

Other actions that are useful while debugging are to invoke an inspector to look at data struc-
tures, to look at the invocation stack to see what procedure calls led to the current situation, to
examine the call frames for each procedure invocation, and to rewrite and re-execute code. Some
debuggers provide mechanisms to enter the editor and engage in a separate debugging session.

A very powerful tool for debugging is a single stepper. A single stepper executes source code a
statement at a time, pausing after each statement execution to accept user commands.

A related tool provides a mechanism to run programs at less than full speed but faster than
single stepping. Such a tool used in conjunction with the monitoring tools is useful for viewably
displaying critical parameters or some representation of the flow of control.

The most effective debuggers operate in environments that are fully instrumented. An instru-
mented environment is one in which the types of objects are apparent, and procedures and access
to variables may be monitored. See the description of Information Extraction in the Prototyping-
Specific Capabilities portion of this chapter.

Browsing
Requirement: [Browsing] P shall allow all values to be browsed and edited.

Browsing is the activity of examining data structures, variables, and procedures. A variety

of presentation techniques, each tailored for the display of certain sorts of information is often
most effective. For example, a program might be displayed as a graph of procedures with data-
sharing relationships highlighted. Another example is hiding comments and documentation when
browsing program text, or vice versa.

It is useful for anything that can be browsed to be also editable. This may require a set of
editors, each designed for editing a particular type of object using a particular presentation.

Dynamic Loading

Requirement: [Dynamic Loading] P shall support the dynamic linking of separately com-
piled modules or procedures.
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One goal of the PS is to be able to trade efficiency of programs for efficiency of programmers.
One means to gain programmer efficiency is to speed up system turnaround. A dynamic loader

is a tool for incrementally recompiling and loading single procedures (or even single lines from a
procedure, in some cases). Such a tool requires that the usual static linking of code be abandoned
in favor of dynamic linking; however, there are several techniques for minimising the cost of
dynamic linking at runtime. As with all prototyping environment tools, safety and consistency
checking should be performed by default when dynamically linking programs.

Windowing

The need for a window interface is apparent for several reasons. A window interface can be used
to present information to a user in an efficient manner and, if it is flexible enough, it can be used
to prototype user interfaces. The first of these is treated here and the second is addressed within
the Prototyping-Specific Capabilities portion of this chapter.

Requirement: [Window Based User Interface] P shall have a modern window based user
interface.

The presentation of monitoring and other information as part of PS§ is best accomplished with

a window system. With high resolution graphics devices, the prototyping environment can be
written to display more information than with other devices, and the displays can be natural for
the task.

Multitasking
Requirement: [Multitasking] P shall support multitasking within PS.

Maultitasking is useful to have i.a P§ because a programming environment is most flexible when
the programmer is able to work on one task while the system is able to complete some other
tasks.

Multitasking is usually required to implement a window system. For example, one process is used
to poll the mouse in order to implement mouse-sensitive regions of the screen for menus.

PL is also required to support multitasking, and it is reasonable, but not required, for PS and PL
to utilise the same facility.

Condition Signaling

Requirement: [Condition Signaling] PE shall support the handling of conditions signaled by
either PL components or the target language systems with which they are linked.

Often a program will cause foreseeable categories of errors or conditions to occur at unpredictable
times. The programmer will often wish to handle these errors or conditions by supplying code for
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each type of error or condition. When an error of a certain type occurs, the associated handler
will be invoked. Experience with Lisp and CLU have shown that it is best for condition handlers
to define a lexical scope and for the condition handlers to be in force during the execution of the
lexically enclosed expressions.

Often a prototype’s behavior can be well-specified by specifying the normal behavior along with
the exceptional behavior, and in this case the entire prototype could be well-specified by PL code
along with condition handlers.

Integration of Tools

Requirement: [Tool Integration] All PE tools shall be integrated and operate on mutually
understandable representations.

The editor should know about the syntax and some of the semantic rules of £, and poesibly of
the target language; the compiler, the profiler and the debugger should know about the editor,
for example. Errors made during the coding phase of prototyping should be caught as early as
possible and presented in the most useful contexts.

Debugging, monitoring, and other extracted information should be associated with the source
code affected. If a performance profiler determines the relative frequency of the various arms of a
conditional branch, that information should be integrated with the source for that conditional.

Similarly, debugging information should be displayed with the relevant pieces of code. The display
of such information should be uniform, but customisable by the prototyper.

Extensibility

Remark: [Extensibility] It is desirable for P€ to allow prototypers to extend (their version of)
PS.

Two philosophies exist concerning the extensibility of £S. One philosophy is that languages and
systems are desigred by language designers and system designers, and a user is not in a position
to make good decisions: any decisions made about language design made by someone other than
the language designer will lead to non-portable or poor code.

The other philosophy is that there should be no distinction between a designer and a user, and
that anything the implementor of a system wrote could be written by a prototyper.

We feel that P§ should allow prototyper extensibility. Any organisation that ascribes to the other
philosophy can adopt a policy prohibiting such extensions.
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Prototyping-Specific Environment Features

The programming environment features discussed so far are simply tools that programmers
expect in their environments, though it is sadly the case that many programmers do not routinely
enjoy the use of such environments.

In addition to these capabilities, P£ needs prototyping-specific capabilities for extracting infor-
mation from a prototype, running an incomplete prototype, redefining portions of it, rapidly
prototyping user interfaces, and for linking a prototype with the rest of the software lifecylce.
These issues are the focus of this section.

Information Extraction
Extracting information is one of the two activities that distinguishes prototyping from program-
ming. This information is used to show what, how, and how well the prototype is doing. It can
also be used to determine whether the prototype is functioning as intended and, if not, why
not. That is, this information is used both for testing and debugging. Supporting information
extraction requires mechanisms to do the following:

o building test harnesses needed for tests

e constructing scenarios to drive tests

e writing test evaluators

e reinitialising the state of an executing prototype in preparation for a test

We divide information extraction into three areas: gathering the information (Instrumentation),
determining whether the prototype is functioning as intended (Testing), and making the informa-
tion visible to the user (Presentation).

Instrumentation

It must be possible within P£ to capture, manipulate, and aggregate any instrumentation data
desired. It must also be possible to to compose both built-in and user-defined higher level instru-
mentation capabilities. Examples of necessary instrumentation and uses of instrumentation are as
follows:

e Execution times and counts for code

e Execution counts for data structure access (separate reads and writes)

e  User interaction characteristics (for recreating user interaction situations)

e Comparison of several prototype executions with each other.

Requirement: [Placement of Instrumentation] It shall be possible to instrument any part of
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a prototype (e.g. procedures or types), its data, or any of the control or data abstractions upon
which they are based. It shall be possible to invoke a PL or target language procedure whenever a
instrumentable part of a prototype is accessed.

We feel that it should be possible to easily attach instrumentation to any object that can be
instrumented for the purpose of gathering information. It should be possible for attached in-
strumentation to include code to be activated each time control or data passes through the item
to which it is attached. For abstractions, this should happen each time control or data passes
through any instantiation of the abstraction. For the process abstraction, this should happen
when the process starts and stops. Upon each activation, the attached instrumentation should
have access to all the relevant aspects of the operation occurring (e.g. whether the data operation
is a read or a write along with the old and new values, the actual arguments of a routine being
invoked, the value being returned, etc.), and it must be possible for the attached instrumentation
to time the operation. For data, this should happen whenever the datum is accessed, and the
attached instrumentation should have access to the type of operation and whether it is a read or

a write.

ent: [Data Aggregation] It shall be possible, using PL , to conditionalise and filter
the data gathered during instrumentation and to aggregate instrumentation data.

Using instrumentation and PL composition, we expect designers to be able to satisfy the following
additional higher-level instrumentation requirements:

Requirement: [Instrumentation Specification] It shall be possible within P£ to monitor
changes to data satisfying a PL predicate.

Using whatever means PL provides for expressing predicates and aggregating data (such as set
formers), it must be poesible to specify the instrumentation to be attached to each element of an

aggregation.

This capability raises a design issue. Since instrumentation has access to both old and new values
when data is being updated, it is reasonable to allow either to be used in determining which
changes to monitor. However, this requires that such two-state access be part of the PL predicate
language, that the predicate language be specially augmented for use in instrumentation, or that
the filtering occur within the computational portion part of instrumentation. We believe that this
choice should be made by the designers of PL.

Requirement: [Instrumentation Composition] Prototypers shall be able to define compound
events in terms of the activating operations and /or other previously defined compound events,
and to ask for and see instrumentation in terms of those compound events.

Requirement: [Low Instrumentation Inertia] Prototypers shall be able to quickly and easily
turn instrumentation on/off or to change what is instrumented.

This requirement could be satisfied by making instrumentation a PL object that is manipulated
by higher-level P§ tools.

Testing
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Testing is the determination of whether a prototype is functioning as intended. This determi-
nation requires the comparison of actual versus intended data. The data can include both the
behavior of the prototype and its performance, and the behavioral data can include data from the
final state of the prototype as well as from any of its intermediate states.

If the determination is being performed by some tool, then the intended data (or some character-
isation of it) must be formally represented so that a comparison can be made. If the determina-
tion is being performed by the user, then the actual data must be presented (i.e. shown visually)
so that the user can assimilate this data and compare it with the intended data which may be
implicit or described informally.

Requirement: [Query Access] Prototypers shall be able to access (via query) all data satisfy-
ing a PL predicate, with some exceptions.

Since the determination of whether a prototype is functioning as intended by a user is informal,
prototypers often formulate additional queries on the basis of what has been seen so far. This
interactive ability should exist while in the midst of execution. That is, the prototype should not
be recompiled once the predicate is known. Rather, the new data must be accessible as it then
exists. To achieve this would imply the capability of being able to access all instances of a type.
On the other hand, to provide this capability might incur an excessive performance penalty on
PE. Therefore, it is acceptable for the designers of PE to except certain types of data or certain
types of predicate.

In addition to the above information extraction requirements, several more arise from the need to
define and run tests, initialize the environment beforehand, reset it afterwards, and determine the
success or failure of the results.

Requirement: [Test Initialisation] P shall provide a low inertia mechanism to set up the
environment for a test and to reset it after running that test.

Requirement: [Test Harness] Prototypers shall be able to specify the scenario for a test and
to run the test according to that scenario.

This includes the ability to externally control all inputs and outputs of the prototype, supplying
selected inputs from the scenario or interactively and gathering selected outputs. Also required is
the ability to detect and respond to any exceptions raised during the the test.

Requirement: [Test Determination] Prototypers shall be able to define the criteria for
success or failure of a test, and to determine which occurred.

This necessitates the ability to specify a set of expected results (which may involve intermediate
values, chronological restrictions among them, and performance measures) and the means of
comparing them against the set of actual results (gathered by instrumentation). This requirement
would be easily satisfied if these computations could be written in PL and appropriately invoked.

Remark: [Non-Angelic Constraints] It is desirable for prototypers to be able to define
conditions that should not be violated during the execution of the prototype.
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The system would have the responsibility for detecting any violation of the stated conditions.

Such a capability would be very useful in testing. Existing testing mechanisms examine behavior
and compare it against expected behavior. Non-angelic constraints would provide a means of
identifying undesired behavior at a fine level of granularity.

There are at least the following four possibilities for what can happen when a constraint is
violated by the prototype:

e Break: Stop and interact with the user.

e Instrument: Record the violation and continue.

e Constraint Propagation: Repair the violation and continue.
e Error: Raise an exception.

One question not adequately addressed by the Working Group is whether such constraints should
become part of PE. Their inclusion would certainly raise the level of the prototyping language
by introducing a powerful declarative construct—the continuously evaluating violation condition.
The manner in which constraint violations can be handled also alters the tenor of P in ways not
explored by the Working Group. A final issue concerns the performance implications of such a
capability.

Presentation

Making the collected data visible to the user in a useful manner is imperative. Furthermore, it
is important that the data be stored in such a manner that it is subject to analysis programs.
Some data is best displayed graphically, such as the relative execution times of portions of the
prototype. Other data is best displayed as an annotation to the source code, such as the relative
frequencies of execution of different parts of the code.

Other forms of integrated presentation would make prototyping easier. Examples are the display
of performance information as part of a display of the static call tree, or the display of access
counts or percentages as part of the display of data structures.

The Working Group does not have specific remarks concerning how this part of the user interface
should be designed.

Incomplete Prototypes
Requirement: [Run Incomplete Prototypes] P shall allow incomplete prototypes to be run.

A prototype is incomplete if not all procedures, functions, or types are defined or if they are
partially defined.

PE must be able to run incomplete prototypes up to the point where such definitions are required.
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At this point, a surrogate can be invoked, a condition can be signaled, the user can be queried, or
any of a variety of actions can take place.

Incremental Development

Prototyping is necessarily incremental. P£ should support this by providing incremental compi-
lation for PL code and dynamic loaders for PL and target components. Automatically generated
condition handlers should be used to handle stubbing and other problems introduced by the re-
quirement for incomplete prototypes. Multiple execution spaces might be a reasonable means for

rapidly debugging prototypes.
Requirement: [Redefinition] PE shall allow all PL definitions to be modified and reinstalled.

One aspect of the incremental nature of prototype development is the need to redefine previously
defined procedures, data structures, classes, types, and protocols. Such redefinitions must be
allowed but once they have been used to create instances, an issue arises about what to do with
those instances of the (now) obsolete definition.

A variety of approaches are possible. The one used by the Common Lisp Object System is to
provide a means for the prototyper to specialise a system-supplied update protocol in which in-
stances of redefined objects are modified to correspond to the new definition. Implementationally,
updating happens lasily, that is, when they are accessed.

Remark: [Instance Update] It is desirable for P£ to provide a mechanism like the update
protocol to update instances of redefined objects.

Prototyping User Interfaces

Requirement: [User Interface Prototyping] P shall facilitate the prototyping of user
interfaces.

The window interface can be used to supply modules for prototyping user interfaces or for the
user interface portions of prototypes. Often the most time~consuming work during prototyping
is writing the user interface. Because P$ ocught to help make prototyping faster and easier than
programming, the availability of a set of tools and modules is important.

Remark: [User Interface Prototyping Toolkit] It is desirable for P to provide a user
interface toolkit to facilitate user interface prototyping.

Currently there are available user interface toolkits that are designed to help programmers design
user interfaces by providing mechanisms to select commonly used components and customise
them, to draw graphical components, to render components active to mouse motion and input,
to compose these components into larger ones, to provide animation and audio feedback, and to
provide various means of input to the program.
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Lifecycle Support

If our hopes about the software lifecycle are fulfilled, prototypes will continue to exist beyond
their use in the specification phase. In this case, all documentation, specification, and informal
data that is derived or produced during the early phases of prototyping will need to continue
to exist for long periods of time. In addition, the use of prototyping throughout the software
lifecycle will be facilitated if there are tools that assist in maintaining the linkages between
changes in the production implementation and the prototype.

It should be possible to easily move between source code to the corresponding documentation and
specification. Because we expect that many prototypers will be developing prototypes at the same
time that documentation and specification are being developed, P should support this activity as

part of the software lifecycle.

During exploratory prototyping and debugging, information that is neither documentation nor
specification is often derived. We call this informal data. Insofar as informal data is associated
with PL code, PE should support the management of this data alongside those PL structures with

which it belongs.

Design decisions, structuring decisions, tradeoffs, requirements, partial specifications, comments,
and hints for future programmers are all examples of what we call informal data.

A well-developed prototyping environment will support management planning and control capa-
bilities. In some cases there are existing systems that support these activities, and it would be
desirable for P to interface to them.

Support for Multiple Prototypers

Requirement: [Multiple Prototypers] P shall support multiple prototypers working on the
same prototype.

As many programming projects involve multiple programmers, so the prototyping process will
sometimes involve multiple prototypers or designers. Therefore, P£ should support version and
configuration management. The persistent object base should be designed to support multiple

prototypers.
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Introduction

We now address some questions about relatively long-term research in related areas. This is not
intended to be an exhaustive list of related research areas, nor is it intended to be a list of the
only research areas we feel deserve attention with regard to prototyping.

Prototyping Languages as Production Languages

All prototypes are programs, but most are not suitable for production use, usually because they
lack efficiency or robustness. Since programs and prototypes are distinguished by their intended
use, not the notation in which they are expressed, one is tempted to hope that the same language
could be used to construct both. In fact, today most prototypes are produced in languages
designed for building production programs. On the other hand, the basic premise behind P§ is
that a special purpose prototyping language and system can greatly facilitate developing and
analysing prototypes.

Other parts of this report have explained why conventional programming languages are not
suitable for building prototypes. However, whether it will be possible to design PL such that it
is suitable for building production programs as well as prototypes is still an open question. It is
important that this not be a requirement of PL, but it would certainly be a desirable property.

There are several technical reasons PL could fail to be suitable for building production programs:

e PL might not be suitable for building programs that have to be maintained and modified over
a long period of time.

o  There could be functionality achievable in a particular programming language that is not
achievable in PL.

e PL programs might not be robust enough for production use.

e The production program might have to run on a machine or in an environment that does not
support PL.

e PL programs might not be acceptably efficient.

If PS were ill-suited to production programming because PL was not suited for building maintain-
able and modifiable prototypes, it would fail as a prototyping system. Though prototypes may be
much smaller than the production program being prototyped, they will not always be small. Even
if the prototypes are an order of magnitude smaller than the final program, they can still be large
enough to raise all of the problems associated with building large programs. The key to rapid
development of prototypes is likely to be reuse of part of other prototypes. This is only practical
in an environment in which programs are relatively easy to maintain and modify.

4-2 Common Prototyping System




Draft

Nov 11, 1988 16:42

In the long run, PL must provide the union of the functionality of the target languages. However,
we expect that early versions of PL may do so only by allowing calls to them. For example, early
versions of PL may not directly support distributed or other parallel programs.

Since PL will be used to explore large spaces of possible programs, it must facilitate making,
installing, and testing changes. The flexibility implied by this may conflict with linguistic features
designed to ensure program robustness. For example, it is widely accepted that requiring certain
kinds of syntactic redundancy lead to more reliable programs. Yet requiring such redundancy may
conflict with the goal of being able to make changes quickly.

Portability and efficiency of PL are closely related—they both depend upon advances in compiler
and other implementation technology. If we could write highly portable systems and compilers,
PL would be a very usable programming system as well as prototyping system. Unfortunately,
experience indicates that neither of these is easy to do—and that the combination of portability
and efficiency is even harder to achieve. Building a portable compiler is only the tip of the

iceberg.

Portability and efficiency should not be requirements of initial L implementations. To do so
would place unacceptable constraints on the expressive power of PL. However, research into the
production of efficient portable implementations of powerful programming environments should
be encouraged as part of the overall PL effort. Initially, this research can proceed independently
of the design of PL. However, as various PL features are proposed serious attention should be
devoted to how they can be implemented. PL designers should be encouraged to design complete
languages (not merely kernels) so that they can get feedback about how their language designs
interact with implementation technology. Particular attention should be paid to the impact of
various features on the runtime environment.

Transforming Prototypes

Transforming PL prototypes into production programs in the target language is a very hard
problem. The root of the problem lies in the potential differences between a prototype and a
production program. These differences have several sources as follows:

e The natural way to express something in PL may not have a natural translation into the
target programming language. If one has to maintain the target language program text
(rather than the PL text) ugly programs are not acceptable.

e One may want the global structure of the production program to quite different from that of
the prototype. These differences may arise from efficiency considerations, from attempts to
allow for expected modifications, or from robustness considerations that were not present in
the prototype.

e The behavior of the production program will be different from that of the prototype. The
purpose of a prototype is to provided feedback about the program, not to provide a complete
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set of requirements. One may make changes because of things learned from the prototype.
One may make changes in order to make particularly efficient implementations possible. One
may make changes to handle cases ignored by the prototype, and this may make it desirable
to change the way other things are done.

Despite the problems implied by these differences, this is an area of research that should not be
ignored. While the probability of success may be low, the potential payoff is high.

Research on PL to PL transformations also offers substantial possibilities. There are four distinct
kinds of transformations to explore. They differ in the relation between the original PL program,
call it P, and the program into which it is transformed, call it Q.

e Behavior preserving: Client programs (i.e., programs that make use of P and Q) can detect
no difference (including efficiency) between P and Q. These transformations are not likely to
be terribly interesting.

e Interface preserving: Client programs can detect no difference between P and Q’s behavior,
except possibly with respect to efficiency. For programs in which timing differences can affect
behavior these transformations are not behavior preserving.

e Correctness preserving: Client programs may be able to detect differences unrelated to
efficiency between P and Q. However, Q meets P’s specification.

o Non-preserving: Q may not meet Q’s specification. At the lowest level of abstraction one can
use a text editor to transform one program into another. However, one can imagine many
higher level operations that could be used to transform one program to another in a more
systematic way.

One approach is to limit the domain of a program to increase efficiency. Examples of this
approach include substituting floating point arithmetic for infinite precision arithmetic or
limiting the length of identifiers. Another approach is to enlarge the domain or to generate a
program that on the surface seems to do rather different things than the original. Examples
of this approach include generalising a program that sorts integers to a general sorting
routine, changing a parser for one language into a parser for another, and turning a Fortran
compiler for Vax into one for a Sun.

Understanding how one might program using such a transformations is a difficult but inter-
esting research problem.

Specification and Prototypes

It is tempting to hope that given a suitable prototyping language one could avoid separate spec-
ifications by treating the prototype as the specification. We believe, however, that specifications
and prototypes should be viewed as complementary.
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An important, perhaps the main, purpose of a specification is to provide precise and easy-to-
read module level documentation of interfaces. This documentation facilitates system design,
integration, and maintenance, and encourages reuse of modules. Prototypes are less likely to be

suitable for this purpose.

Research into the complementary roles of definitional specification and prototyping should be
encouraged as part of the overall P§ effort. This research should deal with specifications of pieces
of programs written in conventional languages and pieces of prototypes written in PL. Specifying
PL modules should be particularly valuable. If prototypes are to be developed rapidly, they must
be built using previously written components. Given that one is relatively unconcerned about
efficiency in a prototype, there is reason to hope that components will be more easily reusable
than in production programming. The availability of good specifications can encourage reuse.

It is likely that developing a PL specification language will involve considerable research. A
specification should provide all the information needed to write programs that use the specified
component. A critical part of this interface is how the component can be combined with other
components. Combining mechanisms differ from programming language to programming lan-
guage, sometimes in subtle ways. Specifications written in a language tailored to a programming
language are generally shorter than those written in a universal specification language. They are
also clearer to programmers who implement components and to programmers who use them.

PL is likely to incorporate features not found in conventional languages. Furthermore, conven-
tional features are likely to be combined in unconventional ways. Research will have to be done to
devise languages and techniques well-suited to specifying PL modules.

Libraries of Modules

An important goal of P§ is to encourage the reuse of program modules. This requires the ex-
istence of a collection of generally useful modules and some mechanism for combining them.
However, that is not enough. By way of analogy, consider a collection of books. The utility of the
collection depends not only on its contents but also upon the way they are organised (e.g., the
Library of Congress System) and the tools available for discovering what books are contained in
the collection (e.g., a card catalog).

At present no semantics-based system for organising program modules exists. Almost all pro-
grammers use some ad Aoc hierarchy, sometimes supported by a browser. This organisation is
rarely useful to others. Research into general techniques for categorising modules seems difficult
but useful.

There is also no widely accepted tool comparable to a card catalog. Hierarchical browsers tend
to lose their effectiveness when the number of modules grows large. One might be able to build
a useful keyword based system on top of a conventional database. It would be more interesting,
however, to investigate systems that performed retrievals based directly on either the bodies or
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specifications of modules.

Programming Distributed and Parallel Systems

It is quite clear that distributed and parallel programs will grow in importance in the future.
Systems of the future may be networks of predominantly parallel computers.

Work in this area should emphasise the construction of parallel programs and systems. At this
point in time, the research community clearly needs experience and data.

Researchers should be encouraged to develop new parallel programming languages, to build high
quality implementations of these languages, and to implement prototype systems in them. The
exploration of the relationship between modularity (e.g., through abstraction) and efficiency
seems particularly important. One aspect of this is understanding to what extent one can ab-
stract from underlying computer architectures.

The development of tools to support parallel programming languages is also important. Debug-
ging and performance monitoring and tuning of parallel and distributed programs is extremely
difficult and not well-understood.

Programming Languages

It is not easy to distinguish prototyping languages from programming languages—it is mostly a
matter of emphasis. These differences in emphasis, however, can lead to substantial differences as
one makes the tradeoffs involved in designing languages and environments.

There is obvious utility in continued research in which the tradeoffs are made in favor of the
programming language biases. Specifically, research should continue into designing languages in
which high degrees of efficiency can be achieved.

Programming Environments

Many of the tools found in conventional programming environments will play prominent roles
in P§. These tools include testing tools, debuggers, and performance analysers. PS will likely
provide an excellent context in which to push the state of the art in these tests. There is a
priors more emphasis on the environment in P§ than is normally the case. Also, designing the
environment and the language in concert should yield considerable synergy.
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In some cases, however, it may be easier to push the state of the art of the tools in a conventional
context. The research community’s extensive experience constructing and maintaining programs
written in conventional languages has helped to clarify major problems with current tools. Fur-
thermore, there is little doubt that languages such as Ada and Common Lisp will be with us

for many years. Therefore it pays to make substantial investments in improving their environ-
ments. Finally, because there will be fewer variables, it may be easier to push the state of the art
on particular tools in the more stable environment associated with conventional programming

languages.

Current programming environments are not as well-integrated as they should be. For example,
the various debugging, performance monitoring, and static analysis tools do not present their
results in one display. It is not possible to graphically compose simple programs. Informal data
such as notes from a prototyper to himself and his colleagues are handled by computer mail, files,
and paper, and not by the environment.

Current programming environments require the programmer to manually manage the look of his
screen and to spend a lot of time switching among tools. There is much computer science and
human factors research whose results could streamline the prototyping process.

Part of the prototyping environment is a persistent object base, which is either implemented in
terms of a database or shares many of the same problems with databases. In order to smooth
the use of a persistent object base, research must be done to solve some of the following example
problems. It should be possible to store the types of objects required by a prototyping environ-
ment, which might include running programs and the environment itself. It should be possible to
retrieve these objects quickly enough in a multi-user context. In multi-user situations it might be
necessary to be able to compose possibly mismatched object bases.

Prototyping versus Programming

In the best of worlds, there would be no difference between the environments used for producing
prototypes and thoee used for producing production programs. In such an environment producing
a production program would often involve incremental evolution of a series of prototypes. Of
course, that is exactly the way most research software gets built today. Languages that provide
good support for modularity and abstraction lend themselves to that paradigm. A problem is
that the designers and implementors of these languages and systems have usually emphasised
features aimed at producing production software, for example, efficiency, rather than those aimed

at producing prototypes.

The main body of this report emphasises the development of languages and environments aimed
specifically at prototyping. If that is successful, people will surely work on enhancing PL’s

and PS'’'s suitability for producing production programs. Another approach is to start with an
existing programming language and system and work on enkancing its suitability for producing
prototypes.
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Operating Systems

One fear we had while thinking about PS, especially P£, was that existing operating systems were
80 closed and lacking enough features that it would be difficult to provide the sorts of debugging
and monitoring information required for a useful environment. Similarly, many performance
problems we anticipate with PL programs could be alleviated with sufficient control over the
lower levels of the operating system.

We do not make any remarks regarding whether that operating system work be undertaken as
part of the core PS work, but we would not be surprised to see design groups propose operating
system (and possibly hardware) work as part of their work plan. And certainly we would like to

see a resurgence in operating system research,

The same remarks hold for computer architectures.
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1. Abstract

Annotations are a generalization of hypertext defined for use in a prototyping architec-
ture. They have proved to be surprisingly adaptable and general. This note is an attempt
to provide a formalism that explains part of why this is so.

2. Introduction

Annotations are the key to integration of the components of a prototyping environ-
ment. Informally, annotations are links between objects; i.e., generalized hypertezt® or the
building blocks of arbitrary relations.? Obviously very little can be said about something
as general as a link, but the use of annotations in the prototyping system has proved
surprisingly useful. In other words, a construct that is, apparently, so general that it can
have no structure of its own has proved to be very useful in the implementation of a com-
plex programming environment. This means, obviously, that there is, in fact, structure
somewhere, and the purpose of this note is to elucidate this structure.

To motivate our formal model of annotations, we give an outline of the relevant
aspects of the prototyping environment, and the way that annotations are used there.
This description is by no means a complete one; the interested reader is should consult
[Gabriel 1990], from which most of this outline was taken.

2.1 Prototyping Environment Architecure

An environment is a set of tools integrated harmoniously for the purpose of accom-
plishing some task or set of tasks—in particular, this set of tools must be able to work well
together as judged by a user of the environment. Often, this is simply being able to share
information, but it certainly requires being able to apply tools at the right time and to be
able to retain information.

A programming environment is a set of tools designed to facilitate the tasks associated
with developing software. These tools include, but are not limited to, editors, compilers,
debuggers, and linkers. Even more important than the tools provided is the mechanism
by which these tools are integrated. This mechanism provides a well-defined, flexible, and
extensible architecture for the components of the environment.?

The work was supported by DARPA, contract number N00039-84-C-0211.

¢ ypertezt is a commonly used term that has many different definitions, but in general it is used to
refer to mechanisms that link related pieces of text in a more or less active way.

2 By a relation here we mean a mathematical one—that is, a set of n-tuples.

3 The description of this architecture below makes free use of all of the terms defined in the appendix.
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§ 2 Introduction

Clearly, the requirements of such an architecture are driven by both the needs and
expectations of those using the system and those extending it. Specifically, for the user a
programming environment must provide tight integration of tools and the information they
provide. One way to accomplish this is with a closed implementation of the environment in
which the programming tools are designed together to work on the same representation,*
but this fails those who would augment the system. (Also, it generally proves to be more
difficult to make such tightly coupled environments work well on distributed computer
systems.)

In our environment tools are clients served by a kernel that effects the integration.
Tools and the kernel do not operate on the same representation. Instead they operate
on the same abstract interface to shared information. In other words, the kernel handles
keeping track of the information derived from the tools and relationships among such
information, and the (client) tools provide the information and the relationships.

2.2 Protocols

The architecture of the environment is built on a set of protocols that are used to pass
information among the different components of the architecture. For example, the kernel
learns about the structure and significant contents of a particular program source text by
passing that source to the compiler which returns such information as where definitions
are made and where those definitions are referenced.

The use of protocols this way enables knowledge appropriate to a particular tool to
remain local to that tool and for the implementation of activities appropriate to shared
information extracted from that tool to be similarly local to the kernel or other clients.
For example, in a programming environment the kernel has no detailed knowledge about
any particular programming language, but it has knowledge about programming and the
general concepts of programming languages. This knowledge is built into a teol protocol
server which attaches behavior to objects and their annotations. For example, information
about a program in the form of objects that represent the program text and annotations
such as cross references and documentation would be generated by compiler server and
retained by the kernel.

2.3 Types

As we said before, the kernel is the site of the integration of information and main-
tenance of relationships among different tools. In particular, the kernel “knows about”
different tools via a type system that is in the extensible part of the kernel. The addition
of a new tool to the system is accomplished by adding the appropriate type, e.g., parse

4 For example, in such a system a “procedure” might consist of structure containing source code, a
parse tree for the code, a “symbol” table, etc. Then, when the editor made changes to the source code part,
the compiler could make changes to the parse tree and update the symbol table so that the association
between substrings of the source and nodes in the tree would be correct. In such a system the various
tools usually end up tightly intertwined.
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trees, to the kernel’s type system,’ and providing the code that connects relevant pairs of
types to their associated tool, e.g., text and parse trees to a parser. In other words, the
protocol is a way of “extending” the mapping done by the tool (taking text and trans-
forming it into a parse tree) into a mapping between kernel types (associating substrings
in the source code with subtrees in the parse tree).

2.4 Annotations

An annotation is an object along with an associated set or sequence of other objects.
An annotation acts as a link among those other objects, and is an instance of a class
to which methods can be attached. An example annotation is the simple link which is
associated with a sequence of two objects. The first of the two objects is the source and
the other is the destination of the link.

More formally, an annotation is a pair (A4, S), where A is an instance of a class that is
a subclass of the class A, which represents annotations, and S is either a set {O,,...,0,}
or a sequence (Oy,...,0,), where each O; is an instance of some class. Further, there
exists an F: 4 — S, where S is the set of all subsets and subsequences of objects, such
that if (A, S) is an annotation, F(A) = S. Therefore, we can unambiguously denote the
annotation (4, S) by A.

Furthermore, there is a function f such that given any object o, f(o) = {(4,S)|o €
S}. That is, given any object it is possible to find all annotations that involve it.

The class of an annotation provides a set of operations that can be performed on
instances of that class. The operations on an annotation are carried out by the kernel.
The results of carrying out an operation often result in the presentation client presenting
new or altered material to the user.

2.5 Ezample

Let us illustrate these definitions by an example of the use of annotations in the
implementation of a user interface.

Consider a client process displaying information obtained from a second client (such
as a compiler). The presentation client knows how to display graphical and textual infor-
mation along with a visual display of annotations. When the user requests the available
operations for an annotation, the presentation client requests the kernel to provide a se-
lection structure. This selection structure is presented to the user, and once a choice is
made, the kernel is queried about how to proceed. This is an example of a style of user
interaction—the presentation client might present annotations differently or it might in-
voke the protocols differently for better or more appropriate responsiveness to the user.
However, the partition of knowledge is constant over all pairs of the presentation client

5 Adding a new type entails defining various methods (or protocols) to do conversion of objects from
one type to another—these methods define the lattice structure for the type system. This will be discussed
further below.
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and kernel. In concrete terms, if two objects are linked by an annotation, the presenta-
tion client will be able to offer the user a means to get from source to destination and
destination from source.

Note that the presentation client accomplishes such a user interaction given only
the information that a particular object has a particular annotation attached to it. The
presentation client does not know anything else about the annotation. The presentation
client has a built-in means of interacting with annotations.

In general, an annotation connects objects, so to make use of them it is sometimes
necessary to “invent” objects to be connected. For example, making connections between
source code and the structural elements of the program this code represents is clearly
desirable. More generally, a “fundamental” presentation for most programming object is
textual, and so we naturally wish to create annotations between the “actual object” and
its textual representation. In the case of pure text, an artificial object called an eztent
is created to represent an arbitrary piece of text that is to be annotated. An extent is
a contiguous region of text to which annotations can be attached. Extents are allowed
to arbitrarily overlap, and several annotations can be attached to the same extent. The
system is made to “understand” eztents by adding them to the kernel’s extensible type
system (as a super-type of type text).

2.6 Annotations are Active

There is one other aspect of annotations that needs to be emphasized here. An
annotation is active in the sense that methods may be attached to annotations by being
associated with a class. When a tool, such as a compiler, is being sent source text, any
annotation encountered during the process may have an associated method invoked to
determine the text to be sent in its place. For example, region locking can be implemented
with annotation methods. When locked text is sent to the presentation client, the method
associated with the annotation causes the correct commands to be sent to the presentation
client to cause the text to be locked in the editor.®

Typically, methods are run in the kernel, possibly in the tool protocol servers, but
protocol server methods can also invoke methods run in clients.

3. Annotated Categories

The model presented here is an attempt to formalize the manner in which the archi-
tecture manages and integrates structural information from different program development
tools. The model treats annotations as the building blocks of “enhancements” to certain
types of functors acting between categories that embody different ways of representing such
entities as programs. The use of category theory here may seem unnecessary (and it cer-
tainly isn’t essential), but categories are generally used to represent different kinds of mod-
els for axiomatic entities, and so it is certainly evocative to use this language. However, all

8 Obviously, such functionality requires that the presentation client and other tools preserve the se-

mantics associated with region locking.
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the categories under consideration here are small,” and the prerequisites for understanding
the presentation here are simply knowing the basic definitions. Mathematically oriented
readers can consult [MacLane 1972], or almost any introductory graduate-level abstract
algebra text. Readers desiring a computer science oriented text can consult numerous
texts, too, such as [Arbib 1986].

3.1 Basic Model

The basic idea of our formal model is the following.

A programming tool is a functor that relates complete objects of one category with
complete objects of another (or the same) category; in other words, the defined mapping
is monolithic witk respect to objects. However, the objects in “programming categories”
have additional important structure, and the mappings performed by these programming
tools do, in fact, use and preserve this structure. Further, the details of how this structure
is used and preserved are important, and those details are annotations.

Let us make this specific with a simple example. A parser is a map from source
code to something like expression trees (depending on the parser). The source code has
structure given it by the grammar for the language, of course, but more importantly
and more naturally it has structure because source code is a subtype of text, and so it
inherits structure from that type. Similarly, expression trees have structure, either their
own intrinsic structure or that inherited from some supertype such as trees. In any event,
the mapping from a program to its tree is only defined on those terms—give me a program
and I'll give you this object back. The fact is that there is a lot of informaticn sitting
around inside the parser when it is finished that, if mapped back to the source code, would
be very useful; information about binding scopes, variable declarations and uses, function
calls, etc. Annotations are the means by which this mapping is handled, and they are a
“natural” extension of the parser, a map from source code to parse trees, to a map from
text to (potentially) some supertype of parse trees.

The goal of this section is to define all of the terms needed to express this in a formal
way. In the next section we will apply these definitions to a couple of examples, and discuss
more of the connection between the model and the environment.

3.1.1 Types

In defining the terms of our basic model we shall use the idea of a type system. In the
usual case, a type system 7T is a lattice of subsets of a given set X, say. In this instance,
for t € T, we would say that z € X is of type t if and only if z € t. In the most general
case, T is still a lattice and the t are still sets, but now there is an associated inclusion
map from ¢ into u for every pair of types such that t < u, and further these maps commute

7 Their underlying classes are all sets, and the morphisms are generally tri-ial, as well. These categories
are of the type usually referred to as Kiddie-gories by sophisticated users of this dismal subject.
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in the obvious way.® A type system may (and often does) have other coercion methods
than those defined by the inclusions. (Such coercion methods may be partial functions,
but they generally do have commutativity requirements.)

3.1.2 Structure

Most of the types that we shall consider will also be what we refer to here as well-
structured. Informally, we say that an object has structure if it can be “decomposed” into
“simpler” objects. For the purposes of our discussion we shall define a decomposition of
an object O to be a set of elements 0,,...,0, belonging to the type of O. More specifically,
given a type ¢, define the decomposition set for ¢, denoted DS, as the set of all finite sets
of finite, non-empty subsets of ¢. The idea is that, given elements z € t, and D € DS,, we
can think of D as being the collection of all the different decompositions of z. For example,
if ¢ is the integers, then z might be 210, and D might be {{2,105}, {6,35}, {6,5,7}}. We
refer to the elements of D, such as {2,105} as decompositions of z. Notice that, by the
definition, D could be the empty set. (It isn’t obvious that we have to have the set D be
finite, but there seems absolutely no reason to admit the possibility of an element having
an infinite number of possible decompositions, so we go ahead and require it.)

A decomposition structure for t is defined to be a function d:t — DS;. We say that
z € t is atomic (with respect to d) if and only if d(z) is null. Notice that a decomposition
structure can be used to define a directed graph structure on a type t by connecting each
element of z € ¢ to all elements in any decomposition of z. A node in this directed graph
is a leaf if and only if it is atomic.

Definition: The type t is recursively-structured (with respect to d)
if and only if the directed graph induced by d is acyclic. The type ¢
is well-structured if and only if it is recursively-structured and every
path in the directed graph is of finite length.

It is also important that the decomposition structures for the individual types in a
type system are coherent. A decomposition structures map for a type T is a function D that
maps each t € T to a decomposition structure d. We say that D is coherent if and only if it
commutes with the inclusion maps; that it, if ¢ is included in u, then every decomposition
of an element in ¢ under S(t) is also a decomposition of that “same” element in u under

S(u).

Deflnition: Let T be a type system and D be a coherent decomposition
structures map. A type system 7 is structured with respect to D if
each type t is recursively-structured under S(t). 7T is, similarly, well-
structured under D if each ¢ is under S(t).

It is obvious that with reasonable definitions types such as strings and trees can be
regarded as well-structured. Note that in the extreme case we can suppose that every

8 In practice these more general type systems may not “actuaily” have top and bottom elements, but
we can always make the bottom be the null set and the top be the direct limit of the sets and inclusions,
so we can assume these are present if we want to.
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object in the type is atomic, but we should avoid this case when we can. Obviously
we can’t be totally arbitrary how we fit structured typed in the type hierarchy since we
must make sure that the structural decompositions are preserved, too, but this happens
automatically most of the time.

3.1.3 Typed Categories

Definition: A system of t; :ed categories is a pair (7,S), where T
is a type system and S is a set of categories such that for each C € S,
there exists t € 7 such that the underlying class of objects of C is a
subset of ¢.

In other words, a system of typed categories is a type system and a set of categories
such that any elements of a category is of a specified type. The systems with which we
use annotations generally involve objects that are structured in some non-trivial way, so
we will normally only care about such systems.

Definition: A structured category is a typed category such that the
type is well-structured. A system of structured categories is defined in
the obvious way.

3.1.4 Annotated Functors

Consider the parser again. The parser defines a map from the category of source
code to that of parse trees, and since we don’t have any non-trivial morphisms that makes
it a functor. However, just saying that it is a functor isn’t very useful, since any map
from source code to trees is one, and the parser has a great deal more structure than
that. In particular, subtrees of the parse tree correspond to substrings of the source code.
In general, we can formalize this for structured categories by saying that a functor is
compatible with a “destructuring” (that is, a specific decomposition).

Now let us define a “structural” annotation of a functor.

Let F:C — D be a functor, where C and D are structured categories. Let t¢ and tp
be the types of C and D, respectively. Finally, let the objects D; be in the range of F,
and let d] be decompositions of these objects. Then we say that F is compatible with the
d! if and only if there exists a partial function f from t¢ to tp that extends F and such
that for every C; in F~1(D;) there exist decompositions ¢! of C; such that d} = f(c!). We
say that the function f is a structural annotation of F with respect to these objects and
decompositions. We say that f is a full structural annotation for F if it is an structural
annotation for every object and decomposition in the range of F.

Deflnition: An annotatable functor is a functor between structured
categories that has a full structural annotation.

In other words, an annotatable functor is one for which all structural information of
target elements can be “seen” in source elements.
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3.1.5 Remarks on the Basic Model

As we said above, the content of this model is (or at least is supposed to be) that the
functors that correspond to most programming tools are annotatable, and these functors
are generally one of two kinds. The first kind is a functor whose domain category is
in some sense free, or at least much freer than the range category. The second kind of
functor (which may also be of the “first kind”) is one that decomposes the argument while
“computing” its value, and the value cannot be decomposed in any significantly different
way.

Two rules of thumb are that functors from text categories will frequently be of the first
kind, and many functors that are algorithmic are of the second kind. (In the following, let
F:8 — X be a functor.) The reason for the first rule, when the objects of S are strings,
is that any sub-object of X will almost always correspond to a substring of something in
S—that is, any structure that is “impressed on” text usually doesn’t split single characters.
The reason for the second rule is that if F is algorithmic, the algorithms often uses some
sort of recursive decomposition to get from s to z, and such methods tend to preserve
decompositions.? It is always possible, for any functor, to make an analogous one which is
annotated, by defining a new range type with fewer decompositions,!® which has the effect
of limiting the amount of additional structure enough to make the functor annotated.

4. Module Description System

The purpose of this section is to outline a system for defining and enforcing structural
decompositions of programs. We begin by first giving an overview of the abstract model
we shall use for describing program modularization. Later we make precise some undefined
terms used in the model. Before we start, we need a bit of notation. Let us denote by
S¢ the category of programs for the language £. Also, unless we state otherwise, in this
section by graph (directed or not) we mean a graph such that no edge connects a node to
itself.

4.1 Overview

Associated with the category S¢, there exists a set A¢ (generally infinite) of objects
which we refer to as the set of code atoms for £. Each object in Az has a unique associ-
ated string which is referred to as the atom’s textual representation. In other words, the
language £ has a well-defined set of program fragments that are the smallest units of text
under consideration here. As a rule of thumb, a code atom is a piece of code that is a
function or variable definition.

A program P in S¢ has a directed acyclic graph structure A(P) associated with it such
that the leaves of the graph are elements of A., and the program text of P has a unique

9 A notable exception to these rules is a compiler which uses global optimization techniques. In this
case, it may easily happen that there are no structural similarities between source and compiler output,

only functional similarity.

10 Thisis precisely what one would do in the case of an optimizing compiler.
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substring which is equal to the text of each “leaf” atom. In other words, the program P is
composed of the text of code atoms plus whatever “glue” is needed to hold them together.
Note that a given atom might occur in more than one place in a program.!!

Also associated with a program P is a directed graph, D(P), whose nodes are the
leaves of A(P) and whose edges are the “dependencies” between these nodes. Informally,
the presence of the edge from n to m in D(P) means that n defines something and m uses
it, but we shall define this more carefully below. Again note that the code atom associated
with a leaf of A(P), and therefore of a node of D(P), may not be unique. For example, in
C static variables with precisely the same code as definitions can appear in multiple files.

A modularization of a program P is a sequence of graphs Iy, ...,['n, with T'; = D(P),
and such that each I'j4; is a quotient graph of I';. We denote by M(P) the set of such
modularizations, and for a particular element of M(P), the nodes of 'y are referred to as
the “modules” of P. The essential idea behind a module system is to equip a program P
with a modularization M of “minimal complexity” (for some measure of complexity). We
shall have more to say about this later, too.

4.2 Further Details

There are several points that need clarification. These are the nature of A¢, how to
get from P to A(P) (and hence the nodes of D(P)), and how to determine the edges of
D(P).

The set A, is axiomatic—that means, in practice, that it is defined by the imple-
mentation of the module system for a specific language. Thus, it is assum.d also that
this knows how to “recognize” these atoms within a program, and so in effect A(P) is
axiomatic, too. Typically each atom is a code fragment that “defines” a “name”, and
the compiler protocols recognize the extent of the definition and the references within the
definition to other names. Thus, the compiler protocol can construct D(P) for the module
system.

The fact that the compiler determines the links that determine the modules has the
implication that the module system needs to account for the “sequential” processors of a
program, including any macro expanders, compilers, and linkers that lead to the creation
of links. In particular, the module system should be able to “make” the run time version
of a program from a modularization.

In a sense, the purpose of such programming practices as data abstraction is to create
the links in D(P). If the abstraction is effected by methods, then the links are all run
time in nature and are handled naturally by the compiler. However, in some cases the
abstraction is the result of a macro, and in this case the dependency is compile time.
This complication is significant, as such compile time dependencies can introduce further

1 The initial stage of the construction of the “atom graph” would result in a sort of high-level parse
tree. The reason the graph may actually be a DAG instead of a tree is that, in some cases, there are code
atoms that define precisely the same thing that appear in more than one location in the source.

9
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run time dependencies, and if the macros are sufficiently powerful, then the nature of
these run time dependencies cannot be determined until compile time. As a result, it will
be necessary for a compile time module to specify which runt time dependencies it can
introduce to allow static processing of the module description. In other words, it is possible
to determine the dependencies of “macro-free” code by inspection, but if the code depends
on the results of a reasonably powerful preprocessor, then declarations will be needed to
allow a rigorous analysis of a proposed modularization to be done.!?

This static analysis of a modularization is an essential feature of any module system.
The idea is that a module system should be a design tool, not just a bookkeeping tool.
Good modularization happens only as the result of the design of a program, not after the
fact.

5. Appendix: Various Definitions
To describe the architecture we make use of the following terms:

Server: A program that provides service or functionality to a variety of other programs
called clients through a message-passing medium such as byte streams in Unix. A
server rarely performs user interface activities.

Client: A program that communicates with a server for the purpose of information
exchange. A client might engage the user in a dialogue. Though the terms client
and server are arbitrary, a client generally communicates with relatively few other
programs while a server generally communicates with many other programs.
Kernel: A server that performs the fundamental actions in an environment.
Protocol: A language designed to pass data and control between a client and a server.
Typically a protocol is a series of messages and containers of information encoded in
a common medium, such as byte streams or ascii text.
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Using CLOS-like Concepts in a Prototyping System

Richard P. Gabriel
Stanford University

We have been working for about 9 months on the design of a prototyping system,
which is a language and an environment for creating mixed Lisp and Ada prototypes. The
environment and language use CLOS-like concepts. This precis describes the language
concepts we are developing.

Traditional languages like ADA use a model of sequential control with a side-effectable
memory. Combination or aggregation mechanisms are used to compose complex data struc-
tures from simpler ones. Most programming languages provide extensive mechanisms for
defining abstract data types from primitive ones, but very few programming languages pro-
vide mechanisms for defining control abstractions (besides procedures) or other non-data
abstractions. We believe that prototyping is largely a process of composing or aggregating
complex prototypes from simple ones, and sometimes such composition is performed with
source code and sometimes not. Therefore, a prototyping environment is one whose pri-
mary function is to compose and control existing source and executable mixed language
programs and modules.

In particular, we are interested in developing a richer computational model for a
prototyping language than the ones used by Ada and Lisp so that prototypes can be
manipulated by manipulating this model.

Over the last 6 months we have adopted the following approach:

Select a problem for which we wish to develop a prototype.

Suppose some existing code that accomplishes some part of the task or a similar task.
Determine the program that should constitute the prototype.

Infer the partial programming model from that prototype.

Ll i e

The following constraints are also being observed. Note that several are environmental
rather than programming concerns:

1. Do not require that the existing code be copied out of an existing configuration. That
is, the environment should take care of versions and merging conflicts, up to a point.

2. Where possible, enable the prototyper to alter the context of execution (or compilation,
if that’s the way you want to think of it—they are the same thing) in order to achieve
the behavior needed for the prototype.

3. Use annotations to enable the prototyper to keep a record of transformation made
by hand or by machine and the reason for the transformation so that the history of

The work was supported by DARPA, contract number N00039-84-C-0211.




development is retained. A piece of source code can be annotated by the program that
will transform that source to the desired form. The abbreviation of the annotation will
be the transformed code. The original source code remains intact. When compiling the
source code, the compiler will fork off a process to either perform the transformation
or retrieve it, and supply the character stream (or tokenized stream) in place of the
original text. Annotations and abbreviations will be described in the next section.

4. Do not rule out visual presentation or language, but insist on a textual representation
for every prototype.

1. Annotations and Abbreviations

An annotation is a generalization of hypertext. Annotations are used to integrate
the various prototyping tools and to provide an extensible base. An annotation is a re-
lation that links two or more objects in the environment. An annotation is an instance
of an extensible class hierarchy. Annotations are active in the sense that methods can be
associated with them that are triggered whenever a tool of a certain class operates on an
annotation of a certain class that links objects of certain classes. Normally a region of
source code is annotated with some information.

The second part of the annotation model is abbreviations. When an object is
annotated with some other things, the annotation in general must be displayed when the
object is displayed. There are several options. First, the object can be displayed as usual
but in a mouse-sensitive manner, so that the annotation can be displayed by interacting
with the mouse-sensitive object. Second, the annotation can be displayed as an icon either
in place of the object or adjacent to it. Third, the annotation and the object can be
displayed in an abbreviated manner. For example, if a comment in a program is turned
into an annotation, that comment could be displayed as follows:

(defun £ (n)
;3 Logarithmic Fibonacci functionm....

¢...»

Here the one line comment is an abbreviation of a much larger comment that explains the
algorithm. The derivation of the abbreviation could be by taking the first three words of
the comment, or it could be some programmer-defined object.

Annotations and abbreviations form the basis for communication, integration, and
user interface in the prototyping environment. For example, annotations are used in source
level debugging: When a program is halted, the source code is displayed with each vari-
able annotated with its current value. If a function is recursive, further annotations on
each variable will provide the values it has in enclosing invocations, so that they may be
simultaneously viewed in place in the source.

However, describing the environmental model for prototyping is not a goal of this
precis.
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2. Samefringe

In following the approach outlined above, one problem in particular has occupied us:
The problem is samefringe. This problem was suggested many years ago as the simplest
prokiem requiring multiprocessing to solve satisfactorily. As it turns out, it can be solved
quite well and elegantly using serial techniques. The problem is as follows. Assume that
T1 and T2 are two binary trees whose leaves are non-NIL atoms. Let L1 be the list of
leaves encountered in a preorder tree walk of T1, and let L2 be the corresponding list for
T2. Then T1 and T2 have the same fringe if L1=L2. In Lisp, the trees have the same
fringe if, when printed, the same atoms appear in the same order. We have restricted
leaves to be non-NIL atoms to simplify the problem without loss of generality.

One obvious way to think about how to program this is to envision a tree traversal
program like this (in Lisp):

(defun traverse {tree) ,
(cond ((atom tree) (report tree))
(t (traverse (car tree))
(traverse (cdr tree)))))

Here REPORT simply notes its argument somehow. First we want to set up two
processes, one to traverse T1 and the other to traverse T2. Then we set up a third process
to look at the atoms coming from each traversal. If any two corresponding atoms are not
the same, the processes are terminated and the answer is nil. Otherwise, if both traversal
processes end normally, the two trees have the same fringe if both processes terminated
after reporting the same number of atoms.

We can assume that the traversal routine is given—it is part of the stock of programs
available to the prototyper for re-use. The following comparison routine checks a pair of
atoms from each tree:

(defun compare (x y)
(unless (eq x y) (return-from samefringe nil)))

We can assume this is given as well.

Later when the visual approach to prototyping is presented we will see that the concept
of “process” is possibly unnecessary to solve the problem. This is because the prototyping
environment provides a mechanism to make two copies of the source code and to indicate
that each will receive one of the trees to work on. Of course, the textual representation
of the program will involve processes, and we will be solely concerned with that textual
representation except in the section “Illuminated Code.”

Given the basic approach outlined earlier, the following seems to be the naive code to
solve the problem:
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(defun samefringe (treel tree2)
(qflet t ((compare (ai a2)

(unless (eq al a2)

(return-from samefringe nil))))
(labels ((traverse (tree)
(cond ((atom tree) <report-tree-to-compare>)
(t (traverse (car tree))
(traverse (cdr tree))))))

(qprogn t

(traverse treel)

(traverse tree2))
<test-for-same-number-of-atoms-reported-from-each-process>)))

The QFLET expression creates a process running COMPARE, and the QPROGN
expression spawns two processes, each running TRAVERSE. The T in the QFLET ex-
presssion indicates that a process is always to be created.

Now we must complete the program. The remaining presentation follows the lines
of exploration we followed while trying to do that. Often studying such lines can be as
illustrative as any of the intermediate points and certainly more than the endpoint alone.
At the end of this precis we have the most recently developed version of the samefringe
program, and it is not yet entirely satisfactory.

The first step is to solve the communication problem between the expression <report-
tree-to-compare> and COMPARE.

3. Partially, Multiply Invoked Functions

The basic idea of partially, multiply invoked functions (PMI Fur. - >ns) is to separate
the process of coordinating the arrival of arguments from the process of executing the
function on those arguments.

All calls to a function go through an interface to the actual implementation. The
implementation of the function receives arguments by position, while the interface accepts
only named arguments, provides for all defaulting, and coordinates the arrival of arguments
for the function from multiple sources.

The Qlisp work produced the basic idea of PMI functions in late 1987, but the Qlisp
formulation has a serious drawback. Namely, arguments need to have names, which often
requires those names to be passed about as additional arguments so that the proper values
were assigned to the proper parameter names.

Here is a simple example of the Qlisp-style technique:

(pmi-defun add-up (x y) (:summandl :summand2) (+ x y))
This function adds up a pair of arguments, called X and Y. The expression
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(add-up :summandl i :summand2 2)

simply produces the answer 3. However, one can partially invoke the function as follows:

(add-up :summand2 2) -> future

In this case the interface remembers the supplied argument and returns a future. A second
call will complete the invocation and supply a value to the future:

(add-up :summandl 1) -> 3 = <the same future as above>

This technique, then, is similar to currying functions, but because all arguments to
the interface are named, one does not need to curry in any particular order. One could
term it dynamic currying. All calls to a PMI function that supply arguments to the
same invocation receive the same future as their value. A future is returned whenever some
required arguments to the function have not been supplied to the interface by a function
call. If a particular invocation of a function has returned a future, the value returned when
all required arguments have been supplied is a realized future. This is to preserve EQ-ness
of all values returned for a particular invocation.

Also, when not all arguments are supplied for a particular call, futures are supplied
for unsupplied arguments. This way, PMI functions can be truly partially invoked.

For example, we can produce a list of the sums from two streams supplied by two
processes as follows:

(let ((answer (make-queue)))
(pmi-flet ((add-stream (x y) (:summandl :summand2)
(add-queue (+ x y) answer)))
(qprogn t
(loop ...
(add-stream :summandi <computation>)...)
(loop ...
(add-stream :summand2 <computation>)...))
answver))

The PMI-FLET expression creates a local PMI function. The details of queue man-
agement are elided.

It is possible to use streams, pipes, or channels to write SAMEFRINGE and many
other programs. It would seem that these other mechanisms are superior because they
are simpler, more easily understood, and more intuitive. On the other hand, using these
mechanisms requires “wiring up” networks of channels, either statically or dynamically. In
either case there would be code to effect the wiring. With PMI functions the items being
passed are sent to their destinations, labeled with the argument to which it corresponds,
and there is no need to identify, centralize, or explicitly name sources of arguments, only
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destinations. Thus it is easier to code up loose collections of processes that communicate
variously with one or several central processes.

In this way PMI functions mimic pure message-passing, where the sender does not
need to be connected to the receiver. The advantage of PMI functions over classical
message-passing is that the recipient can be a function of many arguments, whereas the
suppliers of those arguments need not be otherwise co-ordinated to send them.

Furthermore, PMI functions preserve functional style, and there is no restriction that
a single invocation of a PMI function must pass exactly one argument. For example,
suppose ADD-STREAM takes three arguments, sums them, and adds them to the queue.
And suppose that each of the two processes supplying the summands alternate supplying
one and two of the summands. We could write this as follows:

(let ((answer (make-queue)))
(pmni-flev ((add-stream (x y z) (:summandi :summand2 :summand3)
(add-queue (+ x y z) answver)))
(qprogn t
(loop .
(add-stream :summandi <computation>)

(add-stream :summandi <computation>
:summand2 <computation>)
ced)
(loop ...
(add-stream :summand2 <computation>
:summand3 <computation>)

(add-stream :summand3 <computation>)

)

ansver))

This is possible with streams and channels, but the cost is that the mechanism for
transmitting a variable number of arguments and co-ordinating them must be exposed.
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3.1 PMI Functions and Parallel Processing

A PMI function can run within a separate process (though the programmer need not
know that). Using this combination we can now write the samefringe program as follows:

(defun samefringe (t1 t2)
(pmi-pflet t ((compare (al a2) (:leafl :leaf2)
(unless (eq al a2)
(return-from samefringe nil))))
(let ((end-marker (list nil)))
(labels ((traverse (tree arg-name)
(trav tree arg-name)
(qwait (compare arg-name end-marker)))
(trav (tree arg-name)
(cond ((atom tree) (compare arg-name tree))
(t (trav (car tree) arg-name)
(trav (cdr tree) arg-name)))))
(qprogn t
(traverse t1 :leafl)
(traverse t2 :leaf2))
t))))

We have used Qlisp primitives to fill in the glue portions of the code so that a complete
program can be presented. We will try to eliminate those primitives with additional
programming model material.

There are some strong points and some weak points of this code. The form PMI-
PFLET defines a process that contains a PMI function. The arguments are named :LEAF1
and :LEAF2. The answer NIL is immediately returned if the leaves in any pair sent to
COMPARE are not the same. The value of END-MARKER is used as a signal that the
traversal of a tree is complete. It is used to stop the traversal of differently fringed trees
when the smaller one has been traversed.

The code for TRAV is very similar to the basic traversal function presented earlier,
but includes an invocation of COMPARE in which the passed-in name for the argument
is used for the leaf. The code for TRAVERSE here includes the call to COMPARE with

the end marker.

Finally, QPROGN creates two processes, one to traverse each tree. When both pro-
cesses have finished the following is true: Each process has sent all of the atoms it found to
compare. Furthermore, each has waited (using QWAIT) for the response of the COMPARE
process to the end marker signal. This means that all possible pairs that COMPARE could
compare have been compared, including the end markers. Therefore, if both processes have
completed, the answer must be T.

There are other, interesting aspects of PMI functions that we have not discussed. A
similar set of constructs can be found in (Lamping, L&FP 1988).
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4. Process Environments

The above treatment of the samefringe problem is not satisfying, however. For ex-
ample, naming the arguments appears to be adding too much detail to the solution—the
reason for naming arguments is to distinguish arguments from different processes. In fact,
passing argument names around seems like a hack rather than a clean approach. The
function TRAVERSE has been distorted in order to provide a signal that a process has
completed its traversal. The QPROGN guarantees that both processes have terminated
before T is returned.

What we see sprinkled through this program are ad hoc mechanisms that either deal
with controlling the algorithm in the presence of processes whose time-domain behavior
is unpredictable or serve to direct information from one process to another using markers
(here, the means of identifying processes is analogous to identifying rivers by dropping
colored dyes into them).

We have searched for some solutions to this problem using an object-oriented ap-
proach. One solution is called process environments and is similar to Qlisp’s heavy-
weight futures. A process environment is a set of processes, each of which is an instance
of the class named PROCESS. The set of these processes is treated as an object that can
be manipulated by prototype code. Subsets of the processes can be distinguished by their
classes, and control code can be written whose behavior depends on the state of the set
of processes or the states of any of the processes in a process environment. When cer-
tain important states are achieved or events occur within the environment, specific generic
functions are invoked, and these generic functions may be specialized. For example, when a
process terminates normally, the generic function TERMINATE is invoked by the system;
its default method returns t. A process environment might correspond to an execution of
existing code or of prototyping code.

Let’s review the relevant parts of the Common Lisp Object System (CLOS). A generic
function is a function whose implementation is as a set of methods some of which are
invoked when arguments satisfy class constraints. For example, suppose there is a generic
function named DISPLAY which takes two arguments, a thing to display and the display
itself. Suppose further that there are graphical objects, textual objects, graphical displays,
and textual displays. Then one might define display with the following four methods:

(defmethod display ((obj graphical-object) (disp graphical-display)) ...)
(defmethod display ((obj graphical-object) (disp textual-display)) ...)
(defmethod display ((obj textual-object) (disp graphical-display)) ...)
(defmethod display ((obj textual-object) (disp textual-displayj)) ...)

Calls to display are all syntactically similar, but which of the above methods is invoked
depends on the classes of the two arguments. If OBJ is textual and DISP is graphical, the
call

(display obj disp)
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will invoke the third method, which is presumably customized code for that situation.

The first problem with the prototype code we can solve with a CLOS-like idea is the
problem of argument naming in PMI functions. The first argument to COMPARE is just
the one that came from one of the two processes and the second argument is that one
that came from the other process. If values were tagged with the process from which they
came, we could use that information to distinguish the arguments to COMPARL. (Note
that the ability to “tag” a value with a process implies a powerful underlying mechanism.
That mechanism, called hybrid inheritance, will be discussed later.)

So, we define processes to be instances of classes, and we allow values to take on as
an additional characteristic the class of the process that produced it. This might look like
this:

(ci;;s-let ((p1 (process) ...)
(p2 (process) ...))
(pmi-flet ((compare (x:p1 y:p2) (unless (eq x y) (return-from ...))))

(labels ((traverse (tree)
(cond ((atom tree)
(compare tree))
(t
(traverse (car tree))
(traverse (cdr tree))))))
(spawn p1 (traverse treel))
(spawn p2 (traverse tree2)))))

We use the notation x:c to indicate that the argument to be bound to x must be an
instance of the class c. Note that this conflicts with Common Lisp package notation, which
we have chosen to abandon.

At this point TRAVERSE looks about the way we want it to look. SPAWN creates
an instance of a process and starts it running:

(spawn <class> <expression>)

This seems to adequately solve the problem of arguments from two different sources
being delivered to a single function that requires them. The remaining problem is termi-
nation. There are two basic approaches, one using a strategy of class-based descriptive
techniques and the other using monotonic variables. The monotonic variables approach
will be presented in the section “Monotonic Variables.”

A common technique in CLOS is to customize the behavior of a program by allowing
the programmer to define methods on generic functions that are called whenever certain
conditions hold or events occur. For example, in CLOS itself, if a generic function is
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invoked and no methods are applicable, the generic f1uction NO-APPLICABLE-METHOD
is invoked. There is a default method for this function that signals an error, but if there
is a more specific method, it will be invoked, providing customized behavior in that case.

Some of the problems with the previous samefringe solution can be addressed by
providing a vocabulary for talking about processes and their activities. In some ways, this
approach is akin to adding a reflective layer in which the system is able to refer to its own
activities and to alter or customize them.

A natural way to think about a process is in terms of the essential nature of the
state that it is in—for example, it is running, it is terminating, it has been killed, or it has
terminated. CLO€S provides a vocabulary for discussing an object in terms of its class. That
is, an object is distinguished from others primarily by its class-oriented characteristics—the
level of abstraction is the class.

As we’ve already seen, the first step is to define processes to be instances of classes
according to the means of their creation. Some classes will be behaviorally indistinguishable
from others at various levels because they are instances of the same classes.

The second step is to define processes to be instances of classes according to their
state of execution. When a process is running, it is an instance of the class of running
processes; when it has terminated, :t is an instance of the class of dead processes.

In CLOS, every object is an instance of some class, but the class of an object changes
infrequently, usually as a result of programming environment activity. Our application of
these ideas is for objects to not only change (possibly) frequently, Yut for classes to accrete
to an object. That is, some particular object may dynamically become an instance of some
class for some period and then stop being an instance of that class. The object does not
necessarily shed any of its previous classes during this process, but simply adds the class
to the set of which it is an instance.

One ingredient of our scheme that is not yet relevant to the samefringe problem is that
a process is also an instance of the class named by the function it is currently executing.
This provides a mechanism for talking about complex events such as when a process is
executing one function inside of another. We will see an example of the use of this later.

4.1 Hybrid Inherstance

CLOS multiple inheritance probably does not support this behavior very well, so
we use a different sort of inheritance structure, called hybrid inheritance. In Lybrid
inheritance, a class hierarchy is defined within a domain. Within each domain, inheri-
tance is determined by the mechanism of that domain. A domain that supports instances
frequently changing class or temporarily become an instance different classes is called a
dynamic domain.

There are two distinct aspects of hybrid inheritance. The first aspect is that if two
classes are in two different domains, an object can be a direct instance of both of them.
In multiple inheritance a similar effect can be achieved by defining a class that represents

10




§ 4 Process Environments

objects that are instances of those two different classes. This might be a satisfactory
approach, but it is not a necessary one.

An object can also be a direct instance of two classes within a domain that supports it.
The characteristics of inheritance in different domain need not be the same or similar. For
example, one domain might be a CLOS-like multiple inheritance system while the other is
a Smalltalk-like single inheritance system.

The second aspect is that if an object is a direct instance of two different classes,
those parts of the object associated from one class are completely separate from those
parts associated with the other, so that such an object is really a simple composite of two
parts, each of which is entirely retained. In CLOS multiple inheritance, for example, if a
class inherits from two different ones, a process of rationalization takes place that handles
any name conflicts that arise. Hybrid inheritance enables a programmer to define a domain
within which such rationalization takes place, but also provides a mechanism to avoid such
rationalization by enabling separate parts to be pieced together. Names in such a system
are meaningful only with respect to a domain.

Using hybrid inheritance it is possible for objects to become instances of a class and
then to cease to be an instance of a class. This is the mechanism we use for tagging a
value with the process that produced it.

Hybrid inheritance implies that objects can be simultaneously instances of two in-
commensurable classes. Does that make sense? Take an example from a language with
abstract data types. In such a language it is possible to define a queue. The representation
of a queue might be a list. Let Q be a queue. To a program that is operating on queues,
Q is an instance of the type queue. To a debugger being used on this program, Q might
be instance of the type list.

In this example, it might be said that the concrete type of Q is 1ist while the abstract
type is queue. We see that different programs can see the same object as different types
or classes.

Another category of examples of the need to inherit from more than one object arises
when orthogonal properties are being combined. For example, the property of being per-
sistent is orthogonal to almost all other properties a data structure might have. Persis-
tence is the property of a data structure existing beyond the lifetime of the process or
program that created it. A text file in an operating system is an example of a persistent
data structure. One can imagine creating a class that not only inherits from a particular
family chain, but also has the property of persistence mixed in.

Hybrid inheritance is also useful for other reasons. One is that a prototype might be
made up of programs written in several different programming languages. If some pro-
totype code needs to talk about the type or class of an object within its programming
language or system, there needs to be a mechanism to distinguish types in different lan-
guages. Each language is a separate domain. And an object that is of one type in one
language might be of another type when passed into a program in another language.
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Moreover, the behavioral or structural charzcteristics of a type or class system will
be different from language to language, and a piece of prototyping code must be able to
operate within those domains of characteristics.

When defining a method, each specializer must be a combination of domain and
class. A generic function has a signature that includes the set of domains on which it is
specialized. If all methods are of this same signature, the generic function behaves exactly
as a CLOS generic function. If they aren’t, then each signature is equivalent to a method
qualifier, and method combination is used to determine how to implement an effective
method composed of methods with different signatures.

When the domain is obvious, it will be elided.

4.2 Method Applicability and Hybrid Inheritance

In CLOS, the method that is invoked depends on the classes of the arguments to
it. We extend this so that the method that is invoked also depends on the class of the
process that invokes it. For example, when a process terminates, the generic function
TERMINATE is invoked on no arguments. We can specialize TERMINATE by the class
of the invoking process to customize the actions of the function according to which sort of
process terminated.

In CLOS, a method is applicable if the arguments to the generic function are of
the right classes. In the domain of processes—in which the class of a process changes
dynamically—we extend the concept of applicability as follows. Suppose a generic function
is invoked which is made up of methods, some of which are specialized on classes within
dynamic domains. If no method is applicable at invocation time, the generic function will
wait until some method is applicable. When a method becomes applicable, the processes
that changed the classes of the arguments so as to cause the method to be applicable are
paused until the generic function terminates. Method combination provides a mechanism
to define complex behavior based on the changing states of processes. For example, one
type of method combination would wait for the all arguments to be of the right class at
the same time, while a second type would freeze each as it becomes the right class.
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4.3 Samefringe
Let’s look at SAMEFRINGE now:

1 (defun samefringe (t1 t2)

2 (let ((unique (list nil)))

3 (class-let ((p1 (process) ...)

4 (p2 (process) ...))

5 (pmi-pflet ((compare (x:p1 y:p2)

6 (unless (eq x y) (return-from samefringe nil))))
7 (gf-flet ((terminate:process () (compare unique))
8 (complete (p:dead q:dead) t))

9 (labels ((traverse (tree)
10 (cond ((atom tree) (compare tree))
11 (t (traverse (car tree))
12 (traverse (cdr tree))))))
13 (complete
14 (spawvn p1 (traverse t1))
15 (spawn p2 (traverse t2)))))))))

The special form CLASS-LET defines a set of classes with lexical scope and indefinite
extent. The special form GF-FLET is similar to Common Lisp’s FLET but defines a local
generic function by defining its methods.

There is a class named PROCESS of which every process is an instance. Because
there are two trees being traversed, there will be two subclasses of PROCESS, one for each
tree, called P1 and P2. The function COMPARE will be a PMI function that takes one
argument from each of these two processes. When each process terminates, TERMINATE
will provide the unique end marker to COMPARE.

The main program will spawn two processes, one an instance of P1 and the other
an instance of P2. That main program will then apply COMPLETE to those two pro-
cesses, where the only method for COMPLETE is applicable when both its arguments
are dead processes. Here DEAD is the subclass of PROCESS consisting of processes that
have terminated. Therefore, COMPLETE and hence SAMEFRINGE will wait until both

processes have terminated.

Line 2 defines the unique object. Lines 3-4 define two distinct subclasses of PROCESS.
These subclasses only exist during the dynamic extent of the CLASS-LET. The names P1
and P2 are lexically apparent only within the lexical scope of the CLASS-LET.

Lines 56 define the comparison function, which compares an object (X) produced by
P1 to an object (Y) produced by P2. Line 7 defines the termination procedure for the
processes. When a process of class P1 terminates, the system invokes TERMINATE as if
by P1, and then P1 becomes an instance of DEAD. The characteristic of being of class P1
is inherited by this invocation of TERMINATE which will pass on that tag to UNIQUE
when it invokes COMPARE.
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Line 8 defines a generic function that returns T when invoked on two terminated
processes. Furthermore, if this function is applied to two processes, either one of which is
not terminated, invocation will be blocked until they both are terminated.

Lines 9-12 are the simple traversal routine. Notice that the call to COMPARE does
not manipulate argument names because the arguments are tagged by the classes (pro-
cesses) that produced them. Also notice that this traversal routine is exactly the one we
started with.

Lines 13-15 are the main body of the function. Lines 14-15 spawn two processes,
the first an instance of P1 and the second an instance of P2. The function COMPLETE
will be invoked when the two processes terminate, and this function will return T in that
event. However, recall that COMPARE might terminate the processes early. One fine
point is that whenever a CLASS-LET is exited, all instances are killed without invoking
TERMINATE on them. (In this case a generic function named KILLED will be invoked,
but the default method, which is not shown, simply returns T.)

To be truthful, we still do not like this program. The use of the unique end marker
still seems to be a hack, even though one could argue that it is nothing more that an
end-of-stream marker. Later we will present another way of programming this function
using monotonic variables, which might be a little better. Note also that we could have
used some sort of stream abstraction to do the same thing. The prototyping languzge will
probably also have such abstractions, and the above program is not intended to be the
only or even best way to program the solution to this problem.

5. Illuminated Code

What we’ve seen is the textual endpoint of a prototyping activity. This endpoint is
necessary to enable tools that operate on source code to have access to prototype code.
The environment portion of the prototyping system is largely language-independent and
tool-independent, as long as those languages and tools obey a particular set of protocols.
We want source-level tools to operate within this framework.

We are working on a partially visual, mostly textual means of creating this prototype
from existing code.

Illuminated code is code that is annotated with various environmental and linguis-
tic constructs or notes that cause information to be gathered, moved about, or program
structures to be created. For example, the following code is illuminated to count the
number of leaves found during traversal:
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(let ((leaf-count 0))

- - - - - - o - - - -
-——— - - - - - -
- - - o

(t (traverse (car tree))
(traverse (cdr tree)))))

One interesting side point on this example is that the placement of the initialization of
LEAF-COUNT to 0 is not important. It is important that it have been initialized outside
the scope of TRAVERSE and the fragment that increases LEAF-COUNT. Note that the
structure of the annotation implies these constraints. Let’s quickly look at the full code to
do something like this in Lisp:

(let ((leaf-count 0))
(let ((increase-leaf-count #’(lambda () (incf leaf-count))))
(defun traverse (tree)
(cond ((atom tree)
(progn (funcall increase-leaf-count)
(report tree)))
(t (traverse (car tree))
(traverse (cdr tree)))))))

We needed to specify several irrelevant things here. First is the name INCREASE-LEAF-
COUNT. Second is the placement of the initialization of LEAF-COUNT. Third is the
insertion of the call to INCREASE-LEAF-COUNT in TRAVERSE. The fourth is the in-
clusion of the definition in the nested LET expressions so that the visibility of the irrelevant
name INCREASE-LEAF-COUNT would be correct. We could have avoided some of this
by using an advise tool to modify the definition of REPORT to call INCREASE-LEAF-
COUNT. Of course, we would need to make sure such advice did not conflict with other
advice.

Annotations make the description of the essential parts of such additions easier, and
a simple transformation system can chose a textual implementation and specify the irrel-
evant.

In general, the annotation/abbreviation model enables programs to be modified and
viewed in different ways without destroying the original programs and without resorting
to bulky versioning systems.
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Here is the code we assume we’re starting with to work on a prototype of SAME-
FRINGE.

(defun traverse (tree)
(cond ((atom tree) (report tree))
(t (traverse (car tree))
(traverse (cdr tree)))))

Using the annotation/abbreviation model environment, we would create a palette
with two objects on it: Each is an annotation whose abbreviation is just the above code,
and the annotation simply points to the configuration that holds that original code. The
class of the annotation indicates that each of the annotations on the palette is to be
regarded as a copy if it is modified. A palette is nothing more than a very large window
that contains code for a particular prototype written in the prototyping language. As such
it must be able to manipulate source and graphics, and its contents are to rendered into
textual form. Every palette implicitly represents a process environment.

Here is what the palette looks like:

- ——— — - - L - - - . - e e - AR - - T - - - - - - - — -

| (defun traverse (tree) || (defun traverse (tree) |
| (cond ((atom tree) (report tree))|| (cond ((atom tree) (report tree))|
| (t (traverse (car tree)) I (t (traverse (car tree)) |
| (traverse (cdr tree)))))i| (traverse (cdr tree)))))|

Below is a schematic form of the above situation. The definition of TRAVERSE is
someplace in a configuration of other source code. There are two annotations on it, one
linking to the object labeled A and the other linking to the object labeled B. A and B are
on the palette, which is indicated by the box surrounding the boxes labeled A and B. A
and B are displayed using the abbreviation that is simply the original source code. That
is, the two boxes of code just above are the abbreviated display of the boxes labeled A and
B below:
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| (defun traverse (tree) |
| (cond ((atom tree) (report tree))|
| (t (traverse (car tree)) |
| (traverse (cdr tree)))))l

Looking back at the palette, we annotate each box with a note stating it is an instance
of a class. This accomplishes stating that there are two subclasses of PROCESS, P1 and
P2. We need not name them.

The palette represents the SAMEFRINGE prototype, and we now define COMPARE

on it:

| (defun compare (x y) |
| (unless (eq x y) |
| (return-from ... nil)))l

We annotate the argument X in the argument list in COMPARE with the form (RE-
PORT TREE) in the left-hand instance of TRAVERSE, and the argument Y with the form
(REPORT TREE) in the right-hand instance of TRAVERSE. Because the two instances
are distinguished by the classes of the processes they are instances of, this is enough to gen-
erate the PMI definition of COMPARE. We annotate the ellipsis with the palette, which
implies that if X and Y are not EQ, NIL is returned from the computation defined by the
code on the palette.

It’s hard to show this without fancy graphics, but it would be something like this,
using only the annotation on X as an example:

17




§5 Illuminated Code

(defun compare (lx| y)

(unless (eq x y)

(return-from |...| nil)))

(t (traverse (car tree)) |
(traverse (cdr tree))))) |

This code is annotated with the two instances of TRAVERSE. Because TERMINATE
is invoked by the system when the processes on the palette terminate, it is necessary only
to place it on the palette with the annotation. Probably the remainder of the program
can be completed automatically. The annotation is an instance of the class DEAD, which
indicates that TERMINATE is invoked when the corresponding process dies.

The finished code seen in the last section could be generated from the palette and
annotations. The palette is annotated with that finished code. The various parts of the
code and palette are cross-annotated.

The traversal code we started with is exactly what we needed to incorporate into the
prototype with minimal changes. Suppose we were not so well off and that the code we
wanted to start with looked like this:
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(defun traverse (tree)
(operate tree)
(unless (atom tree) (traverse (car tree)) (traverse (cdr tree))))

This code traverses trees exactly the right way, but it invokes an inappropriate oper-
ation at every node whether internal or leaf. To use this code we have several options:

1. Annotate the expression (OPERATE TREE) with this code:
(vhen (atom tree) (compare tree))

The effect of this is to alter the original code to be as follows:

(defun traverse (tree)
(vhen (atom tree) (compare tree))
(unless (atom tree) (traverse (car tree)) (traverse (cdr tree))))

The use of an annotation has the following effect. The actual code that is executed
is as it appears immediately above. That code is derived from the original source
code by substituting the destination of the annotation (the WHEN expression) for the
source of the annotation (the OPERATE expression). However, the original source for
TRAVERSE remains in the configuration as it always has, and only in the “mind of an
execution engine” does the modified code exist. When the prototype is complete, the
final code can be automatically derived by looking through the layers of annotations.
In this case, we could further annotate this line and the following with a transforma-
tion that would collapse the WHEN followed by the UNLESS into a more compact
conditional expression.

2. Annotate TRAVERSE with this;

(class-let ((atomic-tree (predicated-class) #’atom))
(gf-labels ((operate (tree:atomic-tree) (compare tree))
(operate (tree:t) nil))
(defun traverse (tree)
(operate tree)
(unless (atom tree) (traverse (car tree)) (traverse (cdr tree))))))

Here the idea is to slightly alter the context of execution (or compilation) so that
when the original program called OPERATE, the prototype conditionally invokes
COMPARE. A predicated class is one whose instances satisfy some predicate. If the
behavior of OPERATE must be preserved, there might be more we need to do with
this approach.

3. Introduce and invoke a generic function that continually waits for the original program
to achieve a complex state:
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(defgeneric watch-visit :method-combination :continuous)
(defclass atomic-tree (predicated-class) () :predicate #’atom)
(defmethod watch-visit (p:operate<tree:atomic-tree>) (compare tree))

Here the method combination type states that the generic function is invoked contin-
ually. The function WATCH-VISIT must be invoked on the process that traverses the
trees:

(defun samefringe (t1 t2)

(labels ((traverse (tree)
(operate tree)
(unless (atom tree)
(traverse (car tree))
(traverse (cdr tree)))))
(complete
(vatch-visit (spawn pi1 (traverse t1)))
(vatch-visit (spawn p2 (traverse t2))))))

By “continually” we mean that when WATCH-VISIT is applicable, the process that
caused it to be applicable is paused and WATCH-VISIT is completed. Once WATCH-
VISIT is completed, the previously paused process is continued until it would no longer
be applicable. At that point WATCH-VISIT is re-invoked. That is, the order of events
are as if a process, say P1, that is traversing a tree reaches OPERATE. The process P1
is paused and WATCH-VISIT runs. When WATCH-VISIT ends, P1 is continued until
it exits OPERATE. At that point WATCH-VISIT is re-invoked (and P1 continues as
well).

The odd syntax means this: WATCH-VISIT will be called when the process P is within
OPERATE with a first argument of class ATOMIC-TREE. Note that the argument
to OPERATE is available in the WATCH-VISIT method.

This could also have been written as follows, where applicability and pausing are as
described above.

(defclass atomic-tree (predicated-class) () :predicate #’atom)
(defmethod watch-visit (p:operate<tree:atomic-tree>)
(compare tree) (watch-visit p))

Introduce a generic function that will be triggered when OPERATE is invoked with a
first argument of class ATOMIC-TREE:

(defclass atomic-tree (predicated-class) () :predicate #’atom)
(defmethod watch-visit:<tree:atomic-tree> :triggered () (compare tree))

where SAMEFRINGE looks like this:
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(defun samefringe (t1 t2)

(labels ((traverse (tree)
(operate tree)
(unless (atom tree)
(traverse (car tree))
(traverse (cdr tree)))))
(wvatch-visit)
(complete
(spawn p1l (traverse t1))
(spawn p2 (traverse t2)))))

We will discuss triggered functions more later.

6. Naming Variables

When dealing with the internal parts of one program from another, we need to be
able to refer to the variables of one program from another. This requires a means to name
variables to distinguish them from variables of the same name in other programs. We can
implement program-specific variables by considering their names to be qualified by the
process in which the program defining them is being executed. Similarly if the need arose
to introduce new variables, the same mechanism could be used. Here’s an example:

(class-let ((p1 (process)) (p2 (process)))
(let ((n:p1 0)(n:p2 0))
(flet ((count (1) (dolist (i 1) (incf n))))
(spawn pt (count ...))
(spavn p2 (count ...)) ...)))

7. Monotonic Variables

Another useful concept is called “monotonic variables.” A monotonic variable is one
whose value always increases or always decreases. Subclasses of monotonic variables are

MONOTONIC:INCREASING and MONOTONIC:DECREASING.

Here is an interesting generic finction:
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(defmethod lesser (x:dead y:dead)
(cond ((< x y) t)
(t nil)))

(defmethod lesser (x:dead: y:monotonic:increasing)
(cond ((< x y) t)
(t (lesser x y))))

(defmethod lesser (x:monotonic:increasing y:dead)
(cond ((<= y x) nil)
(t (lesser x y))))

The idea is that if one of the numbers is dead and the other monotonic increasing, we
can sometimes know which is smaller before both objects are dead. This can then be used

to terminate processes at appropriate points. We can define similar methods for other com-
binations of DEAD, MONOTONIC:INCREASING, and MONOTONIC:DECREASING.

For example, here is a simple function to find the shorter of two lists:

(defun shorter (11 12)
(class-let ((p1 (process)) (p2 (process)))
(let ((n:pl:monotonic:increasing 0)(n:p2:monotonic:increasing 0))
(flet ((len (1)(dolist (x 1) (incf n))))
(spawn p1 (len 11))
(spavn p2 (len 12))
(cond ((lesser n:pil n:p2) 11)
(t 12))))))

For example, if L1 is shorter than L2, N:P1 will possibly be computed and rendered
dead before P2 completes. If this happens, LESSER will terminate when N:P2 exceeds
N:P1, which will exit the CLASS-LET defining P1 and P2, which will kill P2, The use of
monotonic variables prevents SHORTER from running for a long time when the answer
can be more quickly determined.

We can write a different version of SAMEFRINGE using monotonic variables:
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(defun samefringe (t1 t2)
(class-let ((pt (process) ...)
(p2 (process) ...))
(pmi-pflet ((compare (x:p1l y:p2)
(unless (eq x y) (return-from samefringe nil))))
(let ((n:pi:monotonic:increasing 0)(n:p2:monotonic:increasing 0))
(gf-flet ((count:compare:process :trigger () (incf n)))
(labels ((traverse (tree)
(cond ((atom tree) (compare tree))
(t (traverse (car tree))

(traverse (cdr tree))))))
(spawn p1 (traverse t1))
(spawvn p2 (traverse t2))

(= n:p1 n:p2)))))))

Here, the function COUNT is a triggered function: When some process becomes an
instance of an invocation of COMPARE, that process is paused while the body of COUNT
is executed. That invocation of COUNT accretes the classes of the process that triggered
it, so that INCF increases the right variable.

In the main body, SAMEFRINGE spawns the two processes and then returns the
result of the equality test, which is implemented similarly to LESSER above.

8. Temporal or Historical Abstraction

Some of the problems in prototyping have to do with modifying a program to keep
track of the history of a data structure or to answer questions about what things happened
at what time. We believe there is a new type of abstraction, called temporal or historial
abstraction that can make such changes simpler.

Consider a program that is simulating marriage and employment for the purposes of
understanding how government policy decisions should be made about affirmative action.
In such a simulation one could imagine a class being defined whose instances represent
people. These instances might have some structure (a data abstraction) and a protocol.

One slot in the instance might store the gender of the individual and another might
record whether the person is married. Part of the protocol is an initialization of an instance
to store the correct gender, and another part is to assign the correct setting for the marriage
slot during the abstract operations of marriage, divorce, and spousal death.

From the point of view of a reader of this simulation program, these two slots are
identical except insofar as what is stored in them. Yet, from a real-world semantics point
of view, they represent incommensurable things: The gender of an individual is a char-
acteristic of the individual, and so it makes sense for the gender slot to be part of the
representation of the individual. The marriage slot is a characteristic about the history of
the individual, yet the marriage slot is not part of the representation of the history of the
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individual. From a program semantics point of view the value of the marriage slot depends
exactly on the history of the representation of the individual.

Therefore, the use of a data abstraction to represent whether an individual is married
is incongruous regardless of which of the two most plausible ways you look at it.

If we later decide that the simulation needs to depend on whether a person was
previously divorced, a new slot might be added to the class so that each individual records
whether they have been previously married. There are many such historical questions we
wish to ask of objects in the simulation: how many times was someone married, was this
child born before or after the second divorce, was the salary of a person ever larger than
the salary of the spouse.

The proliferation of data abstractions to implement other abstractions in this example
leads one to wonder how many data abstractions are really implementations of different
types of abstraction.

Even if the need to define a data abstraction to store historical information were
removed, the problem of temporal abstractions would not be solved if the programmer
still were required to insert protocol invocations at the points at which the history needed
to be updated. This would defeat locality. Furthermore, it would reveal implementation.

Because a prototyper wishes to modify a program as little as possible, a temporal
or historical abstraction mechanism would be welcome, if it were then possible to isolate
them from the original code.

We believe that our class-based description mechanisms are a step in this direction.
For example, a triggered function defines a temporal or historical abstraction, though in a
primitive way. We wish to define a common pattern that captures the essence of counting
the number of times that a process enters a particular state. Usually one would have to
define some storage and then modify occurrences of the lexical manifestation of the target
state to invoke code to update that storage to accomplish this, but just as one hopes to
isolate the implementation of data abstractions from their use, so one hopes to isolate the
implementation of the historical abstraction from its use.

In this case, its use is its definition, and its implementation is how the definition is
turned into the proper bookkeeping code.

In some sense, this is just a highfalutin way of saying that with historical abstrac-
tions, we do not need to modify TRAVERSE to get SAMEFRINGE (in this case such

modification is easy, but with more complex prototypes it might not be so easy):
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(defun samefringe (t1 t2)
(class-let ((p1 (process) ...)
(p2 (process) ...))
(pmi-pflet ((compare (x:pl y:p2)
(unless (eq x y) (return-from samefringe nil))))
(let ((n:pl:monotonic:increasing 0)(n:p2:monotonic:increasing 0))
(labels ((traverse (tree)
(cond ((atom tree) (incf n) (compare tree))
(t (traverse (car tree))
(traverse (cdr tree))))))
(spawn pl (traverse t1))
(spawn p2 (traverse t2))
(= n:p1 n:p2))))))

These two versions have several nice properties. First, each is pretty concise. Second,
each matches well the description of the solution to the problem, repeated here:

First we want to set up two processes, one to traverse T1 and the other

to traverse T2. Then we set up a third process to look at the atoms
coming from each traversal. If any two corresponding atoms are not the
same, the processes are terminated and the answer is nil. Otherwise,
if both traversal processes end normally, the two trees have the same
fringe if both processes terminated after reporting the same number of
atoms.

Some bad properties are the ugly, visible definitional forms: CLASS-LET, PMI-
PFLET, LET, and GF-FLET, which can be hidden with annotations and abbreviations.
The use of a visual layer on top of simpler text would eliminate some of this—remember
that this is simply the textual representation of the program.

9. Conclusions

It’s probably hard to tell what is really going on from this precis, but that’s how
research goes.
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Ten Ideas for Programming Language Design

Richard P. Gabriel
Stanford University

Over the last several years I have been working on prototyping, and during that
time I worked a little on ten ideas for programming language design. Since then I have
shifted my focus to environment concerns, principally on providing mechanisms for express-
ing program composition and modification without altering the underlying programming
language—essentially a layer of linguistic support for prototyping within the layer of en-
vironment and above the layer of language.

These ten ideas may form part of a prototyping system, but they are also relevant to
programming language design, I don’t want these ideas to slip away, so this paper presents
a short introduction to each of them along with some examples of their expressive power
in the hope that someone might wish to pick one up and work with it a bit. Enjoy.

The code examples I present are in a parallel language that is a cross between an
unknown language and a dialect of Lisp blending Common Lisp, Qlisp, and Scheme.

1. idea 1: Hybrid Inheritance

The first idea is called hybrid inheritance, and it is used in the rest of the paper. The
key to hybrid inheritance is the domain. A domain is a set of classes, and the domains form
a partition of all classes. Each domain has its own inheritance, instantiation, subclassing,
and method applicability or inheritance scheme. If one class is a subclass of another, both
are in the same domain.

An object can be an instance of classes in different domains. Such an object is the
disjoint union of subobjects, each of which is an instance of a class from one of the domains.
In CLOS, CLASS-OF takes an object and returns the unique class of which it is an instance.
With hybrid inheritance, the analog of CLASS-OF takes an object and a domain, and
returns the class in that domain of which it is an instance. Similarly, SLOT-VALUE takes
a slot name, an object, and a domain. If there is a domain named T, it might make sense
for the domain to default to it.

There will be function that could be called COMPQOSE-INSTANCE that takes two

instances of classes in domains that can be combined, and combines them into one instance:

(compose-instance <instance> <instance>)

The work was supported by DARPA, contract number N00039-84-C-0211.
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Another function would be one to take an existing instance and make it be an instance
of a class in a compatible new domain:

(make-be-instance <instance> <class> ...)

This makes <instance> be an instance of the supplied class. The elided expressions are
initialization arguments used to construct the new subcomponent.

There are several motivations for hybrid inheritance:

e In a prototyping system in which several languages are simultaneously supported, it is
important to have objects that represent the same thing in different languages, each
with its own type or class system. For examp’  a prototyping system might wish
to represent an object that is an instance of a Smalltalk class when that object is
manipulated by Smalltalk code, and an instance of a CLOS class when manipulated
by Common Lisp code.

e In a prototyping system, it is important to be able to distinguish representational or
concrete types from abstract ones. For example, an object might be a node in a graph
to the abstract code and a vector-like structure to a debugger.

e Most importantly, a much more expressive prototyping language can be designed if
it is possible to create objects that can take on additional types as markers during
execution. For example, it is useful to be able to tag an object with the process that
produced it. In a prototyping system, processes might be instances of classes in a
process domain, and an object is an instance of a class representing a process if that
object was created or manipulated by that process. This ability to accrete classes will
be important later.

CLOS-like generic functions will be used in the rest of the paper. There is a problem
with this choice: In general methods must be ordered by specificity, and if two methods
specialize on an argument using classes from different domains, how should they be or-
dered? The same problem is faced with methods with different method qualifiers, and
the solution is the same: neither is more specific than the other. In fact, they are only
partially ordered by specificity. Methods with different domain signatures are combined
using method combination.

I will use the syntax x:c to indicate that the object named by x has quality ¢. In
most cases this will be the same as saying that the object named by x will be an instance
of the class named c. The syntax x:c&d indicates that the object named by x has the
qualities ¢ and d.
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2. Idea 2: Process Environments

A process environment is a set of processes, each of which is an instance of the
class named PROCESS. The set of these processes is treated as an object that can be
manipulated by prototype code. Subsets of the processes can be distinguished by their
classes, and control code can be written whose behavior depends on the state of the set
of processes or the states of any of the processes in a process environment. When certain
important states are achieved or events occur within the environment, specific generic
functions are invoked, and these generic functions may be specialized. For example, when
a process terminates normally, the generic function TERMINATE is invoked by the system;
its default method returns T. We will see an example of this later.

A process environment might correspond to an execution of existing code or of pro-
totyping code.

(class-let ((p1 (process))
(p2 (process)))
(spawn p1 (traverse treel))
(spawn p2 (traverse tree2)))

This code fragment creates two subclasses of PROCESS. The classes P1 and P2 have
lexical scope and indefinite extent. SPAWN takes a class and an expression, and creates
an instance of the class that will execute the expression.

There is an interesting wrinkle: A value returned from a process environment is made
an instance of the process that originated it. I call any domain that changes, acquires, or
sheds classes like this a dynamic domain.

(class-of
(class-let ((p (process)))
(spawn p (traverse tree)))
process-domain) => <class ...>

If an object is passed through a process—by being bound to a variable, for example—
the object becomes an instance of that process. The effect is that an object retains the
history of its creation and manipulation by retaining the classes of which it has been an
instance. Note that this behavior is supplied by the domain of processes.

Since there is no particular magic to processes, I extend this idea to functions: All
functions are viewed as classes, and a value returned by a function is an instance of that
function (viewed as a class). This leads to the idea of superclasses of functions that would
have some common traits. An obvious idea is to create classes of functions with scheduling
constraints: For example, an instance of some class is such that only one such instance can
be running at a time, or a function of a certain type can be run in parallel as long as the
scheduler allows it.
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The choice of making functions being classes will make more sense once we see the
use of generic functions to trigger behavior when the state of a system becomes something
described by a set of classes.

3. Idea 3: Improved Partially, Multiply Invoked Functions

The basic idea of partially, multiply invoked functions (PMI Functions) is to separate
the process of coordinating the arrival of arguments from the process of executing the
function on those arguments.

All calls to a function go through an interface to the actual implementation. The
implementation of the function receives arguments by position, while the interface accepts
only named arguments, provides for all defaulting, and coordinates the arrival of arguments
for the function from multiple sources.

The Qlisp work produced the basic idea of PMI functions in late 1987 [ref: Goldman)]
but the Qlisp formulation has a serious drawback. Namely, arguments need to have names,
which often requires those names to be passed about as additional arguments so that the
proper values were assigned to the proper parameter names.

This technique is similar to currying functions, but because all arguments to the
interface are named, one does not need to curry in any particular order. One could term
it dynamic currying. All calls to a PMI function that supply arguments to the same
invocation receive the same future as their value. A future is returned whenever some
required arguments to the function have not been supplied to the interface by a function
call. If a particular invocation of a function has returned a future, the value returned when
all required arguments have been supplied is a realized future. This is to preserve EQ-ness
of all values returned for a particular invocation.

The improvement is to use hybrid inheritance. Here is an example:

(defclass p1 (process) ...)
(defclass p2 (process) ...)

(pmi-qdefun add-up (x:p1 y:p2) (+ x y))

(add-up (spawn p1 1)) => <future>
(add-up (spawn p2 2)) => <the same future> = 3

The first call to ADD-UP supplies the argument of type P1, and the second the argument
of type P2. These two are added to produce the result. Another example is this:

(defun f1 () 1)
(defun £2 () 2)

(pmi-qdefun add-up (x:f1 y:£2) (+ x y))
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(add-up (£1)) => <future>
(add-up (£2)) => <the same future> = 3

4. Idea 4: Discriminating on the Calling Process or Function

In CLOS we can discriminate on any of the (required) arguments. When processes
are classes it makes sense to discriminate on the class of the caller. The following program
prints P1 when the traversal of TREE1 terminates and P2 when the traversal of TREE2
terminates. Note that this uses the automatic invocation of TERMINATE in process
environments.

(class-let ((p1 (process))
(p2 (process)))
(gf-labels ((terminate:pi () (print ’p1))
(terminate:p2 () (print ’p2)))
(spawn pi (traverse treel))
(spawn p2 (traverse tree2))))

We defined two methods for TERMINATE, one invoked when called by P1 and one when
called by P2. GF-LABELS defines methods and is similar in spirit to GENERIC-LABELS
in CLOS. CLASS-LET creates a process environment.

5. Idea 5: Waiting for Methods to be Applicable

We’ve seen it’s possible to write methods that are invoked if arguments are instance of
process classes or function classes. In a multiprocessing environment, it can happen that
a generic function might be invoked that will have an applicable method at some point,
but not at the time of invocation.

In CLOS, a method is applicable if the arguments to the generic function are of
the right classes. In the domain of processes—in which the class of a process changes
dynamically—we cxtend the concept of applicability as follows. Suppose a generic function
is invoked which is made up of methods, some of which are specialized on classes within
dynamic domains. If no method is applicable at invocation time, the generic function will
wait until some method is applicable. When a method becomes applicable, the processes
that changed the classes of the arguments making the method applicable are paused until
the generic function terminates. Method combination provides a mechanism to define
complex behavior based on the changing states of processes. For example, one type of
method combination would wait for the all arguments to be of the right class at the same
time, while a second type would freeze each as it becomes the right class.

Here is an example:
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(class-let ((p1 (process))
(p2 (process)))
(gf-labels ((complete (p:dead q:dead) (print ’both-dead)))
(complete
(spawn p1 (traverse treel))
(spawn p2 (traverse tree2)))))

When a process terminates, it becomes an instance of the class DEAD. Here the
method for COMPLETE will eventually be applicable, but possibly not at the moment it
is invoked.

Not all generic functions have this behavior, only a subclass of them. For example,
we might want to define a generic function and a set of mutually exclusive methods so
that exactly one is applicable at a time, but we want that one to be invoked right at the
instant of generic function invocation.

Now we are at the point where we can write a complete program that shows off all
the ideas so far. This program is samefringe:

1 (defun samefringe (t1 t2)

2 (let ((unique (list nil)))

3 (class-let ((p1 (process))

4 (p2 (process)))

5 (pmi-qflet ((compare (x:p1 y:p2)

6 (unless (eq x y) (return-from samefringe nil))))
7 (gf-flet ((terminate:process () (compare unique))
8 (complete (p:dead q:dead) t))

9 (labels ((traverse (tree)

10 (cond ((atom tree) (compare tree))
11 (t (traverse (car tree))

12 (traverse (cdr tree))))))
13 (complete

14 (spawn p1 (traverse t1))

15 (spawn p2 (traverse t2)))))))))

The special form CLASS-LET defines a set of classes with lexical scope and indefinite
extent. The special form GF-FLET is similar to GF-LABELS

Because there are two trees being traversed, there will be two subclasses of PROCESS,
one for each tree, called P1 and P2. The function COMPARE will be a PMI function that
takes one argument from each. When each process terminates, TERMINATE will provide
the unique end marker to COMPARE.

The main program will spawn two processes, one an instance of P1 and the other
an instance of P2. That main program will then apply COMPLETE to those two pro-
cesses, where the only method for COMPLETE is applicable when both its arguments are
dead processes. Therefore, COMPLETE and hence SAMEFRINGE will wait until both

processes have terminated.
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Line 2 defines the unique object. Lines 34 define two distinct subclasses of PROCESS.
These subclasses only exist during the dynamic extent of the CLASS-LET.

Lines 5-6 define the comparison function, which compares an object produced by P1
to an object produced by P2. Line 7 defines the termination procedure for the processes.
When a process of class P1 terminates, the system invokes TERMINATE as if by P1 and
then P1 becomes an instance of DEAD. The characteristic of being of class P1 is inherited
by this invocation of TERMINATE which will pass on that tag to UNIQUE when it invokes
COMPARE.

Line 8 defines a generic function that returns T when invoked on two terminated
processes. Furthermore, if this function is applied to two processes, either one of which is
not terminated, invocation will be blocked until they both are terminated.

Lines 9-12 are the simple traversal routine.

Lines 13-15 are the main body of the function. Lines 14-15 spawn two processes,
the first an instance of P1 and the second an instance of P2. The function COMPLETE
will be invoked when the two processes terminate, and this function will return T in that
event. However, recall that COMPARE might terminate the processes early. One fine
point is that whenever a CLASS-LET is exited, all instances are killed without invoking
TERMINATE on them. (In this case a generic function named KILLED will be invoked,
but the default method, which is not shown, simply returns T.)

6. Idea 6: Triggered Functions

Sometimes we wish to write some code that will run when certain events take place,
but we wish the description of these events to be more than a simple interrupt or trap.

Suppose we are working on a prototype of the samefringe problem just described,
given the following definition of TRAVERSE, which we wish to leave as is:

(defun traverse (tree)
(operate tree)
(unless (atom tree) (traverse (car tree)) (traverse (cdr tree))))

This code traverses trees exactly the right way for samefringe, but it invokes OPER-
ATE at every node whether internal or leaf, so we cannot simply redefine it to do what
we want. We can transform this into the right program several ways, but one of the more
interesting ways is with triggered functions.

A triggered function continually waits for the original program to achieve a complex
state:

(defclass atomic-tree (predicated-class) () :predicate #’atom)
(defgeneric watch-visit :method-combination :continuous)
(defmethod watch-visit (p:(operate tree:atomic-tree)) (compare tree))
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Here the method combination type indicates continuous invocation. The function WATCH-
VISIT is invoked on the tree traversal process, and the method shown is applicable when
the argument to OPERATE is an atomic tree:

(defun samefringe (traverse t1 t2)
(let ((unique (1list nil)))
(class-let ((p1 (process))
(p2 (process)))
(pmi-qflet ((compare (x:pi y:p2)
(unless (eq x y) (return-from samefringe nil))))
(gf-flet ((terminate:process () (compare unique))
(complete (p:dead q:dead) t))
(complete
(vatch~visit (spawn pl (traverse t1)))
(vatch-visit (spawn p2 (traverse t2)))))))))

By “continually” I mean that when WATCH-VISIT is applicable, WATCH-VISIT is in-
voked and then immediately reinvoked; however, there is only one invocation of WATCH-
VISIT per triggering event. That is, if an event invokes WATCH-VISIT, WATCH-VISIT
cannot be reinvoked by that same event—the event must terminate first, at which point
an event exactly like the first one can invoke WATCH-VISIT.

This behavior can be implemented as follows. The process that caused it to be appli-
cable is paused and WATCH-VISIT is completed. Once WATCH-VISIT is completed, the
previously paused process is continued until the method would no longer be applicable.
At that point WATCH-VISIT is re-invoked. For example, the order of events is this: pro-
cess P1 begins to invoke OPERATE on an atomic tree; P1 is paused and WATCH-VISIT
runs. When WATCH-VISIT ends, P1 is continued until it exits OPERATE. At that point
WATCH-VISIT is re-invoked (and P1 continues as well).

The odd syntax means this: WATCH-VISIT will be called when the process P is within
OPERATE with a first argument of class ATOMIC-TREE. The argument to OPERATE
is available in the WATCH-VISIT method, but is not used in this example.

This could also have been written as follows, where applicability and pausing are as
above.

(defmethod watch-visit (p:(operate tree:atomic-tree))
(compare tree) (watch-visit p))

Another variation is to introduce a generic function that will be triggered when OP-
ERATE is invoked with a first argument of class ATOMIC-TREE:

(defmethod watch-visit:(operate tree:atomic-tree)
:triggered () (compare tree))
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SAMEFRINGE would be exactly as above except there is no explicit invocation of
WATCH-VISIT.

Triggered functions are but abstraction: We identified a common pattern of behavior
and defined a stylized means to express that pattern.

A simple version of this behavior can be implemented by using :after methods in
CLOS. For example:

(defmethod operate :after ((tree atomic-tree))
(compare tree))

(defun samefringe (traverse ti t2)
(let ((unique (list nil)))
(class-let ((pit (process))
(p2 (process)))
(pmi-qflet ((compare (x:pl y:p2)
(unless (eq x y) (return-from samefringe nil))))
(gf-flet ((terminate:process () (compare unique))
(complete (p:dead q:dead) t))
(complete
(spavn p1 (traverse t1))
(spawn p2 (traverse t2))))))))

There are two differences. First, using ordinary method combination requires knowing
a generic function to combine with. The sort of triggering we want is to trigger on a class of
generic functions or events. We should be able define a class of generic functions—possibly
an ad hoc collection—and trigger when any of them are invoked.

Second, using standard method combination requires both the generic function in
question to use standard method combination and knowing that it does. User defined
method combination might be incompatible with attaching methods without detailed
knowledge of that method combination type.

7. Idea 7: Naming Variables Names

When piecing together programs from existing parts, we need to be able to refer to
the variables of one program from another. This requires a means to additionally name
variables to distinguish them from variables of the same name in other programs. We can
implement program-specific variables by qualifying their names with the process in which
the program defining them is being executed. Similarly if the need arose to introduce new
variables, the same mechanism could be used. Here’s an example:
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(class-let ((p1 (process)) (p2 (process)))
(let ((n:p1 0)(n:p2 0))
(flet ((count (1) (dolist (i 1) (imcf n))))
(spawn p1 (count ...))
(spawn p2 (count ...)) ...)))

This program computes the length of two lists into two copies of the variable n.

8. Idea 8: Monotonic Variables

Another useful concept is called “monotonic variables.” A monotonic variable is one
whose value always increases or always decreases. This basic idea has been iniwroduced
elsewhere, but my use of it with classes is new. There is a class MONOTONIC and two
subclaeses, MONOTONIC-INCREASING and MONOTONIC-DECREASING.

Here are a few methods for an interesting generic function:

(defmethod lesser (x:dead y:dead)
(cond ((< x y) t)
(t nil)))

(defmethod lesser (x:dead: y:monotonic-increasing)
(cond ((< x y) t)
(t (lesser x y))))

(defmethod lesser (x:monotonic-increasing y:dead)
(cond ((<= y x) nil)
(t (lesser x y))))

The predicate LESSER can be decided before both values are computed if the pro-
cess computing one is dead and the other is monotonic increasing. This can then be
used to terminate processes early. We can complete LESSER by defining similar meth-
ods for other combinations of DEAD, MONOTONIC-INCREASING, and MONOTONIC-
DECREASING.

For example, here is a simple function to determine whether one list is shorter than
another:

(defun shorter (11 12)
(class-let ((p1 (process)) (p2 (process)))
(let ((n:pi&monotonic-increasing 0)
(n:p2&monotonic-increasing 0))
(flet ((len (1)(dolist (x 1) (incf n))))
(spawvn p1 (len 11))
(spavn p2 (len 12))
(lesser n:pi n:p2)))))
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For example, if L1 is shorter than L2, N:P1 will possibly be computed and rendered
dead before P2 completes. If this happens, LESSER will terminate when N:P2 exceeds
N:P1, which will exit the CLASS-LET defining P1 and P2, which will kill P2.

We can write a different version of SAMEFRINGE using monotonic variables:

(defun samefringe (t1 t2)
(class-let ((pi (process))
(p2 (process)))
(pmi-qflet ((compare (x:pl y:p2)
(unless (eq x y) (return-from samefringe nil))))
(let ((n:pl&monotonic-increasing 0)
(n:p2&monotonic-increasing 0))
(gf-flet ((count:compare :trigger () (incf n)))
(labels ((traverse (tree)
(cond ((atom tree) (compare tree))
(t (traverse (car tree))
(traverse (cdr tree))))))
(spawn p1 (traverse t1))
(spawn p2 (traverse t2))
(= n:p1 n:p2)))))))

Here, the function COUNT is a triggered function: When some process becomes an
instance of an invocation of COMPARE, that process is paused while the body of COUNT
is executed. That invocation of COUNT retains the classes of the process that triggered
it, so that INCF increases the right variable. The function = is written as LESSER was.

9. Idea 9: Temporal or Historical Abstraction

Some of the problems in prototyping have to do with modifying a program to keep
track of the history of a data structure or to answer questions about what things happened
at what time. I believe there is a new type of abstraction, called temporal or historical
abstraction, that can make such changes simpler. This basic idea originated with John
McCarthy.

Consider a program that is simulating marriage and employment. There might be
a class whose instances are people. These instances might have some structure (a data
abstraction) and a protocol. One slot might record gender another marital status. Initial-
izing the instance records the gender, and the operations of marriage, divorce, and death
update marital status.

These two slots represent incommensurable things: Gender is a characteristic of an
individual, and marital status slot is a characteristic of the history of an individual. The
two belong in different structures: the gender in the object that represents the individual
and the marital status in the object that represents the history of the individual.

11
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The representation of the history of objects in a simulation is the history of the
simulation, which happens to support a tiny protocol—all we can ask about is the present.
One wonders how many data abstractions are designed to represent history or time.

The idea is to be able to refer to the computational past. Here is some code suggested
by some remarks of Vladimir Lifschitz:

1 (defun f (n)

2 (let ((x:0 nil))

3 (dotimes (i:0 n) (setq x:0 (read))))
4 (dotimes (i n)

5 (print x:0[when (= i:0 (- n i))1)))

There are two named variables, x:0 and i:0. They are qualified names because iater code
will refer to them. This code is read as follows: Create a variable x (indexed by 0). Run a
loop for i (indexed by 0) from 0 to n — 1, assigning x to the value of READ. Run another
loop from 0 to n — 1. In this loop print the value of x:0 when the value of i:0 was (- n
i). That is, print the values that were read, backwards. No intermediate data structure
needs to be created by the programmer.

Even if the need to define a data abstraction to store historical information were
removed, the problem of temporal abstractions would not be solved if the programmer
still was required to insert protocol invocations at the points at which the history needed
to be updated. This would defeat locality. Furthe--. . ¢, it would reveal implementation.

Because a prototyper wishes to modify a program as little as possible, a temporal or
historical abstraction mechanism would be welcome if it were possible to isolate uses of
historical abstraction from the c riginal code.

Class-based description mechanisms are a step in this direction. For example, a trig-
gered function defines a temporal or historical abstraction, though in a primitive way: We
can define a pattern of function invocation and argument spectrum such that instances
of the pattern cause record-keeping actions. It would be better to specify a language of
broader patterns, possibly in terms of the sorts of inquiries that will be made about the
past (or future!).

Here is a simple example of a historical abstraction; the next section has more sophis-
ticated example:
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(defclass person () ((gender :accessor gender) ...) ...)

(defmethod marital-status ((p person))
(cond ((match (history p marriage-domain)
' (* marriage divorce))
’divorced)
((or (not (match (history p marriage-domain)
’(* marriage *)))
(match (history p marriage-domain)
’(» marriage divorce)))
’single)
((match (history p marriage-domain)
’(* marriage spousal-death))
’widowed)
(t ’married)))

A pattern matching language, suggested by McCarthy, is probably simpler to work with
than logic, but the language must be more expressive than I have indicated here. The
form (history p marriage-domain) indicates we are matching events involved in the
marriage domain only. The descriptor * matches any number of events of the right type.
Note that the above patterns are sufficient because matching happens only on marriage-
related events.

10. Idea 10: Correspondences

A good use of historical abstractions is the correspondence. We've seen the use of
the samefringe problem as a means to study prototyping issues. The key problem in this
program is to determine whether there is a 1-1 correspondence between the leaves of two
trees such that corresponding leaves are the same.

A correspondence is a mapping between two processes. Each process defines a set of
objects; we use variable naming to define those things that correspond. The correspon-
dence takes an element in the one set to the corresponding element of the second set. A
correspondence also has a failure function, which is invoked if the correspondence is not
1-1. This function is invoked whenever the failure is detected.

In the following code, MAP-CORRESPONDENCE takes a function and a correspon-
dence ¢ : D — R. It enumerates the elements of D, passing them to the function:
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(defun samefringe (t1 t2)
(with~names (node)
(labels ((traverse (x)
(cond ((atom x) x[named node])
(t (traverse (left x))
(traverse (right x))))))
(class-let ((p1 (process) ())
(p2 (process) ()))
(spawn pl (traverse t1))
(spawn p2 (traverse t2))
(1et ((c (correspondence {node:pl — node:p2}
(lambda ()
(return-from samefringe nil)))))
(map-correspondence
(lambda (node)
(unless (eq node (c node))
(return-from samefringe nil)))
c)
t))))

11. Conclusions

It seems plain that these ideas as I've presented them add up to a complex system.
However, there seems to be some grain of simplicity or at least uniformity of philosophy
behind them. I think an interesting language, possibly with a non-Lisp syntax, could be
built on the foundations indicated here.
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