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ABSTRACT

N

Systematic investigation is made of effects of kinematic assumptions and
finite element approximations in the context of nonlinear flexible
multibody dynamics. Two nonlinear beam finite elements are consistently
derived from virtual work principle using Bernoulli:Euler and
Timoshenko beam kinematics. Initial assessment is made by studying
convergence properties of element formulations with eigenvalue problems:
free vibration, static buckling, and dynamic buckling. Equations of motion
are derived for rigid central body with flexible appendage using virtual
work principle. Virtual work principle allows natural and consistent
discretization of flexible appendage using finite element method.
Nonlinearities in flexibility are explored through dynamics examples using
beam finite elements. Application of dynamics formulation is made to a
realistic scenario involving space shuttle remote manipulator arm with
attached payload. Contribution of nonlinear theory, in both formulation
and solution, is assessed.
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Chapter 1. Introduction

Chapter 1
Introduction

1.1 Purpose/Objective of Present Work

Increasingly, formulations for flexible multibody dynamical systems
are employing the finite clement method in the discretization of the flexible
domain. Embedded in the finite element method are assumptions regarding
the assumed displacement field, and additional approximations such as mass

lumping and reduced integration over the spatial domain.

A study is conducted to address the application of finite element
discretization in flexible multibody dynamics. The virtual work principle
is chosen as the basis for derivation of the equations of motion for a simple
class of satellite-type vehicles. The reasons for choosing the virtual work

principle are threefold:

« an integral representation of the governing equations of
motion is embedded in the virtual work principle,

» the virtual work principle allows decomposition of dynamic
system into rigid and flexible portions,

» the virtual work principle is a basis for the finite element
method.

Kinematic assumptions and finite element approximations are
investigated in a dynamics context through a series of eigenvalue problems.
The approach emphasizes understanding of the behavior of consistently
derived finite elements rather than demonstrating one formulation over

another. The consistent derivation of nonlinear finite elements allows an
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/
assessment of such ‘inconsistent’ assumptions as lumped mass and reduced
integration. Such in-depth study of the behavior of finite elements in

dynamics is not widely available in the literature.

Multibody dynamic formulations are inherently nonlinear due to the
large rotations of reference frames in inertial space. When coupled with
the possibility of nonlinear flexibility, the importance of one effect
compared to another is unclear. The available literature is not clear in the
meaning of ‘nonlinear’ solutions, since nonlinearity arises from both
inertial and flexibility considerations. Researchers have not taken an
engineering perspective; they have not made explicit statements regarding
the most important effects, i.e. which effects are essential to capture the
physics of the problem. The nonlinear equations of motion developed in
this thesis are applied to dynamic problems with an eye toward
understanding the separate effects of forcing terms and the relative

importance of nonlinear flexibility.

hesi verview

Chapter 2 derives exact integral equations of motion for a vehicle
composed of central rigid body with a rigidly attached flexible appendage.
Assumptions of lumped mass and lumped mass/inertia are employed to
yield equations of motion which are suitable for time integration using an
implicit scheme. Solution of these equations allows assessment of the
influence of centrifugal and Coriolis forcing terms and importance of

nonlinear flexibility (geometric stiffness).
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In chapter 3, two nonlinear beam finite elements are consistently
derived from the virtual work principle. Bemnoulli-Euler and Timoshenko
beam kinematics are employed to give isoparametric beam finite elements
with C! and CO continuity, respectively. It is shown that consistent
derivation produces higher order stress resultants in the geometric stiffness
matrix, which are generally ignored. For completeness, consistent nodal

loads are also derived.

Systematic assessment of beam finite elements is made in chapter 4
through eigenvalue problems which include free vibration, and static and
dynamic buckling. Effects of beam kinematics and finite element
assumptions are explored in detail and compared with the analytical
solution from Bernoulli-Euler beam theory. Results provide insight into
modelling considerations typical of scenarios arising in flexible multibody

dynamics.

Nonlinear dynamic problems are addressed in chapter 5 using the
lumped mass/inertia formulation of chapter 2. Two examples are
considered: the beam spin-up problem, and a realistic application
involving the orbiter/remote manipulator system (RMS). System response
is evaluated in terms of the level of discretization, and the contribution of
nonlinear effects is addressed. Nonlinear effects due to rigid body motion
coupled with flexible deformations are differentiated from flexible
nonlinearity associated with tangent stiffness matrix. Gross overall motion

of the system and flexible natural frequency are considered independently.

Six appendices are included for completeness. Stress resultants

which arise in beam elements are considered in Appendix A. In Appendix
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B, the Newmark integration scheme is derived for linear systems and an
incremental form with Newton/Raphson iteration is derived for solution of
nonlinear systems. Introduction to the explicit Runge-Kutta integration
scheme is also given. Convergence data is tabulated for future reference in
Appendix C. Details of the RMS finite element model are given in
Appendix D. In Appendix E, the Timoshenko frequency equation
(cantilevered boundary conditions) is solved, and the natural frequency
convergence plots repeated with alternative normalization. Finally, a brief

overview of Gauss quadrature is given in Appendix F.

1.3.1 Beam Theory/Finite Elements

Classical Bernoulli-Euler beam theory is known to overpredict the
natural frequencies for higher modes of vibration. It also tends to
overpredict natural frequencies for al/l modes for thick beams
(length/thickness < 10). The first problem was alleviated by Rayleigh [1],
who introduced rotatory inertia of the beam cross-sections. An additional
modification was introduced by Timoshenko [2, 3], allowing description of
cross-section and neutral axis rotation by independent angles, thus allowing

the beam to undergo shearing deformation.

The literature has focused on Timoshenko beam theory, from both
analytical and finite clement standpoints. The partial differential equations

resulting from Timoshenko’s theory are difficult to solve for anything but
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prismatic beams with simple boundary conditions. Huang [4] derives
frequency and normal mode equations for uniform, isotropic beams with
simple boundary conditions. Noting the difficulty of solving the frequency
equations, he introduces the ‘frequency chart’, which, for a given set of
beam parameters, provides a correction factor to be applied to the
Bernoulli-Euler solution for natural frequency. Frequency charts provide
a quick and convenient measure of the influence of rotatory inertia and
shearing deformation. Leckie and Lindberg [5] studied the effect of
lumped mass assumptions on beam natural frequencies using finite

difference expressions.

In the finite element literature, much emphasis has been placed on
the development of higher order Timoshenko beam elements. Higher
order elements [6, 7, 8] were necessary in order to satisfy all geometric
and natural boundary conditions of a Timoshenko beam. The simplest
shear deformable beam possible was introduced by Hughes et. al. [9].
Convergence and accuracy were demonstrated for static problems. Shear
locking was avoided by use of selective reduced integration. Consistent
assessment of finite element approximations for dynamics has not been

undertaken in the literature.

Iti nami

Review and chronology of the rigid and flexible multibody dynamics
literature is widely available {10, 11, 12] and will not be repeated here.
The literature can be further partitioned according to the intended

application. Mello [10] separated the literature into the following groups:
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spacecraft, mechanisms, and robotics. There exists a body of literature
whose multibody formulations are demonstrated using beam finite

elements. A selection of these will be addressed.

Ryan [13] investigated a deficiency of conventional general flexible
multibody programs (such as DISCOS, NBOD, TREETOPS, ALLFLEX),
which fail to correctly capture the stiffening effect of rapidly spinning
systems. He extended the assumed modes formulation and demonstrated
the new theory by application to a deployment maneuver and the beam
spin-up problem. Simo & Vu-Quoc [14, 15] developed equations of motion
for a flexible beam undergoing large overall motions. In [15], the spin-up
problem is addressed among other examples. Quadratic beam finite
elements are used in the discretization of the flexible domain. However, no
discussion is given regarding the essential features governing the correct
response. Ider & Amirouche [16] also develop an algorithm for multibody
systems using assumed modes and Kane’s equations. Their formulation is
tailored for structures with variable cross-section beam elements. They

also consider the spin-up problem in their numerical examples.

Taking an analytical approach, Silverberg & Park [17] explore
contributions of Coriolis and centrifugal forcing terms in the response of
maneuvering spacecraft. Through development of stiffness operators, they
compare natural frequencies of a spinning beam achieved by linearization
about both static and dynamic equilibriums. They show that linearization
about the dynamic equilibrium (same as including geometric nonlinearities)
has an important effect when certain nondimensional spin and material

parameters are exceeded.
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Chapter 2
Flexible Body Formulation

This chapter develops the equations of motion for a rigid body with
attached flexible appendage, without articulation, using the principle of
virtual work. The governing equations are consistently derived, so that all

terms are retained.

Since the virtual work principle is the basis for the finite element
formulation, it is natural and consistent to discretize the flexible appendage
using the finite element method. In this chapter, lumped mass
(3 DOFs/node) and lumped mass/inertia (6 DOFs/node) assumptions are
employed in the treatment of the mass distribution of the flexible
appendage. Lumped masses are located at the nodes resulting from finite
element discretization of the appendage stiffness. These assumptions lead
to equations of motion which can be expressed in a convenient matrix
form. The exact governing equations could also be fully developed using

finite element method, as has been done in the literature [14, 15, 18].

The assumption of rigid central body allows governing equations of
motion to be derived with respect to the body fixed frame. Alternatively,
consideration of a free floating deformable body requires the application of
conservation of linear and angular momentum [18], or other corotating
frames [19, 20].

Equations derived in this chapter are quite general in nature, and can

be applied to a wide class of problems. Many satellites, as well as the space
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shuttle, can be approximated by the rigid central body assumption. The
only restriction on the flexible appendage is the fixed, or cantilevered
boundary condition, relative to the rigid body. Example problems using
the lumped mass/inertia formulation are considered in chapter 5, where the
flexible domain is discretized using the beam finite elements derived in

chapter 3.

i__Vehicle ldealization

Figure 2.1. Rigid body with flexible appendage.
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where

o
!

inertial reference frame
¥, = body fixed reference frame

VR = rigid body domain
Vg = flexible body domain, reference configuration
Er(t) = material coordinate of rigid particle with respect to
inertial frame
Er(t) = material coordinate of flexible particle with respect to

inertial frame
R(t) = inertial position of body frame

rrR = rigid particle position with respect to body frame
re(t) = reference flexible particle position with respect to body
frame
¢ = rigid c.m. with respect to body frame
s(t) = vehicle c.m. with respect to body frame
n(t) = displacement of flexible particle due to deformation

Figure 2.1 shows a rigid body with attached flexible appendage in
inertial space. The form of the appendage is arbitrary, as suggested by the
figure. In practice, the body fixed reference frame is located as a matter
of convenience, and is not normally coincident with the rigid body c.m. or

the vehicle c.m.

. incipl Virtual Work

The principle of virtual work is a statement that for a body in
equilibrium under the action of prescribed body and surface forces the
work done by these forces through a kinematically admissible displacement
is equal to the change in internal virtual work. In combination with

D'Alembert's principle, the virtual work principle can be expressed as
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5Wext=f5§-(f-pé) dV+ Sgtds-:f&:o dV:SWinl
v So v (2.2.1)

where, in addition to the quantities previously defined,

f = body force (force/volume)

t = surface traction applied over Sg
p = density

€ = strain

G = stress

The virtual work statement is evaluated as the sum of two parts;
integration over the rigid central body and integration over the flexible

appendage.

rix_Notati

In forming the virtual work expression, several vectors must be
defined. When the dynamic system involves more than one reference
frame, as is the case for the vehicle of figure 2.1, it is helpful to use a
notation which explicitly identifies the frame in which vector components
are expressed. Toward this end, the vectrix notation [21] is used. A vector
can be written as the multiplication of two column matrices: one
containing the vector components, the other the frame unit directions. For

example, an arbitrary vector v can be expressed in some reference frame

¥ ., whose basis vectors are a;, ay, a3, as

~ ~~ o~~~ T
v=viai+vay+viaz=F, v=vIF, (2.3.1)
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Differentiation of vectors involving multiple reference frames
introduces the vector cross product. It is convenient to express this
operation as a matrix multiplication, in conjunction with vetrices. The
cross product of arbitrary vectors u and v, both expressed in Fa, is given

by

uxv=ulF,xF, v=F, (uv) (2.3.2)

where v is the same as above and the components of u have been formed

into the skew symmetric matrix given by

0 -u3 u
ux = us 0 -u
-U2 |18} 0 (2.3.3)

The inertial time derivative of the frame is also an important

relationship and is given by

- T T T T
Fo =@™F, xFp, =F, * (2.3.4)
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4 hicle Kinemati

From figure 2.1, the inertial positions of rigid and flexible material

particles are given by the vectors
Er=R+rr (2.4.1)
EF=R+rE+1 (2.4.2)

Inertial accelerations are obtained through time differentiation of the

position vectors. Let dit( ) denote time differentiation in the inertial frame,

and () indicate time differentiation in the body fixed frame.

Differentiation of equation (2.4.1) gives

o= d LR+d_l‘&}
SR=gla e

(2.4.3)

where it is convenient to let u = %, the inertial velocity of the body fixed

frame. Now expressing components of u and %‘3— in the body fixed frame

allows the derivative to be written as

. T T
S = ﬂfb 4 fiif [ r—R)} (2.4.4)

Application of the chain rule and using the vectrix notation gives the finai
form of the inertial acceleration of an arbitrary rigid material particle.
The acceleration of an arbitrary flexible particle follows in an analogous

manner.

¥ TT. . T
Er=Fp [0+0 u+d" rp + 00 r|=Fy 2 (2.4.5)
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§p=FbT[Q+@_Xu+@"(r_F+m+2@n+g><g><(gg+n)+r‘_1] sj-‘ngE

(2.4.6)

Virtual displacements are obtained through variation of the position

vectors, and can be expressed as

8Er = Fy [Ox + 80 rg (2.4.7)
8&r =Fy [5x + 8n + 80 (re + 1) (2.4.8)
where

IR, [F, 1 = components of IR, I'F, 7, expressed in the body fixed

u

[0}
ox
30

on

T

Fr =

frame

components of the inertial velocity of the origin of the
body fixed frame

components of the inertial angular velocity of the body
fixed frame

components of the variation of inertial position vector R
components of angular variation which arises as a
consequence of rotation of the body frame with respect to
the inertial frame

components of the variation of the relative displacement
vector M

[ by By by |

All components defined above are expressed in the body fixed frame,

Fb. Note that the acceleration of a flexible particle has a high degree of

coupling between rigid body motions and flexible deformations.
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vernin ion

The governing equations of motion are obtained by substituting

equations (2.4.5)-(2.4.8) into equation (2.2.1). Evaluation of equation

(2.2.1) produces terms which can be grouped according to the variation

(8x, 69, or 611) multiplying each. Because of the arbitrariness of the

variations, each group must independently be equal to zero. Thus the

following three sets of governing equations are obtained.

Recall that no restrictions have been imposed regarding the physical

shape of the flexible appendage, or on the form of the relative

displacements 1.

Body Frame Translation (6x):

E+f f_pdV+f tr dS = mu + m@* y + m@> ¢ + mE* W* ¢
Ve Sop

+2mxf pﬂdV+f p7 dV
Vp Vp

Body Frame Rotation (08):

I+f (r_!=.+n)xff_dV+f (re + M) tg dS = m¢* 4 + mg* @* u
Vp So

F

+l@+m"lm+2f

Vg

p(zzﬂl)*@"ﬂdV*ff p(re + M) 1 AV

Ve
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(2.5.2)
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Flexible Appendage DOFs (31):

f&ﬂngdV+f 8nTt_p_dS=f SHTpdVQ+f
Ve SoF Ve Ve

+f SHTQ)_X(Q_:_+H)pdV+2J

+f on" @* @ (rg + M)p dV+f
VF

&n'p dVe* u

&n' @* fp dV

e

&' fip dV+f e:0 dV

Vr 4

lpm=f p(rr + M) @ (rr + M) AV
Ve

30

(2.5.3)

(2.5.4)
(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

(2.5.11)
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0> ,I.ng=f p(re + NJ ©* @* (rg + M) dV

(2.5.12)

along with the following definitions:

E

!

components of total force acting through body frame
origin, due to body forces (FB) and surface

tractions (Ft), expressed in the body fixed frame
components of total torque acting about body frame
origin, due to body forces (TB) and surface

tractions (TT), expressed in the body fixed frame
instantaneous inertia matrix of the vehicle about the body
fixed frame due to rigid body (Ir) and flexible body (Ir),
expressed in body fixed frame

components of body forces acting on flexible body,
expressed in body frame

components of surface tractions acting on flexible body,
expressed in body frame

total vehicle mass (mg + mg)

Equations (2.5.1)-(2.5.3) are an exact set of equations governing the

idealized vehicle of figure 2.1. Discretization of the flexible domain stems

from these equations. Two lumped parameter approximations will be

considered: (a) discretization of the flexible domain into a collection of

point masses (no rotatory inertia) interconnected by massless springs, and

(b) extension of the previous model to include rotatory inertia.

In practice, mass is concentrated at locations corresponding to finite

element nodes, which allows the use of the finite element stiffness matrix.

For 3-D finite elements, condensation technique must be used to make the

stiffness matrix compatible with approximation (a).
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Finite element discretization can also be consistently applied to all
integrals in Equations (2.5.1)-(2.5.3). Derivation is straightforward, but
the solution procedure is more involved than lumped mass assumptions,
and is therefore not considered here. This approach has been used to
derive equations of motion and demonstrated through simple problems

using quadratic beam elements [18].

ith mass particle ui
Ni =G =| Vi

Wi

Figure 2.2. Lumped mass discretization of the flexible appendage.

Schematic representation of this assumption is shown in figure 2.2,
where the solid line represents the surface of the flexible appendage. The
flexible domain is modelled with a finite number of point mass particles,
connected by massless springs. Mathematically, this is a straightforward
process whereby the integrals in equations (2.5.1)-(2.5.3) over the flexible
domain are replaced by summations over the number of mass particles.
The location of lumped masses correspond to the nodal locations of the

finite element discretization of the flexible domain.
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N
ff(n,n,mo &V >3 £ do i) m
ve i=1

(2.6.1)

where

gi = ith nodal displacements (translations only), expressed in

the body fixed frame
corresponding lumped mass

mj

The motion of a lumped mass is fully described by three translations.
For 3-D finite element models of the flexible domain which include
rotations as nodal DOFs, condensation technique must be used to remove
rotational DOFs from the stiffness matrix. Consistent with the lumped
mass approximation, external loads on the flexible body are also ‘lumped’
at the nodes. The exact governing equations (2.5.1)-(2.5.3) are simplified
through the lumped mass assumption to give

N N

F=mil+mo*u+m@ c+m*@*c+2) m® g+ md
i=1 i=1 (2.6.2)
N

T=mc*i+me* 0 u+ld+@ lae+2) m+qf g

i=l

N
+ 2, mi(ri+ g §i
i=1 (2.6.3)
fi = mil + mi@* u + mi@* (rj + q) + MO* @* (r; + qi) + 2mMi* G
N
+ migi + Y, Kij qi i=12,.N
=1 (2.6.4)
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where

=
|

= reference position of ith node, components in the body
fixed frame

= lumped nodal forces

= assembled stiffness matrix (rotation condensed out)

Rt
I

Equations (2.6.2)-(2.6.4) are valid for nonlinear flexible systems by
interpretation of the stiffness matrix as the tangent stiffness matrix. An
alternative derivation of the lumped mass equations of motion are provided
in [22].

2.6.1 Equations of Motion

Equations (2.6.2)-(2.6.4) are the lumped mass equations of motion,
comprising (6+3N) scalar equations. These equations can be recast into a

single matrix equation of motion which can be numerically integrated.
MU+ KU =R (2.6.5)

It is natural to partition the matrix equation into rigid and flexible body

contributions and rewrite equation (2.6.5) as

{MRR MRF}[ Ug }_‘.[ 0 O }[ Ur }_[ RR"'RRF}

M Mg | U 0 Kgll Us Rr (2.6.6)
where

U [’*

(6x1) Q (2.6.7)

34




U =
(BNx1)
- 0 .
m -mgX
0 m
Mgr =
(6%6)
mg* 1
_ m,
m;i
m
Mpp =
(3Nx3N)
my
mN
B m;i 0 0 mN
0 m 0 0
0 0 my 0
Mgr =
(6x3N)
my(ry + Qi)

R. = E-m@*u-m*@*c
R ——
(6x1) T-m*o*u-0*la
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C o x ‘
-22 m; ®* g_,
Rpr = =1
(6x1) N )
-2y, mi(ri + qf @* G
L =l N (2.6.13)
fl -me*u-me* ©*(r +qi)- 2me* q;
RF = :
(3Nx1) )
fN - mN@* u - mMN@* @ (y + gN) - 2mN©* N (2.6.14)

Note that the mass matrix M is symmetric, positive definite; the
stiffness matrix K is symmetric, positive semi-definite and allows rigid
body motion. Numerical solution can be obtained in a number of ways.
For linear systems, transformation can be made to modal space, which
allows truncation of both system size and high frequency modes. Modal
reduction is generally not possible for nonlinear flexible systems. Thus
direct integration is preferred in the present context. Also the effect of

various terms can be more readily assessed in physical space.

The methods available for direct integration of equation (2.6.5) can
be classified into explicit and implicit schemes. Explicit schemes are
conditionally stable and require very small time steps to integrate the
highest frequencies accurately [23, 24]. Implicit schemes are advantageous
because they are unconditionally stable and the step size can be chosen on
the basis of accuracy only. This generally allows a much larger step size
than would be required by explicit schemes. Because of the relaxed
integration step size afforded by unconditionally stable implicit schemes,
the Newmark integration method is implemented in the examples of

chapter 5. Details of the Newmark scheme are outlined in Appendix B.
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2.7 m M Inertia A mption

ith nodal body

Figure 2.3. Lumped mass/inertia discretization of flexible appendage.

As in the previous derivation, integrals over the flexible domain are
replaced by summations over a finite number of nodes. The nodes are now
treated as small rigid bodies; they are no longer mass particles, but have
both mass and inertia. Six quantities are required to describe the motion of

each node.

Massless springs connect the nodal bodies just as in section 2.6. In
practice, the finite element stiffness matrix provides information regarding
interconnecting forces. The lumped mass/inertia formulation, as
constrasted with the lumped mass formulation, has the advantage that finite
element DOFs are used directly; no condensation is required in the

numerical solution.
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2.7.1 Kinematic Description

undeflected deflected
configuration configuration

Figure 2.4. Relative displacement of ith nodal body.

Consider the rigid nodal body shown in figure 2.4 with an arbitrary
material particle labelled “a” in the undeflected configuration, “A” in the
deflected configuration. As measured with respect to the body fixed
frame, the nodal body undergoes infinitesmal translation and rotation in
moving to the deflected configuration. The location of an arbitrary

material particle in the undeflected configuration is given by
rE =TFo + A (2.7.1)

where rgo is the location of the nodal body reference frame in the

undeflected configuration. The nodal body reference frame is aligned with

the body fixed reference frame in the undeflected configuration.
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In the deflected configrration, the location of A is given by

RE=Rpo+A=rgo+q + A (2.7.2)

where RFEo is the location of the nodal body reference frame in the
deflected configuration. The relative displacement undergone by a

material particle in moving from a to A is then
N=Rp-rp=q+A-A (2.7.3)

Rotation of the nodal body reference frame can be expressed by the

skew symmetric infinitesmal rotation matrix so that

A=CA 2.7.4)
where
l 'ez ey
C=| 96, 1 -6
-0y O 1

Substitution of equation (2.7.4) into (2.7.3) leads to expression of the

relative displacement as

N=q+CA-A=q +(C-IA (2.7.5)
where I is the identity matrix. Now since all vectors are expressed in the
body fixed frame, the component notation is adopted. The matrix (C - I)

above can be compared with the skew symmetric matrix (associated with

vector cross products) introduced in section 2.3. Define
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qr=| €y
0,

so that g =(C -I). Finally, the relative displacement of a material

particle, assuming infinitesmal rotation, can be written as

n=g+qrA (2.7.6)

2.7.2 E ions of Moti

The equations of motion follow from substitution of equation (2.7.6)
into equations (2.5.1)-(2.5.3) and evaluating. Reduction of the exact
equations is complicated somewhat by the form of the relative displacement
given by equation (2.7.6). Some integrals produce higher-order terms
which cannot be given simple physical interpretation. These higher-order
terms are ignored. Details of integrations are not presented, and the

lumped mass/inertia equations of motion in matrix form are given by
{MRR MRFJ Ug }_{ 0 O }[ Ux }_{ RR+RRF:|
Ur 0 K ll Ur Re (2.7.7)

Mg Mg
where all partitions are explicitly defined below. Note that the rigid-rigid

partition is the same as in section 2.6. KFF is the full stiffness matrix
produced by the finite element method. The tangent stiffness matrix is

used for the solution of problems with nonlinear flexibility.

U { ‘,‘}
(6x1) (0] (2.7.8)
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K
gr—l (2.7.9)
Ur = ;
{6Nx1) M
L 9N |
~ O -mgx
m
0 (2.7.10)
Mgr = |
(6x6) o | |
— ml
my
m
I,
my
Mg = mN
(6NX6N) ) |
0
myN
Q
©my IN
) S 1 A
) mN(B_g_+ ‘
ILi .-
Mgp) = e+
6x6N
( L

(2.7.12)
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Re = E-mo*u-me* ¢
6x1) | T-mc*0*u-0*lo (2.7.13)
_ N =
-22 mi®* G
Rer = - .
(&x1) -2% m;(ri + Qu)* @ Gii + 9, @ Lidri
L i=1 i=1 | (2.7.14)
[ f - m@* u- m* @ (1 + qu) - 2m10* gy + hot. |
t; + h.o.t.
R = :
(6Nx1) fiy - M@~ U - MNOX © (N + Gy - 2MN@* §iv + ot
i tn + h.o.t. ]

(2.7.15)

2.8 Extending Symbolic Rigid Body Codes

Implementation of the flexible body formulation can take advantage
of available symbolic rigid body software. These software packages
produce FORTRAN coding of the equations of motion of a user specified
rigid multibody system. Some examples of symbolic manipulation rigid
multibody software include SD/FAST [25], AUTOSIM [26], and
AUTOLEYV [27]. The use of symbolic rigid body codes allows the analyst
to concentrate on a smaller set of ‘hand derived’ equations addressing the
flexible domain [28, 29].

To show how the rigid body subroutines, generated by any one of

the above programs, can be used in the flexible body implementation, the
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partitioned equations of motion (2.6.6) or (2.7.7) are rewritten as a pair of

matrix equations

Mgg| Ur + Mg Ug = [Rg| + Rgg (2.8.1a)

Mg Ug + Mge Up + Ker Up = Rg (2.8.1b)

where it is noted that MRR and RR refer to the current configuration of the
vehicle, i.e the rigid body + flexible appendage is assumed rigid in the

current configuration.

The rigid body code produces a set of subroutines to solve the rigid

equations of motion

Mgz U = R (2.8.2)

For nd Or i m

When a second order integration scheme is used in the solution of the
vehicle equations of motion, the rigid subroutine is necessary only in the
calculation of MRR and Rr. The current configuration vehicle c.m. and
inertia matrix are provided as inputs to the subroutine. If the vehicle
undergoes large flexible displacements, the configuration must be updated

at each integration step.
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Chapter 2: Flexible Body Formulation

For Fir rder Inteqgration hem

A sketch of the implementation of a Runge-Kutta integration scheme
in the solution of the equations of motion is offered in Appendix B. It is
shown that the computational effort is concentrated on the evaluation of
derivatives, in order to employ the formula given by equation (B.4.3). In

section B.5, equations (2.8.1) are rearranged to yield

[MRR - Mgr Mgr! MFR] Ur=Rg+Rge+--- (B.5.4)
and
Up = Mg [RF - Mg Ug - Ker UF] (B.5.3)

To obtain the derivatives UR and Up, these two equations must be solved in
the order given. Examination of equation (B.5.4) indicates that the code
produced to solve equation (2.8.2) can be used in the flexible context by
modification to MRR and RR. Simulations using first order integration
schemes can take advantage of the code produced by symbolic software to a

larger extent than simulations using second order schemes.




Chapter 3
Derivation of Finite Elements

This chapter presents the derivation of two nonlinear beam finite
elements. Isotropic, prismatic beam elements are allowed to stretch, bend
in two planes, and undergo St. Venant torsion. For the Timoshenko beam,
shearing in two planes is also allowed. To derive the beam finite elements,
assume that the flexible domain of chapter 2 (see figure 2.1 and equations
(2.5.1)-(2.5.3)) is a beam, which allows explicit statement of kinematic
assumptions. Bernoulli-Euler kinematic assumptions comprise the
“engineering theory of beams.” A distinction is made between Bemoulli-
Euler and Rayleigh beam theories in dynamics (Bemoulli-Euler ignores
rotatory inertia). The Timoshenko kinematic assumptions lead to a beam
theory which includes the effects of rotatory inertia and shear strain within
the beam.

The development proceeds from the 3-D statement of the principle
of virtual work. Kinematic assumptions are explicitly introduced, and the
work expression is integrated across the beam cross-section area for

reduction to a 1-D theory.

The beam elements derived are generally known as ‘isoparametric’
elements; isoparametric meaning ‘same parameters’. For the current
discussion, let element geometry be interpolated from nodal values by
using shape functions. Let element displacements be interpolated from

nodal DOFs by using interpolation functions. Strictly speaking,
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Chapter 3. Derivation of Finite Elements

isoparametric formulations employ the same function for shape and
interpolation. It should be noted that although the C! element to follow
does not adhere to this rigorous definition (it uses both linear and cubic
interpolation functions), it may be loosely referred to as isoparametric.

The CO element is a true iscparametric element.

The principle of virtual work has been previously stated in section
2.2, where it was applied to a vehicle composed of rigid central body and
attached flexible appendage. Three coupled sets of integral equations were
derived which govern the vehicle motion. Equations (2.5.1) and (2.5.2)
govern the translation and rotation of the the rigid body. Equation (2.5.3)
governs the deflections of the flexible appendage, relative to the body fixed
frame. For the purpose of this derivation, consider the rigid body to be
fixed in inertial space, i.e. @ = u = 0. Thus surviving terms give the
virtual work expression which governs the deflections of the beam relative

to a body fixed reference frame.

fﬁﬂTﬁadV+f _thds=f 8[1_Th_'pdV+f 8¢:c dV
Vg Sor Vr Vr (311)

where

n = components of flexible displacement, with respect to the
body fixed frame

= force/unit volume, with respect to the body fixed frame

= surface traction applied over Sgf, with respect to the body

e
|

fixed frame
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p = density

VF = reference configuration of the flexible body
€ = strain

G = stress

m_Theory Preliminari

y,v X, U

Z, W

Figure 3.1. 3-D Beam Coordinate System.

Consider the beam shown in figure 3.1, with coordinate axes as

shown. It is assumed that stresses 6y and Gz are small compared to . St.
Venant torsion theory is incorporated into the displacement field (cross-
sections undergo zero warping, and there is no distortion of the cross-
section). The displacement field associated with the Bernoulli-Euler

kinematics are

u(X,¥,2) = Uo(X) - yVox(X) - ZWoux(x)

v(X,z) = Vo(x) - 284(x) (3.2.1)
w(X,y) = Wo(x) + yBx(x)

and can be interpreted geometrically to mean that cross-sections remain
perpendicular to the neutral axis during deformation. A representative

construction is shown in figure 3.2.

47




U= -y Vox

Figure 3.2. Kinematics of Bernoulli-Euler Beam Theory.

In the Timoshenko beam theory, cross-sections initially
perpendicular to the neutral axis of the beam remain plane but not
perpendicular to the neutral axis during deformation. This kinematic

assumption is shown geometrically in figure 3.3.

Yy, Vv
—
/

=

1]
<

&

T

y

J’A‘;

R

Vo
| e

Figure 3.3. Kinematics of Timoshenko Beam Theory.




The displacement field associated with the kinematics of Timoshenko

beam theory are
U(X,¥,2) = Uo(X) - yB,(x) + 26y(x)

V(X,2) = vo(x) - 28x(x) (3.2.2)
w(X,y) = Wo(x) + yOx(x)

where zero subscripts indicate displacement of the neutral axis and 0’s are

rotations about the subscripted axes.

Note the difference in sign of the components in the displacement
field u(x,y,z) of Bemoulli-Euler and Timoshenko kinematics. Positive
rotation associated with w,x disagrees with the right hand rule, and as a
consequence, also disagrees with the right handed coordinate system used in
the derivation of the vehicle equations in chapter 2. Therefore, in order to
use the Bernoulli-Euler (Cl) element in the dynamic simulation, a
transformation must be made so that the rotation is consistent with a right

hand coordinate system.

The restriction of zero deformation of the cross-section during
torsion implies that yy; = 0. The assumptions associated with both
kinematic models allow reduction of the 3-D linear elastic, isotropic stress-
strain relations to the simple result

E
| & [ & |
‘ Txy = G ny ’

Tz G l Tox (3.2.3)
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3.3 C'_Formulation

The C! formulation encompasses both the Bermoulli-Euler and
Rayleigh beam theories. The subtle distinction is the inclusion of rotatory
inertia in Rayleigh’s equations governing the motion of a beam [30]. It will
be shown that consistent derivation using the virtual work principle
produces the Rayleigh theory. By convention, Bemoulli-Euler theory

excludes rotatory inertia.

From small deflection theory, the non-zero strains associated with

the displacement field of equation (3.2.1) are

€x = Ux = Ugx(X) - YVoxx(X) - ZWo xx(X)

Yay = Uy + Vx = - 28xx(x) (3.3.1)
Yox = Wx + Uz = Y0x(X)

Substituting equations (3.3.1) and (3.2.1) and constitutive relations
(3.2.3) into the right hand side of (3.1.1) gives the internal virtual work

expression in the volume integral form

f {p[(ﬁuo - yOVox - ZOWox) (iio - YVox - zWo,x) + (Sv, - zSBx) (Vo - 28,)

+ (awo +y aex) (wo + yéx)]
+ E(&lo,x - ysvo,xx - Zawo,xx) (uo,x - YVoxx - ZWo,xx)

+ G(-286x x) (- 268xx) + G(yd0x.x) (Y1)} dV = RHS (3.3.2)

where the domain is understood to be the flexible volume. The expression

(3.3.2) can be integrated through the beam cross-section to give
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Chapter 3. Derivation of Finite Elements

f {m(Suoiiy + 8voVe + dWoWo) + (Imy + Imz)80x8x

X

+ ImySWO.xwo,x + IszVo’x.v.oyx + EAsuo'xuo‘x

+ Elydwo xxWoxx + EIz0Vo xxVoxx + G(Iy + IZ)SGX,XOX,x}dx =RHS (3.3.3)

where cross-section principal axes are assumed to be aligned with element

coordinate axes. Constants appearing in equation (3.3.3) are defined as

follows:
(
A=1]dA m=}| pdA
JA A
[ 2 )
I, = | z2dA I,=} y“dA
JA A J= I)’ + IZ
Imy = f pz2dA I,.nz =[ py2dA
A A
where
fydA=fsz=fysz=O
A A A
m = mass/length
Iy, I; = area moment of inertia

Imy, Inz = mass moment of inertia

The integral equation (3.3.3) appearing above is to be evaluated over
the length of the flexible domain. The flexible domain is decomposed into
finite elements and equation (3.3.3) becomes a summation of integrals over
the individual element domains. The continuity of assumed displacement

functions is dictated by the terms appearing in the integrand. Since second
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Chapter 3. Derivation of Finite Elements

derivatives of displacement exist in the element stiffness integral, inter-
element continuity requires that the displacement fields w-~ zad v_ be C!
continuous. The axial displacement and twist require only CO continuity.
(The superscript indicates the derivative through which the function or
field is continuous.) The continuity condition is inhe integrability of

equation (3.3.3) over the entire domain.

Discretization

£=-1 |._>§ &=+1

=
Node Node
1 2

Figure 3.4. Local coordinates for 2 node beam element.

The two node element is defined by the local coordinate system
shown in figure 3.4. The element has six DOFs at each node. The
necessary interpolation functions are defined in terms of the local

coordinate . The linear interpolation functions are given by
(1-8)
(1+8)

—

NI'—‘ ™9 =

N

(3.3.4)

For the C! continuous displacement fields wo and v, the cubic

Hermitian interpolation functions are used and are defined as
=Li1-g)2-5-¢)

Z
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Element nodal DOFs are arranged as

'=[ q" q"]

where
g_T =[ Upl Vol Wor Ox1 Wox1 Vo,xl ]
T={u 6 ]
92 02 Vo2 Wo2 Ux2 Wpx2 Vox2
Also define

QT=[ Uy Vo W, Oy Wo x Vo,x]

eT =[ Uox Oxx Woxx Vo,xx ] =[ Eox Kt Ky

(3.3.5)

(3.3.6)

where the strains, g, are defined as the work conjugates to the stress

resultants (see Appendix A). These definitions allow a succinct way of

defining the matrices N and B, which relate the element nodal

displacements to the vectors ¢ and g.

With the interpolation functions and nodal DOFs explicitly stated,

sore explanation is necessary to avoid a pitfall which can be harmlessly

overlooked in CO elements. Nodal DOFs consist of axial displacement and

transverse displacements and their derivatives with respect to x, while the
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Chapter 3. Derivation of Finite Elements

interpolation functions are defined in local coordinates. Care must be

taken to insure correct application of the Jacobian transformation.

To consider the problem of interpolation in a consistent manner,

note that interpolation is performed using the nodal quantities wo ¢i and

vo,ti. For example,
— Nl Nl Nl Nl
Wo = IN1Wo1 + NoWe g1 + IN3Wo2 + INgWo 2

Wog = Nigwor + Nbewogr + Ny gwos + Niewoga (3.3.7)

Wokt = N%,éiwol + Ni,ggwo,gl + N%,ggwoz + Ni,agwo,gz

Note that these expressions yield the expected results when evaluated
at the endpoints, § = = 1. In order to express each of these equations
properly in physical coordinates, we must consider how derivatives
transform between local and physical coordinates. Since Nj = Nj (€), the

derivative with respect to x can be written

aN; _ dN; dE
dx d§ dx © (3.3.8)

where by definition, the Jacobian is J = gg The second derivative becomes

&N; _ N (dEf | dN; d%8
dx? gg? 'dx/  d§ gx? (3.3.9)

Likewise, displacement derivatives can be written

dw, _ dw, d§
dx d§ dx (3.3.10)
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o 3- Derivation of Finite Elements

g

dx

2+d_wg_d_2%
d§ dx (3.3.11)

dPw, _ d’w,
dx?  dg?

where for straight beams, the Jacobian is constant and equal to L/2 in each
element (L is the physical length of an arbitrary element), so that the
second term of (3.3.9) and (3.3.11) is zero. Substituting equations (3.3.8)-
(3.3.11) into equations (3.3.7), displacements and displacement derivatives

can be rewritten in terms of physical coordinates. This gives, in matrix

form,
N a
1 1 | 1 Wol
W, Nj INZ N3 IN; W |
0,X
[Wo,x =| Nlx N, Ni; INi,
Woxx Nl INb, N} ! T
1.xx 2,xx 3.xx JNﬁo,xx Wox2 (3 3 12)
L Wox2 3.

and demonstrates correct differentiation (with respect to the physical
coordinate) using local cubic interpolation functions. A similar statement
can be made for the displacement vo. For displacement fields requiring
only linear interpolation functions, the relationship between
displacement/displacement derivatives and nodal DOFs does not involve the

Jacobian. For instance,

N(l) N(z) { Uo1 :l
to2 (3.3.13)

N?x N3x
Now equation (3.3.3) can be rewritten in matrix form as

uo}=

Uo, x

fSc_lT_I)_mﬁ+6§T&§dx=RHS
‘ (3.3.14)
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Chapter 3. Derivation of Finite Elements

and finally, equation (3.3.14) can be rewritten in terms of the nodal DOFs

to give
5q"M{ + 5q"Kq = RHS
where

= consistent mass matrix
= stiffness matrix

=~ IZ

and the element level consistent mass matrix and material stiffness matrix

are given by
M= f N" Dy N dx
. (3.3.15)
[ 1
K=} B D¢gBdx
J. (3.3.16)
where

5
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i3
I

EI,

EI, |

The matrices N and B relate element nodal displacements to the

vectors d and g and are defined by the equations
d=Ng ' | (3.3.17)
g=Bgq (3.3.18)

These matrices are formed by appropriate placement of the linear and
Hermitian interpolation functions and their derivatives. For the C! element

formulation, they are

NN o o0 o o o N O O O o0 O

0 0o N o JIN o 0 o0 N 0 IN] 0

4
[

o o o N o0 9o o0 0o o0 N o 0

0 0 Ni, 0 IJNj, O 0 0 N, 0 IN;, O

0 NI, 0 0 o0 JN), O N}, O O O N,
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NN, O 0 0 o 0 N.,oO0 0 0 o0 0
0o 0 o N}, o 0 0 0 o0 N}, O 0

0 O Ni, O IJN},, O 0 0 Nj,, 0 INi,, O

o N _0 o0 0 INy, O Nj,, 0 0O 0 JINj, |

The preceding equations are properly known as the beam theory of
Rayleigh. By convention, Bernoulli-Euler theory sets the rotatory inertias

Imy = Imz = O.

The above expressions for element level consistent mass matrix and
the material stiffness matrix contain local interpolation functions
differentiated with respect to the physical coordinate x. Proper
introduction of the Jacobian yields integrals in a form which can be
numerically integréted using Gaussian quadrature (Appendix F).

Assembled matrices are obtained by summing over all element matrices.

3.4 CO Formulation

The CO formulation is derived based on the kinematic assumptions of
Timoshenko beam theory. Rotation of beam cross-sections are independent
of transverse displacements (recall figure 3.3). This produces a beam
theory which has nonzero shearing strains. This formulation is more
accurate when the thickness of the beam is large compared to its length,

and for higher vibration modes (wavelength/thickness — small).
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From small deflection theory, the non-zero strains associated with

the displacement field of equation (3.2.2) are

€x = Ux = Ugx(X) - YO,x(X) + 26Oy x(x)

Yry = Wy + Vx = - B5(X) + Vox(X) - 20xx(x) (3.4.1)
Yox = Wx + Uz = Wox(XH ¥0xx(x) + By(x)

Substituting equations (3.4.1) and (3.2.2) and constitutive relations
(3.2.3) into the right hand side of equation (3.1.1) gives the internal virtual

work expression in the volume integral form

f {p[(Buo - y80, + 286y) (i, - YO, + 28y) + (v, - 2864) (V,, - 28y)

+ (Swo + y80,) (Wo + yby))
+ E(8uox - y80,x + 280y x) (Uox - YOzx + 20y )
+ G(-80, + dvox - 2805 x) (-8, + Vox - Z8x4)
+G(86y + Swox + y3Bxx) (By + Wox + y6xx)} dV = RHS (3.4.2)

where the domain is understood to be the flexible volume. The expression

(3.4.2) can be integrated through the beam cross-section to give

f {m(Suiio + 8voVo + SWoWo) + (Imy + Imz)00x8x + I;my0y 8y + I, 50,8,

+ EABUgxllox + EI; 80y .0y x + E1,80,0,  + G(I, + 1,)865 :61 x

+ GAYVox - 0;)(Vox - 8z) + GAYwox + By)(Wox + 6y)}dx = RHS (3.4.3)

59




where cross-section principal axes are assumed to be aligned with element
coordinate axes. Constants appearing in equation (3.4.3) are the same as

defined in section 3.3 (see page 51).

The integration to be carried out in equation (3.4.3) is again
evaluated as the summation over the finite elements which constitute the
flexible domain. Examination of the integrand reveals that only CO

continuity is required.

3.4.1 Discretizati

A schematic of the finite element model is shown in figure 3.4.
Because cross-sectional rotations are independent of the transverse
displacements, only the linear interpolation functions are necessary. In

local coordinates the interpolation functions have the form

Nt=L1-g

Ny=1L1(1+
2=y 148 (3.4.4)
Element nodal DOFs are arranged as
a'=[q" @] (34.5)

where
QT=[ ot Vor Wor 81 Oy 6y ]

R'=[u2 Vo2 W2 62 6y 62 ]




o 3- Derivation of Finite Elements

The CO displacements and strains are given by

d’ [ U Vo Wo 6Ox 6y 6 ]

[ Uox Oxx ey,x 0. (Vo,x - ez) (Wo,x + ey)]

[ €0 Xt -Ky Kz Yxyo Yxzo |

§T

where the additional terms in this strain vector, compared to the previous
section, are the shear strains arising from the Timoshenko kinematics.
Forming these vectors from the element nodal displacements defines the
matrices N and B. These matrices are composed of the linear interpolation

functions and their derivatives.
d=Ngq (3.4.6)
e=Bq (3.4.7)

Explicitly, the N and B matrix are given by

N 0 0 0 0 0 N O O O 0 O
0o N 0 0 0 O O N O 0 0 O
No| 00 NN o o o o0 o0 N 0o o0 O
N 0 o0 o N o o o o o N o0 o
0 o0 o o N o o o0 0 o0 N O

L0 0 0 0 o0 N o o0 o o0 0 N3]
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0 0 0 o0 N, 0 0 o0

0 0 0 0o o0 N, 0 o0

0

0

0 N, 0 0 0o -N} o N}, O

0 o N, 0 N o 0o o N},

0 0 0

Ny, 0 O
0 N}, ©
0 0 N3,
0 0 -N)
0 N 0

Now equation (3.4.3) can be rewritten in matrix form

r

) 8d" Dy d + 8¢ Dy £ dx = RHS

(3.4.8)

and finally, equation (3.4.8) can be rewritten in terms of the nodal DOFs to

give
8q"M4 + 3q"Kgq = RHS
where

consistent mass matrix
stiffness matrix

==

and the element level consistent mass matrix and material stiffness matrix

are given by

M= | NTDy N dx
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where
- m |
m
m
Dy, =
— (Imy + Imz)
Imy
L Imz _
and
- EA -
GJ
El,
D = EIl,
GA
L GA _

The expression for the material stiffness matrix contains local
interpolation functions differentiated with respect to the physical
coordinate x. Jacobian transformation must be introduced in order to
properly express the integrand in terms of x. The integrals can then be
numerically integrated using Gaussian quadrature (Appendix F).

Assembled matrices are obtained by summing over all element matrices.

metri iffn Matri

For problems involving geometric nonlinearities, system equilibrium

must be satisfied in the deformed configuration. In terms of the virtual




work principle, the deformed, or current configuration, is represented by
consideration of both linear and nonlinear strain terms. Derivation of the
geometric stiffness matrix is accomplished through incremental
linearization of the internal virtual work principle at the current
configuration of the flexible domain [31]. All terms are retained in the

consistent derivation. The incremental virtual work statement is

AdWip, = [ (8Ag:Ac + dAe:or)dV
Jve

(

= | SAE(AfE - pAE)dV + f SAE- Atg dS = ASWex
). Sop (3.5.1)

where

Agj=1 (—aAu‘ + 98y

an axi
dAuy \ (dAu
Ae;i = L( k) k
! 2 axi an
or = total accumulated stress

Afr = increment in prescribed body forces, components

expressed in body fixed frame
AtF = increment in prescribed tractions, components expressed

in body fixed frame

The first term of the incremental intermal virtual work above
becomes the material stiffness matrix previously obtained. The second
term leads to the geometric stiffness matrix and will be derived in this

section. The nonlinear strain increments, Aejj, may be formed from either
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set of kinematic assumptions without great difficulty. In accordance with

thin beam assumptions noted earlier, 6y and o, are small compared to ox

and may be neglected. St. Venant torsion theory does not allow distortion
of the cross-section, which implies that yy; = 0 and leads to Tyz = 0. Zero
warping is also assumed, although this is strictly true only for beams of

circular cross-section.

Using Timoshenko kinematics, the nonlinear strain increments are
substituted into the second term of equation (3.5.1), and after some

algebra, the volume integral can be reduced to
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Timoshenko ki .

f de:ordV = f {N«(8€xo€x0 + OVoxVox + OWo xWox)
v x

+ My{8K €40 + 8ExoK; - SK Wo x - OWo £ Ky)
+ My(OKy€xo + SExoKy + K Vox + OVo xKi)
+ P,{Sk, K, + Sx ki) + Py(SkyKy + SKyky)
+ Py, (8xy %, + 8K, Ky)

+ Vy(- 36,€x0 - 0€x007 + 805 Wo x + dW, <Oy
+ V,(80y&x0 + 8€xoBy - 8Bx Vo x - BV, x65)
+ Ryy(8K,0; + 80, %, + 8k(6x + 565 ;)

+ Ryz(- 8%, 0y - 80, K;) + Ryy(S%y 0, + 50, %)

+ Ryg(- 8y By - 80y Ky + 8505 + 80,x)} dx (3.5.2)

A similar expression can be obtained by substituting Bernoulli-Euler
kinematics into equation (3.5.1). Alternatively, the Bernoulli-Euler result

can obtained directly from the Timoshenko result, equation (3.5.2), by

lettmg Vy = Vz = 0, ez — Vo, x» ey - - Wo,x-
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Ber - r

f de:ordV = f (Nx(ﬁexosxo + Vo xVox + OWo xWo.x)
\'% X

+ My(8K,€x0 + OExoK; - SKWo x - OWo xKy)
+ M(8KyExo + BExoKy + OKiVox + Vo x ki)
+ P8k, K, + 8Ky k) + Py(8xyxy + Sk
+ Py, (8%, + 8K, k)
+ Ryy (8K, Vox + 8V xK; + 8K 04 + 804Ky)
+ Ryy(8K, Wo x + 8Wo xKy) + Rey(8Ky Vo x + 8Vo xKy)
+ Ryp(8Ky Wox + SWo xKy + 8%;0x + 80xKy)} dx (3.5.3)

where, in addition to the stress resultants defined in Appendix A, the

following higher order resultants are defined:

Py = f Gxz2dA Py, =f oxyzdA P, = f oxy*dA
A A A

Ry = f TryydA Rz =f TxzZUA
(

Ry, = J TrzydA Ry =] TxyzdA
A A

Equations (3.5.2) & (3.5.3) include all terms. The higher order

resultants, however, are easily computed only for simple loadings. One
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Chapter 3. Derivation of Finite Elements

instance where they can be computed is in the application of an axial load.

In the buckling problem, inclusion of the Py, Pyz, and P; resultants lowers
the buckling load for thick beams only very slightly, so that these terms are

reasonably ignored (see tabulations in Appendix C).

It is again convenient to define a vector of quantities which will

allow definition of what shall be called the G matrix. Let
Cl: ET = [ €xo Vox Wox Ki Ky X ]

T
0. B =[ €0 Vox Wox K& Ky, K 6 6 6, ]

The matrix G relates the above quantities to the element nodal
displacements, and is formed by the appropriate placement of interpolation

functions and their denivatives.
B=Ggq (3.5.4)

Equation (3.5.4) is valid for C1 and CO formulations. Rewriting
equation (3.5.2) & (3.5.3) in matrix form and introducing equation (3.5.4)

allows us to write the geometric stiffness term in the following form
89" Ko q

wher»

Ko = f G'DyG dx
x (3.5.5)
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and

geometric stiffness matrix

S

= matrix of total accumulated stresses

The above form of the geometric stiffness matrix is valid for both
C! and CO formulations, with substitution of appropriate expressions for G
and Dg. Dy is given below, where the partition made up of the first six
rows and columns is appropriate to the Cl formulation. The full matrix is
the CO form.

Ny 0 0 0 My M, 0 V, -Vy ]
0 N 0 My 0 O -V, 0 O
0 0 Ne-M, O O V, 0 O
0 My -M, 0 0 6 O 0 O
Dg= M, 0 0 O O O O 0 O
M, 0 0 0 O O 0 0 O
0 -v, Vy 0 0 0 0 0 O
Vv, 0 0 0 0 0 0 0 O
-V, 0 0 0 0 0 0 0 0 |

The G matrix follows directly from equation (3.5.4). It is given

explicitly below:
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Cl:
Ny, 0O 0 0 O 0 Nj, 0 0 o0 O 0
0 NI, 0 o0 0 INJ, O N}y, O O 0 INi,
0 o0 N, o INL, 0O 0 0 N}, 0 INj, O
G=
0 0 o N, o 0 0 0 0 N}, O 0
0 0 N, 0 JN},, O 0 0 Ni,, 0 JNi, O
| 0 Niyx 0 0 0 INj,x O Nj,, 0 O 0 INjx |
C9:

o 0 o N, 0 0 0 0 o0 N, 0 O
G=| o0 o o0 o0 -N,0 O O 0 O0-N}, O

0o 0 0 0 0N, 0 0 0 0 o0 N,

N 0 o0 o 0 N o o
0 0 N o0 o 0 0 NJ O
N 0 o o N o0 0 0 0 N3 _|
istent N |

For completeness, the derivation of consistent nodal loads is

considered. The left hand side of equation (3.1.1) is rewritten below

LHS=[ on'fe dV+f Mt dS
Ve Sor (361)
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Chapter 3: Derivation of Finite Elements

where, as a reminder,

n = flexible displacement of material particle, with respect to
the body fixed frame

fr = force/unit volume, with respect to the body fixed frame

tr = surface traction applied over Sqg, with respect to the body

fixed frame
reference configuration of the flexible body

VFE

It should be noted that equation (3.6.1) is referred to the entire
flexible body. With the introduction of Timoshenko beam kinematics, the

volume integral associated with the body force can be written
f on' fg dV = f [(Buo - y86, + 286y) £ + (S, - 286,) £, + (Swo + y30,) £, |dV
v v

(3.6.2)

Integration through the cross-section along with the assumption that
beam cross-section principle axes are aligned with the beam coordinate
system yields

fx
fSan_pdV =f(8uofx+5vofy+ dw,f, ) dx =f[ du, Svy Sw ]y fy ;dx
v 3 X
s
(3.6.3)

It is easily verified that Bernoulli-Euler kinematics produce the same
equation (3.6.3). If we now consider the integral in (3.6.3) as a sum of
integrals over all element domains, all that remains is to express

[Sug dvgy Owe] in terms of the element nodal DOFs.

71




N o o0 0o 0o o N o 0 0 O O
0 0 JN}
NI 0 IN} o0 |

(== I
L]
Z o
N —
g
o Z
N ==
o o
° &
o

0 N}

NN o0 0 0o o0 0 NJ o0 o
% 0 0o 0 0 0 N} o
0o o NN o o o0 o0 o0 N3

P!
=]
=
i
4
=)

Thus, the volume integral associated with body forces becomes

f 5ande=59Tf&Tf_Fdx=5ﬂT9.§

where

(3.6.4)

The surface integral is dealt with in the same manner. After
substitution of tractions into the surface integral, an expression can be

derived just as for the body forces. Equation (3.6.1) can then be written as

LHS =8q" (Qs + Qs)=3q" Q (3.6.5)
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where

Qs =f Ns't dS
S

Q=Q+Qs

and comparison with earlier sections shows that Q is the element consistent

nodal load vector.

The external loads on a structure can also be specified in an
‘inconsistent’ fashion. External loads can be lumped directly at the nodes.
Direct nodal loading can be handled as an additional term added to the
external virtual work. No interpolation functions are involved in the
discretization since the load is applied directly to the elemeit nodal DOFs.
In practice, nodal loads are added directly to the corresponding element of

the 7.ssembled force vector.
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h r4
Eigenvalue Problems

A set of problems has been addressed to examine the beam kinematic
assumptions and finite element approximations. For a beam with cantilever
boundary conditions, the following problems have been solved: free

vibration, and static and dynamic buckling.

A study of the beam finite elements derived in the previous chapter
has been accomplished for two beams whose physical and material
parameters are indicated in table 4.1. The first beam has L/h = 10
(length/thickness) and borders the Bernoulli-Euler assumptions. Parameter
set 2 differs only in the beam thickness; this beam has L/h = 100 and its
behavior should be consistent with Bernoulli-Euler beam theory. This
choice of parameters allows clearer insight into the effects of kinematic

assumptions and treatment of the mass matrix and level of integration.

Table 4.1. Beam material properties for eigenvalue problems.

Parameter | Parameter
Set 1 Set 2
E 107 107
\Y 0.3 0.3
p 1 1
L 10 10
b 1 1
h 1 0.1
I 1/12 1/12 (0.1)3
Im 1/12 1/12 (0.1)3
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4.1 _Free Vibration

Considering only the flexible domain, the virtual work expression

gives rise to the following dynamic equilibrium equation

Mg +Kq=Q
where
M = consistent mass matrix
K = stiffness matrix
Q = consistent nodal loads (may include lumped loads)

Solutions to the homogeneous problem can be obtained by letting
q = ye'®, where y is the column matrix of amplitudes. Substitution leads

to a general eigenvalue problem
(- @*M+K)y=0 4.1.1)
where the eigenvalue is the square of the natural frequency of vibration,

and y the associated eigenvector. The exact solution for natural vibration

of a Bernoulli-Euler beam is given by [32]

2 12
o = (A E)
L/ 'm (4.1.2)
where A is found from solution of the characteristic equation
cosAcoshA+1=0 (4.1.3)
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The natural modes of vibration are shown in figure 4.14 and are given
analytically by
Y(x) = A[(sin A - sinh A) (sin Ax/L - sinh Ax/L)

+ {cos A - cosh A) (cos Ax/L - cosh Ax/L) (4.1.4)
where
A=—2"
sin A - sinh A

Equation (4.1.2) yields an infinite number of frequencies, however
the higher frequencies obtained become increasingly invalid as the kinetic
energy associated with rotation of the beam cross-sections becomes
significant. Recall that the Bernoulli-Euler assumptions ignore rotatory
inertia; kinetic energy comes only from transverse deflections. The
frequencies obtained from equation (4.1.2) also neglect shear, which is
important as frequency increases, i.e. as the ratio of wavelength/thickness

decreases.

To assess the effects of each variation, the natural frequency was
normalized by the exact result from Bemoulli-Euler beam theory, and
plotted against the number of elements comprising the beam' (in some
literature convergence is plotted against number of DOFs — equivalent).

The following eight types of beam elements have been formulated:

1) C9: consistent mass, full integration of mass and stiffness
2) CO: consistent mass, reduced integration of stiffness

T A slightly different perspective is given in Appendix E, where the natural
frequencies are normalized by the exact result from Timoshenko beam
theory.
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3) CO: consistent mass, 1-point integration of mass and stiffness

4) CO: lumped mass, full integration of mass and stiffness

5) CO: lumped mass, reduced integration of stiffness

6) CO: lumped mass, 1-point integration of mass and stiffness

7) Cl: consistent mass, full integration of mass and stiffness
(with rotatory inertia - Rayleigh)

8) Cl: consistent mass, full integration of mass and stiffness

(without rotatory inertia - Bernoulli-Euler)

Recall that the CO consistent mass and material stiffness matrices were
defined in equations (3.4.9) and (3.4.10), respectively. The C! consistent
mass and material stiffness matrices were defined in equations (3.3.15) and

(3.3.16), respectively.

By convention, Bernoulli-Euler theory neglects rotatory inertia and
corresponds directly to case 8. Although consistent application of the finite
element method leads to fully integrated consistent mass and stiffness
matiices, in practice a reduced level of integration is used to evaluate the
CO stiffness matrix to avoid element locking. Reduced integration is
applied to all terms of the stiffness matrix, and is differentiated from
‘selective reduced integration,’” in which only the shear related terms are
evaluated using reduced integration. Appendix F provides a brief
overview of Gauss quadrature, and gives the integration rule
corresponding to full and reduced integration of the beam finite elements.
Use of the lumped mass matrix is normally dictated by the reduced cost of

computing eigenvalues.

Case 1 is the consistent application of the finite element method to
the CO beam element, and he convergence is shown in figure 4.1.

Generally, natural frequencies converge very slowly, even for the first
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mode. The increasing influence of shear and rotatory inertia with mode
number can also be seen, as the higher modes do not converge to the B.E.
result. When the L/h ratio is increased by an order of magnitude, shear
and rotatory inertia effects are virtually eliminated, and the problem of

shear locking becomes more apparent, as shown in figure 4.2.

2D C-zero Cantilever Beam: Consistent Mass,
Full Integration, Parameter Set 1

1-5 i i

—a— Mode 1
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# Elements

Figure 4.1. Convergence for CO beam, consistent mass, full integration.
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2D C-zero Cantilever Beam: Consistent Mass,
Full Integration, Parameter Set 2
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Figure 4.2. Convergence for CO beam, consistent mass, full integration.

Case 2 is shown in figure 4.3, and demonstrates the effect reduced
stiffness has on the CO beam element. The first mode is essentially
captured with one element. Again the influence of shear with increasing
frequency is apparent, but it can also be seen that good convergence is
achieved with a relatively coarse mesh. With parameter set 2, the shear
and rotatory inertia effects are negligible, and convergence is achieved

with a fine mesh, as shown in figure 4.4. Locking is siill observed in the

higher modes.
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2D C-zero Cantilever Beam: Consistent Mass,

Reduced Stiffness, Parameter Set 1
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Figure 4.3. Convergence for CO beam, consistent mass, reduced stiffness.
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2D C-zero Cantilever Beam: Consistent Mass,
Reduced Stiffness, Parameter Set 2
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Figure 4.4. Convergence for CO beam, consistent mass, reduced stiffness.
The convergence plots associated with case 3 are very similar to
those associated with case 2 for the higher modes. Mode 1 now converges

from above and requires at least four elements before locking on to the

Bernoulli-Euler result. These results are given as figures 4.5 and 4.6.
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2D C-zero Cantilever Beam: Consistent Mass,

1-Point Integration, Parameter Set 1
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Figure 4.5. Convergence for CO beam, consistent mass, uniform 1-point

integration.
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2D C-zero Cantilever Beam: Consistent Mass,
1-Point integration, Parameter Set 2
Mode 3
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Mode 1
Mode 2

HiH|

y..

%
!

Normalized Natural Frequency

(Bernoulli-Euler)

0.5
0 10 20 30 40

# Elements

Figure 4.6. Convergence for CO beam, consistent mass, uniform 1-point
integration.

Convergence for case 4 is shown in figure 4.7. The lumped mass
assumption (no lumped inertia) isolates the shear effect. Comparison with
figure 4.1 indicates that rotatory inertia has little influence on the
frequencies of vibration. The result for parameter set 2 is shown in figure
4.8, and is very similar to the consistent mass result shown in figure 4.2,

which indicates that locking is not remedied by mass assumptions.
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2D C-zero Cantilever Beam: Lumped Mass,
Full integration, Parameter Set 1
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Figure 4.7. Convergence for CO beam, lumped mass, full integration.
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2D C-zero Cantilever Beam: Lumped Mass,
Full Integration, Parameter Set 2
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Figure 4.8. Convergence for CO beam, lumped mass', full integration.

The last set of CO formulations to be discussed is that of lumped
mass/reduced stiffness. (Cases 5 & 6 are one and the same, since by the
lumped mass assumption, the mass matrix is not subject to integration).
Note that only the effect of shear is present, lumped inertia being
neglected. One striking feature is the convergence of Mode 1 from below,
rather than from above. Convergence is achieved with relatively course
mesh, with shear still apparent in the higher modes. The effect of L/h is
clearly shown in figure 4.10, where shear is not an important factor, and

convergence to the B.E. result is observed.

85




Chapter 4: Eigenvalue Problems

2D C-zero Cantilever Beam: Lumped Mass,

Reduced Stiffness, Parameter Set 1
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Figure 4.9. Convergence for CO beam, lumped mass, reduced stiffness.
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2D C-zero Cantilever Beam: Lumped Mass,
Reduced Stiffness, Parameter Set 2
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Figure 4.10. Convergence for CO beam, lumped mass, reduced stiffness.

The last two cases are those of the Cl elements. Both are fully
integrated, and use the consistent mass matrix. The only difference is the
treatment of rotatory inertia. The Rayleigh formulation using parameter
set 1 is shown in figure 4.11. The influence of rotatory inertia can be seen
to lower the frequency of the higher modes. The so-called Bernoulli-
Euler beam theory has Imy = Imz = 0. With regard to the previous
derivation, the last three terms on the diagonal of matrix Dy, are set equal
to zero . It can be seen (figure 4.12) that convergence is very rapid, and

all modes are converged with no more than eight elements. Bernoulli-
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Euler and Rayleigh beam theories become indistinguishable as L/h
increases. Figure 4.13 is representative of both Rayleigh and Bernoulli-

Euler formulations for parameter set 2.

2D C-one (Rayleigh) Cantilever Beam:
Consistent Mass, Full Integration,
Parameter Set 1
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Figure 4.11. Convergence for C! beam (Rayleigh), consistent mass, full
integration.
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2D C-one (Bern-Euler) Cantilever Beam:
Consistent Mass, Full Integration,
Parameter Set 1
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Figure 4.12. Convergence for C! beam (B.E.), consistent mass, full

integration.
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2D C-one (Rayleigh & Bern-Euler) Cantilever

Beam: Consistent Mass, Full Integration,

Parameter Set 2
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Figure 4.13. Convergence for C! beam, consistent mass, full integration.

4.1.1 Importance of Shear and Rotatory Inertia

The results show that consideration of shear and rotatory inertia
cause a reduction of natural frequency compared to the analytical
Bemoulli-Euler theory. The influence of shear and rotatory inertia can be
quantified, to a degree, in terms of the ‘effective length’/thickness, which
allows all modes and beam parameters to be judged according to the same
criteria. The effective length is taken to be the approximate wavelength,
obtained from figure 4.14. Table 4.2 shows an estimation of the

wavelength and the corresponding ratios of wavelength/thickness. For the
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purpose of discussion, modes 1 & 2 were considered to be 1/4 and 1/2

waves, respectively.

Table 4.2. Effective (wavelength/thickness).

Wave- Effective length/thick
Mode length Set 1 Set 2
1 40 40 400
2 20 20 200
3 8 8 80
4 5.5 5.5 55
5 4.75 4.75 47.5

Correlation of the values in table 4.2 with the results given in the
preceding figures shows that departure from Bernoulli-Euler theory occurs
when the effective length/thickness < 40. This is demonstrated in figures
4.9 & 4.10, where rotatory inertia effects are absent; it is also seen in
figure 4.11, where only the shear effect is neglected. Note that shear has a
larger influence on natural frequency than does rotatory inertia. As a rule
of thumb, the consideration of effective length/thickness provides an aid in

the selection of an appropriate finite element model.

4.1.2 Mesh Estimate for CO _Elements

An estimate of the mesh requirements for CO element discretization
can be made with the help of figure 4.14. The figure represents the exact
mode shapes for the first five frequencies of transverse vibration for a

Bernoulli-Euler beam with cantilevered boundary conditions. Amplitudes
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shown are arbitrary. Since CO elements can model only linear variation of
transverse displacement, the number of straight line segments (or elements)
required to model a given frequency can be estimated. Discretization based
on this method of mesh estimation suggests using beam elements of various

lengths, in order to efficiently capture the target mode shapes.

Vibration Mode Shapes for Bernoulli-Euler
Cantilever Beam
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Figure 4.14. Exact vibration mode shapes, Bemoulli-Euler theory.
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4.2 Static Buckling

The effect of large initial stress and contribution of nonlinear strains
must be considered in order to solve the static buckling problem. The
geometric stiffness matrix was derived in section 3.5, and now provides thc
mechanism by which the second eigenvalue problem is formed. The new

equation can be written
(K+PKgly=0 (4.2.1)

where the only nonzero element of Ky is some reference axial stress
resultant Nxref. The critical buckling load is then Pcr = ANxref, where A is
the smallest eigenvalue. The exact solution for Bernoulli-Euler beam with

clamped/free boundary conditions is given by [33]

P, = B2El(on - 1} n=1,2,3,..
412 (4.2.2)
where the associated mode shapes are given by
1- X -
|t -eos T n=1
V= /
\ cl(l - Ccos lI—’—'——l—i) n=2,34,..
2 L (4.2.3)

where c1 is arbitrary as long as the deflections are consistent with the

theory of small displacements.

Because tiie static buckling problem does not involve the mass
matrix, and because the load is constant over the length of the beam, only

three different formulations are presented for this example:
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1) CO: full integration of stiffness matrices
2) (0: reduced integration of material stiffness
3) Cl: full integration of stiffness matrices

Buckling loads have been normalized by the exact Bernoulli-Euler
buckling load. Although only the critical mode is important in the simple
example considered, the higher modes may become important in more
complex structures, and are thus included in the following figures.
Convergence of static buckling load is very similar to the convergence of
natural frequencies obtained from consistent mass formulations - compare

figures 4.15-4.20 to figures 4.1-4.6 and figures 4.12-4.13.

Comments made earlier also apply here, however, a couple of
additional comments are made. Figure 4.16 shows very clearly the
problem of shear locking associated with the fully integrated CO material
stiffness matrix. Figures 4.17 and 4.18 differ from figures 4.3 and 4.4
only in that the critical buckling is not captured with one element. It
requires at least eight elements to lock on to the Bemnoulli-Euler result.

The C! formulation captures the critical buckling load with one element.
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2D C-zero Cantilever Beam : Full Integration, Parameter Set 1
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Figure 4.15. Convergence for CO beam, full integration of stiffness.
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2D C-zero Cantilever Beam: Full Integration, Parameter Set 2
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Figure 4.16. Convergence for CO beam, full integration of stiffness.
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2D C-zero Cantilever Beam: Reduced Stiffness, Parameter Set 1
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Figure 4.17. Convergence for CO beam, reduced integration of stiffness.
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2D C-zero Cantilever Beam: Reduced Stiffness, Parameter Set 2
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Figure 4.18. Convergence for CO beam, reduced integration of stiffness.
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2D C-one Cantilever Beam: Full Integration, Parameter Set 1
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Figure 4.19. Convergence for C! beam, full integration of stiffness.
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2D C-one Cantilever Beam: Full Integration, Parameter Set 2
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Figure 4.20. Convergence for C! beam, full integration of stiffness.
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4.3 Dynamic Buckling

» <

Po

Inertial
Frame

b
!

Figure 4.21. Cantilevered beam under distributed axial load.

Yet a third eigenvalue problem can be formulated which involves all
three principal finite element matrices. Consider an inextensible beam with
cantilevered boundary conditions which is free to translate in space. A
constant axial load is applied to the cantilevered end as shown in figure

4.21 which produces the following distributed axial loading.
P(x) = Pyl - &
) °( L) (4.3.1)
For a given static loading determined by P,, the frequencies of
natural vibration can be computed. It will be seen that compressive axial
stress has a ‘softening’ effect. The eigenvalue problem is similar to the
case of free vibration considered in section 4.1. Now the effect of internal
force is included in the stiffness and the eigenvalue problem can be written

as
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- M +(K +Kg) y

0 (4.3.2)

where the internal force distribution is embedded in the geometric stiffness
matrix. When P, =0, the geometric stiffness matrix becomes the null
matrix and the simple free vibration problem is recovered. For Pg < Py,
the eigenvalue problem of equation (4.3.2) gives the frequencies of natural
vibration. As P, is increased to P¢r, the fundamental frequency goes to
zero, as shown in figure 4.22. Dynamic buckling occurs at Py = P¢r, which
corresponds to the zero frequency. This is equivalent to a static buckling
problem of the type considered in section 4.2 in which the axial load

distribution is given by equation (4.3.1).

Buckling of a vertical cantilevered beam due to its own weight was
considered by Timoshenko [34] and is here used as the exact solution for

the Bernoulli-Euler beam. The critical load was given as

P, = 7.837 EL
L’ (4.3.3)
A more general formulation for the buckling of a beam under axial
acceleration with rigid mass attached to the free end was considered by
Storch and Gates [35]. In the degenerate case, with zero tip mass, the

critical load has the same form as given above except the factor becomes
7.8664.

An investigation of the performance of a single element is shown in
figure 4.22. Data displayed in the figure is tabulated in table 4.3.
Examination of the data shows that the mass matrices from B.E. and
Rayleigh theory do indeed yield different frequencies, although the

difference is very small. A comparison of performance would be
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incomplete without considering the fully integrated CO beam, however, a
single element is so stiff that plotted on the scale of figure 4.22 the curve
would begin well up (171) and end well to the right (196,033) of all the
other curves. Reducing the integration of the stiffness matrices reduces the
locking problem so apparent with full integration. The curve with reduced
stiffness compares quite favorably to the Bernoulli-Euler result.
Overrelaxation is observed in the CO formulation with both reduced

stiffness and lumped mass approximation for small axial loads.

Axial Acceleration of Beam:
Single Element Performance

i
Bemoulli-Euler
Rayleigh .
C-zero, Reduced Stiffness
C-zero, Lumped Mass, Red Stff | |

H|

[%]
(=}

Natural Frequency

/

0 am - r v v r T r

0 2000 4000 6000 8000

Acceleration

Figure 4.22. Natural frequencies for Py < P¢r, parameter set 1.
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Figure 4.23 shows the convergence of the critical acceleration for
several beam element formulations. Bemoulli-Euler and Rayleigh beam
assumptions (B.E. has zero rotatory inertia) produce identical results for
critical acceleration, since this corresponds to a static buckling problem
with load distribution given by equation (4.3.1). The CO formulation with
full integration shows clearly the element locking problem, while reduced
integration of the stiffness matrices produces better convergence. The loss

of monotonicity of convergence due to reduced integration is also

observed.
Dynamic Buckling: Axial Acceleration Applied
to C-zero and C-one Beams
{1 Bemoulli-Euler
——e—— Rayleigh
5 —a—  C-zero, Reduced Stiffness
- ——&——  C-zero, Full Integration ||
k- <
&
bt \
<« \.
3 104 ——p g |
£
&)
-~
)
N
s
E
e
=]
Z
0.8
0 10 20 30 40

# Elements

Figure 4.23. Convergence for dynamic buckling, parameter set 1.
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Table 4.3. Data displayed in figure 4.22.

Fundamental Frequency
Acceleration Bermoulli- Rayleigh Y, reduced | C9, reduced
Euler stiffness lumped mass
0 322 322 314 25.7

500 - 30.9 - -
1000 29.7 29.6 29 23.7
2000 26.9 26.8 26.3 21.5
3000 23.8 23.7 23.2 19
4000 20.2 20.1 19.8 16.2
5000 15.8 15.8 15.5 12.7
5700 11.8 11.7 - -
6000 9.53 9.51 9.54 7.81
6200 7.69 7.68 - -
6300 6.59 6.57 - -
6400 5.25 5.24 - -
6500 3.42 3.42 4.04 3.31
6530 2.64 2.64 - -
6550 1.95 1.95 - -
6570 - - 2.43 1.98

6574.1 0.138 0.0555 - -
6600 - - 1.18 0.967

6609.3 - - 0.094 0.0769
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Chapter 5
Dynamic Problems

The eigenvalue problems of the previous chapter provide insight
regarding the behavior of nonlinear beam finite elements in the context of
dynamics. The next step in the systematic assessment of finite element
approximations is a benchmark nonlinear dynamic simulation. The
example chosen was originally proposed by Kane [36, 13] to demonstrate
the physical behavior of rapidly spinning systems known as ‘centrifugal
stiffening.” The result reported by Ryan [36] was obtained using an
assumed modes formulation. Other researchers who have also published a
solution to the spin-up problem are Simo & Vu-Quoc (nonlinear finite
element method) [15], and Ider & Amirouche (also assumed modes) [16].
These published results provide comparison for the present solution. The
focus is on understanding the influence of the Coriolis and centrifugal

forcing terms, and the contribution of the geometric stiffness matrix.

Application of the dynamics formulation is also made to a space
shuttle/remote manipulator arm/payload model which demonstrates a
practical application of the theory. A realistic torque is applied to the

orbiter and realistic payload mass properties are used.
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i imulati

.1.1 ecification of Equations of Motion

An exact set of governing equations was derived in section 2.5. The
succeeding sections introduced two alternative modelling assumptions with
regards to the flexible appendage mass distribution: lumped mass (§2.6)
and lumped mass/inertia (§2.7). In either case the stiffness matrix is
provided by 3-D finite elements. The lumped mass/inertia equations of
section 2.7 are chosen for implementation, which eliminates the necessity
of condensing rotational DOFs from the stiffness matrix. In the spin-up
problem, all rigid body DOFs are prescribed. For the orbiter/RMS
problem, a rigid body torque is prescribed while the remaining rigid body

DOFs are constrained.

To facilitate discussion of the results to follow, equation (2.7.15) is
rewritten below along with identification of terms appearing in the forcing

vector associated with flexible translational DOFs.

centrifugal  Coriolis

-~ force force _
fi -m@*u-mo*e®*n -2me* g, + ho.t.
t; + h.o.t.
R = :
(6Nx1)

fN - MNO* u - MNO* ©F Iy - 2mMN®* N + heo.t.

ty + hoo.t. i (5.1.1)

Note that the relative displacements qi are omitted from the

centrifugal force term. It is assumed that flexible deformations are small

107




Chapter 5. Dynamic Problems

so that vehicle geometry is adequately represented by the undeformed, or
original configuration. For the dynamics problems considered, the
undeformed configuration is the reference configuration. This implies that
the rigid/flex coupling matrix given by equation (2.7.12) is constant and
need be determined only once in the original configuration. Also, the
instantaneous vehicle inertia appearing in the MRR matrix is constant and

need be computed only once in the original configuration.

5.1.2 Incremental Solution

The equations of motion (2.7.7) are well suited for solution by the
second order Newmark integration scheme. Derivation of Newmark
integration for linear systems is outlined in Appendix B, as well as an
incremental form which is required for the solution of nonlinear equations.
The incremental form with modified Newton-Raphson iteration has been

implemented in the dynamic simulation.

From equation (B.2.10), note that the incremental solution algorithm
requires calculation of a nodal force vector corresponding to the state of
internal stress. For the finite element discretization of stiffness, the

internal force vector is given by

Fine = f _B_To' dx
x (5.1.2)
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where
B = strain-displacement matrix encountered in chapter 3
e=Bg)
G = vector of stress resultants

Assuming material linearity, the stress resultants can be found using

equation (A.7).

5.1.3 Computer Implementation

The computer implementation of the dynamics formulation noted
above proceeds as shown in figure 5.1. For all problems the integration

step size used was At = 0.01, and the convergence criteria used was

"AU"" < tolerance (5.1.3)
where AUF is the vector of incremental displacements corresponding to the
kth iteration (see Appendix B). Thus the solution is converged when the

norm of AU is less than some tolerance. The displacement tolerance for

both dynamic problems was equal to 0.000001.
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Simulation Flow

Read control parameters
*  start, stop time; integration time step At

Initialize simulation

« read finite element data (material stiffness)

« calculate MRrRF, MFR, MFF for original (undeformed)
configuration

Integration loop

@ « calculate prescribed torques/displacements

« form the tangent stiffness matrix KT based on UF

» iteration loop (Modified Newton-Raphson)

calculate RF

calculate MRrrR & RR from AUTOLEYV subroutine
incremental Newmark (8 = 1/2,a = 1/4)

test convergence

No:

Yes: update system and exit iteration loop

* data output

»  check simulation time

time < stop time:

time > stop time: exit integration loop

End simulation

Figure 5.1. Flow diagram for dynamic simulations.
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in- robl

5.2.1 Problem Description

——

w(t)

!
|

->| -1 << L

Figure 5.2. Spin-up of cantilever beam.

Schematic of the physical problem is shown in figure 5.2. A rigid
central body has a rigidly attached flexible beam. The hub radius is small
compared with the length of the beam and may be ignored. The central
body is constrained against translation, while hub rotation is a prescribed
function of time, equation (5.2.1) specifying a smooth transition from zero
hub motion to constant angular speed of 6 rad/sec. The prescribed rotation

is also shown graphically in figure 5.3.

fO.4 [t - (7.5/n)sin (rt/7.5)] rad/sec 0 <t< 15 sec

o(t) =
\6 rad/sec 15 <t <30 sec (5.2.1)
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n [»2]
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Figure 5.3. Hub motion prescribed by equation (5.2.1).

.2.2 Finite Element Model

The beam has uniform cross-section and is discretized using
uniformly sized CO finite elements. Both material and geometric stiffness
matrices are evaluated by reduced integration to avoid shear locking.
Material properties are chosen to correspond with previously published
results, and are given in table 5.1. (k is the shear correction factor, p is

the per volume density).
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Table 5.1. Beam material properties for spin-up problem.

E 7 x 1010
k 1/1.2

\ 1/6

p 1.2

L 10
area 4x104

I 2 x 10-7
I 6 x 10-4

A schematic of the finite element model in the undeformed
(reference) configuration is shown in figure 5.4. The body fixed frame is
coincident with the rigid central body. Flexible mass distribution is treated
using the lumped mass/inertia assumption. Note that the vehicle c.m. in
figure 5.4 has only oné nonzero component in the body fixed frame.

Lumped masses are equally spaced along the length of the beam.

z
T vehicle
I Cx > c.m.
C o— —o—{—eo —o > x
rigid m1 m2 m3 MN-1 MmN
central
body

Figure 5.4. Schematic of finite element model, analogous to figure 2.1.
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in- | Di i

The study of the spin-up problem is accomplished through
consideration of the following cases:

1) full solution - including all forcing terms, geometric
stiffness matrix, incremental integration scheme
(Newton-Raphson iteration)

2) neglect Coriolis forcing term

3) neglect centrifugal & Coriolis forcing terms
4) neglect geometric stiffness matrix

In all of the above cases, the effect of mesh refinement is also examined.
The motion shown in the following figures corresponds to the axial and
transverse displacements of the beam tip, relative to the body fixed frame.

Transverse displacement is perpendicular to the axis of rotation.

Tip displacements for case 1 are shown in figures 5.5-5.12. The
gross behavior is captured well by a course mesh, as seen in figures 5.5 and
5.6. Axial displacement appears to settle into a steady-state elongation at
constant spin-rate. Increasing the number of elements brings out the detail
of this motion, however, and it is seen that an oscillatory motion is
superposed onto the steady-state deflection. Steady-state axial deflection
converges from above; in other words, a course mesh overpredicts the

axial deflection.

The transverse behavior of the beam is characterized by an increase
in deflection until the midpoint of the spin-up (corresponding to the
maximum angular acceleration), after which the tip catches up to the body
fixed frame and oscillates about zero relative deflection. This behavior is

also captured with a course mesh. Two tendencies are noted with respect
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to mesh refinement: the peak deflection (absolute value) converges from
above, and the steady state frequency associated with bending vibration

converges from below. For future reference, case 1 is summarized in table
5.2.
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Spin-up Problem, 2 elements

Tip motion

6.0e-4

5.0e-4

4.0e-4

3.0e-4 1

2.0e-4 1

1.0e-4 1

Axial Displacement

0.0e+0 +———
1 19-Mar-91

-1.0e-4

0.0 5.

0 10.0

15.0
Time

20.0

25.0 30.0
Qmega_plot™ 3.0

Figure 5.5. Axial displacement of beam tip for case 1, 2 elements.

Spin-up Problem, 2 elements

Tip motion
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Figure 5.6. Transverse displacement of beam tip for case 1, 2 elements.
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Spin-up Problem, 4 elements
Tip motion

6.0e-4 -

5.0e-4
4.0e-4

/
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1.0e-4 ]

Axial Displacement
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Figure 5.7. Axial displacement of beam tip for case 1, 4 elements.

Spin-up Problem, 4 elements
Tip motion
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Figure 5.8. Transverse displacement of beam tip for case 1, 4 elements.
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Spin-up Problem, 8 elements
Tip motion

6.0e-4

5.0e-4
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4.0e-4
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1.0e4: 74
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Time Qmega_plot™ 3.0

Figure 5.9. Axial displacement of beam tip for case 1, 8 elements.

Spin-up Problem, 8 elements
Tip motion
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Figure 5.10. Transverse displacement of beam tip for case 1, 8 elements.
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Spin-up Problem, 16 elements
Tip motion

6.0e-4 1
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Figure 5.11. Axial displacement of beam tip for case 1, 16 elements.

Spin-up Problem, 16 elements
Tip motion
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Figure 5.12. Transverse displacement of beam tip for case 1, 16 elements.
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Table 5.2. Summary of spin-up problem, case 1.

# of Peak transverse | Steady-state axial Frequency,
elements| displacement displacement | bending vibration
(rad/sec)
2 - 0.753 5.78 x 10-4 3.36
4 - 0.660 5.31 x 10-4 3.56
8 - 0.646 5.18 x 10-4 3.77
16 - 0.587 5.15x 104 3.94

The effect of neglecting the Coriolis forcing term is considered in
case 2 and displayed in figures 5.13 & 5.14. One can see that the Coriolis
term provides the excitation of the axial vibration mode; its removal
produces a true steady-state axial elongation. The Coriolis term is not a
major contributer to the transverse behavior of the beam (transverse
displacements corresponding to figures 5.13 & 5.14 are the same as given

for case 1 results).
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Spin-up Problem, 8 elements
Tip motion, no Coriolis term

6.0e-4
1
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Figure 5.13. Axial displacement of beam tip for case 2, 8 elements.

Spin-up Problem, 16 elements
Tip motion, no Coriolis term
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Figure 5.14. Axial displacement of beam tip for case 2, 16 elements.
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Case 3 (no centrifugal or Coriolis forcing terms) results are shown
in figures 5.15-5.18. Elimination of centrifugal forcing eliminates any
axial elongation of the spinning beam. No other effect is observed. The
transverse displacement is unaffected by the presence or absence of either

centrifugal or Coriolis terms, as shown in the following figures.

Spin-up Problem, 2 elements
‘Tip motion, no Coriolis or centrifugal

0.1 ; ' .
0.0 - :

01 1\ [
0.2 ] \ /
02N T 7
03—

Transverse Displacement

-0.4 7
0.5 7 Y E /i
-0.6 N A
07 ——— \\
08 1 01-May-91 P P
0.0 5.0 10.0 15.0 20.0 25.0 30.0

Time Qmega_plot™ 3.0

Figure 5.15. Transverse displacement of beam tip for case 3, 2 elements.
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Spin-up Problem, 4 elements
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Figure 5.16. Transverse displacement of beam tip for case 3, 4 elements.
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Figure 5.17. Transverse displacement of beam tip for case 3, 8 elements.
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Spin-up Problem, 16 elements
Tip motion, no Coriolis or centrifugal
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Figure 5.18. Transverse displacement of beam tip for case 3, 16 elements.

Solution of the spin-up problem in the absence of the geometric
stiffness matrix (case 4) gives a surprising result. It is interesting that the
geometric stiffness matrix apparently has no effect on the solution of the
spin-up problem. The formulation as implemented has no dependence on
geometric nonlinearity; material stiffness is sufficient to prevent divergent
behavior. Different modelling assumptions and solution techniques lead to
dynamic instability. Using assumed modes formulations, Ryan [13] and
Ider & Amirouche [16] report divergent transverse displacements when
geometric stiffening effects are ignored. Simo & Vu-Quoc [15], on the
other hand, do not discuss any divergent behavior encountered with their

finite element solution.
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rbiter/Rem Manipulator A RM

5.3.1 Problem Description

As a realistic application of the dynamic formulation, an additional
example is considered which involves the space shuttle remote manipulator
system (RMS). The manipulator arm is assumed to be locked in a fully
extended configuration with a typical payload attached to the end effector.
The shuttle is constrained against translational and rotation, except for
rotation about the body fixed y axis. Orbiter rotation is induced by
application of positive/negative pulse torque, shown graphically in figure
5.19. The torque acts about the y axis of figure 5.20 so that the elbow is in
the plane of rotation. Angular displacement of the orbiter in response to
the torque is heavily influenced by the relative size of the inertias of the

shuttle and the flexible (appendage + payload) combination.

Motions are assumed to be small, thus the reference configuration is

always taken to be the original configuration.
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Prescribed Torque
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Figure 5.19. Torque time history applied to orbiter.

5.3.2 Finite Element Model

The finite element representation of this system is shown in figure
5.20, where the shuttle c.m. is located at node 1 and payload/end effector
are located at node 16. The orbiter and payload are modelled by lumping
mass and inertia at their respective nodes, values used are given below.
The body fixed frame is coincident with the orbiter c.m. Fifteen elements
are used to model the manipulator, which can be numbered consecutively
starting from node 1. The finite element model of the remote manipulator
arm was extracted and simplified from a NASTRAN model (in-house
Draper model) The details of the finite element model are provided in

Appendix D.
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orbiter end-effector

c.m. and payload
or—& . & 9 & - @ 4 \ 4 .—30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
z

E L=637in bl
X

Figure 5.20. Finite element model of remote manipulator arm in straight
out position.

Morbier = 6397 slugs

Mypayioad = 6635 slugs
1044
Lorbiter = 134 x10° slugein?
1003.7
10.4

Lpayload = 10.4 x10° slug+in®
3.469

5.3.3 Orbiter/RMS Resuits

Orbiter response is obtained assuming a rigid vehicle to provide a
baseline for the flexible solution, and provide a greater sense that the
flexible solution is correct. The flexible response should (and does)

oscillate about the rigid solution.
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RMS Problem

Orbiter motion
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Figure 5.21. Orbiter response to pulse torque, assuming rigid and flexible.

RMS Problem
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Figure 5.22. Orbiter response to pulse torque, assuming rigid and flexible.
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The relative motion of the payload/end effector, in the body fixed
frame, is shown in figures 5.23 & 5.24. It is seen that moderate torque
input results in payload deflections on the order of 1.5 inches. This may be
significant in the context of assembling space station components. Axial
displacements are not large. The phase plane shown in figure 5.25
demonstrates the periodic oscillation experienced by the payload after the

torques are released.

RMS Problem

Payload motion

2.0 1
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Time (sec) Qmega_plot™ 3.0

Figure 5.23. End effector response to pulse torque.

129




Chapter 5: Dynamic Problems
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Figure 5.24. End effector response to pulse torque.
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Figure 5.25. Demonstration of periodicity of tip motion (zero damping).
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Chapter 6
Conclusion

6.1 Summary and Conclusions

Equations of motion have been consistently derived for a rigid body
with attached flexible appendage through application of the virtual work
principle. This method allowed a natural and consistent introduction of a
finite element discretization for the flexible appendage. Using the
assumptions of lumped mass and lumped mass/inertia allowed comparison
between the two resulting formulations. The lumped mass formulation

required condensing the rotational DOFs from the stiffness matrix.

The nonlinear finite elements used in conjunction with the dynamic
equations were consistently derived from the virtual work principle. The
consistent derivation using Bernoulli-Euler kinematics lead to a finite
element formulation of Rayleigh beam theory. Bernoulli-Euler beam
element was recovered by setting the rotatory inertias to zero. All higher
order terms were retained in the derivation of the geometric stiffness
matrix, which lead to the introduction of higher order stress resultants.
Implementation of these elements allowed greater flexibility than was
possible with other commercially available finite element codes. This
flexibility was exploited in the study of finite element approximations and

kinematic assumptions.

Assessment of element behavior was accomplished through

eigenvalue problems. The numerous figures generated from the
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implementation of the consistently derived finite elements allowed isolation
of individual effects such as lumped mass, rotatory inertia, and reduced

integration. Some general conclusions are drawn from the results:

«  reduced integration of the stiffness matrix in CO elements
alleviates the problem of shear locking

¢ lumped mass assumption lowers vibration frequencies

» shear and rotatory inertia lowers the vibration frequencies

« shear and rotatory inertia become increasingly important in
higher modes of vibration (as wavelength/thickness
decreases)

»  shear generally has larger effect upon frequency compared
to rotatory inertia

e  higher order stress resultants present in the geometric
stiffness matrix lower buckling loads

In realistic dynamic analyses, the necessity of using an element with shear
and rotatory inertia was shown to be related to the wavelength/thickness
ratio. If the vibration modes of interest have large wavelength/thickness

ratio, these effects can be neglected.

The lumped mass/inertia equations of motion were employed in the
solution of two example problems. In the spin-up problem, the effects of
forcing terms and nonlinear flexibility on the solution were systematically
addressed. It was shown that the centrifugal term had the effect of
producing a steady-state elongation of the beam. The Coriolis term was
responsible for the axial oscillations superposed on the steady-state
deflection. In the formulation used to solve the spin-up problem, the

material stiffness matrix was sufficient to prevent divergent behavior.
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In both dynamics problems, the assumption of small flexible
displacements was employed, so that the original configuration was the
reference configuration. The formulation as presented can be extended to
systems undergoing large flexible displacements by updating the
configuration. Flexible translations and rotations are referred to the

current configuration.

.2 Future Work

Recommended future work includes full implementation of the
rigid/flexible appendage formulation to include configuration updates,
allowing solution of problems involving large displacements and rotations
of the flexible appendage. This involves updating nodal locations, material
and geometric stiffness, vehicle inertia, etc., at each time integration step.
Flexible displacements and rotations are referred to the current
configuration. Solution of the ‘spaghetti’ problem, for instance, serves as

full demonstration of the equations of motion of chapter 2.

The virtual work principle can be used to derive the governing
equations for rigid bodies with articulated flexible appendages [28], and
flexible bodies connected to flexible bodies. These formulations have
wider application to spacecraft, space structures, and robotics than does the

present formulation.

Further study is necessary for complete understanding of the
influence of geometric nonlinearities. Investigation should be conducted

into the assumed modes formulation with parallel development of finite
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element formulation. Systematic study of this type should resolve the
question that has arisen regarding the geometric stiffness in the solution of

dynamic problems.
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Stress Resultants
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Figure A.1. Definition of stress resultants. (a) Stresses at an
arbitrary point, (b) Direction of positive resultants.
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Stress resultants provide a convenient measure of the internal force

in the beam elements. Positive stresses are shown in figure A.1. Stress

resultants are then defined in the following way:

(
Nx= | oxdA
Ja
f
My = | (Teey - Txyz) dA

A

(

My=‘ ze dA
Ja

Mz= = oxy dA
Ja

A

Vz=ftxsz

(A.1)

(A.2)

(A.3)

(A.4)

(A.S5)

(A.6)

The strains are defined as the work conjugates to the stress

resultants. The corresponding strains are therefore
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o c!
€x0 = Uox €x0 = Ugx
Ky = 9x'x K= ex,x
Ky = - ey,x Ky = Wo xx
Kz = ez,x Kz = Vo xx

Yxzo = Wox + Oy
Yxyo = Vox - 82
Let the vector of stress resultants be defined by
cl- ST=[ Ny My My M, ]
co-ST=[ Ny, Mx My M, V, V,]
The stress resultants are related to the element strains by the
appropriate material matrix. Strains have already been shown to be related

to the element nodal DOFs by the B matrix. The stress can then be

evaluated at any point | within the element from the equation

o| =Die| =DiB| g A7)
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Appendix B
Time Integration Schemes

For direct integration of linear equations of motion, implicit
integration schemes have an advantage over explicit schemes in that they
are unconditionally stable. The only restriction on time step is due to
consideration of solution accuracy, and even then it need not be chosen
such that the highest frequency is integrated accurately. Newmark
integration is a second order implicit scheme, which makes it an
appropriate choice for solution of second order equations of motion. The
Newmark method can also be extended to the incremental solution of
nonlinear equations of motion. As each increment is a linear step over At,
the stability holds for nonlinear systems as well. The incremental
Newmark scheme is implemented in the dynamic simulations. A brief

derivation of the Newmark method follows.

For reference, the fourth-order Runge-Kutta integration scheme is
also introduced. Because of its explicit nature, the time step must be
chosen for stability as well as accuracy, although for direct integration, the
stability requirement is usually strict enough to assure an accurate solution.

The Runge-Kutta method is used to solve systems of first order ODEs.
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B.1 Newmark Integration for Linear Systems [24]

For a set of ordinary differential equations, consider the state of

equilibrium at time t+At:
M "2 + € M0 + K WA = AR (B.1.1)

where M, C, and K are the mass, damping, and stiffness matrices, and R is
the vector of external loads. The three matrices are constant for linear

analyses. Introduce approximations for U, and U at time t+At
WA T+ [(1 IR IEE t+ALU']At (B.1.2)

A = U + 'UAt + [‘L . a) U+ a HA[U}Atz
2 (B.1.3)

where o and & are parameters which govern the accuracy and stability of
integration. For & = 1/2 and o = 1/4, the scheme is second-order accurate,
unconditionally stable and equivalent to the trapezoidal rule (also known as

the constant-average-acceleration method).

Equation (B.1.3) can be rearranged for "84 and substituted into
equation (B.1.2). Now expressions for HA[U and ”MU can be substituted
into equation (B.1.1), which can be rearranged to give
K #oy = "R (B.1.4)

where K is the effective stiffness matrix given by

K=K+ayM+2a;C (B.1.5)
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and R is the effective load vector at time t+At

+AL

R="4R+M (ao‘U +a, U+ a3tU)+ C (a1‘U +2,'U + 35LU)
(B.1.6)

Constants are given by

aAt aAt 200

=AI.§-
as z(a 2) ag=At(1-8) a;=38At

Solution of equation (B.1.4) yields displacements "*4'U at time t+At.

Velocity and acceleration are then found from equations

*AG = ag (“'A[U - lU) - azLU - a3tU (B.1.7)

A =0 + 26U + a0 ‘ (B.1.8)

B.2 Incremental Form of Newmark Integration

The integration scheme developed in the previous section can be
viewed as an incremental solution method where successive increments are
At, 2At,..., nAt; all increments are referred to the original configuration.
This is possible for linear equations of motion since the coefficient matrices
are constant. In nonlinear problems, the stiffness matrix is interpreted as
the tangent stiffness matrix, and accounts for material stiffness as well as
geometric stiffness and material nonlinear effects. The tangent stiffness is
configuration dependent and is denoted at time t as 'KT. The configuration

dependence of nonlinear problems prohibits referring every increment
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back to the original configuration, but an incremental procedure can be
used to propagate the solution from one known equilibrium state to

another, providing the increment is small.

Assume a state of equilibrium is known at time t which can be

written as
MU+CU+F=R (B.2.1)

where 'F is the internal force vector and is a function of U. With this

change of notation, the equilibrium equation (B.1.1) can be written as
M AU + € D + A = AR (B.2.2)

Now it is assumed that the equilibrium state expressed in equation
(B.2.2) can be approximated by a linear increment from the equilibrium
expressed in equation (B.2.1). The internal force vector at time t+At can

thus be written

WAR = 'F + 'Kt AU (B.2.3)

where AU is a vector of increment displacements. Substitution into

equation (B.2.2) yields

M "0 + € "0 + Kp AU = AR - IR (B.2.4)
Displacements corresponding to time t+At can then be calculated from
WAL = U 4+ AU (B.2.5)

Equations (B.2.4) and (B.2.5) form an approximate incremental

solution to the set of nonlinear equations. Equality can be achieved
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through iteration at time t+At by using the full or modified Newton-
Raphson technique. Full Newton-Raphson updates the tangent stiffness at
each iteration, while the modified Newton-Raphson updates only at the start
of each increment. The full technique converges more rapidly but at the
cost of forming the tangent stiffness at every iteration. With the modified

Newton-Raphson, the incremental algorithm can be stated as

M 40" + € 0" + Ky AUK = HAR - ARkl (B.2.6)
Atk _ tratk-l L Ak (B.2.7)
where
A0 _ tyg (B.2.8)
HALR0 _ tp (B.2.9)

Equation (B.2.6) is an incremental form corresponding to equation
(B.1.1), and the Newmark method of section B.1 can be applied.
Neglecting the damping matrix and choosing o and & corresponding to the -

trapezoidal rule gives

ﬁ AUk _ t+Al§ ) “_A[Fk-l (B.2.10)
where
R = tKT + -—-4;- M
o (B.2.11)
t+At§ — AR .M i(HAtUk-l . IU) .4 tU - [U
At At (B.2.12)
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The current state can be obtained from

Atk _ Akl L Ak (B.2.13)
otk _ 4 (l+A[Uk ) tU) I O
At At (B.2.14)

t+ALUk - LU + At tU + At t+ALUk

2 2 (B.2.15)
where the start-up conditions are the same as given by equations (B.2.8)
and (B.2.9). Other schemes have been developed for estimating the initial
iteration conditions, rather than using the previous equilibrium state as the

first estimate of the next equilibrium state [37].

The incremental form of the Newmark method derived in this
section for nonlinear problems can be reduced to the result obtained in

section B.1 for linear systems by noting that 'Kt = K so that the internal

force vector becomes

t+AtFk-l =K l+AlUk-l

which can be used along with equation (B.2.13) to come up with equation
(B.1.4).

B.3 Error Sources in Newmark Integration

For unconditionally stable integration schemes, the choice of time
step At is governed only by consideration of accuracy. In structural
dynamics problems, high frequency modes usually contribute little to the

response of the structure. If the time step is chosen to accurately integrate
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only some subset of vibration modes, then the errors contributed by the
higher modes are also assumed to be small. Solution errors are confined to

the upper vibration modes by appropriate choice of the time step At.

Since all modes are included in direct integration, solution errors
stem only from the use of too large an integration step size. This is in
contrast with modal reduction techniques, which also invite errors due to

truncation of the modal set.

Integration errors are classified in terms of period elongation and
amplitude decay (algorithmic damping). The trapezoidal rule
implementation of the Newmark scheme (& = 1/2, o = 1/4) is second-order
accurate and introduces only period elongation — no amplitude decay.
Thus, all frequencies contribute to the structural response. Amplitude
decay can be introduced in the Newmark scheme through alternative choice

of parameters & & «, although accuracy is reduced to first-order.

B4 F h-Order Runge Kutta Integration [38]

The fourth-order accurate Runge-Kutta is an explicit multi-step
integration scheme based on the Euler method. It operates on systems of
first order ordinary differential equations, in contrast with the Newmark
scheme, which operates directly on the second order equations of motion.
Thus some additional manipulation is required in order to implement the

Runge-Kutta algorithm.
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Any system of ordinary differential equations can be reduced to a set
of N coupled first order equations. To preserve the dynamics context, the
notation of the previous sections is used to express the general form as

dui(t) _

t, Up,..., UN 1=1,.., N
& =f (t. Uy )

(B.4.1)

where Uj is the ith component of the vector U and the known function f; is
the corresponding derivative. Note that reduction of the equations of

motion to first order form means that N = 2(6+6*Num_nodes).

For convenience only, consider equation (B.4.1) with N=I1.
Increasing the system size involves a straightforward introduction of a DO
loop over i=1,N. The Euler method advances the solution of a first order

equation from t to t+At by application of the formula

WAy ='U + Atf I(t, lU) (B.4.2)

where it should be noted that the solution at time t+At is based entirely on
information known at time t. Thus no iterations are necessary in the
explicit algorithm. The accuracy and stability of the one step Euler method
can be improved by introducing multiple steps. The break-even point is
the fourth-order Runge-Kutta, which makes use of four steps, and is given
by

wag g ke ko ks ke
6 3 3 6 (B.4.3)
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where
k; = atf (¢, 'U) (B.4.4)
k = Atf '(t +AL Wy 4+ k—l)
2 2 (B.4.5)
k3 = Atf '(t +AL U+ 151)
) ) (B.4.6)
ke = Atf ¢t + At, U + ka) (B.4.7)

ion wi ion ion

As noted earlier, use of Runge-Kutta requires some manipulation
that the Newmark method does not. This section shows the details of this
manipulation. The equations of motion (2.6.6) or (2.7.7) can be rewritten

as a system of matrix equations

Mgg U + Mge Ug = Rg + Ry (B.5.1)

Meg U + Mer Ur + Ker Ug = R (B.5.2)
Equation (B.5.2) can be rewritten as

Ur = Mg [RF - Mg Ug - Kee UF] (B.5.3)

Substitution into equation (B.5.1) yields

[MRR - Mgg Mg MFR] U = Rg + Rgp - Mgp Mgp! Rg + Mge Mgs ! Kie U
(B.5.4)
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A set of first order equations can be formed by letting ﬁg = UR and
ﬁp = UF. The set of derivatives (at time t) to be evaluated in the course of

the Runge-Kutta scheme can be summarized as follows:
Ug = Ug (B.5.5)
Ur = Us (B.5.6)

[MRR - Mgr Mg MFR] fjk = Rg + Rgr - Mg Mg Re + Mge Mgr!' Kge U
(B.5.7)

Mg Ur = Rp - Mg Uy - Ker Up (B.5.8)

Both of equations (B.5.5) & (B.5.7) encompass six scalar equations
governing the rigid body DOFs. Equations (B.5.6) & (B.5.8) encompass
(6*Num_nodes) scalar equations relating the flexible DOFs. Thus the total

number of derivatives evaluated at each step is 2(6 + 6*Num_nodes).

The Runge-Kutta method is well suited for nonlinear analysis since it
is a natural incremental scheme; each increment is referred to the previous
equilibrium state. Nonlinear solutions are obtained by interpreting the
KFF matrix as the tangent stiffness matrix 'Kr, evaluated at time t. A
typical step (evaluation of the functions f; ') of the Runge-Kutta algorithm

in the dynamics simulation is as follows:
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Given initial conditions (at time t): UR, U, Ug, Us
1) calculate tangent stiffness based on U

2) evaluate equations (B.5.5) & (B.5.6) for UR, UF
3) evaluate equation (B.5.7) for fjk

4) evaluate equation (B.5.8) for ﬁp
5) use these results in calculation of k;j’s

A typical increment implements this sequence four times and employs
equation (B.4.3). The tangent stiffness matrix need only be calculated at

the beginning of each increment.
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C.1 Free Vibration

1)
2)
3)
4)
5)
6)
7

8)

Table C.1. Free vibration, case 1, parameter set 1.

@)

[y

A

iX

Convergence Data

(with rotatory inertia - Rayleigh)
: consistent mass, full integration of mass and stiffness
(without rotatorv inertia - Bermoulli-Euler)

As a reminder, the following cases were considered:

Convergence data is tabulated for the figures shown in chapter 4.

consistent mass, full integration of mass and stiffness
consistent mass, reduced integration of stiffness
consistent mass, 1-point integration of mass and stiffness
lumpec mass, full integration of mass and stiffness
lumped mass, reduced integration of stiffness

lumped mass, 1-point integration of mass and stiffness
consistent mass, full integration of mass and stiffness

Mode | Numel=1 | Numel=2 | Numel=4 | Numel=8 | Numel=16 Nume=32

1 171.0 101.0 58.5 40.3 34.2 32.5

2 6820.0 | 687.0 375.0 247.0 207.0 196.0 201.1
3 6860.0 | 1100.0 | 678.0 553.0 520.0 563.2
4 7040.0 | 2310.0 | 1310.0 | 1030.0 953.0 1103.7
5 6870.0 | 2130.0 | 1600.0 1470.0 1824.5
6 7100.0 | 3110.0 | 2260.0 2040.0

7 7510.0 | 4170.0 | 3000.0 2660.0

8 7980.0 | 5070.0 | 3800.0 3310.0

9 6880.0 | 4660.0 3980.0

10 7140.0 | 5570.0 4680.0
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Table C.2. Free vibration, case 2, parameter set 1.

Mode | Numel=1 { Numel=2 | Numel=4 | Numel=8 | Numel=16 | Numei=32 B.E.

1 31.4 32.6 32.1 31.9 31.9 31.9 321
2 5§920.0 | 331.0 222.0 199.0 194.0 192.0 201.1
3 4400.0 | 745.0 560.0 521.0 512.0 563.2
4 6680.0 | 1820.0 | 1110.0 972.0 940.0 1103.7
5 4810.0 | 1870.0 | 1530.0 1450.0 1824.5
6 6100.0 | 2830.0 | 2170.0 2020.0
7 6650.0 | 3940.0 | 2890.0 2630.0
8 6900.0 | 4970.0 | 3680.0 3280.0
9 6850.0 | 4530.0 3950.0
10 7000.0 | 5440.0 4640.0

Table C.3. Free vibration, case 3, parameter set 1.

[Mode | Numel- 1| Numel2 [Numel 4 | Numel-8 | Numel-16 [Numel -32]_B.E_
N
1 36.3 34.2 32.5 32.0 31.9 31.9 321
2 6830.0 | 549.0 245.0 203.0 195.0 193.0 201.1
3 6930.0 | 1020.0 | 591.0 527.0 513.0 563.2
4 7570.0 | 4190.0 | 1240.0 994.0 945.0 1103.7
5 6920.0 | 2280.0 | 1580.0 1460.0 1824.5
6 7300.0 | 4020.0 | 2290.0 2040.0
7 9800.0 | 6700.0 ] 3130.0 2680.0
8 14700.0f 6910.0 | 4120.0 3350.0
9 7390.0 | 5290.0 4070.0
10 7820.0 | 6590.0 4830.0

Table C.4. Free vibration, case 4, parameter set 1.

|Mode|Numel=1INumel=2lNumel=4|Numel=8|Numel=16|Numel=32| B. E. |

1 140.0 93.5 57.3 40.1 34.2 32.5 32.1
2 468.0 328.0 240.0 207.0 198.0 201 .1
3 825.0 634.0 554.0 530.0 563.2
4 1340.0 | 1150.0 | 1020.0 979.0 1103.7
5 1720.0 | 1570.0 1510.0 1824.5
6 2270.0 | 2160.0 2100.0
7 2730.0 | 2760.0 2720.0
8 3030.0 | 3360.0 3360.0
9 3930.0 4000.0
10 4450.0 4640.0
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Table C.5. Free vibration, case 5, parameter set 1.

|Mode|Nume|=1!NumeI=2 Numel=4!Numel=8|Numel=16INumel=32| B.E. I
1 25.7 29.9 31.4 31.8 31.9 31.9 32.1
2 229.0 193.0 194.0 194.0 194.0 201.1
3 562.0 524.0 522.0 521.0 563.2
4 1210.0 | 982.0 967.0 965.0 1103.7
5 1530.0 { 1500.0 1490.0 1824.5
6 2110.0 | 2080.0 2080.0
7 2630.0 | 2680.0 2700.0
8 3000.0 | 3280.0 3340.0
9 3860.0 3970.0
10 4390.0 4610.0

Table C.6. Free vibration, case 6, parameter set 1.

|Mode| Numel=1| Numei=2 | Numel=4 | Numel=8 | Numel=16 | Numel=32 B.E.

—
1 25.7 29.9 31.4 31.8 31.9 31.9 32.1
2 229.0 193.0 194.0 194.0 194.0 201.1
3 562.0 524.0 522.0 521.0 563.2
4 1210.0 | 982.0 967.0 965.0 1103.7
5 1530.0 | 1500.0 1490.0 1824.5
6 2110.0 | 2080.0 2080.0
7 2630.0 | 2680.0 2700.0
8 3000.0 1 3280.0 3340.0
9 3860.0 3970.0
10 4390.0 4610.0

Table C.7. Free vibration, case 7, parameter set 1.

I Nbdel Numel=1 | Numel=2 | Numel=4 I Numel=8 ! Numei=16 I Numel=32 | B. E.
1 32.2 32.0 32.0 32.0 32.0 32.0 32.1
2 310.0 200.0 199.0 198.0 198.0 198.0 201.1
3 661.0 550.0 546.0 546.0 546.0 563.2
4 1770.0 | 1060.0 | 1050.0 | 1040.0 1040.0 1103.7
5 1900.0 | 1680.0 | 1670.0 1670.0 1824.5
6 2920.0 | 2440.0 | 2410.0 2410.0
7 4370.0 | 3300.0 | 3250.0 3240.0
8 6130.0 | 4220.0 | 4150.0 4140.0
9 5630.0 ] 5110.0 5080.0
10 6800.0 | 6120.0 6090.0
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Table C.8. Free vibration, case 8, parameter set 1.

Mode | Numel=1 | Numel=2 | Numel=4 | Numel=8 | Numel=16 | Numel=32 B.E.

1 32.2 32.1 32.1 32.1 32.1 32.1 32.1

2 | 318.0 | 203.0 | 201.0 | 201.0 201.0 201.0 201.1
3 686.0 568.0 564.0 563.0 563.0 563.2
4 1990.0 | 1120.0 { 1110.0 [ 1100.0 [ 1100.0 | 1103.7
5 2080.0 | 1840.0 | 1830.0 | 1820.0 | 1824.5
6 3340.0 | 2760.0 | 2730.0 | 2730.0
7 5300.0 | 3880.0 | 3810.0 | 3810.0
8 8700.0 [ 5160.0 | 5080.0 | 5070.0
9 7250.0 | 6540.0 6510.0
10 9200.0 | 8190.0 | 8140.0

Table C.9. Free vibration, case 1, parameter set 2.

[Vode | Numel~1 Numel-2 | Numel~4 | Numel-8 [ Numel-16 | Numel-32| B E.

—_—
1 53.7 30.7 15.7 7.9 4.1 2.2 1.0
2 [67900.0] 215.0 | 105.0 50.5 25.6 13.9 6.4
3 67900.0| 325.0 | 147.0 72.3 39.0 17.8
4 68000.0] 661.0 | 306.0 144.0 76.6 34.9
5 67900.0] 541.0 243.0 127.0 57.7
6 68000.0| 863.0 373.0 191.0
7 68000.0| 1240.0 | 538.0 269.0
8 68100.0] 1580.0 | 741.0 362.0
9 67900.0| 989.0 469.0
10 68000.0] 1280.0 592.0
Table C.10. Free vibration, case 2, parameter set 2.

Mode | Numel=1| Numel=2 | Numel=4 | Numei=8 | Numel=16 | Numei=32| B.E. |
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 |[58800.0] 11.7 7.4 6.6 6.4 6.4 6.4
3 39600.0| 28.4 19.9 18.3 17.9 17.8
4 66100.0| 121.0 43.9 36.8 35.3 34.9
5 22500.0| 86.0 63.2 58.9 57.7
6 51500.0| 163.0 99.2 88.9
7 63400.0| 331.0 147.0 126.0
8 67500.0| 913.0 210.0 170.0
9 14400.0] 294.0 222.0
10 32600.0{ 406.0 283.0
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Table C.11. Free vibration, case 3, parameter set 2.

Numel=2 | Numel=4 { Numei=8 | Numel=16 | Numel=32

1 1.2 1.1 1.0 1.0 1.0 1.0 1.0
2 167900.0 19.5 8.2 6.8 6.5 6.4 6.4
3 67900.0 41.3 211 18.5 18.0 17.8
4 68000.0| 324.0 49.7 37.8 35.5 34.9
5 67900.0] 109.0 65.9 59.5 57.7
6 68000.0| 255.0 106.0 90.2
7 68100.0) 773.0 161.0 128.0
8 69100.0] 4320.0 240.0 175.0
9 67900.0{ 354.0 230.0
10 68000.0| 525.0 296.0
Table C.12. Free vibration, case 4, parameter set 2.
LMocb Numel=1 | Numel=2 | Numel=4 | Numel=8 [ Numel=16 | Numel=32| B.E.
1 43.9 28.3 15.3 7.9 4.1 2.2 1.0
2 146.0 90.1 48.5 25.3 13.8 6.4
3 238.0 134.0 70.5 38.7 17.8
4 415.0 257.0 138.0 75.7 34.9
5 417.0 226.0 125.0 57.7
6 604.0 336.0 186.0
7 793.0 466.0 259.0
8 939.0 616.0 344.0
9 784.0 441.0
10 967.0 549.0

Table C.13. Free vibration, case 5, parameter set 2.

Mode | Numel=1 | Numei=2 | Numel=4 | Numel=8 | Numel=16 | Numel=32

1 0.8 0.9 1.0 1.0 1.0 1.0 1.0
2 7.9 6.3 6.3 6.4 6.4 6.4
3 20.4 18.0 17.8 17.8 17.8
4 78.4 36.7 35.2 34.9 34.9
5 65.6 58.8 57.8 57.7
6 114.0 89.1 86.6
7 212.0 127.0 121.0
8 559.0 174.0 162.0
9 232.0 209.0
10 305.0 262.0
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Table C.8. Free vibration, case 8, parameter set 1.

Mode | Numel=1|{ Numel=2 | Numel=4 | Numel=8 | Numel=16 | Numel=32

1 32.2 32.1 32.1 32.1 32.1 32.1. | 32.1
2 318.0 | 203.0 | 201.0 | 201.0 201.0 201.0 201.1
3 686.0 568.0 564.0 563.0 563.0 563.2
4 1990.0 | 1120.0 | 1110.0 | 1100.0 | 1100.0 1103.7
5 2080.0 | 1840.0 | 1830.0 | 1820.0 1824.5
6 3340.0 | 2760.0 | 2730.0 | 2730.0
7 5300.0 | 3880.0 | 3810.0 | 3810.0
8 8700.0 | 5160.0 | 5080.0 | 5070.0
9 7250.0 | 6540.0 | 6510.0
10 9200.0 | 8190.0 | 8140.0

Table C.9. Free vibration, case 1, parameter set 2.

Mode | Numel=1 | Numei=2 | Numei=4 | Numel=8 | Numei=16 | Numel=32 B.E.
1 53.7 30.7 15.7 7.9 4.1 2.2 1.0
2 |67900.0] 215.0 | 105.0 50.5 25.6 13.9 6.4
3 67900.0] 325.0 147.0 72.3 39.0 17.8
4 68000.0| 661.0 | 306.0 144.0 76.6 34.9
5 67900.0| 541.0 243.0 127.0 57.7
6 68000.0| 863.0 373.0 191.0
7 68000.0| 1240.0 | 538.0 269.0
8 68100.0}] 1580.0 741.0 362.0
9 67900.0 969.0 469.0
10 68000.0| 1280.0 592.0

Table C.10. Free vibration, case 2, parameter set 2.

Mode | Numei=1 | Numel=2 | Numel=4 | Numel=8 | Numel=16 | Numel=32 B.E.
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 [58800.0| 11.7 7.4 6.6 6.4 6.4 6.4
3 39600.0| 28.4 19.9 18.3 17.9 17.8
4 66100.0| 121.0 43.9 36.8 35.3 34.9
5 22500.0{ 86.0 63.2 58.9 57.7
6 51500.0| 163.0 99.2 88.9
7 63400.0| 331.0 147.0 126.0
8 67500.0] 913.0 210.0 170.0
9 14400.0| 294.0 222.0
10 32600.0| 406.0 283.0
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Table C.11. Free vibration, case 3, parameter set 2.

1 1.2 | 1.1 1.0 1.0 1.0 1.0 1.0
2 67900.0 19.5 8.2 6.8 6.5 6.4 6.4
3 67900.0 41.3 21.1 18.5 18.0 17.8
4 68000.0| 324.0 49.7 37.8 35.5 34.9
5 67900.0] 109.0 65.9 59.5 57.7
6 68000.0] 255.0 106.0 90.2
7 68100.0| 773.0 161.0 128.0
8 69100.0] 4320.0 240.0 175.0
9 67900.0 354.0 230.0
10 68000.0 525.0 296.0
Table C.12. Free vibration, case 4, parameter set 2.

LMode Numel=1]Numel=2| Numel=4 Nume|=8!Nume!=16 Numel=32| B.E. |
1 43.9 28.3 15.3 7.9 4.1 2.2 1.0
2 146.0 90.1 48.5 25.3 13.8 6.4
3 238.0 134.0 70.5 38.7 17.8
4 415.0 257.0 138.0 75.7 34.9
5 417.0 226.0 125.0 57.7
6 604.0 336.0 186.0
7 793.0 466.0 259.0
8 939.0 616.0 344.0
9 784.0 441.0
10 967.0 549.0

Table C.13. Free vibration, case 5, parameter set 2.

Mode | Numeli=1 | Numel=2 | Numel=4 | Numel=8 | Numel=16 | Numel=32 B.E.
1 0.8 0.9 1.0 1.0 1.0 1.0 1.0
2 7.9 6.3 6.3 6.4 6.4 6.4
3 20.4 18.0 17.8 17.8 17.8
4 78.4 36.7 35.2 34.9 34.9
5 65.6 58.8 57.8 57.7
6 114.0 89.1 86.6
7 212.0 127.0 121.0
8 559.0 174.0 162.0
9 232.0 209.0
10 305.0 262.0
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Table C.14. Free vibration, case 6, parameter set 2.

Mode | Numei=1 | Numei=2 | Numel=4 | Numei=8 | Numel=16 | Numel=32 B.E.

1 0.8 0.9 1.0 1.0 1.0 1.0 1.0
2 7.9 6.3 6.3 6.4 6.4 6.4
3 20.4 18.0 17.8 17.8 17.8
4 78.4 36.7 35.2 34.9 34.9
5 65.6 58.8 57.8 57.7
6 114.0 89.1 86.6
7 212.0 127.0 121.0
8 559.0 174.0 162.0
9 232.0 209.0
10 305.0 262.0

Table C.15. Free vibration, case 7, parameter set 2.

Mode | Numel=1 INume|=2 Numel=4 Numel=8!Numel=16!Numel=32 B. E.

R — -

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 10.0 6.4 6.4 6.4 6.4 6.4 6.4
3 21.7 17.9 17.8 17.8 17.8 17.8
4 63.0 35.4 35.0 34.9 34.9 34.9
5 65.9 58.0 57.7 57.7 57.7
6 106.0 87.2 86.3 86.2
7 168.0 123.0 121.0 120.0
8 275.0 163.0 161.0 160.0
9 229.0 207.0 206.0
10 291.0 259.0 257.0

Table C.16. Free vibration, case 8, parameter set 2.

Mode | Numel=1 | Numel=2 | Numel=4 | Numel=8 | Numel=16 | Numel=32 B.E.
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 10.0 6.4 6.4 6.4 6.4 6.4 6.4
3 21.7 17.9 17.8 17.8 17.8 17.8
4 63.0 35.4 35.0 34.9 34.9 34.9
5 65.9 58.0 57.7 57.7 57.7
6 106.0 87.2 86.3 86.2
7 168.0 123.0 121.0 120.0
8 275.0 163.0 161.0 160.0
9 229.0 207.0 206.0
10 291.0 259.0 257.0
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C.2 Static Buckli

Static buckling results were obtained for the following cases:

1) C0: full integration of stiffr=ss matrices
2) CO: reduced integration of material stiffness
3) Cl: full integration of stiffness matrices

Included among the tabulated data are the results using the higher order

stress resultants. Table entries have units of stress.

Table C.17. Static buckling, case 1, parameter set 1.

Mode| Numel=1
9.80E+05

Numel=2

2.28E+05

Numeli=4

7.05E+04

Numei=8
3.28E+04

Numel=16
2.35E+04

Numel=32
2.12E+04

B. E.
2.06E+04

2.62E+06

6.69E+05

2.91E+05

2.04E+05

1.84E+05

1.85E+05

1.98E+06

7.78E+05

5.31E+05

4.73E+05

5.14E+05

3.55E+06

1.44E+06

9.47E+05

8.35E+05

1.01E+06

N{RIWIN]| —

2.19E+06

1.40E+06

1.22E+06

1.67E+06

Table C.18. Static buckling, case 2, parameter set 1.

3.30E+04 ]

Numel=2

2.27E+04]

Numeli=4

Numel=8 | Numel=16 | Numel=32

2.05E+04

2.05E+04

.6E+04

6.46E+05

2.24E+05

1.87E+05

1.79E+05

1.77E+05

1.85E+05

9.11E+05

5.26E+05

4.70E+05

4.57E+05

5.14E+05

2.99E+06

1.05E+06

8.51E+05

8.11E+05

1.01E+06

N{HiWinn] —

1.74E+06

1.28E+06

1.19E+06

1.67E+06

Table C.19. Static buckling, case 3, parameter set 1.

Mode{ Numel=1
2.07E+04

—

Numel=2
2.06E+04

Numei=4
2.06E+04

Numei=8 | Numel=16 | Numel=32

2.06E+04

2.06E+04

2.06E+04

B. E.
2.06E+04

2.68E+05

1.91E+05

1.86E+05

1.85E+05

1.85E+05

1.85E+05

1.85E+05

6.42E+05

5.23E+05

5.15E+05

5.14E+05

5.14E+05

5.14E+05

NfIWIN

1.66E+06

1.06E+06

1.01E+06

1.01E+06

1.01E+06

1.01E+06

1.97E+06

1.68E+06

1.67E+06

1.67E+06

1.67E+06
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Table C.20. Static buckling, case 1, parameter set 2.

B.E.
2.06E+02

2.54E+06

5.00E+05

1.16E+05

2.99E+04

8.81E+03

1.85E+03

1.65E+06

3.40E+05

8.39E+04

2.45E+04

5.14E+03

3.44E+06

7.15E+05

1.67E+05

4.83E+04

1.01E4+04

1.29E+06

2.83E+05

8.02E+04

1.67E+04

Table C.21. Static buckling, case 2, parameter set 2.

3.33E+02

Numel=2
2.29E+02

Numei=4
2.11E+02

Numel=8
2.07E+02

Numel=16
2.06E+02

Numel=32
2.06E+02

2.06E+02

7.76E+03

2.38E+03

1.96E+03

1.88E+03

1.86E+03

1.85E+03

1.19E+04

6.09E+03

5.35E+03

5.19E+03

5.14E+03

1.30E+05

1.43E+04

1.09E+04

1.02E+04

1.01E+04

NEHiWiN}—

3.14E+04

1.90E+04

1.71E+04

1.67E+04

Table C.22. Static buckling, case 3, parameter set 2.

MI Numel=1 !

2.07E+02

Numel=2 | Numei=4

2.06E+02

2.06E+02

2.06E+02

Numel=8 !Numel=1iLNumel=32

B. E.

2.06E+02

2.06E+02

2.06E+02

2.68E+03

1.91E+03

1.86E+03

1.85E+03

1.85E+03

1.85E+03

1.85E+03

6.42E+03

5.23E+03

5.15E+03

5.14E+03

5.14E+03

5.14E+03

1.66E+04

1.06E+04

1.01E+04

1.01E+04

1.01E+04

1.01E+04

NN} —

1.97E+04

1.68E+04

1.67E+04

1.67E+04

1.67E+04

Table C.23. Static buckling, case 1, parameter set 1, higher order terms.

Model Numel=1

1

Numel=2

Numel=4

9.78E+05

2.28E+05

7.04E+04

Numel=8

e
3.28E+04

Numel=16

2.35E+04

T ——"
2.12E+04

Numel=32

B. E. F
2.06E+04

2.60E+06

6.59E+05

2.86E+05

2.01E+05

1.80E+05

1.85E+05

1.92E+06

7.49E+05

5.10E+05

4.54E+05

5.14E+05

3.52E+06

1.36E+06

8.91E+05

7.85E+05

1.01E+06

anieajwin

2.06E+06

1.29E+06

1.13E+06

1.67E+06
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Table C.24. Static buckling, case 2, parameter set 1, higher order terms.

Mode| Numel=1

1

3.29E+04

Numei=2
2.27E+04

Numel=4
2.09E+04

Numel=8
2.05E+04

Numel=16
2.04E+04

Numel=32

—
2.04E+04

B. E.
2.06E+04

6.13E+05

2.20E+05

1.84E+05

1.76E+05

1.74E+05

1.85E+05

8.51E+05

5.03E+05

4.51E+05

4.40E+05

5.14E+05

2.76E+06

9.70E+05

7.97E+05

7.61E+05

1.01E+06

I Win

1.58E+06

1.17E+06

1.10E+06

1.67E+06

Table C.25. Static buckling, case 3, parameter set 1, higher order terms.

Mode{ Numel=1

1

2.07E+04

Numel=2

Numel=4

2.05E+04

2.05E+04

2.05E+04

Numel=8 | Numel=16

2.05E+04

Numel=32
2.05E+04

B.E.
2.06E+04

2.61E+05

1.88E+05

1.82E+05

1.82E+05

1.82E+05

1.82E+05

1.85E+05

6.03E+05

4.97E+05

4.89E+05

4.89E+05

4.89E+05

5.14E+05

1.42E+06

9.60E+05

9.19E+05

9.16E+05

9.15E+05

1.01E+06

N iWIN

1.65E+06

1.44E+06

1.43E+06

1.43E+06

1.67E+06

Table C.26. Static buckling, case 1, parameter set 2, higher order terms.

—b

Mode| Numel=1 !
9.62E+05

Numel=2 ]_ Numel=4 ]_ Numel=8 !Numel=16!Nume|=32]_ B. E.

2.08E+05

5.03E+04

1.26E+04

3.30E+03

9.78E+02

2.06E+02

2.54E+06

5.00E+05

1.16E+05

2.98E+04

8.81E+03

1.85E+03

1.65E+06

3.39E+05

8.39E+04

2.45E+04

5.14E+03

3.44E+06

7.14E+05

1.67E+05

4.82E+04

1.01E+04

NlHiwin

1.29E+06

2.83E+05

8.00E+04

1.67E+04

Table C.27. Static buckling, case 2, parameter set 2, higher order terms.

Mode| Numel=1 | Numel=2 | Numel=4 | Numei=8 | Numel=16 | Numel=32 B.E.

1 3.33E+02(|2.29E+02|2.11E+02|2.07E+02 | 2.06E+02|2.06E+02]| 2.06E+02
2 7.75E+03|2.38E+03|1.96E+03|1.88E+03|1.86E+03| 1.85E+03
3 1.19E+04 { 6.08E+03|5.34E+0315.18E+03} 5.14E+03
4 1.29E+05|1.43E+04 | 1.09E+04|1.02E+04] 1.01E+04
5 3.13E+04}1.90E+04|1.71E+04 ]| 1.67E+04
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Table C.28. Static buckling, case 3, parameter set 2, higher order terms.

Mode{ Numei=1

1

2.07E+02

Numel=2
2.06E+02

Numel=4
2.06E+02

2.06E+0

2]2

.06E+02

2.68E+03

1.91E+03

1.85E+03

1.85E+03

1.85E+03

1.85E+03

1.85E+03

6.42E+03

5.23E+03

5.14E+03

5.14E+03

5.14E+03

5.14E+03

1.65E+04

1.06E+04

1.01E+04

1.01E+04

1.01E+04

1.01E+04

NiLiwWIN

1.97E+04

1.68E+04

1.66E+04

1.66E+04

1.67E+04

C.3 Dynamic Buckling

Results tabulated below correspond to the convergence plot shown in

figure 4.23. The exact solution is that of Timoshenko [34].

Table C.29. Dynamic buckling, parameter set 1.

# Elements

Critical Acceleration
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Appendix D
RMS Finite Element Model

Details are provided for the simplified finite element model of the
remote manipulator arm extracted from the NASTRAN model.
Information given here was used in the finite element formulations derived
in chapter 3 and subsequently used in the dynamic formulation of chapter

2. An example problem is given in chapter 5.

Table D.1. Nodal data for RMS model.

Node # x (in) y (in) z (in)
1 0. 0. 0.
2 22.5396 0. 0.
3 34.5396 0. 0.
4 84.7495 0. 0.
5 134.9594 0. 0.
6 185.1694 0. 0.
7 235.3793 0. 0.
8 285.6156 0. - 6.
9 341.2056 0. 0.
10 396.7956 0. 0.
11 452.3856 0. 0.
12 507.9756 0. 0.
13 563.5956 0. 0.
14 581.5956 0. 0.
15 611.5512 0. 0.
16 637.5962 0. 0.
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Table D.2. Element data for RMS model.

Element # ] Prog Set # ! Mat’l Set#!
1 1 1
2 2 1
3 3 2
4 3 2
5 3 2
6 3 2
7 3 2
8 4 2
9 4 2
10 4 2
11 4 2
12 4 2
13 5 1
14 6 1
15 7 1 .

Table D.3. Cross section Properties for RMS model.

. 003367 | 44.27 | 44.27 | 23.59 ].001794] .53
.002035] .002035 | 7.22 7.22 9.53 1.002685] .53
01025 | .01025 | 17.20 17.20 14.70 |.008762| .53
02741 | .02741 9.7 9.7 3.51 1.009917 ) .53

NN B WIIN -
W
w
(@)}
~l

Table D.4. Material Properties for RMS model.

IMat’l Set#! E 51b/in2! l v |

1 1x107 3
2 2.22.x 107 495
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Appendix E: Solution of Timoshenko Frequency Equation

A ix
Solution of Timoshenko Frequency Equation

The analytical formulation of Timoshenko beam theory leads to
much more complicated differential equations than does classical Bernoulli-
Euler beam theory. Kruszewski [39] gives the frequency equation for a

uniform beam with cantilevered boundary conditions as

kg (ks? + le2)

- ‘\/1 - k82 lez sz sin kBB sinh kg

+ [kBZ (ks2 - kRI2)2 + 2] cos kg coshkga =0 (E.1)

where

=1, /

L (E.2)

=1 ‘/ 1

L VAT (E.3)
V (E.4)

\[ (ks +kR1 ks kR12)2+
(E.5)

\ﬂks + ke + ,\/ (ks? - kR12)2 +
(E.6)
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along with the definitions:

m = mass of the beam per unit length
As effective shear-carrying area

AT effective total cross-sectional area
ks = coefficient of shear rigidity

krr = coefficient of rotary inertia

kB = frequency coefficient

® = natural frequency (rad/sec)

For the beam used in the eigenvalue problems of chapter 4,
As = AT. The roots of the frequency equation (E.1) must be determined
by numerical methods, and natural frequencies subsequently found using
equation (E.4). For the property sets defined in chapter 4, the natural
frequencies corresponding to the first 5 vibration modes are obtained from

Timoshenko beam theory and are shown in table E.1.

Table E.1. Natural frequencies from Timoshenko beam theory.

Natural Frequency
Mode Parameter | Parameter

Set 1 Set 2
31.88 1.01

1

2 192.07 6.36
3 508.58 17.79
4 929.37 34.83
3 1424.45 57.50

These values may be compared with the Bemoulli-Euler results
tabulated in Appendix C. Note that shear and rotatory inertia have the

effect of reducing the natural frequencies. For parameter set 1, the
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frequency of mode 5 is reduced by 20%. Almost no difference is observed

for parameter set 2.

The natural frequency data for the CO element (parameter set 1 only)
is normalized by the Timoshenko solution and shown in figures E.1-E.5
below. The analogous figure from chapter 4 is indicated, and serves as
comparison. The magnitude of the shear and rotatory inertia effects was
demonstrated earlier. Normalization by the Timoshenko solution validates

that the finite elements are producing the correct result.

The slow convergence of all modes using full integration is again
noted in figure E.1. This demonstrates the problem of ‘shear locking.’
Figure E.2 shows the improvement in mode 1 convergence achieved

through the use of reduced integration of the stiffness matrix.

Note figures E.4 and E.5. Rotatory inertia is not present in the
lumped mass assumption. The convergence to higher frequencies than
predicted by the Timoshenko solution are directly attributable to the

exclusion of rotatory inertia in the finite element model.

The Rayleigh and Bernoulli-Euler finite element results are shown in
figures E.6 and E.7. From these figures it is seen that, (a) the frequencies
are higher than predicted by Timoshenko beam theory, and (b) the
frequencies are reduced by the inclusion of rotatory inertia (figure E.6).
The difference remaining in figure E.6 is attributable to the exclusion of

shear in the finite element model.
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2D C-zero Cantilever Beam: Consistent Mass,
Full Integration, Parameter Set 1

TR

AN
A\

Mode 1
Mode 2
Mode 3
Mode 4
Mode §

Normalized Natural Frequency

(Timoshenko)

0.5

20 30

# Elements '

40

Figure E.1. Convergence plot normalized by Timoshenko frequencies;
analogous to figure 4.1.
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r tion

2D C-zero Cantilever Beam: Consistent Mass,
Reduced Stiffness, Parameter Set 1

1.5 I L
\ —e—— Mode 1
—e— Mode 2
\ —a— Mode 3
——e— Mode4 | |

—g—  Mode 5

/77‘
/r//

3
W

Normalized Natural Frequency

(Timoshenko)

0 10 20 30

’ # Elements

Figure E.2. Convergence plot normalized by Timoshenko frequencies;
analogous to figure 4.3.
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2D C-zero Cantilever Beam: Consistent Mass,

1-Point Integration, Parameter Set 1

1.5

N

L
DN

1.0

Mode 1
Mode 2
Mode 3

Mode 4 | |

Mode 5

Normalized Natural Frequency

(Timoshenko)

0.5
0 10 20

# Elements

Figure E.3. Convergence plot normalized by Timoshenko frequencies;

analogous to figure 4.5.

170

30

40




Appendix E: Solution of Timoshenko Frequency Equation

2D C-zero Cantilever Beam: Lumped Mass,
Full Integration, Parameter Set 1

1.5

\

Mode 1
Mode 2
Mode 3

Mode 4 | |

Mode 5§

1.0

Normalized Natural Frequency

(Timoshenko)

0.5

' Figure E.4. Convergence plot normalized by Timoshenko frequencies;

10 20

# Elements

analogous to figure 4.7.
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2D C-zero Cantilever Beam: Lumped Mass,
Reduced Stiffness, Parameter Set 1

1.5

Mode 1
Mode 2
Mode 3
Mode 4

Mode 5 ||

I/

1.0

Normalized Natural Frequency

(Timoshenko)

05
0 10 20

# Elements

Figure E.5. Convergence plot normalized by Timoshenko frequencies;

analogous to figure 4.9.
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2D C-one (Rayleigh) Cantilever Beam:
Consistent Mass, Full Integration,
Parameter Set 1

Normalized Natural Frequency

1.5
\ —g— Mode 1
& Mode 2
\ —~——a—  Mode 3
1 —eo— Mode 4 |
——m— Mode 5
\—s
—- o o
1.0 4G o o 2
)
>
=
®
=
17, ]
=
E
)
0.5
0 10 20 30 40
# Elements

Figure E.6. Convergence plot normalized by Timoshenko frequencies;
analogous to figure 4.11.
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2D C-one (Bern-Euler) Cantilever Beam:

Consistent Mass, Full integration,
Parameter Set 1

1.5

X

1.0

\i-——.,—‘

Normalized Natural Frequency

(Timoshenko)

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5

0.5

Figure E.7. Convergence plot normalized by Timoshenko frequencies;

10 20

# Elements

analogous to figure 4.12.
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Appendix F: Gauss Quadrature

Appendix F
Gauss Quadrature [23]

The spatial integrals arising in the finite element method are
conveniently evaluated using numerical integration procedures. An
efficient scheme is of considerable importance in reduction of both
computational time and cost. Gauss quadrature is such an optimal
procedure. Integrals such as given by equations (3.3.15), (3.3.16), and
(3.5.5) are transformed such that

1=ff(x>dx R 1=f o) i

(F.1)

where f(x) is representative of an arbitrary element of the matrix triple
product and g(§) is the transformed integrand. The transformation
involves the Jacobian, witich was discussed in chapter 3. In one < mension,

the quadrature formula is given by

I=f glE)dE =wig(&1)+ wag(&2)+-- + wn g(En)

(F.2)
where
g(§) = transformed function to be integrated
i = sampling points
wi = weights
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Appendix F: Gauss Quadrature

In Gauss quadrature, the sampling points and weights are prescribed
such that maximum accuracy is achieved for a given n. Sampling points
are symmetric about the center of the interval and are unevenly spaced.
Symmetric points have the same weight. Exact integration is often
referred to as ‘full integration’, whereas ‘reduced integration’ usually
refers to an order of integration one less than required for full integration.
The order of integration is governed by the rule: a polynomial of degree

(2n - 1) is integrated exactly by n-point Gauss quadrature.

The mass and material and geometric stiffness matrices, derived in
chapter 3, are evaluated by Gauss quadrature. The integration order
required for exact integration can be determined from examination of the
matrix elements which constitute the integrand, along with the above rule.

The integration rule for the beam elements is summarized in table F.1.

Table F.1. Integration rule for beam finite elements.

Element Mass Matrix Stiffness Matrix
Formulation Full Full Reduced
Cl 4-point 3-point 2-pointt
Cco 2-point 2-point 1-point

tIn practice, reduced integration is not necessary in Cl elements.




