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SUMMARY

OBJECTIVE

Document the design rationale of the High Speed Systolic Array Processor

(HiSSAP) testbed.

RESULTS

In addition to reviewing general parallel processing topics, the impact of the

HiSSAP testbed architecture on the top-level design of the diagnostic and software

mapping tools is described. Based on the experience gained in the mapping of matrix-

based algorithms on the testbed hardware, specific recommendations are presented in

the form of "lessons learned," which are intended to offer guidance in the develop-

ment of future Navy signal processing systems.

CONCLUSIONS

The interaction of algorithm and architecture within a parallel processing host is

complex. The topics described in this document serve mainly to identify major archi-

tectural design issues that must be addressed if optimum system performance is

sought. Once the specific requirements of the hosted algorithm (or class of algorithms)

are identified, a parallel processor architecture that uses its resources efficiently can be
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INTRODUCTION

This report documents the design rationale of the High Speed Systolic Array Proc-
essor testbed (HiSSAP). In addition to reviewing general parallel processing topics
(appendix A), the impact of the HiSSAP testbed architecture on the top-level design of
the diagnostic and software mapping tools is described. Based on the experience
gained in the mapping of matrix-based algorithms on the testbed hardware, specific
recommendations are presented in the form of "lessons learned," which are intended
to offer guidance in the development of future Navy signal processing systems.

BACKGROUND

Modern signal processing algorithms that perform well in complex and congested
signal environments generally rely on massive amounts of computation performed on
large arrays of input data (references 1 and 2). Significant advantage in communica-
tion and surveillance can be achieved if these high-performance algorithms can be
mapped onto suitable hosts. To achieve the throughput necessary to process large
arrays of input data in real time, signal processing architectures optimized for matrix
operations must be identified.

In 1978, Professor H. T. Kung, an Office of Naval Research (ONR) sponsored
researcher at Carnegie-Mellon University, reported his discovery of a new type of
signal processing architecture known as the systolic array (reference 3). A systolic
processor is a regular array of identical computational cells with common control, local
interconnects, synchronous timing, and homogeneous data flow. This structure allows
modular parallelism with throughput directly proportional to the number of computa-
tional cells.

Since 1979, NOSC has investigated this new architecture as the possible host in
Navy signal processing applications. Starting with the Systolic Array Processor (SAP)
(reference 4), the world's first hardware implementation of a two-dimensional systolic
processor, the design knowledge gained has provided the impetus and background to
develop additional testbed systems capable of demonstrating the computational poten-
tial of systolic architectures for Navy processing needs. During the subsequent years,
the investigations were expanded to include the development of the Systolic Linear
Algebra Parallel Processor (SLAPP) (references 5 and 6), the Video Analysis Trans-
puter Array (VATA) (reference 7), and the High Speed Systolic Array Processor

--" (HiSSAP) testbed (references 8 and 9). Algorithm mapping is continuing on the VATA
and near-term plans include mapping a variety of signal processing algorithms onto the
Intel iWarpi parallel processing array.

The Navy wishes to transition this parallel processing technology to a broad base of
application platforms. The plans are to extend the AN/UYS-2(V) Enhanced Modular

'iWarp is a trademark of Inlcl Corporation



Signal Processor (EMSP) to incorporate a new functional element type, the Matrix
Processor (MP). Optimized to efficiently execute linear algebra operations linked to
wide bandwidth input/output (1/0), these functional elements will greatly expand the
operational capability of the EMSP. The planning and specification of the MIP draw
from the experience base gained in systolic array development at NOSC, particularly
with the HiSSAP testbed.

SCOPE

The architecture of the HiSSAP testbed (described below) incorporated a rich set of
programmable resources and served as a laboratory vehicle for determining processor
characteristics necessary to efficiently host complex algorithms.

To fairly assess the performance and suitability of each resource, however, the test-

bed was integrated into a high-frequency direction finding (1HFDF) application demon-
stration (reference 10). In addition to the testbed hardware, the integrated performance

of mapping and diagnostic software, an antenna simulator, and data acquisition subsys-
tems were carefully analyzed. This report will be limited to documenting aspects of

parallel processing architectures as they pertain to overall system performance. The
programming resources necessary to efficiently use the processor's architectural
resources are discussed elsewhere (reference 11). It must be noted that the enhanced

performance attributed to each architectural resource must be carefully weighted
against the incremental complexity of the required programming tools.

A discussion of the system development methodology is included in this report to

emphasize the importance of using computer-aided design and behavior modeling early
in the design cycle. The design experience obtained from the HiSSAP HFDF demon-
stration effort forms the basis for the general parallel processor design guidelines pre-

sented below.

A general discussion of parallel processing topics is included in appendix A. The
design topics contained in the appendix reflect the broader base of experience derived

for SAP, HiSSAP, SLAP, and VATA development efforts.



HISSAP TESTBED SYSTEM OVERVIEW

Various design aspects in the development of the HiSSAP testbed system have been

documented in the literature (reference 8) and are summarized here for the purposes
of reader orientation. The intent of this summary is to introduce terminology unique to
this system design and used in subsequent sections of this report. The architecture

embodied in the HiSSAP testbed does not necessarily represent an optimum implemen-

tation of systolic technology but serves as a general-purpose host for laboratory investi-
gations of parallel algorithm mapping. Most of the detail design of the testbed hard-
ware was finalized 6 years ago, and many of the technology constraints affecting the

original engineering of HiSSAP are not presently applicable. Although rapid strides in

device technology may render any particular hardware implementation dated, the issues
addressed in the lessons learned sections have general application to parallel process-
ing technology.

SYSTEM TOP-LEVEL ARCHITECTURE

The HiSSAP testbed system, shown in figure 1, is composed of 16 arithmetic proc-

essing modules (APMs), four input/output modules (IOMs), a system control module
(SCM), and two peripherally connected IBM-AT-class personal computers (PCs). One

of these PCs (called the experiment controller) hosts the software development effort
(references 9 and 11) and coordinates array activities during algorithm execution. The
remaining PC is used to develop simulated data, support communications with the sys-

tolic array elements during algorithm execution, and support performance analysis.
Each of the 16 APMs are connected via four 40-bit bidirectional parallel data channels
to adjacent APMs or to a neighboring IOM on each of the boundaries of the 4 x 4

square array. Data communication to hardware external to the array occurs via four
external bidirectional ports (labeled: top, bottom, right, and left). A 40-bit data
channel, called the data circus, links the IOMs into a network capable of moving data
around the periphery of the systolic array structure. Communication between the
elements of the systolic array and the system control module is handled by a global

channel called the array control bus (ACB). An external extension to this ACB
provides the experiment controller PC access to the program states of all of the testbed
internal elements.

PROCESSOR ELEMENT ARCHITECTURE

The APM and IOM elements of the array share a common design foundation; how-
ever, the APM incorporates the additional circuitry required to perform floating-point
computations and extended modes of I/O port communication. One major feature of
the internal architecture of the APM (figure 2) is the emphasis on high-communication
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bandwidths of its resources and internal buses. The central processing unit (CPU) is
composed of a pair of floating-point devices, one arithmetic logic unit (ALU), and one
multiplier. These devices may be operated in parallel using separate access to a shared
multiported memory. This memory also provides an interface to the four systolic data
ports of the APM through a limited crossbar switching structure called the data flow
network. The control of these element resources emanates from a 176-bit-wide instruc-
tion code sequencer capable of branching and nested loop execution. A network of set-
scan test registers and an interface to the global ACB are included in the APM design
to support diagnostic and control operations launched by the system controller PC.

The IOM design, similar to the APM in most respects, replaces the CPU function
with a pair of additional data ports, the data circus, and the external 1/0 port
(figure 3). Boundary 11O requirements allowed some economies of design to be applied
to the multiported memory and data flow network in this module. The level of
resource control required to operate this module type is substantially less, giving rise to
a instruction word only 96-bits wide.
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Figure 3. Input/output module (10M) functional diagram.



HISSAP HARDWARE DESIGN TOOLS

The design of the HiSSAP processor system proceeded without the aid of either
hardware or software simulation tools.

TESTING PHILOSOPHY

Design of the systolic testbed was started 7 years ago and finalized 18 months
later. At that time, simulation tools were not available to adequately support such a
design. In particular:

1. The processing modules within the ar-ay (while composed mainly of medium-
scale integrated (MSI) digital logic devices) contained several large-scale inte-
grated (LSI) and very large-scale integrated (VLSI) devices for which no suitable
logic models had been generated. No behavior characterization libraries were
available for such devices as the Weitek2 1033 Multiplier, 1032 ALU, and 1066
register file chips.

2. Characterization of device loading within the lengthy bus networks used in each
processing module was not incorporated into design evaluation reports produced
by existing simulation models. Due to the large board real estate, this loading
could be further compounded by the mutual coupling of layered wire-wrap con-
nections extending over several inches.

3. The behavior of the systolic backplane represented a challenging modeling task.
Its physical size required that any model usd for simulation would have to
account for transmission line effects. The characteristic impedances of signal
lines within this multilayer printed-circuit structure were difficult to estimate due
in part to the proximity of several other signal layers and massive ground and
power planes.

4. It was believed that due to the built-in set-scan shadow register design, the func-
tional checkout of functional elements within each system module could be con-
ducted in a straightforward manner. To minimize the debugging effort, a suite
of diagnostic routines controlled by software executing on a personal computer
was envisioned to exercise all the major functional elements and provide a
means for localizing errors.

DEBUGGING EXPERIENCE

The debugging efforts of the HiSSAP testbed system hardware transitioned through
three relatively distinct phases: (1) timing-related problems, (2) device I/O and signal
problems, and (3) device behavior problems. Depending on the source of the func-
tional problem, the level of diagnostic tools used varied.

2 Floating-point devices manufaclured by W itek Corporation.

7



Timing-Related Problems

As expected, errors in logic design and documentation inconsistencies were discov-
ered during various phases of initial checkout of the processor hardware. Many of the
faults were traced to logic errors assoc:ated with the MSI circuitry and may have easily
been avoided if only those sections of the design had been simulated using ordinary
logic simulators. Marginal timing, simple gate loading, and logical inconsistencies were
characteristic of this initial set of problems. This experience indicates that traditional
design techniques are prone to human error and that as the system design grows, the
time devoted to tracing down design faults of this type bpcomes prohibitive. Compared
to the effort needed to isolate these design faults by traditional laboratory methods, the
additional time invested in the construction and use of timing simulation models is jus-
tified. This is particularly important when major portions of system designs are c,_-
tLred into monolithic form. As the technology of wafer-scale integration is transitioned
to parallel processing architectures, it becomes mandatory to pursue timing models
early in the design cycle.

Device I/O and Signal Problems

Another class of hardware fault, pathologic signal conditions or unspecified device
interface behavior, required extensions to the testing methodology. Excessive signal
ringing and improper clock transitions characterized this level of fault. It is unlikely
that this type of fault would have been predicted by a simulator. Incorporating a vari-
ety of off-the-shelf integrated circuit components into the design of the HiSSAP testbed
allowed great latitude in functional design and shortened the project development
phase. However, the diversity in the methods with which each manufacturer docu-
mented device 1.1O performance contributed to the difficulty experienced in functionally
debugging the system hardware. Difficulty in detecting and characterizing these faults
during hardware system checkout identifies a need for system timing models to address
the physical realities of the processor. Signal transmission line behavior and mutual
coupling in clocking and busing circuits must be included in the timing simulation
model in order to reliably predict system design integrity. Once quantitative estimates
of critical system dynamics are available, the impact o" architectural tradeoffs can be
more realistically evaluated.

Device Behavior Problems

The final category of system debugging addresses th,. location of beha-ioral design
errors. This effort soucht to vilidate the designcrs understanding of manufacturer's
specificatiun of device function. The execution of programmable functions within a
device (mainly I.S and VLSI) was verified using a combination of set-scan registers
and microcode program fragments executed on the I IiSSAP hardware.



This phase of system debugging was the most time-consuming and technically chal-

lenging. The internal registers and program states within the LSI and VLSI devices of

each processing element were generally unaccessible for direct observation. This neces-

sitated the creation and use of many specialized diagnostic software modules. In the

absence of a suitable behavioral model, the functional verification of the diagnostic

software could not be decoupled from that of the system hardware. The duration of the

HiSSAP debugging effort, as a result, was greatly extended and required the extensive

use of traditional laboratory test instruments. Undoubtedly, a major portion of this

checkout effort could have been avoided if the initial design could have begun at the

register description level. With the proper behavioral model, the functional integrity of

the diagnostic modules used for the checkout of the system hardware could have been

established prior to hardware construction. Further reductions in debugging time would

certainly have resulted if the level of integration of the set-scan testing implementation

could have extended into the functionality within the LSI and VLSI devices. For the

development of the HiSSAP testbed, that would have resulted in a greatly reduced
need for the diagnostic software modules vritten expressly for deducing the state of

hidden" registers within these monolithic devices of the architecture.

9i



HISSAP SOFTWARE DESIGN TOOLS

The hardware debugging phase of the system development was supported by the
use of custom diagnostic software developed on the personal computer HiSSAP control-
ler. Three distinct levels of software tools were developed to aid functional testing of
the processors: (1) board level, (2) array level, and (3) algorithm level.

BOARD-LEVEL TESTING

To perform the initial functional testing of the individual processor as a stand-alone
element of the processor array, a family of low-level "primitive" software utilities was
constructed. Using the set-scan diagnostic/control port of each board, these primitives
provided a means of evaluating the functional integrity of each functional block within
the processing element. Floating-point computations, program execution, and address
generation were a few of the many functions tested by this level of test software.

SYSTEM INTEGRATION TESTING

The next level of diagnostic utilities addressed the operation of the processing ele-
ments linked in parallel test program execution. This category of testing required the
greatest development effort due in part to the variety of operational modes contained
in the design of the processor I/O hardware. The proper operation of array resources
such as the global flags and distributed handshaking signals, data and tag communica-
tion, and testbed-to-PC communication was tested by custom diagnostic routines.

ALGORITHM MAPPING AND TESTING

Sequential Model

The design approach used to map algorithms onto the HiSSAP testbed is shown in
figure 4. Following the initial description of the application, a data simulator and one
or more descriptions of the algorithm solutions are constructed. The data simulator
provides an analytical data baseline with which to test the performance of each pro-
posed algorithm model. The high-level description of the algorithmic approach is trans-
lated into a sequential model using a traditional programming language. A series of
input data sets are constructed in the data simulator and processed by this sequential
algorithm model to establish a performance baseline to which the parallel and systolic
program implementations will be compared. The construction of a sequential mapping
model may include optimizations that address such topics as numerical stability or
computational efficiency. Otherwise, this programming is fairly straightforward.

11|



PC-MATLABz was selected as the software tool for all HiSSAP algorithm modeling

because of its ability to manipulate array data and rapidly generate graphical displays.

APPLICATION
DESCRIPTION

ALGOPERFMRANCE

DSCUENTIONSMUAO

MICROCOD

SOFTWARE

CONTROLSARRA

SOOFTWARE

Figure 4. Algorithm mapping procedure.

Parallel Model

Once the sequential mapping has been baselined, a parallel model is then con-

structed. This translation requires a careful analysis of the structure of the algorithm to

identify the computations that may be performed in parallel. The most difficult aspect

of constructing this parallel model is assigning the proper grouping of computations

and operand access at each computational node. No mapping aids existed that could

automate this activity or evaluate the success achieved in efficiently using the resources

of systolic architectures. The parallel program model of the multiple-signal classifica-

tion (MUSIC) algorithm to be hosted on the systolic testbed was quite difficult to

generate and debug using a general-purpose programming environment such as

PC-MATLAB. 4 The development of specialized software tools targeted at this phase of

application mapping is crucial to transitioning systolic technology into general usage.

3 PC-MATLAB is a trademark of Mathworks, Inc.

4 Dr. S. I. Chou at Naval Ocean Systems Center (NOSC), San Diego, formulated the MUSIC algorithm implementa-

tion and specified its parallel partitioning for use on the HiSSAP for the High Frequency Direction Finding Project.
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Following the construction of the parallel model, computational equivalence to the
sequential model was verified using the original baseline data sets.

An algorithm mapping specification is extracted from the parallel model prior to
porting the algorithm onto the systolic testbed. The specification identifies the corre-
spondence of computational tasks within the model with individual array element hosts.
Also identified in the specification are those portions of the algorithm that are global
in nature and must reside on the controller PC.

Several custom language tools were developed to facilitate the translation of the
mapping specification into executable code on the systolic testbed (reference 11).
Those portions of the application algorithm to be hosted on the array elements were
translated into microcode modules to be loaded on the systolic testbed. The remaining
portions were translated into an algorithm control program to be executed by the
controller PC.

A final debugging and verification phase was conducted on the algorithm hosted on

the testbed. A custom set of algorithm debugging tools was designed to provide user
access to program and memory variables within the testbed hardware similar to that
available in PC-MATLAB. Functional equivalence was verified with a custom set of
algorithm debugging tools designed to provide user access to program and memory
variables within the testbed hardware. This facility (references 8 and 11) used a system
of set-scan diagnostic/control ports and clocking control on the testbed hardware
combined with display screen and disk file management utilities residing on the
personal computer controller.

13



LESSONS LEARNED

Although the HiSSAP testbed incorporated many internal hardware debugging fea-
tures that were originally intended to support the initial functional testing of the sys-
tem, the algorithm mapping effort also benefited from their inclusion. Once the
algorithm code has been created and debugged on the systolic host processor, a greatly
reduced set of architectural resources should be needed to support the run-time version
of the application software on an embedded processor. This suggests that the initial
mapping and checkout of program modules may best be undertaken on a development
host that provides the user with an expanded diagnostic capability. Once the applica-
tion coding has passed functional testing, it would be included in a software library
available for hosting on production host systems. These systems are behaviorally
equivalent to the development host systems, but their designs are simpler and less
costly.

HARDWARE

Error Handling

The testbed hardware incorporated several circuits to monitor hardware fault condi-
tions. Program memory parity errors and program stack overflow conditions were con-
tinuously monitored on each of the processor elements of the array. User program-
mable execution breakpoints and PC host trap handling of Institute of Electrical and
Electronic Engineers (IEEE) exception conditions for numeric computations were also
provided to aid in debugging the execution of the algorithms hosted on the testbed.
The system was designed to report this information to the PC host computer and halt
execution on the testbed at the offending instruction. This "report back" system was
implemented as a wired or global signal to minimize the complexity of the systolic
backplane. Due to the disparity in execution speeds of the HiSSAP testbed and the PC
host, the fault status processing was handled in the system control module of the
testbed system. The user could use the HiSSAP diagnostic utilities to interrogate the

array elements, extract the source of the fault, and determine the course of action.

The implementation of these error and status report-back mechanism added signifi-
cant complexity to the testbed hardware, but was absolutely necessary to verify proper
system operation during all phases of the HiSSAP development. It is highly desirable
to minimize this complexity to achieve a desirable cost/performance factor for the par-
allel processor used in embedded applications. The existence of powerful programming
tools and debugging aids that rely heavily on these diagnostic hardware mechanisms
factor into the cost of algorithm development. The following section describes a system
implementation approach that addresses both of these considerations.

15



Development System. The development system should include two capabilities:
programmable fault processing and fault status access.

Programmable Fault Processing. During system development, the response to execu-

tion events normally interpreted as faults may be primarily tailored for diagnostic pur-

poses. It is often helpful during the integration phase of the iiardware development to
partition the reported system faults into categories. The user should have the capability
to enable only the faults and condition flags deemed relevant at any stage of hardware
or software development. This capability should be extended to the processor level for
addressing those occasions when multiple-error conditions are simultaneously detected.

The user should also be able to assign the level of severity (and associated auto-

matic hardware response) to each anticipated error reported by the processor system.

An interruption of algorithm execution may not be appropriate for each system fault
reported. As observed with the IEEE exception codes produced by the floating-point

devices in the HiSSAP testbed, not all reported conditions indicate a failure of the
current numerical computation. The user must be given the opportunity to configure
the hardware to recognize a selected subset of possible errors as system hardware

traps. The user should be allowed to direct the storage and subsequent handling of less
urgent error (status) reports to specific diagnostic software modules.

Fault Status Access. The location and description of the condition (i.e., processing

element number, fault, or condition type) should be automatically determined by the
software development tools. It is important to minimize disruptions during software
development by insulating the user from the tedium of manually evoking low-level
diagnostic routines to interrogate and interpret the state of internal hardware error
status registers.

Production System. The production system should include two capabilities: a fault
hierarchy and fault tolerance.

Fault Hierarchy. A hierarchy of error handling should be adopted that routes the

detected fault condition based on its severity. The nature of the error may dictate a
minor variation of the programmed execution at the element. Other errors may require
global coordination with other processor elements or user interaction to resolve.

Fault Tolerance. The effect of system errors caused by hardware failures within one

or more array elements may be minimized by automatically instigating fault-tolerant
reconfiguration of either system software execution or hardware data connectivity.

Architectural Implications of Error Handling. The issue of error handling is com-

pounded if the subsystems being monitored are pipelined structures. The offending

event may be difficult to locate, and the steps to reset the program to the pre-error
condition may be difficult to ascertain. It is highly desirable to avoid pipeline structures
if an instruction-by-instruction error-handling feature is to be implemented. An

16



alternate method that simplifies the task of properly handling system errors focuses on
the structure of the application program. By restricting the processing of errors to
regions interstitial to major sections of program code (i.e., the computational pipelines
have been emptied or all pending 1/0 operations are complete) interference with the
internal flow of execution can be minimized. This error-handling approach reduces
implementation complexity at the expense of response latency. Depending on through-
put requirements, this error-handling latency may not be compatible with the execution
of real-time signal processing algorithms.

Processing Memory Requirements

The HiSSAP design was finalized before an accurate assessment of element mem-
ory requirements could be completed. Due to memory limitations within the testbed,
the mappings of the MUSIC and finite impulse response (FIR) filter algorithms were
less than optimum. The FIR filter was implemented as a cascaded system of desam-
pling filter sections due in part to the limited amount of on-board memory (refer-
ence 12). The dimension of the spectral response produced by the MUSIC algorithm
was also limited by the memory available on the processor elements.

Element Architecture

The architecture of the processing element was optimized for maximum throughput
by dedicating separate cache memory to the floating-point ALU and multiplier devices.
This minimized the latency in accessing operands for each processing chip but proved
awkward when cascading mixed operations. The multiply-accumulate operation, so
prevalent in signal processing applications, required additional clock cycles to complete
on the HiSSAP processor due to the need for routing the intermediate results through
memory.

The computational resources of any proposed array element should reflect the
anticipated needs of the planned algorithm applications. Priority should be placed on
minimizing the participation of local memory during chained computations. Two major
benefits are realized by clever resource connectivity. The execution time of most
chained operations can be greatly reduced and valuable memory space assigned to hold
intermediate results may be released for other purposes. However, during the algorithm
development phase, it may be advantageous to store the intermediate values of such
computations in memory to accommodate user interrogation. This added bus and
memory allocation would increase the complexity of the development system, but may
be warranted to ease debugging of complex algorithms.

17



Address Generation

The HiSSAP processing elements contained a rudimentary address generation circuit

that provided the capability for generating data memory address pointers. This feature
enabled the programmer to generate pointers spanning large blocks of locally stored

data while using a single instruction call. This approach greatly reduced the size

requirements of program memory at each processing element.

SOFMVARE

Conceived as a research tool, the HiSSAP processor system was purposefully aug-

mented with an extensive collection of data movement resources. This emphasis in sys-
tem design provided the necessary flexibility to study the interaction of a broad range
of algorithms on a multiprocessor host. The complexity of the software diagnostics
developed for the HiSSAP reflected the general-purpose approach of the processor
hardware architecture. For specialized or embedded applications, it is advantageous to

resolve the architectural issues early in the system design phase and define a minimal

set of programmable resources. One major goal of any system design of a parallel

architecture is the efficient use of hardware computational resources. The major task in

the mapping of algorithms onto parallel architectures deals with the management of

data movement interior to the processing element and throughout the structure of the
multiprocessor hardware. It is here, also, that the complexity in the diagnostic tools is

the greatest. An effort to streamline or consolidate data movement resources while
maintaining high computational throughput will result in significant reductions in the
complexity of the diagnostic tools.

Performance of the algorithms hosted on the parallel processing host is difficult to

quantify (reference 10). Our efforts on this topic were limited due to project time and
budget but did highlight significant factors that should be addressed. Described below
is a brief listing of capabilities that should be incorporated into tools developed for

benchmarking parallel implementations.

Numerical Precision

Both the intermediate and final results of an algorithm may vary greatly due to the

numerical precision used in the computations. In extreme cases, cnstable or inconsis-

tent results may occur. The word length of stored variables and the implementation of
Gie fLh ,anac,al mathematical operators are the primary system design factors that

affect computational precision. To maintain numeric stability during the execution of
an iterative computation loop, the required precision of the internal variables may

greatly exceed that required at the I/O boundary of the algorithm. A software simulator
is an effective tool to estimate the stability of algorithms that must operate on
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hardware hosts with limited numerical precision. It is desirable to provide a means for
adjusting the numerical precision of algorithm modeling software to accurately match
that of the target hardware host. This ability to configure the model should extend to
the manner to which the exception and error conditions are handled. By allowing the
user to vary such parameters as numeric precision of modeled computations and inter-
mediate variables, and the type of rounding or truncation, the simulator can be used to
identify those portions of an algorithm requiring the greatest numeric precision.

It may be possible to relax the internal precision requirements an algorithm places
on the host by reordering the sequence of mathematical operations used. Alternative
algorithms may also be substituted that are more tolerant of ill-conditioned input data
and maintain the condition number of internal matrix data at levels approximating that
of the input data. The ultimate goal in either case is to achieve stable algorithm opera-
tion while producing output data of the required numerical precision.

Computational Efficiency

Several parallel architectural designs may appear to be suitable for hosting a
desired algorithm. Peak computational throughput of a processor assumes the computa-
tions are performed at every available clock interval without regard to the issue of I/O
data movement latency. This peak rating can be particularly misleading when applied
to an array of processing elements. Simply multiplying the throughput figure of an
individual processing element by the number of nodes in the array ignores the impact
of access delays in a distributed memory architecture. Such factors as computational
interdependence, approach to distributed data mapping, and bandwidth of interproces-
sor communication all contribute to the data latency at each computational element.
This latency manifests itself as degraded computational throughput that may be a small
fraction of the peak rating. Processor architectures using comparable computational
resources may exhibit strikingly divergent throughput figures. Conversely, a single
architecture may also exhibit great variation in throughput when hosting dissimilar
tasks.

Communication/Computation Balance

The complexity of an architecture is greatly influenced by the structure and connec-
tivity of the interprocessor data pathways. To reduce cost and complexity, connectivity
among processors nodes within the array should be minimized. To maximize the com-
putational throughput (by reducing the latency in accessing data in a distributed
memory system) and minimize programming complexity, the architecture chosen must
maximize connectivity. A compromise solution must be formulated that minimizes the
latency while providing a realizable system architecture. A tool capable of modeling or
measuring pathway usage of the array processor hosting specific algorithms would
provide valuable guidance in the selection and evaluation of candidate architectures.
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Identifying a system-wide optimum relationship between interprocessor communica-
tion bandwidth and intraprocessor computational loading is difficult. Several factors
affect the definition of the problem. Fundamental to the discussion is the granularity of
the programming model used to implement the algorithm. A fine-grain implementation
maps the computations of the algorithm onto a large number of processing elements.
Results of internal computations are usually passed to other processors in the array on
a fairly regular basis. This implies a need for high-bandwidth interprocessor communi-
cation channels capable of supplying new operands at a rate approaching the computa-
tion rate of the element.

Some algorithms do not map well onto fine-grain computational hosts. A second
class of distributed processing uses large groupings of complex numerical computations
at each processing element. During the computations, all the required operands are
available within the local memory of each element. This granularity of mapping often
results in a reduced bandwidth demand on array interprocessor communication

channels and a reduced average data access latency.
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CONCLUSIONS

This document has described the lessons learned from the HiSSAP testbed develop-
ment and HFDF system integration efforts. Clearly, the interaction of algorithm and
architecture within a parallel processing host is complex. The topics described above
serve mainly to identify major architectural design issues that must be addressed if
optimum system performance is sought. Once the specific requirements of the hosted
algorithm (or class of algorithms) are identified, a parallel processor architecture that
uses its resources efficiently can be designed.

While the systolic mapping of the direction-finding application represents a signifi-
cant accomplishment, the hardware and software diagnostic techniques developed for
this effort have a more universal application.
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APPENDIX A

SYSTOLIC ARCHITECTURES

EVOLUTION OF PROCESSING ARCHITECTURES

Historically, the enhancement of computational throughput in signal processing
hosts has been achieved through advancements in process technology. Both speed and

device density have shown a steady increase over the past two decades with a corre-
sponding increase in system performance. The device technology is reaching a maturity
that may limit its ability to allow traditional uniprocessor designs to provide the next
increment of computational throughput required by tiw modern signal processing algo-
rithms now emerging. Many system architectures that contain multiple computational
engines operating in parallel have been proposed to alleviate the bottleneck existing in
uniprocessor designs. This concept, while not new, has enjoyed limited application due
in large part to the difficulty in programming a device of this type. The first parallel

architectures consisted .of multiple processing elements connected together on a shared
bus and all vying for access to a single shared memory. The bottleneck caused by the
bus bandwidth limitations of such a topology has provided the motivation to study
other forms of parallel architectures.

SYSTOLIC ARCHITECTURE

A parallel processor architecture that uses a single communication bus and shared
memory does not appear to provide the system designer the freedom to scale the
throughput of the machine to match the computational requirements. A systolic array
is an alternative architecture that uses a multiple bus structure and distributed memory
to address the limitations existing in the previous approach. The term "systolic" as it
refers to computer architectures encompasses a broad spectrum of hardware topolo-
gies. Many multiprocessor structure,, (hypercube, connection machine, iWarp, Touch-
stone5) use differing interprocessor communication approaches and nodal functional

capabilities. The only shared characteristic that bind these diverse structures under the
common category of systolic is the enhanced computational throughput achieved by the
use of multiple processing nodes in a distributed bussing system.

PERFORMANCE CRITERIA

The enhanced throughput achievable with the systolic approach is based on two

critical factors. First, the computational throughput of a system can be enhanced by

Touchstone is a trademark of Intel Corporation.
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using multiple processors working concurrently on small portions of a problem.
Second, no additional interprocessor communication overhead is incurred as the size of
the processor array varies. If both of these criteria are satisfied, incremental expansion
in the number of processing nodes should be reflected by a corresponding overall in-
crease in computational throughput. The degree to which this enhanced throughput is
achieved depends not only on the hardware implementation, but the interaction of this
architecture with the specific algorithm being hosted. It is commonplace to find com-
puters rated in peak computational throughput, often in terms of instructions per sec-
ond (IPS) or floating-point operations per second (FLOPS). The actual computational
rate may be significantly less than the peak computational rate due to inefficient use of
resources. Separate treatments of the hardware and software factors affecting computa-
tional throughput in a systolic architecture will be presented here and can be found in
references A-1 and A-2.

ARCHITECTURAL CHOICES

Massive computational throughputs can be achieved using any of several possible
systolic topologies. Depending on the task to be hosted, the processor system may take
the form of a linear, two-dimensional, or n-dimensional topology. To determine the
appropriate architecture for a given algorithm, several key factors in mapping must be
C\aluatcd. Paramount in the efficient use of such a parallel structure is the degree of
parallelism in the algorithm itself. In addition to the identification of operations that
can be structured to be performed simultaneously, the balance of computational load-
in and interprocessor communication capabilities must be carefully considered. In a
uniprocessor architecture, all the data associated with the computational task resides in
a single memory. The delay in retrieving any requirecl data is universal to any opera-
tion performed by that single processor. This approach to data retrieval works well

hcn the central processing unit (CPU) has instruction rates comparable to the access
times of the memory. As additional processors are added to the array to accommodate
the need for greater computational throughput. a corresponding increase in data stor-
aue access bandwidth is required. In addition to the memory bandwidth, the overhead
task of manacine the usae of this shared resource becomes impractical. The systolic
topolov, when properly applied, provides a favorable balance between individual CPU
opcratlons and communication of operands from neighboring secments of distributed
memory. This distribution of memory throughout the processor array also eliminates
the need for complex global memory management schemes.

\\hile the systolic architecture promises to offer a scalable solution to the ever
in.rCeasing computational throughput demands of modern signal processing algorithms,
it is difficult to obtain peak performance for all applications. The apparent simplicity
of this parallel architecture obscures the underlying complexit, encountered in restruc-
turing sequential algorithms to efficiently use the parallel resources of this architecture.
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Perhaps the most important factor in the successful application of systolic arrays to
signal processing is processor utilization efficiency. In the context of this report, this
efficiency refers to that fraction of the array's computational resources used during
each instruction cycle. As discussed later, while the utilization efficiency is measured
in terms of CPU computational throughput, underlying this performance is a carefully
matched mechanism for interprocessor data transfer throughout the processor array.
The systolic array architecture provides the system designer with a latitude to match
the interprocessor communication performance to the requirements of many diverse
classes of algorithms. While total utilization is rarely achieved in any parallel process-
ing architecture, systolic arrays provide scalable solutions that may be optimized for
general classes of computations. Achieving the performance potential of systolic arrays
through algorithm/architecture tuning precludes its use as a general purpose computa-
tional host. It is best suited for embedded front end processors that provide the
specialized computational resources for a chosen class of matrix-based or vector-based
algorithms.

GENERAL CLASSIFICATIONS OF ARRAYS

The simplest model of a systolic array consists of an array of identical processing
elements executing the same string of instructions in unison. The instruction commands
are often designed to emanate from one central control point. While limited data-
dependent execution may occur at each processing node, no variation in system pro-
gram execution is allowed at the global level. Data movement within the array is
defined only between neighboring processing elements. Program execution is linked
with data movement among the elements of the array, thereby guaranteeing the proper
staging of operands prior to each computation. This description of systolic operation is
referred to as single-instruction multiple-data (SIMD). Algorithms that can be mapped
onto a systolic processor array operating in a SIMD mode must not require global data
communication other than that of initialization. Certain highly structured algorithms
with an intrinsic balance between computational load and operand movement allow
complete utilization of system resources in a systolic architecture. Arbitrary length
vector-vector inner products can be computed on a one-dimensional systolic array of
corresponding length. Using a two-dimensional mesh-connected systolic array of proces-
sors, vector-vector outer products, vector-matrix, and matrix-matrix multiples can also
attain complete resource utilization efficiency. Finite impulse response (FIR) filters,
and fast Fourier transforms (FFTs) are examples of signal processing algorithms that
may be structured in SIMD form and require minimal global control.

A more complex systolic model uses an array of processors in which each proces-
sor may be called upon to execute different tasks. This structure is more commonly
referred to as a multiple-instruction multiple-data (MIMD) processor. The computa-
tional requirements of a broader range of algorithms can be addressed by this
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structure at the cost of increased software complexity. Several new mapping issues
must be addressed to successfully coordinate the execution of multiple tasks within the

processor array. The regular data flow and simplicity of unified program execution
typified by a SIMD machine is replaced by a complex interprocessor synchronization
scheme. Due to variations in computational loading assigned to each processor element
and the data interdependencies among elements in the array, the appearance of idle
resources is difficult to avoid. Compounding the problem is the expansive collection of
data transfer topologies. The nearest neighbor data transfer convention described above
must be augmented with such pathways as row or column broadcasting to achieve

maximum use of the data buses.

TASK PARTITIONING (SYSTEM LEVEL)

Several factors bear on the selection of the type of array structure (or structures)
best suited to a particular algorithm. A signal processing task may be composed of
multiple subtasks with differing processing requirements. Two alternative system
approaches to accommodating these processing requirements maximize the overall data
throughput by different means. One possible solution, shown in figure A-I, uses a
system of multiple daisy-chained systolic architectures, the structure of each reflecting

a minimal computational and communication approach for each subtask. As processing
is completed on each subtask, the intermediate data is passed to the next systolic
member of the processor chain. The major advantage of this approach is the high

degree of computational efficiency achieved within each stage of the algorithm. The
design of each subarray processor is optimized for a specific subtask, which should
yield simplified structure. The overhead associated with the communicating of
intermediate data between the subarray units at the completion of each subtask may

seriously undermine the aggregate system throughput. This overhead is related to the
size of the minimum block of input data necessary to support valid computation within
processing subarrays and the channel bandwidth.

FAST HISTOGRAMMER SIGNAL CLASSIFICATION SPECTRAL INVERSE FAST
FOURIER OPERATIONS WHITENING FOURIER

TRANSFORM TRANSFORM

INPUT OTU
DATA SUBTASKI SBAK2SUBTASK SUBTASK N DATA

SYSTOLIC SYSTOLIC SYSTOLIC SYSTOLIC
ARRAY 1 ARRAY 2 ARRAY N-I ARRAY N

Figure A-1. Subtask-partitioned algorithm mapping.
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Another equally legitimate solution to this multitask algorithm is processing "in
place" using a single general-purpose array architecture. In this approach, the computa-
tional and communication requirements of all of the subtasks are considered as a
whole in the design of this unified parallel processor host. This generally results in a
single system design complexity greater than any one of the component subarray archi-
tectures of the daisy-chained approach. This general-purpose design does offer several
advantages that offset the design complexity issue. A single system architecture
reduces the complexity of the overall design and requires one set of programming
tools. The data movement delays (described above) may be totally eliminated.

COMMUNICATION STRUCTURES

Movement of data throughout the processor array is one of the most complicated
issues in the mapping of algorithms onto the systolic architecture. In a sequential
implementation, the programmer is responsible for the order in which the computations
are performed, therefore the existence of the required operands for each successive
computation can be guaranteed by the inherent structure of the program. Parallel
implementation of algorithms introduces an additional execution concern. Due to the
physical partitioning of system memory into local caches for each processor, program
access to any arbitrary variable must include reference to physical as well as logical
location. The manner in which the data is distributed across the element memories and
the availability of the communication bus(s) required to gather the operands to the site
of each computation greatly impact system throughput.

SYNCHRONIZATION

As described earlier, an important characteristic of the simplest model of systolic
processing (SIMD) is identical and synchronized program execution within the elements
of the array hardware. This lock-step execution of program code is typically accom-
plished in either of two ways: (1) single-source instruction distribution or (2) element
program synchronization using semaphores. The first technique employs a common
program sequencer to control the computations throughout the array. The alternate
approach locks the program execution of all of the otherwise autonomous processing
elements by using a global handshaking protocol. Any differences in the parallel
processing activity in either array implementation are indistinguishable. As noted
earlier, the control of a systolic array processor operated in this manner is trivial, but
is effective in hosting a special class of algorithm.

This execution mechanism must be expanded to support the hosting of more ad-
vanced signal processing algorithms such as the multiple signal classification (MUSIC)
algorithm. This expanded model must support the coordinated execution of heterogene-
oIs program tasks on the processing elements within the array. This disparity of tasks
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assigned to processing elements usually causes an imbalance of execution times. The
specification of data movement within the array becomes much more complex and
requires an extension to the concept of program execution synchronization. Several
possible synchronization schemes exist to manage the coordinated movement of data
among heterogeneous prcoram nodes in the array. Among the most widely used are
(1) padding of execution time, (2) transfer handshaking, and (3) input/output
buffering.

Program Padding

The first technique achieves synchronized operation by inserting "no op" instruc-
tions into the program code of selected processing elements. By adding the appropriate
number of these instructions into the execution path of all but the slowest program
modules, time alignment of key computations occurring within each of the processing
elements can be maintained. While incurring no changes to the system hardware, this
technique is implemented at the cost of increased complexity in the software genera-
tion tools. An additional penalty is the reduced computational efficiency caused by
periodically idling processors during the algorithm execution. The use of "no op"
instructions is a crude method of inhibiting the initiation of each code segment until all
the prerequisite computations and data transfers within the array are complete. It
guarantees the integrity of the algorithm.

Transfer Handshaking

A closer study of this synchronization issue as it applies to systolic processors indi-
cates that a hardware-based solution to this problem is possible using another mecha-
nism. This alternate approach avoids the complexity associated with the "no-op" style
compiler by using hardware handshaking protocols. This type of resynchronization is
commonly implemented by a system of interprocessor handshaking. This approach uses
"do loop" style interrogation for the required handshaking signal to arrive at each pro-
cessor. This technique can be used in multidimensional array architectures to effect
global or regional synchronization as the algorithm dictates. Since synchronism is
established at algorithm run time by the system hardware, no additional complexity is
incurred in the algorithm mapping tools. To prepare for a transfer of data, each
processing element must include a brief conditional test of the handshaking status.
Successful coordination of all the processing elements within the array can be achieved
without the need for "clock counting." The penalty is similar to the first option, loss in
processor efficiency due to idle states occurring during handshake processing and the
associated wait.

Input/Output Buffering

Input/output data buffering is a third alternative for integrating the execution of
heterogeneous software modules. This approach entails the decoupling of data transfer
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and computation functions at each element. This is usually done by using a pair of
dedicated program processors within each element. The first processor is responsible
for performing numeric computations, while the task of communicating with neighbor-
ing elements is relegated to an auxiliary processor. With each array node implemented
as a pair of processors, the functions of computation and communiation can be
decoupled and more freedom can be exercised to optimize system efficiency. The wait
states previously used to synchronize processors need only affect the communications
processor of each element. Several tasks may be queued within a processing element
and be evoked only when the corresponding operands or resultants have been staged
within the cache nicmory. With greatly relaxed constraints on the relative timing asso-
ciated with computations within neighboring processor, a more powerful communica-
tion network can be supported.

By using an accompanying identity tag with the buffered data approach, the destina-
tion of each data element can be routed throughout the array via the intelligent action
of the communications network. The physical site of "nearest neighbor" computations
may be extended to include any processor within the array. In an array using tag
information sent with each data word, the focus of the algorithm mapping tools may
be directed more at the computations and less at the movement of data. Correctly
implemented, these tools will provide a means of rapidly mapping a broad spectrum of
algorithms while maintaining high processor utilization.

COMPUTATION/COMMUNICATION BALANCE

An algorithm that requires a large number of data transfers for each numerical
computation performed is described as "I/O bound." Many image processing tasks fall
into this category being composed of many relatively primitive computations linked by
massive pixel movement operations. The execution of such algorithms on systolic proc-
essors can be quite efficient while data bottlenecks on the shared communication net-
works in traditional array processors renders much of their peak computational
throughput unavailable.

Another category termed "compute bound" refers to those algorithms that perform
complex (time consuming) operations on moderate groupings of data, often resulting in
an output data structure of substantially smaller dimension. An array processor
optimized for this type of algorithm places fewer demands on the communication
mechanism. While the bandwidth requirement can be substantially lower, often a more
sophisticated data management approach is required.

ARRAY DATA BUS IMPLEMENTATIONS

For maximum data transfer bandwidth between processing elements, word-wide
parallel transfers are optimum. If each processing element is required to support
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several communication ports, such a system implementation can become quite costly in
several aspects. The power needed to operate a multitude of output driver/receivers can
become prohibitive, especially if monolithic integration is considered as an evolutionary
goal of the system design. In addition, the reliability and manufacturability of a systolic
backplane is adversely affected by such complex parallel bus implementations. It is,
therefore, advantageous to trim the performance and complexity of the bus structure to
the minimum level necessary to support efficient execution of the algorithm. Due to
the number of 11O pins needed for this word-wide bus implementation, it appears
unlikely that larger arrays with greater dimensional connectivity could be practical.

INPUT DATA ARRAY

ELEMENT I ELEMENT 2 ELEMENT ELEMENT N
N-I

FAST FOURIER FAST FOURIER FAST FOURIER FAST FOURIER
TRANSFORM TRANSFORM TRANSFORM TRANSFORM

HISTOGRAMMER HISTOGRAMMER HISTOGRAMMER HISTOGRAMMER

SIGNAL SIGNAL SIGNAL SIGNAL
CLASSIFICATION CLASSIFICATION 0 0 0 0 0 CLASSIFICATION CLASSIFICATION

OPERATIONS OPERATIONS OPERATIONS OPERATIONS

SPECTRAL SPECTRAL SPECTRAL SPECTRAL
WHITENING WHITENING WHITENING WHITENING

INVERSE FAST INVERSE FAST INVERSE FAST INVERSE FAST
FOURIER FOURIER FOURIER FOURIER

TRANSFORM TRANSFORM TRANSFORM TRANSFORM
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Figure A-2. "In place" algorithm mapping.
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An alternative approach employs data transfers occurring over multiple clock

cycles. Successive slices of a data word are transmitted over a narrower bus in a time-

multiplexed manner. This reduces the complexity of the array interconnects at the

expense of both the element's interface design complexity and bus occupancy time per

transfer. Additional circuitry within each element necessary for the reconstruction of

the parallel data word may be of minimal consequence, but the impact on bus band-
width (inverse of the time/transfer) must be considered carefully with respect to the

demands of the mapped algorithms. In this instance, when an algorithm may underuse

the full bandwidth of a word-wide parallel bus structure, serializing the communication

between processor elements into slices as small as 1 bit wide may be advantageous.
The bandwidth and complexity of each communication channel can be scaled down

without affecting the computational throughput.

Two-way data communication with neighboring processors can be addressed in

either of two ways: a single bidirectional (full-duplex) channel, or paired unidirectional

(half-duplex) channels. Each approach presents the system designer with a unique set

of engineering advantages. Full duplex communication minimizes interconnection com-

plexity at the backplane of the array. The savings in system complexity due to the

reduced proliferation of interconnects can be substantial for multidimensional array

configurations. The major drawback to effectively using a communication system con-

structed of bidirectional channels is the increase in complexity required at each compu-

tational element. To avoid collisions while moving data through this shared communi-

cation resource, transfer coordination must be established between processing elements.

The paired half-duplex channels approach supports two-way communications via

two dedicated unidirectional data subchannels. The width of these subchannels are typi-

cally identical and differ only in assigned data communication direction. No bus arbi-
tration is required and the bidirectional buffering of data in neighboring processors can

be easily done without undue complexity in the interface circuitry.

HOST CONTROL

For embedded applications on the systolic array, no user interaction is generallv

ncce.sary. However, to support algorithm mapping and debugging, it is necessary to

provide user access to the contents of array internal memory. Systolic array architec-

tures usually contain only the connectivity necessary to communicate data throughout

the structure. User access to memory variables contained within the array can be

supported via diagnostic I/O program code embedded into the algorithm code. This
method is not trivial and impedes the rapid debugging of program code.

It is also desirable to provide a means for the user to easily down-load developmen-

tal program software and control its execution on the systolic hardware. It is desirable
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to perform these operations in a manner that does not alter the execution of the target

algorithm on the testbed.

SUMMARY

The comments presented above address design topics germane to specification of a

parallel processing architecture. This appendix does not represent an exhaustive catalog

of issues facing the design engineer. The ultimate priorities placed on these and other

issues associated with parallel processor design and the mapping strategies used in

mapping matrix-based algorithms will depend on the specific application(s) planned.

The design of each systolic architecture should reflect the unique computational and

communication requirements of the algorithm (or class of algorithms) to be hosted.

REFERENCES

A-1. Loughlin, J. P. 1987. "NOSC Advanced Systolic Array Processor (ASAP),"

Proceedings of the SPIE International Technical Symposium, Real Time Signal

Processing X, vol. 827-13. Aug 1987, San Diego, CA.

A-2. Tirpak, J. M. Jr., "High Speed Systolic Array Processor (HiSSAP) Software

Development Environment, Lessons Learned," NOSC technical report to be

published.

A-10



Public reporting burden for this collection of Information Is estimated to average 1 fhour per response. Including the time for reviewing Instructions. searching existing data sources, gathrering and
maintaining the data needed, and completing and reviewing the collection of informat Ion Send comments regarding this burden estimate or any other aspect of this coilection of Intonrmation. Inciuding
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports 1215 Jeffersn Davis Highway, Suite 1204 Arlington. VA 22202-4302
and to the Office of Management and Budget. Paperworr Reduction Project (0704-0188). Washington. £XC 20503

1 AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED

I May1991Final: October 1983-October 1990

4 TITLE AND SUBTITLE5FUDNNMBR

HIGH SPEED SYSTOLIC ARRAY PROCESSOR (HiSSAP) SYSTEM PE: NIF, 604507N
DEVELOPMENT SYNOPSIS: Lesson Learned WU: DN308 022

6 AUTHOR(S) PN: 76-EE3401

J. P. Loughlin

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ESi 8 PERFORMING ORGANIZATION

Naval Ocean Systems CenterREOTNM R

San Diego, CA 92152-5000 NOSC TR 1432

9 SPONSOR ING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) td SPONSORINO/MONITORING
AGENCY REPORT NUMBER

Naval Sea Systems Command
Washington, DC 20362

1 SUPPLEMENTARY NOTES

12a OISTRIBUTIONIAVAILABILiTY STATEMENT 12t) DISTRIBUTION CODE

Approvedl for public release; (listribution is unlimitedl.

13 ABSTRACT (Maximuim 200 words)

This report documents thle design rationale of thle High Speed Systolic Array Processor (HiSSAP) testhed. In addition to review-
ing general parallel processing topics, thle i mpact ofihe HiSSAP testhed architecture on the top-level dJesign of the (diagnostic andi
software mapping tools is dlescribedl. Base(] on the experience gained in the mappi ngof matrix-based algorithms on the testbedl hard-
ware, specific recotntrendlationsare presentedl in the forrm of "lessons learned," which -are intended to offer guidance in thledevelop-
mnent of future Navy signal processing systemns.

!4~ TE i- ,_ 15 NUMBER OF PAGES

Hligh Spreedi Systolir Atrray Irocs-,rjr (I IiSSAP) 39
;iarallh-I proceSSintg 16 PRICE CODE

signal lroies.,inrg

17 C>CJ 9.1 ilAC,J (,A'.CN IH'> P 'Y C: A l C1 ) '.1c HliITy CiAI-,C.AT N 20 LIMITlATION OF ABSTRACT
WF ilt OP ('4r~ IJ AlA 3F iITACC

UJNC'LASSIFIED) U NCLASSIIED IJNCLASSIFIFID SAME A!S REPORIT

1,', 7/'A r, I21', ' (C 'C:andard form 298



UNCLASSIFIED

21 a NAME OF RESPONSIBLE INDIVDUAL 21b. TELEPHONE 0in-We A-'e COde) j21c. OFFICE SYMBOL

J. P. Loughlin (6 19) 553-2541 jCode 761

NSN 7540-01-280-5500 Slandaid form, 298

UNCLASSIFIED



INITIAL DISTRIBCTION

Code 0012 Patent Counsel (1)
Code 0144 R. November (1)
Code 76 F. M. Tirpak (1)
Code 7605 Dr. K. Bromley (1)
Code 761 Dr. G. Byram (6)

Code 761 F. M. Tirpak,Jr. (1)

, Code 761 J. P. Loughlin (10)

Code 952B J. Puleo (1)
Code 961 Archive/Stock (6)

* Code 964B Library (3)

Defense Technical Information Center

Alexandria, VA 22304-6145 (4)

NOSC Liaison Office
Washington, DC 20363-5100 (1)

Center for Naval Analyses
Alexandria, VA 22302-0268 (1)

Naval Air Development Center
Warminster, PA 18974-5000 (3)


