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ABSTRACT

Systematic investigation is made of effects of kinematic assumptions and
finite element approximations in the context of nonlinear flexible
multibody dynamics. Two nonlinear beam finite elements are consistently
derived from virtual work principle using BernoullitEuler and
Timoshenko beam kinematics. Initial assessment is made by studying
convergence properties of element formulations with eigenvalue problems:
free vibration, static buckling, and dynamic buckling. Equations of motion
are derived for rigid central body with flexible appendage using virtual
work principle. Virtual work principle allows natural and consistent
discretization of flexible appendage using finite element method.
Nonlinearities in flexibility are explored through dynamics examples using
beam finite elements. Application of dynamics formulation is made to a
realistic scenario involving space shuttle remote manipulator arm with
attached payload. Contribution of nonlinear theory, in both formulation
and solution, is assessed.
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Chapter 1: Introduction

Chapter 1

Introduction

1.1 Purpose/Objective of Present Work

Increasingly, formulations for flexible multibody dynamical systems

are employing the finite element method in the discretization of the flexible

domain. Embedded in the finite element method are assumptions regarding

the assumed displacement field, and additional approximations such as mass

lumping and reduced integration over the spatial domain.

A study is conducted to address the application of finite element

discretization in flexible multibody dynamics. The virtual work principle

is chosen as the basis for derivation of the equations of motion for a simple

class of satellite-type vehicles. The reasons for choosing the virtual work

principle are threefold:

" an integral representation of the governing equations of
motion is embedded in the virtual work principle,

* the virtual work principle allows decomposition of dynamic
system into rigid and flexible portions,

* the virtual work principle is a basis for the finite element
method.

Kinematic assumptions and finite element approximations are

investigated in a dynamics context through a series of eigenvalue problems.

The approach emphasizes understanding of the behavior of consistently

derived finite elements rather than demonstrating one formulation over

another. The consistent derivation of nonlinear finite elements allows an

16



Chapter 1: Introduction

assessment of such *inconsistent' assumptions as lumped mass and reduced

integration. Such in-depth study of the behavior of finite elements in

dynamics is not widely available in the literature.

Multibody dynamic formulations are inherently nonlinear due to the

large rotations of reference frames in inertial space. When coupled with

the possibility of nonlinear flexibility, the importance of one effect

compared to another is unclear. The available literature is not clear in the

meaning of 'nonlinear' solutions, since nonlinearity arises from both

inertial and flexibility considerations. Researchers have not taken an

engineering perspective; they have not made explicit statements regarding

the most important effects, i.e. which effects are essential to capture the

physics of the problem. The nonlinear equations of motion developed in

this thesis are applied to dynamic problems with an eye toward

understanding the separate effects of forcing terms and the relative

importance of nonlinear flexibility.

1.2 Thesis Overview

Chapter 2 derives exact integral equations of motion for a vehicle

composed of central rigid body with a rigidly attached flexible appendage.

Assumptions of lumped mass and lumped mass/inertia are employed to

yield equations of motion which are suitable for time integration using an

imp!'cit scheme. Solution of these equations allows assessment of the

influence of centrifugal and Coriolis forcing terms and importance of

nonlinear flexibility (geometric stiffness).

17



Chapter 1: Introduction

In chapter 3, two nonlinear beam finite elements are consistently

derived from the virtual work principle. Bemoulli-Euler and Timoshenko

beam kinematics are employed to give isoparametric beam finite elements

with C1 and CO continuity, respectively. It is shown that consistent

derivation produces higher order stress resultants in the geometric stiffness

matrix, which are generally ignored. For completeness, consistent nodal

loads are also derived.

Systematic assessment of beam finite elements is made in chapter 4

through eigenvalue problems which include free vibration, and static and

dynamic buckling. Effects of beam kinematics and finite element

assumptions are explored in detail and compared with the analytical

solution from Bernoulli-Euler beam theory. Results provide insight into

modelling considerations typical of scenarios arising in flexible multibody

dynamics.

Nonlinear dynamic problems are addressed in chapter 5 using the

lumped mass/inertia formulation of chapter 2. Two examples are

considered: the beam spin-up problem, and a realistic application

involving the orbiter/remote manipulator system (RMS). System response

is evaluated in terms of the level of discretization, and the contribution of

nonlinear effects is addressed. Nonlinear effects due to rigid body motion

coupled with flexible deformations are differentiated from flexible

nonlinearity associated with tangent stiffness matrix. Gross overall motion

of the system and flexible natural frequency are considered independently.

Six appendices are included for completeness. Stress resultants

which arise in beam elements are considered in Appendix A. In Appendix

18



Chapter 1: Introduction

B, the Newmark integration scheme is derived for linear systems and an

incremental form with Newton/Raphson iteration is derived for solution of

nonlinear systems. Introduction to the explicit Runge-Kutta integration

scheme is also given. Convergence data is tabulated for future reference in

Appendix C. Details of the RMS finite element model are given in

Appendix D. In Appendix E, the Timoshenko frequency equation

(cantilevered boundary conditions) is solved, and the natural frequency

convergence plots repeated with alternative normalization. Finally, a brief

overview of Gauss quadrature is given in Appendix F.

1.3 Literature Review

1.3.1 Beam Theory/Finite Elements

Classical Bernoulli-Euler beam theory is known to overpredict the

natural frequencies for higher modes of vibration. It also tends to

overpredict natural frequencies for all modes for thick beams

(length/thickness < 10). The first problem was alleviated by Rayleigh [1],

who introduced rotatory inertia of the beam cross-sections. An additional

modification was introduced by Timoshenko [2, 3], allowing description of

cross-section and neutral axis rotation by independent angles, thus allowing

the beam to undergo shearing deformation.

The literature has focused on Timoshenko beam theory, from both

analytical and finite element standpoints. The partial differential equations

resulting from Timoshenko's theory are difficult to solve for anything but

19



Chapter 1: Introduction

prismatic beams with simple boundary conditions. Huang [4] derives

frequency and normal mode equations for uniform, isotropic beams with

simple boundary conditions. Noting the difficulty of solving the frequency

equations, he introduces the 'frequency chart', which, for a given set of

beam parameters, provides a correction factor to be applied to the

Bernoulli-Euler solution for natural frequency. Frequency charts provide

a quick and convenient measure of the influence of rotatory inertia and

shearing deformation. Leckie and Lindberg [5] studied the effect of

lumped mass assumptions on beam natural frequencies using finite

difference expressions.

In the finite element literature, much emphasis has been placed on

the development of higher order Timoshenko beam elements. Higher

order elements [6, 7, 8] were necessary in order to satisfy all geometric

and natural boundary conditions of a Timoshenko beam. The simplest

shear deformable beam possible was introduced by Hughes et. al. [9].

Convergence and accuracy were demonstrated for static problems. Shear

locking was avoided by use of selective reduced integration. Consistent

assessment of finite element approximations for dynamics has not been

undertaken in the literature.

1.3.2 Multibody Dynamics

Review and chronology of the rigid and flexible multibody dynamics

literature is widely available [10, 11, 12] and will not be repeated here.

The literature can be further partitioned according to the intended

application. MeHo [10] separated the literature into the following groups:

20



Chapter 1: Introduction

spacecraft, mechanisms, and robotics. There exists a body of literature

whose multibody formulations are demonstrated using beam finite

elements. A selection of these will be addressed.

Ryan [13] investigated a deficiency of conventional general flexible

multibody programs (such as DISCOS, NBOD, TREETOPS, ALLFLEX),

which fail to correctly capture the stiffening effect of rapidly spinning

systems. He extended the assumed modes formulation and demonstrated

the new theory by application to a deployment maneuver and the beam

spin-up problem. Simo & Vu-Quoc [14, 15] developed equations of motion

for a flexible beam undergoing large overall motions. In [15], the spin-up

problem is addressed among other examples. Quadratic beam finite

elements are used in the discretization of the flexible domain. However, no

discussion is given regarding the essential features governing the correct

response. Ider & Amirouche [161 also develop an algorithm for multibody

systems using assumed modes and Kane's equations. Their formulation is

tailored for structures with variable cross-section beam elements. They

also consider the spin-up problem in their numerical examples.

Taking an analytical approach, Silverberg & Park [17] explore

contributions of Coriolis and centrifugal forcing terms in the response of

maneuvering spacecraft. Through development of stiffness operators, they

compare natural frequencies of a spinning beam achieved by linearization

about both static and dynamic equilibriums. They show that linearization

about the dynamic equilibrium (same as including geometric nonlinearities)

has an important effect when certain nondimensional spin and material

parameters are exceeded.
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Chaptr__2

Flexible Body Formulation

This chapter develops the equations of motion for a rigid body with

attached flexible appendage, without articulation, using the principle of

virtual work. The governing equations are consistently derived, so that all

terms are retained.

Since the virtual work principle is the basis for the finite element

formulation, it is natural and consistent to discretize the flexible appendage

using the finite element method. In this chapter, lumped mass

(3 DOFs/node) and lumped mass/inertia (6 DOFs/node) assumptions are

employed in the treatment of the mass distribution of the flexible

appendage. Lumped masses are located at the nodes resulting from finite

element discretization of the appendage stiffness. These assumptions lead

to equations of motion which can be expressed in a convenient matrix

form. The exact governing equations could also be fully developed using

finite element method, as has been done in the literature [14, 15, 18].

The assumption of rigid central body allows governing equations of

motion to be derived with respect to the body fixed frame. Alternatively,

consideration of a free floating deformable body requires the application of

conservation of linear and angular momentum [18], or other corotating

frames [19, 20].

Equations derived in this chapter are quite general in nature, and can

be applied to a wide class of problems. Many satellites, as well as the space
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shuttle, can be approximated by the rigid central body assumption. The

only restriction on the flexible appendage is the fixed, or cantilevered

boundary condition, relative to the rigid body. Example problems using

the lumped mass/inertia formulation are considered in chapter 5, where the

flexible domain is discretized using the beam finite elements derived in

chapter 3.

2.i Vehicle Idealization

F~ ~ cr. 
VR

S rigid body

IrR

Figure 2.1. Rigid body with flexible appendage.
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where

= inertial reference frame

Fb = body fixed reference frame
VR = rigid body domain

VF = flexible body domain, reference configuration

4R(t) = material coordinate of rigid particle with respect to

inertial frame
4F(t) = material coordinate of flexible particle with respect to

inertial frame
R(t) = inertial position of body frame
rR = rigid particle position with respect to body frame

rF(t) = reference flexible particle position with respect to body

frame

c = rigid c.m. with respect to body frame
s(t) = vehicle c.m. with respect to body frame
r1(t) = displacement of flexible particle due to deformation

Figure 2.1 shows a rigid body with attached flexible appendage in

inertial space. The form of the appendage is arbitrary, as suggested by the

figure. In practice, the body fixed reference frame is located as a matter

of convenience, and is not normally coincident with the rigid body c.m. or

the vehicle c.m.

2.2 Principle of Virtual Work

The principle of virtual work is a statement that for a body in

equilibrium under the action of prescribed body and surface forces the

work done by these forces through a kinematically admissible displacement

is equal to the change in internal virtual work. In combination with

D'Aiembert's principle, the virtual work principle can be expressed as
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6Wext = fv (f - p ) dV + f8't dS = 5e:a dV = 8%,t
Jv J.v (2.2.1)

where, in addition to the quantities previously defined,

f = body force (force/volume)
t = surface traction applied over Sa
p = density

S = strain

a = stress

The virtual work statement is evaluated as the sum of two parts;

integration over the rigid central body and integration over the flexible

appendage.

2.3 Vectrix Notation

In forming the virtual work expression, several vectors must be

defined. When the dynamic system involves more than one reference

frame, as is the case for the vehicle of figure 2.1, it is helpful to use a

notation which explicitly identifies the frame in which vector components

are expressed. Toward this end, the vectrix notation [21] is used. A vector

can be written as the multiplication of two column matrices: one

containing the vector components, the other the frame unit directions. For

example, an arbitrary vector v can be expressed in some reference frame

Fa, whose basis vectors are -a,, a2, a3, as

V = Vlal + v2a2 + v3a3 =Fa T V=

av2=5 v=vTa (2.3.1)
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where

vT=[ vi v2 V3

aT= [ Il a2 a3 ]

Differentiation of vectors involving multiple reference frames

introduces the vector cross product. It is convenient to express this

operation as a matrix multiplication, in conjunction with vetrices. The

cross product of arbitrary vectors u and v, both expressed in Fa, is given

by

u x v = uTFa x FaTV = FaT (x) (2.3.2)

where v is the same as above and the components of u have been formed

into the skew symmetric matrix given by

0 -U3 U2

Ux = U3  0 - l

-U2 ul 0 (2.3.3)

The inertial time derivative of the frame is also an important

relationship and is given by

STT

b -- Tb X Fb r = Fb r le (2.3.4)
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2.4 Vehicle Kinematics

From figure 2.1, the inertial positions of rigid and flexible material

particles are given by the vectors

4R = R + rR (2.4.1)

4F = R + rF + T1 (2.4.2)

Inertial accelerations are obtained through time differentiation of the
position vectors. Let -d-( ) denote time differentiation in the inertial frame,

dt

and (*) indicate time differentiation in the body fixed frame.

Differentiation of equation (2.4.1) gives

4R = (I dl + drR1
dt -- (2.4.3)

where it is convenient to let u = dR, the inertial velocity of the body fixed
dt

frame. Now expressing components of u and in the body fixed frame
dt

allows the derivative to be written as

dRtbl+ (bR) (2.4.4)

Application of the chain rule and using the vectrix notation gives the final

form of the inertial acceleration of an arbitrary rigid material particle.

The acceleration of an arbitrary flexible particle follows in an analogous

manner.

4R = -b T [L + (Ox U + e rR + __x W rXj -b T aR (2.4.5)
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T T4F = PbT ['_ + (Ox u + 6)ox (rF + 1__)+ 2(,)x  + tex Le__ (rE + Tj_)+ - ba_

(2.4.6)

Virtual displacements are obtained through variation of the position

vectors, and can be expressed as

8 4 R = FbT [8x + 1_Qx r (2.4.7)

{i{F= F T [8iX + 8'n1 + 8e x (rL + 24884F = Fb(2.4.8)

where

rR, 1, a = components of rR, r, il, expressed in the body fixed
frame

u = components of the inertial velocity of the origin of the
body fixed frame

(o = components of the inertial angular velocity of the body
fixed frame

5x = components of the variation of inertial position vector R

= components of angular variation which arises as a
consequence of rotation of the body frame with respect to
the inertial frame

5a1 = components of the variation of the relative displacement
vector 1l

Ib I bI b2  b3 ]

All components defined above are expressed in the body fixed frame,

Fb. Note that the acceleration of a flexible particle has a high degree of

coupling between rigid body motions and flexible deformations.
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2.5 Exact Governing Equations

The governing equations of motion are obtained by substituting

equations (2.4.5)-(2.4.8) into equation (2.2.1). Evaluation of equation

(2.2.1) produces terms which can be grouped according to the variation

(8x, 80., or 811) multiplying each. Because of the arbitrariness of the

variations, each group must independently be equal to zero. Thus the

following three sets of governing equations are obtained.

Recall that no restrictions have been imposed regarding the physical

shape of the flexible appendage, or on the form of the relative

displacements il.

Body Frame Translation (3.):

f + fFdV +f tFdS = mti + mo× U + mi× + ma× xe g

J Vp (2.5.1)

Body Frame Rotation (39):
T + fv(rF + Tj f dV + f (rF- + 7-1t- S g i+ g

T+' _ S F tFdS= mgx l+ mQx te u

S+ q + 2 p(rF+ x dV+ p(rF + )xidV

fI' VP I Vp(2.5.2)
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Flexible Appendage DOFs (32):f dV + 8 F S= 8Tp dVu_ + 5I Vo u
f ~ v+ J s l s . f. f~~ l ~v + f ld

+J&1 + T r )pdV+ 2f 8lT Ke lpdv

+ f 51T te je(rF +TIJp dV +jf&ITlp dV + &:a dV
J Vp (2.5.3)

where

F=F+ FT (2.5.4)

T= T + "T (2.5.5)

I = IR + IF (2.5.6)

M f-I pdV+ f pdV
JVR JVP(2.5.7)

VpM 
(2.5.8)

IRd) (p rx tx rRdV
JVR 

(2.5.9)

JVR 
(2.5.10)

LFO Jp(rR + (f t rg + ij) dV

fvp (2.5.11)
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W IF_ f p(rF + ij LeSO (rF + 1]) dV
, jr d(2.5.12)

along with the following definitions:

F = components of total force acting through body frame
origin, due to body forces (EB) and surface
tractions (_FT), expressed in the body fixed frame

T = components of total torque acting about body frame
origin, due to body forces (TB) and surface
tractions (TT), expressed in the body fixed frame

I = instantaneous inertia matrix of the vehicle about the body
fixed frame due to rigid body (1R) and flexible body (IF),

expressed in body fixed frame
fF = components of body forces acting on flexible body,

expressed in body frame
tF = components of surface tractions acting on flexible body,

expressed in body frame
m = total vehicle mass (mR + mF)

Equations (2.5.1)-(2.5.3) are an exact set of equations governing the

idealized vehicle of figure 2.1. Discretization of the flexible domain stems

from these equations. Two lumped parameter approximations will be

considered: (a) discretization of the flexible domain into a collection of

point masses (no rotatory inertia) interconnected by massless springs, and

(b) extension of the previous model to include rotatory inertia.

In practice, mass is concentrated at locations corresponding to finite

element nodes, which allows the use of the finite element stiffness matrix.

For 3-D finite elements, condensation technique must be used to make the

stiffness matrix compatible with approximation (a).
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Finite element discretization can also be consistently applied to all

integrals in Equations (2.5.1)-(2.5.3). Derivation is straightforward, but

the solution procedure is more involved than lumped mass assumptions,

and is therefore not considered here. This approach has been used to

derive equations of motion and demonstrated through simple problems

using quadratic beam elements [18].

2.6 Lumped Mass Assumption

ith mass particle u

wi

Figure 2.2. Lumped mass discretization of the flexible appendage.

Schematic representation of this assumption is shown in figure 2.2,

where the solid line represents the surface of the flexible appendage. The

flexible domain is modelled with a finite number of point mass particles,

connected by massless springs. Mathematically, this is a straightforward

process whereby the integrals in equations (2.5.1)-(2.5.3) over the flexible

domain are replaced by summations over the number of mass particles.

The location of lumped masses correspond to the nodal locations of the

finite element discretization of the flexible domain.
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N
f L7 1, 9dV --> Y, f (fb i, j mi

i=l (2.6.1)

where

qji = ith nodal displacements (translations only), expressed in
the body fixed frame

mi = corresponding lumped mass

The motion of a lumped mass is fully described by three translations.

For 3-D finite element models of the flexible domain which include

rotations as nodal DOFs, condensation technique must be used to remove

rotational DOFs from the stiffness matrix. Consistent with the lumped

mass approximation, external loads on the flexible body are also 'lumped'

at the nodes. The exact governing equations (2.5.1)-(2.5.3) are simplified

through the lumped mass assumption to give

N N

F = mfj + mx _u + mix g + mo oc + 21 mi W j, + 2 mi 4i
1 i=1 (2.6.2)

NT=m0x u + m0x _ox u+ 1 (4 + ox I (t) + 2 mi (ri + q~~ 0 l

i=l1

N
+ Mi mi rs + _qfzi

(2.6.3)

fi =mil + mix u + mitji +ix + W + i) + 2mite Ai

N

+ mi, + Kij qj i= 1,2,...,N
j--i (2.6.4)
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where

ri = reference position of ith node, components in the body
fixed frame

f, = lumped nodal forces

Kij = assembled stiffness matrix (rotation condensed out)

Equations (2.6.2)-(2.6.4) are valid for nonlinear flexible systems by

interpretation of the stiffness matrix as the tangent stiffness matrix. An

alternative derivation of the lumped mass equations of motion are provided

in [22].

2.6.1 Equations of Motion

Equations (2.6.2)-(2.6.4) are the lumped mass equations of motion,

comprising (6+3N) scalar equations. These equations can be recast into a

single matrix equation of motion which can be numerically integrated.

Mij + KU = R (2.6.5)

It is natural to partition the matrix equation into rigid and flexible body

contributions and rewrite equation (2.6.5) as

[MRR MRF1FUR i+i 0 0 1FUR1I[ RR+RRF 1
MFR M UF 0 KFF UF RF (2.6.6)

where

(6x1) 3(2.6.7)
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(3Nxl)
LqN (2.6.8)

m 0 0

0 m 0 -mc ×

0 0 m
MRR

(6x6)
mcx I

(2.6.9)

ml

ml
MRM I

MFF=
(3Nx3N)

mN

mNLMfN J(2.6.10)

mI 0 0 MN 0 0

0 m 0 0 nn 0

0 0 m0 0 nN
MRF =

(6x3N)

mi(i + ql ... rn rN +q

(2.6.11)

RR =[ -  x - 1
(6x1) T-mcx Ioxllt- tx (J .o1(2.6.12)
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N

-2_ mi~x qi

RRF = i=I

(6x1) N

-2X mir ~ e4
L (2.6.13)

[j f- miio u - mj W o(rl+ q0- 2mitOel 41

RF-

(3Nxl) f - mNW× U - mN × x W(rX + qN_- 2 mNWx _N (2.6.14)

Note that the mass matrix M is symmetric, positive definite; the

stiffness matrix K is symmetric, positive semi-definite and allows rigid

body motion. Numerical solution can be obtained in a number of ways.

For linear systems, transformation can be made to modal space, which

allows truncation of both system size and high frequency modes. Modal

reduction is generally not possible for nonlinear flexible systems. Thus

direct integration is preferred in the present context. Also the effect of

various terms can be more readily assessed in physical space.

The methods available for direct integration of equation (2.6.5) can

be classified into explicit and implicit schemes. Explicit schemes are

conditionally stable and require very small time steps to integrate the

highest frequencies accurately [23, 24]. Implicit schemes are advantageous

because they are unconditionally stable and the step size can be chosen on

the basis of accuracy only. This generally allows a much larger step size

than would be required by explicit schemes. Because of the relaxed

integration step size afforded by unconditionally stable implicit schemes,
the Newmark integration method is implemented in the examples of

chapter 5. Details of the Newmark scheme are outlined in Appendix B.
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2.7 Lumped Mass/Inertia Assumption

ith nodal body

Figure 2.3. Lumped mass/inertia discretization of flexible appendage.

As in the previous derivation, integrals over the flexible domain are

replaced by summations over a finite number of nodes. The nodes are now

treated as small rigid bodies; they are no longer mass particles, but have

both mass and inertia. Six quantities are required to describe the motion of

each node.

Massless springs connect the nodal bodies just as in section 2.6. In

practice, the finite element stiffness matrix provides information regarding

interconnecting forces. The lumped mass/inertia formulation, as

constrasted with the lumped mass formulation, has the advantage that finite

element DOFs are used directly; no condensation is required in the

numerical solution.
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2.7.1 Kinematic Description

undeflected deflected
configuration configuration

F RP

Figure 2.4. Relative displacement of ith nodal body.

Consider the rigid nodal body shown in figure 2.4 with an arbitrary

material particle labelled "a" in the undeflected configuration, "A" in the

deflected configuration. As measured with respect to the body fixed

frame, the nodal body undergoes infinitesmal translation and rotation in

moving to the deflected configuration. The location of an arbitrary

material particle in te undeflected configuration is given by

rF = rFo + X (2.7.1)

where rFo is the location of the nodal body reference frame in the

undeflected configuration. The nodal body reference frame is aligned with

the body fixed reference frame in the undeflected configuration.
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In the deflected configirration, the location of A is given by

RF = RFo + A = rFo + qt + A (2.7.2)

where RFo is the location of the nodal body reference frame in the

deflected configuration. The relative displacement undergone by a

material particle in moving from a to A is then

il = RF - rF = qt + A -X (2.7.3)

Rotation of the nodal body reference frame can be expressed by the

skew symmetric infinitesmal rotation matrix so that

A=CX (2.7.4)

where

C oz 1 - 01

Substitution of equation (2.7.4) into (2.7.3) leads to expression of the

relative displacement as

il = qt + Ck -X = qt + (C- I)X (2.7.5)

where I is the identity matrix. Now since all vectors are expressed in the

body fixed frame, the component notation is adopted. The matrix (C - I)

above can be compared with the skew symmetric matrix (associated with

vector cross products) introduced in section 2.3. Define
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0z

so that qr = (C - I). Finally, the relative displacement of a material

particle, assuming infinitesmal rotation, can be written as

1= qt + qr (2.7.6)

2.7.2 Equations of Motion

The equations of motion follow from substitution of equation (2.7.6)

into equations (2.5.1)-(2.5.3) and evaluating. Reduction of the exact

equations is complicated somewhat by the form of the relative displacement

given by equation (2.7.6). Some integrals produce higher-order terms

which cannot be given simple physical interpretation. These higher-order

terms are ignored. Details of integrations are not presented, and the

lumped mass/inertia equations of motion in matrix form are given by[MRR MRFU GF UR 1 RR+RRF1
MFR MFF UF 0 KFF UF RF 1 (2.7.7)

where all partitions are explicitly defined below. Note that the rigid-rigid

partition is the same as in section 2.6. KFF is the full stiffness matrix

produced by the finite element method. The tangent stiffness matrix is

used for the solution of problems with nonlinear flexibility.

UR
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4r I

UF=
(6Nxl)

qrN (2.7.9)

m 0 0

0 m 0 -me >

0 0 m

(6x6)

mex I

(2.7.10)

ml

ml

mI

MF =

(6Nx6N) mN

mN

MN

IN (2.7.11)

MI mmN
mI OMN 0

mI m N
MR =

(6x6N) mIi + f 1 . mN(rN- + S.Y IN

(2.7.12)
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RR =[ E - mOx u - m -xx c 1
(6xl) T - mcx ox u - ox I o (2.7.13)

N

-2X mitX qti

RRF =i=l(x)N N
(6xl) -2_ mi(ri + qjf WQ× 4tti + X iqri

i=1 i=1 (2.7.14)

f - mla × u - m 1W Wo (ri + _q_) - 2mlcX 4t + h.o.t.

tj + h.o.t.

RF =

(6Nxl) fN - mN0, U - mN.x tx (rN + qtN - 2mNjix qtN + h.o.t.

tN + h.o.t.

(2.7.15)

2.8 Extending Symbolic Rigid Body Codes

Implementation of the flexible body formulation can take advantage

of available symbolic rigid body software. These software packages

produce FORTRAN coding of the equations of motion of a user specified

rigid multibody system. Some examples of symbolic manipulation rigid

multibody software include SD/FAST [25], AUTOSIM [26], and

AUTOLEV [27]. The use of symbolic rigid body codes allows the analyst

to concentrate on a smaller set of 'hand derived' equations addressing the

flexible domain [28, 29].

To show how the rigid body subroutines, generated by any one of

the above programs, can be used in the flexible body implementation, the
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partitioned equations of motion (2.6.6) or (2.7.7) are rewritten as a pair of

matrix equations

MR UR U+ MRF UF RR]+RRF (2.8.1a)

MFR UR + MFF UF + KFF UF = RF (2.8. 1b)

where it is noted that MRR and RR refer to the current configuration of the

vehicle, i.e the rigid body + flexible appendage is assumed rigid in the

current configuration.

The rigid body code produces a set of subroutines to solve the rigid

equations of motion

MRR UR = RR (2.8.2)

2.8.1 For Second Order Integration Schemes

When a second order integration scheme is used in the solution of the

vehicle equations of motion, the rigid subroutine is necessary only in the

calculation of MRR and RR. The current configuration vehicle c.m. and

inertia matrix are provided as inputs to the subroutine. If the vehicle

undergoes large flexible displacements, the configuration must be updated

at each integration step.
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2.8.2 For First Order Integration Schemes

A sketch of the implementation of a Runge-Kutta integration scheme

in the solution of the equations of motion is offered in Appendix B. It is

shown that the computational effort is concentrated on the evaluation of

derivatives, in order to employ the formula given by equation (B.4.3). In

section B.5, equations (2.8.1) are rearranged to yield

[MRR - MRF MF - MFRI UR = RR + RRF +. (B.5.4)

and

UF = MF-- [RF - MFR UR KFF UF] (B.5.3)

To obtain the derivatives UR and UF, these two equations must be solved in
the order given. Examination of equation (B.5.4) indicates that the code

produced to solve equation (2.8.2) can be used in the flexible context by

modification to MRR and RR. Simulations using first order integration

schemes can take advantage of the code produced by symbolic software to a

larger extent than simulations using second order schemes.
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C;hapter3

Derivation of Finite Elements

This chapter presents the derivation of two nonlinear beam finite

elements. Isotropic, prismatic beam elements are allowed to stretch, bend

in two planes, and undergo St. Venant torsion. For the Timoshenko beam,

shearing in two planes is also allowed. To derive the beam finite elements,

assume that the flexible domain of chapter 2 (see figure 2.1 and equations

(2.5.1)-(2.5.3)) is a beam, which allows explicit statement of kinematic

assumptions. Bernoulli-Euler kinematic assumptions comprise the
"engineering theory of beams." A distinction is made between Bernoulli-

Euler and Rayleigh beam theories in dynamics (Bernoulli-Euler ignores

rotatory inertia). The Timoshenko kinematic assumptions lead to a beam

theory which includes the effects of rotatory inertia and shear strain within

the beam.

The development proceeds from the 3-D statement of the principle

of virtual work. Kinematic assumptions are explicitly introduced, and the

work expression is integrated across the beam cross-section area for

reduction to a l-D theory.

The beam elements derived are generally known as 'isoparametric'

elements; isoparametric meaning 'same parameters'. For the current

discussion, let element geometry be interpolated from nodal values by

using shape functions. Let element displacements be interpolated from

nodal DOFs by using interpolation functions. Strictly speaking,
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isoparametric formulations employ the same function for shape and

interpolation. It should be noted that although the C1 element to follow

does not adhere to this rigorous definition (it uses both linear and cubic

interpolation functions), it may be loosely referred to as isoparametric.

The CO element is a true isoparametric element.

3.1 Principle of Virtual Work

The principle of virtual work has been previously stated in section

2.2, where it was applied to a vehicle composed of rigid central body and

attached flexible appendage. Three coupled sets of integral equations were

derived which govern the vehicle motion. Equations (2.5.1) and (2.5.2)

govern the translation and rotation of the the rigid body. Equation (2.5.3)

governs the deflections of the flexible appendage, relative to the body fixed

frame. For the purpose of this derivation, consider the rigid body to be

fixed in inertial space, i.e. U = = 0. Thus surviving terms give the

virtual work expression which governs the deflections of the beam relative

to a body fixed reference frame.

jj (3.1.1)

where

= components of flexible displacement, with respect to the
body fixed frame

fF = force/unit volume, with respect to the body fixed frame
IF = surface traction applied over SoT, with respect to the body

fixed frame
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p = density
VF = reference configuration of the flexible body
E = strain
Y = stress

3.2 Beam Theory Preliminaries

y, v x, U

Z, W

Figure 3.1. 3-D Beam Coordinate System.

Consider the beam shown in figure 3.1, with coordinate axes as

shown. It is assumed that stresses ay and az are small compared to ax. St.

Venant torsion theory is incorporated into the displacement field (cross-

sections undergo zero warping, and there is no distortion of the cross-

section). The displacement field associated with the Bernoulli-Euler

kinematics are

u(x,y,z) = Uo(X) - yvo,x(x) - zwox(x)

v(x,z) = Vo(x) - ZOx(X) (3.2.1)

w(x,y) = Wo(x) + yex(X)

and can be interpreted geometrically to mean that cross-sections remain

perpendicular to the neutral axis during deformation. A representative

construction is shown in figure 3.2.
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y, v
VO'

1x Vo O
U = -y Vo~x .

I-X, U

Figure 3.2. Kinematics of Bernoulli-Euler Beam Theory.

In the Timoshenko beam theory, cross-sections initially

perpendicular to the neutral axis of the beam remain plane but not

perpendicular to the neutral axis during deformation. This kinematic

assumption is shown geometrically in figure 3.3.

y, V

Oz

u =-y Oz

0- X, U

Figure 3.3. Kinematics of Timoshenko Beam Theory.
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The displacement field associated with the kidiematics of Timoshenko

beam theory are

u(x,y,z) = Uo(X) - y0z(X) + z0y(x)

v(x,z) = Vo(x) - z0x(x) (3.2.2)

w(x,y) = W(X) + y0 (x)

where zero subscripts indicate displacement of the neutral axis and O's are

rotations about the subscripted axes.

Note the difference in sign of the components in the displacement

field u(x,y,z) of Bernoulli-Euler and Timoshenko kinematics. Positive

rotation associated with w,x disagrees with the right hand rule, and as a

consequence, also disagrees with the right handed coordinate system used in

the derivation of the vehicle equations in chapter 2. Therefore, in order to

use the Bernoulli-Euler (CI) element in the dynamic simulation, a

transformation must be made so that the rotation is consistent with a right

hand coordinate system.

The restriction of zero deformation of the cross-section during

torsion implies that yyz = 0. The assumptions associated with both

kinematic models allow reduction of the 3-D linear elastic, isotropic stress-

strain relations to the simple result
E}x = f Ex

atx e'x

XG 7ZX (3.2.3)

49



Chapter 3: Derivation of Finite Elements

3.3 C1 Formulation

The C1 formulation encompasses both the Bemoulli-Euler and

Rayleigh beam theories. The subtle distinction is the inclusion of rotatory

inertia in Rayleigh's equations governing the motion of a beam [30]. It will

be shown that consistent derivation using the virtual work principle

produces the Rayleigh theory. By convention, Bemoulli-Euler theory

excludes rotatory inertia.

From small deflection theory, the non-zero strains associated with

the displacement field of equation (3.2.1) are

Ex = u,x = UoO(x) - yvo,xx(x) - ZWoxx(X)

xy= u,Y + V,x = -ZxX) (3.3.1)

zx= W,x + uZ =yOxxX)

Substituting equations (3.3.1) and (3.2.1) and constitutive relations

(3.2.3) into the right hand side of (3.1.1) gives the internal virtual work

expression in the volume integral form

f( (p[(SUo - ySVo,x - zSwo,) (iU, - yVO, - zwo,x) + (8vo - Z80x) (V0 - ZOx)

+ (SWo + YSOx) (Vio + YOx)]

+ E(Suo,x - ySvo,xx - z8wO,xx) (uox - yVo,xx - zwoXX)

+ G(-zs6xx) (-zO~X) + G(y8Ox,x) (y0x,x)) dV = RHS (3.3.2)

where the domain is understood to be the flexible volume. The expression

(3.3.2) can be integrated through the beam cross-section to give
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J (m(8uiio + 8vo vo + 8woWo) + (Imy + Imz)80xox

+ Imy 6 Wo.xWo,x + Imz5 Vo,xVo,x + EA~uo,xuo,x

+ Ely Wo,xxWo,xx + EIz~vo,xxVo,xx + G(Iy + Iz}80x,xox,xdx = RHS (3.3.3)

where cross-section principal axes are assumed to be aligned with element

coordinate axes. Constants appearing in equation (3.3.3) are defined as

follows:

A =fAdA m=fpdA

l= f z2dA Iz f y2dA
j A JA J =y + Iz

ImY= fA Pz2dA Imz= fA y2dA

where

f ydA =fzdA= f yzdA 0

m = mass/length
ly, Iz = area moment of inertia

Imy, Imz = mass moment of inertia

The integral equation (3.3.3) appearing above is to be evaluated over

the length of the flexible domain. The flexible domain is decomposed into

finite elements and equation (3.3.3) becomes a summation of integrals over

the individual element domains. The continuity of assumed displacement

functions is dictated by the terms appearing in the integrand. Since second
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derivatives of displacement exist in the element stiffness integral, inter-

element continuity requires that the displacement fields w- and v be CI

continuous. The axial displacement and twist require only CO continuity.

(The superscript indicates the derivative through which the function or

field is continuous.) The continuity condition is ihe integrability of

equation (3.3.3) over the entire domain.

3.3.1 Discretization

Node Node
1 2

Figure 3.4. Local coordinates for 2 node beam element.

The two node element is defined by the local coordinate system

shown in figure 3.4. The element has six DOFs at each node. The

necessary interpolation functions are defined in terms of the local

coordinate . The linear interpolation functions are given by

No = 1(I -)
2

No = 1 (I +)2 
(3.3.4)

For the CI continuous displacement fields wo and vo, the cubic

Hermitian interpolation functions are used and are defined as

N'I 1(1- 4) (2 - ._ 2)

4
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N'211-)( + 1
4

N' I 4(I + 4) (2 + -_ 2 )

34

N1 = 41(1 + 9 2 (-I
4 (3.3.5)

Element nodal DOFs are arranged as

qT=[qlT q2T] (3.3.6)

where

al T = [ Uo l Vo l wol Oxl woxl Vox ]

q2T = [ Uo2 Vo2 Wo2 0x2 Wox 2 Vo,x2 ]

Also define

dT=[ Uo vO  wo Ox wo,x vo,x ]

_T uo'x 0xxWoxx v ],X=C.x t icy cz

where the strains, c, are defined as the work conjugates to the stress

resultants (see Appendix A). These definitions allow a succinct way of

defining the matrices N and B, which relate the element nodal

displacements to the vectors d and E.

With the interpolation functions and nodal DOFs explicitly stated,

some explanation is necessary to avoid a pitfall which can be harmlessly

overlooked in CO elements. Nodal DOFs consist of axial displacement and

transverse displacements and their derivatives with respect to x, while the
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interpolation functions are defined in local coordinates. Care must be

taken to insure correct application of the Jacobian transformation.

To consider the problem of interpolation in a consistent manner,

note that interpolation is performed using the nodal quantities Wo,i and

Vo,4i. For example,

wo = N'wO + Nlwo, l + N~wo2 + Nlw

Wo, = N],4Wol + N1,4Wo,4l + N1,4w0 2 + NlkWo,42 (3.3.7)

= 1+ N',4w 0 ,t + N1 +
Wo, 1 N o 2, o +3,kkWo2 + N14tWo,42

Note that these expressions yield the expected results when evaluated

at the endpoints, = + 1. In order to express each of these equations

properly in physical coordinates, we must consider how derivatives

transform between local and physical coordinates. Since Ni = Ni (k), the

derivative with respect to x can be written

dNi_ d d
dx d4 dx (3.3.8)

where by definition, the Jacobian is J = The second derivative becomes

d2 N =d2N- (2 +dN. d

dx2  d42 (dx! d4 dX2 (3.3.9)

Likewise, displacement derivatives can be written

dwo - dwo d4
dx d4 dx (3.3.10)
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_&w(o 2 dwo

dx 2  d 2 dx) + d dx 2  (3.3.11)

where for straight beams, the Jacobian is constant and equal to L/2 in each

element (L is the physical length of an arbitrary element), so that the

second term of (3.3.9) and (3.3.11) is zero. Substituting equations (3.3.8)-

(3.3.11) into equations (3.3.7), displacements and displacement derivatives

can be rewritten in terms of physical coordinates. This gives, in matrix

form,

wol

w 1 N' JN 1  N' JN1

Wo'x N',x JN,x N JNx

Wxx NL x JNxx N1 JN41,x w
_ Wox2j (3.3.12)

and demonstrates correct differentiation (with respect to the physical

coordinate) using local cubic interpolation functions. A similar statement

can be made for the displacement vo. For displacement fields requiring

only linear interpolation functions, the relationship between

displacement/displacement derivatives and nodal DOFs does not involve the

Jacobian. For instance,

Uo'x N Uo2
N,x N2,x (3.3.13)

Now equation (3.3.3) can be rewritten in matrix form as

J5d T Dm 8jT Dk e dx = RHS
(3.3.14)
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and finally, equation (3.3.14) can be rewritten in terms of the nodal DOFs

to give

8TMA + TKq- =R±S

where

M = consistent mass matrix
K = stiffness matrix

and the element level consistent mass matrix and material stiffness matrix

are given by

M = NT Dm Ndx
J m (3.3.15)

K= fBT Dk II dx
f (3.3.16)

where

m

m

m
Dm (Imy + Imz)

Imy

56 mz
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and

EA

GJ
Dk =

EIy

EIz

The matrices N and B relate element nodal displacements to the

vectors d and e and are defined by the equations

d=Nq (3.3.17)

= B q (3.3.18)

These matrices are formed by appropriate placement of the linear and

Hermitian interpolation functions and their derivatives. For the CI element

formulation, they are

No  0 0 0 0 0 No  0 0 0 0 0

o NI 0 0 0 JN1 0 N1  0 0 0 JN4

o 0 N' 0 JN'" n 0 0 N' 0 JN' 0

N=
0 0 0 No  0 0 0 0 0 No  0 0
0 0 N, 0 JNx 0 0 0 N '  0 JN1.X 0

NI 0 0 0 JNlX 0 N' 0 0 0 JNX
1x25 3,x
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and

Nox 0 0 0 0 0 N 0 0 0 0 0

0 0 0 No  0 0 0 0 0 Nx 0 0

0 xx 0 JNlxx 0 0 0 N' 0 J N' 0
N ' 0 N ' x3,xx 4 J 4 xx

N0 0 0 0 JNx 0 N' 0 0 0 JNXX
1,XX 2X 3.XX 4x

The preceding equations are properly known as the beam theory of

Rayleigh. By convention, Bernoulli-Euler theory sets the rotatory inertias

Imy = Imz = 0.

The above expressions for element level consistent mass matrix and

the material stiffness matrix contain local interpolation functions

differentiated with respect to the physical coordinate x. Proper

introduction of the Jacobian yields integrals in a form which can be

numerically integrated using Gaussian quadrature (Appendix F).

Assembled matrices are obtained by summing over all element matrices.

3.4 Formulation

The CO formulation is derived based on the kinematic assumptions of

Timoshenko beam theory. Rotation of beam cross-sections are independent

of transverse displacements (recall figure 3.3). This produces a beam

theory which has nonzero shearing strains. This formulation is more

accurate when the thickness of the beam is large compared to its length,

and for higher vibration modes (wavelength/thickness -4 small).
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From small deflection theory, the non-zero strains associated with

the displacement field of equation (3.2.2) are

X = Ux Uox) - y0,(X) + Z0yx(X)

Yxy= u,y + Vx =- 0z(x) + vo,,(x) - ZOxA(x) (3.4.1)

zx= Wx + Uz = Wo,(x)+ y0x,(x) + Oy(x)

Substituting equations (3.4.1) and (3.2.2) and constitutive relations

(3.2.3) into the right hand side of equation (3.1.1) gives the internal virtual

work expression in the volume integral form

v [ p[(uo - Y80Z + Z0y) (iio - Y e + zOy) + ( vo - z8Ox) (VO - ZOx)

+ (SWo + Y80x) (wo + YOx)]

+ E(8uo,x - y zx + z 0y,x) (uo0 x - yOzx + Z y'X}

+ G(-50z + 5Vo,x - zSOx,x) (-0z + vox- Z )

+ G(80y + 5Wo + ySOx,x) (0y + Wo,X + y0xx)} dV = RHS (3.4.2)

where the domain is understood to be the flexible volume. The expression

(3.4.2) can be integrated through the beam cross-section to give

f (m(8uoio + 8v 0V0 + 8wowo) + (Imy + Imz)5OxOx + Imyseyey + Imz80zz

+ EA8uo,xuo,x + EIy5y,xy,x + EIz OzxOz,x + G(Iy + Iz)80x'xOx'x

+ GAvo,X - ez)(vox - ez) + GA8(wox + eyXWo,x + ey))dx = RHS (3.4.3)
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where cross-section principal axes are assumed to be aligned with element

coordinate axes. Constants appearing in equation (3.4.3) are the same as

defined in section 3.3 (see page 51).

The integration to be carried out in equation (3.4.3) is again

evaluated as the summation over the finite elements which constitute the

flexible domain. Examination of the integrand reveals that only CO

continuity is required.

3.4.1 Discretization

A schematic of the finite element model is shown in figure 3.4.

Because cross-sectional rotations are independent of the transverse

displacements, only the linear interpolation functions are necessary. In

local coordinates the interpolation functions have the form

No, = I (1-)
2

2 (3.4.4)

Element nodal DOFs are arranged as

qT [qT q 2T] (3.4.5)

where

qlT [ Uo l Vol Wol 0 xl Oyl 0 zl I

Uo2 Vo2 Wo2 ex2 Oy2 2

60



Chapter 3: Derivation of Finite Elements

The CO displacements and strains are given by

dT=[ 1 Vo Wo x 0y 0z

Uo= x 0x[ 0x 0z'x (v0,X Oz) (w0,X + OY)

:E e~o ic -icy icz 'yo yx~, ]

where the additional terms in this strain vector, compared to the previous

section, are the shear strains arising from the Timoshenko kinematics.

Forming these vectors from the element nodal displacements defines the

matrices N and B. These matrices are composed of the linear interpolation

functions and their derivatives.

d =N q (3.4.6)

=B q (3.4.7)

Explicitly, the N and B matrix are given by

NO  0 0 0 0 0 N0  0 0 0 0 0

0 No  0 0 0 0 0 No  0 0 0 0

0 0 No  0 0 0 0 0 No  0 0 0

0 0 0 No  0 0 0 0 0 No  o 0

0 0 0 0 No  0 0 0 0 0 NO  0

0 0 0 0 0 No  0 0 0 0 0 No
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No~ 0 0 0 0 0 No, 0 0 0 0 0

0o0 0 0 0 0 0 N2 x

o x 0 0 0 0 0 N0 x

No0 0 0 0 0NO  N
I.x 2,x

0N0o 0 0 No1, 0 N0 x 02O~o o 0 0 0 Nl~ 0 0 0 0 0 N02x

o ilX 0 0 0 -N? 0 N°.1 0 0 0 -No

o oN 0 No  0 0 0 N2 0 N

Now equation (3.4.3) can be rewritten in matrix form

5dTD i+8CD,-dx = RJS (3.4.8)

and finally, equation (3.4.8) can be rewritten in terms of the nodal DOFs to

give

8 MA + Kq=RHs

where

M = consistent mass matrix
K = stiffness matrix

and the element level consistent mass matrix and material stiffness matrix

are given by

M=f NT DmN dx

M tj D N dx(3.4.9)

K=jBTDkBdx
(3.4.10)
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where

Fm
m

m
Dm =(Imy 

+ Imz)

Imy
imz

and

EA

GJ
EIy I

Dk El Elz

GA

GA

The expression for the material stiffness matrix contains local

interpolation functions differentiated with respect to the physical

coordinate x. Jacobian transformation must be introduced in order to

properly express the integrand in terms of x. The integrals can then be

numerically integrated using Gaussian quadrature (Appendix F).

Assembled matrices are obtained by summing over all element matrices.

3.5. Geometric Stiffness Matrix

For problems involving geometric nonlinearities, system equilibrium

must be satisfied in the deformed configuration. In terms of the virtual
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work principle, the deformed, or current configuration, is represented by

consideration of both linear and nonlinear strain terms. Derivation of the

geometric stiffness matrix is accomplished through incremental

linearization of the internal virtual work principle at the current

configuration of the flexible domain [31]. All terms are retained in the

consistent derivation. The incremental virtual work statement is

A Wint = fv (SAP:A + 8Ae:'T) dV

= f A§.(AfF - pA~) dV +f 8 §- AtF dS = A6Wext
vp JsaF (3.5.1)

where

AEj = 1aAui + Auj
2 axj axi

Aej= 1_ (aAuk JaAUk
2 ax ax )

c~r = total accumulated stress
AfF = increment in prescribed body forces, components

expressed in body fixed frame
AtF = increment in prescribed tractions, components expressed

in body fixed frame

The first term of the incremental internal virtual work above

becomes the material stiffness matrix previously obtained. The second

term leads to the geometric stiffness matrix and will be derived in this

section. The nonlinear strain increments, Aeij, may be formed from either
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set of kinematic assumptions without great difficulty. In accordance with

thin beam assumptions noted earlier, ay and cz are small compared to (;,

and may be neglected. St. Venant torsion theory does not allow distortion

of the cross-section, which implies that yz = 0 and leads to xyz = 0. Zero

warping is also assumed, although this is strictly true only for beams of

circular cross-section.

Using Timoshenko kinematics, the nonlinear strain increments are

substituted into the second term of equation (3.5.1), and after some

algebra, the volume integral can be reduced to
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Timoshenko kinematics:

jv 5e: ;T dV = f. (Nx(&8EXOE 0 + 8v,Xv 0,X + 5OXOX

+ Mz8CE0+ &,Ecic - U1two'x - 5W0 ,Xict)

+ My(3icKyExo + 8COY+ 8iqtv,, + 8 vOxict)

+ Pz(8iczic + 8ictic) + PY(SicYic + Btt

+ PY(1CK + 8Z

+ vy(- 8OEXe0 - &SEXOO + SXO + SOXX

+ vz(80YCX0 + 5E0Y- SX0 - 8OXX

+ Ryy(8icz0z + 80ZKZ + Sitx + 8XC

+ Ryz(- SKZ Oy - 80Y Kz) + Rzy(Sic Oz + 8ziy

+ Rzz(- 81YO - 0Y + 8KtOX + 8eXct)) dx (3.5.2)

A similar expression can be obtained by substituting Bernoulli-Euler

kinematics into equation (3.5.1). Alternatively, the Bernoulli-Euler result

can obtained directly from the Timoshenko result, equation (3.5.2), by

letting Vy = VZ=Oz --) v,,, Oy -* - .

66



Chapter 3: Derivation of Finite Elements

Bern oulli-Euler kinematics:

f5e: OT dV = j. (Nx(&8Exo 0x + 5v0,Xv0,X + 80X0X

+ MZ8KO+ 8ExoKZ - 86K'WOX - 5oxt

+ M8KE + 5EOY+ BK~v0 ,x + 5v0,Xicz)

+ PZ8KI,+ 86ICic,) + PY(8K1CYIC + 5]Cic,)

+ PyZ(86KYKZ + 61CICY)

+ Ryy(61czv 0 ,x + 5v0 ,XICZ + 8KtO, + 5eICt)

+ Ryz(Scz wo'X + 8w0,X KC) + Rzy(8iCY v0,X + 8v0,X KY)

+ RZ('yox+ 8w 0,X Icy + 81C'0' + 80XK,)) dx (3.5.3)

where, in addition to the stress resultants defined in Appendix A, the

following higher order resultants are defined:

Py = f ayXZ 2 dA y= f axyz dA Pz a= f 2 a dA

RY = fTXYydA Rz= fA xzzuA

R = jAx ty dA R = jA rxyzdA

Equations (3.5.2) & (3.5.3) include all terms. The higher order

resultants, however, are easily computed only for simple loadings. One
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instance where they can be computed is in the application of an axial load.

In the buckling problem, inclusion of the Py, Py, and Pz resultants lowers

the buckling load for thick beams only very slightly, so that these terms are

reasonably ignored (see tabulations in Appendix C).

It is again convenient to define a vector of quantities which will

allow definition of what shall be called the G matrix. Let

C1 : T=[ vx VWo x  Kt K y Cz

cO: 1 T [ Fxo vox wo x  t  CY 1Cz  OX Oy Oz ]

The matrix a relates the above quantities to the element nodal

displacements, and is formed by the appropriate placement of interpolation

functions and their denvatives.

G q (3.5.4)

Equation (3.5.4) is valid for C 1 and CO formulations. Rewriting

equation (3.5.2) & (3.5.3) in matrix form and introducing equation (3.5.4)

allows us to write the geometric stiffness term in the following form

where

K =f TDgG dx

Q8 
(3.5.5)
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and

K, = geometric stiffness matrix

Dg = matrix of total accumulated stresses

The above form of the geometric stiffness matrix is valid for both

C1 and CO formulations, with substitution of appropriate expressions for G

and Dg. D9 is given below, where the partition made up of the first six

rows and columns is appropriate to the C1 formulation. The full matrix is

the CO form.

Nx 0 0 0 my Mz 0 Vz -Vy

0 Nx 0 My 0 0 - Vz 0 0

0 0 Nx - Mz 0 0 Vy 0 0

0 My -Mz 0 0 0 0 0 0

Dg My 0 0 0 0 0 0 0 0

Mz 0 0 0 0 0 0 0 0

0 - Vz Vy 0 0 0 0 0 0

Vz 0 0 0 0 0 0 0 0

-Vy 0 0 0 0 0 0 0 0

The G3 matrix follows directly from equation (3.5.4). It is given

explicitly below:
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CI:

No  0 0 0 0 0 No. 0 0 0 0 0
o N1 0 0 0 JN.x 0 N' 0 0 0 JNl,

,x 2. 3, 4,x

N1 0 JN'.x 0 0 0 N 0 JNX x
No  0 0 0 0 0 No  0 0

1.x 2,x

o 0 N 0 JNxx 0 0 0 N' 0 JN',xx 0

SN 1  0 0 0 JNlxx 0 N' 0 0 0 JNlxx
1.ktx ,'x 3,xx . _x

Co..

0N°.x 0 0 0 0 0 Nx 0 0 0 0 0

o N'O  0 0 0 0 0 NO? 0 0 0 0

o 0 N o  0 0 0 0 0 No, 0 0 0

0o o 0 NO  0 0 0 0 0 No  0 0

0 0 0 0 - 0 0 0 0 0 N°,x 0

N,X 0 0 0 0 0 N

o o 0 No  0 0 0 0 0 No  0 0

o 0 0 0 No  0 0 0 0 0 No  0

o 0 0 0 0 No  0 0 0 0 0 No

3.6. Consistent Nodal Loads

For completeness, the derivation of consistent nodal loads is

considered. The left hand side of equation (3.1.1) is rewritten below

LHS = f _T fE dV + fZ TtFdS
F f(3.6.1)
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where, as a reminder,

1 = flexible displacement of material particle, with respect to
the body fixed frame

fF = force/unit volume, with respect to the body fixed frame
1 = surface traction applied over SOF, with respect to the body

fixed frame
VF = reference configuration of the flexible body

It should be noted that equation (3.6.1) is referred to the entire

flexible body. With the introduction of Timoshenko beam kinematics, the

volume integral associated with the body force can be written

fV fFdV= f [(uo- y 50z+ z 80y) f, + (5v. - z 80x) f + (8wo + y 80x) fz ]dV

(3.6.2)

Integration through the cross-section along with the assumption that

beam cross-section principle axes are aligned with the beam coordinate

system yields

f 871T fFdV (uf+vf+ 8wfz) dxf 8u 0 8v 0 8w '1

(3.6.3)

It is easily verified that Bernoulli-Euler kinematics produce the same

equation (3.6.3). If we now consider the integral in (3.6.3) as a sum of

integrals over all element domains, all that remains is to express

[8uo 8vo 8wo] in terms of the element nodal DOFs.
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{vo- q
where

No  0 0 0 0 0 No  0 0 0 0 0

C': NB 0 N' 0 0 0 JN' 0 N' 0 0 0 JN 1

0 N' 0 JN 1 0 0 0 N1  0 JN1 0

No  0 0 0 0 0 No  0 0 0 0 0

C0 : NB= 0 No  0 0 0 0 0 No  0 0 0 0

0 0 No  0 0 0 0 0 No  0 0 0

Thus, the volume integral associated with body forces becomes

f rITf, dV T NBTfF dx = ,TQ

VFf

where

QBJfNBTf dx

(3.6.4)

The surface integral is dealt with in the same manner. After

substitution of tractions into the surface integral, an expression can be

derived just as for the body forces. Equation (3.6.1) can then be written as

LHS = &qT (QB + Qs) = 8q T Q (3.6.5)
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where

Qs = fS NsTtF dS

Q=QB + Qs

and comparison with earlier sections shows that Q is the element consistent

nodal load vector.

The external loads on a structure can also be specified in an

'inconsistent' fashion. External loads can be lumped directly at the nodes.

Direct nodal loading can be handled as an additional term added to the

external virtual work. No interpolation functions are involved in the

discretization since the load is applied directly to the elemetit nodal DOFs.

In pratctice, nodal loads are added directly to the corresponding element of

the r.ssembled force vector.
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Chapter 4

Eigenvalue Problems

A set of problems has been addressed to examine the beam kinematic

assumptions and finite element approximations. For a beam with cantilever

boundary conditions, the following problems have been solved: free

vibration, and static and dynamic buckling.

A study of the beam finite elements derived in the previous chapter

has been accomplished for two beams whose physical and material

parameters are indicated in table 4.1. The first beam has L/h = 10

(length/thickness) and borders the Bernoulli-Euler assumptions. Parameter

set 2 differs only in the beam thickness; this beam has L/h = 100 and its

behavior should be consistent with Bernoulli-Euler beam theory. This

choice of parameters allows clearer insight into the effects of kinematic

assumptions and treatment of the mass matrix and level of integration.

Table 4.1. Beam material properties for eigenvalue problems.

Parameter Parameter
Set I Set 2

E 107 107
v 0.3 0.3
P 1 1
L 10 10
b 1 1
h 1 0.1
I 1/12 1/12 (0.1)3

Im 1/12 1/12 (0.1)3
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4.1 Free Vibration

Considering only the flexible domain, the virtual work expression

gives rise to the following dynamic equilibrium equation

M + Kq= Q

where

M = consistent mass matrix
K = stiffness matrix
Q = consistent nodal loads (may include lumped loads)

Solutions to the homogeneous problem can be obtained by letting

q = yei't, where y is the column matrix of amplitudes. Substitution leads

to a general eigenvalue problem

(- 0io2 M + K)y= (4.1.1)

where the eigenvalue is the square of the natural frequency of vibration,

and y the associated eigenvector. The exact solution for natural vibration

of a Bernoulli-Euler beam is given by [32]

= )2 (m) 1/2  (4.1.2)

where X is found from solution of the characteristic equation

cos ? cosh X + 1 = 0 (4.1.3)
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The natural modes of vibration are shown in figure 4.14 and are given

analytically by

Y(x) = A[(sin X - sinh X) (sin Xx/L - sinh Xx/L)

+ (cos X - cosh X) (cos Xx/L - cosh Xx/L)1 (4.1.4)

where

A= C1
sin - sinh,

Equation (4.1.2) yields an infinite number of frequencies, however

the higher frequencies obtained become increasingly invalid as the kinetic

energy associated with rotation of the beam cross-sections becomes

significant. Recall that the Bernoulli-Euler assumptions ignore rotatory

inertia; kinetic energy comes only from transverse deflections. The

frequencies obtained from equation (4.1.2) also neglect shear, which is

important as frequency increases, i.e. as the ratio of wavelength/thickness

decreases.

To assess the effects of each variation, the natural frequency was

normalized by the exact result from Bernoulli-Euler beam theory, and

plotted against the number of elements comprising the beamt (in some

literature convergence is plotted against number of DOFs - equivalent).

The following eight types of beam elements have been formulated:

1) CO: consistent mass, full integration of mass and stiffness
2) CO: consistent mass, reduced integration of stiffness

t A slightly different perspective is given in Appendix E, where the natural
frequencies are normalized by the exact result from Timoshenko beam
theory.
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3) CO: consistent mass, 1-point integration of mass and stiffness
4) CO: lumped mass, full integration of mass and stiffness
5) CO: lumped mass, reduced integration of stiffness
6) CO: lumped mass, 1 -point integration of mass and stiffness
7) CI: consistent mass, full integration of mass and stiffness

(with rotatory inertia - Rayleigh)
8) CI: consistent mass, full integration of mass and stiffness

(without rotatory inertia - Bernoulli-Euler)

Recall that the CO consistent mass and material stiffness matrices were

defined in equations (3.4.9) and (3.4.10), respectively. The CI consistent

mass and material stiffness matrices were defined in equations (3.3.15) and

(3.3.16), respectively.

By convention, Bernoulli-Euler theory neglects rotatory inertia and

corresponds directly to case 8. Although consistent application of the finite

element method leads to fully integrated consistent mass and stiffness

matiices, in practice a reduced level of integration is used to evaluate the

CO stiffness matrix to avoid element locking. Reduced integration is

applied to all terms of the stiffness matrix, and is differentiated from
'selective reduced integration,' in which only the shear related terms are

evaluated using reduced integration. Appendix F provides a brief

overview of Gauss quadrature, and gives the integration rule

corresponding to full and reduced integration of the beam finite elements.

Use of the lumped mass matrix is normally dictated by the reduced cost of

computing eigenvalues.

Case 1 is the consistent application of the finite element method to

the CO beam element, and .he convergence is shown in figure 4.1.

Generally, natural frequencies converge very slowly, even for the first
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mode. The increasing influence of shear and rotatory inertia with mode

number can also be seen, as the higher modes do not converge to the B.E.

result. When the L/h ratio is increased by an order of magnitude, shear

and rotatory inertia effects are virtually eliminated, and the problem of

shear locking becomes more apparent, as shown in figure 4.2.

2D C-zero Cantilever Beam: Consistent Mass,
Full Integration, Parameter Set 1

--- Mode 1
-- Mode 2

-Mode 3
___ Mode 4

-u-- Mode 5

I

z

0.5 I

0 10 20 30 40

# Elements

Figure 4.1. Convergence for CO beam, consistent mass, full integration.
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2D C-zero Cantilever Beam: Consistent Mass,
Full Integration, Parameter Set 2

--- Mode 1
. Mode 2

>-u-- Mode 3
___ ----- Mode 4

-- Mode 5

~MO 5

U -

.N-

0

0 10 20 30 40

# Elements

Figure 4.2. Convergence for CO beam, consistent mass, full integration.

Case 2 is shown in figure 4.3, and demonstrates the effect reduced

stiffness has on the CO beam element. The first mode is essentially

captured with one element. Again the influence of shear with increasing

frequency is apparent, but it can also be seen that good convergence is

achieved with a relatively coarse mesh. With parameter set 2, the shear

and rotatory inertia effects are negligible, and convergence is achieved

with a fine mesh, as shown in figure 4.4. Locking is still observed in the

higher modes.
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2D C-zero Cantilever Beam: Consistent Mass,
Reduced Stiffness, Parameter Set 1

- - Mode 1
Mode 2
Mode 3

----- - Mode 4
--- Mode 5

-

6" 1.0 -

Z

0.5
0 10 20 30 40

# Elements

Figure 4.3. Convergence for CO beam, consistent mass, reduced stiffness.
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2D C-zero Cantilever Beam: Consistent Mass,
Reduced Stiffness, Parameter Set 2

1.5- _ _ _ _ _ _t

a Mode I
-8 Mode 2

-in----Mode 3

_ _-- Mode 5

4_

" 1.0

E

0.5
0 10 20 30 40

# Elements

Figure 4.4. Convergence for CO beam, consistent mass, reduced stiffness.

The convergence plots associated with case 3 are very similar to

those associated with case 2 for the higher modes. Mode i now converges

from above and requires at least four elements before locking on to the

Bernoulli-Euler result. These results are given as figures 4.5 and 4.6.
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2D C-zero Cantilever Beam: Consistent Mass,
1-Paint Integration, Parameter Set 1

1.5 -

-in---Mode 1
-.----- Mode 2

->n-- Mode 3
- S Mode 4

Mode 5

1.0 - -_---------

- - ---

0.5- ____ ____

0 10 20 30 40

# Elements

Figure 4.5. Convergence for CO beam, consistent mass, uniform 1-point
integration.
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2D C-zero Cantilever Beam: Consistent Mass,
1-Point Integration, Parameter Set 2

--- Mode 1

- - Mode 2
-- Mode 3

_____ -4--Mode 4
--- Mode 5

To
1. -_ __ _

~z

0.5'

0 10 20 30 40

# Elements

Figure 4.6. Convergence for CO beam, consistent mass, uniform 1-point
integration.

Convergence for case 4 is shown in figure 4.7. The lumped mass

assumption (no lumped inertia) isolates the shear effect. Comparison with

figure 4.1 indicates that rotatory inertia has little influence on the

frequencies of vibration. The result for parameter set 2 is shown in figure

4.8, and is very similar to the consistent mass result shown in figure 4.2,

which indicates that locking is not remedied by mass assumptions.
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2D C-zero Cantilever Beam: Lumped Mass,
Full Integration, Parameter Set 1

1.5-

-u- Mode 1
-. e---Mode 2
-in--Mode 3

____ _ ____ _____ 4-- Mode 4

2 -3--Mode 5

1.0'

0.5'___ _

0 10 20 30 40

# Elements

Figure 4.7. Convergence for CO beam, lumped mass, full integration.
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2D C-zero Cantilever Beam: Lumped Mass,
Full Integration, Parameter Set 2

to-

-- Mode 1
Mode 2

-u--- Mode 3
- Mode 4

U -- Mode 5

.

0 1
0 10 20 30 40

# Elements

Figure 4.8. Convergence for CO beam, lumped mass, full integration.

The last set of CO formulations to be discussed is that of lumped

mass/reduced stiffness. (Cases 5 & 6 are one and the same, since by the

lumped mass assumption, the mass matrix is not subject to integration).

Note that only the effect of shear is present, lumped inertia being

neglected. One striking feature is the convergence of Mode 1 from below,

rather than from above. Convergence is achieved with relatively course

mesh, with shear still apparent in the higher modes. The effect of L/h is

clearly shown in figure 4.10, where shear is not an important factor, and

convergence to the B.E. result is observed.
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2D C-zero Cantilever Beam: Lumped Mass,
Reduced Stiffness, Parameter Set 1

1.5 ___ ___

---- Mode 1

-- Mode 2
--- Mode 3

. . .. • -Mod 4
-- Mode 5

- 1.0-

Cu. - __ __ .-

N - --- u

0.5

0 10 20 30 40

# Elements

Figure 4.9. Convergence for CO beam, lumped mass, reduced stiffness.
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2D C-zero Cantilever Beam: Lumped Mass,
Reduced Stiffness, Parameter Set 2

1.5 -

-- Mode 1
--- Mode 2

- Mode 3
_ _ - Mode 4

* -u--Mode 5
4 1.0 -

Z=

0.5'

0 10 20 30 40

# Elements

Figure 4.10. Convergence for CO beam, lumped mass, reduced stiffness.

The last two cases are those of the C 1 elements. Both are fully

integrated, and use the consistent mass matrix. The only difference is the

treatment of rotatory inertia. The Rayleigh formulation using parameter

set 1 is shown in figure 4.11. The influence of rotatory inertia can be seen

to lower the frequency of the higher modes. The so-called Bernoulli-

Euler beam theory has Imy = lmz = 0. With regard to the previous

derivation, the last three terms on the diagonal of matrix Dm are set equal

to zero . It can be seen (figure 4.12) that convergence is very rapid, and

all modes are converged with no more than eight elements. Bernoulli-

87



Chapter 4: Eigenvalue Problems

Euler and Rayleigh beam theories become indistinguishable as L/h

increases. Figure 4.13 is representative of both Rayleigh and Bernoulli-

Euler formulations for parameter set 2.

2D C-one (Rayleigh) Cantilever Beam:
Consistent Mass, Full Integration,
Parameter Set 1

1.5-

-m- Mode 1
. Mode 2
-Mode 3

Mode 4

____ _ __ ___ ____ _ U Mode 5

_ 1.0_= - 1.0------4

05-

0 10 20 30 40

# Elements

Figure 4.11. Convergence for C1 beam (Rayleigh), consistent mass, full
integration.
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2D C-one (Bern-Euler) Cantilever Beam:
Consistent Mass, Full Integration,
Parameter Set 1

-in--ModelI
---- Mode 2
-in---Mode 3

* __ _______ _ _ ___ '-- Mode 4

* -in--Mode 5

UZ1.0U- -

0.5
0 10 20 30 40

# Elements

Figure 4.12. Convergence for C1 beam (B.E.), consistent mass, full
integration.
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2D C-one (Rayleigh & Bern-Euler) Cantilever
Beam: Consistent Mass, Full Integration,
Parameter Set 2

1.5 M
-a-- Mode 1

Mode 2
-i--Mode 3
-.-- Mode 4

-in--Mode 5

t_ 1.0' I __

zd
N-,

0.5
0 10 20 30 40

# Elements

Figure 4.13. Convergence for C1 beam, consistent mass, full integration.

4.1.1 Importance of Shear and Rotatory Inertia

The results show that consideration of shear and rotatory inertia

cause a reduction of natural frequency compared to the analytical

Bemoulli-Euler theory. The influence of shear and rotatory inertia can be

quantified, to a degree, in terms of the 'effective length'/thickness, which

allows all modes and beam parameters to be judged according to the same

criteria. The effective length is taken to be the approximate wavelength,

obtained from figure 4.14. Table 4.2 shows an estimation of the

wavelength and the corresponding ratios of wavelength/thickness. For the
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purpose of discussion, modes 1 & 2 were considered to be 1/4 and 1/2

waves, respectively.

Table 4.2. Effective (wavelength/thickness).

Wave- Effective length/thick
Mode length Set I Set 2

1 40 40 400
2 20 20 200
3 8 8 80
4 5.5 5.5 55
5 4.75 4.75 47.5

Correlation of the values in table 4.2 with the results given in the

preceding figures shows that departure from Bernoulli-Euler theory occurs

when the effective length/thickness < 40. This is demonstrated in figures

4.9 & 4.10, where rotatory inertia effects are absent; it is also seen in

figure 4.11, where only the shear effect is neglected. Note that shear has a

larger influence on natural frequency than does rotatory inertia. As a rule

of thumb, the consideration of effective length/thickness provides an aid in

the selection of an appropriate finite element model.

4.1.2 Mesh Estimate for CO Elements

An estimate of the mesh requirements for CO element discretization

can be made with the help of figure 4.14. The figure represents the exact

mode shapes for the first five frequencies of transverse vibration for a

Bernoulli-Euler beam with cantilevered boundary conditions. Amplitudes
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shown are arbitrary. Since CO elements can model only linear variation of

transverse displacement, the number of straight line segments (or elements)

required to model a given frequency can be estimated. Discretization based

on this method of mesh estimation suggests using beam elements of various

lengths, in order to efficiently capture the target mode shapes.

Vibration Mode Shapes for Bernoulli-Euler
Cantilever Beam

15

0.0 2.0 4.0 6.0 8.0 10.0

x

Figure 4.14. Exact vibration mode shapes, Bernoulli-Euler theory.
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4.2 Static Buckling

The effect of large initial stress and contribution of nonlinear strains

must be considered in order to solve the static buckling problem. The

geometric stiffness matrix was derived in section 3.5, and now provides thc

mechanism by which the second eigenvalue problem is formed. The new

equation can be written

(K + PKI) y = 0 (4.2.1)

where the only nonzero element of , is some reference axial stress

resultant Nxref. The critical buckling load is then Pcr = XNxref, where X is

the smallest eigenvalue. The exact solution for Bemoulli-Euler beam with

clamped/free boundary conditions is given by [331

Pcr 7C El 12n - 1)2  n= 1, 2,3,..
4I.,2  (4.2.2)

where the associated mode shapes are given by

cCl -os 2L- n-

V =)

ci(l - Cos 2n- l n= 2, 3, 4,12 L (4.2.3)

where cl is arbitrary as long as the deflections are consistent with the

theory of small displacements.

Because tie static buckling problem does not involve the mass

matrix, and because the load is constant over the length of the beam, only

three different formulations are presented for this example:
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1) CO: full integration of stiffness matrices
2) CO: reduced integration of material stiffness
3) Cl: full integration of stiffness matrices

Buckling loads have been normalized by the exact Bernoulli-Euler

buckling load. Although only the critical mode is important in the simple

example considered, the higher modes may become important in more

complex structures, and are thus included in the following figures.

Convergence of static buckling load is very similar to the convergence of

natural frequencies obtained from consistent mass formulations - compare

figures 4.15-4.20 to figures 4.1-4.6 and figures 4.12-4.13.

Comments made earlier also apply here, however, a couple of

additional comments are made. Figure 4.16 shows very clearly the

problem of shear locking associated with the fully integrated CO material

stiffness matrix. Figures 4.17 and 4.18 differ from figures 4.3 and 4.4

only in that the critical buckling is not captured with one element. It

requires at least eight elements to lock on to the Bernoulli-Euler result.

The C 1 formulation captures the critical buckling load with one element.
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2D C-zero Cantilever Beam: Full Integration, Parameter Set 1

1.5-_ _ _ _

-u-- Mode 1
----- Mode 2

-a---Mode 3
_______ _____ - - - Mode 4

o -U--Mode 5

* 1.0 - ----- _

0.-+

0 10 20 30 40

# Elements

Figure 4.15. Convergence for CO beam, full integration of stiffness.
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2D C-zero Cantilever Beam: Full Integration, Parameter Set 2

50. ____ - __ _ __ _
50 ____ VA___ ____ ___ -i--- Mode 1

-- Mode 2
40__ Mode 3

V= -- Mode 4
_-u Mode 5

: 30.

"0 20-
N

o I0.

0*
0 10 20 30 40

# Elements

Figure 4.16. Convergence for CO beam, full integration of stiffness.
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2D C-zero Cantilever Beam: Reduced Stiffness, Parameter Set I

1.5 -_ _ _ __ _ _ _ _

-U-- Mode I
---- Mode 2

- Mode 3
V____ - 4- Mode 4

-U- Mode 5

1.0

0.5 A
0 10 20 30 40

# Elements

Figure 4.17. Convergence for CO beam, reduced integration of stiffness.
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2D C-zero Cantilever Beam: Reduced Stiffness, Parameter Set 2

1.5-

-in---Mode 1
---- Mode 2
-U-- Mode 3

______ _____ -~ Mode 4

o -in-ModeS5

S 1.0 - ---------

0.5 -4___
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Figure 4.18. Convergence for CO beam, reduced integration of stiffness.
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2D C-one Cantilever Beam: Full Integration, Parameter Set 1

1.5-. I

- - Mode 1
-- Mode 2

-- Mode 3
-V_ _ __ -- Mode 4
o - Mode 5
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2 0.5
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Figure 4.19. Convergence for ClI beam, full integration of stiffness.
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2D C-one Cantilever Beam: Full Integration, Parameter Set 2

1.5-

-u- Mode 1
- Mode 2
- Mode 3

____ _ __ ___ ____---e-_ Mode 4
o -- Mode 5
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Figure 4.20. Convergence for C1 beam, full integration of stiffness.
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4.3 Dynamic Buckling

y

y

In e rtia l so- X L_0_ _X

Frame

Figure 4.21. Cantilevered beam under distributed axial load.

Yet a third eigenvalue problem can be formulated which involves all

three principal finite element matrices. Consider an inextensible beam with

cantilevered boundary conditions which is free to translate in space. A

constant axial load is applied to the cantilevered end as shown in figure

4.21 which produces the following distributed axial loading.

P(x)=LPo(1 -) (4.3.1)

For a given static loading determined by Po, the frequencies of

natural vibration can be computed. It will be seen that compressive axial

stress has a 'softening' effect. The eigenvalue problem is similar to the

case of free vibration considered in section 4.1. Now the effect of internal

force is included in the stiffness and the eigenvalue problem can be written

as
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[- 21+ (K + K] y = 0 (4.3.2)

where the internal force distribution is embedded in the geometric stiffness

matrix. When Po = 0, the geometric stiffness matrix becomes the null

matrix and the simple free vibration problem is recovered. For Po < Pcr,

the eigenvalue problem of equation (4.3.2) gives the frequencies of natural

vibration. As Po is increased to Pcr, the fundamental frequency goes to

zero, as shown in figure 4.22. Dynamic buckling occurs at Po = P cr, which

corresponds to the zero frequency. This is equivalent to a static buckling

problem of the type considered in section 4.2 in which the axial load

distribution is given by equation (4.3.1).

Buckling of a vertical cantilevered beam due to its own weight was

considered by Timoshenko [34] and is here used as the exact solution for

the Bernoulli-Euler beam. The critical load was given as

Pcr = 7.837 E I
L 2  (4.3.3)

A more general formulation for the buckling of a beam under axial

acceleration with rigid mass attached to the free end was considered by

Storch and Gates [35]. In the degenerate case, with zero tip mass, the

critical load has the same form as given above except the factor becomes

7.8664.

An investigation of the performance of a single element is shown in

figure 4.22. Data displayed in the figure is tabulated in table 4.3.

Examination of the data shows that the mass matrices from B.E. and

Rayleigh theory do indeed yield different frequencies, although the

difference is very small. A comparison of performance would be
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incomplete without considering the fully integrated CO beam, however, a

single element is so stiff that plotted on the scale of figure 4.22 the curve

would begin well up (171) and end well to the right (196,033) of all the

other curves. Reducing the integration of the stiffness matrices reduces the

locking problem so apparent with full integration. The curve with reduced

stiffness compares quite favorably to the Bernoulli-Euler result.

Overrelaxation is observed in the CO formulation with both reduced

stiffness and lumped mass approximation for small axial loads.

Axial Acceleration of Beam:
Single Element Performance

40

-- Bemoulli-Euler
- Rayleigh

-w- C-zero, Reduced Stiffness

30 --- C-zero, Lumped Mass, Red Stiff

i, 20'

z -

0 2000 4000 6000 8000

Acceleration

Figure 4.22. Natural frequencies for Po < Pcr, parameter set 1.
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Figure 4.23 shows the convergence of the critical acceleration for

several beam element formulations. Bernoulli-Euler and Rayleigh beam

assumptions (B.E. has zero rotatory inertia) produce identical results for

critical acceleration, since this corresponds to a static buckling problem

with load distribution given by equation (4.3.1). The CO formulation with

full integration shows clearly the element locking problem, while reduced

integration of the stiffness matrices produces better convergence. The loss

of monotonicity of convergence due to reduced integration is also

observed.

Dynamic Buckling: Axial Acceleration Applied
to C-zero and C-one Beams

1.2 ' __ __ _

- - Bemoulli-Euler

o Rayleigh
-U C-zero, Reduced Stiffness

_ _ - - C-zero, Full Integration

1.0'0

N

2

0.8
0 10 20 30 40

# Elements

Figure 4.23. Convergence for dynamic buckling, parameter set 1.
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Table 4.3. Data displayed in figure 4.22.

Fundamental Frequency

Acceleration Bernoulli- Rayleigh C0 , reduced CO, reduced
Euler stiffness lumped mass

0 32.2 32.2 31.4 25.7
500 - 30.9 -

1000 29.7 29.6 29 23.7
2000 26.9 26.8 26.3 21.5
3000 23.8 23.7 23.2 19
4000 20.2 20.1 19.8 16.2
5000 15.8 15.8 15.5 12.7
5700 11.8 11.7 -

6000 9.53 9.51 9.54 7.81
6200 7.69 7.68 -

6300 6.59 6.57
6400 5.25 5.24 -

6500 3.42 3.42 4.04 3.31
6530 2.64 2.64 -

6550 i.95 1.95 -

6570 - - 2.43 1.98
6574.1 0.138 0.0555 -

6600 - - 1.18 0.967
6609.3 0.094 0.0769
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Chapter5

Dynamic Problems

The eigenvalue problems of the previous chapter provide insight

regarding the behavior of nonlinear beam finite elements in the context of

dynamics. The next step in the systematic assessment of finite element

approximations is a benchmark nonlinear dynamic simulation. The

example chosen was originally proposed by Kane [36, 13] to demonstrate

the physical behavior of rapidly spinning systems known as 'centrifugal

stiffening.' The result reported by Ryan [36] was obtained using an

assumed modes formulation. Other researchers who have also published a

solution to the spin-up problem are Simo & Vu-Quoc (nonlinear finite

element method) [15], and Ider & Amirouche (also assumed modes) [16].

These published results provide comparison for the present solution. The

focus is on understanding the influence of the Coriolis and centrifugal

forcing terms, and the contribution of the geometric stiffness matrix.

Application of the dynamics formulation is also made to a space

shuttle/remote manipulator arm/payload model which demonstrates a

practical application of the theory. A realistic torque is applied to the

orbiter and realistic payload mass properties are used.
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5.1 Dynamics Simulation

5.1.1 Specification of Equations of Motion

An exact set of governing equations was derived in section 2.5. The

succeeding sections introduced two alternative modelling assumptions with

regards to the flexible appendage mass distribution: lumped mass (§2.6)

and lumped mass/inertia (§2.7). In either case the stiffness matrix is

provided by 3-D finite elements. The lumped mass/inertia equations of

section 2.7 are chosen for implementation, which eliminates the necessity

of condensing rotational DOFs from the stiffness matrix. In the spin-up

problem, all rigid body DOFs are prescribed. For the orbiter/RMS

problem, a rigid body torque is prescribed while the remaining rigid body

DOFs are constrained.

To facilitate discussion of the results to follow, equation (2.7.15) is

rewritten below along with identification of terms appearing in the forcing

vector associated with flexible translational DOFs.

centrifugal Coriolis
force force

f- m 1
× U- m1x X _ - 2miox 4lt_ + h.o.t.

tt + h.o.t.

RF=
(6Nx fl) - mN × U- mN × x rN - 2 mN< qtN + h.o.t.

+ h.o.t. (5.1.1)

Note that the relative displacements _qti are omitted from the

centrifugal force term. It is assumed that flexible deformations are small
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so that vehicle geometry is adequately represented by the undeformed, or

original configuration. For the dynamics problems considered, the

undeformed configuration is the reference configuration. This implies that

the rigid/flex coupling matrix given by equation (2.7.12) is constant and

need be determined only once in the original configuration. Also, the

instantaneous vehicle inertia appearing in the MRR matrix is constant and

need be computed only once in the original configuration.

5.1.2 Incremental Solution

The equations of motion (2.7.7) are well suited for solution by the

second order Newmark integration scheme. Derivation of Newmark
integration for linear systems is outlined in Appendix B, as well as an

incremental form which is required for the solution of nonlinear equations.

The incremental form with modified Newton-Raphson iteration has been

implemented in the dynamic simulation.

From equation (B.2.10), note that the incremental solution algorithm

requires calculation of a nodal force vector corresponding to the state of

internal stress. For the finite element discretization of stiffness, the

internal force vector is given by

Fint BTT dx

0(5.1.2)
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where

B = strain-displacement matrix encountered in chapter 3

a = vector of stress resultants

Assuming material linearity, the stress resultants can be found using

equation (A.7).

5.1.3 Computer Implementation

The computer implementation of the dynamics formulation noted

above proceeds as shown in figure 5.1. For all problems the integration

step size used was At = 0.01, and the convergence criteria used was

I u kll_ tolerance 
(5.1.3)

where AUk is the vector of incremental displacements corresponding to the

kth iteration (see Appendix B). Thus the solution is converged when the

norm of AUk is less than some tolerance. The displacement tolerance for

both dynamic problems was equal to 0.000001.
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Simulation Flow

" Read control parameters
* start, stop time; integration time step At

* Initialize simulation
• read finite element data (material stiffness)
* calculate MRF, MFR, MFF for original (undeformed)

configuration

" Integration loop
• calculate prescribed torques/displacements
* form the tangent stiffness matrix KT based on UF

* iteration loop (Modified Newton-Raphson)
a calculate RF
a calculate MRR & RR from AUTOLEV subroutine
a incremental Newmark (S = 1/2, a = 1/4)
* test convergence

No:
Yes: update system and exit iteration loop

• data output
* check simulation time

time < stop time:
time > stop time: exit integration loop

End simulation

Figure 5.1. Flow diagram for dynamic simulations.
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5.2 Spin-Up Problem

5.2.1 Problem Description

co(t)

L 

r<< 

L

Figure 5.2. Spin-up of cantilever beam.

Schematic of the physical problem is shown in figure 5.2. A rigid

central body has a rigidly attached flexible beam. The hub radius is small

compared with the length of the beam and may be ignored. The central

body is constrained against translation, while hub rotation is a prescribed

function of time, equation (5.2.1) specifying a smooth transition from zero

hub motion to constant angular speed of 6 rad/sec. The prescribed rotation

is also shown graphically in figure 5.3.

t 6 rad/sec 15 < t < 30 sec (5.2.1)
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6.0

5.0

4.0

.030U)

2.0
C

1.0

0.0
0.0 5.0 10.0 15.0 20.0 25.0 30.0

Time (sec)

Figure 5.3. Hub motion prescribed by equation (5.2.1).

5.2.2 Finite Element Model

The beam has uniform cross-section and is discretized using

uniformly sized CO finite elements. Both material and geometric stiffness

matrices are evaluated by reduced integration to avoid shear locking.

Material properties are chosen to correspond with previously published

results, and are given in table 5.1. (k is the shear correction factor, p is

the per volume density).
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Table 5.1. Beam material properties for spin-up problem.

E 7 x 1010

k 1/1.2
v 1/6
.. 1.2
L 10

area 4 x 10-4
I 2 x 10-7

IM t 6 x 10-4

A schematic of the finite element model in the undeformed

(reference) configuration is shown in figure 5.4. The body fixed frame is

coincident with the rigid central body. Flexible mass distribution is treated

using the lumped mass/inertia assumption. Note that the vehicle c.m. in

figure 5.4 has only one nonzero component in the body fixed frame.

Lumped masses are equally spaced along the length of the beam.

z

vehicle

cxx
Cx c.m. .

rigid mi m2 nu MN-i N
central
body

Figure 5.4. Schematic of finite element model, analogous to figure 2.1.
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5.2.3 Spin-Up Results & Discussion

The study of the spin-up problem is accomplished through

consideration of the following cases:

1) full solution - including all forcing terms, geometric

stiffness matrix, incremental integration scheme
(Newton-Raphson iteration)

2) neglect Coriolis forcing term
3) neglect centrifugal & Coriolis forcing terms
4) neglect geometric stiffness matrix

In all of the above cases, the effect of mesh refinement is also examined.

The motion shown in the following figures corresponds to the axial and

transverse displacements of the beam tip, relative to the body fixed frame.

Transverse displacement is perpendicular to the axis of rotation.

Tip displacements for case 1 are shown in figures 5.5-5.12. The

gross behavior is captured well by a course mesh, as seen in figures 5.5 and

5.6. Axial displacement appears to settle into a steady-state elongation at

constant spin-rate. Increasing the number of elements brings out the detail

of this motion, however, and it is seen that an oscillatory motion is

superposed onto the steady-state deflection. Steady-state axial deflection

converges from above; in other words, a course mesh overpredicts the

axial deflection.

The transverse behavior of the beam is characterized by an increase

in deflection until the midpoint of the spin-up (corresponding to the

maximum angular acceleration), after which the tip catches up to the body

fixed frame and oscillates about zero relative deflection. This behavior is

also captured with a course mesh. Two tendencies are noted with respect
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to mesh refinement: the peak deflection (absolute value) converges from

above, and the steady state frequency associated with bending vibration

converges from below. For future reference, case 1 is summarized in table

5.2.
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Spin-up Problem, 2 elements
Tip motion

5.0e-4 -

E 4.0e-4 ---

*O 3.0e-4

25 .0e-4

-10e4 9Mar-91

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time Umega plot'3.0

Figure 5.5. Axial displacement of beam tip for case 1, 2 elements.

Spin-up Problem, 2 elements
Tip motion

0.17

CD00 -

0 -0.1_ _

0.2

0.
*-0.4

S-0.5

0-0.6

S-0.7
19-Mar-91 _____

-0.8 --

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time £2maga..pWoV 3. 0

Figure 5.6. Transverse displacement of beam tip for case 1, 2 elements.
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Spin-up Problem, 4 elements

Tip motion
6~ .0e-4

0e-

a 3.0e-4

.~2.0e-4

0.Oe+0

-1.Oe-419Mr1--------------------------

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time Dmnega..plot-" 3. 0

Figure 5.7. Axial displacement of beam tip for case 1, 4 elements.

Spin-up Problem, 4 elements
Tip motion

0.17
C

.-0.21-Z

-0.4

0.

I."' 19-Mar-91 _____

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time tamega po-3. 0

Figure 5.8. Transverse displacement of beam tip for case 1, 4 elements.
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Spin-up Problem, 8 elements
Tip motion

6.0e-4 - - - - - - - - - - - - - - --

-5.0e-4 ----------------------

E 4.0e-4 -

ca 3.0e-4 --

0' 2.0e-4 --

0.Oe+0 ---

-Oe419-Mar-91

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time O~mega plot'4 3.0

Figure 5.9. Axial displacement of beam tip for case 1, 8 elements.

Spin-up Problem, 8 elements
Tip motion

0.1

CD0. 0 1

E_

0'-0.3

0.

S-0.5

S-0.6 -

19-Mar-91 _____

-0.7- .-

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time Omega plotTm 3.0

Figure 5. 10. Transverse displacement of beam tip for case 1, 8 elements.
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Spin-up Problem, 16 elements
Tip motion

6.0e-4 __

5.0e-4

E 4.0e-4

cc 3.0e-4

.!~ 2.0e-4 - - .. . .

1.0e-4 ---

0.Oe+0

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time Omga potm3.O0

Figure 5.11. Axial displacement of beam tip for case 1, 16 elements.

Spin-up Problem, 16 elements
Tip motion

0 . -

E -0.-

-0.2- ---------

40-0.3--

0.

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time O~mega pIotm 3.O

Figure 5.12. Transverse displacement of beam tip for case 1, 16 elements.
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Table 5.2. Summary of spin-up problem, case 1.

# of Peak transverse Steady-state axial Frequency,
elements displacement displacement bending vibration

(rad/sec)
2 - 0.753 5.78 x 10-4  3.36
4 - 0.660 5.31 x 10-4  3.56
8 - 0.646 5.18 x 10-4  3.77
16 - 0.587 5.15 x i0-4  3.94

The effect of neglecting the Coriolis forcing term is considered in

case 2 and displayed in figures 5.13 & 5.14. One can see that the Coriolis

term provides the excitation of the axial vibration mode; its removal

produces a true steady-state axial elongation. The Coriolis term is not a

major contributer to the transverse behavior of the beam (transverse

displacements corresponding to figures 5.13 & 5.14 are the same as given

for case 1 results).
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Spin-up Problem, 8 elements
Tip motion, no Coriolis term

6.0e-4 .

r 5.0e-4

E4.0e-4

o.3.0e-4

-2.0e-4

4 1.0e 4

0.Oe+023-Mar-91

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time Omega..plot-"3.0

Figure 5.13. Axial displacement of beam tip for case 2, 8 elements.

Spin-up Problem, 16 elements
Tip motion, no Coriolis term

6.0e-4 --I
S5.0e-4

E 4.0e4 --

a. 3.0e-4 '-- -

-2.0e-4

'( 1.Oe-4

0.Oe0 -h -- - 24-Mar-91

o 5 .0 10.0 15.0 20.0 25.0 30.0
Time Dmga.pW7'w 3.0

Figure 5.14. Axial displacement of beam tip for case 2, 16 elements.
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Case 3 (no centrifugal or Coriolis forcing terms) results are shown

in figures 5.15-5.18. Elimination of centrifugal forcing eliminates any

axial elongation of the spinning beam. No other effect is observed. The

transverse displacement is unaffected by the presence or absence of either

centrifugal or Coriolis terms, as shown in the following figures.

Spin-up Problem, 2 elements
Tip motion, no Coriolis or centrifugal

W 0.1 7 . .. . . . . . . . . . . .

o 0.0

cc-0.2

0.3

-0.4 ,

S-0.5 -
(-0.6

CI -0.7 . . .
01-May-91 ___

-0.8 0-a 9. . . . . . . . .

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time Omegaplot r3.0

Figure 5.15. Transverse displacement of beam tip for case 3, 2 elements.
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Spin-up Problem, 4 elements
Tip motion, no Coriolis or centrifugal

C
00. -

S-0.1* - - r*-

a.-0.2 - ~ *- - -

O-0.3
0 .

0.

-0701-Mat-91

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time Omga plot~ 3.0

Figure 5.16. Transverse displacement of beam tip for case 3, 4 elements.

Spin-up Problem, 8 elements
Tip motion, no Coriolis or centrifugal

00 -_ .- --

S-0.1--- 
-

'a -02 - --

0-0.3
0.

0.
S-056

01-May-91 _______ . ~ .

-0.7
0.0 5.0 10.0 15.0 20.0 25.0 30.0

Time Omega..p/oP3.O

Figure 5.17. Transverse displacement of beam tip for case 3, 8 elements.
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Spin-up Problem, 16 elements
Tip motion, no Coriolis or centrifugal

-0.1

-0.0

C1 -0.1

'A-0.2

0 -0.3

S-0.4 - ,-

(A

C- : : V I

0a-0.5
-" 01-May-91 :

-0.6 1 91

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Time nmegaplot" 3.0

Figure 5.18. Transverse displacement of beam tip for case 3, 16 elements.

Solution of the spin-up problem in the absence of the geometric

stiffness matrix (case 4) gives a surprising result. It is interesting that the

geometric stiffness matrix apparently has no effect on the solution of the

spin-up problem. The formulation as implemented has no dependence on

geometric nonlinearity; material stiffness is sufficient to prevent divergent

behavior. Different modelling assumptions and solution techniques lead to

dynamic instability. Using assumed modes formulations, Ryan [13] and

Ider & Amirouche [16] report divergent transverse displacements when

geometric stiffening effects are ignored. Simo & Vu-Quoc [15], on the

other hand, do not discuss any divergent behavior encountered with their

finite element solution.
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5.3 Orbiter/Remote Manipulator Arm (RMS)

5.3.1 Problem Description

As a realistic application of the dynamic formulation, an additional

example is considered which involves the space shuttle remote manipulator

system (RMS). The manipulator arm is assumed to be locked in a fully

extended configuration with a typical payload attached to the end effector.

The shuttle is constrained against translational and rotation, except for

rotation about the body fixed y axis. Orbiter rotation is induced by

application of positive/negative pulse torque, shown graphically in figure

5.19. The torque acts about the y axis of figure 5.20 so that the elbow is in

the plane of rotation. Angular displacement of the orbiter in response to

the torque is heavily influenced by the relative size of the inertias of the

shuttle and the flexible (appendage + payload) combination.

Motions are assumed to be small, thus the reference configuration is

always taken to be the original configuration.
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RMS Problem
Prescribed Torque

1.5e+4 4

1.0e+4 -

, 5.0e+3 '

0*
o-5.0e+3

- 01-May-91

0 20 40 60 80 100
Time (sec) £2nga_pot?" 3.0

Figure 5.19. Torque time history applied to orbiter.

5.3.2 Finite Element Model

The finite element representation of this system is shown in figure

5.20, where the shuttle c.m. is located at node 1 and payload/end effector

are located at node 16. The orbiter and payload are modelled by lumping

mass and inertia at their respective nodes, values used are given below.

The body fixed frame is coincident with the orbiter c.m. Fifteen elements

are used to model the manipulator, which can be numbered consecutively

starting from node 1. The finite element model of the remote manipulator

arm was extracted and simplified from a NASTRAN model (in-house

Draper model) The details of the finite element model are provided in

Appendix D.
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orbiter end-effector
c.m. and payload

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

z

L = 637 in

Figure 5.20. Finite element model of remote manipulator arm in straight
out position.

norbitr = 6397 slugs

mpayioa= 665 slugs

1044

Iorbit = 134 x 106 slug-in2

1003.7-

10.4[payload 10.4 xl06 slug in 2

3.469

5.3.3 Orbiter/RMS Results

Orbiter response is obtained assuming a rigid vehicle to provide a

baseline for the flexible solution, and provide a greater sense that the

flexible solution is correct. The flexible response should (and does)

oscillate about the rigid solution.
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RMS Problem
Orbiter motion

0.016

0.014

S0.012* ...

0.010
*1 flexible

0.006 rii

K0.004 -

0.002
04 Apr-91

0 20 40 60 80 100
Time (sec) £Dmega pbot"3.0

Figure 5.21. Orbiter response to pulse torque, assuming nigid and flexible.

RMS Problem
Orbiter motion

0.0005

-%0.0004

~ 0.003 .-. flexible
-- - rigid

... 0.0002 --_ _ _ _ _ _

cis 0.0001 , _ _ __ _ _ _

-0.0000

-0.0002

0 20 40 60 80 100
Time (sec) Dmega plot"' 3.0

Figure 5.22. Orbiter response to pulse torque, assuming rigid and flexible.
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The relative motion of the payload/end effector, in the body fixed

frame, is shown in figures 5.23 & 5.24. It is seen that moderate torque

input results in payload deflections on the order of 1.5 inches. This may be

significant in the context of assembling space station components. Axial

displacements are not large. The phase plane shown in figure 5.25

demonstrates the periodic oscillation experienced by the payload after the

torques are released.

RMS Problem
Payload motion

C 2.0 -- ----- ' ,.

1.5 -

E 1.0

0.5 - - - - - .

-1.0

C
-_ _ , 04Aor- 91

0 20 40 60 80 100
Time (sec) Omega plt m 3.0

Figure 5.23. End effector response to pulse torque.

129



ChaterS5: Dynamic Problemw

RMS Problem
Payload motion

C 0.0015 - ~ - 4 - ~ + 4

CE 0.0015
0-01

E 0.0005 -

a0.0000
us -0.0005-

*j-0.0010 -

I-0.0015 -

:04 Ar9
-0.0020 -

0 20 40 60 80 100
Time (sec) O2mega pIot"' 3.

Figure 5.24. End effector response to pulse torque.

RMS Problem
Phase Plane, End-Effector

0.2

0 .

S0.01-

0.

0.

0.
I91

o-0.4~ __ __-A

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Transverse Displacement (in) Oea plot TM3.0

Figure 5.25. Demonstration of peniodicity of tip motion (zero damping).
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Chapter 6

Conclusion

6.1 Summary and Conclusions

Equations of motion have been consistently derived for a rigid body

with attached flexible appendage through application of the virtual work

principle. This method allowed a natural and consistent introduction of a

finite element discretization for the flexible appendage. Using the

assumptions of lumped mass and lumped mass/inertia allowed comparison

between the two resulting formulations. The lumped mass formulation

required condensing the rotational DOFs from the stiffness matrix.

The nonlinear finite elements used in conjunction with the dynamic

equations were consistently derived from the virtual work principle. The

consistent derivation using Bernoulli-Euler kinematics lead to a finite

element formulation of Rayleigh beam theory. Bernoulli-Euler beam

element was recovered by setting the rotatory inertias to zero. All higher

order terms were retained in the derivation of the geometric stiffness

matrix, which lead to the introduction of higher order stress resultants.

Implementation of these elements allowed greater flexibility than was

possible with other commercially available finite element codes. This

flexibility was exploited in the study of finite element approximations and

kinematic assumptions.

Assessment of element behavior was accomplished through

eigenvalue problems. The numerous figures generated from the
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implementation of the consistently derived finite elements allowed isolation

of individual effects such as lumped mass, rotatory inertia, and reduced

integration. Some general conclusions are drawn from the results:

reduced integration of the stiffness matrix in CO elements
alleviates the problem of shear locking

• lumped mass assumption lowers vibration frequencies
* shear and rotatory inertia lowers the vibration frequencies
* shear and rotatory inertia become increasingly important in

higher modes of vibration (as wavelength/thickness
decreases)

0 shear generally has larger effect upon frequency compared
to rotatory inertia

* higher order stress resultants present in the geometric
stiffness matrix lower buckling loads

In realistic dynamic analyses, the necessity of using an element with shear

and rotatory inertia was shown to be related to the wavelength/thickness

ratio. If the vibration modes of interest have large wavelength/thickness

ratio, these effects can be neglected.

The lumped mass/inertia equations of motion were employed in the

solution of two example problems. In the spin-up problem, the effects of

forcing terms and nonlinear flexibility on the solution were systematically

addressed. It was shown that the centrifugal term had the effect of

producing a steady-state elongation of the beam. The Coriolis term was

responsible for the axial oscillations superposed on the steady-state

deflection. In the formulation used to solve the spin-up problem, the

material stiffness matrix was sufficient to prevent divergent behavior.
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In both dynamics problems, the assumption of small flexible

displacements was employed, so that the original configuration was the

reference configuration. The formulation as presented can be extended to

systems undergoing large flexible displacements by updating the

configuration. Flexible translations and rotations are referred to the

current configuration.

6.2 Future Work

Recommended future work includes full implementation of the

rigid/flexible appendage formulation to include configuration updates,

allowing solution of problems involving large displacements and rotations

of the flexible appendage. This involves updating nodal locations, material

and geometric stiffness, vehicle inertia, etc., at each time integration step.

Flexible displacements and rotations are referred to the current

configuration. Solution of the 'spaghetti' problem, for instance, serves as

full demonstration of the equations of motion of chapter 2.

The virtual work principle can be used to derive the governing

equations for rigid bodies with articulated flexible appendages [28], and

flexible bodies connected to flexible bodies. These formulations have

wider application to spacecraft, space structures, and robotics than does the

present formulation.

Further study is necessary for complete understanding of the

influence of geometric nonlinearities. Investigation should be conducted

into the assumed modes formulation with parallel development of finite
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element formulation. Systematic study of this type should resolve the

question that has arisen regarding the geometric stiffness in the solution of

dynamic problems.
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Aend1ix A
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J y
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~Vz

Figure A.1. Definition of stress resultants. (a) Stresses at an
arbitrary point, (b) Direction of positive resultants.
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Stress resultants provide a convenient measure of the internal force

in the beam elements. Positive stresses are shown in figure A.l. Stress

resultants are then defined in the following way:

Nx =JcOx dA
A ax(A.1)

Mx f (txzy - txyZ) dA
JA (A.2)

M JA 
(A.3)

Mz=-faxy dA i

A 
(A.4)

V~jtxdA
(A.5)

Vz = f xz dA
fA (A.6)

The strains are defined as the work conjugates to the stress

resultants. The corresponding strains are therefore
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Exo = Uo,x exo = Uox

Ict = Ox,x Ict = Ox,x

K~Y = - Oyx Ky = Woxx

Kz = Oz,x 1 z = Vo,xx

Yxzo = Wo,x + Oy

Yxyo = Vo,x - Oz

Let the vector of stress resultants be defined by

C: T=[Nx Mx My Mz]

CO: dT = [ Nx Mx My Mz Vy Vz z

The stress resultants are related to the element strains by the

appropriate material matrix. Strains have already been shown to be related

to the element nodal DOFs by the B matrix. The stress can then be

evaluated at any point 71 within the element from the equation

__n = Dk Fqn = Dk q (A.7)
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Appendix B

Time Integration Schemes

For direct integration of linear equations of motion, implicit

integration schemes have an advantage over explicit schemes in that they

are unconditionally stable. The only restriction on time step is due to

consideration of solution accuracy, and even then it need not be chosen

such that the highest frequency is integrated accurately. Newmark

integration is a second order implicit scheme, which makes it an

appropriate choice for solution of second order equations of motion. The

Newmark method can also be extended to the incremental solution of

nonlinear equations of motion. As each increment is a linear step over At,

the stability holds for nonlinear systems as well. The incremental

Newmark scheme is implemented in the dynamic simulations. A brief

derivation of the Newmark method follows.

For reference, the fourth-order Runge-Kutta integration scheme is

also introduced. Because of its explicit nature, the time step must be

chosen for stability as well as accuracy, although for direct integration, the

stability requirement is usually strict enough to assure an accurate solution.

The Runge-Kutta method is used to solve systems of first order ODEs.
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B.1 Newmark Integration for Linear Systems [24]

For a set of ordinary differential equations, consider the state of

equilibrium at time t+At:

M t+Ajj + C " + K T = AtR (B.1.1)

where M, C, and K are the mass, damping, and stiffness matrices, and R is

the vector of external loads. The three matrices are constant for linear

analyses. Introduce approximations for U, and U at time t+At

t+AtU Lt +[(I )t.+t+AtuA (B.1.2)

z+t U'U+YJt+F1aVP+a t+Atuljt2t~t U Ut+ 2 t x ~t] t  (B. 1. 3)

where (x and 8 are parameters which govern the accuracy and stability of

integration. For 8 = 1/2 and a = 1/4, the scheme is second-order accurate,

unconditionally stable and equivalent to the trapezoidal rule (also known as

the constant-average-acceleration method).

Equation (B.1.3) can be rearranged for t'Atu and substituted into

equation (B. 1.2). Now expressions for tU and c tj can be substituted

into equation (B.1.1), which can be rearranged to give
K t+ARu (B.1.4)

where K is the effective stiffness matrix given by

K = K + ao M + a1 C (B. 1.5)
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and R is the effective load vector at time t+At

t+AtR + M (atU + a2 tUb + a3tU) + C (atU + a4t1 + a5t)

(B.1.6)

Constants are given by

ao=--L- al=.___ a2- 1 a3=---l a4= - -- 1
aAt2  aAt ciAt 2a a

as=t( -2) a 6 =At(1-5) a7= 8At

Solution of equation (B.1.4) yields displacements t+AtU at time t+At.

Velocity and acceleration are then found from equations

= a (t+AtU - tu) - a 2 tU - a3tUj  (B.1.7)

t+ALL~L~t+At

t+Aj = j + a6U + a7  LU (B.1.8)

B.2 Incremental Form of Newmark Integration

The integration scheme developed in the previous section can be

viewed as an incremental solution method where successive increments are

At, 2At,..., nAt; all increments are referred to the original configuration.

This is possible for linear equations of motion since the coefficient matrices

are constant. In nonlinear problems, the stiffness matrix is interpreted as

the tangent stiffness matrix, and accounts for material stiffness as well as

geometric stiffness and material nonlinear effects. The tangent stiffness is

configuration dependent and is denoted at time t as tKT. The configuration

dependence of nonlinear problems prohibits referring every increment
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back to the original configuration, but an incremental procedure can be

used to propagate the solution from one known equilibrium state to

another, providing the increment is small.

Assume a state of equilibrium is known at time t which can be

written as

M U + C IU + F=tR (B.2.1)

where tF is the internal force vector and is a function of U. With this

change of notation, the equilibrium equation (B.1.1) can be written as

M t+ATl + C 'tlb + t+AtF = t+AtR (B.2.2)

Now it is assumed that the equilibrium state expressed in equation

(B.2.2) can be approximated by a linear increment from the equilibrium

expressed in equation (B.2.1). The internal force vector at time t+At can

thus be written

t+AtF = T + tKT AU (B.2.3)

where AU is a vector of increment displacements. Substitution into

equation (B.2.2) yields

M t+A T + C 'tat + tK T AU = t+AtR - TF (B.2.4)

Displacements corresponding to time t+At can then be calculated from

t+Atu tU + AU (B.2.5)

Equations (B.2.4) and (B.2.5) form an approximate incremental

solution to the set of nonlinear equations. Equality can be achieved
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through iteration at time t+At by using the full or modified Newton-

Raphson technique. Full Newton-Raphson updates the tangent stiffness at

each iteration, while the modified Newton-Raphson updates only at the start

of each increment. The full technique converges more rapidly but at the

cost of forming the tangent stiffness at every iteration. With the modified

Newton-Raphson, the incremental algorithm can be stated as

M t+Atjk + C t+AtUk + tK AUk = t+AtR - t+AtFkI (B.2.6)

t+Atuk = t+AtUkl + AUk (B.2.7)

where

t+AtUO =tu (B.2.8)

t+AtFO T (B.2.9)

Equation (B.2.6) is an incremental form corresponding to equation

(B.I.1), and the Newmark method of section B.1 can be applied.

Neglecting the damping matrix and choosing a and 8 corresponding to the

trapezoidal rule gives

AUk = R - t+AtFk.1 (B.2.10)

where

K=tKT+ 4-M
At 2  (B.2.11)

t+t( (+t t +AtU k -l  tU ) " 4-  t[ j ti)
R+t =tt R - M --

A2 (t (B.2.12)
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The current state can be obtained from

t+AtUk = t+AtUk'l + AUk (B.2.13)

t +Atuktu)k 4_-_t =tij

At2  At (B.2.14)

t+A jk = + At + At t+Atuk

2 2 (B.2.15)

where the start-up conditions are the same as given by equations (B.2.8)

and (B.2.9). Other schemes have been developed for estimating the initial

iteration conditions, rather than using the previous equilibrium state as the

first estimate of the next equilibrium state [37].

The incremental form of the Newmark method derived in this

section for nonlinear problems can be reduced to the result obtained in

section B. 1 for linear systems by noting that tKT -+ K so that the internal

force vector becomes

t+AtFk-1 = K t+AtUk'l

which can be used along with equation (B.2.13) to come up with equation

(B.1.4).

B.3 Error Sources in Newmark Integration

For unconditionally stable integration schemes, the choice of time

step At is governed only by consideration of accuracy. In structural

dynamics problems, high frequency modes usually contribute little to the

response of the structure. If the time step is chosen to accurately integrate
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only some subset of vibration modes, then the errors contributed by the

higher modes are also assumed to be small. Solution errors are confined to

the upper vibration modes by appropriate choice of the time step At.

Since all modes are included in direct integration, solution errors

stem only from the use of too large an integration step size. This is in

contrast with modal reduction techniques, which also invite errors due to

truncation of the modal set.

Integration errors are classified in terms of period elongation and

amplitude decay (algorithmic damping). The trapezoidal rule

implementation of the Newmark scheme (5 = 1/2, a = 1/4) is second-order

accurate and introduces only period elongation - no amplitude decay.

Thus, all frequencies contribute to the structural response. Amplitude

decay can be introduced in the Newmark scheme through alternative choice

of parameters 8 & cc, although accuracy is reduced to first-order.

B.4 Fourth-Order Runge Kutta Integration [38]

The fourth-order accurate Runge-Kutta is an explicit multi-step

integration scheme based on the Euler method. It operates on systems of

first order ordinary differential equations, in contrast with the Newmark

scheme, which operates directly on the second order equations of motion.

Thus some additional manipulation is required in order to implement the

Runge-Kutta algorithm.
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Any system of ordinary differential equations can be reduced to a set

of N coupled first order equations. To preserve the dynamics context, the

notation of the previous sections is used to express the general form as

dUi(t)-f '(t, U1,..., UN) i= 1,..., N

dt (BA41)

where Ui is the ith component of the vector U and the known function fi is

the corresponding derivative. Note that reduction of the equations of

motion to first order form means that N = 2(6+6*Num_nodes).

For convenience only, consider equation (B.4.1) with N=1.

Increasing the system size involves a straightforward introduction of a DO

loop over i=l,N. The Euler method advances the solution of a first order

equation from t to t+At by application of the formula

t+at = U + Atf '(t, tu) (B.4.2)

where it should be noted that the solution at time t+At is based entirely on

information known at time t. Thus no iterations are necessary in the

explicit algorithm. The accuracy and stability of the one step Euler method

can be improved by introducing multiple steps. The break-even point is

the fourth-order Runge-Kutta, which makes use of four steps, and is given

by

t+AtU = tU + kL + k2 + k3 + k4
6 3 3 6 (B.4.3)
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where

k Atf '(t, tU) (B.4.4)

k2= tf 2+L21+~ (B.4.5)

k4 =Atf (t +At, 'U +k 3 ) (B.4.7)

B.5 Implementation with Equations of Motion3

As noted earlier, use of Runge-Kutta requires some manipulation

that the Newmark method does not. This section shows the details of this

manipulation. The equations of motion (2.6.6) or (2.7.7) can be rewritten

as a system of matrix equations

MRR UR + MRF UF = RR + RRF (B.5.l1)

MFR UR + MFF UF + KFF UF =RF (B.5.2)

Equation (B.5.2) can be rewritten as

UF = MFF1 [RF - MFR UR - KFF UF] (B.5.3)

Substitution into equation (B .5.1) yields

[MRR - MRF MFF1 MFRI UR = RR + RRF - MRF MFF'1 RF + MRF MFF' KFF UF

(B.5.4)
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A set of first order equations can be formed by letting UR = UR and

= UF. The set of derivatives (at time t) to be evaluated in the course of

the Runge-Kutta scheme can be summarized as follows:

UR =UR (B.5.5)

UF =UF (B.5.6)

[MRR - MRF MFF"I MF] UR = RR + RRF - MRF MFF-1 RF + MRF MFF 1 KFF UF

(B.5.7)

MFF UF = RF - MFR UR - KFF UF (B.5.8)

Both of equations (B.5.5) & (B.5.7) encompass six scalar equations

governing the rigid body DOFs. Equations (B.5.6) & (B.5.8) encompass

(6*Numnodes) scalar equations relating the flexible DOFs. Thus the total

number of derivatives evaluated at each step is 2(6 + 6*Num-nodes).

The Runge-Kutta method is well suited for nonlinear analysis since it

is a natural incremental scheme; each increment is referred to the previous

equilibrium state. Nonlinear solutions are obtained by interpreting the

KFF matrix as the tangent stiffness matrix tKT, evaluated at time t. A

typical step (evaluation of the functions fa) of the Runge-Kutta algorithm

in the dynamics simulation is as follows:

151



Appendix B: Time Integration Schemes

Given initial conditions (at time t): UR, UF, UR, UF

1) calculate tangent stiffness based on UF

2) evaluate equations (B.5.5) & (B.5.6) for UR, UF

3) evaluate equation (B.5.7) for UR

4) evaluate equation (B.5.8) for UF
5) use these results in calculation of ki's

A typical increment implements this sequence four times and employs

equation (B.4.3). The tangent stiffness matrix need only be calculated at

the beginning of each increment.
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Appendix C

Convergence Data

Convergence data is tabulated for the figures shown in chapter 4.

C.1 Free Vibration

As a reminder, the following cases were considered:

1) CO: consistent mass, full integration of mass and stiffness
2) CO: consistent mass, reduced integration of stiffness
3) CO: consistent mass, 1-point integration of mass and stiffness
4) CO: lumped mass, full integration of mass and stiffness
5) CO: lumped mass, reduced integration of stiffness
6) CO: lumped mass, 1-point integration of mass and stiffness
7) C1: consistent mass, full integration of mass and stiffness

(with rotatory inertia - Rayleigh)
8) C1: consistent mass, full integration of mass and stiffness

(without rotatory inertia - Bernoulli-Euler)

Table C. 1. Free vibration, case 1, parameter set 1.

Mode Numel=1 Numel=2[Numel=4 Numel=8 Numel=16INumel=32[ B. E.
1 171.0 101.0 58.5 40.3 34.2 32.5 32.1
2 6820.0 687.0 375.0 247.0 207.0 196.0 201.1

3 6860.0 1100.0 678.0 553.0 520.0 563.2
4 7040.0 2310.0 1310.0 1030.0 953.0 1103.7
5 6870.0 2130.0 1600.0 1470.0 1824.5

6 1 7100.0 3110.0 2260.0 2040.0

7 7510.0 4170.0 3000.0 2660.0
8 7980.0 5070.0 3800.0 3310.0

9 6880.0 4660.0 3980.0
10 7140.0 5570.0 4680.0
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Table C.2. Free vibration, case 2, parameter set 1.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=321 B.E.

1 31.4 32.6 32.1 31.9 31.9 31.9 32.1
2 5920.0 331.0 222.0 199.0 194.0 192.0 201.1
3 4400.0 745.0 560.0 521.0 512.0 563.2
4 6680.0 1820.0 1110.0 972.0 940.0 1103.7
5 ... .. 4810.0 1870.0 1530.0 1450.0 1824.5
6 6100.0 2830.0 2170.0 2020.0
7 6650.0 3940.0 2890.0 2630.0
8 6900.0 4970.0 3680.0 3280.0
9 6850.0 4530.0 3950.0
10 7000.0 5440.0 4640.0

Table C.3. Free vibration, case 3, parameter set 1.

Mode Numel=l Numel=2 Numel=8 Numel=16 Numel=32 B.E.

1 36.3 34.2 32.5 32.0 31.9 31.9 32.1
2 6830.0 549.0 245.0 203.0 195.0 193.0 201.1
3 6930.0 1020.0 591.0 527.0 513.0 563.2
4 7570.0 4190.0 1240.0 994.0 945.0 1103.7
5 6920.0 2280.0 1580.0 1460.0 1824.5
6 7300.0 4020.0 2290.0 2040.0
7 9800.0 6700.0 3130.0 2680.0
8 14700.0 6910.0 4120.0 3350.0
9 7390.0 5290.0 4070.0
10 _ " 7820.0 6590.0 4830.0

Table C.4. Free vibration, case 4, parameter set 1.

Mode Numel-l Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B. E.

1 140.0 93.5 57.3 40.1 34.2 32.5 32.1
2 468.0 328.0 240.0 207.0 198.0 201.1

3 825.0 634.0 554.0 530.0 563.2
4 ....... . 1340.0 1150.0 1020.0 979.0 1103.7
5 ........ 1720.0 1570.0 1510.0 1824.5
6 .............. _2270.0 2160.0 2100.0
7 2730.0 2760.0 2720.0
8 3030.0 3360.0 3360.0

9 3930.0 4000.0
10 4450.0 4640.0
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Table C.5. Free vibration, case 5, parameter set 1.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.

1 25.7 29.9 31.4 31.8 31.9 31.9 32.12 25.7 229.0 193.0 194.0 194.0 194.0 201.1

3 562.0 524.0 522.0 521.0 563.2
4 1210.0 982.0 967.0 965.0 1103.7
5 1530.0 1500.0 1490.0 1824.5

6 2110.0 2080.0 2080.0
7 2630.0 2680.0 2700.0
8 3000.0 3280.0 3340.0
9 3860.0 3970.0
1 0 4390.0 4610.0

Table C.6. Free vibration, case 6, parameter set 1.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.

1 25.7 29.9 31.4 31.8 31.9 31.9 32.1
2 229.0 193.0 194.0 194.0 194.0 201.1

3 562.0 524.0 522.0 521.0 563.2
4 1210.0 982.0 967.0 965.0 1103.7
5 1530.0 1500.0 1490.0 1824.5
6 2110.0 2080.0 2080.0
7 - 2630.0 2680.0 2700.0
8 3000.0 3280.0 3340.0
9 3860.0 3970.0
10 4390.0 4610.0

Table C.7. Free vibration, case 7, parameter set 1.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.
1 32.2 32.0 32.0 32.0 32.0 32.0 32.1
2 310.0 200.0 199.0 198.0 198.0 198.0 201.1
3 661.0 550.0 546.0 546.0 546.0 563.2
4 1770.0 1060.0 1050.0 1040.0 1040.0 1103.7
5 1900.0 1680.0 1670.0 1670.0 1824.5
6 2920.0 2440.0 2410.0 2410.0
7 4370.0 3300.0 3250.0 3240.0
8 6130.0 4220.0 4150.0 4140.0

9 5630.0 5110.0 5090.0
10 6800.0 6120.0 6090.0
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Table C.8. Free vibration, case 8, parameter set 1.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B. E.
1 32.2 32.1 32.1 32.1 32.1 32.1 32.1
2 318.0 203.0 201.0 201.0 201.0 201.0 201.1
3 686.0 568.0 564.0 563.0 563.0 563.2
4 1990.0 1120.0 1110.0 1100.0 1100.0 1103.7
5 2080.0 1840.0 1830.0 1820.0 1824.5
6 3340.0 2760.0 2730.0 2730.0
7 ............... 5300.0 3880.0 3810.0 3810.0
8 8700.0 5160.0 5080.0 5070.0
9 7250.0 6540.0 6510.0
10 9200.0 8190.0 8140.0

Table C.9. Free vibration, case 1, parameter set 2.

Mode Numel-1 Numel=2 Numel-4 Numel=8 Numel=16 Numel=32 B.E.
-I

1 53.7 30.7 15t7 7.9 4.1 2.2 1.0
2 67900.0 215.0 105.0 50.5 25.6 13.9 6.4
3 67900.0 325.0 147.0 72.3 39.0 17.8
4 68000.0 661.0 306.0 144.0 76.6 34.9
5 _ ..... 67900.0 541.0 243.0 127.0 57.7
6 68000.0 863.0 373.0 191.0
7 .......... 68000.0 1240.0 538.0 269.0
8 68100.0 1580.0 741.0 362.0
9 .... _...67900.0 989.0 469.0
10 68000.0 1280.0 592.0

Table C.10. Free vibration, case 2, parameter set 2.

Mode Numel=l Numel=2 Numel=4 Numel.8 Numel-16 Numel-32 B. E.
-

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 58800.0 11.7 7.4 6.6 6.4 6.4 6.4

3 39600.0 28.4 19.9 18.3 17.9 17.8
4 66100.0 121.0 43.9 36.8 35.3 34.9
5 22500.0 86.0 63.2 58.9 57.7
6 51500.0 163.0 99.2 88.9
7 63400.0 331.0 147.0 126.0
8 67500.0 913.0 210.0 170.0
9 14400.0 294.0 222.0
10 32600.0 406.0 283.0
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Table C. 11. Free vibration, case 3, parameter set 2.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.

1 1.2 1.1 1.0 1.0 1.0 1.0 1.0

2 67900.0 19.5 8.2 6.8 6.5 6.4 6.4
3 67900.0 41.3 21.1 18.5 18.0 17.8

4 168000.0 324.0 49.7 37.8 35.5 34.9
5 67900.0 109.0 65.9 59.5 57.7

6 68000.0 255.0 106.0 90.2
7 ....... 68100.0 773.0 161.0 128.0

8 69100.0 4320.0 240.0 175.0
9 ............. 67900.0 354.0 230.0

10 68000.0 525.0 296.0

Table C. 12. Free vibration, case 4, parameter set 2.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.
1 43.9 28.3 15.3 7.9 4.1 2.2 1.0

2 146.0 90.1 48.5 25.3 13.8 6.4

3 238.0 134.0 70.5 38.7 17.8
4 415,0 257.0 138.0 75.7 34.9

5 417.0 226.0 125.0 57.7

6 604.0 336.0 186.0
7 793.0 466.0 259.0

8 939.0 616.0 344.0

9 784.0 441.0

10 ,,, 967.0 549.0

Table C.13. Free vibration, case 5, parameter set 2.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=321 B.E.
1 0.8 0.9 1.0 1.0 1 .0 1.0 1.0

2 7.9 6.3 6.3 6.4 6.4 6.4

3 20.4 18.0 17.8 17.8 17.8

4 78.4 36.7 35.2 34.9 34.9

5 65.6 58.8 57.8 57.7
6 114.0 89.1 86.6

7 212.0 127.0 121.0

8 559.0 174.0 162.0

9 232.0 209.0
10 305.0 262.0
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Table C.8. Free vibration, case 8, parameter set 1.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.

1 32.2 32.1 32.1 32.1 32.1 321 321
2 318.0 203.0 201.0 201.0 201.0 201.0 201.1
3 686.0 568.0 564.0 563.0 563.0 563.2
4 1990.0 1120.0 1110.0 1100.0 1100.0 1103.7
5 2080.0 1840.0 1830.0 1820.0 1824.5
6 3340.0 2760.0 2730.0 2730.0
7 5300.0 3880.0 3810.0 3810.0
8 8700.0 5160.0 5080.0 5070.0
9 7250.0 6540.0 6510.0
10 9200.0 8190.0 8140.0

Table C.9. Free vibration, case 1, parameter set 2.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.

1 53.7 30.7 15.7 7.9 4.1 2.2 1.0
2 67900.0 215.0 105.0 50.5 25.6 13.9 6.4
3 67900.0 325.0 147.0 72.3 39.0 17.8
4 68000.0 661.0 306.0 144.0 76.6 34.9
5 67900.0 541.0 243.0 127.0 57.7
6 68000.0 863.0 373.0 191.0
7 68000.0 1240.0 538.0 269.0
8 68100.0 1580.0 741.0 362.0
9 67900.0 969.0 469.0
10 68000.0 1280.0 592.0

Table C. 10. Free vibration, case 2, parameter set 2.

Mode Numel=1 Numel=2 Numel=4 Numel-8 Numel-16 Numel=32 B. E.

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 58800.0 11.7 7.4 6.6 6.4 6.4 6.4
3 39600.0 28.4 19.9 18.3 17.9 17.8
4 66100.0 121.0 43.9 36.8 35.3 34.9
5 22500.0 86.0 63.2 58.9 57.7
6 51500.0 163.0 99.2 88.9
7 63400.0 331.0 147.0 126.0
8 67500.0 9!3.0 210.0 170.0
9 14400.0 294.0 222.0
10 32600.0 406.0 283.0
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Table C. 11. Free vibration, case 3, parameter set 2.

Mode Numel=1 Numel=2 [Numel=4 j Numel=8 Numel=16 1Nume1=321 B.E.

1 1.2 1.1 1.0 1.0 1.0 1.0 1.0
2 67900.0 19.5 8.2 6.8 6.5 6.4 6.4
3 67900.0 41.3 21.1 18.5 18.0 17.8
4 .. ..... 68000.0 324.0 49.7 37.8 35.5 34.9
5 67900.0 109.0 65.9 59.5 57.7
6 68000.0 255.0 106.0 90.2
7 68100.0 773.0 161.0 128.0
8 _69100.0 4320.0 240.0 175.0
9 ......... 67900.0 354.0 230.0
10 168000.0 525.0 296.0

Table C.12. Free vibration, case 4, parameter set 2.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.
1 43.9 28.3 15.3 7.9 4.1 2.2 1.0
2 146.0 90.1 48.5 25.3 13.8 6.4
3 238.0 134.0 70.5 38.7 17.8
4 415.0 257.0 138.0 75.7 34.9
5 417.0 226.0 125.0 57.7
6 604.0 336.0 186.0
7 793.0 466.0 259.0
8 939.0 616.0 344.0
9 784.0 441.0
10 967.0 549.0

Table C. 13. Free vibration, case 5, parameter set 2.

Mode Numel-1. Numel=2 J Numel=4 Numel=81 Nume 161 Numel=32 B. E.

1 0.8 0.9 1.0 1.0 1.0 1.0 1.0
2 7.9 6.3 6.3 6.4 6.4 6.4
3 --_-----20.4 18.0 17.8 17.8 17.8
4 78.4 36.7 35.2 34.9 34.9
5 65.6 58.8 57.8 57.7
6 114.0 89.1 86.6
7 212.0 127.0 121.0
8 559.0 174.0 162.0
9 232.0 209.0
10 305.0 262.0
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Table C. 14. Free vibration, case 6, parameter set 2.

Mode Numel=1 Numel=2 Numel=4 Numei=8 Numel=16 Numel=32 B. E.

1 0.8 0.9 1.0 1.0 1.0 1.0 1.0
2 7.9 6.3 6.3 6.4 6.4 6.4

3 20.4 18.0 17.8 17.8 17.8
4 78.4 36.7 35.2 34.9 34.9
5 65.6 58.8 57.8 57.7
6 114.0 89.1 86.6
7 212.0 127.0 121.0
8 559.0 174.0 162.0

9 232.0 209.0
10 0 305.0 262.0

Table C.15. Free vibration, case 7, parameter set 2.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B. E.

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 10.0 6.4 6.4 6.4 6.4 6.4 6.4

3 21.7 17.9 17.8 17.8 17.8 17.8
4 63.0 35.4 35.0 34.9 34.9 34.9
5 65.9 58.0 57.7 57.7 57.7
6 106.0 87.2 86.3 86.2
7 168.0 123.0 121.0 120.0

8 275.0 163.0 161.0 160.0

9 _ 229.0 207.0 206.0
1 0 291.0 259.0 257.0

Table C. 16. Free vibration, case 8, parameter set 2.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 10.0 6.4 6.4 6.4 6.4 6.4 6.4

3 21.7 17.9 17.8 17.8 17.8 17.8
4 63.0 35.4 35.0 34.9 34.9 34.9

5 65.9 58.0 57.7 57.7 57.7
6 106.0 87.2 86.3 86.2
7 168.0 123.0 121.0 120.0

8 ....... 275.0 163.0 161.0 160.0

9 229.0 207.0 206.0
10 291.0 259.0 257.0
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C.2 Static Buckling

Static buckling results were obtained for the following cases:

1) CO: full integration of stiffr-ss matrices
2) CO: reduced integration of material stiffness
3) Cl: full integration of stiffness matrices

Included among the tabulated data are the results using the higher order

stress resultants. Table entries have units of stress.

Table C.17. Static buckling, case 1, parameter set 1.

Mode Numel=1 Numel=2 J Numel=4 Numel=8 JNumel=16 Numel=32 B.E.
1 9.80E+05 2.28E+05 7.05E+04 3.28E+04 2.35E+04 2.12E+04 2.06E+04
2 2.62E+06 6.69E+05 2.91E+05 2.04E+05 1.84E+05 1.85E+05
3 1.98E+06 7.78E+05 5.31E+05 4.73E+05 5.14E+05
4 3.55E+06 1.44E+06 9.47E+05 8.35E+05 1.01E+06
5 1 2.19E+06 1.40E+061.22E+06 1.67E+06

Table C. 18. Static buckling, case 2, parameter set 1.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.

1 3.30E+04 2.27E+04 2.10E+04 2.06E+04 2.05E+04 2.05E+04 2.06E+04
2 6.46E+05 2.24E+05 1.87E+05 1.79E+05 1.77E+05 1.85E+05
3 9.11E+05 5.26E+05 4.70E+05 4.57E+05 5.14E+05
4 2.99E+06 1.05E+06 8.51E+05 8.11E+05 1.01E+06
5 .... .1.74E+06 1.28E+06 1.19E+06 1.67E+06

Table C.19. Static buckling, case 3, parameter set 1.

Mode Numel=1 Numel=2 Numel=4 Numel=8 Numel=16 Numel=32 B.E.
1 2.07E+04 2.06E+04 1.06E+04 2.06E+04 2.06E+04 T.o6E+o4 2.06E+04
2 2.68E+05 1.91E+05 1.86E+05 1.85E+05 1.85E+05 1.85E+05 1.85E+05
3 6.42E+05 5.23E+05- 5.1SE+05 5.14E+05 5.14E+05 5.14E+05
4 1.66E+06 1.06E+06 1.01E+06 1.01E+06 1.01E+06 1.01E+06
5 1 1.97E+06 1.68E+06 1.67E+06 1.67E+06 1.67E+06
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Table C.20. Static buckling, case 1, parameter set 2.

Modxe Numel=1 Numel=2 Numel=4 Numel=8 JNumeJ=16 Nume=32(B.E.
1 9.62E+05 2..08E+05 5.03E+04 1.26E+04 3.30E+03 '9.78E+02 2.06E+02
2 ..... .. .2.54E+06 5.00E+05 1.16E+05 2.99E+04 8.81E+033 1.65E+06 3.40E+05 8.39E+04 2.45E+04 5.14E+03

4 __ 3.44E+06I715E+05 1.67E+05 4.83E+04 1.01E404
5 I_11.29E+06 2.83E+05 8.02E+04I 1.67E+04

Table C.21. Static buckling, case 2, parameter set 2.

Model Numel=1 Numel=2 Numel=4 Numel=8 INumel=1 61 Numel=32 B.E.
1 3.33E+02 2.29E+02 2.11E+02 2.07E+02 2.06E+02 2.06E+02 2.06E+02
2 7.76E+03 2.38E+03 1.96E+03 1.88E+03-1.86E+03 1.85E+03
3 ........ .... .... 1.1-9E+04 6.09E+03 5.35E+03 5.19E+03 5.14E+03
4 1.30E+05 1.43E+04 1.09E+04 1.02E+04 1.01E+04
5 _3.14E+04 1.90E+04 1.71E+04 1.67E+04

Table C.22. Static buckling, case 3, parameter set 2.

Mode Numel=I Numel=2 j Numel=4 j Numel=8 'Numel=16INumel=32j B. E.
1 2.07E+02 2.06E+02 2.06E+02 2.06E+02 2.06E+02 2.06E+02 2.06E+02
2 2.68E+03 1.91E+03 1.86E+03 1.85E+03 1.85E+03 1.85E+03 1.85E+03
3 6.42E+03 5.23E+03 5.15E+03 5.14E+03 5.14E+03 5.14E+03
4 1.66E+04 1.06E+04 1.01E+04 1.01E+04 1.01E+04 1.01E+04
5 11.97E+04 1.68E+04 1.67E+04 1.67E+04 1.67E+04

Table C.23. Static buckling, case 1, parameter set 1, higher order terms.

Mode Numel=1 Numel=2 Numel=4 I Numel=8 JNumel=16 Numel=32( B.E.
1 9.78E+05 2.28E+05 7.04E+04 3.28E+04 2.35E+04 2.12E+04 2.06E+04
2 2.60E+06 6.59E+05 2.86E+05 2.01E+05 1.80E+05 1.85E+05
3 1.92E+06" 7.49E+05 5.1OE+05 4.54E+05 5.14E+05
4 1 13.52E+06 1.36E+06 8.91E+05 7.85E+05 1.01E+06
5 ........ 2.06E+06 1.29E+06 1.13E+06 1.67E+06
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Table C.24. Static buckling, case 2, parameter set 1, higher order terms.

Mode Numel=1 J Numel=2 Numel=4 Numel=8 INumel=16INumel=32J B.E.

1 3.29E+04 2.27E+04 2.09E+04 2.05E+04 2.04E+04 2.04E+04 2.06E+04
2 ...... _6.13E+05 2.20E+05 1.84E+05 1.76E+05 1.74E+05 1.85E+05
3 _8.51E+05 5.03E+05 4.51E+05 4.40E+05 5.14E+05
4 2.76E+06 9.70E+05 7.97E+05 7.61E+05 1.01E+06
5 1........... . . ... 1.58E+06 117E+06 1.10E+06 1.67E+06

Table C.25. Static buckling, case 3, parameter set 1, higher order terms.

Model Numel=1_I Numel=2 I Numel=4 I Numel=8 JNumeI=16 Numel=32j B.E.

1 2.07E+04 2.05E+04 2.05E+04 2.05E+04 2.05E+04 2.05E+04 2.06E+04
2 2.61E+05 1.88E+05 1.82E+05 1.82E+05 1.82E+05 1.82E+05 1.85E+05
3 ........ 6.03E+05 4.97E+05 4.89E+05 4.89E+05 4.89E+05 5.14E+05
4 1.42E+06 9.60E+05 9.19E+05 9.16E+05 9.15E+05 1.01 E+06
5 . ................. . 1.65E+06 1.44E+06 1.43E+06 11.43E+06 1.67E+06

Table C.26. Static buckling, case 1, parameter set 2, higher order terms

Modej Numel=l Numel=2 Numel=4 J Numel=8 JNumel=16 Numel=321 B. E.

1 9.62E+05 2.08E+05 5.03E+04 1.26E+04 3.30E+03 9.78E+02 2.06E+02
2 2.54E+06 5.OOE+05 1.16E+05 2.98E+04 8.81E+03 1.85E+03
3 ........... ...... 1.65E+06 3.39E+05 8.39E+04 2.45E+04 5.14E+03
4 3.44E+06 7.14E+05 1.67E+05 4.82E+04 1.01E+04
5 1.29E+06 I 2.83E+05 -8.OOE+04 I 1.67E+04

Table C.27. Static buckling, case 2, parameter set 2, higher order terms.

Mode Numel=1 J Numel=2 Numel=4 Numel=8 JNumel=16Numel=32J B. E.
1 3.33E+02 2.29E+02 2.11E+02 2.07E+02 2.06E+02 2.06E+02 2.06E+02
2 7.75E+03 2.38E+03 1.96E+03 1.88E+03 1.86E+03 1.85E+03
3 1.19E+04 6.08E+03 5.34E+03 5.18E+03 5.14E+03

4 1.29E+05 1.43E+04 1.09E+04 1.02E+04 1.01E+04
5 1 13.13E+04 11.90E+04 1.71 E+04 1.67E+04
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Table C.28. Static buckling, case 3, parameter set 2, higher order terms.

Mode Numel= Numel=21 Numel=4 I Numel=8 Numel=161Numel=321 B.E.

1 2.07E+02 2.06E+02 2.06E+02 2.06E+02 2.06E+02 2.06E+02 2.06E+02

2 2.68E+03 1.91E+03 1.85E+03 1.85E+03 1.85E+03 1.85E+03 1.85E+03

3 6.42E+03 5.23E+03 5.14E+03 5.14E+03 5.14E+03 5.14E+03
4 1.65E+04 1.06E+04 1.01E+04 1.01E+04 1.01E+04 1.01E+04
5 ... I 1.97E+04 1.68E+04 1.66E+04 1.66E+04 1.67E+04

Q.3 Dynamic Buckling

Results tabulated below correspond to the convergence plot shown in

figure 4.23. The exact solution is that of Timoshenko [34].

Table C.29. Dynamic buckling, parameter set 1.

Critical Acceleration

# Elements C IB.E.) C1 Rayleigh CO Full CO Reduced Exact B.E.

1 6574.1 6574.1 196033 6609.3 6530.8
2 6547.4 6547.4 68564 6957.6
4 6532.4 6532.4 22159 6635.2
8 6531.1 6531.1 10388 6520.0
16 6531.1 6531.1 7455 6489.3

3 2 6531.0 6531.0 6722 6481.5
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Appendix D

RMS Finite Element Model

Details are provided for the simplified finite element model of the

remote manipulator arm extracted from the NASTRAN model.

Information given here was used in the finite element formulations derived

in chapter 3 and subsequently used in the dynamic formulation of chapter

2. An example problem is given in chapter 5.

Table D.1. Nodal data for RMS model.

Node # x (in) (in) z (in)
1 0. 0. 0.
2 22.5396 0. 0.
3 34.5396 0. 0.
4 84.7495 0. 0.
5 134.9594 0. 0.
6 185.1694 0. 0.
7 235.3793 0. 0.
8 285.6156 0. - 6.
9 341.2056 0. 0.
10 396.7956 0. 0.
11 452.3856 0. 0.
12 507.9756 0. 0.
13 563.5956 0. 0.
14 581.5956 0. 0.
15 611.5512 0. 0.
16 637.5962 0. 0.
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Table D.2. Element data for RMS model.

Element # Prop Set # Mat'l Set #
1 1 1

2 2 1
3 3 2
4 3 2
5 3 2
6 3 2
7 3 2
8 4 2
9 4 2
10 4 2
11 4 2
12 4 2
13 5 1
14 6 1
15 .7 1

Table D.3. Cross section Properties for RMS model.

Prop. Imy Imz Iy Iz A m k
Set # (slgoin 2) (slgin2)  (in2) (sg/in)

1 .03346 .02792 54.91 45.81 26.27 .01601 .53
2 .03653 .06155 71.81 121.00 30.04 .01528 .53
3 .007259 .007259 66.21 66.21 28.84 .003162 .53
4 .003367 .003367 44.27 44.27 23.59 .001794 .53
5 .002035 .002035 7.22 7.22 9.53 .002685 .53
6 .01025 .01025 17.20 17.20 14.70 .008762 .53
7 .02741 .02741 9.7 9.7 3.51 .009917 .53

Table D.4. Material Properties for RMS model.

Mat'l Set #l E (lb/in2) v
1 1 X 107 .3
2 2.22.x 107 .495
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Appendix E

Solution of Timoshenko Frequency Equation

The analytical formulation of Timoshenko beam theory leads to

much more complicated differential equations than does classical Bernoulli-

Euler beam theory. Kruszewski [39] gives the frequency equation for a

uniform beam with cantilevered boundary conditions as

2-ke (ks + kRI 2) sikB 0 sinh kB a
2-2

V1 -k S5 kRI2 k B

+ [kB 2 k S2 - kRI 2f + 2] cos kBP cosh kBcz 0 (E. 1)

where

ks f-El
L 'VAsG (E.2)

kRI=i I I
L AT (E.3)

El (E.4)

2L (E.5)

P 2 (E.6)

165



Appendix E: Solution of Timoshenko Frequency Equation

along with the definitions:

m = mass of the beam per unit length
AS = effective shear-carrying area
AT = effective total cross-sectional area

ks = coefficient of shear rigidity
kRI = coefficient of rotary inertia
kB = frequency coefficient
(o = natural frequency (rad/sec)

For the beam used in the eigenvalue problems of chapter 4,

AS= AT. The roots of the frequency equation (E.1) must be determined

by numerical methods, and natural frequencies subsequently found using

equation (E.4). For the property sets defined in chapter 4, the natural

frequencies corresponding to the first 5 vibration modes are obtained from

Timoshenko beam theory and are shown in table E.l.

Table E. 1. Natural frequencies from Timoshenko beam theory.

Natural Frequency

Mode Parameter Parameter
Set 1 Set 2

1 31.88 1.01
2 192.07 6.36
3 508.58 17.79
4 929.37 34.83
5 1424.45 57.50

These values may be compared with the Bernoulli-Euler results

tabulated in Appendix C. Note that shear and rotatory inertia have the

effect of reducing the natural frequencies. For parameter set 1, the
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frequency of mode 5 is reduced by 20%. Almost no difference is observed

for parameter set 2.

The natural frequency data for the CO element (parameter set 1 only)

is normalized by the Timoshenko solution and shown in figures E.1-E.5

below. The analogous figure from chapter 4 is indicated, and serves as

comparison. The magnitude of the shear and rotatory inertia effects was

demonstrated earlier. Normalization by the Timoshenko solution validates

that the finite elements are producing the correct result.

The slow convergence of all modes using full integration is again

noted in figure E.1. This demonstrates the problem of 'shear locking.'

Figure E.2 shows the improvement in mode 1 convergence achieved

through the use of reduced integration of the stiffness matrix.

Note figures E.4 and E.5. Rotatory inertia is not present in the

lumped mass assumption. The convergence to higher frequencies than

predicted by the Timoshenko solution are directly attributable to the

exclusion of rotatory inertia in the finite element model.

The Rayleigh and Bemoulli-Euler finite element results are shown in

figures E.6 and E.7. From these figures it is seen that, (a) the frequencies

are higher than predicted by Timoshenko beam theory, and (b) the

frequencies are reduced by the inclusion of rotatory inertia (figure E.6).

The difference remaining in figure E.6 is attributable to the exclusion of

shear in the finite element model.
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2D C-zero Cantilever Beam: Consistent Mass,
Full Integration, Parameter Set 1

1.5M
-in Mode I

-'-- Mode 2
- Mode 4

-3 -- Mode 5

1.0 -- - - - -

0.5 .

0 10 20 30 40

# Elements

Figure E. 1. Convergence plot normalized by Timoshenko frequencies;
analogous to figure 4.1.
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2D C-zero Cantilever Beam: Consistent Mass,
Reduced Stiffness, Parameter Set 1

-- w- MOde I
-,---- Mode 2
-u---Mode 3

1.-

0.5~ _ _ _

0 10 20 30 40

# Elements

Figure E.2. Convergence plot normalized by Timnoshenko frequencies;
analogous to figure 4.3.
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2D C-zero Cantilever Beam: Consistent Mass,
1-Point Integration, Parameter Set 1

1.5-_ _ _ _ _ _ _ _ _

-i-- Mode 1
----- Mode 2

-w- Mode 3
____ _ ____ -. Mode 4

-- a Mode 5

: 1.0-

22 C

E

0.5-
0 10 20 30 40

# Elements

Figure E.3. Convergence plot normalized by Timoshenko frequencies;
analogous to figure 4.5.
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2D C-zero Cantilever Beam: Lumped Mass,
Full Integration, Parameter Set 1

1.5 r
-i---- Mode 1

---- Mode 2
-in----Mode 3

____ _ __ ___ --- Mode 4

--- Mode 5

6 1.0 - ----- ---- --- -_- --- --

0.5 _____

0 10 20 30 40

# Elements

Figure E.4. Convergence plot normalized by Timoshenko frequencies;
analogous to figure 4.7.
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2D C-zero Cantilever Beam: Lumped Mass,
Reduced Stiffness, Parameter Set 1

1.5
-a Mode I

-- Mode 2
-. Mode 3

* __ ___ ___ _ __ ___ ____ _ _ ____ - - - Mode 4

* -a-Mode 5

U-3

Z 1.0- _ _ _ _ _ _ _ _ _

0.5
0 10 20 30 40

# Elements

Figure E.5. Convergence plot normalized by Timoshenko frequencies;
analogous to figure 4.9.
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2D C-one (Rayleigh) Cantilever Beam:
Consistent Mass, Full Integration,
Parameter Set 11.5'____

a Mode 1

-,--- Mode 2
- - Mode 3

* Mode 4
=- Mode 5

- ----- -- -

I---- - -------------- _

1.0 - .

0
Zt

0.5
0 10 20 30 40

# Elements

Figure E.6. Convergence plot normalized by Timoshenko frequencies;
analogous to figure 4.11.
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2D C-one (Bern-Euler) Cantilever Beam:
Consistent Mass, Full Integration,
Parameter Set 1

1.5

. -

z

• ' Model

Mode 2
= Mode 3

- Mode 4
-- Mode 5

0.5 '
0 10 20 30 40

# Elements

Figure E.7. Convergence plot normalized by Timoshenko frequencies;
analogous to figure 4.12.
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Appendix F

Gauss Quadrature [23]

The spatial integrals arising in the finite element method are

conveniently evaluated using numerical integration procedures. An

efficient scheme is of considerable importance in reduction of both

computational time and cost. Gauss quadrature is such an optimal

procedure. Integrals such as given by equations (3.3.15), (3.3.16), and

(3.5.5) are transformed such that

I = f(x)d --+ I = f(,() d4

where f(x) is representative of an arbitrary element of the matrix triple

product and g(4) is the transformed integrand. The transformation

involves the Jacobian, which was discussed in chapter 3. In one !:mension,

the quadrature formula is given by

I = f g(4) d4 =w g(4)+ W2 g(42) +" + Wn An )(F2
11 (F.2)

where

g(4) = transformed function to be integrated
4i= sampling points
wi = weights
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In Gauss quadrature, the sampling points and weights are prescribed

such that maximum accuracy is achieved for a given n. Sampling points

are symmetric about the center of the interval and are unevenly spaced.

Symmetric points have the same weight. Exact integration is often

referred to as 'full integration', whereas 'reduced integration' usually

refers to an order of integration one less than required for full integration.

The order of integration is governed by the rule: a polynomial of degree

(2n - 1) is integrated exactly by n-point Gauss quadrature.

The mass and material and geometric stiffness matrices, derived in

chapter 3, are evaluated by Gauss quadrature. The integration order

required for exact integration can be determined from examination of the

matrix elements which constitute the integrand, along with the above rule.

The integration rule for the beam elements is summarized in table F. 1.

Table F.1. Integration rule for beam finite elements.

Element Mass Matrix Stiffness Matrix

Formulation Full Full Reduced

Cl 4-point 3-point 2-pointt

CO  2-point 2-point 1 -point

tin practice, reduced integration is not necessary in C1 elements.
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