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One of the key benefits of fu hardwam unpl ntatlons of cértain _‘
Networks (ANNG) is their apparen “built-in* fault tolerance, which make therr/ potentie{l
candidates for critical tasks with high reliability requirements. This papey investigates the
fault-tolerance characteristics df timelcontinuous, recurrent ANNS that cah be used to solve
optimization problems. The performance of these networks is first illustfated by using ell-
known model problems like the Traveling Salesman Problem and the Ass1gnment Prgblem.
The ANNS are then subjected to up to Y3 simultaneous “stuck-at-1¥ or “stuck-at-0” faults
for network sizes of up to 900 “neurons.” The effect of these faults on the performance is
demonstrated and the cause for the observed fault-tolerance is discussed. An application is
presented in which a network performs a critical task for a realiltime distributed processing
system by generating new task allocations during the reconfigpiration of the system. The
performance degradation of the ANN under the presence of faylts is investigated by large-
scale simulations and the potential benefits of delegating a crlhcal task to a fault-tolerant
network are discussed. P
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1. Introduction

One of the most intriguing characteristics of biological neural networks is their extreme
robustness with the ability to function even after severe damage. It has been shown that
Artificial Neural Networks (ANNs) also exhibit some degree of “fault-tolerance,” but in
most cases the work did not explicitly focus on the fault-tolerance, which was demonstrated
only as a side-effect [1, 20, 9, 13]. Fault-Tolerance is a qualitative, general term defined
as the ability of a system to perform its function according to the specification in spite of
the presence of faults in its subsystems. This definition is very unspecific and a system that
is said to be fault-tolerant does not necessarily tolerate any number of faults of any kind
in any of its subsystems. A specific way to quantify the fault-tolerance is to determine the
performance degradation in the presence of certain faults in certain subsystems, given that
some measure of performance exists.

Only relatively few studies in the literature are specifically concerned with the fault-
tolerance of ANNs. Furthermore, the results are difficult to generalize because of the very
different models and objectives. For example, Hinton and Shallice (1989) [10] “injected”
faults into a backpropagation network trained to perform a particular linguistic task. They
showed that the performance degradation of the network bears a qualitative resemblance
to the degraded ability of neurological patients with a specific brain disorder. Petsche
and Dickinson (1990) [17] used a special network architecture to investigate a self-repair
mechanism that automatically activates spare nodes (neurons) if one of the nodes is “dead,”
i.e. permanently inactive (“stuck-at-0”).

In this paper, we will investigate the time-continuous, recurrent ANN that was proposed
by Hopfield in 1984 [11] to solve certain optimization problems. In the following, we will
adopt the term “optimization networks” for these ANNs, which was coined by Tank and
Hopfield [24]. Although optimization networks were initially applied to classical problems
like the Traveling Salesman Problem, we are more interested in potential applications in real-
time processing and control systems. For example, an optimization network implemented
in analog hardware could perform a real-time scheduling or control task as a component
of a hybrid system. If this is a critical task with high reliability requirements, then the
allegedly “built-in” fault-tolerance of the neural network becomes a key factor. With such
applications in mind, we will investigate the fault-tolerance of optimization networks and
quantify the performance degradation in simulated “fault-injection” experiments. A broader
goal is to gain insight into the principal character of the fault-tolerance of these networks
and to explore the underlying cause.

The following two Sections of this paper contain a brief introduction to optimization
networks and explain the principle of operation for two model problems, the Assignment
Problem (AP) and the Traveling Salesman Problem (TSP). Section 4 introduces a perfor-
mance measure that allows a meaningful assessment of how well the network actually solves




the AP and the TSP. Such a performance measure is a prerequisite for quantifying the per-
formance degradation in the presence of simulated faults, which are “injected” into the
network. Section 5 presents these results for the AP and TSP used again as model problems
and discusses the cause and the effect of the observed fault-tolerance. Finally, Section 6
describes an application in which an optimization network is used for the real-time task
allocation in a fault-tolerant, distributed processing system. The network is a critical com-
ponent in this application and its fault-tolerance is an essential requirement for the operation
of the system. The conclusion in Section 7 summarizes the main results and discusses the
prospects of optimization networks for different application areas.

2. Optimization Networks

Figure 1 shows an optimization network in form of an electrical circuit model [12]
with n interconnected amplifier units (“neurons”) as the active circuit elements. The model
allows resistive feedback from any output V;j to any input u; with a resistor value R;; or
a conductance Tj;=1/R;j, respectively. The current I; can be used to provide an external
input to the network. The nonlinear, sigmoidal transfer function that determines the relation
between an input u; and an output V; is given by

-—l<1+tanh Yi s = !
) uo T 14 exp(—4A(u; —ug))
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The parameter A denotes the slope of the transfer function at the inflection point uj=us and
constitutes the maximum gain of the amplifier. The offset ug is sometimes explicitly used
as an additional parameter [4], but can be incorporated into the current I;, which has also
the effect of shifting the transfer function horizontally.

The feedback connections are described by positive and negative values for the weight
T;; of the connection between the output of unit j and the input of i. In an electronic circuit
realization, Ty=1/R;; can only be positive, and negative feedback requires the use of an
additional output —V; for unit i ranging from 0 to —1. The intrinsic delay exhibited by
any physical amplifier is modeled by an input resistance r; and capacitance C;. These are
drawn as external components in Figure 1, so that the actual amplifier can be described as
an ideal component with no delay.! A circuit analysis of the network in Figure 1 yields the
“equations of motion”

! This is, however, an idealized model of a practical amplifier according to Smith and Portmann (1989) (21].
More realistic models might lead to instability of the system. (cp. also Marcus and Westervelt (1989) [15])
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Figure 1. Circuit diagram of an optimization network according to Hopfield (1984) [11]. Note
that negative feedback can be realized by connecting positive conductances
Tj; to the negative output —V; of a unit (not shown in this figure).

du; ug =

Cigt = —E+;T.-,-v,~+a @
that describe the time-evolution of the dynamical system. R; represents the parallel combina-
tion of the input resistance r; and all the weights Tj;=1/R;; connected to unit i according to

.l. = i + i T 3)
R, ri < Yo
1=1

The product of R; and C; is often referred to as the time-constant 7; of one particular unit i.
An identical time-constant for each unit i would require C;=C and R;=R for all i. The latter
condition might be difficult to achieve in practice if the parallel combination of the weights
in (3) results in different values for each unit i. In this case, each individual value for r;
would have to be chosen in a way that compensates for these variations. It is also important
to note that the time-constant 7; describes the convergence of the input voltage u; of unit
i. Because of the potentially very high gain of the transfer function, the output V; might
saturate very quickly. Thus, even if the input y; is still far from reaching its equilibrium
point, the output V; might already be saturated, and by observing only V; it might appear
as if the circuit had converged in merely a fraction of "its" time-constant 7;.

Hopfield (1984) proved the stability of the nonlinear dynamical system (2) for symmetric




gain limit (A — oo) the stable states of the system correspond to the local minima of the
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which Hopfield refers to as the “computational energy” of the system. This means that the
dynamical system moves from an initial point in state space in a direction that decreases its
energy (4) and comes to a stop at one of the many local minima of the energy function.

It has been shown [7] that the Liapunov function (4) for the system (2) is a special case
of a more complex Liapunov function introduced by Cohen and Grossberg in 1983 [5], so
that Equation (4) might not be considered as a new result in itself. Nevertheless, this does
not diminish Hopfield and Tank’s main contribution, which can be seen as their method of
associating the equilibrium states of the network with the (local) solutions of an abstract
optimization problem like the TSP. This method is briefly reviewed in the next section.

3. Solving Optimization Problems: Principle of Operation

The basic idea behind the operation of optimization networks can be stated as follows:
If it is possible to associate the solutions of a particular optimization problem with the local
minima of the energy function (4), then the network “solves” the problem automatically by
converging from an initial state to a local minimum, which in turn corresponds to a (local)
solution of the problem. This association requires a suitable problem representation, that is,
an encoding of the problem by using the state variables V; of the network. For example,
the output V; of a unit ranging from O to 1 can be used to represent a certain hypothesis
that is true for V;=1 and false for Vi=0. Different hypotheses can be encoded by different
units and the hypotheses might have to satisfy certain constraints. If the final state of the
network is supposed to represent a particular solution, it is usually required that the outputs
V; eventually converge to either O or 1 in order to obtain a decision. In this sense, the process
of convergence with intermediate values 0<V;<1 could be interpreted as the simultaneous
consideration of multiple, competing hypotheses by the network before it settles into a final
state [23]. In the following, we will demonstrate the principle of operation for two model
problems, the Assignment Problem (AP) and the Traveling Salesman Problem (TSP).

3.1 The Assignment Problem

The AP used for this example is a simple version, sometimes also called list matching
problem, with the following specification. Given two lists of elements and a cost value for
the pairing of any two elements from these lists, the problem is to find the particular one-
to-one assignment or match between the elements of the two lists that results in an overall
minimum cost. In order to distinguish clearly between the two lists, we use capital letters to
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Figure 2. Exemplary cost-matrix for a 7x7 Assignment Problem and corresponding output
matrix generated by the neural network. Here, the solution encoded by the
output-matrix is optimal with an overall cost of c=165.

describe the elements of one list (i.e. X=A, B, C, etc.) and enumerate the elements of the
other list (i.e. i=l, 2, 3, etc.). Additionally, we assume that the two lists contain the same
number of elements n. A one-to-one assignment means that each element of X has to be
assigned to exactly one element of i. The cost px; for every possible assignment or pairing
between X and i is given for each problem instance. This generic problem description has
many practical applications, for example, the assignment of jobs i to processors X in a
multiprocessor system by minimizing the cost of the communication overhead.

The AP as specified above can be represented by a two-dimensional, quadratic matrix of
units, whose outputs are denoted by Vx;. Thus, we can define Vx; as a “decision”-variable,
with Vx;=1 meaning that the element X should be assigned to the element i, and Vx;=0
meaning that the pairing between X and i should not be made. This way, a solution to
the AP can be uniquely encoded by the two-dimensional matrix of the outputs Vy; after
all units converge to 0 or 1. Note that n? units are required to represent an AP with n
elements per list. The constraints of the one-to-one assignment require that only one unit
in each row and column converges to 1 and that all other units converge to 0. Thus, the
outputs of the network after convergence should produce a permutation matrix with exactly
one unit “on” in each row and column. Figure 2 illustrates this problem representation by
showing the cost-matrix as the input for a particular problem instance and the output of the
network after convergence. In this example, the output-matrix determines the assignment
of elements A to 7, B to 1, C to 6, etc.

For the mapping onto the optimization network, the problem has to be expressed in the
form of a quadratic function with minima representing the solutions. The “energy”-function
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Figure 3. Schematic architecture of a two-dimensional neural network with the
connectivity required to solve the Assignment Problem.

used by Brandt et al. (1988) [4] is such a function. The first two terms in (5) have minima
if the sum over all outputs equals 1 for each row and each column, respectively. The third
term has minima if all V; are either 0 or 1 and, together with the first two terms, it enforces
the constraints. The fourth term in (5) is simply the overall cost of a particular solution given
the constraints are met. Furthermore, it is common to use constant factors A, B, C, and D as
additional parameters in (5). These parameters have the effect of “weighting” the constraints
and the cost-function and allow a fine-tuning of the performance as will be seen later.

The next step in mapping Equation (5) onto an optimization network is the derivation of
the values for the connections and the external inputs. First, we have to extend the notation
of the Liapunov function (4) to two dimensions:

E=-%ZZZZTXi,YjVXiVYj—ZZVXiIXi - (6)
X i Y X i

By comparing Equations (6) and (5) it follows after some algebraic transformations that
E=E,p if

Txiy; = —Abxy — Bé;j + Céxy6ij

C 7
IX:'=A+B—'2‘—DPX:' 0




Figure 3 sketches the resulting two-dimensional network architecture as a directed graph.
With the specific values from Equation (7), the equations of motion for the AP become

duy; ux;
Cxi dX =_RX.‘AZVXj—BZVY£+CVXi
4 X ; Y (8)

C
+A+B“5"DPXS

3.2 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) was the first example chosen by Hopfield and
Tank (1985) [12] to demonstrate how a neural network could be used to solve optimization
problems. The task of the traveling salesman is to visit n cities, once each, in a closed tour
in such a way that the overall length of the tour is minimal. The TSP is a classical, NP-
complete optimization problem [6], for which no algorithm exists that could find a (global)
solution in polynomial time. Hopfield and Tank’s TSP example achieved such prominence
because it was one of the first examples of a neural network “solving” a problem that is
intractable for conventional computers. However, as we will discuss later, the TSP was
meant and should be regarded as an example only, and does not suggest that a general
method has been discovered that solves NP-complete optimization problems.

The problem representation for the TSP is similar to the AP and requires a two-
dimensional network with outputs Vx;. The difference is that the first index (X) now
denotes a city, and the second index (i) describes the order in which a city is visited along
the tour. The representation of a problem with n cities requires a quadratic matrix of n?
units whose outputs V; should converge to binary values. We define Vx;=1 as the decision
that city X should be on the ith position of the tour. Conversely, Vx;=0 determines that
city X should not be on the ith position. The requirement of the TSP that each city has to
be visited exactly once can be rephrased such that each city can be in only one position of
the tour and each position can be occupied by only one city. Thus, the constraints are met
if the outputs of the network converge to a permutation matrix with only one “1” in each
row and column. This means that the mathematical expression of the constraints in form of
a quadratic function is identical to the one derived for the Assignment Problem. However,
the problem representation has a 2n-fold degeneracy because there exist n matrices for each
of the two directions of traversal that encode the same tour.

Except for a different cost-function, the energy-function for the TSP is identical to the
AP and can be written as [4]

2 2
Ersp) -4 (Z; Vxi— 1) + g > (zx: Vxi— 1) + % ; ZVX:' (1-"Vx;)
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The fourth term in (9) represents the cost function, which is simply the length of the overall
tour scaled by the parameter D. The mapping of (9) onto the Liapunov function of the
network results in the following network parameters

Txiyj = —~Abxy — Béij + Céxy b;j — Ddxy (8ji+1 + 655-1)
C (10)
Ixi=A+B-— E .

The principal difference between the TSP connectivity in (10) and the AP connectivity in
(7) is that the TSP cost-function is encoded by the connections and not by the extemal
current. The architecture of the TSP network is identical to the AP network as illustrated
in Figure 3, except that the TSP network has a constant Ix; and the additional connections
Txi,yj=Ddxv(6j,i+1+6:-1)-

The equations of motion that describe the dynamics of the TSP network are

duy;  uy; , , .
Cxi—t = T Azjjvx, B}Y:Vy.+CVX,

c (11)
-D dey (Wiy1+ Wic1) + A+ B - 5 -
Y

Originally, Hopfield and Tank proposed a different energy-function for the TSP, which
uses an alternative formulation to enforce the constraints. Their original TSP energy-function
[12] is

2
Brom =2 S Y Vv + 25 3 v+ (zzvx,-n)

X i j# 1 X Y#X

%ZZZdXYva (Vyis1 + Vyiz1) (12)

The mapping of (12) onto the Liapunov function (6) results in the values

Txiyj = —Abxy — Bé;; + (A+ B) bxy bij — C — Ddxy (6541 + 6ji-1)

13
Ix;=nC (13)

and in the corresponding equations of motion
du x;
Cxi—gp = - —AZVX, BY Wi~ C’ZZVy,
J# Y#X (14)
-D dey Wit1 + Vy,iz1) +Cn .
Y




The main difference between Hopfield and Tank’s original formulation (12-14) and the
modification (9-11) is the “global inhibition” term —C in Hopfield and Tank’s equation
( 13) as well as an external current term that depends on the problem size n. Although
both approaches seem to be equivalent in the sense that both enforce the convergence to
a permutation matrix while using an identical cost-function, their performance turns out to
be considerably different. In trying to recreate Hopfield and Tank’s original results, many
people have reported poor results, that is, either the network failed completely to converge
to a valid tour (permutation matrix) or the solution was clearly far from the global optimum
[26, 25, 8]. These problems do not occur when the alternative formulation of the energy
function (9) is used [4]. However, the performance still depends strongly on the parameter
values, on the initial values, and on the cost-function of the underlying city-distribution.

4. Performance Assessment

The performance assessment would not be an issue if the network simply found the
global solution all the time. In fact, this would imply a solution to the NP-completeness
problem. However, the network usually converges to local minima and produces good but
“suboptimal” solutions. Then the question becomes “how good is good?” and the need
for a performance measure arises. One obvious measure of performance is, of course, the
resulting cost-value after convergence, given that the network converged to a valid solution.
For the TSP, this is simply the distance of the tour, and the smaller the distance the better the
network performs. Unfortunately, the performance of a given network varies considerably
for different problem instances (data sets), for different problem sizes, for different network
parameters, and in the case of the TSP, also for different initializations of the network.
This variation impedes a meaningful, general performance assessment if only one or two
example problems are considered, because it is always possible to “fine-tune” the network
parameters for a particular problem instance.

Therefore, it is necessary to generate a representative number of examples that allows a
statistically meaningful statement to be made about the average performance. Furthermore,
some reference frame is needed for the comparison of the network results, because just
the average over the cost-values is generally not sufficient. The simplest reference for a
comparison is the average cost-value of a “random guess,” that is, the average or expected
value of the distribution of all possible answers for a particular problem instance. A
performance assessment based on the estimated distribution has led to statements in the
literature that, for example, a solution is approximately among the 10® best out of 4.4 x 10°
possible solutions (Hopfield and Tank, 1985 [12]), or that 92% of the solutions are among
the best 0.01% of all solutions (Tagliarini and Page, 1987 {23]). While this gives some
impression of the performance, it can hardly be considered a practical measuremert.
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What is needed is a performance measure that can give an answer to the following
questions:

« What is the effect of a parameter variation or a modification of the energy
function on the performance?

* How good is the solution with respect to the global optimum or the best known
answer?

* How does the performance change with problem size?

*  With respect to fault-tolerance, how does the performance degrade under the
presence of (simulated) faults?

» What is the performance difference of two networks solving two different
problems, that is, are there problems that are “easier” for the network to solve?

Our approach to the performance assessment is based on the fact that the distribution of
all possible answers for every instance of an optimization problem can be characterized by
two values, the global optimum (minimum cost) Copt and the average cost value Cave. With
c denoting the cost value of a given result derived by the network, the relation between c,
Copt» and Cave can be used as a performance measure. By mapping those absolute values
onto a normalized scale as illustrated in Figure 4, we define the solution quality q as

Cave — C
g= Sz (15)

Cave — Copt

Thus, the solution quality has a value q=1 if c=Copy and q=0 if c=cave, with O<qg<1 for
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Traveling Salesman : Problem Size n (Number of Cities)
Difterent Approaches 10 20 30 50 100
1.) Original Method of 0.905 0.903 0.851 - n
Hopfield and Tank (0.15) (0.11) (0.02) (0.00)
2.) Modified Method of 0.829 0.816 0.830 0.852 0.902
Brandt et al. (1988) (1.00) (1.00) (1.00) (1.00) (1.00)
3.) Brandt et al. (1988), 0.936 0.926 0.923 0.913 0.927
different parameters (0.98) {0.97) (0.84) (0.58) (0.18)

Table 1. TSP solution quality q and proportion of valid solutions (in parentheses)
for different problem sizes and solution methods.

Obviously, the calculation of q requires the knowledge of the two reference values copt
and caye for each problem instance (e.g. for each city distribution of the TSP). Obtaining
values for caye is usually no problem since it only requires a sufficient number of random
trials. In case of the TSP, for example, a random but valid tour is generated repeatedly and
the resulting tour lengths are averaged to obtain cave. The fact that we have to know the
global optimum C,p; appears to be a paradox at first glance and one might ask why we would
use an ANN to solve a problem for which the best possible solution is already known. The
answer is, of course, that we want to zest the network by using well-known model problems
and for such a test it is reasonable to compare the results of a new method ..e. ANNs)
to the results of the best existing method. In fact, in almost all cases, where ANNs have
been applied to optimization problems, there are conventional algorithms readily available
to provide values for cop. For NP-complete optimization problems like the TSP, for which
the global optimum is generally unknown, the best available heuristic method like the Lin-
Kernigham algorithm [14] can be used as a reference. If Cop is not the global optimum
and should it happen that the network generates a better answer, then the event c<cop is
reflected by a solution quality g>1. Conversely, the value for q becomes negative if the
solution of the network is worse than the random average (C>Cave). Thus, the normalized
solution quality is independent of a particular problem instance and of the problem size.

In the following, we will demonstrate the use of the defined solution quality to assess
and compare the performance for the two model problems, the TSP and the AP. In order to
get statistically relevant results for the TSP, we generated a rest-set containing 10 different
city distributions for each problem size (n=10, 20, and 30) and 5 different distributions
for n=50 and 100. Each city distribution was generated by placing the cities randomly
on a unit square according to a uniform probability distribution. The values for c,y. were
obtained by averaging over 10° random trials for each city distribution. The Lin-Kernigham
algorithm [14] was used to generate 5 answers for each city-distribution and the best result
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was chosen as copt. Since the network performance varies considerably for different random
initializations, 10 different initializations were used for each city distribution of size 10 to
50, and 5 initializations for n=100. Thus, a single sweep through the test-set requires 375
simulation runs and the value for q was calculated after each run. The average values for q
are shown in Table 1 for different approaches and problem sizes.

There is also the possibility that the network will not converge at all to a valid solution
because it has gotten stuck in a local minimum (“spurious attractor”) that does not correspond
to a permutation matrix. Since this event is not reflected by the solution quality, we also
show in Table 1 the proportion of runs with valid solutions. The average value for q
includes only runs that produced valid solutions. In an attempt to recreate Hopfield and
Tank’s original results, we performed a run of the test set using their original equations
(12-14) with the parameters A=B=500, C=200, D=500, A=25, and us=0 as described in
[12]. Furthermore, Hopfield and Tank used an additional constant term for the external
current according to Ix;=C(n+5)=200n+1000, which effectively shifts the transfer function.
They also used the initialization V;(t=0)=1/n+§ where § is a small random number [12].

The equations of motion (14) were solved by Euler’s method with time-steps At between
1075 and 1075, A larger At can cause numerical errors and results that do not reflect the actual
behavior of the system. The first row in Table 1 shows the results of our simulation that
confirm the reported difficulties [26, 8, 4] in using Hopfield and Tank’s original equations.
Even for n=10 cities only 15% of the runs converged to a valid solution and since none of the
50—city cases produced a valid answer we did not even attempt to solve a 100—city problem.

Although we experimented extensively with parameter variations, we did not find a
set of parameters that improves the performance significantly. However, it is possible to
“fine-tune” the parameters for one particular city-distribution to obtain quite impressive
results. Unfortunately, the same parameters usually produce invalid or poor results for
other city-distributions. This characteristic has led to some confusion in the literature with
performance claims based on specific examples that were difficult to reproduce and did not
hold in general [26]. This also demonstrates the importance of an average performance
assessment over many examples. Since Hopfield and Tank’s original equations (12-14)
are not the only way to express the problem, we tried different modifications {19, 18] and
obtained the best results with the approach published by Brand et al. (1988) [4] that is
described in Section 3.3. By using Brandt’s energy equation (9) and his original parameters
A=B=2, C=4, D=1, )\=2.5, and us=0.5, we obtained the results shown in the second row
of Table 1. An additional difference of Brandt’s approach is an initialization in the center
of the hypercube with Vx;(t=0)=0.5+é and a random variable § uniformly distributed in the
range —1078<6<107°. Because of the lower gain and smaller values of the parameters, we
could use the value At=0.1 to solve the equations of motion (11).

As shown in the second row of Table 1, this modified energy function produced
consistently valid tours across the full range of problem sizes. However, the average solution
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quality was lower than the valid cases of Hopfield and Tank’s results. We tried different
parameters for Brandt’s energy equations to improve the quality. The results for A=B=5,
C=2, are D=3 are listed in the third row of Table 1. The parameters for the transfer
function and the initialization are the same as in the previous case, except that we used a
At=5x1073. We can see that the average quality has indeed been improved, but at the price
of occasional invalid answers whose frequency increases with the problem size. There is a
fundamental tradeoff between obtaining consistently valid (but sometimes poor) answers for
a large number of different problem instances and very good answers for a small number
of instances. One obvious and extreme case of this tradeoff is setting D=0, which cancels
the cost-function and reduces the problem to pure constraint satisfaction. Then we would
always expect valid answers, but with an average quality of g=0. The underlying problem
with the TSP is the quadratic cost-function thai maps the problem-specific distance values
multiplied by the parameter D onto the connections, where they are added to the values that
enforce the constraints as in (10) or (13). Qualitatively speaking, large distance values in
an extreme problem case or a large factor D might “override” the connectivity values that
enforce the constraints and thus interfere with the convergence to a valid solution.

This problem does not occur with the Assignment Problem because the energy function
for the AP (5) maps the problem-dependent cost values to the external current (7) and not
to the connection values. This is actually the only difference between the AP- and the
TSP-network, as far as the architecture is concerned, and makes a performance comparison
between the problems especially interesting. As before, we generated a test-set of 10 problem
instances for each size of 10, 20, 30, 50, and 100 elements. The cost values were randomly
generated with a uniform distribution between 0 and 1. The AP as defined here is not an NP-
complete problem and there exist relatively simple and fast algorithms that find the global
solution. We used such a textbook algorithm [22] to obtain values for cop and generated the
average values Cave from 10° random solutions for each problem instance. The first row of
Table 2 shows the simulation results for the parameters originally used by Brandt et al. [4]
with the additional values \=2.5, u;=0.5, At=0.05, and the initialization ux;(t=0)=0. The
other two rows show the effect of parameter modifications and here the values A\=25, us=0,
At=5x10"5 were used with the same initialization. In contrast to the TSP, no random bias in
the initial values is required for the AP; in fact, the network converges to the same solution
despite some small random noise. This simplifies the performance assessment considerably,
because we now need only one simulation run for each problem instance.

A comparison between Table 1 and 2 reveals a striking difference between the TSP-
and the AP-results. For the AP, none of the runs failed to converge to a valid solution and,
moreover, the solution quality is excellent. For the parameter sets 2.) and 3.) in Table
2, the network actually found the global optimum in most cases or generated an answer
extremely close to it. We can conclude that the “non-interference” of the cost-values with
the connection-values that enforce the constraints is the cause for the enormous performance
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Assignment Problem: Problem Size n (Number of Elements)

Different Parameters 10 20 30 50 100
1) A-B=2, C=2, D= wo | o | wo | Go | o
2) A=8=200, G=20, D=50 a0 | ©o | to | o | o
3) A<B-200, 0=3, D-50 a0 | o | o | a0 | o

Table 2. AP solution quality q and proportion of valid solutions (in parentheses)
for different problem sizes and parameters.

difference. Thus, the distinction between a quadratic and a linear cost function becomes
an important classification which helps to identify problems that are more suitable to an
ANN-implementation. The demonstrated ability to compare the results of two different
optimization problems proves the versatility of the solution quality as a performance index
and justifies the adcitional effort needed to obtain values for Cop: and Cyye.

There is another aspect to the comparison between optimization networks and conven-
tional algorithms, which is the time it takes to solve a problem of a particular size. For
example, it takes more than one day of CPU time on a VAX 780 to simulate the neu-
ral network solving a single 100-city problem. This is actually not surprising because the
simulation involves the numerical solution of 10* ODEs for several thousand iterations.
However, the Lin-Kemigham algorithm provides a (usually much better) answer in about 3
minutes. Furthermore, 100 cities are not even considered an “interesting” problem size for
the TSP. Although an analog hardware implementation of the neural network might solve the
same problem in milliseconds, the need for a VLSI chip with 10* Operational Amplifiers to
solve a 100-city TSP is truly questionable. Thus, we do not think that large-scale, classical
or NP-complete optimization problems are suitable applications for optimization networks
other than as examples or model problems. However, there are certain small-scale, special
purpose, real-time control problems that could benefit from the key characteristics of an
ANN hardware implementation: speed, low weight and power consumption, and “built-in”
fault-tolerance. Therefore, our actual objective is not to compete with conventional methods
in solving classical optimization problems, but to investigate the fault-tolerance of the net-
work for special purpose applications. The above performance assessment is a prerequisite
for this investigation.

5. Fault-Tolerance

It is possible to distinguish between two different characteristics, which we might call
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static fault-tolerance and dynamic fault-tolerance. A system with static fauii-tolerance does
not react in any special way to compensate for the effect of internal failures, whereas
a dynamically fault-tolerant system reorganizes its resources to counteract the fault-effects
actively. An example for the latter case is adaptation or retraining after internal faults [1, 20]
or the self-repair mechanism proposed by Petsche and Dickinson (1990) [17]. Generally, it
is more difficult to achieve the same degree of robustness with static fault-tolerance because
no repair or reconfiguration is possible. Since optimization networks are “hard-wired” and
do not adapt or learn, they can exhibit only static fault-tolerance. Thus, we will “inject”
simulated faults into the network and observe the performance degradation by using the
defined solution quality for the TSP and the AP. # _wudy that is related to our approach
was performed by Belfore and Johnson (1989) [3] who also investigated the effect of faults
in an optimization network that solves the TSP. However, they used only a single 6—city
distribution with single node faults in their simulations, which is insufficient to draw any
statistically meaningful conclusions as we wili show below.

According to Figure 1, there are only two different components in a hardware imple-
mentation of an optimization network, the “neuron” or active element in the form of an
operational amplifier and passive interconnections in the form of resistors. In the following,
we will first consider two types of faults of the active elements that correspond to the high-
est failure rate. These are commonly called “stuck-at-1” or “stuck-at-0” faults and occur
if the output of a unit (amplifier) is permanently pulled to the highest potential or to the
lowest (ground) potential, respectively. The fault-locations are randomly selected with one
important exception: we do not allow two stuck-at-1 faults to occur within the same row or
column. The reason is that such an event would automatically preclude a valid solution,
since the permutation matrix allows only one “1” in each row and column. In simulating
multiple faults, we study a succession of either stuck-at-1 or stuck-at-0 faults, but not a mix-
ture of both types. We use the same locations for stuck-at-1 and stuck-at-0 faults, in order
to compare the effect of a different fault type. Otherwise it would not be possible to tell
whether different results are caused by the different locations or by the different fault types.
This means that the above exception is also valid for stuck-at-0 faults although two or more
stuck-at-0 faults in the same row or column do not necessarily interfere with a valid solution.

Before we present the results of our large-scale simulations, we want to illustrate the
impact of stuck-at-1 faults for two examples. Figure 5 demonstrates the effect of 4 stuck-at-1
faults simultaneously present in a network solving a 10-city TSP. The network parameters
are those that produced the results in the second row of Table 1 and are listed in the previous
Section. For comparison, Figure 5a shows a good but suboptimal solution of length 3.08 for
a fault-free network. The locations of the 4 injected faults are visible after the initialization
in Figure 5b. In Figure Sc it can be seen that the network still converges to a solution;
however, the resulting tour of length 3.77 is clearly worse than in the fault-free case. In
order to understand these results, it is necessary to recall the “meaning” of a fault in this
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Figure 5. Solution of a 10-city problem by a network without any faults (a), new initialization of the
network now with 4 stuck-at-1 faults (b), and solution under the presence of faults (c). Note that
the two faults in adjacent columns predetermine a link between the cities B and D.
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a) no faults ¢ =165

b) 1 stuck-at-1 ¢ =185

¢) 2 stuck-at-1 ¢ =243

68 68 93 38 52 83

(6)53 67 1 3842
68 59 93 84 53(10)65
4270 91 76(20) 5 73
33(63) 75 99 37 25 98
72 75 65(8) 63 88 27
44 76 (48)24 28 36 17

68 68 93 38 52 83 (4)
6 53 67 1 38[7]42
68(59) 93 84 53 10 65
42 70 91 76(26) 5 73
@363 7537 25 98
72 75 65(8)63 88 27
44 76 (48)24 28 36 17

68 68 93 38 52 83(4)
6 53 67 1 38[7}42
68 59 53] 84 53 10 65
42(70)91 76 26 5 73

63 75 99 37 25 98
72 75 65(8) 63 88 27
44 76 48 24(28)36 17

d) 3 stuck-at-1 ¢ =310

e) 4 stuck-at-1 ¢ =361

f) 5 stuck-at-1 ¢ =381

68(68)93 38 52 83 4
6 53 67 1 38[F]42
93] 84 53 10 65

42 70 91 76 26 5
63 75 99 37 25 98

72 75 65(8) 63 88 27
44 76 48 2436 17

68(68)93 38 52 83 4
6 5367 1 38[7]42
68 59[93] 84 53 10 65
42 70 91 76 26 5 [73]

63 75 99 37 25 98
72 75 65 8 [63]88 27

44 76 48(24)28 36 17

68 68 93(38)52 83 4
6 53 67 1 38[7]42
68 59[93] 84 53 10 65
42 70 91 76 26 5 [73]
33(63)75 99 37 25 98
72 75 65 8 [63]88 27
4] 76 48 24 28 36 17

Figure 6. Effect of up to 5 multiple stuck-at-1 faults on a network solving an Assignment
Problem of size n=7. Shown is the cost-matrix with the circled elements
indicating the network solutions (neurons that converged to “1”) and the
shaded squares indicating the fault locations. Note that b)-f) are still optimal
solutions under the additional constraints imposed by the faults.

context. Since we interpret the neuron output as a decision about the position of a city
on a tour, a stuck-at-1 fault represents such a decision and thereby predetermines a part of
the overall tour. Because of the degeneracy of the TSP problem representation, a single
stuck-at-1 fault does not constrain the network at all since the absolute position of a city
does not matter. The effect of two simultaneous faults is immediately obvious if the two
faults occur in adjacent columns. As shown in Figure 5b, such an event predetermines a
link between two cities because the cities are in successive positions on the tour. Figure 5¢
shows how this imposed “link™ affects the overall tour.

Surprisingly, this predetermination of parts of a tour by the injected faults does not
necessarily lead to a performance degradation. Since the network usually finds a suboptimal
solution in the fault-free case, it is conceivable that a “lucky” combination of fault-locations
leads to a tour that is actually better than one without any faults. While these events
are rare, we could observe occasional improvements under the presence of multiple faults.
Stuck-at-0 faults play a less prominent role because they only preclude a city from being
i~ a certain position instead of predetermining it. Thus, the network has even more ways
to “work around” those faults and we would expect a minimal impact even for multiple
stuck-at-Q faults.
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Figure 6 shows the effect of injected stuck-at-1 faults on a network solving the Assign-
ment Problem. The parameters used for this example are those listed in the second row of
Table 2. The solution shown in Figure 6a represents the global optimum. Thus, if the best
answer is derived under fault-free conditions, any fault can only decrease the performance.
Because the AP problem representation does not have the degeneracy like the TSP, even a
single stuck-at-1 fault precludes a convergence to the global solution. Figure 6b—f illustrates
how the multiple fault-locations marked by the shaded squares become part of the solutions
and how the network converges to accommodate these constraints.

We analyzed the network solutions in Figure 6b-f by using our conventional algorithm
and by taking the faults into account as additional constraints to the problem. Interestingly,
the network arrived at the same results, which means that it still found the new “global”
optimum under these fault-conditions. Thus, we could define a conditional performance
measure by viewing the faults as constraints to the problem and assessing the network
performance accordingly. Although we can see the obviously unavoidable performance
degradation in absolute terms, the conditional performance of the AP network is still optimal.
As with the TSP, stuck-at-0 faults preclude a particular solution and have no effect at all
on the AP unless the fault location coincides with an active unit that is part of the solution.
In this case, we have observed the same phenomenon that the network treats the fault as an
additional constraint and converges to the “best possible” solution.

Although the above examples provide some (qualitative) insight into the fault-tolerance
characteristics, it is still necessary to substantiate this impression by large-scale simulations
in order to obtain more rigorous results. We used the test-set of problem instances as
defined in the previous section and the same parameters that correspond to the results in
the second row of Tables 1 and 2. Only these parameter values were used for the TSP
because we regard the consistent convergence to a valid solution in the fault-free case as
a prerequisite for any fault-injection experiments. Figure 7 shows the results for different
problem sizes. The results confirm our conjecture that stuck-at-0 faults have no effect
for the AP and practically no effect for the TSP. In case of the TSP, the injected faults
“override” the random initialization and the network converges without or independent of
any initial bias to the same solution. Stuck-at-1 faults result in an almost linear performance
degradation for the AP, while the redundancy of the TSP problem representation is reflected
in a relatively slower performance decrease as the number of faults increases. When the
number of stuck-at-1 faults approaches the number of cities or elements, the performance for
both the TSP and the AP approaches zero as in Figure 7a, which corresponds to the random
average. This is because the randomly selected fault locations eventually predetermine a
random tour. Most importantly, none of our simulations failed to converge to a valid tour
because of one or more injected faults.

In another experiment, we studied the effect of connection faults on the performance of
an optimization network. Although the failure rate of a simple resistive connection is orders
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Figure 7. Performance degradation of an ANN solving the Traveling Salesman Problem (TSP)
and the Assignment Problem (AP) after injections of stuck-faults for different problem
sizes. The values are averages over 10 different problem instances for each size with
additionally 10 different random initializations each for the TSP.
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how many out of the 50 runs for each fault-scenario converged to a valid solution.
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of magnitude less than that of an operational amplifier, the large number of connections
(e.g. 2n°-2n? connections for an n-clement AP compared to n? neurons) increases the
overall probability of such a fault. The failure of a connection with the resistance R leads
either to a short circuit (R=0) or to an open connection (R = oo). Because the failure rate
of a connection short circuit is far less than the rate of an open connection, we simulated
only the latter fault-type. In order to limit the number of required simulations we only
used a network solving the AP for this experiment, because this network exhibited the best
performance and greatest fault-tolerance in our previous studies.

Figure 8 shows the resulting performance degradation of an ANN solving a 10-element
AP for up to 50 simultaneous open connections. The parameters for the AP-network are
the same as in the previous fault-injection runs. The locations for the connection faults
were randomly selected. For each fault-scenario we ran 50 different problem instances and
Figure 8a-b shows the average as well as the worst and the best performance for the two
different values of the parameter D=50 and D=120. The parameter D is a factor multiplied
by the cost values according to Equation (7) and a large value for D enforces solutions with
better quality. This is reflected by Figure 8b which shows a better average quality as well
as a lower variation in the quality of the best and the worst solution compared to Figure
8a. This high variation in Figure 8a is again a reminder how much the results depend on
the chosen problem instance and that the study of a single instance as in [3] can lead to
grave misinterpretations.

Although the performance results suggest that a higher value for D would be desirable,
there is a tradeoff shown in Figure 8c. Surprisingly, while none of the “stuck-at” faults
led to an invalid solution, we do observe invalid solutions for some problem instances after
a certain number of open connections. Figure 8c shows the percentage of valid solutions
and it can be seen that a lower value for D tolerates more faults before the first case of an
invalid solution occurs. We have already seen this tradeoff between consistently valid and
high quality solutions in the fault-free cases of Section 4 and it is very interesting to observe
that the same effect plays an important role with respect to the fault-tolerance. Because an
invalid solution is the worst case and equivalent to a total system failure, a small value for
D is obviously preferable, especially since it does not affect the fault-free performance at
least for the cases shown in Figure 8a and b. However, for a value D>120 we could also
observe some invalid results in the fault-frec case. This shows that the “quality-validity
tradeoff” is a general phenomenon and that connection faults only increase the likelihood
of invalid solutions.

In summary, we have demonstrated that optimization networks exhibit a surprising de-
gree of fault-tolerance, which is achieved without the explicit use of redundant components.
Because the fault-tolerance characteristics are inseparable from the functional characteristics,
we can say that the fault-tolerance of the ANN is “built-in” or inherent. However, when we
make a statement about the fault-tolerance, we implicitly assume a failure condition or fail-
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ure criterion of the system, which is the threshold below which it can no longer perform its
function according to the specification. For example, consider the AP-network that always
generates the global optimum under fault-free conditions. If we specify this as the only
acceptable performance level, than any stuck-at-1 fault that causes the network to generate
a good but suboptimal answer is not acceptable and, with respect to this fault-type, the
network is not fault-tolerant at all. On the other hand, if we specify a solution quality of 0.8
as the acceptable performance threshold, then an AP-network of size n=30 can tolerate (on
the average) S stuck-at-1 faults and an even larger number of stuck-at-0 or connection faults.
Thus, the degree of fault-tolerance depends on our definition of acceptable performance.

The main reason that optimization networks are interesting from a fault-tolerance
perspective is that they exhibit a graceful performa “~e degradation and that they do not have
a critical component. Most conventional systems are either fully operational or break down
completely if a single fault occurs in a critical component or subsystem. Furthermore, most
neural networks have critical components and are therefore not truly fault-tolerant. Consider,
for example, a feedforward (backpropagation) network that is trained as an autopilot to
control the altitude of an aircraft and has a single neuron in its output layer whose analog
value represents the control variable. While this network might tolerate multiple connection
faults or faults of its hidden units, a single stuck-at-0 or stuck-at-1 fault at the output neuron
would lead to a total system failure. Because of the critical component, such a network is,
at least in the strong sense of the definition, not fault-tolerant at all.

The above discussion suggests an application domain for optimization networks, where
it is not necessarily important to generate the best possible solution to an optimization
problem, but where a “reasonably” good answer has to be obtained fast and reliably. In the
next section we present an example of such an application with the network performing a
critical real-time task as a component of a fault-tolerant multiprocessor system.

6. Application of an ANN for the Task Allocation
in a Distributed Processing System

In the following we will investigate the application of an optimization network in the
context of a distributed processing system that operates under hard real-time constraints
and has to meet very high reliability requirements. An example of such a system is the
Software-Implemented Fault-Tolerance (SIFT) computer used by NASA as an experimental
vehicle for fault-tolerant systems research [16]. The SIFT architecture can accommodate up
to eight processors in a fully distributed configuration with a point-to-point communication
link between every pair of processors. It can be used, for example, to execute real-time
flight control tasks as part of an aircraft control system. Because the system operates
in a distributed fashion, each processor executes a certain number of tasks according to a
predetermined task-to-processor allocation table. The architecture achieves an extreme fault-
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tolerance by iis capability to detect and to isolate possible hardware faults. The isolation of
a defective processor requires a reconfiguration of the system and a reallocation of all tasks
among the remaining processors. Thus, it is not the initial task allocation, but the reallocation
of tasks after a processor failure, that is time-critical and has to be performed by a highly
reliable mechanism. The use of look-up tables for the reallocation has the disadvantage
that the number of combinations of tasks and processors is very large for even moderately
sized systems [2] and grows exponentially after multiple processor failures. Although it
is possible to use conventional algorithms to solve the problem, these methods are often
computationally too expensive because of the hard real-time constraints and require an
undesirable overhead because the algorithms have to be executed in a distributed environment
without any hierarchical control.

Since finding the best allocation of tasks among the processors can be formulated as
a constrained optimization problem, we will demonstrate how an optimization network
can be used to solve this problem. The distributed system considered here resembles a
simplified version of the SIFT computer and is based on a model described in [2], in which
a conventional heuristic algorithm is used to solve this task allocation problem. We will
later use this algorithm as a benchmark to assess the ANN-performance. The system has to
execute n tasks and consists of m identical processors. Each task is replicated into r clones
that are executed by different processors and submitted to a majority voter in 