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The use of fiber reinforced composite laminates in engineering applications has been

increasing rapidly. Along with this increase has come a rapid development in the analysis

techniques to accurately model internal, as well as gross plate behaviors. Many improve-

ments to laminated plate theory have been developed in the push for better analysis

techniques. Improvements began with the application of Mindlin-Reissner shear deforma-

tion theory followed by higher order theories and discrete layer theories. With the drive for

more accurate modeling, the cost has been increased complexity and computational time.

Some of the higher order techniques lend themselves well to simplification, but in doing so

they complicate the finite element analysis by creating a C' continuity requirement. The

purpose of this work is to provide accurate, yet computationally efficient, improvements

to the analysis of composite laminates.

One portion of this work shows that the higher order extensions to the first order

shear deformation theory still do not correctly model the physics of the laminated plate

problem. Results show that the first order theory can provide as good, if not better, re-

sults with the proper shear correction factor. This work uniquely implements a Predictor



Corrector technique into the finite element method to accurately calculate the shear cor-

rection factors. The technique provides excellent results with a simple Mindlin type plate

element.

The second part of this research develops two new finite elements which approximate

C' continuity trough the use of a least squares technique. These Least Squares elements

can be used to take advantage of the displacement field simplification techniques which, up

until now, have seriously complicated the finite element application. The implementation

of the elements are demonstrated using a piecewise, simplified third order displacement

field. The Least Squares elements should prove to be useful tools in any finite element

application where C' continuity is required.

The final portion of this work presents a study into the effects of stacking sequence,

boundary conditions, pre-stress and plate aspect ratios on the fundamental frequency and

buckling loads of laminated plates.
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SUMMARY

The use of fiber reinforced composite laminates in engineering applications has been

increasing rapidly. Along with this increase has come a rapid development in the analysis

techniques to accurately model internal, as well as gross plate behaviors. Many improve-

ments to laminated plate theory have been developed in the push for better analysis

techniques. Improvements began with the application of Mindlin-Reissner shear deforma-

tion theory followed by higher order theories and discrete layer theories. With the drive for

more accurate modeling, the cost has been increased complexity and computational time.

Some of the higher order techniques lend themselves well to simplification, but in doing so

they complicate the finite element analysis by creating a C1 continuity requirement. The

purpose of this work is to provide accurate, yet computationally efficient, improvements

to the analysis of composite laminates.

One portion of this work shows that the higher order extensions to the first order

shear deformation theory still do not correctly model the physics of the laminated plate

problem. Results show that the first order theory can provide as good, if not better, re-

sults with the proper shear correction factor. This work uniquely implements a Predictor

Corrector technique into the finite element method to accurately calculate the shear cor-

rection factors. The technique provides excellent results with a simple Mindlin type plate

element.

The second part of this research develops two new finite elements which approximate

C' continuity through the use of a least squares technique. These Least Squares elements

can be used to take advantage of the displacement field simplification techniques which, up

until now, have seriously complicated the finite element application. The implementation

of the elements are demonstrated using a piecewise, simplified third order displacement

field. The Least Squares elements should prove to be useful tools in any finite element
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application where C' continuity is required.

The final portion of this work presents a study into the effects of stacking sequence,

boundary conditions, pre-stress and plate aspect ratios on the fundamental frequency and

buckling loads of laminated plates.



CHAPTER I

A REVIEW OF THE LITERATURE AND
DEVELOPMENTS IN LAMINATED PLATE

THEORIES

1.1 Introduction

Laminated fiber reinforced composite materials have provided engineers with the ability

to design and build structures as never before. The use of composites has been growing

rapidly over the past twenty years and is continuing to do so at an increased rate. Early in

their existence, their use was primarily associated with spacecraft and aircraft because of

their high strength to weight ratios, in spite of their high cost. Recently however, reduced

manufacturing costs are making composites attractive to many other industries. Compos-

ites are now being used for automobiles, sporting goods, pressure vessels and a multitude

of other applications. Composite materials will eventually be able to benefit virtually any

engineering application because of their design advantages. Today's technology has only

begun to realize the resource that is becoming available in the composite material world.

The engineer has the ability to not only design directional strength, but also thermal and

electrical conductivity, radar absorption, thermal expansion, fracture characteristics and

stiffness, to only mention a few parameters. As research into composite materials con-

tinues, more and more of these design parameters will be developed, and more and more

applications will arise. In reality, the composite material science is probably in its very

infancy, and as it continues to grow, so must the ability to perform accurate engineering

1
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analyses.

The engineering analysis of composite materials is in itself a relatively new field and has

just begun to grow. The mathematical modeling of the mechanics of composite materials

dates back only thirty years ago when classical laminated plate theory, as we know it

today, was developed by Reissner and Stavsky (1961) [121]. It remains today as the main

tool available to the practicing engineer. However, as the field grows so will its complexity,

and classical laminated plate theory (CLPT) will not be a sufficient analysis tool. As the

field grows, more accurate and efficient modeling techniques must be developed. The

inherent complex nature of composite laminates often necessitates complex mathematical

models. Unfortunately, complex models are difficult to implement in practical engineering

analysis, so the need for accurate, yet efficient, methods will remain high. No matter how

accurate or simple a mathematical model is, it has very limited engineering applicability if

it cannot be applied to general shapes and boundary conditions. The finite element method

is the tool which is generally used to achieve this capability. However, the finite element

implementation of new mathematical formulations can be difficult and the end product

is not always useful. Accuracy in the finite element method many times corresponds to

increased computational costs. For example, a recent article by Jing and Liao (1989)

[39] proposes a new element which gives excellent results for laminated composites. The

element is employed in each layer of the laminate. Thus, each layer is modeled by a twenty-

node mixed field hexahedron with three degrees of freedom at each node and fourteen stress

parameters. One can see that for a laminate with a moderate number of layers the analysis

can quickly become numerically intractable.

Based upon the above discussion, we see that the future calls for not only increased

understanding and more complex mathematical modeling of composite materials, but also

for fresh ideas and approaches on how to effectively and economically model laminate
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behavior. It is hoped that this work will present some novel approaches in the analysis

methods of composite materials which will provide simple, yet powerful, tools to be used

in engineering design analysis. In addition, it may possibly initiate a new methodolog

for future work in laminated composite plates and shells.

1.2 A Brief Review of Basic Plate Theory

The mathematical analysis of plates has been a much studied area in the engineering world

for many years. The use of plates as major structural components has driven researchers

to find a way to accurately predict their behavior from a static, dynamic and stability

point of view. The first major achievements in modern engineering plate analysis, as

stated by McFarland et al (1972) [74], were begun in the early 1800's and are accredited

to Cauchy, Poisson, Navier, Lagrange and Kirchhoff. However, the development of what

we know today as classical plate theory (CPT) is generally attributed to Kirchhoff [55] for

his work in 1850.

In CPT certain assumptions are made simplifying the problem to one that is more

easily solved. The Kirchhoff assumptions, as they are sometimes called, parallel the ideas

behind simple beam theory. We first assume that a normal to the midplane of the plate

before deformation remains normal and inextensionable after deformation. Also, we as-

sume that normal stresses in the transverse direction to the plate are small compared

with the other stresses and can be neglected. The geometry of the deformation is shown

in Figure 1.1. One can see that the in-plane displacements are composed of a translation

and a rotation. They can be written as:

49w"
71 = 1 o Z 0

v = V 0-z (1.1)
ay
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Figure 1.1: Deformation Geometry for CPT

W = o

The Kirchhoff assumptions are valid for many cases, and accurate results can be

achieved with them for engineering problems. Problems are restricted to thin plates free

from any large transverse loads. However, there is an important concept to remember

when working with the Kirchhoff assumptions. One must remember that in assuming

that the normals to the midplane remain normal after deformation, one does not preclude

transverse stresses 1 Just as in beam theory, it means that the additional deformation

caused by these stresses is negligible. This is a valid assumption as long as the shear

rigidity for the transverse strain is on the same order of magnitude as the elastic modulus,

which is the case for most isotropic engineering materials.

The next major advancement in plate theory was the logical step to include the effects

of transverse shear deformation into the governing equations. Including transverse shear

allows the normals to the midplane to deform. The work in this area closely parallels

'Throughout this work, 'transverse stresses' and 'transverse strains' will imply the shear components
only , and not the normal components (unless otherwise specified).
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that done in beam theory. Transverse shear deformation effects are included in going from

Bernoulli-Euler beam theory to Timoshenko beam theory. The inclusion of transverse

shear into plate theory has taken many forms and was proposed in mnyy different ways by

several investigators. In a survey article Reddy (1985) [114] presented a brief account of

the development in this area. It appears that work to include transverse shear effects into

plate theory was first published by Basset [8] in 1890, followed by Reissner (1945) [118],

Hencky (1947) [30], Hildebrand (1949) [32], Reissner (1947) [119] and Mindlin (1951) [76].

Today the development of shear deformable plate theory (SDPT) is sometimes categorized

as a Reissner-Mindlin plate theory. The difference being that Reissner used a stress based

approach and Mindlin used a displacement based approach, as did Basset, Hildebrand and

Hencky.

In SDPT the Kirchhoff assumption that the normals to the midplane remain normal

after deformation is removed. The result is that the displacements in the u and v direc-

tions are no longer constrained to be equal to the rotation of a midplane normal. Such

a deformation is depicted in Figure 1.2. In its general form, this deformation can be
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represented as a po,,er series expansion in z, with the number of terms carried in the

expansion being determined by the order of the theory desired. In the initial work with

Reissner-Mindlin SDPT, the displacements are assumed to be of the form

u = Uo + zo. (1.2)

V = V + zOY (1.3)

w = WO (1.4)

where u0 , Vo, wO, q. and qy are all functions of x and y. Here, the u and v displaccments

are linear in z, vhile w is constant with respect to z. Thus, the deformed normal would

maintain a straight line appearance but be inclined to the midplane. For obvious reasons,

the SDPT with this form of displacements will be referred to as the first order theory. Just

as a point of comparison, if the Kirchhoff assumption is invoked on these displacements

we have

aw
2= W (1.5)

Ow
OY = -y (1.6)

which reduces the deformation back to a translation and the same rotation as in eqns

(1.1). This, in effect, couples 0, and Oy to w. In SDPT wo is uncoupled from 0, and Oy

creating the required deformation through the thickness. Substitution of eqns ( 1.2)-( 1.4)

into the linear strain displacement equations gives, for the six strains:

Ex = O= = UO', + z¢ ,2 = C + zKT (1.7)

OyV
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_ w
- =0 (1.9)

7zz = O w- + o + wZ (1.10)

_ Ov Ow (.1
YZ -Oz + = y + W(.

_Ou Ot,
'Ty = au + v= Uoy + Voz + z(¢Oy + OyA =YO + zKZy (1.12)

(Note the use of commas denoting partial differentiation.)

The results in eqns ( 1.7)-( 1.12) show an important aspect of the first order theory.

This is the fact that the assumed displacement fields for u and v presuppose constant values

of transverse shear strains in the thickness direction. Hence, for a homogeneous plate the

shear stress is also constant through the thickness. Again parallel to beam theory, this

obviously cannot be the case, as the top and bottom surfaces should be free of any surface

tractions (for the free vibration case). The result of this violation is that the amount

of transverse strain energy is overestimated, and the plate model is actually more stiff

than it should be. To remedy this, a shear correction factor is normally introduced. The

correction factor multiplies the transverse shear stiffness coefficients, thus reducing the

stiffness in these directions. For an isotropic material the coefficients could be introduced

as

a z k Gxz (1.13)

ayz = k G-yz (1.14)

The value for k can be shown to be dependent upon the cross section of the beam or

plate. For an isotropic material with a rectangular cross section the value becomes 5/6.

This factor is due to the fact that the exact solution is parabolic. This shortcoming of the

first order theory has not proven to be of any detriment to the results obtainable using

it. With the correct shear correction factor, the theory provides very accurate results
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for the gross plate behavior. It is understandable that the integral average of transverse

stresses can be predicted accurately, but their distribution through the thickness cannot.

Also, the assumed displacements result in in-plane stresses which are antisymmetric about

the midplane of the plate. Thus, inaccurate results may be achieved for cases where the

loading conditions may preclude such a solution.

1.3 Further Developments in Shear Deformable Plate The-
ory

Since the development of SDPT many researchers have published works on variations of

the Reissner-Mindlin approach. Since 1957 many higher order displacement fields have

been used in an attempt to achieve more accurate results and to eliminate the shortcom-

ings of the first order theory. The desire has mainly been to eliminate the need for a shear

correction factor. The landmark article into improving first order SDPT was published by

Lo, Christensen and Wu (1977) [671. In their article the authors review some of the differ-

ent higher order displacement fields which have been used over the years. Most significant,

however, is that they themselves present a higher order theory using displacements of the

form:

U = uo+zO.+z2V, + z3C

V = V+Zy+z2y + z(1.15)

w = Wo+ZS,+z 2¢0

In their work Lo et al show that this form of a displacement field alleviates the necessity

for a shear correction factor for homogeneous plates, and that one can get better results for

cases with certain loading conditions which result in non-antisymmetric in-plane stresses.

They also briefly discuss some of the other forms of higher order displacement fields which
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have been studied. The end result appears to be that the required form of the displacement

field is closely tied to several items. The choice of the displacement field depends on the

type of problem being solved, which variables are needed as a result of the analysis and

the required level of accuracy for those variables.

For gross plate behavior, and accurate in-plane stresses, the first order theory has

provided very satisfactory results over the past forty five years. At the cost of increased

complexity, the higher order approaches have not been applied in any extent to isotropic

plate theory. In fact, it was not until the advent of laminated composite plates that higher

order approaches were considered to any extent at all. In the above mentioned work by

Lo et al, their third order SDPT was developed and demonstrated for isotropic plates, but

it was immediately applied to laminated plates [68], the real motivation for their work.

It is the fact that first order SDPT has many disadvantages when it comes to laminated

composite plates that has prompted the search for an improvement in the analysis of

such structures. This search has lead to the multitude of higher order applications of

SDPT that can be found in the literature over the past twenty years. However, before we

can accurately and efficiently apply the theories available to us, we must first study the

fundamentals of the problem.

1.4 Laminated Fiber Reinforced Composite Plates

Research into the analysis of laminated plates began in the late 1950's by Stavsky (1959)

[133] and Lekhnitsky (1968) [62] (originally published in Russian in 1957), but classical

laminated plate theory (CLPT) as we know it today is credited to Reissner and Stavsky

[121] for their work in 1961. The development of the CLPT equations will be developed

later in Section 2.2.1, so for now we will concentrate on understanding the physics of the

deformation of laminated fiber reinforced composite plates.
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Figure 1.3: Geometry of a Single Lamina

1.4.1 The Lamina

The geometry of a lamina is shown in Figure 1.3. The material properties and constitutive

equations of the lamina are described originally with respect to the material coordinates,

the XI, X2 and X3 axis, and then transformed into the global coordinates through a simple

transformation. The details of this will be presented in Section 2.2.1. At this point it is

important to understand the material properties of the lamina in Figure 1.3. The elastic

modulus is generally much higher in the xl direction than in the x2 direction. Typical

values for Ej/E 2 can be on the order of 40. In addition, and perhaps more importantly,

the values for shear rigidity are small compared to the elastic modulus. A typical value

for G23/E 2 is 0.35, while G13/Ej can be less than 0.01. These big discrepancies in rigidi-

ties make shear deformation considerations very important in the analysis of composite

materials. Early investigators found that they could no longer neglect the contribution of

transverse shear deformation to the overall deformation, even in relatively thin laminates.
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Figure 1.4: Laminate Deformation Geometry

(See Reissner (1945) [118], Mindlin (1951) [76], Whitney (1969) [141] and Whitney and

Pagano (1970) [1441.) These properties of a lamina are compounded when multiple lamina

are stacked to form a laminate.

1.4.2 The Laminate

The real advantage of using composite materials in the design of structures is realized

when multiple layers are stacked with varying ply angles. This allows the engineer to

tailor the material properties to fit a specific purpose. This process, while providing great

design capabilities, creates great difficulty in accurate analysis of the plate parameters. A

laminated plate may appear to behave externally like an isotropic plate, but internally it

is totally different. Figure 1.4 depicts the cross section of a laminated plate.

As discussed above in Section 1.4.1, transverse shear effects are extremely important

in the analysis of composite materials. The inclusion of transverse shear effects in the

study of composite plates was first done by Yang, Norris and Stavsky (1966) [145] in their
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work on elastic wave propagation in heterogeneous plates. This first work was nothing

more than the application of a Mindlin displacement form, as in eqns ( 1.2)-( 1.4), to the

classical laminated plate theory equations. This approach, despite its simplicity, has been

the mainframe for the analysis of transverse shear effects in fiber reinforced composite

laminated plaLes. In fact, commercial analysis codes used in industry rely upon this first

order SDPT. This theory has been used in one form or another extensively over the past

twenty eight years. Most of the advances and improvements in the analysis methods since

1968 have been extensions in one form or another of this work. To understand how to

improve upon this theory, we must look at the physics of the problem.

We begin by taking a close look at the deformation field of composite plates. It is

assumed that the layers of the laminate are perfectly bonded together so that no slip can

occur between them. The deformation of a normal to the midplane of the laminate is

no longer a smooth continuous function as it was for an isotropic plate as depicted in

Figure 1.2, but instead is piecewise continuous (not piecewise linear, however). This can

easily be understood by considering that the material properties can change drastically at

the layer interfaces. One can gain better understanding into the physics of the problem by

studying it in such manner. Next, we let ui be the three displacements at any point, each

being a general function of xj. (Here i,j = 1, 2, 3 and xj represents the three coordinate

directions.) The deformation field depicted in Figure 1.4 can be deduced by the following

items:

1. The functions ui(xj) must be continuous in xj to satisfy compatibility.

2. In the 1-2 plane, since there is no slip or gaps between layers, the material on each

side of the interface must have the same displacement, and hence, displacement

gradient. In other words, ui,0 (here a = 1, 2) must be continuous across the layer

interface. Let us write this as u = U,
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3. Since e, = +(u,3 + uo,,), then 2 above implies ects must be continuous across the
interface, ie. +

4. Since e+ = C , then a+ 0 a- in general. This is due to the possibility of the

material constants changing across the layer interface.

5. Based simply on Newton's Third Law, a3j must be continuous across the layer

interface, ie. (7+ - 7
j~ =03j*

6. From item 5 we find C3 $ c-. This again is due to the changing of material

properties from layer to layer.

7. Since e 5 e-, and f3j = (u3.j + uj,3), then u+3 5 u-3 . (See also item 2 above.)

These seven ideas are very important when studying composite laminates. If one uses a

displacement based approach in analyzing laminated plates these ideas should be kept in

mind as the model is developed. In doing so, the limitations and strengths of any specific

theory can be realized. We can summarize the above items into one general observation

worthy of special note. This is as follows:

Observation 1 The displacement field, ui(xj), for a laminated composite plate must be

continuous for all xj, but it need not have a unique ui,3 across the interfaces of the lamina.

This observation tells us in no uncertain terms what form our displacement field takes. An

exact solution to the laminated composite plate cannot be achieved if this observation is

violated. This observation is supported by exact, three-dimensional analysis of composite

laminates published by Pagano (1969) [96] and (1970) [97].
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1.5 Evaluation of Current Analysis Methodologies

1.5.1 Higher order displacement fields

As discussed in Section 1.3 there have been many attempts at improving the analysis of

laminated composite plates. A large number of these concentrated upon trying to gain

more accuracy by carrying more terms in the series expansion of the displacements. In

other words, higher order SDPT's are used as in eqns (1.15). One of the disadvantages of

the higher order approach is that the number of unknowns in the problem quickly becomes

large. In addition, it becomes difficult to physically understand and to prescribe boundary

conditions for these additional terms. The order of the expansion by no means needs to

be limited to three as is shown in eqns (1.15). A few of the works in this area have been

published by Nelson and Lorch (1974) [84], Kant et al (1988) [46], Murty and Vellaichamy

(1987) [83], Pandya and Kant (1988) [1041, Lo et al (1977) (67, 681, Mallikarjuna and Kant

(1989) [71, 45], Mottram (1989) [78] and Murty (1977) [80].

Modifications of the higher order approach are also quite common in current research.

They are referred to as the simplified higher order methods. Through setting the transverse

stresses on the top and bottom surfaces of the plate equal to zero, the number of unknowns

in the displacement field can be reduced by four terms. For example, the most common

simplified higher order method found in the literature begins with cubic forms for u and v

and a constant w (with respect to z). This nine parameter displacement field can then be

reduced to one of only five parameters, the same number as found in the first order theory.

This specific example will be discussed in more detail in Section 3.1. Some examples of

simplified higher order approaches can be found in references published by Reddy (1984)

[113, 112], Kant and Pandya (1988) [441, Senthilnathan et al (1988) [124, 65], Reddy and

Phan (1985) [117], Murty (1987) [81] and Khdeir (1989) [53].

These higher order approaches theorctically make sense, but outside of the realm of
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homogeneous materials, carrying a finite number of higher order terms does not coincide

with the physics of the problem. A higher order SDPT has unique values of U;,3 across

the lamina interfaces. Thus, a higher order SDPT does not have the freedom to fully

comply with Observation 1. The advantage to a higher order theory is that a traction

free condition on the top and bottom surfaces can be satisfied, and the need for a shear

correction coefficient is reduced. However, accurate prediction of the transverse stresses

cannot be done directly. We use the word directly here because the transverse stresses can

be found by integrating the equations of equilibrium through the thickness of the plate.

This is done utilizing the calculated in-plane stresses which are generally accurate. This

technique is used quite often when transverse stresses are desired. Some examples of this

are included in the works by Nishioka and Atluri (1979) [85], Murty (1987) [82], Kant and

Pandya (1988) [44], Noor and Burton (1989) [88] and Reddy et al (1989) [116]. Also, note

the above emphasis on the word reduced with regards to the shear correction coefficient.

Since the assumed deformation field is not exact, then the calculated transverse strain

energy is going to deviate from the true energy, and a shear correction coefficient would

be beneficial to adjust this difference. If the assumed deformation closely approximates

the true one, then the shear correction coefficient would be insignificant. In other words,

in studying an isotropic plate one would expect a third order theory to give excellent

results without a shear correction factor, as such a field follows an elasticity solution.

However, depending upon the makeup of a composite laminate, a third order theory

cannot accurately describe a piecewise continuous displacement field. Based upon this

discussion, it is reasonable to assume that the first order SDPT with the correct shear

correction coefficients can give better results for certain cases than a higher order theory

without any correction. This time. notice that the emphasis is placed upon the word correct

with regard to the shear correction coefficients. One of the purposes of this work is to
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demonstrate that the shear correction coefficients can be calculated accurately, allowing

the first order SDPT to provide as good, if not better, results than the higher order

approaches with their added complexities.

1.5.2 Discrete layer approach

Up to this point we have not considered the obvious methodology for the laminated com-

posite plate problem. This, of course, is to assume a piecewise continuous displacement

field through the thickness of the laminate as depicted in Figure 1.4. Within each layer

the displacements can be chosen to be linear or of a higher order form. This form of

displacement field should provide us with more accurate results than a finite term higher

order approach and is often referred to as a discrete layer approach. The discrete layer

approach is nothing more than modeling each individual layer of the laminate as a sepa-

rate plate. The obvious drawback to such an approach is that the number of unknowns in

the problem becomes tied to the number of layers in the laminate. A problem can quickly

become intractable for thick plates with a large number of layers. A few of the works

published in this area include those by Srinivas (1973) [130], Reddy et al (1989) [116],

Barbero and Reddy (1990) [6] and Alam and Asnani (1984) [2, 3].

Just as there was a simplified version of the higher order approach, there is also a

simplified discrete layer approach. In assuming a piecewise continuous displacement field,

the number of unknowns can be reduced by enforcing displacement continuity, as well as

transverse shear traction continuity, at the layer interfaces. In this manner the number

of unknowns can be made to be independent of the number of layers. (This will be

developed in more detail in Section 3.2.2.) The simplified discrete layer approach has

been demonstrated to provide accurate results for thick composite laminates and has the

potential to become an efficient and powerful tool in the analysis of laminated composite

plates. A few examples of the simplified discrete layer approach include Sciuva (1987)
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[123], Mawenya and Davies (1974) [73] and Lee et al (1990) [59].

It is interesting to note that a piecewise continuous displacement field results in a

smooth transverse stress field rather than a piecewise continuous one through the thick-

ness. This is because when the interlaminar transverse stress continuity is enforced across

a lamina interface, either in the discrete layer or simplified discrete layer theory, the

derivatives (slopes) with respect to z of these functions are also the same. Thus, a smooth

function through the thickness results. The end result is that in order to calculate the

transverse stresses, one must rely upon integrating the equations of equilibrium as dis-

cussed in Section 1.5.1.

1.5.3 Finite Element Analysis of Composite Materials

Finite element analysis of laminated plates began with the work of Pryor and Barker

(1971) [421. In their work they developed an element based upon the deformation field

given in eqns ( 1.2)-( 1.4), and established seven degrees of freedom at each node (uo, v0,

wo, Ox, y 7z and 7yz). This basic development has been the fundamental basis for much

of the finite element work done with composite materials to date, with the only difference

being that five degrees of freedom per node are generally used (uo, v", w0 , 0 and Oy).

This basic approach is the back-bone of composite analyses, and most commercial finite

element codes are based upon this theory. Many different elements and implementations

have been devised, but generally the first order shear deformation theory is the basis

behind them. Some of the works published in the past several years using a first order

shear deformation approach include: Moser and Schmid (1989) [77], Craig and Dawe

(1987) [24], Kumar and Rao (1988) [57], Fuehne and Engblom (1989) [26], Lardeur and

Batoz (1989) [58], Zienkiewicz and Lefebvre (1988) [147], Ofiate and Suarez (1983) [95],

Reddy (1980) [110], Suresh et al (1979) [103] and Irons and Zienkiewicz (1970) [38]. As

one might expect, the first order theory is burdened with the shear correction coefficient
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problem as discussed in Section 1.3. This problem is even more difficult with laminates

than with homogeneous plates, because the coefficients not only depend upon geometry,

but also on ply orientation and material properties. In addition, because of this, different

coefficients are also needed for different directions in the plate. However, despite this

drawback, the first order approach has remained popular because of its low computational

cost. Implementation of higher order approaches has also been well documented in the

published work. These include works by Kant et al (1988) [46, 44, 104], Mallikarjuna and

Kant (1989) [71] and Reddy (1989) [115]. The advantage of these, as discussed previously,

is the reduced need for shear correction coefficients, while the disadvantage is the increased

complexity. The simplified higher order approaches, even with lower numbers of degrees of

freedom, have increased complexity in that they have increased continuity requirements.

This will be discussed in more detail in Section 3.2.

The discrete layer and simplified discrete layer approaches have also been employed

in finite element analyses. The full discrete layer approaches are computationally more

intense than other methods and are not widely found in the literature. Examples include

those by Reddy et al (1989) [1161 and Barbero and Reddy (1990) [6]. Examples of the

simplified discrete layer approaches are computationally efficient and include: Lee et al

(1990) [59].

All of the above mentioned finite element analyses are displacement based approaches.

Along with these come the lack of direct transverse stress calculations and increased

continuity requirements for the finite element model. These inherent problems have led to

much research in the areas of mixed and hybrid methods which eliminate these problems.

These methods have demonstrated excellent results, but again at the cost of excessive

computations. Research in these areas include: Putcha and Reddy (1986) [106], Jing and

Liao (1989) [39], Spilker (1982) [128], Spilker et al (1977) [129], Mau, Tong and Pian



19

(1972) [72] and Liou and Sun (1987) [661.

As a final note, there have been a few survey and overview articles by Reddy (1985)

[114], (1981) [1111, (1989) [115], which have appeared in the past several years. The

interested reader may find them beneficial if more information is desired.

1.6 Analysis Approach

1.6.1 Improved First Order SDPT

As discussed above in Section 1.5.1 the first order SDPT has the potential to provide

accurate results as long as the correct shear correction coefficients can be calculated. In

Chapter II we will develop a finite element method based upon first order SDPT which can

accurately calculate the vibration characteristics of thick laminated composite plates. The

method will include the calculation of accurate shear correction coefficients by comparing

the first order transverse strain energy to a more accurate strain energy. This more

accurate strain energy will be calculated based upon the transverse stresses found from

integrating the equations of equilibrium through the thickness of the plate.

1.6.2 Simplified Discrete Layer Approach with a Least Squares Element

Chapter III of this work will develop two new Least Squares finite elements. The elements

will utilize a unique Least Squares method to allow an element's displacement functions

to approximate C1 continuous functions on the boundaries of the element. This technique

will allow the element to behave as one with C1 continuity. Thus, it will enable the use of

displacement functions which normally would require C' continuous interpolation func-

tions. The Least Squares element would be applicable to either a simplified higher order

approach or a simplified discrete layer approach with a simplified higher order piecewise

continuous function as the basis for the displacement field. These forms of displacement

functions will be shown to contain differentials of the out-of-plane displacement, which up
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until now could not easily be analyzed without the use of C' continuous elements. The

simplified discrete layer field, based upon the simplified higher order approach, will be

used to demonstrate the technique.

1.6.3 Effect of Fiber Orientation and Stacking Sequence on Fundamental
Frequency and Stability

The Least Squares finite element technique will be used to perform i study of the effects

of fiber orientation angle, stacking sequence, boundary conditions, aspect ratios and pre-

stressing on the fundamental frequencies and buckling loads of composite laminates. The

study will concentrate upon optimizing frequency and buckling load while varying the

other parameters. The purpose of the study is to provide new information for the design

engineer to aid in the designing of composite laminated materials.



CHAPTER II

AN IMPROVED FIRST ORDER SHEAR
DEFORMATION THEORY THROUGH THE

USE OF THE PREDICTOR CORRECTOR
TECHNIQUE

2.1 Analysis Overview

In this part of the work we will investigate the feasibility of developing a finite element

model which is based upon a first order SDPT. The method stands out from any other finite

element models of this type because it will include the ability to calculate accurate shear

correction coefficients for any particular laminate being considered. With accurate shear

correction coefficients, the first order SDPT will give very good results. This technique

has been successfully applied analytically by Noor and Peters (1989) [91] and Noor and

Burton (1989) [88], (1990) [89], but implementation of the technique into a finite element

analysis has not been published.

In the following sections we will first develop a first order plate bending model for a

general composite laminate. This development will be the basis for the development of

the finite element model to be used for a vibration analysis. The finite element model will

be developed to include the integration of the equilibrium equations through the thickness

of the plate to obtain the transverse stresses. These stresses will then be used to calculate

the transverse strain energy which will be compared to those obtained using the first order

theory. This comparison will yield the above mentioned shear correction coefficient which

21
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then will be used to calculate an updated natural frequency and mode shape.

2.2 Preliminary Development

2.2.1 Fundamental Equations

As presented and discussed above in Section 1.2, the assumed displacements for a first

order SDPT are represented by eqns ( 1.2)-( 1.4). These equations will form the basis for

our analysis. In terms of these variables, eqns ( 1.7)-( 1.12) represent the strains.

Next, we can begin to introduce some of the standard equations use' . hen working

with fiber reinforced composite materials (see texts by Jones [41] and Christensen [22].

First we define:

O'll ell

0"22 C22

1a1 0 a33 and {}-{ 33
012 712

013 713

0'23 723

for a single layer of a composite material related through the constitutive equation

{a} = [C] {} (2.1)

where [C] are the stiffnesses in the 1-2-3 coordinate system as depicted in Figure 1.3. If

we assume two orthogonal planes of material property symmetry for the material under

consideration, then [C] takes the standard form:

Cll C 12 C 13  0 0 0

C12 C22 C23  0 0 0
[C] C13 C23 C33  0 0 0

0 0 0 C66  0 0 (2.2)
0 0 0 0 C44  0
0 0 0 0 0 C55

The values for the Cj are:
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C1 I = El (1 - L/32L'23) / A, C 1 2 = E 2 (V12 + V131/32) /A, C 4 4 = G13
C 13 = E3 (V13 + V12V23) /A, C22 = E 2 (1 - "313) /A, C55 = G 2 3  (2.3)
C 2 3 = E 3 ( 2 3 + I1 3V-21)/A, C 3 3 = E 3 (1 - v 1 2V 2 1 )/A, C 6 6 = G 12

where

A = (1 - V231/32 - V12V21 - V13V31 - V12V23"31 - V13V321- 2 1)

We also define the Poisson's ratio, vij, to be the ratio of the deformation in the j direction

to that in the i direction when pulled in the i direction.

The next step is to then transform [C] into the x, y, z coordinate system to get the

form:

aI z 011 ¢12 013 016 0 0 err
0'yy 0 12 022 023 026 0 0 Iyy

__zz C 13 C 2 3 033 036 0 0 zz(2.4)

a.T C 16 C 26 C3 6 C 66  0 0 1Y2.
O'xz 0 0 0 0 C 4 4  C 4 5  "7zzJ

O'yz . 0 0 0 0 C45 C 5 5 J "Yyz

where (n = sin 0, m = cos 0):

011 - m 4 C1 1 + 2m 2n 2 (C 12 + 2C 66 ) + n4C22

012 = m 2n 2 (C11 + C 22 - 4C 66) + (m4 + n4) C 12

022 = n 4 C 11 + 2m 2 n 2 (C1 2 + 2C 66 ) + m 4C 22

016 -in n [2C11 - M2C22 - (m2 - n2) (C 12 + 2C 6 6 )]

026 = -inn Im 2C, - 2 + (m -n2) (C12 + 2C6 6 )]

066 M2 in 2 (C11 + C22 - 2C 12 ) + (M 4 n4) C6 6 (2-5)
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C13 = M2 C1 3 + n2 C 23 C44 = M2C44 + n2 C 55

C23 = n 2C13 + m2C23 C36 = (C32 - C31) nm

C45 = (C44 - C55) nm C55 = m2C55 + n2 C44

C 3 3 = C 3 3

We can next eliminate the a,. equation from eqn (2.4). One can solve for C,. from eqn

(2.4) to get

1-

zz= (azo - 013fxz - C324Eyy - 0367zy) (2.6)

which can then be substituted back into eqn ( 2.4) to yield:Ia [ Q11 Q12 Q16 0 0 4EXX1 C13 1rC1C22Q6 0 0oy z= Q16 Q26 Q66 0 0 7V - C3 6  (2.7)

azz 0 0 0 Q44 Q45 Yxz I C33  0
ay 0 0 0 Q45 Q55 Iyz 0

The values, Qij, are the reduced stiffness coefficients developed by Whitney (1969) [141],

and are defined in terms of the Ci3 as:

, 0, j- (0'3.03) /0 33 i,j= 1,2,6
(2.8)

Qij =Cij i, = 4,5

Next, before moving on, it will be convenient to have [Q] partitioned into two matrices,

[Q] and [0], defined as

[ Q]=[[O] 0[] (2.9)
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The reason for breaking [Q] up like this will be apparent in the next section. Lastly, from

this point on, we will drop the term containing a.. in eqn ( 2.7). In other words we assume

that the transverse normal stress has little effect on our solution.

2.2.2 Internal Forces and Moments

At this point it is convenient to define the internal force and moment relations for a

composite laminate. The forces per unit width of the plate are found by integrating the

stresses through the thickness to get

Ny {N} -j/ dz (2.10)
N_ y J-h2 ay I -fy

{ = Q} = J 2  dz = (k;kj)} dz f -[]{ dz (2.11)

where we have introduced ki and kj, the shear correction coefficients, which will be dis-

cussed in more detail later. Similarly, the moments per unit width are

Mr fJ= h/2 I rrX =f1 Q r
MY f h/2 =yy I z.dz h2 [Q] y z -dz (2.12)

My-h/2 J-h/
.' Orry 7--y

Next, we use eqns ( 1.7)-( 1.12) to express the strains in terms of midplane strains and

curvatures. The result is

JN~~f~lfe~zK z = h/2L h/2 1~ ~ xY: } IQ] f {Eo + [Q]z {K}1) dz (.3
(N h/2[IQ] I f + zy h/2(Ql I [1 ,Id (2.13)

'Y'+N}'
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{Q} = (kikj)Z h/2[ wx + dz = (k[kQj) ] {tV} dz (2.14)

hi ,y -- y J-h/2

h/2 C*~ Zz,/
M -h/2[Q] C0 + ziy • z. dz = h/2 ([Q]z {eo} + [Q]z2 {}) dz (2.15)

J -h/2 I o + z J - h/

In the above three equations, the [Q] and [Q] are piecewise constant with respect to the

integration through the thickness of the laminate. Thus, as is commonly done, we establish

matrices [A], [A], [B] and [D] whose elements are defined by:

S h/2 n
Aij /2Qijdz = E(Qij)k" tk (2.16)

J -h /2 k=1

Ah = (kik)J Qijdz = (kik j ) 12 (ij)k " tk (2.17)
f-h/2 k=1

S h/2 n
B,, = / zdz= Z:(Qjk -tk -2k (.8

= -h/2 QiZ k=1

i J Qijz -dz = Z(Qj)k (tk - k 12 (2.19)

f h/2k=1

where Zk = zk - zk-1, and t k and zk are defined as in Figure 2.1. Finally, since {o}, {K}

and {Jt} are independent of z, they can be pulled outside of the integral. The end result

is a convenient representation of the internal forces and moments in the laminate:

M B D 0 K (2.20)Q o o A toI
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Z = Layer k

z= -/]2 Layer I

Figure 2.1: Laminate Geometry

These equations will now be used in the finite element formulation.

2.3 Finite Element Formulation

2.3.1 Element Mathematical Considerations

As discussed in the previous section, the basis for this analysis is a first order shear

deformation theory. The displacements through the thickness of the plate will be described

with three displacements and two rotations. As a result, a two dimensional element is all

that is required rather than a three dimensional solid one. The quadratic, eight noded,

isoparametric element is often used in modeling plates with accurate results. For this

reason it will be used for this analysis. The eight noded element will have the three

displacements and two rotations at each node for a total of 40 degrees of freedom. The

element is shown in Figure 2.2.

The element parameters will be described through standard shape functions derived
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Y

2 6

X

Figure 2.2: Eight Noded Isoparametric Element

for the serendipity family of elements as given in any standard finite element text. (See

Zienkiewicz [146], Cook [23], Tong and Rossettos [136] or Bathe [9].) The eight shape

functions are

gN - ( + 7777j) (1 + ) ( j + 7777i - 1) i = 1, 2,3, 4

,- = (1 + 77,,) (1 _ 2) i=5,7 (2.21)

N, = 1(1-_ 72) (1 + )i 6,8
2=,

where here 77i and i are the coordinates of the ith node, and 77 and are the coordinates

of any desired point in the element. The disadvantage of this element, which will be

discussed in detail later, is that it is only capable of having a quadratic variation of

the primary variables throughout it. Thus, the stresses will be linear and derivatives

of stresses constant. This restriction can be overcome, but as mentioned above, will be

discussed later.



29

The finite element model used in this analysis is based upon finding a stationary value

of the element's totrI energy. For our problem, the energy is composed of both internal

strain energy, Use, and kinetic energy, Uk,. The internal strain energy is defined as

U j UodV = f aijeijdV (2.22)

and the kinetic energy becomes

UkejJPIIV2 V jP i+ 2 +tb 2 2V= p(u7 +d (2.23)

The total energy, H, is then

II = Use + Uk, (2.24)

Finding an extremum of this functional leads to the stiffness and mass matrices.

2.3.2 Strain energy development

In the above discussion, eqn ( 2.22) can readily be adapted for the case of the composite

laminate. If we perform an integration through the thickness of the laminate, just as

performed in the development of eqn ( 2.20), it can be shown that the expression for the

strain energy of the system becomes

U.e= ({ M - + {QT {} dA (2.25)

where it is now written in terms of the internal forces and moments and is an area integral
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rather than a volume integral. The goal is to write this expression ultimately in terms of

the nodal degrees of freedom of the element. From eqn ( 2.20) {N}, {M}, and {Q} can

be written as

N~ A [ B i ,] 0 (2.26)

(2.27)

=[A]{t}

Next, recalling the definitions of {c}o, {n}, and {,}, (see eqns ( 1.7)-( 1.12) ), we can

express them as

UOX

Uo,z 1 0 0 0 0 0 0 0 Uoy
VoI Y 0 0 0 1 0 0 0 0 VoX

Io Vo,X+u,y 0 1 1 0 0 0 0 0 VON
K; O.,z 0 0 0 0 1 0 0 0

=yIy 0 0 0 0 0 0 0 1 (ky
OXIy +¢ Oy L0 0 0 0 0 1 1 0 J y'X

= [I {'Z} (2.28)

W,~4~ 1 0 1 0 1o
w,11 +OY 0 1 0 1 wo,

WONy

M fI] l (2.29)

Next, {6 } and {,6 }, which are expressed in terms of the derivatives with respect to x

and y, need to be written in terms of the derivatives with respect to i; and . This can

easily be done through the standard use of the Jacobian matrix, [J], which relates the
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derivatives of the two coordinate systems. If we define

then we can write:

0r o o o U,'1

o r o l=[IIo{6%} (2.30)
0 00 r I

where I used in [/I] is the identity matrix. The final step is to now represent {67} and

{ RY } in terms of the forty nodal degrees of freedom. First, we establish the order of the

nodal degrees of freedom (eight sets of the five displacements) to be

(U.)l

(Wo)x
{A}= (0€z)1 (2.32)

so that through the use of the shape functions we can represent

N1 ,17 0 0 0 0 N 2,,7 0 .- 0
N I ,4 0 0 0 0 N 2 ,4  0 ... 0

0 Nl,,, 0 0 0 0 N2,,7 ... 0

0 NI, 0 0 0 0 N 2 ,4  . 0 0

0 0 0 0 N, 4 ... ... N8 ,4
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= [III] {A} (2.33)

o0 0 0 N1  0 0 0 0 N2  ... 0

0o 0 0 0 N1  0 0 0 0 ... 0
-~} - [0 0 N1,,7 0 70 0 0 ... 0

0 0 Nj, 0 0 0 0 N 2,, 0 ... 0

= [II] {A} (2.34)

So now we have in total

{ }=II[][III1 { I= [01 IA} (2.35)

{} = [I][]IIII] {A} = [3] {A} (2.36)

Substituting these into eqns ( 2.26)-( 2.28), the equations for the internal forces and

moments we get:

N A B I p ] { A }  
(2.37)

{Q} = [P] 1 {JA} (2.38)

With these representations, the expression for total strain energy can now be expressed as

U.e = 2 ({AI T B I T P] T A} + {AiT P Tr[(AI T4] JAI dA (2.39)
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2.3.3 Kinetic energy development

The mass matrix for the dynamic analysis of the composite plate comes from the expression

for the kinetic energy of the plate given in eqn ( 2.23) . The time derivatives of the

displacements in eqns ( 1.2)-( 1.4) become

=l u+ z .

v = z~ y (2.40)

w= W

Substituting these expressions into eqn ( 2.23) gives

If the displacement functions are assumed to be harmonic functions of time, each one can

be assumed to be premultiplied by eI"t. With this, the time derivatives can be written

as the displacements themselves multiplied by iw. To aid in the development of the mass

matrix we define the following expressions:

{.} 0000
ilo 0 1 0 0 0

Wo iw 0 0 1 0 0 {6}=iW,[II]{6} (2.42)
0 0 0 0 0 0

0 0 0 0 0 0
{0}00000

0 0 0 0 0 0

0iw 0 0 0 0 0 {6}=iw[121{} (2.43)
Cz0 0 0 1 0

y 0 0 0 0 1
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0 0010
00001

= iW 0 0 0 0 0 {6}=iW[13{6} (2.44)
1 0 0 0 0

L) 0 1 0 0 0J1 0} 0oooo
)o0 1 0 0 0

0 0 0 0 0 0 {6} =i,[14] {6} (2.45)

0 j 0 000

Oy 0 0 0 0 1

Now, with these equations defined, we can write eqn (2.41) as

Uke = pW2!P ( 1 6T [I1]T[11]{1b

+ z {6 }T [12]T [12] {6} + z {6 }T [/3 ]T [141 {6}) dV (2.46)

which simplifies to, (due to the nature of the matrices),

Uke = -- 1 W2 (161T [1] {6} + Z2 {6}T [12] {6} + z {6} T [/3] {6}) dV (2.47)

In this equation, only p and z vary through the thickness, so as before, we can easily

perform the integration in the z direction, and reduce it down to an area integral. The

result is

Uke I 6 T1 2 + R dV (.8Uk :--w2SA(P {6T[I {6} -- I{6}T [I2] {6} -FR{6}T [I3] {6}) dV (2.48)

where

fh/2n
P = pdz = Pk . tk (2.49)

h/2 k=1
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Jh/2n
R = f PkZ" dz = Pk" tk" Zk (2.50)

k=l

J h/2 k
I= h2Pz 2 dz ~ktk - 2+ ]- (2.51)

-h/2 12)

The final form for Uke follows after writing {6} in terms of {A} and the shape functions.

We have

N, 0 0 0 0 N 2  0 0 ... 0

0 Ni 0 0 0 0 N2 0 ... 0

{6} 0 0 g 0 0 0 0 N 2 "--0 {A}
0 0 0 N 1 0 0 0 0 ... 0
0 0 0 0 Ni 0 0 0 ... N8

= [N]{A} (2.52)

Now we can write our final form of Uke as

Ue - I W 21[I[P0 [N]f }

+{AiT[N]T[0 R [N]{A} dA (2.53)

where P [I1] and I [12) have been combined into one matrix. With this equation, along

with eqn ( 2.39), we have what is needed to minimize the energy functional and get an

expression for the stiffness and mass matrices.

2.3.4 Element stiffness and mass matrices

In the last two sections we developed expressions for both the strain energy, eqn ( 2.39)

and kinetic energy, eqn ( 2.53) , for a general composite laminate. Substituting these two
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equations into eqn ( 2.24) , the expression for total energy, results in

I -- f {A}T tiT A ,D ['0]]fA) +fA I T [P IT [A4 ]T 01 A ) dA
1,,2 ( fA}T NIT [ P0 ] fA

-w j{AI(N[P~ 0 ][N]{A}

+{AiT[NIT 0 R [N] {A} dA (2.54)

If we extremize this equation with respect to the nodal degrees of freedom, the result is

IT A B D L] + []T[A]To]) {AI dA

-w2j([NI~T[P 0 N

+[NIT R [N] {AIdA=O (2.55)

This equation is of the form

([k]- W2 [M]) f A} = 0 (2.56)

giving us our eigenvalue problem to solve for the natural frequencies and mode shapes of

our problem. From eqn (2.55) the elemental stiffness matrix is

[k] L [O]T A J [Ip] + [4]T [AI[P]) dA (2.57)

and the elemental mass matrix is
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0M [NI ' ][N]+[N]T[n [N]) dA (2.58)

At this point it is important to remember that the integration must be done in the 77-

coordinate system since the displacements have been represented in terms of the shape

functions. Thus, the differential area element becomes:

dA = IIJjdid

2.4 Analysis Method

2.4.1 Global matrix development

In Section 2.3.4 we developed expressions for the elemental stiffness and mass matrices for

a laminated composite plate which was based upon an eight noded isoparametric element.

The expressions, given by eqn ( 2.57) and eqn ( 2.58), are the basis for developing the

global system of equations in the finite element problem.

The process of building global stiffness and mass matrices follows the standard proce-

dure of discretizing the domain in question to establish an elemental mesh. The elements

and nodes are numbered, and the integration of eqn ( 2.57) and eqn ( 2.58) is performed

over each element. Thus, we build the element's stiffness and mass matrices. The results

for each element are then assembled into a global mass and stiffness matrix resulting in a

matrix equation of the form:

(KI- w2 [MI) {A} = 0. (2.59)

In carrying out the integration of eqn ( 2.57) and eqn ( 2.58) one can easily employ the

Gauss quadrature technique. Unfortunately, the number of integration points used for the
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different terms in the equations varies. For example, in eqn ( 2.58) the integrand contains

the squares of the shape functions given in eqn (2.21). The result is an expression with

terms on the order of 774 and 4. Thus, to get an accurate integration of the mass and inertia

terms, a three by three point Guassian integration must be performed. Unfortunately, eqn

(2.57) presents another case. The first terms, which represent the bending stiffnesses, are

on the order of 172 and 2, so can be integrated with a two by two scheme. The next

expression contains the shear stiffness terms which are on the order of 774 and 4, as

well as 772 and 2. The fourth order terms result from the fact that the transverse shear

contains 0, and Oy and not their derivatives. However, despite the higher order of the

shear stiffness terms, it is often recommended that a one point integration scheme be used

to give the best results when solving eqn ( 2.59) for the natural frequencies. This need for

under integration follows from the presence of the shear locking phenomenon as described

in the text by Hughes [36]. When the shear terms are integrated with a lower order than

the bending terms, it is referred to as reduced selective integration. In the present analysis

of thick plates it was found that there was no need to selectively integrate the shear terms

over the bending terms. The final analysis discussed in the results section was done with

a two point integration on the bending terms and a three point integration on both the

mass and shear stiffness terms.

The last step in developing the final form of the global stiffness and mass matrices is

the elimination of the fixed degrees of freedom to implement the boundary conditions. For

each fixed degree of freedom, the corresponding row and column are eliminated from [K]

and [M]. With this performed, eqn ( 2.59) is ready to be solved.

2.4.2 Solution to the eigenvalue problem

In the last section we discussed the integration of eqn ( 2.57) and eqn ( 2.58) to establish

the global matrix equation, (eqn ( 2.59)). The eigenvalues and eigenvectors of this equation
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provide the natural frequencies and mode shapes of the modeled plate. They are found

computationally using an appropriate linear algebra technique. For this task, the present

investigation utilized the IMSL-10 scientific package which is readily available on the

CYBER 990 computer. The IMSL-10 package has a routine which solves the general

eigenvalue problem for the case when [M] is positive definite, as we have for this problem.

The routine is efficient and returns all of the desired eigenvalues and their corresponding

eigenvectors. The eigenvalues are ordered from lowest to highest, but, if under integration

is being used for the transverse shear terms, care must be taken in choosing the first

fundamental frequency. In investigating the effects of under integrating these terms, one

finds that it causes both kinematic and zero energy deformation modes to be present in

the solution. Thus, all zero (or near zero) frequencies need to be overlooked, as well as any

whose deformation carries a zero energy deformation mode in any of its elements. The

zero energy deformation modes can easily be spotted by looking at the mode shapes for

the frequency in question.

2.4.3 Updated natural frequency calculation

As stated in Section 1.6, the purpose of this study is to develop a technique to accurately

calculate the shear correction coefficients so that we c; perform an accurate vibration

analysis of a composite structure. Having accurate values of the shear correction coeffi-

cients allows us to account for the appropriate transverse shear contribution in our strain

energy expressions, and thus we can receive accurate results. The first order shear defor-

mation theory establishes a constant value of transverse shear strain through the thickness

of the plate. In reality, it is well known that this is not the case. In an isotropic, rect-

angular cross-section beam or plate, the exact elasticity solution establishes a parabolic

distribution. These two strain distributions result in different transverse strain energy

density distributions, which can then be used to calculate the shear correction factors.
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This is exactly the technique which will be used in this analysis, not through an exact

method, but by an approximate numerical method. We will calculate the strain energy per

unit area of the plate based on the first order theory and compare it to the strain energy

calculated using another more accurate technique. Both methods will use the preliminary

mode shape and natural frequency obtained using the finite element analysis. The values

received for the shear correction coefficients should primarily be functions only of the plate

geometry and lay-up. It should not be a function of the deformation or location in the

plate. The coefficients should be a constant for a given plate, but k, can be different from

ky due to inherent differences in the material properties for the two directions.

The transverse strain energy per unit area can be accurately calculated if one knows the

transverse stress distributions through the thickness of the plate, along with the plate's

constitutive properties. In this analysis the transverse stress distribution through the

thickness of the plate will be calculated by integrating the equations of equilibrium with

respect to the out-of-plane direction. Since the in-plane stresses are accurately calculated

using the first order analysis, we can expect to get reasonable results for the transverse

stresses. Thus, with this approach we can find accurate values for the shear correction

coefficients and ultimately the natural frequencies and mode shapes.

2.4.4 The equations of equilibrium

The equations of equilibrium for three dimensional elasticity are given by:

oIxz,z + axy,y + r:z,z + f. = pii

azy,x + ayy,y + alyz,z + fy = pii (2.60)

O'x~ + Ory' + az~ + fz = Ptib

where fj are any body forces present. The first two terms, along with the fourth term on

the left hand sides can be brought over to the right and these forms then integrated with
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respect to z. The results are:

(z) = fh/2 (P-4 - - - ) dz

ayz(Z) = h/2 (p - azu,, - ayyy - f) dz (2.61)

azz(z) = J-h/2 (pib - zz,z - azyl1 - f) dz

The first two of these equations provide us with a method to calculate the transverse

stresses o,, and ay,. Once this is done, the third provides us with an expression for a'z,

if so desired. Obviously to perform the integration through the thickness of the plate we

must first find the in-plane stresses and then their derivatives.

2.4.5 In-plane stress calculations

Once we have found the first eigenvalue and eigenvector of eqn ( 2.59), we know all of

the nodal displacements of the plate model within a constant. This constant will prove

to be inconsequential later, as we will be interested only in ratios of the strain energy

densities. The stresses within the plate can be found from the displacements through eqns

( 1.7)-( 1.12) and eqn ( 2.4). Once these are known at various locations, the derivatives

follow.

From a computational point of view, the stresses can be calculated at a point within an

element based upon the element's nodal displacements. The usual procedure is to perform

the differentiation of the displacements by differentiating the shape function representation

of the displacements and scaling them to the global coordinates through the Jacobian.

The location of the most accurate stress calculations can be shown to be at the Gauss

integration points. Once the stresses are known at the Gauss points, their derivatives

can be found in a similar manner. In Section 2.3.1 we briefly discussed a drawback to
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the quadratic element chosen for this analysis, and it is now clear that the problem will

be in calculating accurate derivatives of the stress within an element. The displacements

within an element will, at best, be quadratic and after differentiation will provide us with

linear stresses (in certain directions). The required additional differentiation leaves us with

constant stress derivatives, and hence, constant strain energy per unit area throughout

the element (again in certain directions). As a result, we will have a mismatch when we

compare this strain energy to the strain energy calculated using the first order theory,

which results in a higher order function. To alleviate this problem, a technique has been

developed to globally smooth the nodal displacements to a higher order polynomial. When

the new displacements are used in conjunction with higher order shape functions, the end

result is a higher order variation of transverse strain energy within the element. We will

find that this linear variation will be sufficient in calculating the new shear correction

coefficients.

The method is begun by considering each element individually. Using a cubic least

squares curve fit routine, we calculate the four polynomial coefficients for w, ,_ and q on

each side of the element. In other words, we end up with the coefficient data for twelve

curves for each element. The curve fitting is done utilizing five points per side. We use the

original three data points plus two additional ones. If the element is an interior element,

a data point from either side is taken. If it is a boundary element, two points from the

adjacent interior element are used. After this is completed, the next step is to temporarily

transform our eight noded element into a twelve noded one, as depicted in Figure 2.3. The

shape functions associated with this element are established as:
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Figure 2.3: Twelve Noded Isoparametric Element

Ni = 1-(1 + (1 + 177,)(9g 2 + 9 ,q2 - I 0 ) T2-i,2,3,4

N, = 9 (1 + )(1 + 971) (1 - = 7,8,11,12 (2.62)

N, = -1 (1 + 9 i) (1 + 777) (1 - 2)i 5,,9,1

Next, we proceed to build an element displacement vector, {A} , consisting of sixty terms

and defined as

(Uo)1
(V)l
(W.),

{W} = (0')I (2.63)

(y)12 C

Note that the c subscript distinguishes this displacement vector from the original one

defined in eqn ( 2.32). In building {A}, the original displacements are retained for the
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corner nodes, and the values for the side nodes are calculated using the polynomial curve

fits. In this manner, the displacements which originally varied quadratically, now vary

cubically.

Next, the stresses are calculated at the twelve nodes. We start by finding the strains

from the derivatives of displacements at each node by establishing

{ CO (2.64)

where L3*] is defined exactly as [0] was defined in eqns ( 2.28)-( 2.35) with the exception

that [III] is expanded out to include the extra four shape functions. It is important to

remember that eqn ( 2.64) provides the midplane strains and curvatures at a specific point

in the element. The three in-plane strains at this point can be represented as a function

of z by

{ z} 0 [100 0] {
yC 0 1 0 0 z 0 [ Ic

,try 0 0 1 0 0 z

= [Z] [XI {zA} (2.65)

The stresses at this specific point in the plate's thickness become

f-..}
a = [Q]k [Z] [/3*] {}c (2.66)
oazy

where [Qlk represents the [Q], as defined iM eqn ( 2.9), for the kth layer of the laminate,

and z falls in this layer. Thus, eqn ( 2.66) allows us to calculate the stress at a specific
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77, , z location in the element. This is the first necessary step in calculating the derivatives

of the stresses in the element.

2.4.6 Derivatives of stresses

In Section 2.4.4 we established that in order to calculate the transverse stresses, and

ultimately the transverse strain energy in the laminated plate, we needed to calculate

the derivatives of the in-plane stresses with respect to the in-plane directions. Above, in

Section 2.4.5, we established a method to calculate the in-plane stresses at any location

within the element using eqn ( 2.66). This equation will become the basis for the next

calculations.

We start by choosing a convenient set of points at which to determine our desired

parameters. Through experimentation and ease of computational implementation, it was

found best to use eight interior points coinciding to the Gauss integration points for a

three by three integration, (the center point is discarded). The stresses, as given by eqn

( 2.66), are calculated as a function of z at each of these eight interior points. The result

is established in matrix notation as:

(u) 1 { Y
.W2 (2.67)

W°8 }y

IOr Y 18J

irning our attention now to the derivatives of the stresses, we establish only the terms

needed and write them as
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( ozz,,7

ri' r'12  0 0 0 0I 0 0 I 2 1 r 22  0 0 aYY"I (2.68)
0 0 0 0 rn I' 12  ayf

aXY'V 0 o o o '2 1 r 2 2  aXY,7

where

[t r'2 1 rI (2.69)

The column matrix on the right hand side of eqn ( 2.68) can now be established through

eqn (2.67) and the derivatives of eqn ( 2.62). The result is

I iazz, NI,,7  0 0 N 2,7 0 0 ... 0

aztNI,C 0 0 N2,C 0 .. 0 f(a) I
ay, 7  = 0 Nl,,7 0 0 N2,,7 0 ... 0 f (a)2  (2.70)
aYY4 0 Nl,t 0 0 N 2 ,C 0 ... 0

aXY,,7 0 0 N 1 ,7 0 0 N 2 ,7 ".. N8 ,,7 (a) 8,or'ytI 0 0 NI, 0 0 N2,4 ... N8,,

We can combine eqn ( 2.68) and eqn ( 2.70) to get an expression for the derivatives of

stresses at any 77, as a function of z. The result is:

aYY, = [GIN] { (a)2 (2.71)
a, zy,z

a'zy~y (a) 8

where the rectangular matrices in eqn (2.68) and eqn ( 2.70) have been represented by

[G] and [N] respectively.
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Body force or dynamic terms

The representation of the body forces, or the dynamic terms, is the final item required

before the integration of eqn ( 2.61) can be performed. For the case of free vibration,

the inertia terms of the plate can be treated either way with no difference, as the sign

difference drops out. Recalling the discussion in Section 2.3.3 we can express the required

acceleration terms as:

u = -W2 (U. + ZOA

i = -w 2 (v o + zOy ) (2.72)

These equations are the final expressions we need to calculate the transverse stress distri-

butions.

Putting it all together

Equation 2.71 and eqn ( 2.72) provide the appropriate expressions to place into eqn ( 2.61)

so that the integration can be accomplished. The integration can be performed numerically

using a trapezoidal rule, or other simple integration method, starting at z = -h/2 with

aZ and ay, equal to zero, or to whatever surface tractions exist. The final values of a.,

and ay, at z = h/2 should correspond to the tractions on the top surface of the plate,

which are zero for the free vibration case. The end results of the calculations are the

determinations of the transverse :hear distributions through the thickness of the plate at

some specific 77, location.



48

2.4.7 Shear correction coefficient calculations

First order strain energy calculations

The transverse strain energy densities calculated using the first order theory are U,, and

UY,. They are defined by

U. = Czzyzz (2.73)

= cyz7 z (2.74)

where

Jh/2-
C.h C 4 4 dz

Jh/2 _

=Y f Ch25 5,dz

and -f, and -y are given in eqns ( 1.10)-( 1.11).

Improved strain energy calculations

As discussed earlier, through the use of the accurate in-plane stresses and the equilibrium

equations, we can calculate a more accurate representation of the transverse strain ener-

gies. The transverse stress distributions, as functions of z, are found by substituting eqn

2.71) and eqn ( 2.72) into eqn ( 2.61). The result of this provides us with through-the-

thickness distributions of both oz and az. The transverse strain energies due to these

stresses are defined as:
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C.z = 1 h/2 dz (2.75)

1 h/2

CJZ= Lh/2 55 Y ') dz (2.76)

where

7'xz = S44Caz + S450"yz

;-Yy = S 54c7z + 550yz

Here

S44  S45 Q4 Q4 (.7
S54 $555 = 54 C255 (2.77)

Transverse strain energy comparisons

In the previous two sections we have developed expressions for the transverse strain energy

using the results from a first order theory (eqns ( 2.73)-( 2.74)) and by integrating the

equations of equilibrium through the thickness of the plate (eqns ( 2.75)-( 2.76)). By

comparing the results of the two different methods we can obtain a new shear correction

factor with which an updated natural frequency can be calculated. If we let k' and k* be

the original shear correction coefficients, then

(k )2 02  p = (k) 2 U' (2.78)

should hold true, and hence new sh~ear correction coefficients can be found.



CHAPTER III

LEAST SQUARES ELEMENT
DEVELOPMENT: C' CONTINUITY

APPROXIMATION THROUGH A LEAST
SQUARES METHOD

3.1 Background Information

As discussed in Section 1.3, one approach to improving laminated plate theory is to assume

a displacement field with higher order terms in the z coordinate. For example, a typical

form often seen (see eqns ( 1.15)) assumes u and v cubic in z and w quadratic. Rewriting

the displacement field here for convenience, we have:

U = Uo+Zo +z2¢ +Z3.

V = Vo+Zoy+ 2vy + 3(y (3.1)

W = Wo+Z +z 2

The motivation behind cubic functions for u and v stems from the fact that transverse

shear should at least be quadratic in z. This allows the top and bottom surfaces to be

free from tractions, if conditions warrant this. The expression for w is generally simplified

by dropping the terms involving z, thus making w a constant. This displacement field has

been shown to be an improvement over the first order theory, mainly for the reason of

producing acceptable results without the use of shear correction factors. The disadvantage

is that the displacement field is now an eleven parameter field as shown above, or assuming

50
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w as a constant, a nine parameter field. When compared to the five parameter first

order theory, this difference represents a significant increase in the number of unknown

functions in the problem. The nine parameter field can easily be simplified, as has been

done beginning in 1984 by Reddy [113], by setting the transverse stress to zero on the top

and bottom surfaces of the plate. These four conditions are used to eliminate the variables

74, ik, (_, and Cy from the u and v displacements. The end result is:

U = Uo+Z [x- - (OX + W, X)

v = vo+z [y -4 (0y + WoY) (3.2)

W = WO

This field is readily seen to now have five unknowns, which is the same number as the

first order theory. This displacement field provides very good results when applied to

laminated plates and is considered an improvement over the first order theory. It performs

well without shear correction coefficients and provides improved in-plane responses, and

hence, can be used to provide better out-of-plane results following the method outlined in

Section 2.4.7. This improvement does not come without cost, however. Even though the

number of unknown functions is the same as in the first order theory, the finite element

formulation of this field is hampered by the form of eqns ( 3.2), which include derivatives

of w in the u and v displacements. In other words, the terms w,, and w,,, found in

the expressions for u and v, make the problem not one of C' continuity, as it was for

the first order and higher order theories, but make it now one requiring C1 continuity

for w. This requirement is the reason that the displacement field in eqns ( 3.2) is not
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widely used. The C1 continuity problem has long plagued finite element developers and

is usually avoided if at all possible. In fact, one of the biggest advantages of the five

parameter Mindlin style displacement field was that it changed the plate bending problem

from one of C' continuity found in the Kirchhoff theory, to one of C0 continuity. The

standard isoparametric shape functions, given in eqn ( 2.21), insure that the degrees of

freedom are continuous from element to element but do nothing to maintain continuity

in the derivatives of the functions. In most analysis this fact only becomes significant

when differentials of the degrees of freedom are used, for instance, as required in stress

calculations. The stresses are discontinuous between elements because of the discontinuity

in the shape function differentials from element to element. In the case of eqns ( 3.8),

the discontinuity of w,, and w,y immediately cause discontinuities in u and v. Thus, the

global displacement field contains gaps, violating one of the requirements for convergence

The result is a formulation which is generally too soft and has poor convergence qualities.

In fact, a displacement field of the form given in eqn ( 3.2) was implemented into a C0

element formulation during this course of study with very poor results.

Successful use of eqns ( 3.2) in a finite element formulation has been demonstrated by

Reddy and Phan (1985) [105], but formulations of this type are by no means common.

The problem was solved by utilizing Hermite polynomials for the element shape functions

which satisfy the C' continuity requirement. However, the practicability of Hermitian

polynomials is questionable based upon the lack of published work utilizing them. In

fact, most finite element text books have little or no reference to them. See Zienkiewicz

[146], Bathe [9] and Cook (23]. In the book by Zienkiewicz, he states that elements using

Hermitian interpolation functions have little engineering applicability.

In the past, researchers have proposed several other methods to solve the C' continuity

'It can be shown that convergence can still be achieved if gaps go to zero in the limit
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problem. One common method discussed by Zienkiewicz has been the use of non-conformal

elements, which allow gaps, but satisfy convergence. This method has been used with some

success in other problems, but it immediately restricts the elements to being straight sided

rectangles. Another possible solution includes the use of conforming triangular elements as

developed by Anderheggen (1970) [4] and Irons (1969) [37]. These have been demonstrated

for thin plates.

All of the above mentioned techniques to solve the C1 continuity problem generally are

not without their drawbacks. It is the intent of this research to present a simple, unique

and computationally effective method to approximate a C1 continuous element which

produces accurate results for laminated composite plates. In the next several sections, the

new Least Squares element will be developed in detail and will approximate C' continuity

with very little increase in complexity over traditional finite element techniques. We will

show that fields of the form of eqns ( 3.2) can be used easily with very good results.

3.2 Displacement Field Development

3.2.1 Displacement Field Basis

For this work we will develop a displacement field similar to that given in eqns ( 3.2),

but which will be better suited for our needs later in developing a piecewise continuous

displacement field. We begin by assuming a symmetric, parabolic, transverse strain field

of the form:

7rz= _ a(ao + alz2 ), (3.3)

where o is a transverse shear strain, a = x, y and ao and al are constants. If we force

the transverse stress (strain) to go to zero at z =±+, we can eliminate the two constants.
2'
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The result can be written as:

7z = WO 1 - h2] (3.4)

Next, substituting eqn ( 3.4) into the strain displacement relations for transverse strain,

(see eqns ( 1.10)-( 1.11)), and solving for uc,,, we can write:

u, - h 2 ) Z - w,,. (3.5)

Integrating this with respect to z yields

Ua " Ucto + 'Pa z - 3hz) - zw,a. (3.6)

The end result is a displacement field of the form:

U = uo+ z- -zw,z

V = vo+ y z- 3 h2- ZW,y (3.7)

w = w(X,y)

A displacement field of this form was published by Bhimaraddi and Stevens [161 in 1984,

but it was presented with no justification or explanation of how or why it was chosen.

The displacement field is somewhat similar to that given in eqns ( 3.2), but instead of a

rotation angle, 0,, we have a measure of transverse shear strain, W,,.
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The field in eqns ( 3.7) has no immediate advantage over eqns ( 3.2), as they both

require C' continuity. In fact, eqns ( 3.7) are at somewhat of a disadvantage over eqns

( 3.2) if one intends to compare any results to those of a first order shear deformation

analysis because of the differences between 0a and p. The advantage to eqns ( 3.7) comes

into play when it is used as a basis for a simplified piecewise continuous displacement

model. The algebra involved in satisfying continuity becomes much simpler. Therefore,

throughout this section, eqns ( 3.7) will be utilized as the displacement field of choice.

3.2.2 The Piecewise Continuous Displacement Field

As discussed earlier in Section 1.4.2, a continuous, smooth function cannot accurately

represent the displacements through the thickness of a laminated composite plate. To

improve the accuracy of the analysis, we must turn to a piecewise continuous function

through the thickness where each layer is modeled with its own smooth function. This

allows for slope discontinuities at the layer interfaces. Towards this end, we assume a

function of the form given in eqns ( 3.7), but to begin with, we allow each layer to have

its own values for uo, v,, p. and Vy. This can be written as:

un  n 4z( 4 Z3

= Uo + - 3h2 -w

= v + WZ-3h) -zw,y (3.8)

w" = w(X,y)

where the superscript n refers to the nth layer of the laminate, and z is a global coordinate

running from - h to + h

The piecewise displacement field presented in eqns ( 3.8) must be modified to meet
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some of the requirements listed in Section 1.4.2, namely transverse traction continuity and

displacement continuity at the layer interfaces. Using eqns ( 3.8), we can calculate the

transverse stresses on either side of the layer interfaces and set them equal to one another.

In doing so we find out that the values for V' can all be related to the V,, of one reference

layer. If we choose the bottom layer as the reference layer, we can write:

X 0'4)1 1= n 1(39

,n= (--) (3.10)

where CO4 and 0 55 are from eqn ( 2.5) for the nth layer. Similarly, enforcing u and v to

be continuous functions across the layer interfaces results in the expressions

u o = Uo (zk- 3h (ak-1 -k),(311
k=l \

0 = F- + k - 3h2 (1f- I - fk)V (3.12)

k=1 \

where the bottom layer is once again the reference layer. With these expressions, eqns

(3.8) can be written as:

Un= UI + n z
= E Pi WX-+" v z - 3h2) -zw,(

,, = 4O + E ., O + a<'o -3 zw,y (3.13)
j=1
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w n= w(X,y)

v. here

Pj = (zj - 4zj13h2) (aj-1- aj)

Pj= (z, - 4zi3/3h2) (jl _ #j~)

and here zj is the distance to the bottom of jth layer. This piecewise continuous, simplified

higher order displacement field will be the one used to demonstrate the effectiveness of

the Least Squares element in the sections to follow. A field of this form was used by Lee

et al (1990) [59].

At this time an important distinction is made in terminology. The three equations

above will be referred to as the displacement fields, while the five terms on the right hand

side, uo, vo, pz, Wy and w, will be termed the displacement functions. This terminology

will help make the following sections less confusing. Note also that the superscript 1 has

been dropped. It will be implied from this point on.

3.3 Theory Development: Method I

3.3.1 The Domain Displacement Functions

We begin by assuming the element domain shown in Figure 3.1 with a local 7- coordinate

system as shown. Within this domain we have displacements represented by eqns ( 3.13) in

terms of five domain displacement functions uo, v0, w, o and o. Each of these functions

is represented by an n term polynomial expansions in 77 and with n unknown constants

ki. The expressions can be written as:

iU. = al +a2?7+ ck3+ (Y4772+ a35 + a67 +.
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X

Figure 3.1: Least Squares Element Domain

o C"tn+l + On+27] +r tn+3 + an+47]2 + anl+5 2 + n+671 +"'"

WOz = C2n+l + a2n+271 + a2n+3 + a2n+4772 + C2n+5 2 + a2n+677 + (3.14)

y ---- 3n+l + a3n+277 + Cf3n+3 + C(3n+41 2 + a3n+5 2 + 3n+67 +

tO 4n+l + a4n+277 + a4n+3 + a4n+47 2 + a4n+5g 2 + Ct4n+677 +...

We can write these expressions in matrix notation, (using n = 10 for example), as:

X {A} (3.15)

w 
4 ... ... a.50

where
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{A}T = LAJ = [1 7 7g 72 2 q2 jg2 73 3j (3.16)

Or we can write the functions in terms of a's as:

'U0{ X = [A'] {a} (3.17)

where

A 0 0 0 0

0 A 0 0 0
[A']= 0 0 A 0 0 (3.18)

0 0 A 0
0 0 0 0 A

and { a} is a column vector of all the a's (50 for this case). Next, we add the local

derivatives of w to these expressions to get:

U 0

V0

Oy [A] {a} (3.19)
w

Wr

w, 17

where

A 0 0 0 0
0 A 0 0 0
S0 A 0 0

[A]= 0 0 0 A 0 (3.20)
0 0 0 0 A
0 0 0 0 A,7
0 0 0 0 A,(
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We now have everything we need to write the domain displacement field given in eqns

(3.13) in terms of the domain functions given in eqns (3.14). The result is

V [7] [A] (a (3.21)

Here

[1 0 c, 0 0 c2r11 C2 r 12 1
[]- 0 1 0 eI 0 C2 r 2 1 C2 r 2 2  (3.22)

0 0 0 0 1 0 0

where

n 4z 3

cl = Pj + zak - -2 ak (3.23)
j=1

cn f + z3 - 4 z 3 ( 3 .2 4 )

3=1

4z 3

c = - (3.25)- 3h 2

This now gives an expression for the domain displacement field in terms of the a's . The

next step is to develop a boundary displacement field written in terms of nodal degrees of

freedom.

3.3.2 Boundary Displacement Functions from Nodal Degrees of Free-
dom

The element domain shown in Figure 3.1 is now modified to include eight boundary nodes.

The element is shown in Figure 3.2 and now resembles a standard quadratic isoparametric

element. However, we define the nodal degrees of freedom as
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y

2 6

3

x

Figure 3.2: Least Squares Element with Nodes

{ 6 }T = uo vo oz oy w w,, w,y J i = 1,2,3,4 (3.26)

{bi} = u. v. p, wy J i = 5,6,7,8 (3.27)

giving the side nodes and the corner nodes different numbers of degrees of freedom for a

total of 44 degrees of freedom per element. For future use, we define a vector containing

all 44 degrees of freedom as:

62

{A} = 1 (3.28)

Along each edge of the element we have two corner nodes with 7 degrees of freedom
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n

q( -)q ( ) q (+ )s

s =-1.0 s =0.0 s +1.0

Figure 3.3: Variation of Nodal variable q along element side.

and one side node with only four degrees of freedom, as described above. With this, uo,

Vol V. and Wy are defined by three quantities along the edge, one at each node. Any one

of these four quantities, call it q, defines a quadratic curve in the boundary variable s,

which varies from -1.0 to +1.0 along each of the four sides. See Figure 3.3. We can

easily establish the second order equation for any of the four degrees of freedom from the

following equation:

?-(S) = + 2. ( s) q(- + (s2) q(0)+ 1 S+s2) q(+) (3.29)

'i" e function u, on the other hand, is defined by six nodal variables. We define first w,

as the derivative of w tangent to the side in the direction of s, and w, as the derivative

of w normal to the direction of s. See Figure 3.4. For a rectangular element aligned with

the global x-y coordinate system these two derivatives correspond identically to either w,z

or w,y depending upon which side one looks at. If the element is not straight sided or

not aligned with the global coordinate system, the two derivatives will each be a linear

combination of both w., and w.y related through the standard Jacobian matrix. With

this in mind, we see that w is defined by four variables, the two values of w and the two
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n
(-) W(+)

W,,S W'S
t , -) +

8

-1.0 S 0.0 s = +1.0

Figure 3.4: Variation of Nodal variable w along element side.

values w,,. Thus, w can be fit by a cubic equation, making w,, quadratic. In addition,

w,n is defined only by two points, one wn at each end, thus making it vary only linearly.

The required equations for w and its derivatives become:

+(S) = ( +- 3 w +S+ 4 w ( S +  (3.30S

+ ( + S-'S W() +i 1 S+ 2 S ) W(+) (3.30)
2 4 4 / 3s) 4 ( - )

w,3 (s) (-l + s2) (  + 1 (-1 2s+3s) ,i

+ (I -S2) w( + ) + 1 (-l + 2a + 3S2) , (3.31)

Win (S) = n + 1+ W'(+) (3.32)

The signifiant point here is that all functions, including w,, and w,n, can be expressed

along an edge of an element in terms of only the nodal values along that particular edge.

This will become an important fact to help insure compatibility from element to element.

The final step is to compile eqns ( 3.29)-( 3.32) into a matrix format. It is convenient
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to write:

UO

V0

S = [T]i {A} (3.33)
w

W

W,y i

where the subscript i refers to the ith side of the element, and the matrix [Fl contains

the necessary terms from eqns ( 3.29)-( 3.32) as well as Jacobian terms relating the local

differentials to the global ones.

3.3.3 The Least Squares Implementation: Method I

In the past two sections we have developed two different methods for finding expressions

for the five displacement functions, u0, v0, P., y and w, as well as for the differentials of

w. In Section 3.3.1, eqn ( 3.19) defined the functions anywhere in the element's domain

in terms of unknown a's. In Section 3.3.2, eqn ( 3.33) defined the seven functions only

on the element's boundary and in terms of the nodal degrees of freedom. Let us refer to

column vectors of these seven functions from each of these two equations as {6n } and {6 r }

respectively. Here the symbols Q and r correspond, of course, to domain and boundary.

The vector {6Q} gives the seven functions in terms of the local coordinates, 77 and , while

{6r} gives them as functions of a boundary variable, s.

The basis for the formulation of the Least Squares element begins with these two

vectors. The vector {6n is evaluated on the boundary by setting the appropriate variable,

either 77 or , to ±1.0 while the other varies as s. This new vector will be referred to as

{6 n}r, in other words, the domain displacement functions evaluated on the boundary.

Next, we define a functional, I, as the integral of the square of the difference between the
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domain displacement functions evaluated on the boundary and the boundary displacement

functions established from the nodal degrees of freedom. This is written as:

I= f ({6t}r - {6r})2 dr (3.34)

Substituting in the expressions from eqn ( 3.19) and eqn ( 3.33) the above equation

becomes:

I = ([A] {a} - [Fi {A})2 d(
jL dr(3.35)

The functional I can now be minimized with respect to the a's to obtain the expression

a ([ [AIa}- [A (336

(The constant 2 has been divided out.) The next step is to perform the integration and

solve for the a's in terms of the nodal degrees of freedom. As indicated in eqn ( 3.36),

the integration is performed over the element's boundary. The integrand is defined as

a function of the boundary variable s, but care must be taken in how the integration is

performed to insure the correct sign on the integral for each side. Upon performing the

integration, the expression can be solved for the a's 2. The result is

{a} = ([Al T [A])-' [A]T [Fr] {A} (3.37)

or

'Nte: To keep the number of symbols used to a minimum, the same symbols are used after the
integration to represent the variables. The difference is understood.
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{a} = [H] {A} (3.38)

where

[HI] = ([A] T [Al) -1 [A]T [" (3.39)

This result is the basis for the Least Squares Element. The unknowns, (the o's), of the

domain displacement functions which make up the displacement fields, are chosen in such

a manner as to force these functions to match those on the boundary which are determined

from the nodal degrees of freedom. Since the functions on each side of the element are

determined only from the nodal degrees of freedom on that side, interelement compatibility

is met. Note, in the last two sentences the words 'force' and 'met' were emphasized.

This is because the desired action is only accomplished in an approximate manner. The

values of the functions may not match exactly, but their differences are minimized. Thus,

compatibility is not met unconditionally, but it is met in a least squared sense.

With eqn ( 3.38) we now have the ability to update eqn ( 3.19). Substituting in the

expression for {a}, the domain displacement functions become:

Uo
V0

S= [Al [Hi] {A) (3.40)
Wr

w,

Remembering that these domain displacement functions form the basis for the element

displacement field throughout the domain, we can also update eqn (3.21) to now be:
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V = [2] [4] [H,] {A} (3.41)

With eqn ( 3.41) we now have an expression for the element displacement field. This

displacement field formulation is quite different from that of a standard isoparametric

formulation and has some points worthy of discussion. First of all, the matrix [A] is a

function of the elements local coordinate system variables 17 and . The order of the terms

is dependant upon the value of n chosen in eqns ( 3.14). Thus, eqn ( 3.41) represents

the displacement field already in terms of the element local coordinate system. The role

usually performed by shape functions has already been filled directly for the Least Squares

element. First, the strain field, or any desired differential field for that matter, is found by

directly differentiating [A] in eqn ( 3.41). Next, the development of [HtI in eqns ( 3.35)-

( 3.38) has insured that the domain displacement field has been determined such that it

matches a specific function determined from nodal degrees of freedom on each specific

edge of the element. This specific function is quadratic for u0, v,, o- and Wy. This is

essentially the same as what is provided by the shape functions in eqn ( 2.21). In fact, if

n in eqn ( 3.14) is cLosen to provide a biquadratic function (with the 772 2 term removed)

the formulation for these four domain functions should be identical with that found using

the standard shape function interpolations. However, unlike eqn ( 2.21) , the formulation

in eqn ( 3.41) allows for a cubic variation of w along its edges, and hence a quadratic

tangential derivative, while establishing a linear normal derivative of w along each edge.

This is where the power of the Least Squares element comes into play. All three variables,

w, w,, and w,y, will remain compatible along common element boundaries. As a result.

so will u and v.
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3.4 Theory Development: Method II

3.4.1 The Domain Displacement Fields

In Section 3.3.1 we defined the domain displacement functions for the element domain.

The unknowns in these expressions were then chosen to minimize the difference between

them and the boundary displacement functions in terms of the nodal degrees of freedom.

Method II will utilize the displacement fields themselves in the Least Squares method

rather Lhan the displacement functions. The minimization process will minimize the gaps

between elements directly rather than through the functions making them up.

The domain displacement field is given by eqn ( 3.21). We use this form exactly as

developed before and write it as:

v }=1 [A] {a} (3.42)

where the subscript 0 was added to denote that this is the displacement field defined at

any point in the domain.

3.4.2 The Element Boundary Displacements from Nodal Degrees of
Freedom

We now establish an element pictured exactly as in Figure 3.2. This time however, instead

of nodal degrees of freedom as defined in eqns ( 3.26)-( 3.27) we define them as

{ i} T = L u. V. Ox Wy w J i = 1,2,3,4,5,6,7,8 (3.43)

and {A} is defined exactly as in eqn ( 3.28), with the exception that now {A} is a 40 term

vector rather than one with 44 terms. This form for the elemental degrees of freedom is
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identical to the standard, eight noded isoparametric element used in Section 2.3.1. The

only difference is that the use of shape functions has not been established. Instead, we

follow the method of Section 3.3.2 to define the actual displacements on the boundary

in terms of the forty nodal degrees of freedom. We assume a quadratic variation on the

boundary of the element for each of the five degrees of freedom. Now eqn ( 3.29) and

Figure 3.3 can be used to write

V,

I A (3.44)

where again the subscript i denotes the ith side, and the matrix [g] contains the necessary

terms from eqn ( 3.29).

We cannot use eqns ( 3.13) to establish the displacements on the boundary. This is

because the boundary displacement functions in terms of the nodal degrees of freedom,

given in eqn ( 3.44), do not include the w,., and w,, terms. If we were to restrict the

analysis to rectangular elements aligned with the global axis system, we would have either

w, or w,y on any one side. This would enable the displacements parallel to each side to

be calculated. A more desirable option would be to define new functions for u, v and w.

Proceeding in this direction, we define

Un I. n 4 Z3)
b = 1 1 + 1:Pj 0.'+ an oP 3h2 /

j=1

= I+ P + z - 3 (3.45)
. 1 + O 3h 2
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Wb = Wo

where the subscript b denotes a boundary displacement. These expressions for the dis-

placement fields are the same as those in eqns ( 3.13) with the w,, and wy terms removed,

making it a C0 continuous field. The displacements along the ith side can now be written

as:

U0

v 0 1 0 j 0 i{ (3.46)
w r, 0 0 0 0 1 WY

where the subscript b has given way to a subscript r, and cl and Z1 are the same as defined

eqns ( 3.23)-( 3.24). Upon substituting in eqn ( 3.44), the above becomes:

1 0 c 00
{U}r = 0 1 0 Z1 0 [g],{A} (3.47)

0 0 0 0 1

For convenience, we let

[1 0 c1 0 0]
[J]- 0 1 0 El 0 (3.48)

0 0 0 0 1

so eqn ( 3.47) can be written as:

{u}r, = [J] [gi, {A} (3.49)

3.4.3 The Least Squares Implementation: Method II

In the last two sections we established expressions for the displacements: first, within

the domain displacement field, (Section 3.4.1), and then for the displacement field on the
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boundary, (Section 3.4.2). We now proceed in the same manner as in Section 3.3.3 and

develop an element domain displacement field in terms of the nodal degrees of freedom.

This time however, the Least Squares method will be used to minimize the difference

between the actual displacement fields on the boundary and not the displacement functions,

which are their components.

We establish a functional, I, as being the integral of the squares of the difference be-

tween the domain displacement field evaluated on the element boundary and the boundary

di 'placement field in terms of the nodal degrees of freedom. This can be written as:

I= J-({un}r- {ur}) 2 dz.dr (3.50)

Again, the symbol r refers to boundary so the first term in the integrand is interpreted as

the domain displacement field evaluated on the boundary. This equation is very similar to

eqn ( 3.34) with two notable exceptions. The first, as already mentioned, is the obvious

difference of the type of variables in the integrand, actual displacements rather than

displacement functions. The second difference, which is a result of the first, is that the

integral now has another dimension added to it. This is because the terms under the

integral, the displacement fields, are functions of z as well as x and y. Hence, in minimizing

the difference between the displacements on the boundary, the thickness of the element

must also be considered. Upon substituting in eqn ( 3.42) and Pqn ( 349), we ran write

the above functional as:

=] /] ] (A] I[a} _ [J] [] f{A}) 2 dz. dr (3.51)

Minimizing this with respect to the or's, we get:
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0 j h/2 (rA]T [,IT [1] [A] _[AIT [I]T [j] [g1)dz -dr =o (3.52)
Tee - r-h/2

Again, the factor 2 has been divided out. Also note that the differential area has been split

up into a differential length and thickness because it will be convenient to perform the

thickness integration first to simplify the expression. Noting that the only z dependency

is in [2] and [J], we can write:

j ([A] T [M] [A] - [A] T [.] [g]) dr = 0 (3.53)

where

rh/2
[M] = h/2 [4 T  dz (3.54)

Jh/2[A = f-h/2 [11T [7] dz (3.55)

Now, eqn ( 3.53) can be evaluated in the same manner as eqn ( 3.36) and the end result

solved for the a's in terms of the nodal degrees of freedom. The result is

{a} = ([A] T [M] [A])-1 [A] T [M g] {A} (3.56)

or

{a} = [H11] {A} (3.57)

where

[H,,] = ([A] T [M ] [A])-' [A]r [T [C] (3.58)

This result is now the basis for the second version of the Least Square element. Just as
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with Method I, we now have the ability to write the element displacement field anywhere

in the domain in terms the local coordinates and the nodal degrees of freedom. The result

is

v = [1 [A] [HnI] {A} (3.59)

Except for the differences between [H1] and [HII] there is no difference between eqn

( 3.41) and eqn ( 3.59). All of the discussion at the end of Section 3.3.3 concerning the

implementation of the expressions for the displacements, is applicable to both Method I

and II.

3.5 Preliminary Numerical Considerations: Method I -vs-
Method II

The idea of approximating a C1 continuous element through the Least Squares method

is the same in both Method I in Section 3.3 and Method II in Section 3.4. However, the

details of the developments are quite different, and as would be expected, the two methods

will result in two different elements. It is beneficial to discuss some of the differences at

this time.

First, and probably most obvious, the element from Method I requires 44 degrees of

freedom, while the one from Method II has only 40. Having fewer degrees of freedom

may make Method II computationally more efficient. In addition, the w displacement in

Method I is defined by twelve degrees of freedom, requiring at least twelve a's in the initial

function for w. Method II requires no more than eight a's to describe each unknown,

as each displacement variable is defined by eight degrees of freedom. Requiring fewer

unknowns in the initial representation of the displacement field (fewer a's) is important,



74

for it makes the matrix inversion required to find [H11 ] easier than for that required to find

[HI]. (See eqn ( 3.37) and eqn ( 3.56).) In fact, the inversion of these matrices becomes

a limiting factor into future research into developing more Least Squares elements. In

eqn ( 3.14) the number of terms carried in the expressions quickly reaches a maximum.

Since the integrations of eqn ( 3.36) and eqn ( 3.53) are carried out in the local coordinate

system, one variable varies from -1 to +1, while the other is equal to ±1. Upon integration,

the evaluation of odd terms go to zero, and the even terms remain. Consider the matrix

[0], where

[O] = [A] T [A] (3.60)

and [A] is defined by eqn ( 3.20). Upon integrating [0] over the boundary of the element,

as in eqn ( 3.36), it can be shown that the diagonal is positive definite, because the terms

come from the squares of the individual terms. However, the off-diagonal terms come from

the even terms in the original polynomial expression. If n in eqn ( 3.14) is chosen so that

the expressions are complete biquadratic 3, then [0] is ill-conditioned, and not invertible.

The term 772 2 is the one which causes this problem. So, in order to get twelve unknown

a's in each displacement function of eqn ( 3.14), this biquadratic term, 72 2, must be

dropped. The expression for LAJ, as shown in eqn ( 3.16), must be modified to be

{A}T = [AJ = Ll q 7g7272 {2 772 ?72 73 37" 17 j (3.61)

With this form, [0] is well conditioned can be inverted easily. This inversion problem is

by no means new and has previously been encountered. In an article addressing the use of
3 By biquadratic we mean the product of complete quadratic polynomials in each variable.
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the Least Squares method to smooth discontinuous stresses, Hinton and Campbell (1974

)[331 state that the tendency towards ill-conditioning "may be overcome to som. c-tent"

by using orthogonal polynomials such as Legendre polynomials. If formulations requiring

a higher number of alphas are required, a few more higher order odd terms may be

added before [0] becomes ill-conditioned. In addition, it may be possible to experiment

with trigonometric functions in order to add more unknowns, if necessary, while still

maintaining the ability to invert the matrix. If judiciously chosen, the trigonometric

functions could be under integrated after the inversion process to approximate the original

polynomial terms.

Lastly, but probably more importantly, we need to consider the more conceptual dif-

ference between the two new Least Squares methods. In Method I, the Least Squares tech-

nique enforced the constituent functions, the displacement functions of the displacement

fields, to be compatible across element boundaries. This indirectly enforces compatibility

along element boundaries in the displacements. In contrast, Method II enforces compati-

bility directly to the actual displacement fields by forcing them through the Least Squares

technique to fit a known compatible displacement field. Looking at the mechanism of the

methods more closely, we see that Method I forces the normal derivative of w along each

side of the element to be linear. In other words, at the element boundary the slope of the

plate will become a linear function normal to the edge, but it will be quadratic parallel

to it. Method II, on the other hand, forces the displacements to be like those with w,z

and w,y = 0 on the boundary. In effect, Method II will force the w displacement to be

a constant along the boundaries of the elements, if allowed to do so. This sounds like

an unacceptable approximation. However, if we choose w to be an eight term quadratic,

then w cannot be constant on the boundaries except for the trivial solution of w = 0

everywhere. Thus, through the Leas. Squares method, the displacement fields represent
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those which minimize the gaps between the elements.

in light of the above discussion, Method II is present ed along with Method I, not

for its direct engineering applicability, but as a demonstration of the power of the Least

Squares method. Method II will be shown to provide some encouraging results despite

the unacceptable approximation discussed above. The intent is to demonstrate a second

method which may be !,Dplied more effectively for other problems. It could be greatly

improved if a better choice of displacement functions, based upon the nodal degrees of

freedom, can be found.

3.6 Finite Element F'ormulation of the Least Squares Ele-
ments

The development of the stiffness and mass matrices for the Least Squares elements follow

the basic procedure used in Section 2.3. However, due to the increase in complexity in the

displacement field, the equations and matrix algebra become much more complicated. As

a result, the following derivation presents some of the intermediate matrices by symbol

only, and the interested reader is referred to Appendix A for the details.

3.6.1 Stiffness Matrix Development

The expressions for in-plane strains within any layer of an element can be found by sub-

stituting eqns ( 3.13) into the appropriate strain displacement relations resulting in

k I k I

71 'X + EPzV°,Z--- -, i:- zw +a , - 3h 2)
k (

= vPj.yy ZWyy +Ak.y (z3- 3-2)
j=2 \ h 2 )
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k
-k = U 0I,/ + V0 ,, + 1.. \3ZWIY +yz

j=2

-2zw,ZY,+ (atk~z~+ P~y,z) -_4z

The transverse strains simply become

7.k4 4Z2 )

(3.63)

In order to keep future equations less cumbersome, as well as for convenience, the super-

script 1, which implies the value of the parameter for the reference (first) layer, will be

dropped. In other words, the variables uo, v0 , o, and oy will be understood to refer to the

values for the first layer of the laminate. We can express eqn ( 3.62) in matrix notation as

{ Elk = [S] {b} (3.64)

where the forms of [S] and {6} (see Appendix A) were purposefully chosen to aid the

computations to follow. Similarly, eqn ( 3.63) is written as

k
'YXz 01 { 7 k = SIII {6 } (3.65)
7yz

Referring to Appendix A, we see that [S] is a 3 by 18 element matrix, while [Sti is a 2 by

4 matrix.
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With the above equations, the expression for in-plane strain energy, U, can be written

as:

U fl{ }f{e} dV

= -" qT{} [Q] f{el dV

S1 j{6}T[S]T[Q][S] {6}dV (3.66)

where [Q] was defined in Section 2.2.1. Similarly the transverse strain energy, Ut, becomes:

Ut If j}T []1-y} dV

1 f { '} [St4" [Q ] [St] f{6t} dV (3.67)

Next, we perform the integration through the thickness of the element. In doing so, the

results can be written as:

U = f 61T [q ] f61dA (3.68)

2 IA
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where

h/2
101 = f-h/2 [S]T [Q] [s] dz (3.70)

h/2

[sit] = f h/2 [StT[] [Stj]dz (3.71)

The matrices defined in eqn ( 3.70) and eqn ( 3.71) are counterparts to the extensional,

bending and coupling stiffness matrices defined in eqns ( 2.16)-( 2.19) in Section 2.2.1.

These [A], [B] and [D] matrices have specific physical interpretations to them and are

discussed in any fundamental composites textbook (see Jones [411, Tsai and Hahn [137]

or Christensen [22]). Unfortunately, the components of [Q] and [Qt] do no lend themselves

to as nice a physical description. The two matrices can be broken down into extensional,

bending, coupling and so-forth submatrices, but there is nothing to be gained at this

point from doing so. If computational efficiency for specific laminates were desired, then

knowing which submatrices go to zero for these cases would be beneficial. The form of [S]

and [St] were chosen to make the integrations in eqn ( 3.70) and eqn ( 3.71) as easy as

possible.

The next step in the finite element formulation is to write {f} and { t} in terms of

the nodal degrees of freedom. We first establish a simplified version of {6} and {ff}. We

define [L1] and [L'] (see Appendix A) such that

{6} = [Ll] {, y} (3.72)

{6t} [Lt] {y} (3.73)

where

{b.,}T =
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L UOz Uo,, VoX VOV Wz o, P ,,= oy'z WY , o,== Wo,ZY WO,,Y J (3.74)

and

{ 6 ,}T= L v, y 0,o wo., J (3.75)

Next, in preparation for integration in the local coordinate system, the conversions of the

global derivatives to the local coordinate system are established. We establish [L2] and

[L'] (see Appendix A) such that

{1b} = [L2 ]{., } (3.76)

{6i~ = L b { (3.77)

where

{ 6 t}T =

L Uo,. uo, v o,,7 vo,t p y,,, py, F1 (w) F2 (w) F3 (w) J (3.78)

and

Ti L = O [ O W0,17 W0*4 (3.79)

In eqn (3.78) the terms Fj(w), F2 (w) and F3(w) arise from the required higher derivatives

of w. They are defined by:

F(w) = W,, 7 v1 - C3X,rp7 - c 4Y,Y7Y7

F.2 (w) = W,,7t -c3x,, -c4y,,7t (3.80)

F 3 (w) = W,t -c3x,,C-C 4 y,t
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where

C3 - riiw,+r 2 w,

C4 - r 2 W,-+r22w,f

rij = Componentsof [J-I

These equations have become complicated because of the second derivativ. of w in eqn

( 3.74). These require new transformations relating the higher order derivatives in the

global to the local coordinate systems. These transformations show up in both eqns

(3.80) and in [L2]. The complete details of these transformations, which are not normally

seen in the literature 4, can be found in Appendix B. In a final sequence into developing the

element stiffness matrix, we establish a new column matrix containing all of the required

local derivatives of the displacement functions

{ 6 , T = [ u-,, u, v,,7 v, W, ,,

This matrix is found through differentiation of eqn ( 3.40) with either [Hi] or [Hil] de-

pending upon whether Method I or Method II is being used. The terminology [H] will

hereafter imply either Method I or Method II. We can write

{f,7} = [AgI [HI {AI (3.82)

= [A'4 [ H] f{A) (3.83)

4 In the literature search for this work, only one article with similar derivations was found. See Reddy

(1989) [116].
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where [A ] and [At] are differentiated versions of [A], and are defined in Appendix A.

The matrix {6} is related to {6,1} through the relation

{6,7} = [L3] {6,1} (3.84)

where [L31 is given in Appendix A. Substituting eqns ( 3.72)-( 3.83) into eqn ( 3.68) and

eqn ( 3.69), the expression for the elements total strain energy, Use = U + Ut, becomes

Ue - ({ /A}T [ ]T [[Q],31 {A} + {A}T [,a]T [Qt] [/3t] {A})dA (3.85)

where

[Pi] = [LI] [L2] [L3] [At] [H]

[3]= [L'] [L'] [Alg] [H]

Minimizing eqn ( 3.85) with respect to {A} gives the stiffness matrix. The result is:

[k] = f ([3]T[[Q ]31 + [/3t]T [0 t ] [Ot]) dA (3.86)

3.6.2 Mass Matrix Development

The mass matrix development follows much the same procedure as in Section 2.3.3. The

expression for kinetic energy, Uke, can be written as
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Uk = -W2 fp(U2+ V2+w2) dV (3.87)

or

Uke = f P j2 {u}{u} dV (3.88)

where

{u}= ku v w J (3.89)

Following the same general procedure as in Section 3.6.1, we establish a matrix, [Sm], so

that we can write:

{u} = [Sm] {6'} (3.90)

where
{ 6 ,I}T . Uo V0 Wo tg_ t9 4_ 79, ooy Wz W, J (3.91)

and [Sm] is defined in Appendix A by eqn ( A.15). With these equations, eqn (3.88)

becomes:

Uke - W2 j P {6"}T [Sm]T [Sm] {6} dV (3.92)

This expression can be integrated through the thickness resulting in

Uke = ITw { [Q.b-]){m} dA (3.93)

where
'h/2

[9m ] f p [Sm]T [Sm] dz (3.94)
Jh/2
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The next task is to represent {b'} in terms {A}. Towards this end, we establish a new

column matrix

{,7t} T '= VO u v0  ty w w,,1 w,f J (3.95)

where

{n'} = [A] [H] {A} (3.96)

In this equation, the waLrix [A] is exactly as defined in eqn ( 3.20). Finally, {68} is related

to {b-} through

[6} Lm,, {6M (3.97)

where [Lm] is defined in Appendix A. Putting all of the above equations together allows

Uk, to be expressed in terms of {A}. The result is

U =mT[ ] JAI dA (3.98)

where

[0.]= [Lm] [A] [H] (3.99)

To find the expression for the mass matrix, we minimize eqn ( 3.98) with respect to {A}.

The result is

[in] = f [Ipm)T [Qm] t3m] dA (3.100)
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This is the final expression for the element mass matrix.

3.6.3 Stress Stiffness Matrix Development

The finite element coding for Method I and Method II will be extended to include both

the buckling problem and the pre-stressed vibration problem. To accomplish this, we

develop the initial stress stiffness matrix, [k,], following the procedure outline in Cook

[23]. We assume that the strains are composed of both linear and nonlinear portions. The

are written as:

{4 = {EL} + {eNL} (3.101)

The nonlinear portion of the strains {NL} includes the higher order terms as in the

Lagrangian strain definitions. The buckling and pre-stressed vibration analysis will be

limited to include only the in-plane normal stresses in the following development, but

they could easily be modified to include in-plane shear and transverse stresses quite easily.

The strain energy due to the nonlinear portion of eqn ( 3.101) can be expressed in

terms of the nonlinear portion and the pre-stress present in the element. Thus

UNL = " 1 } dV (3.102)

The nonlinear portions of the strains are written as

f UIX V,1. W,1. 0 0 0 '
E N 2 0 0 0 u,y V, w u  u,IN Y ~

W'y
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1[Q] -uY} (3.103)

From eqn ( 3.90) we can write:

V~z = [Sf] 16, 1 (3.104)
WI IJ

where {,' } is the derivative of eqn ( 3.91) with respect to x. Similarly we can write:

VL -srn {6,M} (3.105)
UWJy

which now allows us write:

fw,= }[= J{ }(3.106)
W"y

Next we establish

{ 6,fl, } [IB{6 } (3.107)

where [I and {6} are defined in Appendix A. We can now write:

{x }NL 2 0 0][I1B){bM} (3.108)Ny m l t Sm

Next, in a sequence very similar to that in eqns ( 3.73)-( 3.84), we establish the following
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relation to relate {8} to the nodal degrees of freedom. (Note: The details of the following

terms are omitted, but the matrices are very similar to those in eqns ( 3.73)-( 3.84) and

are distinguished through the use of the' symbol.)

b- I} [Q~ [L'] [Au ] [H] f{A} (3.109)

At this point it is convenient to define:

[6']= [IB] [L] [L'I [Alg] [H] (3.110)

so that we can simply write

{EI, NL2[0 S] ['] {A} (3.111)

This equation can be substituted into eqn (3.102) to give:

UNL = I I{A}T [ SIT 0 IT [QIT 1y'o dV (3.112)

We manipulate the last two terms in the integrand to give:

, 0 0 0 0 0
0 ayo 0 0 0 0

[Q]T f ] o 0 ax 0 o 0
-Y 0 0 0 Llyo 0 0

0 0 0 0 c7o' 0
0 0 0 0 0 Oro

= [7,] {?Ly} (3.113)
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Substitution of the expressions for {uy} into eqn ( 3.113) and the result into eqn ( 3.112),

gives the required form to provide a symmetric matrix. The result is:

U 1 TIT [r7] S 00 A Sm ] dV (3.114)
4 0L Sm] 10 SM]

The element stress stiffness matrix is now established through minimization of eqn

(3.114) after integration through the thickness. The end result is

[k,] = A [p3,] T [OBI [i3'] dA (3.115)

where the integration through the thickness produced the matrix [OB] and is defined as

SB f ]T [o] S"; 0 dz (3.116)

J h2 0 Sm SinJ

It turns out that [O] can be written in terms of the matrix [Qm] defined in eqn ( 3.94).

The relationship is:

[ [B[ Pyo [m] ] (3.117)

Here, the terms po and py, are pre-stress forces per unit width stemming from the inte-

gration of the pre-stresses through the thickness. The inclusion of material properties in

the displacement field has added a complexity to the calculations involved in calculating

the stress stiffness matrix. In most mechanics problems this matrix is found through much

simpler means.
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3.7 Finite Element Implementation of the Least Squares
Elements

In the past three sections we have developed equations for the element stiffness (eqn

( 3.86)), mass (eqn ( 3.100)) and stress stiffiess (eqn ( 3.115)) matrices. These three ele-

ment matrices can be assembled into the global matrices following standard finite element

techniques. The resulting equation to be solved becomes

([K] - U2 [MI - Pa [Kg]) {IA} = 0 (3.118)

where here we have assumed P., = Pyo - P0. If the value of p, is zero, then eqn ( 3.118)

reduces down to the vibration eigenvalue problem of eqn ( 2.59) in Section 2.4.1. To

solve the buckling problem, we set the second term equal to zero and solve the eigenvalue

problem for P. For the pce-stress problem, we set Pa equal to some value let- than the

critical buckling load and solve the resulting eigenvalue problem for w.

Stress calculations for the Least Squares method are done in a manner similar to

that already discussed for the Predictor Corrector method. Stresses are calculated at the

three by three Gauss points, which are then treated as the nodes for a reduced eight noded

element. The stress data from these eight nodes are then used to find the derivatives of the

stress. The derivatives of the stresses are needed to put into the equations of equilibrium,

which are integrated to give the transverse stresses.

The formulation of the Least Squares element presented here is unique. There exists no

formulations like it in the literature. In tact, the only previous works which were found,

used the least squares process as a tool to smooth finite element results, in particular

stresses. A few papers appeared over a short period of time, but none of these implemented

a least squares approach to smoothing functions to approximate a C' continuous element.
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Published works using the least squares method for smoothing functions include Hinton

and Campbell (1974) [33], Lynn and Arya (1973) [70] and (1974) [69], Hinton, Scott and

Ricketts (1975) [341 and Razzaque (1973) [109].



CHAPTER IV

NUMERICAL RESULTS AND METHOD
VALIDATIONS

4.1 Study Approach and Preliminary Information

The implementation of the Predictor Corrector and the two Least Squares techniques into

the finite element method was presented in great detail in Chapters II and III. This Chapter

will present the basic numerical findings of these methods. The approach will be to

compare numerical results obtained with all three of these methods to existing data found

in the current literature. The intent is to provide an understanding into the capabilities

and limitations of the techniques. The primary study will concentrate on the solutions of

the eigenvalue problems encountered when finding the natural frequency and the critical

buckling load. The vibration problem will be analyzed with all three techniques. However,

the stability problem was only implemented into the two Least Squares methods, so will

not be addressed by the Predictor Corrector technique. In addition, there will not be a

rigorous mathematical convergence study but only a demonstration and discussion of the

convergence characteristics.

In comparing the methods to existing data found in the literature, an attempt has

been made to provide results for a wide range of possible laminates. While the emphasis

is placed on thick laminates, the number of layers does not necessarily have to be large.

The laminates studied range from as little as three layers to as many as sixteen. The

ply angle, were not limited to the standard 0, 90 and ±45 degrees, and both symmetric

91
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Table 4.1: Material Properties.

MATERIAL EL/ET GLT/ET GTT/ET [VLT Il'TTI

1 15 0.5 .35 .3 .49
II 40 0.6 .5 .25 .25

III 25 0.5 .2 .25 .25
IV 4.46 .566 .395 .415 .49
V* 11.49 .566 .28 .38 .49
VI 30 .6 .5 .25 .25
VII Vt .6 .5 .25 .25

*For this material: ET = 1.14 ET(Iv) and p = 0. 8 4 6 p(v)

t Indicates variable ratio.

and anti-symmetric laminates are considered. In addition, to a wide range of material

properties, a laminate made up of two separate materials (hybrid) was also considered.

In choosing such a wide range of variables for the different laminates, an appreciation for

the capability and limitations can be realized. The material properties which are used are

listed in Table 4.1. The ply layup of the hybrid laminate considered in this analysis is

[45/-45/0/90/45/-45/0/90]AS. The middle eight layers are Material IV, and the top four

and bottom four layers are Material V. This laminate was chosen to match that analyzed

by Noor (1990) [89].

Throughout this research many different boundary conditions were considered and

investigated. It is worth mentioning at this point, with more to follow later, that the

boundary conditions are believed to be a source of variance for the Least Squares methods

when comparing them to 3-D elasticity solutions. The boundary conditions used in the

remainder of this work are given in Appendix C.
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4.2 Method Specific Behavior and Convergence

4.2.1 Predictor Corrector Technique

The finite element program for the Predictor Corrector technique, as described in Chapter

II, was implemented in FORTRAN on the CYBER 990 computer. Since the main part

of the program is based upon a standard quadratic isoparametric Mindlin plate element,

there is no need to spend much effort on evaluating it. performance. This type of element

is well understood and is one of the most widely used elements in plate analysis. Thus,

we will concentrate on the performance of the Predictor Corrector method to calculate

accurate shear correction coefficients and the resulting improvement in the eigenvalues.

As discussed previously in Section 2.4.3, the shear correction coefficients should pri-

marily be functions of the plate's material properties and cross sectional shape, and hence,

they should be relatively constant throughout the plate. Figure 4.1 provides some typical

examples of the shear correction factors calculated at different locations in a quarter plate

model. The data points represent a different x or y location in the plate. Data near

locations where the shear stresses are zero are disregarded, as these are not accurate. One

can see that the lines are relatively constant, and an average value of the shear correction

factors can easily be calculated. It was found that it becomes difficult to calculate the

shear correction coefficients anyplace where the transverse shear stresses are small. This

is understandable from a numerical viewpoint when one considers the method involved in

calculating these numbers. The integration through the thickness of the plate relies upon

the addition of many numbers, which results in inaccuracies if the numbers are small. The

coefficients themselves are then found by dividing a small number by another. The result

is likely to be inaccurate. The important point is that the shear correction coefficients

should be calculated from the data found surrounding an area in the plate where the

stresses are relatively high.



94

No attempt was made to automate the calculation of the shear correction coefficients

into successive runs of the finite element program. In determining the natural frequency

of a particular laminate, the program was first run with both shear correction coeffi-

cients equal to one and the resulting average shiar correction coefficients determined. The

program was then run a second time with the new coefficients and the updated natural

frequency determined. The calculations involved in calculating the shear correction co-

efficients were avoided in this second run. It is interesting to note that there is no need

to iterate a solution to find the most accurate shear correction factors. Noor (1989) [88]

also found this to be the case. Figure 4.2 presents the calculated transverse stress for

a laminate calculated with shear correction coefficients equal to 1.0 and then with the

coefficients equal to 0.79. Note that there is no change in the shape of the curves. The

lines fall exactly on top of one another.

To validate the program's ability to calculate the shear correction factors in the present

analysis, the results are compared to those obtained by Noor [88]. For example, the values

published by Noor for a 9 layer crossply laminate are k. = 0.838 and ky = 0.730. The data

from this analysis is presented in Figure 4.1. The current analysis provides averages of

k, = 0.841 and ky = 0.732. As a further check, the shear correction factors were calculated

for a homogeneous aluminum plate. These values came out to be very close to 5/6.

The sensitivity of the natural frequency to the shear correction factor is shown in

Figure 4.3. The figure shows that w, is almost linear with respect to the shear correction

factor. This is independent of the number of layers. Based upon this data, one could

update w,, with relative confidence knowing the relationship OaW/ok,. The relationship

of the actual shear correction coefficients with the number of layers is quite different,

however. Referring to Figure 4.4, one can see that the shear correction factors do not

follow any particular relationship.
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It was no surprise that the finite element program converges rapidly to the first fun-

damental frequency. It was found that 9, 16 and 25 element, quarter plate meshes yielded

essentially the same answer. In fact, both a nine element full plate and quarter plate

model give the same natural frequency. The shear correction factors, however, do not

converge as fast, as can be expected. Because of the need for accurate data fitting in

calculating the coefficients, at least a 16 element quarter plate model is needed. A finer

mesh is probably desirable. A 25 element mesh was used for Figure 4.1. This fact presents

a problem for cases where the ply layups preclude quarter plate symmetry, requiring then

full plate modeling. In order to get accurate shear correction coefficients at least 64 or 100

elements are required. This was found to be a serious drawback to the Predictor Corrector

method. The computational time and storage required to solve a problem quickly became

large.

If this program is to be implemented in an analysis, new methods of curve fitting

the nodal displacements should be studied to provide more accuracy and flexibility. The

present analysis was restricted to rectangular elements because of the methods used in

curve fitting the data. There is a lot of room for improvement in calculating the shear

correction coefficients and there is no reason that the method cannot be improved upon

significantly. If accurate single element shear correction coefficient calculations can be

made, the computational time can be greatly reduced. The need for fine meshes can be

avoided. For maximum efficiency, multiple mesh runs may be required. A finer mesh may

be needed in calculating the shear correction coefficients and then a coarse mesh used to

calculate the updated natural frequency. Also, this technique could easily be extended to

solve the general shell problem.
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4.2.2 The Least Squares Method

The behaviors of the two Least Squares elements developed in Chapter III require more

investigation than the standard isoparametric Mindlin element used in the Predictor Cor-

rector program. The elements are non-conforming in the sense that they are not free

from gaps' between elements, but they do differ in that the gaps are minimized in a

least squares sense. In the finite element method incompatibilities between elements nor-

mally result in a reduction in stiffness, but in Methods I and II the minimization of the

incompatibilities through the Least Squares method should also minimize this expected

effect. However, this least squares minimization of the gaps between the elements can be

expected to change the convergence properties of the elements. Recalling the difference

between Methods I and II, we can also expect that the two methods themselves may have

different convergence properties. In Method I, the normal derivative of the out-of-plane

displacement along an edge of an element was forced to be linear, while the tangential

derivative was quadratic. With a displacement field of sufficient order, these requirements

can be enforced. Thus, the gaps, which are minimized by enforcing these requirements,

should tend to zero. This should be true especially as the number of elements increases.

However, one must also consider the vehicle used in minimizing the gaps. In minimizing

the gaps, the element is warped into a shape not commensurate with the true solution.

Thus, the element may start out soft due to the presence of gaps, but becomes more stiff

as the number of elements increases. It may also converge to a slightly stiffer solution.

Method II, on the other hand, minimizes the gaps by forcing the out-of-plane displace-

ment to be equal to one where the slopes of this displacement are zero. If the displacement

field is of sufficient order to allow this, the slope of the plate would tend to zero at the

element boundaries causing a large increase in stiffness. This is indeed what happens and

'The word gap is used loosely to refer to both gaps and overlaps.
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is stated without proof. It suffices to say that when a high order displacement field is used,

the element becomes unreasonably stiff and gives very poor results. As was discussed in

Section 3.5, if the field for w is restricted to being quadratic, it cannot meet the zero slope

case at all edges of the element, and hence, through the Least Squares technique should

not be too stiff. Thus, Method II is expected to have gaps, but the effect of them should

be minimized through the Least Squares method.

The results received from Methods I and II follow the discussion in the last two para-

graphs. The gaps between elements are most easily observed when considering thick

laminates made up of just a few layers. Typical examples of the incompatibilities for

Methods I and II are given in Figure 4.5 and Figure 4.6. These figures, for a three layer

cross-ply, show that Method I essentially has interelement compatibility, while Method II

has definite gaps between the elements. One can visually see, however, that the gaps are

indeed zero in a least squares sense. Figure 4.7 and Figure 4.12 show the convergence of

Methods I and II respectively for a four layer cross ply laminate. The plots both show the

ratio of w 2 /W2 ,ct as a function of Eu/E 2. Note that Method I produces a stiffer solution

as the mesh is refined, while Method II gets less stiff as the number of elements increases.

In addition, note that Method I is converging as the mesh is refined, while Method II is

neither converging nor diverging to a solution and is moving away from the exact solution.

A different convergence study is presented in Figure 4.9 and Figure 4.10, this time for a

ten layer ±45' laminate. In addition, the convergence is a function of the ratio h/b. In

Figure 4.9, Method I is seen to converge as before with mesh refinement. In addition, it

is also becoming relatively stiffer as the thickness of the plate increases. We will see later

that this is a typical trend for a simplified higher order theory. For thin plates, Method I

is shown to converge to the exact solution. In Figure 4.10 Method II again exhibits some

peculiar behavior. This time Method II is moving towards the exact solution, but it shows
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little signs of convergence. An important point to notice here is that the performance of

the element is beginning to look acceptable for the thinner plates, but it quickly diverges

for the higher ratios of h/b. Finally, Figure 4.11 and Figure 4.12 present yet another case.

This time for the sixteen layer hybrid laminate. Note the same trends are present as in

Figure 4.9 and Figure 4.10.

From these observations we can come to several conclusions. First, we can conclude

that Method I exhibits acceptable convergence characteristics. The formulation of the

element allows the gaps between elements to be easily closed. However, because of these

gaps, the solution converges opposite to what is normally found in typical finite element

analysis. Normally the finite element method produces a solution guaranteed to be too

stiff, but it gets softer with mesh refinement. The presence of gaps between the Least

Squares elements invalidates this guarantee. Also, material anisotropy has little effect on

the accuracy of the solution, but the model does appear to become too stiff as the thickness

to width ratio of the laminate increases. Next, Method II only exhibits convergence for thin

to moderately thick plates with several layers. As the thickness to side ratio of the plate

increases, gaps between elements soften the model significantly. This phenomenon is also

compounded as the number of layers decreases. Despite this apparently poor capability of

Method II, further results obtained using it will be presented in the sections to follow. Its

performance in estimating natural frequencies will be seen to be fairly accurate for many

cases. It is felt that Method II may find use if a better understanding of its convergence

can be realized. There seems to be some correlation between the mesh size and the type

of problem being solved as to maximizing the accuracy. It is felt that an acceptable

element could be realized if some form of hp convergence is implemented. In other words,

if the order of the polynomials used to describe the displacement field is manipulated

in conjunction with the mesh size, an efficient accurate element may be developed. For
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information concerning the hp-version of the finite element method see Holzer et al (1990)

[35].

4.3 Comparisons to Known Solutions

The literature covering the past twenty years contains a lot of data on the analysis of

thick laminated composite plates. A sufficient amount of 3-D elasticity data exists to use

for comparisons due to the multitude of analysis techniques which have been developed

over this period of time. This 3-D elasticity data is generally considered to be the exact

solution to the laminate problem and is available for specific laminates and boundary

conditions. It is with these solutions that authors evaluate the performance of their

methods. Unfortunately, the majority of the data are static deformation solutions for

various loading cases. This is not to say that there is not a fair amount of vibration and

stability data available. The only data which is difficult to come by are detailed stress

results based upon the mode shapes obtained from a dynamic analysis. In fact, the only

stress distribution data found is in the form of small plots for just a few cases published

by Noor (1989) [87, 881, (1990) [89] and (1973) [93]. Therefore, in the comparisons to

follow, the majority of the data presented will be in the form of natural frequencies and

critical buckling load. Also, as mentioned above in Section 4.1, the specific cases chosen

for comparison were picked to represent a range of different types of laminates. It by no

means represents all that is available. Also, unless otherwise specified, all finite element

analysis were conducted with a quarter plate model with a 3 x 3 element mesh.

We will start by first discussing how we are going to compare the results of the dif-

ferent techniques to exact as well as to other methods. Figure 4.13 and Figure 4.14 are

presented to give a feel for why direct comparison of the non-dimensionalized eigenvalues

is not helpful. In these figures the actual values for the natural frequency and buckling
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coefficients are so close to the exact solutions that differences are barely discernible. To

overcome this problem, two different methods are typically used. One, which was already

used above in Section 4.2.2, is to plot w2/W2a rather than the actual coefficients. The

other is to plot the percent error relative to the exact solution. Both methods give very

similar plots, but because the percent relative error provides a well understood measure,

it will be used in the following comparisons.

The percent relative error corresponding to 'igure 4.13 is presented in Figure 4.15.

This data is for the four layer symmetric cross ply laminate with a layup of the form

[0/90/90/0]. The differences between the different methods can easily be seen in this

figure as compared to the previous. In fact, the errors are exaggerated. Included in the

figure is data from a simplified higher order theory, SHOT. This method, developed by

Phan and Reddy (1985) [105], uses a displacement field of the form given in eqn ( 3.2), and

implements it into a finite element program through the use of Hermite cubic interpolation

functions. The data included in Figure 4.15, including the exact solution, comes from this

reference. From the figure it can be seen that Method II behaves quite poorly, while

Method I, the Predictor Corrector and SHOT methods all behave similarly with about a

±1% error. In comparing the accuracy of the programs to predict the critical buckling

load in Figure 4.16, we see something quite different. This time both Method II and the

SHOT have a 3% to 4% error, while Method I is still within a 1% error.

The next case considered is the ten layered ±45' laminate. This time we see the

comparison as a function of h/a. The data for this comparison was published by Noor

and Burton (1990) [89]. Included this time are the results for the SHOT as well as those

for a discrete layer theory and a simplified discrete layer theory. As could be expected,

the discrete layer theory provides the most accurate results. The simplified discrete layer

theory performs rather poorly, with only one data point on the graph. This is because
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the simplified discrete layer theory, discussed by Noor [891, is assumed to be a piecewise

linear displacement field with no shear correction for the individual layers. Next, the figure

shows that the Predictor Corrector technique, along with Method II, remain within 1%

of the true solution. Method I and the SHOT approach a 3% error as the plate thickness

to width ratio becomes large. In all fairness, the improved accuracy of Method I over the

SHOT is not as great in reality as shown in the figure. This is due to the fact that the

mesh size used has not allowed Method I to totally convergc. (See Figure 4.9.) The same

can also be said about the surprising accuracy of Method II. (See Figure 4.10.)

The last comparison is conducted on the sixteen layer hybrid laminate. The results

are presented in Figure 4.18. This figure is very similar to the previous figure for the

ten layered ±450 laminate. This time however, all three of the methods, the Predictor

Corrector, Method I and Method II, all perform better than the SHOT and the simplified

discrete layer approach. These results give credence to the statement made in Section 1.5.1.

With the correct shear correction factor a Mindlin type deformation field can provide as

good, if not better, results when compared to a higher order approach. The bottom line

is that both Method I and the Predictor Corrector approach can provide accuracies well

within a 1% to 2% error.

At this point we should consider known possible reasons why Methods I and II may

vary from the published exact solutions. As eluded to earlier, the boundary conditions

applied in the Least Squares analysis may be a source of some variances. Recalling from

Section 3.2.2, the unknowns in the problem (the degrees of freedom) where chosen to

be referenced to the bottom layer. Thus, when setting the boundary conditions, say for

instance setting u, = 0, we are fixing this variable equal to zero for the bottom layer and

not for the center of the plate, as would normally be desired. Also setting W,, = 0 on

the boundary sets it equal to zero in every layer (see eqns ( 3.9)-( 3.10)). In addition,
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and probably most important, is the fact that in the process of condensing the discrete

layer displacement field down to the simplified form, the variables u', v", W and W' have

lost their direct physical meaning. For instance, u1 is not the membrane stretching at

the center of the first layer. It is the membrane stretching of the first layer evaluated at

*z= 0 (the center of the plate). Each of the four variables, u', v', W and p , within

a layer, represents a section of a set of curves defined thoughout the whole thickness of

the plate. The important point is to realize that these variables have different physical

meanings as a result of the simplification process. In order to prescribe a particular

displacement boundary condition, say for u, one must use the displacement fields and

solve the expression for u to get one parameter, say uo, in terms of another, o. This

must be done to get the correct relationship amongst the variables to achieve the desired

boundary condition.

Another point to consider is the behavior of the displacement field given in eqns (3.13)

when analyzing antisymmetric (even numbered layers) laminates. Looking at eqns ( 3.11)-

(3.12) it can be seen that for these cases, u. and v0 will have the same value for both layers

on either side of the laminate centerline. This effect is not felt to be significant, especially

for laminates with six layers or more. However, care should be exercised when analyzing

antisymmetric laminates with just a few layers. Most importantly, stress analysis near

the center of the plate should be avoided. This is because at the center of the plate the

membrane stresses may be the predominant ones.

4.4 Stress Calculations

The capability of an analysis method to accurately predict the internal stress distribution

through the thickness of the laminate is almost as important as its ability to predict the

primary variables, whatever they may be. The intent of this section is to present some
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limited data as to the ability of Method I to provide accurate through-the-thickness stress

data for the case of free vibration. Method II is not considered in this analysis because it

was found that the eight term quadratic displacement field which was required to achieve

accuracy with this method was not sufficient to provide accurate stress distributions. It

was found that Method II required at least twelve terms in the polynomial expansion

before reasonable stress distributions could be realized. However, as previously pointed

out, with this many terms the model becomes too stiff and inaccurate results are obtained.

For this reason, stress analysis with Method II will not be discussed beyond this point. In

addition, the in-plane stress analysis with the Predictor Corrector technique is essentially

that of any first order technique. Therefore, aside from presenting some transverse stress

results, this method will not be considered in any detail.

In performing through-the-thickness stress -- ., .s for the free vibration problem, the

magnitude of stresses can only be !cermined within a constant. Thus, displacements and

stresses are generally prese-ted after being rnrmalized to unity by dividing each variable

by its own maximum. This method destroys the relative magnitudes between the different

variables themselves, but in keeping with what little data is available in the literature this

technique will be applied except where noted. The through-the-thickness stress data will

be presented for three of the cases presented in Section 4.3. The data will be presented

in a series of seven plots, namely u, v, a1 , 0"22, T12 , T13 and 723, all as a function of the

z position through the thickness. In all of the following graphs, the horizontal grid lines

correspond to the layer interfaces.

Figure 4.19 through Figure 4.22 present data for the ten layer cressply laminate. It

is interesting to note that in Figure 4.19 the displacement field is seen to be very close

to linear for both u and v. This fact provides justification for using a first order shear

theory to model such laminates. In fact, the shape of the two curves shows why the
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higher order and simplified higher order theories work so well. Thus, the stress fields

plotted in the subsequent figures vary little from what would be found using these theories.

The transverse shear plots in Figure 4.22 were calculated by integrating the equations of

equilibrium as previously discussed. The transverse stress calculations from Method I

and the Predictor Corrector technique are compared in Figure 4.22. There are some

differen-cs between the two methods which are felt to be functions of the curve fitting

and differentiation methods used in the calculations. This particular case for the ten

layered crossply laminate happens to be the only one where vibrational stress data could

be accurately determined from graphs. Data was hand picked from enlargements of the

graphs taken from an article by Noor (1973) [93]. This comparison of Method I to a 3-D

elasticity solution is presented in Figure 4.24 for a1 and in Figure 4.25 for r 13. Note that

the transverse stress is normalized with respect to the in-plane stress for this case. In

subsequent work by Noor [88, 89], this is not done, and data is normalized to unity. In

addition, the x-y coordinates of the location in the plate where the data is taken is not

given in this particular work. In this research it was found that this ratio was dependent

upon where in the plate the data was taken. For this reason, two horizontal axis are

provided with Figure 4.25, one corresponding to Method I, and the other for the exact

solution. The scales have been adjusted to allow for collocation of the maximum values

of T13. From these two figures, Method I is seen to provide normalized stress values which

fall very close, if not identically, on the exact solutions for most locations throughout the

thickness of the plate. It is felt that the method used to calculate the stresses through the

thickness of the plate can be improved upon through some fine tuning efforts. However,

because of the lack of stress data to compare to, the effort is not possible at this time. The

force-displacement finite element technique should be applied for which there is a wider

range of data available.
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The next series of graphs given in Figure 4.26 through Figure 4.30 are very similar to

the previous set presented except this time they are for a symmetric nine layer cross-ply

laminate. The same observations and statements made above apply to this series. The

following set, however, is different. Figure 4.31 through Figure 4.35 are for the sixteen

layer hybrid laminate and begin to show a displacement field that is somewhat piecewise

continuous. This type of displacement field can still be modeled with a great deal of

accuracy with a first order or a higher order displacement field. Stresses would vary

somewhat but not significantly. The real difference is found in the T12 plot in Figure 4.33.

Note that the shear stress is no longer a smooth function as in the previous plots. This is

because of the -450 layers in this laminate. This phenomenon emphasizes the fact that if

a laminate is to carry in-plane shear, then it is wise to put in several layers of other than

0' and 900 layers. In doing so, one will reduce large interlaminar shear stresses.

4.5 Conclusions From Method Evaluation

The performance of the Predictor Corrector technique and the Least Squares methods is

very good. The Predictor Corrector approach has the capability to extend the performance

of the simple Mindlin isoparametric element to exceed that of higher order and simplified

higher order theories. The ability to do so rests upon the ability to calculate accurate

shear correction coefficients. In this study a method was developed to calculate accurate

coefficients for the purpose of demonstrating the technique but was limited to rectangular

elements. The method also required a finer mesh for accurate results than may bt; required

using some other techniques. All in all, the Predictor Corrector technique has the potential

for being an accurate, computationally cheap method to analyze fiber reinforced composite

laminates.

The Least Squares mcthods also have the ability to perform very well in analyzing
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composite laminates. Method I exhibits better convergence characteristics than Method

II, making it the immediate choice to use. However, Method II has the potential of possibly

being improved through some form of hp-convergence finite element technique. If this is

the case, its low number of degrees of freedom give it the potential to be computationally

attractive. Method I of the Least Squares technique can give very accurate results, very

efficiently, for composite laminates. Its performance is slightly better than the higher

order or simplified higher order approaches.

Of particular significance is the ability of the Least Squares method to approximate

a C' continuous element. The Least Squares element has many advantages over current

methods used to solve the C' continuity problem, and it can be extended to other ap-

plicable areas where this problem exists. The Least Squares element is not in any way

limited to the composite laminate problem.



CHAPTER V

NATURAL FREQUENCY AND STABILITY
STUDIES FOR LAMINATED COMPOSITE

PLATES

5.1 Study Approach

The effect of optimizing the behavior of a laminated fiber reinforced composite plate is an

issue which has not been addressed in detail over the past twenty years. The majority of

the work in this area, relative to vibration and stability, has been to show simply what

effect ply angle has on natural frequency or buckling load for different a/b ratios. It is well

accepted that for a square simply supported plate, the natural frequency is maximized for

o = -45' . If the aspect ratio of the plate changes, so does the value of the angle which

maximizes the frequency. This behavior is accepted and makes logical sense. Studies

of this type have been published by Whitney and Leissa (1969) [143], Bert (1977) [121,

Khdier (1988) [50] and Grenestedt (1989) [29] to name a few. It should be stated that

some of these studies considered only thin plate theory. This phenomenon will be seen

in some of the data to follow. In addition, a typical study found in the literature will

consider the frequency not only as a function of 0 and a/b, but it will also vary the plate

thickness ratio, a/h, and ratio of anisotropy, E1 /E 2 . Also, Liew et al (9189) [64] have

presented similar studies for triangular plates. Some studies have limited the number of

variables which were considered. For instance, Jones (1973) [40] studied only the effect of

a/b and the number of layers on vibration and buckling of cross ply laminates. Buckling
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coefficient studies are not as common as vibration studies but are available. Reddy and

Phan (1985) [117] and Whitney and Leissa (1969 [143] present graphs of critical buckling

load as functions of 0 and a/b, while Noor (1974) [941 presents buckling coefficients as

functions of EI/E 2, h/b, as well as for various values of a/b. Studies including pre-stress

effects on plate natural frequency are the least common. Dawe and Craig (1986) [25]

looked at pre-stress effects on natural frequency while varying thickness and aspect ratios.

Chelladurai et al (1984) [20] have looked at fiber orientation and pre-stress for different

aspect ratios, but did so only for single layer lamina. Studies of these types are by no

means limited to the ones mentioned above. Many more exist, and the ones listed are

intended to provide some basic references to the work that has been done.

One can see from the above discussion that to study the optimization of the funda-

mental frequency and/or buckling load is not a simple prospect. There are a wide range

of variables involved. One could consider ply angle, stacking sequence, material prop-

erties, thickness ratios, aspect ratios, boundary conditions and different combinations of

pre-stress. A full mathematical optimization study would be insurmountable. At best

we can only try to understand how these variables each effects the behavior of the plate.

The design engineer, with a basic understanding of how they all influence laminate be-

havior, can then begin to optimize his design. The intent of this chapter is to present

some parametric studies to establish some new understanding into how some of these pa-

rameters effect the vibration and stability of laminated composite plates. The study will

not attempt to reproduce findings already available in current literature, but it will try to

provide some new insight into laminate behavior.

For the following study we will hold the material properties, thickness ratio and number

of layers as constants. In other words, we will study a-laminate consisting of a fixed number

of layers with the material properties and plate thickness ratio also being held as constant.
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Table 5.1: Ply Angle Analysis Data/Figure" Correlation Grid.

BNDRY FREE PRE- UNIAXIAL BIAXIAL
CASE COND VIB STRESSED BUCKLING BUCKLING

VIBt Nu =0 N._= N_

A 6 5.1 5.2 5.1 5.1
a/b = 0.7 13 5.3 5.4 5.3 5.3

B 6 5.5 5.6 5.5 5.5
a/b = 1.0 13 5.7 5.8 5.7 5.7

C 6 5.9 5.10 5.9 5.9
a/b = 1.43 13 5.11 5.12 5.11 5.11

D 6 5.13 5.14 5.13 5.13
a/b = 1.7 13 5.15 5.16 5.15 5.15

*Numbers indicate Figure number data is displayed in.
tSee Table 5.2 for the definitions of the four pre-stressed vibration cases.

The aspect ratio will vary along with the ply angle and boundary conditions. Specifically,

the study will look at a six layered laminate with the properties of Material II. The

thickness ratio, b/h, was chosen to be 10. The layup is established as [+0/ - 0/ + 0...],

where 0 will be varied. The aspect ratios considered will be a/b = 0.7, 1.0, 1.4286 and

1.7. Boundary conditions considered were simply supported and clamped. (All four sides

the same.) Data was calculated for the free vibration natural frequencies, critical uniaxial

and biaxiai buckling loads and natural frequencies for four pre-stress cases. The pre-stress

cases were defined relative to the lowest uniaxial buckling load for each case. Two pre-

stress loads, one 50% and one 85% of the lowest uniaxial buckling load, were used for

both the uniaxial and biaxial pre-stress conditions giving the four pre-stress cases (see

Table 5.2). A tabular form of the data collected is presented in Table 5.1. The table also

provides the number of the figure on which the data appears.
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Table 5.2: Ply Angle Analysis Pre-stress Conditions.

NOMENCLATURE N
PS1A 0.50 Nmin 0
PSIB 0.85 Nmin 0
PS2A 0.50 Nmin 0.50 Nmin
PS2B 0.85 Nmin 0.85 Nmj

Note: Nmi indicates the lowest uniaxial buckling load.

5.2 Initial Data Trends

All of the results for cases A, B, C and D are presented in the next series of sixteen figures.

Four figures are provided for each aspect ratio. From Figure 5.1 and Figure 5.2 we see that

the natural frequency for free vibration and all of the pre-stress cases, as well as the uniaxial

and biaxial buckling loads, are all maximized at a value of 0 equal to about 320. This

is for Case A and the simply supported boundary condition. For the clamped boundary

condition, Figure 5.3 and Figure 5.4 show that, even though the natural frequency is

maximized at this same point, the two buckling cases have shifted. The uniaxial buckling

load is maximized at about 280, while the biaxial buckling load is maximized around 39' .

The data for the square laminate, case B, is presented in Figure 5.5 through Figure E.8.

Note similar trends here, except that the natural frequencies and biaxial buckling load will

be maximized at 45'. One other interesting observation will be made at this time and will

continue to be observed in future graphs. We see that in Figure 5.6 the natural frequency

curves are bell shaped curves for the 50% buckling loads but are parabolic for the 85%

cases. This phenomenon even causes two of the curves to cross over one another for small

and large values of 8. This will not be discussed here but merely noted. Moving on to

Figure 5.9 and Figure 5.10, we now see that the point at which the uniaxial buckling load

is maximized is still around 300, while the biaxial buckling load and free vibration natural

frequency are maximized between 50' and 60'. The pre-stressed vibration cases are all
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maximized around 60'. For the clamped boundary conditions Figure 5.11 shows similar

results with the exception that the natural frequency does not fall off at the higher ply

angles but continues to rise. This increase is negligible, however. Figure 5.12 shows that

the pre-stress cases are all maximized around 670. Again, notice in this figure the sharp

drop off in the natural frequency for the two high pre-stress cases. Case D, presented in

Figure 5.13 through Figure 5.16, shows the same trends as found for Case C.

5.3 Effects of Plate Aspect Ratio

We can plot all of the data presented in Figure 5.1 through Figure 5.16 in such a way

as to more clearly show the effect of plate aspect ratio. For instance, Figure 5.17 shows

the free vibration frequencies for the simply supported cases. From this figure we can

clearly see how, as the aspect ratio of the plate increases, the optimum 0 moves towards

the right. This is the trend discussed earlier. This trend is also visible in Figure 5.18

for the clamped cases. Figure 5.19 shows an interesting result. The optimum 9 for the

uniaxial buckling load does not change with aspect ratio for the simply supported cases.

In addition, after the maximum buckling load is achieved, the buckling load is the same

for all aspect ratios. For the clamped plates, Figure 5.20 shows that the optimum theta

does vary slightly, as do the buckling loads past the optimum 0. For the biaxial buckling

loads, Figure 5.21 shows that the optimum value of 0 follows trends similar to the natural

frequency, as shown in Figure 5.17. It is interesting to note that after the optimum theta

is achieved, the buckling loads converge to the same values regardless of the aspect ratio.

5.4 Effects of Pre-Stress on Fundamental Frequency

The effects of pre-stress on the fundamental frequency of simply supported and clamped

plates can be seen in the previous figures. Looking back, Figure 5.8 represents a typical
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example of such a plot. It is no surprise that the natural frequency of the plate decreases

with increased pre-stress load. It is of interest, however, that the shape of the curve

changes as the pre-stress load is increased. As mentioned previously, for the larger pre-

stress loads the curve no longer maintains a bell shaped curve but more parabolic, and it

droDs off rapidly at the ends. This trend becomes important when considering the case

given in Figure 5.16. If a design engineer wants to choose the optimum 0 to maximize

the free vibration natural frequency for this particular aspect ratio plate, he would be led

to pick 0 = 900. If the plate becomes significantly loaded either uniaxially or biaxially,

then serious degradation in the vibration characteristics would occur. Clearly a better

choice of 0 would be 65' for this case. The important point is the following: In optimizing

natural frequency, one should consider the loading conditions which will be present on the

laminate in operation, as well as the boundary conditions.

5.5 Optimization of Fundamental Frequency and Buckling
Loads

From the above study one can see that optimizing the vibrational and stability charac-

teristics of a laminated composite can become a complicated task. In fact, optimization

of one parameter may lead to poor performance in another. For instance, consider the

simply supported condition for Case D, presented in Figure 5.13. If the ply lay-up angle

is chosen to be 60', then both natural frequency and biaxial buckling loads are very near

their maximum. However, the uniaxial buckling capability of the plate has been reduced

by approximately 43%. If we choose a ply lay-up angle of 300, then the uniaxial buckling

capability is maximized, while the fundamental frequency and biaxial buckling load have

been degraded by 21% and 38% respectively.

From the above analysis we conclude that the 600 lay-up angle is best from a vibration

and biaxial buckling point, while a 30' angle maximizes the uniaxial buckling capability.
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One may wonder if better overall performance could be achieved if both 600 and 30' plies

were used in the laminate. If we consider a laminate of the form [-60/ + 30/ - 30]AS, we

find the non-dimensional natural frequency becomes 12.6, while the uniaxial and biaxial

coefficients become 27.1 and 12.1 respectively. These numbers translate to a 10% reduction

in natural frequency, a 19% reduction in biaxial buckling and a 19% reduction in uniaxial

buckling capability. Another option would be to consider a laminate of the form [-30/ +

60/ - 60IAS. For this lay-up we find the natural frequency and the uniaxial and biaxial

coefficients are 11.8, 27.7 and 10.7 respectively, corresponding to 15.6%, 17.3% and 11.8%

reductions from their individual maximums. For a final case, consider a twelve layer

laminate of the same thickness. The lay-up is chosen to be [-60/ - 30/ + 60/ + 30/ -

60/- 30JAS. This tir. , ! find a non-dimensional natural frequency of 12.9 and buckling

coefficients equ. t 29.3 for the biaxial case and 11.6 for the uniaxial. These numbers

correspond to 7.7%, 12.4% and 21.4% reductions in capabilities. This last case, however,

has in roduced a new variable, the number of layers, which we have purposefully avoided.

The specific numbers and percentages in the above crude analysis are not meant to

provide hard and fast numbers, but they are intended to provide insight into how the

natural frequency and critical buckling loads can be affected by ply angle and stacking

sequence. The design engineer has countless combinations of these and other parameters to

consider. In designing a pressure vessel, a biaxial state stress may be such that N. = 2Ny.

For such a case the optimum design would be different yet. One important point which

must be made here is that the behaviors observed in Figure 5.1 through Figure 5.22 are for

a laminate with a specific number of layers, thickness ratio and set of material properties.

If any of these are changed, the trends established above could either be eliminated or

accentuated. In addition new trends could be observed.
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5.6 General Observations and Conclusions

After investigating the behavior of laminated composite plates for many different cases,

some not presented in this research, several conclusions have been reached concerning op-

timizing design. First of all, the optimization of the performance of a laminated composite

plate is not a simple process. Some basic rules always apply. To maximize the natural

frequency or buckling load of specific laminate for a given aspect ratio and set of bound-

ary conditions, some ply angle will be optimum. The more plies which are at this angle,

the better. If there are a fixed number, and the laminate contains other angles also, the

frequency is increased if the optimum angle plies are moved towards the top and bottom

of the laminate. Next, the optimum angle for the lamina is dependant upon many factors

including boundary conditions, aspect ratio and number of layers. To optimize a specific

laminate, the specific conditions under which it will be subjected must be considered. Also

of great importance, the optimum ply angles and stacking sequence for maximizing the

natural frequency will not be the same required to maximize the buckling loads. Finally,

pre-stress can have a significant effect on the frequency of a laminated plate, and the effect

must be investigated for the specific case.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The work conducted for this research has shed new light upon the effectiveness of different

analysis methods used on fiber reinforced composite plates. The trend towards increased

accuracy is driving the analysis methods to more computationally intensive approaches.

This need not be the case, especially in the area of thick composite laminates. The

Predictor Corrector technique, implemented together with the finite element method and

the Least Squares elements, are just two ways in which accurate results can be realized for

little more effort than for a simple Mindlin plate element. Results obtained using these

methods can be every bit as accurate as techniques with increased complexity and many

more degrees of freedom.

Of major importance, the Least Squares elements are not limited to analyzing lam-

inated composite plates. The Least Squares elements developed in this work have been

shown to be a numerically effective method to approximate a C' continuous element.

This is an important contribution to the finite element field and can be applied in any

situation where C' continuity is required. In reality, the Least Squares technique could be

extended to even higher orders of continuity with the proper choice of functions describing

the primary variables.

The work performed here in developing the Least Squares methods needs to be ex-

tended in further research. The element from Method I should be immediately imple-

mented into a static force-displacement finite element program. In doing so, one would
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also develop moment curvature relations and plate constituative equations. Such relation-

ships would be necessary to implement force and moment boundary conditions, and to

interpret force results. With the increased data available in the literature, better through-

the-thickness stress comparisons can be made allowing fine tuning to be done to the stress

calculations. Doing this would also provide more validation data for the technique. Mod-

ification of Method II, through the use of an hp-convergence technique, should also be

investigated. Finally, a more thorough convergence study should be conducted to fully

understand the Least Squares method.

Also included in this work was data showing the relationships of ply lay-up angle,

boundary conditions and plate aspect ratio on natural frequency and buckling loads. The

effect of pre-stress on the natural frequency was also included. Several interesting behav-

iors were documented but are restricted to a specific thickness ratio, number of layers

and type of material. More work of this type needs to be conducted especially in areas

not common in the literature. More studies into the effects of boundary conditions, pre-

stress and simultaneous optimization of natural frequency and buckling loads must be

conducted. In addition, all of these studies should begin to look at the stress distributions

through the thickness of the laminates so that propensities towards delamination can be

considered.
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Figure 4.1: Shear Correction Coefficient Variation Across Plate. Material I a/b = 1, 9
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Figure 4.24: In-plane Stress Comparison: Method I -vs- Elasticity. 10 layer, Material VI,
[90/0/90/... ],' a/b = 1, h/b = 0.2, Simply supported (BC-i), 4 x 4 quarter plate model,
x = 0.29167, y = 0.29167.
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Figure 4.25: Transverse Shear Stress Comparison: Method I -vs- Elasticity. 10 layer,
Material VI, [90/0/90/... *1, a/b = 1, h/b = 0.2, Simply supported (BC-i), 4 x 4 quarter
plate model, x = 0.29167, y = 0.29167.
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Figure 4.26: In-plane Displacements -vs- z Location. 9 layer, Material 1, [90/0/90/. . ..
a/b = 1, h/b = 0.2, Simply supported (BC-i), 3 x 3 quarter plate model, x = 0.29167,
y = 0.29167.
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Figiire 4.27: In-plane Stresses -vs- z Location. 9 layer, Material 1, [90/0/90/ .. .1 a/b 1
h/b = 0.2, Simply supported (BC-i), 3 x 3 quarter plate model, x =0.29167, y =0.29167.
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Figure 4.28: In-plane Shear stress -vs- z Location. 9 layer, Material 1, [90/0/90/. ..
a/b =1, h/b = 0.2, Simply supported (BC-i), 3 x 3 quarter plate model, x = 0.29167,
y =0.29167.
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Figure 4.29: Transverse Slicar Stresses -vs- z Location. 9 layer, Material 1, [90/0/90/. ..
a/b = 1, h/b =0.2, Simply supported (BC-i), 3 x 3 quarter plate model, x = 0.29167,
y = 0.29167.
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Figure 4.30: Mcthod Comparison of Transverse Shear Stresses. 9 layer, Material I,
[90/0/90/.. .], a/b = 1, h/b =0.2, Simply supported (BC-i), 3 x 3 quarter plate model,
x = 0.29167, y = 0.29167.
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Figure 4.32: In-plane Stresses -vs- z Location. 16 Layer Hybrid, Materials IV &V,
a/b = 1, h/b = 0.3, Simply supported (BC-i), 3 x 3 quarter plate model, x = 0.29167,
y =0.29167.
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Figure 4.35: Method Comparison of Transverse Shear Stresses. 16 Layer Hybrid, Materials
IV & V, a/b =1, h/b = 0.3, Simply supported (BC-i), 3 x 3 quarter plate model,
x = 0.29167, y =0.29167.
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Figure 5.1: Eigenvalue Coefficients -vs- Ply Angle. Case A, 6 Layer [+0/-0/...], Material
II, a/b = 0.7, h/b = 0.1, Simply supported (BC-6), 3 x 4 full plate model.
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Figure 5.2: Pre-Stressed Natural Frequency -vs- Ply Angle. Case A, 6 Layer t+0/ - 0/ ...
Material II, a/b = 0.7, h/b = 0.1, Simply supported (13C-6), 3 x 4 full plate model.
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Figure 5.3: Eigenvalue Coefficients -vs- Ply Angle. Case A, 6 Layer [+0/-0/... J1, Material

II, a/b = 0.7, h/b = 0.1, Clamped, (BC-13), 3 x 4 full plate model.



155

~35

30

S25

00

15 A-P1

0 - PS2A

z *-PS2B

10

0 10 20 30 40 50 60 70 80 90 100

0 (deg)

Figure 5.4: Pre-Stressed Natural Frequency -vs- Ply Angle. Case A, 6 Layer [+0/ -0/ .. .1
Material II, a/b = 0.7, h/b = 0.1, Clamped (BC-13), 3 x 4 full plate model.
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Figure 5.5: Eigenvalue Coefficients -vs- Ply Angle. Case B, 6 Layer [+0/ -0/ ... ]1, Material
II, a/b =1.0, h/b = 0.1, Simply supported (BC-6), 4 x 4 full plate model.
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Figure 5.6: Pre-Stressed Natural Frequency -vs- Ply Angle. Case B, 6 Layer [+0/ -0/. ..

Material II, a/b =1.0, h,'b = 0.1, Simply supported (BC-6), 4 x 4 full plate model.
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Figure 5.7: Eigenvalue Coefficients -vs- Ply Angle. Case B, 6 Layer [+0/ -0/. .. ]1, Material
II, a/b = 1.0, h/b = 0.1, Clamped, (BC-13), 4 x 4 full plate model.
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Figure 5.8: Pre-S tressed N atui ral Frequency -vs- Ply Angle. Case B, 6 Layer [+0/ -0/.. .1
Material 11, a/b = 1.0, h/b =0.1, Clamped (BC-13), 4 x 4 full plate model
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Figure 5.9: Eigenvalue Coefficients -vs- Ply Angle. Case C, 6 Layer [+0/-0/.. .], Material
II, a/b = 1.4286, h/b = 0.1, Simply supported (BC-6), 4 x 3 full plate modei.
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Figure 5. 10: Pre-Stressed Natural Frequency -vs- Ply Angle. Case C, 6 Laypr [+0/ -0/. . ..
Material II, a/b = 1.4286, h/b = 0.1, Simply supported (BG-6), 4 x 3 full plate model.
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Figure 5.11: Eigenvalue Coefficients -vs- Ply Angle. Case C, 6 Layer [+0/ - 0/. ..1
Material II, a/b = 1.4286, h/b = 0.1, Clamped, (BC-13), 4 x 3 full plate model.
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Figure 5.12: Pre-Stressed Natural Frequency -vs- Ply Angle. Case C, 6 Layer [+0/ -0/. ..
Material 11, a/b = 1.4286, h/b = 0.1, Clamped (BC-13), 4 x 3 full plate model
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Fignre 5.14: Pre-Stressed Natural Frequency -vs- Ply Angle. Case D, 6 Layer [+0/-0/...1,
Material II, a/b = 1.7, h/b = 0.1, Simply supported (BC-6), 5 x 3 full plate model.
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Figure 5.15: Eigenvalue Coefficients -vs- Ply Angle. Case D, 6 Layer [+0/ - 0/ ...
Material II, a/b = 1.7, hll = 0.1, Clamped, (BC-13), 5 x 3 full plate model.
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Figure 5.16: Pre-Stressed Natural Frequency -vs- Ply Angle. Case D, 6 Layer [+0/-0/ ...1
Material II, a/b = 1.7, h/b = 0.1, Clamped (BC-13), 5 x 3 full plate model.
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Figure 5.17: Natural Frequency -vs- Ply Angle for All Aspect Ratios. 6 Layer [A-/-0/ ...

Material II, h/b = 0.1, Simply Supported (BC-6), Various mesh full plate models.
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Figure 5.18: Natural Frequency -vs- Ply Angle for All Aspect Ratios. 6 Layer [+91-0/.. .1
Material II, h/b = 0.1, Clamped (BC-13), Various mesh full plate models.
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Figure 5.19: Uniaxial Buckling Coefficient -vs- Ply Angle for All Aspect Ratios. 6 Layer

[+0/ - 0/.. .], Material I, h/b = 0.1, Simply Supported (BC-6), Variou; mesh full plate
models.
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Figure 5.20: Uniaxial Buckling Coefficient -vs- Ply Angle for All Aspect Ratios. 6 Layer
[+0/- ./.. .], Material 11, h/b = 0.1, Clamped (BC-13), Various mesh full plate models.
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Figure 5.21: Biaxial Buckling Coefficient -vs- Ply Angle for All Aspect Ratios. 6 Layer
[+0/ - 0/ ... 1, Material II, h/b = 0.1, Simply Supported (BC-6), Various mesh full plate
models.
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Figure 5.22: Biaxial Buckling Coefficient -vs- Ply Angle for All Aspect Ratios. 6 Layer
[+0/ - 0/ ... 1, Material II, h/b =0.1, Clamped (BC-13), Various mesh full plate models.



Appendix A

Supplement to Equations

A.1 Supplement to equations Chapter III

In the derivation of the stiffness matrix, eqn ( 3.64) was written as

}k

= {1, k = [S] {16} (A.1)
7XY

In this equation, the matrix [S], is of the form:

[S]-[A A2 A3 A4 A5  (A.2)

where

1 0 ] [k 00
[Al][= 0 1 [A2 0= fk 0 0

0 0 0 0 0rk 0

[A31 = 0 43k 0 0 0 [A41 =[O 0 0 (A.3)
0 0 Zak z13k 0 0 O atk t~k(A 3

- 0o

[AS]- 0 -z 0
0 0 -Z

The column matrix {} is of the form
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f 6}T = L u.,. v0,y U0,11 + v0 ,z, (D 'D 4D w 0"," Wo 2w,x 11 J

where

Similarily, in eqn ( 3.65),

{ x } = {y = [St] {6t}I

the matrix [St] is defined as

r[ fk 0 0lk 0 ]

and

{bt} T = L WXW X o

In eqn ( 3.72):

10 00 0 0 0 0 00 0
00 010 00 0 0 0 0
01 10 0 0 0 0 0 0 0
0 0 00100 0 00 0
0 0 00 0 00100 0

0 0 0 010 00 0
00 0010 0 0 0 0 0

0 0 0 0 0 00 10 00 0

oL] 0000100000(A4

0000 1 000000
0 0 0 0 0 0 0 1 o 0 0 
0 0 o 0 0 10 0 00 0

0 0 0 0 0 0 1 0 0 0 0
0 0 00 0 0 0 0 10 0
0 00 0 0 0 0 00 1

00000000020
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In eqn ( 3.73):

1000
0 1 0 0
1000
0 1 0 0

[L,] o o 1 o (A.5)
0 0 0 1
0 0 0 1

0 0 1 0

0 0 0 1J

In eqn ( 3.76):

[J]-' 0 0 0 0
o [J]-' 0 0 0

[L21 = 0 0 [J]-' 0 0 (A.6)

0 0 0 0[J]-' BI
where [J]-' is the 2 by 2 inverse of the Jacobian matrix, and [JB]-' is the 3 by 3 inverse

of the second order Jacobian matrix (See Appendix B).

In eqn ( 3.77): 1 0 0

IL~t] 0 1 0(A.7)
0 0 [J]-l

where [J]-I is as above

In eqn ( 3.82):

[A./d 0 0 0 0

0 [A ]C 0 0 0

o 0 [A 1/] 0 0

[Alqj 0 0 0 [7/C 0 (A.8)
o 0 0 0 o o
o 0 0 0 [A,(]
o 0 0 0 [A 7]
0 0 0 0 [AC(]
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where

A = A:,7 (A.9)

[A'717] = [ A,," (A.10)

[A,] = [ A,r J (A.12)

In the above, the matrix [A] is as defined in eqn (3.16), and the subscripts here denote

partial differentiation term by term.

In eqn ( 3.83):

o 0 [A] 0 0 1
[., ] 0 0 0 [] 0 (A.13)[A n 0 0 o [A O/]

where [A] is as defined above.

In eqn (3.84):

[/53] 0 1 0 (A. 14)
0 0 B

where
1 0 0 0

0 1 0 0 (A d)1 0 1 0
0 0 0 1

and
an01 01 1 0 1

[B]= a0 01 (A.16)
03 03 0 01]

Here:
01 = -X, r11 - y,,, r 21 o1 = -x,,, r 12 - Y,'p r 22
62 = -X,02 y,,,, r 21 2 -x,, r 12 - j,,,, r22 (A.17)

a= - 1 - y, , £21 b = -X, 112 - y,,7£7 22

In eqn (3.90)
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[Sm] = [ Bi B2 B3 B4 B5 ](A.18)

where

[B]= [o [B 21= o

Zak 0 1

(B3] 0 z3k [ 0/3k
0 [B 4 I[0 o(A.19)

[ 0 0 0

[B51 0 -Z
0 0



179

In eqn ( 3.107):

1000000000000
0010000000000
0000000000010
0000100000000
0000001000000
0000100000000
0000001000000
0000100000000
0000001000000
0000000010000

[IBI= 0 00 0 0 01 0 (A.20)

100000000000

0 0 101 0 0 0 0 0 0 0 0 0

0000000000001

0 0 0 0 101 0 0 0 0 0 0 0

0000000000001
0000010000000
3000000100000
0000010000000
0000000100000
0000010000000

0000000000100

and

where

LwzyJ = L Wo0 .z Wo,zy Wo,yy wo,z Wo,y J (A.22)



Appendix B

Calculation of Higher Order Derivatives

B.1 First Order Derivatives

In relating derivatives in the local coordinate system to those in the global, we use the

standard expressions found in any standard finite element text [146] [9] [23] [136]. The

equations are nothing more than the application of the chain rule. In finding the derivative

of a function, call it N, we have:

ON ONOx ON OyO- + -- (S.l)0 T7 a77 19Y C977

(B.2)
ON _ON Ox ON Oy

= Max +May (B.3)

or, in matrix form we have:

O9N oN

= [J] (B.4)

From this expression we can easily get:

T = [j]- I (B.5)
ON ON
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B.2 Higher Order Derivatives

To obtain higher order derivatives, we can apply the chain rule successively to the above

equations. The results are:

-2N ONx ,2 x (0 2 N Ox O2N+-y N 0---M2y eOy 8y (. y 2 N Ox\
-5X 7-r ,q-5X2 + a~a T777 V 97

- X N +~()+2 INO 9 N 9y 9 (y) 2 (B.6)

and similarily

2 N ()ON2 x &2 N aOx\ 02 N Ox N ON 2y a2N(y 2

o -- OO 2 + 2 - - + - - +  (B.7)ax P + 5 -X a Ox19yOO OyOa2+Oy2 9

The mixed partial turns out to be:

O2N ON 02x 02N Ox Ox 02 N (Ox Oy Ox Oy ON 02y 0 2N Oy Oy
0' =x k. TO o + ,) ~(B.8)

The next step is to put eqns ( B.6)-( B.8) into matrix notation. In doing so directly the

result is:
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82 N a2z 2 a2 a 02 ON

O7 (Ox -8 a (B.9){82 ax~ g2 y j-

This equation is not of much use yet, as the rectangular matrix on the right hand side

cannot be inverted. In the column vector on the right hand side, we know the first partial

terms from eqn ( B.5) above, so we can bring those to the left hand side of the equation.

This results in{ 2N aN a2x aN92 ~ Ox )2 2 '9 (OY\ 2 a2 IV

02 N 02 r ON 02, ON , = O Ox x M J0VI
02 N ONO 2z ON 0y Ox 2 2 Ox a 2 a 2NJ

[J]{2N}(.O

Solving for the desired second derivatives, and substituting in the terms from eqn ( B.5)

as required we can write
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(B.11)



Appendix C

BOUNDARY CONDITIONS

Note: In the following tables all boundary conditions are various versions of the simply

supported case, with the exception of BC-13 and BC-14 which are for the clamped-clamped

and clamped-simply supported cases respectively.

C.1 Boundary Conditions- Predictor Corrector Method

The boundary conditions used for the Predictor Corrector Method are given in Table C.1.

C.2 Boundary Conditions- Method I

The boundary conditions used for Method I are given in Table C.2.

C.3 Boundary Conditions- Method II

The boundary conditions used for Method II are given in Table C.3.
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Table C.1: Boundary Conditions: Predictor Corrector Method.

Variable Order: (u, v, w, 0., oy)*

MODEL[ BC xI = 0 x =a/2 y=0 y=b/2
TYPE NO. x= y = b

1 (01101) (10010) (10110) (01001)

Qrtr 2 (10101) (01010) (01110) (10001)

Plate 3 (10101) (10010) (01110) (01001)

4 (01100) (10010) (10100) (01001)

5 (01101) (01101) (10110) (10110)

Full 6 (10101) (10101) (01110) (01110)

Plate 13 (11111) (11111) (11111) (11111)

14 (10101) (10101) (11111) (11111)

*(1 indicates FIXED - 0 indicates FREE)
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Table C.2: Boundary Conditions: Method I.

Variable Order:
(U0 Vo oz oy w w,x w,Y)*

TYPE NO. x=a y = b

1 (0101101) (1010010) (1010110) (0101001)

Qrtr 2 (1001101) (0110010) (0110110) (1001001)

Plate 3 (1001101) (1010010) (0110110) (0101001)

4 (1001101) (1110010) (0110110) (1101001)

5 (0101101) (0101101) (1010110) (1010110)

Full 6 (1001101) (1001101) (0110110) (0110110)

Plate 13 (1111111) (1111111) (1111111) (1111111)

14 (1001101) (1001101) (1111111) (1111111)

*(1 indicates FIXED - 0 indicates FREE)
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Table C.3: Boundary Conditions: Method II.

Variable Order: (uo vo W . w)*

MODEL [BC i x = = a/2 y = O y = b/2
TYPE NO. x=aI y--b

1 (01011) (10100) (10101) (01010)

Qrtr 2 (10011) (01100) (01101) (10010)

Plate 3 (10011) (10100) (01101) (01010)

4 (10011) (11100) (01101) (11010)

5 (01011) (01011) (10i01) (10101)

Full 6 (10011) (10011) (01101) (01101)

Plate 13 (11111) (11111) (11111) (11111)

14 (10011) (10011) (11111) (11111)

*(1 indicates FIXED - 0 indicates FREE)
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