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In Ezact non-reniecting boundary conditions by Keller and Givoli, an exact boundary
condition is devised for the numerical solution of the reduced wave equation in an infinite
domain, using the finite element method. It permits the computation to be restricted
to a small finite region without error. This work has been extended to other equations,
including those for elastic waves, and small] test problems have shown that the method is
very effective. ’

In Nonlinear hyperbolic waves Hunter and Keller show how to determine the propa-
gation of short nonlinear waves of any strength. The initial phase of the motion is based
upon the nonlinear theory for one dimension applied along the normal to the wave. The
later motion is governed by weakly nonlinear geometrical optics.

In Fast reaction, slow diffusion and curve shortening, Rubinstein, Sternberg and Keller
analyze reaction-diffusion systems with small diffusion. They show that fronts develop
and that they often propagate with a velocity proportional to their mean curvature. Thus
results from differential geometry are applicable to this flow. They also show, in Reaction-
diffusion processes and evolution to harmonic maps, that these equations lead to diffusion
equations with values in a manifold, which converge to harmonic maps of the domain into
this manifold.

In Nonlinear wave motion tn a strong potentsal, Rubinstein and Keller show that
a strong potential can guide a wave along the manifold of rest points of the potential
(the mean motion) with small transverse oscillations. The oscillations can alter the mean
motion. This result may have application to the equations used by Atiyah, Hitchen and
others in the theory of monopole motion.

In Nonlinear eigenvalue problems under strong localized perturbations, with applica-
tions to chemscal reactors, Ward and Keller show how a strong localized perturbation can
shift the location of the fold point in a bifurcation diagram. They apply this theory to
nonlinear chemical reactors and find how the critical value of the Frank-Kaminetzky pa-
rameter is changed by a cooling rod, an insulating patch, etc. Their results contradict and
correct previously published work on this topic.

In three papers (Partition asymptotics from recursion equations, Asymptotic behavior
of high order differences of the partition function, and Stirling number asymptotics), Knessl
and Keller show how the ray method of wave theory can be used to solve problems of
asymptotic behavior in number theory and combinatorics. This method may be useful in
the analysis of computer memory and computer network problems.




