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ABSTRACT

" This research describes an investigation of the use of
polymer-modified aggregate (PMA) as a bomb damage repair material.
PMA, an open-graded aggregate partially bonded with polymer at the
particle interfaces, could be an economical repair material and provide a
strong subgrade for repaired airfield surfaces. A PMA repair material
would consist of a 6 to 18 in. layer of partially bonded, porous aggregate=
over push-back debris or over a layer of ballast stone base material. The
select ill.v an open-graded aggregate, would provide the primary load
bearing% capac”ny .b- Adding polymer would provide tensile strength to the
aggregate matrix, which, in its unbonded state, would not exhibit any
tensile strength. A PMA repair material would also provide FOD

protection. _ .
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CHAPTER 1

INTRODUCTION

1.1  Background
For the past 30 years, the United States Air Force (USAF) has

researched and developed various methods to improve its bomb
damage repair (BDR) capabilities. The Air Force Engineering and
Services Center (AFESC) at Tyndall Air Force Base has taken a leading
role in developing and managing a Rapid Runway Repair (RRR)
program which will provide state-of-the-art BDR capabilities during
modern and future conflicts. AFESC's RRR program includes
research and development in the following areas:
a. Preattack construction of Alternate Launch and Recovery
Surfaces (ALRS).
b. Postattack environmental assessments.
¢. Bomb damage repair techniques, including:
(1) Advanced materials for crater repair.
(2) Precast concrete slabs for crater repair.
(3) Fiberglass membranes (i.e. foreign object damage (FOD)

covers) for crater repair.




(4) Advanced materials for scab repair.
d. Equipment modifications and new equipment
developments.
e. Other areas:
(1) Computer modeling of ¢ -tattack environment and
sequencing of base recovery work activities.
(2)  Assessing potential FOD to aircraft in the postattack
environment.
(3) Establishing surface roughness criteria for repaired
surfaces.
(4) Developing crater lip removal procedures and

improving concrete cutting capabilities.

1.2 Previous Research

Previous AFESC research concluded that the method of
percolating resin to form a polymer structural cap was one of the
fastest and most effective ways of meeting the USAF's BDR criteria
because it used less manpower and equipment, and completed the
repair on or ahead of schedule (References 5 & 6). A life cycle cost

(LCC) analysis showed the startup costs for the percolation method to
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be less than that of the premix methods (Reference 6). However, the
20-year LCC of the percolation method was more than the premix
method, because the large quantity of chemicals needed and the
replacement costs of those chemicals, due to a finite shelf life,
increased the expense significantly.

Previous AFESC research also conciuded that most methods of
crater repair explored to date have had problems with the strength of
the subgrade. Because of a weak subgrade, either additional material
was needed to thicken the structural cap resulting in a more
expensive repair, or additional compaction was needed to strengthen
the subgrade thus resulting in a more expensive and time intensive
repair. Conclusions from some of the previous research are
summarized as follows:

a. Polymer structural cap: Cap thickness is governed by
deflection characteristics rather than strength for polyurethane
structural caps on weak subgrades and with flexural strengths greater
than 700 psi. (Reference 6).

b. Polymer structural cap: Cap deflections are significantly
affected by subgrade consolidation near the center of caps, bv load

transfer near the edges, and by elastic/nonelastic characteristics of the




cap at the time it is loaded (Reference 6).

c. Polymer structural cap: Results indicate that cap thickness,
elastic modulus, and subgrade strength are the primary factors
controlling repair stresses and deflections (Reference 6).

d. Fiberglass mat system: The thickness of fill material should
be increased to improve the performance under traffic (Reference 1).

e. Fiberglass mat system: Durability of the mat fulfilled the
stated requirement, but the performance of the crushed stone was
poor. All maintenance required during loadcart trafficking was
related to the crushed stone base course, not the mat (Reference 7).

f. Precast slabs: To reduce initial slab movement, some
compactive effort should be applied to the base and bedding material

placed in the crater (Reference 1).

1.3 Scope of Research

This research had the objective of investigating a new repair
material, one that is economical and provides a strong subgrade.
Polymer-modified aggregate (PMA), an
open-graded aggregate partially bonded with polvmer at the particle

interfaces, fulfills both requirements. A PMA repair material consists




of a 6 to 18 in. layer of partially-bonded, porous aggregate over push-
back debris or over a layer of ballast stone base material. The select
fill, an open-graded aggregate, provides the primary load bearing
capacity. Adding polymer provides tensile strength to the aggregate
matrix which, in its unbonded state, does not exhibit any tensile
strength. A PMA repair material would also provide FOD protection.
This research is presented as follows:
a. Chapter 2 describes the variables.
b. Chapter 3 outlines the preparation and casting of the
PMA specimens.

c. Chapter 4 outlines the testing procedures.

d. Chapter 5 describes the data reduction.

e. Chapter 6 discusses the test results.

f. Chapter 7 presents a summary, conclusions and

recommendations.

1.4 Obijective of Research

The objective of this research was to investigate PMA as a bomb
damage repair material. This objective was accomplished by:

a. Constructing a mold, casting the specimen and




establishing procedures for testing PMA in flexure.
Measuring the flexural strength of PMA beams.
Comparing flexural strengths of PMA beams at 6-, 12-,
and 18-in. depths.

Comparing flexural strengths of PMA beams with
varying aggregates, levels of compaction, and resin

content.




CHAPTER 2

EXPERIMENTAL DESIGN

2.1  Variables

Casting and testing data were collected for the 24 conditions
listed in Table 2.1. The variables studied included: aggregate type
(siliceous gravel and crushed limestone), compaction (compacted and
uncompacted), resin loading (maximum and minimum), and depth
of specimen (0 to 6 in., 6 to 12 in,, and 12 to 18 in.). The specimens
were tested in flexure for each combination of variables. At least
three specimens at the 0- to 6-in. depth were tested for each
combination. In most cases, three specimens at 6- to 12-in. and 12- to
18-in. depths were tested, depending on availability resulting from the

depth of penetration of the resin.

22 Numbering
Each specimen was assigned an identification number of the
form ABC.XY. Each number represents a specific variable, as shown

in Table 2.2 and Fig. 2.1. For example, specimen 212.32 refers to a

specimen composed of crushed limestone, compacted, maximum




Table 2.1 Specimen Variables.

Variables Number of

~pecimens

Aggregate Compaction Resin Specimen tested
Type Loading Depth, in. in flexure
Gravel compacted min 0 toé6 3
Gravel compacted min 6 to 12 3
Gravel compacted min 12 to 18 1
Gravel compacted max 0 toé6 6
Gravel compacted max 6 to 12 5
Gravel compacted max 12 to 18 5
Gravel uncompacted min 0 tob 3
Gravel uncompacted min 6 to 12 3
Gravel uncompacted min 12 to 18 3
Gravel uncompacted max 0 to6 3
Gravel uncompacted max 6 to 12 3
Gravel uncompacted max 12 to 18 3
Limestone compacted min 0 toé6 5
Limestone compacted min 6 to 12 5
Limestone compacted min 12 to 18 2
Limestone compacted max 0 tob 3
Limestone compacted max 6 to 12 3
Limestone compacted max 12 to 18 3
Limestone uncompacted min 0 toé6 3
Limestone uncompacted min 6 to 12 3
Limestone uncompacted min 12 to 18 3
Limestone uncompacted max 0 tob6 3
Limestone uncompacted max 6 to 12 3
Limestone uncompacted max 12 to 18 3




Table 2.2 Specimen Designation.

A - First digit specifies type of aggregate.
1 = Siliceous gravel.
2 = Crushed limestone.
B - Second digit specifies compaction.
1 = compacted.
2 = uncompacted.

C - Third digit specifies resin loading.
1 = minimum loading (4060 ml).

2 = maximum loading (6090 ml).

X - Fourth digit specifies position of the specimen in the box.
1 = first specimen in the box.
2 = middle specimen in the box.
3 = last specimen in the box.

Y - Fifth digit specifies depth of the specimen from the surface.
1 = 0to 6 in., or 6-in. depth.
2 = 6 to 12 in,, or 12-in. depth.
3 = 12 to 18 in., or 18-in. depth.
4 = 18 to 23 in,, or 23-in. depth.




Figure 2.1

Specimen Identification Numbering.

(ABC32)

10
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resin loading, was the third specimen in the mold, and was cut from

the 6- to 12-in. depth.




CHAPTER 3

SPECIMEN PREPARATION AND CASTING

3.1  General

The polymer concrete specimens were cast by pouring resin
over aggregate placed in a partitioned box which served as the mold.
The aggregate was oven-dried and weighed before being placed into
each section of the partitioned box. The resin was measured, mixed
and then poured over the aggregate in each mold. Casting and testing

data are given in Appendix A.

3.2  Molds

A special mold was constructed fcr this test. To test the
polymer-modified aggregate (PMA), the resin was allowed to freely
percolate through the aggregate. A standard 6-in. x 6-in. x 20-in. mold
would have caught any resin not retained by the aggregate resulting
in a solid layer of polymer on the bottom of each specimen. A
specimen with a layer of polymer on the bottom would have a higher
flexural strength than possible under actual field conditions.

An alternate method of simulating fielc ~onditions was

12

<~
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evaluated. Constructing a special mold with a screen as the bottom
surface of the mold was considered. However, the gauge of wire or
size of mesh required to simulate the effect of aggregate at lower
levels was not known. Another concern was that the resin would
form a solid layer of resin at the bottom of the mold, between the
screen and the aggregate. Furthermore, a screen or wire mesh would
deform under the weight of the aggregate and resin, and a screen
would also be difficult to securely attach to the sides of the mold.

It was decided that a mold with a depth of about 2 ft. would best
simulate field conditions, where the resin could freely percolate
through the aggregate. A mold with a 2-ft. depth would also allow the
flexural strength of the PMA at various depths to be evaluated.

Each mold was approximately 2 ft. x 2 ft. x 2 ft., as shown in
Figs. 3.1, 3.2, 3.3 and 3.4. Two molds were constructed. The sides and
bottom were removable. The pieces of the mold were machine cut
from an 8-ft. x 4-ft. x 3/4-in. sheet of high density polyethelyne and
were grooved to allow easy, yet snug, assembly. A thickness of 3/4 in.
was necessary to provide strength and stiffness to a mold this size.
The resin could be easily cleaned from the polyethelyne without the

use of a release agent. Bracing was added to hold the mold together
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Figure 3.1 High Density Polyethelyne Molds Used in

Casting PMA Specimens.
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and to minimize deflection of the sides during compaction of the
aggregate.

Each mold was partitioned into three separate sections. Each
section acted as an individual mold. The interior dimensions of each
section were 6 in. x 20 in. x 23 1/8 in.

3.3  Aggregate

Two types of aggregate were used in this test: siliceous gravel
and crushed limestone. Both were procured from local suppliers and
the gradation ranged from No. 57, nominal 1-in. diameter, to No. 4.
Appendix B lists the aggregate gradations. The siliceous gravel had a
dry-rodded unit weight (DRUW) of 101.9 pounds per cubic feet (Ib/cf.),
a dry-loose unit weight of 91.6 1b/cf., and a bulk specific gravity (BSG)
of 2.61. The crushed limestone had a DRUW of 88.7 Ib/cf., a dry-loose
unit weight of 74.5 Ib/cf., and a BSG of 2.48. The unit weight was
determined in accordance with the American Society of Testing and
Materials (ASTM) C-29-78. The BSG was provided by the local

supplier of the aggregate.

The aggregate was oven-dried at about 275°F and then cooled at
the ambient tempcerature, usually overnight. After cooling, the

aggregate was either placed into the mold or was stored in sealed
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garbage bags until casting.

Once the molds were assembled, the aggregate was scooped into
a metal bucket, weighed, and placed into a specific section of the mold.
The weight of the aggregate was recorded before it was placed in each
section. To ensure even distribution of the aggregate inside the mold
and to minimize the deflection of the partitions, the aggregate was
first placed in the middle section in a 4-in. lift, and then in the two
side sections, also in 4-in. lifts. If the specimen was to be compacted,
each 4-in. lift was compacted by 50 blows with a 2-in. x 4-in. x 4-ft.
piece of wood. The top was leveled and compacted by striking a
hammer on a short piece of wood. For uncompacted specimens, the

aggregate was placed in 4-in. lifts and leveled.

34 Resin

The Air Force provided a polyurethane resin to be used in this
test. Part A, the isocyanate, had a density of 1.112 gm/ml; Part B, the
polyol, had a density of 1.054 gm/ml; Part C, the catalyst, had a density
of 1.050 gm/ml.

For consistency, Part B was measured by weight to the nearest

0.01 gm. Part A was determined visually to ensure that an equal
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volume to Part B was used.

Through initial testing, it was found that Part C should be 3
percent of the weight of Part B to obtain a set time of about twn
minutes. Two minutes was just enough time to mix the resin, pour
it, and allow it to percolate through the aggregate. As the ambient
temperature increased, the weight percent of Part C had to be
decreased by trial and error to avoid a "quick-set" of the resin. The
catalyst amount was 3 percent by weight for all specimens unless
otherwise noted in Appendix A. Part C was also measured by weight
to the nearest 0.01 gm.

The maximum and minimum resin loadings were established
by trial and error. The first three specimens used 4060 ml. for the
resin loading: 2000 ml. of Part A, 2000 ml. of Part B and 60.20 ml. of
Part C. Although resin percolated to a depth of 20 in., not enough
resin percolated to the 12- to 18-in. depth tc allow a specimen to be
sawed and tested (Table A.3, specimens 111.00). As a result, it was
decided that 4060 ml. would be the minimum resin loading and a
greater quantity of resin would be used for the maximum loading
conditions. For the maximum resin loading, the objective was to

pour enough resin into the mold so that ample resin percolated to the
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12- to 18-in. depth. This would allow a specimen at the 12- to 18-in.
depth to be obtained for testing. A 50-percent increase in the resin
loading, 6090 ml., accomplished this objective: 3000 ml. of Part A,

3000 ml. of Part B and 90.34 ml. of Part C.

3.5 Pouring the Resin

Safety was the top priority during the mixing and pouring of
the resin. The lab was kept well ventilated by opening all doors and
windows and by having a large fan constantly blowing the vapors out
of the lab. Resins were never stored nor poured near a source of heat.
All resins were stored in a chemical storage room. All lab assistants
wore pants and aprons made of a Tyvek® material, two layers of
gloves, and goggles. All waste contaminated by resin was properly
disposed.

Two people helped in the pouring process. One person, the
timekeeper, monitored the elapsed time from the start of mixing
until the resin set. The other person, the mixer, was the only person
to ever handle, mix, pour, or dispose of the resins. The mixer
weighed the required amounts of Part B in 1000 ml. beakers and Part C

in 100 ml. beakers. Part A was measured visually in 1000 ml. beakers.
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Parts B and C were mixed together in an 8-qt. container. Part A was
added, the stopwatch started, and all parts mixed together with a
wooden stick. After thorough mixing, the container was sealed with a
lid containing approximately twenty 3/8-in. holes that evenly
dispersed the resin over the specimen surface. The mixing process
took 20 to 30 seconds.

The container was then tipped upside down over one section of
the mold and the resin was poured evenly over the specimen surface
at a constant row A small air hole was located at the bottom of the
container tu allow the pressure inside the container to equalize. It
was covered with tape during mixing and removed by the timekeeper
at the beginning of pouring. The pouring process took 60 to 75

seconds.

3.6 Polymerizing and Mold Removal

The resin typically set 15 to 30 seconds after the pouring was
completed. Appearance and pourability were used to define the set
time. The resin started out with a viscosity nearly as low as water.
After about two minutes, the resin became thicker in consistency. At

about the same time, dark fibers, or chains, began to form in the resin
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mixture. A few seconds later, the mixture became solid and turned a
light tan color. The moment it became unpourable and light tan in
color was defined as the set time. Overall, the resin initially set about
two minutes after the mixing began and was hard after seven
minutes.

After the resin set, the amount of unused resin was measured.
The empty weight of the beakers and the pouring container were
subtracted from their weight after the mixing and pouring process.
This gave the weight of the residual resin left in the various
containers. The resin left on the wooden stick was also determined
and an estimate was made on the weight of the resin spilled during
the pouring process.

The specimens polymerized at least 12 hours before mold
removal and sawing. All specimens polymerized at least 24 hours
before testing. Specimens polymerized at the ambient temperature in
the lab.

After removing the bracing around the mold, three side panels
were removed. The first specimen was removed from the partition
that separated it from the next specimen, and then the partition was

removed. This was repeated until all specimens were removed from
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the mold.
Mold pieces were cleaned after every pour and care was taken
not to scratch the interior surfaces. After reassembly, all inside seams

were thoroughly caulked with a silicon rubber sealant.

3.7 Concrete Sawing

Starting at the top of the specimen, lines were drawn so that
each specimen would be 6-in. deep after it was sawed. The minimum
and maximum depths the resin percolated were measured prior to
sawing.

A portable concrete saw was placed on top of a 4-in. high
wooden platform as shown in Fig. 3.5. The specimen was held
securely against the platform. The operator made a straight cut by
lowering the saw blade through the specimen along the drawn line.

After the specimens were cut at 6-in. intervals, the 6-in. x 6-in. x
20-in. beams were transported approximately 10 miles to the testing
lab. The truck was driven slowly and sheets of plywood were used to

help minimize any damage to the specimens.




Figure 3.5

Concrete Sawing PMA Specimens into

6-in. x 6-in. x 20-in. Sections.
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CHAPTER 4

TESTING

4.1  Specimen Measurements

As shown in Fig. 4.1, specimen measurements were taken just
prior to actual testing so that the measurements accurately
represented the specimen at the time of testing. Three measurements
were taken for each dimension to the nearest 0.05-in. These
measurements were used to determine the average width, depth and
length of the specimen. When a resin-aggregate void existed at the
edge of the specimen, a minimum dimension of 5.75-in. was used.

A resin-aggregate void is defined as a void which resulted
when pieces of polymer-modified aggregate broke off. It is not a
trapped air void in the PMA matrix. Regardless of the precautions
taken while handling the specimens, pieces of polymer-modified
aggregate broke off during mold removal, concrete sawing, and
transporting but most often during sawing. Occasionally, voids
resulted when resin failed to percolate completely through the
aggregate.

To calculate the amount of resin retained by the specimen, the

26




Figure 4.1

Measuring PMA Specimens for Average
Dimensions, Resin-Aggregate Voids, and

Weight.
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volume of the resin-aggregate void was measured with a 3-in. x 2.5-in.
x 2.5-in. block. This volume is recorded in Appendix A under the
column "Voids,"” and Figs. 4.2 and 4.3 show resin-aggregate voids in
PMA specimens. In addition to measuring resin-aggregate voids,
specimens were weighed on a scale to the nearest 0.06 1b. prior to
testing.

4.2 Flexural Testing

Flexural strength testing was conducted according to the
American Society for Testing and Materials (ASTM) C-78-75. The first
several specimens were tested using a hand-operated Rainhart
Testing Machine. These specimens are identified in Appendix A.
However, this machine could not accurately measure the flexural
strength when it was less than 200 psi., so all remaining tests were
conducted using a hydraulic testing machine.

As shown in Fig 4.4, the tests used the standard apparatus for
third-point loading. The specimens had an
18-in. span and were loaded at the third-points. A few minor
adjustments were made to ASTM C-78-75 to accommodate the unique
characteristics of PMA. ASTM requires a loading rate of 125 psi/min.

to 175 psi/min. after rapidly loading the specimen to 50 percent of its




Figure 4.2

Crushed Limestone PMA Specimens Showing
Resin-Aggregate Voids. Specimens (B = No.
211.42 and C = No. 211.43) are at the 12-in.

and 18-in. Depths.
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Figure 43 Crushed Limestone PMA Specimens Showing
Resin-Aggregate Voids. Specimen A
(No. 211.51) shows the top surface of PMA
and Specimen C (No. 211.53) Shows Resin-

Aggregate Voids.
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Measuring the Flexural Strength of PMA in a

Hydraulic Testing Machine.
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breaking load. This rate was too high for PMA specimens since the
ultimate load was so low. A loading rate of 40 psi/min. to 45 psi/min.
(i.e. 480 Ib/min. to 540 Ib/min.) was used instead. Also, thin strips of
wood were used in place of leather shims.

Another adjustment was made to more accurately measure the
flexural strength of the specimen. Whenever possible, the specimens
were tested in the same position as they were cast. This adjustment
was made because sometimes a thin layer of resin formed on the sides
of the specimen where it was in contact with the mold. If the
specimen had been tested on its side, the strength might have been
slightly higher. When the top surface was too rough or had resin-
aggregate voids, it was turned on its side for testing. Fig. 4.5 shows a

typical PMA specimen after testing.




Figure 4.5 Siliceous Gravel PMA Specimen After

Testing. Specimen No. 111.11 was under
Maximum Compaction and Minimum Loading

Conditions at the 6-in. Depth.
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CHAPTER 5

DATA REDUCTIONS

5.1 Flexural] Strength

The modulus of rupture (MOR) was used to define the flexural
strength. The MOR was calculated to the nearest 5 psi. The equations
listed in ASTM C-78-75 were used to calculate the MOR, except for the
specimens tested on the Rainhart Testing Machine. If the location of
the fracture line lay within the middle one-third of the span length,
the following equation was used:

R=Pl_
bd?

where:
R = modulus of rupture, psi.,
P = maximum applied load, lb.,
1 = span length, (18 in.),
b = average width of specimen, in,,

d = average depth of specimen, in.
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The one occasion when the fracture line was outside the
middle one-third of the span by not more than 5 percent, the
following equation was used:

R =3Pa
bd?

where:
a = average distance between the line of fracture and the nearest

support, in.

52  Density

The density of the placed aggregate was calculated separately for
each section of the mold and assumed to be the same through the full
depth. The weight of the aggregate placed in each section was
recorded as previously discussed. The volume of each section was
1.61 cf. In one test, there was not enough aggregate to fill the mold. In
this case (Table A.7), the aggregate was placed to a level of 3 in. below
the top of the mold. The volume of each section for this mold was

1.40 cf.
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Density was calculated as follows:
D=W
\Y

where:
D = density, Ib/cf,,

W = dry aggregate weight, 1b,,

V volume of mold section, cf.

53 Percent Voids

The following equation was used to calculate the percent voids

for each mold section:

Percent Voids = (BSG x 62.41b/cf)-D x 100 percent
(BSG x 62.4 1b/cf.)

where:
BSG = bulk specific gravity,

D = density, Ib/cf.

The aggregate supplier provided the BSG Jor each type of
aggregate. In place of the DRUW, the section density was used

because it was calculated for each specimen.
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5.4  Percent Retained and Percent Weight

Percent retained and percent weight both indicated the amount
of resin retained by the specimen. Percent retained compared the
amount of resin retained by the specimen to the amount of resin
poured into the mold section. Percent weight compared the adjusted
weight of the specimen with resin to the initial weight of the

specimen without resin. The equations were as follows:

Percent Retained = Wf- Wi x 100 percent

Wr
and:
Percent Weight = Wf- Wi x 100 percent
Wrs
where:
W¢ = final specimen weight, 1b.

= [Wt + (number of resin-aggregate voids x
0.0875 Ib/block)],
Wt = tested specimen weight, lb.

= specimen weight just prior to flexural test,
Wi = initial specimen weight (i.e.,, dry weight of aggregate),

Ib.
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= [Vs x density],
Vs = specimen volume, cf.
= (average depth x average width x length)/
1728 in3/cf.,

Wr = final resin weight, lb.

= weight of the resin poured into the section

I

{[(intial resin weight) - (loss in beakers)
- (loss in container) - (loss from stick and spilling)]/
(453.6 gm/1b.]}.

5.5 Percent Resin Volume/Void Volume

Percent resin volume per void volume is the ratio between the
volume of resin that was retained in the aggregate matrix after
polymerization and the volume of voids in the specimen prior to

pouring the resin. The equation used to determine this is as follows:

Percent RV/VV = Vr
Vv
where:

Vr = resin volume, cf.

= [(resin weight, gm)

/ (avg. density of resin, 1.083 gm/ml)




/ (1000 ml/ltr) / (28.32 ltr/cf)],
Vv = void volume, cf.

= [(percent voids) x (volume of specimen, cf.)].




CHAPTER 6

DISCUSSION OF RESULTS

6.1  Scope of Chapter

This chapter describes the results of the research. The graphs
show flexural strength as a function of depth from surface, resin
loading, density, percent voids, percent retained, percent weight, and
percent resin volume/void volume. Results of data calculations are
located in Appendix C. Data points and linear equations for the

graphs are given in Appendices D and E.

6.2 Depth

The strength of the PMA material varied with the depth, as
shown in Figs. 6.1, 6.2, 6.3, and 6.4.

In Fig. 6.1, siliceous gravel PMA and crushed limestone PMA
had strengths of 112 psi. and 101 psi., respectively, at the 18-in. depth
and under minimum compaction and maximum resin loading
conditions. The strengths increased slightly up to the 6-in. depth.

Under maximum compaction conditions, siliceous gravel PMA

and crushed limestone PMA had minimum strengths of 106 psi. and
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94 psi., respectively, at the 18-in. depth. As the depth decreased to 6
in., the PMA realized the benefits of compaction and increased 138
percent to maximum strengths of 185 psi. and 272 psi., respectively.

In Fig. 6.2, siliceous gravel PMA and crushed limestone PMA
strengths increased by 68 percent as the depth decreased under
uncompacted and minimum resin loading conditions. Under
maximum compaction and minimum resin loading conditions, the
strengths were under 100 psi. at the 18-in. depth. As the depth
decreased to 6 in., the PMA realized the benefits of compaction, and
the strengths increased significantly by 103 percent for siliceous gravel
PMA and 298 percent for crushed limestone PMA.

In Fig. 6.3, siliceous gravel PMA, and in Fig. 6.4, crushed
limestone PMA, the flexural strengths increased as the depth to the
surface decreased under compacted /uncompacted and
maximum/minimum resin loading conditions.

In summary, the flexural strength of PMA specimens increased
an average of 133 percent as the depth to the surface decreased from 18
in. to 6 in. Also, PMA achieved a flexural strength average of 170 psi.

at the 6-in. depth and an average of 130 psi. at all three depths.
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6.3  Resin Loading

Figs. 6.5 and 6.6 show the affect of resin loading on flexural
strength for siliceous gravel PMA under compacted and uncompacted
conditions. Under compacted conditions, Fig. 6.5, the flexural
strength decreased by 8 percent at the 6-in. and 12-in. depths as the
resin loading increased 50 percent. Under uncompacted conditions,
Fig. 6.6, the flexural strength increased by 14 percent as the resin
loading increased at all three depths.

Figs. 6.7 and 6.8 presents the affect of resin loading on flexural
strength for crushed limestone PMA under compacted and
uncompacted conditions. At all three depths in Fig. 6.7, the flexural
strength significantly increased by 35 percent as the resin loading
increased under compacted conditions. Also at all three depths in
Fig. 6.8, the flexural strength increased by 13 percent as the resin
loading increased under uncompacted conditions.

Besides increased strength, maximum resin loading conditions
provided sufficient resin to percolate through the top 12 in. of
aggregate and form PMA material at 18-in. and greater than 18-in.
depths. Table A in the Appendix shows that under maximum resin

loading conditions, enough resin percolated to the 18-in. depth to
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form a testable PMA specimen 14 out of 15 times, and the resin had an
approximate 23-in. depth overall. Also, enough resin percolated and
filled the bottom of the mold to form a 4.5 in. solid polymer beam in
six mold sections (see Chapter 6.5). Under minimum resin loading
conditions, sufficient resin percolated to the 18-in. depth and formed
testable specimens 9 out of 14 times, and the resin had ar approximate
20-in. depth overall.

In summary, a 50-percent increase in the resin loading
increased the flexural strength of the PMA at all depths by an average
of 14 percent; and more importantly, an increase in the resin loading
provided sufficient resin to percolate through the top 12 in. of
aggregate and form specimens of PMA at 18-in. depths. As a result of
percolating to depths of at least 18 in., the overall stiffness of the PMA
repair material is increased. So if there is not enough time to compact
the aggregate in a crater or not enough equipment, increasing the
resin loading will provide additional strength to the PMA repair

material.




6.4  Density and I'ercent Voids

Figs. 6.9 and 6.10 show how compactive effort affected
the flexural strength of a PMA specimen. In Fig. 6.9 with siliceous
gravel PMA, the flexural strength increased 67 percent from 103 psi. to
172 psi. when the density of the specimen was increased 9 percent.
With crushed limestone PMA, the strength increased 72 percent from
89 psi. to 152 psi. when the density was increased 13 percent.

Likewise in Fig. 6.10, the flexural strength of siliceous gravel
PMA increased 67 percent when the percent voids decreased 17
percent from 42 percent to 35 percent. And with crushed limestone
PMA, the strength increased 72 percent when the percent voids
decreased 17 percent from 44 percent to 37 percent. Therefore, the
flexural strengths of compacted PMA specimens were much higher
than for uncompacted specimens.

However, the flexural strength for uncompacted PMA was
noteworthy. In an uncompacted condition, siliceous gravel PMA had
an average strength of 100 psi. and crushed limestone PMA had an
average of 90 psi. The strengths were averaged over all three depths
and both resin loadings. In other words, PMA had measureable

flexural strength under uncompacted conditions. Therefore, if time
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did not permit compaction during RRR operations, select aggregate
could be quickly thrown into the crater, resin applied, and the
uncompacted PMA would still achieve an average flexural strength of
about 100 psi.

Also, other figures show how compaction resulted in higher
flexural strengths. In Figs. 6.3 and 6.4, the compacted specimens
averaged 172 percent increase in flexural strength from 18-in. to 6-in.
depth while the uncompacted specimens increased only 50 percent.

In other words, the amount of compaction affected the PMA strength
more than resin loading.

The highest strength from any PMA specimen came from
siliceous gravel PMA under compacted and maximum resin loading
conditions at an 18-in. depth. One specimen, No. 112.43, had a
flexural strength of 913 psi. and another, No. 112.63, had a strength of
625 psi. The extra strength could be attributed to the compactive effort
which resulted in a large amount of retained resin, 50 percent and 56
percent, respectively. These two specimens were included in
Appendix C but not in the graphs.

In summary, compactive effort affected the strength of PMA

more than any other variable. Compaction increased the particle
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interfaces in the aggregate matrix. As a result of compaction, the resin

formed a stronger bond with the aggregate matrix at all depths tested.

6.5  Percent Retained and Percent Weight

Fig. 6.11 presents the relationship between flexural strength and
percent retained, and Fig. 6.12 presents the relationship between
flexural strength and percent weight.

In Fig. 6.11, the flexural strength of siliceous gravel
PMA increased 100 percent when the percent retained increased 27
percent. The strength of crushed limestone PMA
increased 44 percent as the percent retained increased 36 percent.

In Fig. 6.12, the flexural strength of siliceous gravel PMA
increased 45 percent when the percent weight increased 7 percent, and
the strength of crushed limestone PMA increased 21 percent as the
percent weight increased 8 percent.

Uncompacted and maximum resin loading conditions retained
less resin on the aggregate matrix than compacted and maximum
resin loading conditions. As a result, any resin not retained by the
agzregate collected on the bottom of the mold and formed a solid slab

(i.e., the voids were completely filled, see Chapter 6.3). Six of these




XL 91e8a133dy ay) uL wisay|
JO paure}ay JUDIdJ Y} JO UondUNY B st YN JO YI3ualg [eanxalf  [1'9 aindiy

pauielay 1usoiad

o€ Oc 0l 0

<
o)
a
-001 <
c
)
o
- Byl
-
©
c
u o
a - 002
auo0}sawi s g 5 o o

|joABIO oV i
80AT [OqQuAg

00¢




0t

XUje 31e3a133y ay) ut uisay]

JO YS9 JUDI3] 3Y} JO uonduUNy € se VA JO YI3uang [eInxap, Z1°9 21031y
ybiapn 1usoiad
8 9 1% [ 0
A 1 n 1 i 1 i 1 i O
u I
n
] n_u an.
e
w
=4
- D
[
©
c
)
-00¢ -

o @

auolsawi ng i

|aABID) oy
SUAT [OqUAS .
00¢€




59

slabs were thick enough to be tested (No. 122.14, 122.24, 122.34, 222.14,
222.24, 222.34). The siliceous gravel specimens had an average
flexural strength of 1205 psi., and the crushed limestone specimens
had an average strength of 1010 psi. These specimens were included

in Appendix C but not in the graphs.

6.6 Percent Resin Volume/Void Volume

Fig. 6.13 shows how flexural strength of PMA varied with the
amount of resin that filled the voids in the PMA material. The
percent strength was calculated by dividing the specimen’s flexural
strength by the flexural strength of a solid polymer specimen. As
discussed in Chapter 6.5, the flexural strength of a solid specimen was
1205 psi. for siliceous gravel PMA and 1010 psi. for crushed limestone
PMA.

Siliceous gravel PMA averaged 11 percent of the flexural
strength of a solid specimen when approximately 1/6 of the voids
were filled with resin. Crushed limestone PMA averaged 12 percent
of a solid specimen when approximate!y 1/8 of the voids were filled
with resin. Crushed limestone PMA specimen No. 212.21 achieved a

maximum flexural strength of 27 percent of a solid specimen when
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approximately 1/11 of the voids were filled with resin.

6.7 Miscellaneous Results

During this research, it was noted that the surface of the PMA
material was rough from protruding aggregates. These aggregates
may fragment and cause FOD damage to an aircraft, or they may
puncture a tire. To alleviate this problem, a thin, strong cap was
made efficiently and economically by pouring a small amount of resin
over a thin bed of sand. Fig. 6.14 shows that a layer of polymer-sand
provided a smooth and slip-resistant protective cap over the PMA
material. This concept was tried on specimens No. 111.31, 112.11,
112.31, and 211.41. An average of 0.2 gal/sf. of resin and 3 lb/sf. of
sand was used to make the polymer-sand cap.

Also, the cost of the resin (i.e., Parts A, B, and C mixed together)
was about $1.05 per pound of resin. PMAspecimens at the 6 in. depth
had an average flexural strength of 170 psi., retained 2.0 1b. of resin,
and cost $2.10. PMA specimens had an overall average flexural
strength ot 130 psi., retained 1.9 lb. of resin, and cost $52.00. In other
words, PMA repair material would require 10 Ib of resin and cost

S12.60 per square foot for an 18-in. repair depth.




Figure 6.14

Siliceous Gravel PMA Specimen

(No. 112.31) with Polymer-Sand Cap.
Polymer-Sand Cap Economically Provides a
Slip-Resistant FOD Cover Over a Repair

Surface.
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CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

This research describes an investigation of the use of polymer-
modified aggregate (PMA) as a bomb damage repair material. PMA,
an open-graded aggregate partially bonded with polymer at the
particle interfaces, could be an economical repair material and
provide a strong subgrade for repaired airtield surfaces. A PMA repair
material would consist of a 6 to 18 in. layer of partially bonded, porous
aggregate over push-back debris or over a layer of ballast stone base
material. The select fill, an open-graded aggregate, would provide the
primary load bearing capacity. Adding polymer would provide tensile
strength to the aggregate matrix, which, in its unbonded state, would
not exhibit any tensile strength. A PMA repair material would also

provide FOD protection.

7.2 Conclusions

a. The mold and test method provided a satisfactory procedure for

constructing polymer-modified aggregate
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d.

e.

7
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(PMA) under simulated field conditions.

PMA achieved an average flexural strength of 170 psi. at a
6-in. depth and an overall average of 130 psi.

Compactive effort affected the strength of PMA more than
any other variable. Compaction increased the particle
interfaces in the aggregate matrix. As a result, the resin
formed a stronger bond with the aggregate matrix at all
depths tested.

The flexural strength of PMA increased 67 percent for
siliceous gravel and 73 percent for crushed limestone
when the density of the preplaced aggregate in the
specimen was increased 9 percent and 13 percent,
respectively.

Siliceous gravel PMA obtained the highest flexural
strength (915 psi.) under compacted and maximum resin
loading conditions.

The fleaural strength for uncompacted PMA averaged 95
psi.

A SU-percent increase in the resin loading increased the

tlexural strer ~th of the PMA at all depths bv an average ot
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14 percent.

An increase in the resin loading provided sufficient resin
to percolate through the top 12 in. of aggregate and form
specimens of PMA at 18-in. depths. As a result, the
overall stiffness of the PMA repair material was increased.
The flexural strength of PMA increased an average of 133
percent as the depth from the surface decreased from 18 to
6 in.

The flexural strength of siliceous gravel PMA increased
100 percent when the percent retained of resin increased 27
percent, and the strength of crushed limestone PMA
increased 44 percent when the percent retained increased
36 percent.

Crushed limestone PMA achieved a maximum flexural
strength of 27 percent of a solid polymer specimen with
very little resin--only 1/11 of the voids were filled with
resin.

A polvmer-sand cap provided an efficient and economical

protective cap over the PMA material.
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Recommendations

d.

79

Conduct further research on the affects of the aggregate
matrix on the flexural strength of PMA.

Investigate the affects of resin set time on flexural strength
of PMA's, strength development of PMA, and resin
penetation through PMA.

Investigate the affects of various moisture and
temperature conditiors on the flexural strength of PMA.
Measure the flexural strength of PMA after specimens
have polymerized for 30 minutes.

Investigate the life cycle cost of PMA as a repair material
for bomb damaged airfield surfaces.

Conduct research of PMA under field conditions. Develop
correlation between PMA stress limit under field
conditions and PMA flexural strength in laboratory tests.
Measure efficiency and effectivness of PMA as a repair
material and chart clock times for PMA repair activities.
Encourage the US chemical industry to develop a resin

which is environmentally safe and is effective under wet

weather conditions.




APPENDIX A

Casting and Testing Data
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Aggregate Gradations
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Figure B.1 Aggregate Gradation of Siliceous Gravel.

Sieve Size Percent Retained
1&1/2 in. 0.0
1 in. 5.0
3/4in. 31.0
1/2in. 715
No. 4 98.0

Figure B.2 Aggregate Gradation of Crushed Limestone.

Sieve Size Percent Retained
1&1/21n. 0.0
1in. 3.0
3/4 in. 29.0
1/2in. 68.5
No. 4 97.0
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APPENDIX D

Data Points for Graphs
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APPENDIX E

Linear Equations for Graphs
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The calucation of fitted curves produced an equation along

with a correlation coefficient. The equation used to fit the linear
regression curve is as follows: Yi = aXi + b + error. The correlation
coefficient was designated by R*2 (R squared). The closer R"2 was to

1.00, then the more reliable was the curve fit equation generated.

E.1. Figure 6.1 Flexural Strength of PMA as a Function of the

Depth of the Specimen Under Maximum Resin Loading

Conditions.

a. y=25200-75833x; R"2=0.599

b. v =148.67-2.6667x; R"2=0.399
c. y=236467-14833x; R"2=099

d. v=101.67-83e-2x; R"2=0.107

E.2. Figure 6.2 Flexural Strength of PMA as a Function of the

Depth of the Specimen Under Minimum Resin Loading

Conditions.
a. v=31567-11.083x; R*"2=0716
b. y=15567-55833x; R"2=0.859

¢ v=256.67-11667x; R"2=1.000




E.3.
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d. y=11533-32500x; R"2=0.989

Figure 6.3 Flexural Strength of Siliceous Gravel PMA as a

Function of the Depth of the Specimen.

a. y=31567-11.083x; R"2=0.716
b. y=252.00-75833x; R"2=0.599
c. y=15567-55833x; R”"2=0.859

d. y=148.67-26667x; R"2=0399

Figure 6.4 Flexural Strength of Crushed Limestone PMA as a

Function of the Depth of the Specimen.

a. y=256.67-11.667x; R™2=1.000
b y=36467-14.833x; R"2=0995
¢ y=11533-32500x; R"2=0989

d. y=101.67-83e-2x; R"2=0.107

Figure 6.5 Flexural Strength of Siliceous Gravel PMA as a

Function of Maximum and Minimum Resin Loadings Under

Compacted Conditions.

a. y=230562-62500x; R"2=1.000
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b. y=28542-42188x; R"2=1.000

c. y=287969+3.1250x; R”*2=1.000

E.6.  Figure 6.6 Flexural Strength of Siliceous Gravel PMA as a

Functior of Maximum and Minimum Resin Loadings Under

Uncompacted Conditiuns.

a. y=101.78+21.875x; R”2=1.000
b. y=30672+32813x; R"2=1.000

c. v=-35766+76563x; R"2=1.000

E7. Ficure 6.7 Flexural Strength of Crushed Limestone PMA as a

Function of Maximum and Minimum Resin Loadings Under

Compacted Conditions.

a. y=15672+13281x; R”"2=1.000
b. y=-41219 +121.88x; R"2 =1.000

c. v=-47.734+73.438x; R”"2=1.000

E.8. Figure 6.8 Flexural Strength of Crushed Limestone PMA as a

Function of Maximum and Minimum Resin Loadings Under

Uncompacted Conditions.
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E.11.

E.12.
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a. y=86922+78125x; R"2=1.000
b. y=23.609 +39.063x; R"2=1.000

c. y=-28672+67.188x; R”"2=1.000

Figure 6.9 Flexural Strength of PMA as a Function of the

Density of the Aggregate N.atrix.

a. y=-565.90+6.9001x; R"2=0.757

b. y=-463.46 + 6.3455x ; R”"2=0.749

Figure 6.10 Flexural Strength of PMA _as a Function of the

Percent Voids in the Aggregate Matrix.

a. y=>531.76-10514x; R"2=0.758

b. y=57155-11.075x; R”"2=0.844

Figure 6.11 Flexural Strength of PMA as a Function of the

Percent Retained of Resin in the Aggregate Matrix.

a. y=>52484+57674x; R"2=0378

b. y=91771+1.1425x; R”"2=0.026

Figure 6.12 Flexural Strength of PMA as a Function of the
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Percent Weight of Resin in the Aggregate Matrix.

a. y=83132+14598x; R"2=0.196

b. y=93.164 +3.7640x; R"2=0.018

E.13. Figure 6.13 Percent Flexural Strength as a Function of Percent

Resin Volume/Void Volume.

a. y=6.3024+0.31472x; R"2=0.275

b. y=6.4634 +0.32830x; R"2=0.143
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