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This grant has supported research in the following areas:

" Optimal Control of Distributed Systems

" Adaptive Identification

" Adaptive Control

" Robust Control

The Publications section of this report lists six PhD dissertations and sixteen research
papers produced by research supported in whole or in part by this grant. Most of these pub-
lications have been provided to AFOSR previously. The Appendix to this report contains
five of the research papers, which are representative of the project.

Optimal Control of Distributed Systems

The main focus of this component of the research is approximation theory and numeri-
cal methods for design of finite dimensional compensators for optimal control of systems
represented by linear partial and functional differential equations. The primary class of
applications is large flexible space structures. Papers dealing mainly with approximation
theory and numerical methods for optimal control of distributed systems are [1, 2, 3, 4]. The
paper [5] has substantial results on approximation of digital input/output models, as well
as results on infinite dimensional system theory that are useful in adaptive identification
and control of distributed systems. The paper [6], which deals exclusively with stability
theory for a class of wave equations, is motivated by certain stability issues that arise in
approximation theory for control of equations governing many flexible structures.

Adaptive Identification

This segment of the research has dealt with fast methods for real-time adaptive identification
and prediction of systems with unknown parameters and unknown order. The class of such
methods to which this research has contributed most is least-squares lattice filters. The
paper [71 demonstrated the application of a lattice filter for adaptive identification and
prediction of an experimental flexible structure. The paper [8] and the PhD dissertation
19] developed a new lattice filter, called an unwindowed lattice, which achieves much faster
convergence to parameter estimates and accurate prediction than prewindowed lattices.

Adaptive Control

This part of the research has concentrated on adaptive control and tracking problems for
flexible structures and manipulators with flexible links and joints. The papers [10, 11, 12,
13, 14] and the PhD dissertations [15, 16, 17] have developed adaptive control methods that
appear to have wide application to flexible space structures and high-speed manipulators.
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Robust Control

The goal of this part of the research has been to develop numerically efficient methods for
determining robustness margins for control systems with uncertain parameters and for de-
signing plants and controllers that have desired robustness margins. For parameter values
within these robustness margins, the systems are guaranteed to be asymptotically sta-
ble. The papers [18, 19] presented new robustness margins along with numerically efficient
methods for computing these margins, and the paper [20] presented a method for numerical
design of robust control systems. These papers were based on the PhD dissertations [21, 22].
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Abstract

This paper develops an abstract framework for analysis and approximation of linear ther-
moelastic control systems, and for design of finite-dimensional compensators. The thermoelastic
systems in this paper consist of abstract wave and diffusion equations coupled in a skew self-
adjoint fashion. Linear semiproup theory is used to establish that the abstract thermoelastic
models are well posed and to prove convergence of generic approximation schemes. Open-loop
uniform exponential stability for a subclass of thermoelastic systems is proved via a Lyapunov
function. An example involving the design of an optimal LQG compensator for a thermoelastic
rod illustrates the application of the abstract theory. Results of an extensive numerical study,
including a comparison of the dosed-loop performance of different compensator designs, are
presented and discussed.
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1 Introduction

The transfer of energy between its mechanical form and heat generally has been ignored as a source
of both structural damping and excitation in the vast literature on control of flexible structures.
Only a few recent papers have considered control of thermoelastic structures [1, 2, 3, 4, 5], [6, 7, 8,
9]. However, the thermally induced vibrations that hampered the recently launched Hubble space
telescope have highlighted the coupling between mechanical vibration and heat transfer and the need
to model and control thermoelastic phenomena in flexible structures.

This paper has two main objectives: first, to develop a theoretical framework for analysis and
approximation in the design of feedback control systems for a broad class of linear thermoelastic
systems; second, to illustrate the application of the theory by presenting the most interesting re-
suits from an extensive numerical study of LQG optimal control of a thermoelastic rod. Both the
theory and the example focus on numerical methods and convergence analysis for the design of
finite-dimensional compensators based on finite-dimensional approximations of distributed models
of thermoelastic systems.

By a thermoelastic system, we mean an abstract wave equation coupled in a skew self-adjoint
fashion with a diffusion equation. While some of the theory developed here pertains specifically to
problems in which the generalized wave equation is second-order (in time), much of the theory applies
to a broader class of problems, including, for example, problems in which a Schrodinger equation
is coupled with a diffusion equation. In this paper, we are particularly interested in second-order
generalized wave equations because they are common in flexible structures, but the results here
that allow a more general class of wave equations are intended to apply also to problems such
as thermal blooming in lasers [10]. Although the theoretical framework developed in this paper
handles a wide variety of thermoelastic systems, it is not clear whether our hypotheses hold for the
thermo-viscoelastic systems with memory studied by Burns et al. [1, 2, 3].

Our philosophy in the abstract formulation of thermoelastic control systems in Section 2 and in
the approximation theory in Section 4 is to base the results on hypotheses that require as little as
possible beyond conditions that normally hold for the individual wave and diffusion equations. This
means that, in analysing a particular application, most of the work is done an the uncoupled wave
and diffusion equations, and the work required to couple the systems is minimized. For example,
in verifying the hypotheses for Theorem 4.6, which concerns convergence of approximations to the
open-loop thermoelastic system, once the convergence conditions for independent approximations to
the uncoupled wave and diffusion equations are verified, no further work is necessary to guarantee
convergence of the approximations to the thermoelastic system when the straightforward Galerkin
scheme that we assume for approximating the coupling operator is used.

The approach to compensator design in Sections 3 and 4.1 of this paper is to approximate an
ideal infinite-dimensional LQG compensator with a sequence of finite-dimensional compensators.
However, the abstract formulation of thermoelastic control systems in Section 2, the approximation
and convergence theory in Section 4.2, and the result in Section 5 on open-loop uniform exponential
stability should be useful in any method for analysis and design of controllers for thermoelastic
systems.

An important issue in both convergence of the approximating compensators and performance
of the dosed-loop systems is uniform exponential stability of the open-loop thermoelastic system.
While several authors [6, 11, 4, 12, 13) have proved strong stability for various linear and nonlinear
thermoelastic systems, few results have been published on uniform exponential stability. A result
in [12] on integrability of the energy, when applied to the linear case, yields uniform exponential
stability for thermoelastic rods with certain sets of boundary conditions. Also, a recent eigenvalue
analysis in (6] yields uniform exponential stability for linear thermoelastic rods with the same sets
of boundary conditions to which the result in [12] applies. The proof of our Theorem 5.1 uses a
Lyapunov function to establish uniform exponential stability for a large clam of linear thermoelastic
systems, but does not improve on the results in [6] and [12] for the rod. The results in [6, 12] and



our Section 5 do not apply to the set of boundary conditions for which uniform exponential stability
has been proved recently in [14].

In Section 6, we apply the theory developed in Sections 2-5 to design finite dimensional compen-
sators for a thermoelastic rod. We present numerical results for the functional control and estimator
gains that represent the compensators graphically. We also compare the dosed-loop eigenvalues pro-
duced by three of the finite-dimensional compensators based on different damping models. These
eigenvalues were obtained from simulations in which each compensator was connected to a model of
the rod with dimension significantly higher than the dimension of the compensator. This compar-
ison illustrates the importance of modelling even very light thermoelastic damping, or possibly an
artificial viscous equivalent, if no stronger damping mechanism is present.
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2 Abstract Thermoelastic Systems

Throughout this paper, H or Hj (i = 0,1, 2) will be a Hilbert space with inner product (.,-) or
(., .)i and corresponding induced norm I - or 1. 6. Also, V or V will be a reflexive Banach space
with norm f" or fl [j. The continuous dual of V will be denoted by V', and

V -- H -- V' (2.1)

will mean that V is embedded densely and continuously in H, which implies that H is embedded
densely and continuously in V' (see, for example, [15, 16]). In this case, (.,.) will denote both the
H-inner product and the duality pairing on V x V'.

Lemma 2.1 Let V and H be related as in (2.1), let A be a linear isomorphism (i.e., a continuous
linear bijection with continuous inverse) from V to V' such that .4 is dissipative in the sense that

Ree(v, Av) < 0 Vv E V, (2.2)

and define
Dom(A)= A- H, A = AIDom(A). (2.3)

Then Dom(A) is dense in H and A-' E B(H,H). Also, A is a mazimal dissipative operator on H.

Proof That Dom(A) is dense in H follows from the fact that H is dense in V' and .4- I is bounded
from V' to H. To see that A is maximal dissipative, suppose that there exists a dissipative linear
operator A : Dom(A) C H -* H that is a proper extension of A. Since R(A) = H, there exists
h E Dom(A)\Dom(A) and v E Dom(A) such that h # 0, Ah = 0, and Av = h. Then, for any real a,
(v + oh, A(v + oh)) = (v, Av) + o[hJ2 , and, for sufficiently large a > 0, Re(v + ah, A(v + ah)) > 0,
contradicting the dissipativity of A. 0

Theorem 2.2 Let the Hilbert space HI, the reflezive Banach space V and the operator.Al be as in
Lemma 2.1. Let the Hilbert space H2 and the reflezive Banach space V2 be as in Lemma 2.1, and
let .42 be a linear isomorphism from V2 to V2 that is V2 -coereive; i.e., there exists a positive real
number a such that

Re(O,A 2 0)2 > e11 11I, 2 V2. (2.4)
Also, let C E B(Vi, V). Define

H = H, x H 2 , V = V x V2  (2.5)

and A.A -V (2.6)

where £ E B(V, V) is defined by

(0,,C*'), = (0,£€), 0 E Vi, 0 E V2  (2.7)

(i.e., V is the Banack-.spce ,djoist of £). 71ea H, V, V' and A am as in Lemma 2.1.

Proof Since A, is dimipative and A2 is Vr-coercive, the operator (A2 - f-A '.C") E B(V2 , V) is
Vrcoercive. Hence, for f1 E V andf 2 E V, the pair (vi, 92 ) V given by

= (A2 - fA4 4 )- l(.A-l - 2), vi = A- ('v 2 + fl) (2.8)

is the unique solution to

Te m2 fh ((2.9)

The mapping that takes (fl, f) to (vj, 2) is clearly bounded from V' = VI' x V2' to V. 0
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Remark 2.3 We define the adjoint operators A, E B(V1, VI'), A; E B(V2, V2 ) and A* E B(V, V')
as in (2.7) with the appropriate duality pairing in each case. Under the hypotheses of Theorem 2.2,
A',, A; and A* have the same properilies, respectively, as A 1 , A 2 and A.

Remark 2.4 We define the operatorL: Dom(L) C HI - H2 to be the restriction of.C to Dom(L) =
{ E V1 : , E H2). If Dom(L) i dense in V, we define the operatorL" : Dom(L*) C H2 -. H1
to be the Hilbert space adjoint of L with respect to the H, and H2 inner products. It can be shown
that V is the restriction of V" to Dom(L*) = {0 E V2 : r6b E H).

For the class of systems of primary interest in this paper, there exist Hilbert spaces H0 and H2
and reflexive Banach spaces Vo and V2 such that Vo '--. Ho '-. V and V2 '- H '-. V2' (with each
injection continuous and dense). The thermoelastic evolution equations have the form

6'i(t) + Voitb(t) + Aow(t) + Z;e(t) = fo(t), t > 0, (2.10)

i(t) + A 2e(t) - £0ot(t) = f 2(t), t > 0, (2.11)

where Do, Ao E B(Vo, V ), Co E B(Vo, V), A 2 E B(V2 , V), fA E L,(0,i; Hi) for i = 0,2 and all i> 0.
We assume that A0 is symmetric in the sense that

(0, Ao )o = (,Ao4)o, 0, 0 E Vo, (2.12)

and that A0 is Vo-coercive and A2 is V2-coercive. We assume that Do is nonnegative in the sense
that

Re(O,DoO)o 2_ 0, 0 E Vo. (2.13)

To derive a semigroup generator for the thermoelastic system in (2.10) and (2.11), we first
consider the semigroup generator corresponding to (2.10) for the case L0 = 0. We make V into a
Hilbert space by defining

(0,0)v. = (0,Ao-4)o, -,0E Vo. (2.14)

Our hypotheses on A0 imply that the norm induced by the inner product in (2.14) is equivalent to
the original V norm. We define

H 1 = Vo x Ho, V = Vo x V0 , (2.15)

and we identify V with Vo in the first component of H and V and write V' = Vo x V. It follows
that V '--. H, '- V.

Next we define

A i= 0 1 E B(V, V'). (2.16)

That A is an isomorphism from V to V1' follows from

.4,=[-A;'Do -. 4 ']A- = I • B(V, V,). (2.17)

We define A, by (2.3) with A, A and H replaced by A, A, and H1, respectively. According to
Lemma 2.1, A , generates a contraction semig:4up on H1 . (See [15, 16, 17, 18] for similar approaches
to obtaining semigroup generators of the form in (2.16).) Also, we note that the restriction of -A 2
to A-'H 2 generates a uniformly exponentially stable analytic contraction semigroup on H3. For the
thermoelastic system, we define

= [0 4] eB(V, V2 ) (2.18)

4



to obtain the situation in Theorem 2.2 with A 1 defined by (2.16). The corresponding A defined by
(2.6) is

A -= o -*Do -f4 E B(V, V') (2.19)
0 Lo -A 2

where

V= Vo x Vo x V2 . H = V x o x H '-. V' = Vo x V xV 2 . (2.20)

The semigroup generator A for the thermoelastic system in (2.10) and (2.11) thens is defined by (2.3).
Explicitly, the domain of this semigroup generator is

Dom(A) = {(0,, 0) E V : A(O, 0,6) E H). (2.21)

The system in (2.10) and (2.11) now can be written as

iQt) = Az(t) + f(t), t > 0, (2.22)

where z(t) = (w(t), ti(t),0(t)) E H andf = (0,10,12) E L1(0,f;H) for all f> 0. If {T(t) : t > 0)
is the semigroup generated by A, the mild solution to the initial value problem consisting of (2.22)
and an initial condition z(O) = (w(O),ib(O),e(O)) E H is

z(t) = T(t)z(o) + j T(t - s)f(s)d, t > 0. (2.23)

• • • l I6



3 The LQG Optimal Control Problem

In the abstract thermoelastic system (2.10)-(2.11), we consider inputs of the form

f() = Bu(t) + §7(t), t > 0 (3.1)

and an output given by
W = CZ(') + JW'), > 0, (3.2)

where z is the mild solution to (2.22), u(t) E R, -I(t) E R, Y(t) E RP, .(t) E RP, B E B(R' , H),
b E B(R' , H), and C E B(H,RP). Also, y and v are stationary zero-mean Gaussian white noise
processes with covariance matrices r and R, respectively, and R is positive definite.

The linear-quadratic-Gaussia (LQG) optimal control problem is: given the output y in (3.2),
choose u to minimize

J(u) = lim E.!- tJ LNX, ZW + UtjTUt))dj (3.3)

where Q E B(H, H) and R E R" Xr aLe self-adjoint with Q nonnegative and R positive definite; as
in (3.2), z is the mild solution to the thermoelastic system (2.10)-(2.11) (or, equivalently, (2.22))
for the input of the form (3.1).

In view of (2.10) and (2.11), the operator B has the form

B= Bo (3.4)
LB2j

where
B, = [bili. 2 ... bim], bi E Hi, j= 1,2,...m, i= 0,2. (3.5)

The operator § has the same form. The operator C in (3.2) has the form

C = [C C02 C21, (3.6)

where Coi E B(Vo, RP), Co2 E B(Ho, If) and C2 E B(H2 ,RP).
Theory for the infinite dimensional LQG optimal control problem with bounded input and output

operators can be found in [19, 20, 21, 22, 18). We t riefly summarize the relevant results and essential
features of the theory here. As in finite dimensions, the LQG problem separates into a deterministic
lnear-quadratic regulator problem on the infinite interval and a dual state estimator, or filtering,
problem.

First, we consider the regulator problem, which is to choose the control u to minimize the integral
in (3.3) when both noise processes in (3.1) and (3.2) awe zero, the output operator C is the identity,
and t! = o0. If tha operator pair (A, B) is uniformly exponentially stabilizable (i.e., there exists a
bounded linear operato K such that A - BK generates a unfformly exponentially stable semigroup
on H) and the pair (Q,A) is uniformly exponentially detectable (Le., the pair (A*,Q) is uniformly
exponentially stabilizable), then there exists a unique nonnegative self-adjoint solution II E B(H, H)
to the operator algebraic Riccati equation

A'II + DA - nBR-1 JW11 + Q = 0, (3.7)

with If(Dom(A)) C Dom(A*). The optimal control for the infinite-time linear-quadratic regulator
problem has the feedback form

u(t) = -Kz(, t > 0, (3.8)

where
K = R- I11 B(H,R"). (3.9)

6



For the filtering problem, we define Q = rB'. (3.10)

If the pair (C, A) is uniformly exponentially detectable and the pair (A, Q) is uniformly exponentially
stabilizable, the operator algebraic Riccati equation

Af + A" - fC'fZ-'Cf + Q = 0 (3.11)

admits a unique nonnegative seif-adjoint solution fI E B(H, H) with fI(Dom(A')) C Dom(A). The

minimum-variance estimate of z(t) given V(r) (r < t) is a mild solution i(f) to the evolution equation

1(t) = A(t) + Bu(t) + k{y(t) - Cit)) (3.12)

where
R = fl(C") - E B(RP,H). (3.13)

The optimal LQG compensator consista of the filter, or state estimator, in (3.12) and the control
law

u(t) = -Ki(t), t > 0, (3.14)

with the control and filter gain operators given by (3.9) and (3.13), respectively.
The optimal closed-loop system then takes the form

z(t) = S (t - ,)z(e), 0 < S < t (3.15)

where z(t) = (z(t), i(t)) E Z = H x H and {Sa(t) : t > 0) in the Co-semigroup of bounded linear
operators on Z with infinitesimal generator

Ad = A - BK c]' Dom(Ad) = Dom(A) x Dom(A). (3.16)

If {S(t) : t > 0) and {S(t) : t > 01 are the semigroups of bounded linear operators generated on

H by infinitesimal generators A - BK and A - KG, respectively, then it is easy to show that

e(t) = S(t)e(0), t > 0, (3.17)

where e(t) = z(t) - i(t). Moreover, if for some real a and M,

IIS(0 < Me- °t , t > 0, (3.18)
II1)11 < Me-", t > 0, (3.19)

then for each b < a, there exists a constant Md > 0 for which

IIS.(t)II < Msi",t > 0. (3.20)

Finally, as in the finite dimensional cae, it can be shown that

w(,.) = w(A - BK) uu(A - kC) (3.21)

where a'(Aa) denotes the spectrum of the closed-loop semigroup generator in (3.16).
We note that the uniform exponential stabilizability and detectability conditious stated in this

section are sufficient for the existence of unique nonnegative self-adjoint solutions to the operator
algebraic Riccati equations (3.7) and (3.11). These conditions are not necesry for some problems
with finite rank Q and 4. A sufficient and usually necmary condition for uniform exponential
stabilizability and detectability is that the open-loop system be uniformly exponentially stable except
possibly on a controllable and observable finte-dimensional subepace.
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It is convenient to note that, since R(K) C Rm and Dom(k) = RP, there exist k = (kl ... , k)
and -- (i,-",i,) with kj and ij in H such that

(Kzj = (z, h,), z E H, j 1,2.... , m, (3.22)

and
p

k E = (i i2 ... kp]t, r E RP. (3.2)
J=1

Also, kj, j E H implies that kj = (kj,,,kj.2, kjs) and Ij = (0.,1,&j,2,1j.3) with kj.,,. E Vo,
kj,2,kj,2 E Ho, and kj,,,kj,3 E H2 . It follows that

(z,k- ) = (0,-O,,)o + (,, kj.2)o + (, kj.3)2 (3.24)

for z = ( 0,,,) E H. The vectors k and i, and their components, kj,j and ij,, are referred to as
functional control and estimator (or observer) gains, respectively.

8



4 Approximation and Convergence

4.1 Approximation Theory for the LQG Control Problem

An approximation and convergence theory for the optimal LQG problem for infinite-dimensional
systems was developed in [21, 23, 24, 18]. Here, we shall first briefly summarize the generic theory
and then take a closer look at it in the context of abstract thermoelastic control systems.

Hypothesis 4.1 TAere ezists sequence offlnite-dimenaional *bpaces H" (n = 1,2, ...) of H, and
sequences of operators A" E B(H",H"),B" E B(R",H"),B" E B(R', H") Q" e B(H",H"),C" 6.
B(H", RA). 7%e operators Q" are nonnegative and self-adjoint for each n.

From here on, we take i" = A-r(b-)- e B(H").

Hypothesis 4.2 The finite dimensional algebraic Riccati equations

(A")'1" + JnA - - UnBR-(B-)*r + Q- = 0 (4.1)

and
A"II" + fil"(A") - U"(C)it- ICfII" + o" = 0 (4.2)

admit unique nonnegative self-adjoint solutions U" E B(H", H") and h" C B(H", H"), respectively.

We define gain operators
K" = R-'(B-)'n" E B(H", R'), (4.3)

and
K" = fI"(Cf)e k I E B(R', Hn), (4.4)

for a sequence of finite-dimensional compensators for the control system (2.10)-(2.11) with input of
the form (3.1) and output of the form (3.2). The -- th compensator is given by

u"(t) = -Kni"(t), (4.5)

= A" "(t) + B"u(t) + k"[y(t) - C"(t)]. (4.6)

The resulting closed-loop system is then given by

z"(t) = S(t - .)z(a), 0:5 s < t <. o (4.7)

where z"(t) = (z"(t), "(t)) E Z" a H x H", and {S(t) : t > 0) is the Co-semigroup of bounded
linear operators on Z" with infinitesimal generator AZ : Dom(Anj) C Z" - Z given by

ACI= c (A" - "K" -/ "  j Dom(A-) = Dom(A) x H". (4.8)

Since K" e B(H",R-) and k" f B(RF',H") we have

[K"z"b = (k",z"),, j =1,2,...,m (4.9)

for z" e H" and
p

for rE R' with ',k7 C H", i= 1,2,...,m, j = 1,2,-.,p.
The convergence theory can be summarized as follows. We will refer to the following finite

dimensioal semigroups:
7-"() = e-,, S.(t) = e1-- -x-, S.() = jl--,c-. (4.11)

and their adjointa T"(t)*, Sn(t)" and (t).
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Hypothesis 4.3 For each n, there eists a linear mapping P'" from H onto H" such that

lim P"z = z, z E H. (4.12)

For each z E H and each t _ 0,
lim 7(t)P'z = T(t)z, (4.13)

lim 7"(t)*P'z = T(9)*z. (4.14)

where, in each case, the convergence is aniform in 9 fort m bounded intervals. Also,

lim B"u = Bu, u E Kn, (4.15)

lim Q"P"z = Qz, z E H, (4.16)

and
lim CP"z = Cz, z E H. (4.17)

If
sup I11"11 < oo and sup H1"IIl < 00 (4.18)
n n

and there exist positive constants M and a, independent of n, for which

IIS"(t)11 _ Me-", and It'(t)l < Me", t > 0, (4.19)

then the algebraic Riccati equations (3.7) and (3.11) admit bounded nonnegative seif-adjoint solu-
tions 1I and 11, and

lra UP"z = I1z, z E H, (4.20)

jim fI"P"z = fIX, z E H. (4.21)

Also,
urn S"(t)P"z = S(t)z, z E H, (4.22)

and
lin k (t)Pnz = 5(t):, z E H, (4-23)

with the convergence uniform in t in bounded 9-intervals. If, in addition, the operators Q" and 4a"
are coercive and bounded away from 0 uniformly in n, then the uniform boundedness of 111"11 and
IIirII yields the existence of positive constants M and a independent of n for which (4.19) holds.

The easiest way to guarantee (4.18) and (4.19) is to show that there exist positive constants M
and a, independent of n, for which

117"(0115 _<M e- ",1 t >_ 0, (4.24)

although such a uniform decay rate for the approximating open-loop semigroups does not always
exist. When (4.18) holds but the semigroups {S"(t) : t > 0) and {(t) : t > 0) are not necesarily
uniformly exponentially stable, uniformly in n, then bounded nonnegative seff-adjoint solutions 11
and fl to (3.7) and (3.11) exist, but 1 and L ware guaranteed only to onverge weakly to 1 and
fl, respectively, as n - oo.

When the strong convergence in (4.20) and (4.21) holds, we obtain

lim IIK"P" - KD(U r.) = 0, (4.25)
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lim IIK' - KII(R,,j) = 0, (4.26)

and therefore
lrn ki= kj, j 1,2,...,m, (4.27)

and
ln - (4.28)

in H. If we define P: Z Z-. by
[I, 0 ](4.29)

then we obtain further that

urm SJ(t)P z = Sd(t)z, z I Z, (4.30)

uniformly on bounded t-intervals.
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4.2 Abstract Approximation Theory for Linear Thermoelastic Systems
Now we condiser the construction of the approximating finite dimensional subepaces H", the map-
pings P" and the operators A", B', Q", etc. We establish a generic approximation theory for
abstract linear thermoelastic systems that includes relatively easily verified sufficient conditions for
the convergence in Hypothesis 4.3.

We assume the hypotheses of Theorem 2.2.

Hypothesis 4.4 Forj = 1,2, and n = 1,2,3,..., H" is a finite dimensonal sbspace of Vj and
Aj4 E B(HjH7) such that the followng condition; hold.

(i) For each vj 6 Vj (i = 1,2), ther exists, a sequence vj" E H sock that

Vj ,j'- "j. (4.31)

(ii) For each n, A' is dissipative; i.e.,

Re(v,Anv) 1 0, v E H'. (4.32)

(iii) For each f E VI' and each realA > 0,

(A - A')-P"f L'-# (A - A)-1f (4.33)

and
(A - AIn)- P"f ! (A - A1J)-'!, (4.34)

-where Pj' E B(Vj', ) is defined by

(v,',"f)j = (vf)j, v H7, j 1,2. (4.35)

(iv) There ezaits a positive constant a such that, for all n,

Re(v,Av) 2 > allvll, V 6 H2'. (4.36)

(v) For each f V2' and each rmal > 0,

(A\+A)-'2f - ( +A2)-I1f (4.37)

and
(A + A.,,' )- .' -K- (A + .A;)-'f. (4.38)

Remark 4.5 Tle operator j' restricts a functional f E Vj' to Hj7 and identifies flE; with an
element of11 H va the Lies: map for 117. If f can be identified with an element of Hj (via the Lies:
map for Hj), tkea P71f is the Hj- projection of f onto 117 .

With P7' defined by (4.35), we define L" 6 B(H', H3") and L"" e B(H0, H0) by

Lt -=£ C I&,- or (v 2 ,L"vt)= -(v 2 ,tC1 )2 , i E H~s, 9E H', (4.39)

= " I,- or (v,L")i = (v,C 2 )i, vi 6 HI", 2 J6 . (4.40)
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Hence L" * is the Hilbert-space adjoint of L'. The operator L" is a straightforward Galerkin ap-
proximation of Z. On the other hand, Hypothesis 4.4 does not require that A" and A" be Galerkin
approximations. Next, we define

H" = H" x H2 (4.41)
and

"An A -L I EB( ,H). (4.42)

Theorem 4.6 For A E V', f2 E V and A > 0,

(A -A)'( P') (A- A)-' ( a nA - (4.43)

and ( ) n-co. (4.44)

Proof For f E VI1' and f2 E V2 , we set

Sh -- - )(4.45)

a'( )( ) (4.46)

We note that (4.46) is equivalent to

,,'= (A - .A?)-(P 'fi - L",,) = (A - ,'l)-' (f', - ,C,,) (4.47)

and
= (A + A)-(? 'f + L"v?) = (A + AY 1)- (f2 +,C,,). (4.48)

Substituting (4.47) into (4.48) yields

(A + A;) + L"(A - A?)-1 L"'],v = P 'f + L"(A - A7')-P'f 1. (4.49)
From (4.32), (4.36), (4.39) and (4.49), we have

and2

I,,I nn =e((, [( + A;) + L(, -,, )

= (A+ -'(k2,f 2  + ( ,"( - (4

(4S(0)
= Re((;, 1) + (,,).,C( X - A ",)-'L*] ),)

< II,;112(12lV, + I11C11" I l( - A7)-'IPA'f1 lh).

Since (4.33) implies that II(A-A,)-' 1f, ill in bounded in n, (4.50) shows that llll'11 is bounded
in n. Then, it follows from (4.33) and (4.47) that ivj"ril1 is bounded in n.

Next, we note that, for z = (z,, z 2 ) e H",

Re(z, (A - A"),) = Re((z1 , (A - A7j)z,), + (2, (-% + A*) 2 )2 ) > OlZ21l2 + -1,1. (4.51)

We set

En ( ") ( A)- 1 (fi - Cv) (4.52)
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and z"= Z[ft V / --' n #  (4.53)

Then, recalling (4.47) and (4.52) yields

(,', (A - A )z,)i = (z"j', (.% A )v7, - (A - A)V)i
= -( ,, r( (4-2)), = -(z *,C4) 1 - (Z4,z( V-,)) (4-54)

and similarly (4.48) gives

(2, (A + A2)Z2) 2 = (4", (A + A2)v2 - (A + A)V) 2

= (4,, 4' - ,I))2 = (4,fj") 2 + (z,fP(i - ,,))2. (4.55)

Hence,

Re((z",(X- A"')z')1 + (4,(A+A)4) 2) = R(-(rr ,C(i - V2))1 + (--,C(il'-Vl))2). (4.56)

In view of (4.51) then,

aI114 2 - 11 4 1111- IIZfll- I1K' - V2112 + fIz 2 112- I1411 tI' - vilI (4.57)

According to (2.6), (4.45), (4.52) and conditions (iii) and (v) of Hypothesis 4.4,

UrI10 - vll = 0 and UMbno I112 - V2112= 0. (4.58)

Hence, 110"11 is bounded in n, and we have seen that llv"l is bounded in n. Hence IIz"II is bounded
in n. Therefore, (4.57) and (4.58) show that v2 converges in V2 to v2. Then (4.47), condition (iii)
of Hypothesis 4.4 and (4.58) show that v4' converges in V to vj, and (4.43) is proven. The proof of
(4.44) is the same except that all operators except PI and P0 are replaced by their adjoints. 0

Hypothesis 4.4 holds for most common approximation schemes, Galerkin schemes, in particular.
The following theorem establishes conditions (iv) and (v) of Hypothesis 4.4 when An represents a
Galerldn approximation of A 2 .

Theorem 4.7 Assume the hypotheses of Theorem 2.2 regarding H"2 , V2 and A 2 , ,ad "ame con-
dition (i) of Hypothesis 4.4 for j = 2. Define A"2 E B(H2, H2) by

A = 1tA 2 I2; or (v,AW)2 = (v,A, W)2, V, W E H. (4.5g)

Then conditions (iv) and (v) o.f Hypothesis 4.4 hold.

Proof condition (iv) is immediate. To prove (4.37), let I E V and set

9 = (A +A2)- 1f, (4.60)

• = (A + A2)-'2f. (4.61)

Also, let r eH2" such that lp - 1112 converges to 0. Then

all,,li < I(', (-% + A')21 = I(t, P1', f)31 = I(e'1)31:5 IIv'll2tf Iv. (4.62)

Hence IIV"1l is bounded in n. Next,

illy" - i'll < I(v, - r", (A + A;)(v3 - i"))21
= I(v" - i",P2 12 - ( - ,(A + A ")2 I -- I(?' - , - (A + )") 2 - (4.63)
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Since " converges in V2 to v and A2 E B(V, 1V2), it follows that 116"112 i bounded in n and (A+A2 )C"
converges in V2' to (A + A2)V = I. Therefore, (4.63) shows that 1v" -V112 converges to 0 as n -, oo,
so that v" converges in V2 to v.

The proof is the same when .A2 and A2 are replaced by their adjoints. D

When A, has the form (2.16) and A" is a Galerkin approximation of A,, condition (ii) of
Hypothesis 4.4 can be proved either by arguments similar to the proof of Theorem 4.7 or by projec-
tion arguments like those in [18]. Also, see [17].

Usually, the operator P" in Hypothesis 4.3 is the H-projection onto H" = H, x H', so that
condition (s) of Hypothesis 4.4 guarantees (4.12). In this case, if fj E Hj, then P"(f1 ,, 2 ) =
(A"flf, P2",) (recall Remark 4.5). Hence, it follows from Theorem 4.6 and the "/rotter-Kato theorem
[25] that the approximating open-loop semigroups T.(t) and 7.(t) converge as in Hypothesis 4.3.

Also, when P" is the H"-projection, it is most common to define the approximating input,
state-weighting and output operators by

Bn = P"B (4.64)

= P"QIH., (4.65)

and
C!" = 6'1I., (4.66)

so that (4.15), (4.16) and (4.17) follow from (4.12).

4.3 Matrix Representations of Approximating Operators

We assume now that A" has the form in (2.16), that £ has the form in (2.18) and that H, and V1
have the forms in (2.15). Then Hl' has the form Ho' x Ho' with H" C V. We assume that, for each
n, Ho" is the span of a finite number of basis vectors e" and H3" is the span of a finite number of
basis vectors e.j. (The spaces Ho" and H2" may have different dimensions.)

Also, we use Galerkin approximations of both A, and A 2. The matrix representation of the
operator A" in (4.42) is then

I 0 1 01

matrix representation of A" = [An ] = -Mn-tK- -M.-tK4 -M Y (4.67)

where

Mo" = [(e*,,,e"j)M20 = (,,,,ej)2]
= [(e,.,cj)J K2" = [(e , A2ej)A (4.88)

= 1(,2*,f j)d K = [(e;.,,Voej),].

The matrix represtntation of the operator B" in (3.1) and (3.4) is

[B-1 = Mo('[(e ,,iW)J] (4.69)M30-1 I(e,,,6v),I

and the matrix representation of the operator A* is similar. The matrix representation of the
operator C in (3.2) and (3.6) is

[C"] = [([ ,i] [Ce,,,] [C2e,] ]- (4.70)
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To discuss the matrix representations of the operators Q', 3, H" and ft" , it is convenient to

define basis vectors

r0j = (e.1,,0,0) '1 = (0,e ,10) '2 = (0,0,el,) (4.71)

and the block-diagonal matrix
M" = diag(M , K, M2'. (4.72)

The matrix representations of Q" and 0" are

[Q-] = M[n[(E'.,Q]7~j)], ] M"-[(,, .j)], ',lj = 0,1,2. (4.73)

The matrix representations [II"] and ff1"] of lIn and ft", respectively, are determined by solving
Riccati matrix equations equivalent to the operator equations (4.1) and (4.2). The form of []In] is
like that of [Q"], and in general neither of these matrices is symmetric. Hence, rather than solving
the matrix representation of (4.1) directly, it is preferable to premultiply the matrix representation
of (4.1) by M" to obtain a Riccati matrix equation that can be solved for the symmetric matrix
M"[]I"]. Also, instead of solving the matrix representation of (4.2), it is preferable to postmultiply
the matrix representation of (4.2) by M' - 1 to obtain a Riccati matrix equation that can be solved
for the symmetric matrix [hiI]M"- 1 . (See [18].)

Finally, it follows from (4.3) and (4.4) that the approximating functional control and estimator
gains in (4.9) and (4.10) are given by

[k" k2 ... k'j = E"M"-I["jjMn[Bn]R- 1, (4.74)

[i' k ... kj = E[n]Mn- [C"]TR - I , (4.75)

where
" = [1 [] [ 1,] ] (4.76)

and [0i],J, for example, is the row matrix containing the basis vectors E,j in order. See [18] for
details on computing similar functional gains.
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5 Stability of the Open-loop System

We consider the system in (2.10) and (2.11), and we define

Dom(Ao) = A-1 Ho, Ao = AoIDo 1(A.). (51)

Since Ao is symmetric and Vo-coercive, Ao is seif-adjoint and Va-coercive. We recall the operators
Z and o in (2.18) and note that Z E B(Vo, V2).

In this section, we assume that

Zo = Lo E B(o, H2), (5.2)

and we assume that there exists a positive real number a such that

Dom(Ao) = {v E Dom(Lo): Lv E Dor(L;)) and A0 = &L;Lo, (5.3)

where L; is the Hilbert4pace adjoint of Lo with respect to the Ho and H2 inner products (recall
Remark 2.4). In this case,

(v,w)v. = a(Lv,0Low)o, V,wE V. (5.4)

The conditions (5.2) and (5.3) are common in thermoelaatic structures because the thermal stress
enters the equation governing mechanical vibrations in the same way as the stress due to elastic
deformation [26, 27].

Theorem 5.1 Assume the conditions stated so far in this section and that the damping operator
1>0 is symmetric (in the sense of (2.12)). If the range of the operator

Ao = LoAj' (.5)

is in V2 or if 'Do is Ho-coercive, then the semigroup generated on the space H in (2.20) by the
operator A defined in (2.19)-(2.21) is uniformly exponentislly stable.

Proof First consider the case where X(Ao) C V2 but Do is not necessarily Ho-coercive. It is
clear that Ao E B(Ho,H2 ) and A; E B(H2 ,Ho). Hence, 2(Ao) C V2 implies Ao E B(Ho,V2 ).
Furthermore, it can be shown that A; E B(H2 , Vo) and aLoA; is the Hrprojection onto %(L).

Now define the following self-adjoint bounded linear operator on H:

Q = [ 0 -a* (5.6)
0 -2aAo alI

where a is a positive real number. For a sufficiently large, Q is H-oercive. Also, since X(Ao) C V
and 7(A;) C V, QV C V. For 1)o = 0 and z = (v, h,. ) E Dom(A) C V,

Re (Qz, Az) = R (Qz,.z) =

(5.7)

-I1v110 - Ihl - sRe(,A 2 )2 + (2. - 1)R(o,/u) 2 + 2.(LoA;9, 9) + 2ORe(AO,A,9) 2.

Since I(Aoh,A20)2: JJIhll " IIA:llB(v,.,)o -II10l12 (5.)

and A. E B(Ho, V2), it follows from (5.7) that, for a sufficiently large, there exists a positive Mal
number O such that

Re(Qz, Az) _< -Iz 2 , z E Dor(A). (5.9)
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When Do # 0, the right side of (5.7) has more terms, but (5.9) can be obtained in a similar manner.
The generalized Schwarz inequality l(v,Doh)o 2 5 I(v,Vov)o- l(h,Doh)o1 is useful.

If D0 is Ho-coercive, then replacing a with 0 in (5.6) allows (,.9) to be obtained for a sufficiently
large and some positive P. 3

Remark 5.2 The condition 7I(Ao) C V2 is equivalent to the following two conditions combined:

Dom(L;) nfl(L;)-" C V2  (5.10)

and there exists a real tumber p such that

1v112 _< pILovjo, v E Dom(L;)fnAl(L)'. (5.11)

Remark 5.3 To generalize Theorem 5.1 to the case where )o is not symmetric, we would have to
impose further conditions on Do, wshich would take us beyond the focus of this paper.

The hypotheses of Theorem 5.1 hold for many but not all linear thermoelastic systems that
seem likely to be uniformly exponentially stable. In most applications, the conditions (5.10) and
(5.11) restrict the combinations of boundary conditions. For example, if (2.10) and (2.11) represent a
thermoelastic rod, as in the example in the next section, (5.10) and (5.11) hold for Dirichiet boundary
conditions on the wave equation at both ends of the rod and Nuemann boundary conditions on the
heat equation at both ends, and for various other combinations. However, (5.10) and (5.11) do not
hold for Dirichlet boundary conditions on both equations at both ends of the rod.

Recently, J.U. Kim (14] has proved that the linear thermoelastic rod with all Dirichlet boundary
conditions is uniformly exponentiall stable. We have tried without success to modify the hypotheses
of Theorem 5.1 to cover this case. Also, it might be possible to apply the methods used by Slemrod
in [12] for nonlinear thermoelasticy to prove uniform exponential stability for the linear all-Dirichlet
case, but (5.10) and (5.11) hold for the boundary conditions treated in [12]. Hansen [6] has shown
that all of the eigenvalues are bounded strictly to the left of the imaginary axis for the linear
thermoelastic rod with all Dirichlet boundary conditions, but Hansen's analysis suggests that the
eigenvectors do not form a Ries basis.

The conditions (5.10) and (5.11) say that the operator A2 in the diffusion equation is bounded
in a certain sense with respect to the stiffness operator Ao. We believe that some such relative
boundedness is necessary for uniform exponentially stability. A numerical experiment in which
we used the one-dimensiunal wave equation for (2.10) and a fourth-order one-dimensional partial
differential operator for A 2 in (2.11) yielded a sequence of complex eigenvalues that appeared to
approach the imaginary axis asymptotically.
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6 An Example and Numerical Results

6.1 Linear Model of a Thermoelastic Rod
We consider the axial vibrations of a visco-thermoelastic rod that is damped and insulated at both
ends. The length of the rod is normalized to 1. Control actuation is produced by a single force
directed parallel to the rod and distributed uniformly over the rod segment ill _< q < . A sensor
measures aidal displacement at q7 = (i.e., the left end of the rod segment over which the actuator
force is distributed). Finally we assume that both the actuator input and sensor output are corrupted
by zero-mean Gaussian white noise with unit intensities.

The dynamics of the plant are described by the equations of one-dimensional linear thermoe-
lasticity (see, for example, [26, 28, 13]), which consist of coupled one dimensional wave and heat
equations. If the rod has Kelvin-Voigt viscoelastic damping in addition to thermoelastic damping,
then the state equations, boundary conditions, and output equation are

p-2(t,i7) - aD(A +2 83  w -(, + 82 w,).2.(,,1) (6.1)

+a.(3A + 2p)Le(t, 17) = bo( 1)u(i) + bo(i)y(i), 0 < 7) < 1, t > 0,

L90 .920 L92W
PC (t9 0 - 8 0 1)=0 0 7<1,t>0pc-a(t, )-i (t,17)+ jaL(3A+ 2 p)--(,l)= 0 < q < 1, >0, (6.2)

W(t, 0) = 0 = W(t, 1), t > 0, (6.3)
0o a9(t,o) = o = L(t, 1), 1 > 0, (6.4)

y(t) = w0, 17) + P(t), f' (6.5)

where w and 0 are respectively the axial displaceme.. and absolute temperature, p is the mass
density, A and p are the Lami (elasticity) oa:ameters, c is the specific heat and x is the thermal
conductivity. The positive constant 0 is a reference temperature-the absolute temperature of a
stress-free reference state for the ro. The nonnegative constants aD and aL an respectively the
viscoelastic coefficient and the coefficient of therm.l p .,,, 7 and s are the noise processes, and
the function b0 E L2 (0, 1) is given by

) 0, otherwise. (6.6)

Because of the insulated, or Neumann, boundary conditions in (6.4) on the temperature dis-
tribution, the open-loop system corresponding to (6.1)-(6.2) has a zero eigenvalue for which the
associated ei6genvector consists of sero displacement and velocity and nonzero uniform temperature
distribution. This eigenvector is orthogonal (in L2 (0, 1)) to the control input function lo and is in the
null space of the output operator corresponding to the measurement in (6.5), so that the span of this
eigenvector is uncontrollable and unobservable. It follows that (i) the only part of the temperature
distribution that can be controlled or observed is the part that is orthogonal to uniform tempe-ature
distributions; (ii) the average (over i) temperature in the rod, which we denote by 0.., is neither
stabilisable nor detectable; (iii) .,, is a constant function of t.

Consequently, in the thermoelastic control problem, we replace the temperature distribution9(t, j) with 0 t, 1) = 6(0, ) - .,.. 
(6.7)

The state equations, then, are (6.1)-(6.5) with 9 replaced by . The state space H has the structure
in (2.20) with

Ho = L2(0, 1), Vo = Ho(0,1), (6.8)
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H2= E L2(0,1) o dlj7= 0), V2 = H(0, 1) nH 2 . (6.9)

All of the spaces in this example are real. We use the standard L2 inner product for Ho, but we use

(0, 0)= [j 0 d9 (6.10)

for the inner product on H2. This inner product on H2 is required to get the Z; for which the
semigroup generator in this example has the form in (2.19). For Vo and V2 , we use the norms

11011o = (j I1"1 d97) 1 2, 110112 = (j I1 drI)'/ 2. (6.11)

We define the operators .Ai E B(Vj, V), j = 0,2, 0 D B(Vo, Vo) and Lo E B(Vo, V2 ) by

(0, = foA)+2 0b'0'd,/, 4, E Vo, (6.12)

(,A02J ;o''dv,, 0,0 E V2, (6.13)

(11 ) D(A + 2p) , 'd, 0,0' Vo, (6.14)

and
an Ij aL(3A + 2 p) O'd , E V2 , O' 6 V0. (6.15)10 0

With these operators, the system in (6.1) and (6.2), with 9 replaced by 9, has the form in (2.2)
with a semigroup generator of the form in (2.19).

Prom (6.12)H(6.15), it follows that we have all of the conditions in Section 5, including the
hypotheses of Theorem 5.1 (assuming OL > 0, else we would not have a thermoelastic problem).
Hence, the open-loop thermoelastic system is uniformly exponentially stable, even if aD = 0.

For the numerical studies in this paper, we chose the parameters in (6.1) and (6.2) for an alu-
minum rod of length 100in (see [27, 29]). With the length normalized to 1, the parameters take the
values in Table 6.1.

p = 9.82 x 10-2 A = 2.064 x 10 p 1.11 x 10-1

c = 5.40 x 10-  x = -7.02 x 10- ' =68
OL 1.29x10' OD=0

= r =- .486

Table 6.1: Parameters for (6.1)-(6.6)

The numerical results in this paper focus on the effects of thermoelastic damping. In 7), we
presented numerical results for a similar example that included nonsero viscoelastic damping (aiD >
0). The functional gains were much smoother than the gains for the case with thermoelastic damping
only, and the approximating functional gains converged much faster. The numerical results in
[7] indicate that, if Voigt-Kelvin viscoelastic damping is present, its effect dominate* the effect of
thermoelastic damping, but it is not clear whether Voigt-Kelvin viscoelastic damping is present at
significant levels in common metals.
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6.2 The Optimal Control Problem and the Approximation Scheme

We have m = I = p = I with the input operators given by

Bo r = Bor = (-bo)r, r E R1 , B2 =, = 0, (6.16)

and the output operator given by

¢( = O(0), (),0,9) E H = V0 x Ho x H2. (6.17)

In the quadratic performance index, we take the operator Q E B(H) to be given by

QZ = Q(w,t%,9) = (w, 6,0), (6.18)

and we take R = 1. This Q penalizes the total mechanical energy in the rod but does not penalize
temperature variations from the constant average value. The operator Q 4 B(H) is given by (3.10)
with B = B given by (3.4) and (6.16). Since 7f(t) and v(t) have unit intensities, r = R = 1.

The optimal functional control and estimator gains have the form k = (k 1 ,, k1,3, 1.) and

11 = 01,9 i,2, il,3) with k1,1, k, E Ho(0, 1), k1.,, i,2 E L2(0, 1), and k 3, k1 3 E H2 C L2(0, I). If
K and k are, respectively, the control and estimator gain operators, then

KZ = 'H,6' dio q +1 0 dy + I' LJ1,s dl, z = ( 0, ',O) E H, (6.19)

and
/Kr = (k 1,1; r11,2, rk1,s) E H, r E R'. (6.20)

In [7], we compared two Galerkin approximations for solving a.linear-quadratic regulator problem
for the thermoelastic rod in this example. One scheme was a finite element approximation in which
linear splines were the basis vectors; in the other approximation, the open-loop eigenvectors of the
distributed systems were the basis vectors. The modal approximation gave faster convergence for
the approximating functional control gains. In this paper, we use the modal approximation only.

It is easy to see that, for the boundary conditions in this example, the eigenspaces of the open-loop
thermoelastic rod are three-dimensional subspaces each spanned by a two-dimensional subspace o"
the undamped wave equation and & one-dimensional eigenspace of the heat equation. The eigenvec-
tore of the wave equation are sine waves, and the eigenvectors of the heat equation are cosine waves.
The sequence of three-dimensional subepaces of the thermoelastic rod are mutually orthogonal and
complete in the state space H. Thus it is easy to show that all the conditions of Hypothesis 4.4
hold.

The open-loop eigenvalues can be determined as the solutions to the cubic characteristic equations
corresponding to the three-dimensional eigenspaces. For the values of the parameters that we used,
the eigenvalues corresponding to each open-loop subspace consist of a complex conjugate pair and
a real eigenvalue, all with negative real parts. It can be shown by analysis of the sequence of
cubic equations that, asymptotically, the real eigenvalues approach -co and the complex pairs of
eigenvalues approach a vertical line strictly to the left of the imaginary axis. This, together with the
orthogonality and completenem of the eigenspaces, guarantees (4.24); Le., that the approximating
open-loop semigroups are uniformly exponentially stable, with a decay rate uniform in n (the order
of appraximation, or number of modal subepaces). Hence (4.18) and (4.19) hold. Therefore, (4.20)-
(4.30) are guaranteed.

To obtain the approxmating ccntrol and estimator gains shown in Figures 6.1 and 6.2, we used
the matrix sign function method in [30) to solve Riccati matrix equations equivalent to the finite
dimensional Riccati operator equations (4.1) and (4.2), as discussed in Section 4.3. We used (4.74)
and (4.75) with m = p = 1 to compute the approximating functional control gains kh7j (i = 1,2,3)

and approximating functional estimator gains &,j (i = 1,2,3).
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6.3 Numerical Results for Finite-Dimensional Compensators

In each of the figures, we have plotted the approximation to the particular functional gain for each n
between 18 and 33, where n is the number of modal subspaces used. Because the damping produced
by thermoelastic dissipation is so small in this example, we see nothing resembling gain convergence
until we use at least n = 15. The convergence results for approximations to the infinite-dimensional
LQG problem guarantee that all of the functional gains do converge, but the convergence theory does
not indicate the rate at which the gains converge. Numerical experience has shown that, generally,
greater damping causes faster gain convergence.

We are not sure that we are seeing convergence in Figure 6.1. Increasing n past 40 does not
make the functional control gains look closer to any limit, and between n = 40 and n = 50, the
numerical solution to the Riccati equation is so inaccurate in some cases that the corresponding
gains do not resemble those in Figure 6.1. While the functional gains must converge, it is possible
that the order of approximation required for convergence exceeds our capability to solve the Riccati
equations accurately. Another reason that we question whether our plots of the functional control
gains show convergence is that when we compute the control gains for both aOD = 0 and rL = 0,
the plots look identical to Figure 6.1. But with no damping for the wave equation and the coercive
weighting that we place on the solution to the wave equation in the performance index, the norms
of the finite dimensional Riccati operators are guaranteed to grow without bound as n increases
[31, 18]. Indeed, when OD = 0 and er = 0, our numerical solutions to the Riccati equations break
down for smaller n than they do when arD = 0 and OL > 0. There is some difference between the
finite-dimensional gain matrices that we compute with and without thermoelastic damping in the
plant model, but that difference is too small to be seen in plots of the functional gains.

The question arises, then, whether the very light structural damping produced by the thermoe-
lastic effect in the rod is significant in compensator design. To address this question, we computed
eigenvalues for two closed-loop systems. Each closed-loop system was constructed by connecting a
compensator based on a control model consisting of the first 20 modal subspaces to a simulation
model, or truth model, consisting of the first 30 modal subspaces of the rod. Each compensator
thus has dimension 60 while the simulation model has dimension 90. The 30-mode simulation model
was the same in each case; it had the parameters in Table 6.1, including aL = 1.29 x 10- .The
20-mode control model for Compensator I also had the parameters in Table 6.1. The control model
for Compensator 2 had aL = 0, and all of the other parameters had the values in Table 6.1. This
means that there is no damping for the mechanical vibrations of the rod in the open-loop control
model for Compensator 2. Because the temperature distribution is not penalized in the performance
index, the control gains kls and kj" and estimator gains ki,3 and i", are all zero in Compensator
2, and the gains kij and k"1,, k1*1 and 011, kl,2 and k1I,2, 11, and k&, are those that would be
computed for a 20-mode model of the undamped wave equation alone.

Table 6.2 shows typical eigenvalues for the open-loop system and for the closed-loop system
produced by each compensator. Since each compensator contains a copy of each of the first 20
modal subspaces, each losed-loop system contains six states, and six eigenvalues, corresponding to
each of the first 20 modal subspaces. Each closed-loop system also contains the 30 states in twenty-
first through thirtieth modal subspaces. While the closed-loop performance in the first ten or so
modes is similar with both compensators, the dosed-loop eigenvalues corresponding to several of the
higher-frequency modes reveal important differences between the two compensators. In particular,
we note the second complex pair of dosed-loop eigenvalues listed for mode 18. The magnitude of the
real part produced by Compensator 1 is more than 20 times the corresponding number produced by
Compensator 2. The same is true for mode 19. In certain high-frequency closed-loop states, then,
the decay rates produced by Compensator 1 are more than 20 times the decay rates produced by
Compensator 2.

The eigenvalues in Table 6.2 for modes 21 and 22, the first modes not modelled in the con*-
pensators, are typical of the eigenvalues for all ten modes that are present in the simulation model
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but not in the control models. These eigenvalues show that we have modelled enough modes in the
compensators ) eliminate any significant spillover between modelled and unmodelled modes.

Because the magnitudes of the real eigenvalues, which correspond to the heat equation (6.2),
are so much larger than the magnitudes of the complex eigenvalues, we suspected that it might be
possible to eliminate the states corresponding to the real open-loop eigenvalues from the control
model and base a compensator design on a control model consisting of a sequence of second-order
modes with eigenvalues equal to the complex open-loop eigenvalues of the thermoelastic rod. This
amounts to putting artificial viscous damping in the wave equation.

We carried out such a design with twenty second-order modes having eigenvalues equal to the first
twenty pairs of complex open-loop thermoelastic eigenvalues and mode shapes the same as the first
twenty modes of the undamped rod. This compensator had dimension 40. When we closed the loop
with the 30-mode simulation model used for Table 6.2 and computed the closed-loop eigenvalues, we
obtained virtually identical results to those for Compensator 1, except that this third closed-loop
system had only half as many real eigenvalues because the corresponding states were not modelled
in the compensator. Even for modes 18 and 19, all of the closed-loop eigenvalues produced by
the third compensator matched to at least three digits the corresponding eigenvalues produced by
Compensator 1.
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Mode Open-loop Closed-loop Closed-loop
Number with Compensator 1 with Compensator 2

-2.30 x 10-7 i6.57 x 100 -3.15 x 10-1 ± i 6.57 x 100 -3.13 x 10-1 i6.58 x 100
1 -1.44 x 100 i 6.89 x 100 -1.45 x 100 ± i 6.87 x 100

-1.30 x 10- 4  -1.30 x 10- 4  -1.30 x 10- 4

-1.30 x 10- 4  -1.31 x 10- 4

-9.19 x 10-7 i 1.31 x 101 -1.26 x 10-1 ± i 1.31 x 101 -1.63 x 10-1 ± i 1.31 x 101
2 -1.22 x 10-1 ± i 1.31 x 101 -8.50 x 10-2 ±i 1.32 x 101

-5.21 x 10- 4  -5.21 x 10- 4  -5.21 x 10 - 4

-5.21 X 10- 4  -5.23 x 10- 4

-2.07 x 10-6 4il.97 x 101 -2.55 x 10- il.97 x 10' -2.17 x 10-1 ± ii.97 x 101
3 -3.45 x 10-1 ± i 1.97 x 101 -3.84 x 10-1 ± i 1.96 x 101

-1.17 x 10-3 -1.17 x 10- 3 -1.18 x 10- 3
-1.17 x 10- 3  -1.17 x 10 - 3

-2.30 x 10- ± i6.57 x 101 -1.82 x 10- 1  i6.57 x 101 -2.16 x 10-1 ± i6.56 x 101
10 -8.03 x 10- 2 ± i6.57 x 101 -4.66 x 10-2 ± i6.58 x 101

-1.30 x 10- 2 -1.30 x 10-2 -1.30 x 10- 2

-1.30 x 10- 2 -1.31 x 10-2

-4.50 x 10-5 ± i 9.20 x 101 -3.44 x 10-2 i9.20 x 101 -3.76 x 10-2 4 i9.19 x 101
14 -3.41 x 10- 3 ± i9.20 x 101 -2.66 x 10- 4 ± i9.20 x 10'

-2.55 x 10-2 -2.55 x 10-2 -2.56 x 10-2
-2.55 x 10-2 -2.55 x 10- 2

-7.45 x 10- 5 ± i 1.18 x 102 -1.53 x 10- 2  i 1.18 x 102 -1.74 x 10-2 ± i 1.18 x 102
18 -2.16 x 10- 3 ± i 1.18 x 102 -9.75 x 10- 5 ± i 1.18 x 102

-4.22 x 10-2 -4.22 x 10-2 -4.22 x 10-2
-4.22 x 10- 2 -4.24 x 10- 2

-8.30 x 10-5 i 1.25 x 102 -1.03 x 10-2 i 1.25 x 102 -1.22 x 10-2 i 1.25 x 102

19 -1.98 x 10- 3 ± i 1.25 x 102 -9.05 x 10- ± i 1.25 x 102

-4.70 x 10- 2 -4.70 x 10- 2 -4.70 x 10- 2

-4.70 x 10- 2 -4.72 x 10-2

-9.19 x 10- 5 ±i1.31 x 102 -2.51 x 10- 3 ±i1.31 x 102 -3.18 x 10- 3 ±i1.31 x 102
20 -6.67 x 10- 4 ± i 1.31 x 102 _9.33 X 10- 5 ± i 1.31 x 102

-5.21 x 10-2 -5.21 x 10-2 -5.21 x 10-2

-5.21 x 10-2 -5.23 x 10- 2

21 -1.01 X 10-4 ± i 1.38 x 102 -1.04 X 10- 4 ± i 1.38 x 102 -1.04 X 10 - 4 ± i 1.38 x 102
-5.75 x 10- 2  -5.75 x 10- 2  -5.75 x 10 - 2

22 -1.11 x 10-4 * i 1.45 x 102 -1.34 x 10-44 i 1.45 x 102 -1.34 x 10-4 i 1.45 x 102

-6.31 x 10-2 -6.31 x 10- 2 -6.31 x 10-2

Simulation Model: 30 Modal Subspaes, CL = 1.29 x 10-

Compewator 1: 20 Modal Subspaces, OrL = 1.29 x 10- 3

Compensator 2: 20 Modal Subpaces, &L = 0

Table 6.2: Typical Open-loop and Closed-loop Eigenvalues
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7 Conclusions

The abstract formulation of distributed models and the approximation theory developed in this
paper apply to a wide variety of thermoelastic control systems. The uniform exponential stability
result in Section 5 applies to a large class of thermoelastic problems, but not to certain systems that
are known to be uniformly exponentially stable [14].

The numerical study in Section 6 focussed on the effect of thermoelastic damping in optimal
control of a flexible structure. The eigenvalue results demonstrate that, even though thermoelastic
damping is small in common metals, a compensator based on a thermoelastic model of a flexible
structure can produce significantly better response in high-frequency modes than a compensator
based on an undamped model can produce.

The theory in Sections 2-4 also applies to thermoelastic control problems in which a thermal
disturbance excites mechanical vibrations. This class of problems, which includes vibrations in
flexible space structures caused by solar heating, might provide the most important applications for
the theory developed here.
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Abstract

This paper derives sufficient conditions for uniform exponential stability of solutions to
abstract linear evolution equations that are second-order in time. The main problems motivating
the paper involve sets of coupled partial differential equations with nonsymmetric damping. Such
systems arise in acoustics problems when the interaction between compressible fluids and elastic
boundaries produces a skew-symmetric damping term.
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1 Introduction

By abstract wave equations, we mean evolution equations that are second-order in time. This
class includes both classical wave and biharmonic equations. The evolution equations that are the
primary motivation for the paper are sets of coupled partial differential equations that represent
acogstic waves in a compressible fluid interacting with an elastic boundary.This paper has two main objectives: first, to derive sufficient conditions for the solutions to
abstract linear wave equations with coercive damping to be uniformly exponentially stable; second,
to demonstrate that the class of coupled partial differential equations of greatest interest in this
paper do indeed have the abstract second-order form treated here. Uniform exponential stability is
important in active control of distributed systems (1,2,31, and having the abstract second-order form
allows an extensive theory of approximation derived especially for control and estimation problems
to be applied (see [1,2,3,4], for example).

The most interesting property of the equations motivating this paper is that the damping op-
erator is not symmetric. A nonzero skew-symmetric damping operator makes the issue of uniform
exponential stability more complicated than in the case of symmetric damping. In particular, when
the damping operator is symmetric, it must only be coercive with respect to the kinetic-energy norm
to guarantee uniform exponential stability. However, an example in Section 3 of this paper shows
that, in general, more is needed when the damping is not symmetric. (While the operator in the
term with the first-order time derivative in second-order evolution equations is referred to commonly
as damping, the skew-symmetric part of this operator represents conservative energy transfer among
different states, as opposed to dissipation.)



2 Abstract Linear Wave Equations

Throughout this paper, H or Hj (j = 0, 1,2) will be a Hilbert space with inner proiuct (-,.) or (-, -)j
and corresponding induced norm I or I -. Also, V or Vj will be a Hilbert space with norm 1" -1
or If' jj and inner product (, )v or (v, v,. The continuous dual of V will be denoted by W, and

V - H c-- V' (2.1)

will mean that V is embedded densely and continuously in H, which implies that H is embedded
densely and continuously in V'. In this case, (.,.) will denote both the H-inner product and the
duality pairing on V x V'.

For an operator £ E B(Vi, Vj'), we define £ E B(V, V') (the Banach-space adjoint of C) by

(v,,C*W), = (w,LCv)j, v E Vi, wE V . (2.2)

We say that C E B(V, V') is symmefric if £ = C'. We say that C E B(V, V') is nonnegative if

Re(v, Lv) > 0, v E V, (2.3)

and that £ is dissipative if -L is nonnegative. We say that C E B(V, V') is H-coercive if there exists
a positive real number p such that

,e( cC,) > J10 2, v E V, (2.4)

and that L E B(V, V') is V-coen .ve if there exists a positive real number A such that

Relt, Lv) P,,V1 2 , v E V. (2.5)

We assume
V0  H0 - Vo, (2.6)

and we study evolution equations of the form

ab(t) + Dow'(t) + Aow(t) = 0, t > 0, (2.7)

where V 0 ,Ao E S(Vo, VO') with Do nonnegative and A0 equal to the Riesz map on V0 . Thus,

(v,w)vo = (v,Aow)o, (2.8)

and Ao is symmetric and V,-coercive
We define

'=Vo x -- H = I* x Ho -- V'= Vo x 1". (2.9)

(We identify V0 with V in the first component of H only.) We define

A=[ 0 E ] B(V,V,). (2.10)
A= -A0 -DO

If follows from

All= [-A'Do 0 E B(V1, V,) (2.11)

that A is an isomorphism from V to V'. Now we define A: Dor(A) C H -. H by

Dom(A) = {(v, h) E V : A(r, h) E H), A = AIDn(A). (2.12)

According to Lemma 2.1 in (3j, A is a maximal dissipative operator on H. Hence A generates a
strongly continuous contraction semigroup on H. (See [4,2,5] for similar approaches.)
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3 Uniform Exponential Stability

Theorem 3.1 If Do is Ho-coercive and there exists a positive real number - such that

IRe(v,Voh)ol _< "rlvjlo- jte(h,Voh)ol 1/2 , v,h E Vo, (3.1)

then the semigroup generated on H by the operator A in (2.12) is uniformly exponentially stable.

Proof We define the following self-adjoint bounded linear operator on H:

Q=['1 4 ' (3.2)

where a is a positive real number. For or sufficiently large, Q is H-coercive. Also, QV C V. For
z = (v, h) E Dom(A) C V,

Re (Qz, Ax) = Re (Qx, Az) = -IIvll 2 + Ih g - aRe(h,Voh)o - Re(v,Voh)o. (3.3)

Since Do is H0-coercive, it follows from (3.1) and (3.3) that, for o sufficiently large, there exists a
positive real number p such that

Re(Qz, Ax) < -pIz12 , z E Dom(A). 3 (3.4)

Remark 3.2 A sufficient condition for the existence of a positive real number I such that (3.1)
holds is that Do be Vo-coercitre.

Remark 3.3 If Do is H-coercive, the generalized Schrarz inequality and the fact that Do E
B(Vo, Vo) imply that IRe(v, (Do + D8)h)oI is bounded by the right side of (3.1) for some positive
y independent of t and h. Therefore, when 'Do is Ho-coertvie, (3.1) holds for some Y independent
of v and h if and only if

IRe (v, (Do - V0)h)o < 7IvIl0o. IRe (h,Vch)oI'1 2 , v,h E Vo, (3.5)

for some 7 independent of v and h. When Do is Ho-coerove, one sufficient condition for (3.5) is
that 7Z(Vo - V;) C Ho (this includes the case Do = V;).

The following example shows that Do being Ho-coercive without (3.1) or some other condition
is not sufficient for the semigroup generated by A to be uniformly exponentially stable.

Let a be a negative real number, and let 6, and W, be sequences of positive real numbers such
that

W - o and X/ W - o0 as n -. o (3.6)

and
sup& , < 00. (3.7)

Let H0 be 12, let To be the infinite-dimensional diagonal matrix with the sequence w. on the diagonal,
let V0 = T 1 H0 with Ao = T0, and let Do be the infinite-dimensional diagonal matrix with the
sequence a + i#,, on the diagonal.

The eigetDalues of the corresponding semigroup generator A are the solutions to a sequence of
quadratic equations. Elementary analysis shows that these eigenvalues approach the imaginary axis
as n -. oo. Hence the semigroup generated on H by A is not uniformly exponentially stable.
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4 Coupled Abstract Wave Equations

In this section, we assume that the Hilbert spaces H0 and V and the operators A0 and Do have the
forms

Ho = Hx H 2 , V 0 = VI x V 2 , (4.1)

-"[A 1 A ]' (4.2)
0 2 2 Y

D /)l V 1 2  (4.3)

We assume that A, is the Riesz map for Vi, i = 1,2, and that D,, E B(Vj, V') with Di nonnegative.
We are particularly interested in problems where the wave equation on V x H1 represents an

elastic boundary condition for the wave equation on V2 x H2 . In this case, we have

RC( 12) C Hl. (4.4)

We should note that (4.4) does not imply

*R(V)2) C H 2 . (4.5)

We consider the domain of the semigroup generator A for the coupled system when (4.4) holds.
It follows from (2.9)-(2.12) that Dom(A) is the set of all elements

(vI,v 2 : hi,h 2 ) E V = V1 x V2 x V x V2  (4.6)

such that

A 11vi+ +Vujhl E HI, (4.7)

A 22V2 +- *D22 h2 - D 2 hi E H 2. (4.8)

Frc.n (4.7), we see that the conditions on v, and hl are independent of the coupling operator V 1 2

and are the same as when the two wave equations are uncoupled. On the other hand, if PR(D, 2) is
not contained in H2 , then the conditions on v2 and h2 do depend on V12 . In most applications. D, 2
affects the 'natural boundary conditions' for v2 and h2 .

To be more concrete. we take T2 E B(V 2, H2 ) such that

(t. w)v = (v. A 22 ) 2 = (T 2v, Tw) 2 , v, w E V2 , (4.9)

and we take T to the Hilbert space adjoint of 72 with respect to the H2 -inner product. It is a
straightforward exercise to show that (4.8) is equivalent to

T2 v 2 + T2A-'* 22 h 2 - T2 Aj/)V 2 h E Dom(7T2). (4.10)

In many examples, it is easy to determine T2A, VD22 and T2 A D1 2. If 'Z(VD* 2 ) C 1H2, the term
T2 AD221 22 h2 d:ops out of (4.10), but this is not the case in which we will be interested from here
on.

Before considering an example, we will give a sufficient condition for solutions to the system of
coupled abstract wave equations to be uniformly exponentially stable in H = V x H0 .

Theorem 4.1 Let H0 , VD, A0 and Do have the forms in (4.1)-(4.3) with Vii symmetric, i = 1,2.
Let (4.4) hold. If VDl is HI-coercive and V22 is V2-coercive, then the semigroap generated on H by
the operator A :n (2.9)-(2.12) is uniformlly ezponentially stable.

Proof Since V 12 E B(V2 . V'), (4.4) implies V1 2 E B(V2 , HI). For vl,hi E Vi and v2 ,h 2 E V2 .

I(vI, V 2 h2)i + (v2 ,V1V 2hl)2 1 = I(vI,'Puh 2)l + (hi,V iV 2 )11
_< IITa 211<, ,)(I lVl I- 11h2112 + 1h,11- II-2112). (4.11)

Since Vi is symmetric and Hi-coercive, D22 is symmetric and Vrcoercive and the V-norm is
stronger than the H1 -norm, it follows from (4.11) that (3.5) holds for some postive -Y independent
ofv= (vI,v 2)E Vo and h=(hi,h2 )E Vo. 0
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5 An Example from Acoustics

In this one-dimensional application, the wave equation on V2 x H2 governs the velocity potential
in a compressible fluid, and the wave equation on V x H, reduces to the equation of motion of a
mass-spring-damper system on one boundary of the fluid. We assume zero velocity potential on the
other boundary of the fluid.

We have /-1H = V1 = R', 
(5.1)

H2 = L 2 (0, 1), V2 = {f E H1 (O, 1) : 0(1) = 0}, (5.2)

Ai=1 (5.3)

(0,,221)2 = 4'''d,7 0,, V2, (5.4)

V i = C1, (5.5)

V 2 2 = (2A22, (5.6)

(16M1201 = -00(0), 0 E V1, 0 E V2. (5.7)

We have taken all physical constants to be 1, except the nonnegative real numbers f, and £2.

The operator T2 in (4.9) and (4.10) is given by

Dom(T) = V2 , T2 0 = 0', (5.8)

and its adjoint is given by

Dom(T2) = E H n (0, 1) : 0(0) = 0}. 7-, = -0'. (5.9)

In this example, T2 A24I); 2 is a function in L 2 (0, 1). From (5.7), it follows that

(T2A-' 2
1 3)(r7 ) = 0, 0 < ,7 < 1, E R1 . (5.10)

Also,
A 221* 2 2 = (21. (5.11)

It follows from (4.6), (4.7) and (4.10), then, that Dora(A) is the set of all quadruples (a, o,B,,)
satisfying

o, E E R', (5.12)

, H'(0, 1), O(1) = t-(1) = 0, (5.13)

(0 + 20 - ,)' E H'(0, 1), 0'(0) + (20'(0) - 0 = 0. (5.14)

From (2.10)-(2.12) and the definitions of the various operators in this example, it follows that, for(0, 0, fl, ,) E Dora(A), °o)
A = -a-O8+(0) " (5.15)

(f + (20')
We define w(f) = (a(t),0(f)) E V = Y/ x V2 to be the solution to

w(0) E Dom(A), d (W(t) = A ( w(t) t > 0. (5.16)
tb(0) T, dt w(t) / b w)
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Equivalently, a(t) and 0(t) = 0(t, j7) satisfy

&(t) + f!6(t) + r(t) = (f:0) t >0, (5.17)

2O+C2- )(f,17)=0, 0<7<1, t>0, (5.18)

0+,2 a=_ (5.19)

0(t, 1) = 0, t > 0. (5.20)

If el and C2 are positive, then Theorem 4.1 says that the semigroup generated on H by A and
consequently all solutions to (5.17)-(5.20) are uniformly exponentially stable. It is important to
note that, to apply Theorem 4.1, we need the V 22 in (5.6), or something similar, as opposed to, say,
V 22 = f2. The V 22 in (5.6) is a realistic dissipation term for waves in a compressible fluid because
it represents viscosity [6, page 315), [7].

6 Conclusions

It is straightforward to generalize the example here to wave equations in higher dimensions. For
example, the wave equation on V x H1 could represent an elastic membrane interacting with the
waves in a three-dimensional volume of fluid, represented by the wave equation on V2 x H2 . In such
cases, the product on the right side of (5.7) becomes an Lr-inner product on the elastic boundary.

In the higher-dimension problems, the damping operator V11 for the elastic boundary need be
only HI-coercive for uniform exponential stability, if V 22 represents viscosity, as in the example here.
This is important because many common damping models for flexible structures are HI-coercive but
not V1-coercive.

Whether the hypotheses in Theorem 3.1 or the requirement in Theorem 4.1 that V 2 2 be V2-
coercive can be weakened is an open and interesting question. The example at the end of Section
3 suggests that significantly weaker sufficient conditions than those given in this paper for uniform
exponential stability might not exist.
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1. Introduction

This paper treats two initialization problems for unnormalized lattice implementation of recursive

least-squares estimation of AR and FIR models. The first problem, usually called unwindowed estimation,

is to obtain the exact least-squares fit to data when the data preceding the initial point used cannot be as-

sumed to be zero. The second problem is to penalize deviation from initial parameter estimates. Although

solutions to both problems are straight-forward in the classical recursive least-squares algorithm, solutions

via lattices require not only special initializations but more complicated lattices than the common prewin-

dowed lattice [1,2,3,4].

The terms prewindowed and unwindowed refer to how data is handled in estimation, rather than to the

AR or FIR model. In prewindowed estimation, all data before some initial time is assumed to be zero.

Although this assumption usually is not correct, it affects only the first few terms in the cumulative least-

squares criterion, and therefore the affect on estimated parameters and predicted data fades as the number

of processed data points increases. Whether the error caused by the prewindowing assumption, when it is

incorrect, is tolerable depends on the application. This error is eliminated by unwindowed estimation,

where the criterion to be minimized tries to fit only true data with the AR or FIR model. In unwindowed

estimation, no assumption is made about data preceding that used.

Including initial parameter estimates makes practical sense only in unwindowed estimation. Initial pa-

rameter estimates can be included in prewindowed estimation, but their effect and that of the error induced

c,, the Prewindowing assumption fade at the same rate. Also, to include initial parameter estimates in a

lattice filter for an AR model, the model must be embedded in an FIR model. This is necessary to preserve

the shift structure of the recursion vectors for the AR lattice.

Both problems addressed in this paper have been addressed with previous lattice filters. Normalized

lattices for unwindowed estimation were given in (5,6]. An unnormalized lattice for the scalar-channel

(single experiment) unwindowed, or covariance problem was given in [2]. An unnormalized lattice and

initializations for unwindowed RLS estimation with and without initial parameter estimates was proposed

in [7], although, as discussed in Section 5 of this paper, we have concluded that the lattice and initializations

in (7] do not solve unwindowed problems. While the lattice here and the initialization of parameter esti-

mates are different from those in [7], the basic idea of using the initial parameter estimates as initial data

for the output channel of an FIR model is common to Section 4 of this paper and (7].



The basic idea behind the unwindowed AR lattice in Section 3 of this paper is to use an artificial

measurement channel in the prewindowed lattice in [3]. This idea is straightforward, and it has been ex-

plored previously (see [8]). However, the additional channel makes the lattice more complex. The most

important objective in developing the AR lattice is to exploit the special structure associated wkith the arti-

ficial channel to reduce the expanded lattice to an efficient solution of the unwindowed least-squares esti-

mation problem. In particular, expanding the lattice with the artificial channel increases the dimension of

the coefficient matrices that must be inverted in the prewindowed lattice. By using the structure induced

by the artificial channel and generalizing a well-known formula for low-rank updates of matrix inverses,

we obtain an unwindowed lattice in which the matrices to be inverted have the same dimension as the

corresponding matrices in the prewindowed lattice.

The authors of [8] concluded that the normalized lattice they derived using an artificial channel was not

competitive in terms of computational requirements with the covariance lattice in [5], whereas we believe

that the lattice developed here will be competitive with any unnormalized lattice for solving the unwindowed

problem. These different conclusions about the two lattices based on the artificial-channel idea appear to

stem in large part from the ability to reduce the dimension of the matrices that must be inverted in our

lattice and the inability to reduce the dimension of the matrices of which square roots must be computed

in the lattice in [8].

The remainder of the paper is organized as follows. Section 2 defines unwindowed and prwindowed

estimation problems for an AR model, embeds the unwindowed problem in the prewindowed problem and

reduces the prewindowed lattice to produce an efficient solution of the unwindowed problem. The basic

algorithm for the entire paper is Algorithm 2.1, the residual-error lattice for the AR problem. Algorithm

2.2 is used to generate the estimated AR coefficients. Section 3 defines unwindowed and prewindowed es-

timation problems for an FIR model and develops the additional update equations that must be appended

to the algorithms in Section 2. Section 4 shows how to include initial parameter estimates in the FIR

problem. For this, the lattice algorithms in Sections 2 and 3 are used but the time-initializations are replaced

with those in Section 4.

Section 5 presents an example to demonstrate the faster convergence of the unwindowed lattice versus

the prewindowed lattice and the advantage of including initial parameter estimates in the presence of

measurement noise. Section 6 presents our conclusions, and the Appendix contains the matrix inversion

lemma that we use in Section 2.
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2. The AR Problem

We consider an m x p measurement matrix

y1t) = [y1(t)y2(t)....vp(t)] , (2.1)

where t is any integer and the i' column y( t) is a real n-vector, referred to as the P measurement channel.

The k" element of y(t) is called the k' measurement in the ih channel. By an n -order AR model, we

mean

y(,) = ,(t-JAnj + ,(t), (2.2)
j=I

where the A, Is are p x p matrices referred to as AR coefficients. We denote the i'* column of A, by A,,.

As in [3], we defie the Hilbert space

T T T .T 2=12(R m ,.)= (z= [x1 x2 x3 ... each xje R and Jz= (z.:)< oo , (2.3)

where

00
(z, X i-. (2.4)

and ) is a positive real number called the forgetting factor. Throughout the paper, (., .> means the inner

product in (2.4). For k = 0, 1, 2 .... M, is the subspace of (R", .) such that each element of M. has

the form of z in (2.3) with the m-vector x = 0 forj > k, and
m

Qk = orthogonal projection of 1 2(R , .) onto Mk . (2.5)

We denote the infinite history of At) by

1 2 - T. TITT
CO) = [ (t)fkr (t)... OjP(ty= [Y ('t)y (i- l)y (t- 2)...] (2.6)

so that Vi/(t), the i* column of 6(t), is the infinite history of y'(t), and v t) e L(RO, .). For any integer t,

we define Hdt) = (0), which is the zero subspace of/ 2 (RN,, .), and

H(t ) = span {0'(1t- 1) ... 4P(t - 1) odl(t - 2) ... O#P(t - 2) (2.7)

... 1 (1t-  n) ... * (t - n = l, ) ...

For k = 0, 1, 2. we define Ht) = QfI(t) . Hence Ht) = Hrt) = Hgt) = (0). We use the

projection operators
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1,,(t) = orthogonal projection o' 2(R". /.) onto 1i(t), (2.8)

Pnk(t) = orthogonal projection of / 2(R". *.) onto l1,.(t). (2.9)

(\'c note P.(ti C'U) = [P0t) (I'(t) ... P.(t) i'(t)] and Pjt) i/(t) = [Pjt) '(t) ... P.,(t)tk'(t)].) Computing

P,.,(t)(t) is an un \indo\%ed least-squares problem, and computing Pji(tI(t) when L(t) has a finite number

of nonzero entries is a prewindowed least-squares problem.

Throughout this paper, jt) will denote the m x p measurement matrix for unwindowed problems and

.(t) will denote the m x p- measurement matrix for prewindowed problems. The histories of j(t) and j(t)

are V/(t) and ',(t). respectively. The projections defined by (2.8) and (2.9) corresponding to t) and 0(t) are

Pj(t) and P,(t): the projection defined by (2.8) corresponding to y(t) and ?(t) is P r).

Problem 2.1. (Unwindowed AR Problem) For t = 1, 2. and n 0, 1. 2,... - 1, compute

P,_j,(t t) = P._(t Q.-I tC(t); equi'.alently. (for n= 1, 2..... - 1) find matrices .4,.,(t) such that, for

each i(i = 1 ... p). the ir' colurnmn of the matrices A,,(t) minimize

Jlnt) = Z - yi(T) - - -j).4n "(t) 12, (2.10)

where I I is the Euclidean norm of an in -vector.

Problem 2.2. (Prewindowed AR Problem) Assume y(t) = 0 for t< 0 . For = 0, 1. 2 ..., and

n = 0, 1, 2.. t. compute P,(t) vt:J: equivalently, ( for n= 1, 2. t) find matrices A,,(t) such that,

for each i (i = .. the i'* columns of the.e matrices minimize

J2 ) 4 i(T) c -j) . 1(t) 2 . (2.11)

We note that. in Problem 2.1, nonzero data for t < 0 is allowed but not used, whereas in Problem 2.2, all

data is assumed zero for r < 0. The initial times in Problem 2.1 and 2.2 are, of course, arbitrary. We denote

them differently so that we can embed Problem 2.1 in Problem 2.2 most conveniently.

The lattice in [&JGi.] solves Problem 2.2. We will need the following definitions from [&JGi.]. For

any integer t and any nonnegative integer n,

fn(t) = [.fn'(t) ... fit] = [I- ,n(t)]Lp(t), (2.12)
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b(t) - t ... rso (1)= f- oa+ r)eita- e, (2.13)

e,(t) = top m rows of fb(t), forward residual error, (2.14)

rt) = top m rows of b,,(t ) , backward residual error, (2.15)

Kn~1 (t) = p × p matrix whose (i, j) element is (J () n(- 1)), (2.16)

Re(t) = x matrix whose (i, J) element is (4(t), fd(t)>, (2.17)

R,(t) = p x p matrix whose (i, j) element is (bn(t), bMn(t)>. (2.18)

The matrices t), r,(t), k(), R,(t) and ,(t) are used in the lattice in [3]. The matricesf(it) and b,(t), whose

columns are infinitely long, are used in deriving the lattice in [3] but not in the final algorithm. These in-

finite dimensional matrices are used to derive the lattices in this paper also.

To embed Problem 2.1 in Problem 2.2, we define

y(t)= 0, t < 0, (2.19)

;(0)=[ 0 I 1 , (2.20)
rmxp mxni

:(t) = [.t) I 0 ], t= 1, 2, (2.21)
m xp m xmt

Thus = p + m. It is easy to verify

Otn~n(') (t = [Pn...n(t)V(t) 0], t= 1,2, ... n 1,2, ... t> n . (2.22)

This shows that the first (t - n)m rows of the first p columns of P,,(t)k(t) are equal to the first (t - n)m rows

of P,,t)l(t). Since all rows of P,,(t)p(t) past the first (t- n)m are zero, (2.22) shows that the solution

to Problem 2.1 for the sequence At) is embedded in the solution to Problem 2.2 for the sequence ;t).

Therefore, we can solve Problem 2,1 with the lattice in [3].

To make this solution efficient, though, we must exploit the special structure of the prewindowed

problem for (t). From (2.19)-(2.21), it follows that, for t = 1, 2, ... and n = 0, 1, ... the matrices

k/t), R(t) and ,(t) can be written
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pxp

= ~ ~ I =e(z (, 0 ] ~O R,' (t) 0] (2.23),.,xp ,,,,, K Li 0 J,.,xp R(t ;L 1 "
Mmr/x 0

Also, the initializations in (2.24) and (2.25) are straightforward from (2.i2)-(2.21). The residual-error lattice

in Section l11.B of [3] then becomes Algorithm 2.1 for Problem 2.1.

Initialization 2.1 (For Unwindowed AR Problem)

PxP

ro(O)=:m~ 0 1 1~ R.O) 0[ 0 GO(0) =mx1 (2.24)/n mxm
mX1x m

K,,(t) 0 O n > t '> 0O. (2.25)

Algorithm 2.1 (Residual Error Lattice for the Unwindowed AR Problem)

For each it 1,

O(t) = [e0(t) I 0] = [y(t) 1 0], (2.26)

4jNt) .0 =T1 roO(t) + t. (- 1), G0(t) =1. (2.27)
0 /.. , 27

For n = 0 to min{t- l.N} (where N is the maximum order),

K +1 (t) = ;.K7+(t- 1) + eT,(t)G,=(t- l)r (t- 1) (2.28)

Gn+I(t) = Gn(t) - , (t Rrn()rTt (2.29)

n+,(t) = R"(t-1)- K+,(t) R(t)K+ 1 (t) (2.30)

R,+,(t) = R(t) - K,+,(t)R;(t- l)KT,+(t) (2.31)

e,,+,(t) = e,,t) - r (t- l), (t- l)Kr T+(t) (2.32)

7,+ (1) = 7,(t - I) - et) Rr(t) K,,+1 (1). (2.33)

As in [3], G,t) is an n x m matrix. For a matrix M, M' means any matrix such that MMM= M.

The residual-error lattice for the unwindowed AR problem has the same form as the residual-error lattice

in [3] for the prewindowed problem, but in the lattice for the unwindowed problem the arrays K,(), i,(t)
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and h(t) are larger than the corresponding arrays in the prewindowed lattice. While the matrices R (t) and

G,(t) have the same respective dimensions as in the prewindowed problem, the matrix R(t) in the unwin-

dowed problem has dimension (p + m) x (p + m) as opposed to p x p for the corresponding matrix in the

prewindowed problem. The unwindowed lattice should be more complex than the prewindowed lattice.

but imverting the larger matrix /(t) is both undesirable and unnecessary.

From the way in which R(t), kit) and K,(t) arise in [31 (they are used in computing projections), it

follows that 9(K,,_.(1)) c -R(R'(t)) and ,4(Krt(t) 6e(/,(- 1)). According to Lemma A.! in the Appendix

then, we can generate an Rz(t) directly with

- 1)R+ - R,, - -())
R -O ()= QO3 ,

where .Mf is the usual pseudo inverse of a matrix M,1 [9]. For the initialization in (2.30'), recall (2.24). The

R, (t) generated by (2.30'1 is not R-(t) in general.

In the most efficient version of Algorithm 2.1 then, (2.30') replaces (2.30) and RC(t) is used for R'(t) in

(2.30). (This is true for solving the FIR problems in Sections 3 and 4, also.) Although it is not necessary.

it is most natural to use G2(t) in (2.28).

.Also, we normally do not compute R-(t) and G,(t) exactly when these matrices are singular or near

singular. Rather, we choose a small number 6 and for det(R (t)) < 3 or det(G,(t)) < 6, we use the approxi-

mation

(1I + .Mr[- 1 ,T Vf+  (2.34)

for small positive ". Numerical studies in [10] show that using (2.34) to approximate R"(z) and G(t)

produces negliible error in the lattice results. For the numerical results in Section 5, we used

o = = M-10.

The AR coefficients A.,(t) for problem 2.1 can be generated at any t by the following algorithm. Like

Algorithm 2.1, Algorithm 2.2 is derived from the corresponding algorithm in [3] by embedding Problem

2.1 in Problem 2.2 and then eliminating the parts of the expanded prewindowed algorithm that are not need

for the solution of Problem 2.1.
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Algorithm 2.2 (AR Coefficients for the Unwidowed AR Problem)

For n = 1, 2,. t- I and j= 1, 2,.. n

C'+ 1,P C& ) - B"'(Oi1 (z) '(rI), (2.35)

B,+~+()= IiB,,jQ) - Cn'j(t)G+(t)T,(t)] - A, 1(t)R,+(t)Kn+1 (t), (2.36)

The end conditions, for n=0, 1, ... t e- 1, are

An+ In+ (t) = [ r=(t -0, -l) ~KnT1(t), (2.38)

B+,t)= R,'j(t)K,+1(t), (2.39)

C,,+t)= LR(t)i '.rP '(t) (2.40)

where R(]-means the top p x P block in R$(O).



3. The FIR Problem (Joint Process Estimation)

Now we assume that, in addition to the sequence of m x p measurement matrices jQ), we have a se-

quence of m - q mcasurement matrices

.,XI() = [x (t) x2(t)... X (f)] . (3.1)

By an n'Aorder FIR model, we mean

P1

xt = j.*-j+ l)An,) + C,(t), (3.2)

* *

where the A,.'s are p x q matrices referred to as FIR coefficients, and the i" column of A, 1 is denoted b.

A,. We denote the history of x(t) by

1 2 T T T,
6() = [L1 (0)0(t)... 0q(t)] = [x (t)x (t- 1)x (t- 2)... ]T. (3.3)

Problem 3.1. (Unwindowed FIR Problem) For t = 1, 2, ..., and n = 0, 1. t, compute

P"t.1 -(t + 1) 9(t) = P.. + 1) Q,.-., (t); equivalently, (for n = 1, 2. t) fid matrices iJ,(t) such

that, for each i (i = I. q), the i:A columns of these matrices minimize

t r

= .- :iX(.g A- ' i p )12/f , _ Z_- -1+ 1)A,.(t) . (3.4)

Problem 3.2. (Prewindowed FIR Problem) Assume x(t) = 0 and (t)= 0 for t < 0. For t= 0, 1, 2.

and n = 0, 1. t + 1, compute P(t + 1) 0(t); equivalently, (for n= 1, 2. t+ 1) find matrices

Aj.,(t) such that, for each i(i = 1. q), the il' columns of these matrices minimize

I nI

Z,)I Xkr) ; Z j + . (3.5)
'J-I

As in Section 2, we embed the unwindowed problem in the prewindowed problem by defining the

measurement sequence y(i) for the prewindowed problem in terms of the measurement sequence ) I for the

unwindowed problem according to (2.19)-(2.21). We have

Q,+- P,(t + I)0(t) = [P,+1I.-n(t + l(1) 0], t = 1, 2, ... n = 1, 2 ..... ,.(3.6)

9



so that the first (t + I - n)m rows of the first q columns of P,(t + l)4(t) are equal to the first (t + 1 - n)m

rows (the only possibly nonzero rows) of P,,.-_,(t + l)(t). Therefore, the solution to Problem 3.1 for the

sequences x(t) and y(t) is embedded in the solution to Problem 3.2 for the sequences x(t) and ;(t).

To obtain a lattice for Problem 3.2, we must append some new update equations to the prewindowed

lattice in [3]. For nonnegative integers t and n, we define

A A A

f () = ( j(t) ... fq(t)] = UI-Pn(t+ 1) 4(t), (3.7)

A fA

en(t) = top m rows of fA(t), (3.8)

A -A.

K+ I(t) = q x p matrix whose (i, J) element is (f,( t), b(o> (3.9)

A eA.i A.
R.n(t) = q x q matrix whose (i, j) element is (f,'(t), f(t)) , (3.10)

where, as in Section 2, P,(t) is the orthogonal projection onto H,(t) when, in (2.7), p is replaced by p and

Vi'(t-j) is replaced by 4'(t-j) for i = I, ... p.

To derive order updates, we define

P,(t) = orthogonal projection onto span{bin(t) ... bn.(t)) (3.11)

with b,'(t) defined as in (2.13). We have then

[[ - P,+]([)] = 11 - Pbn(t - I)][[- P"(0)]. (3.12)

From (3.7), (3.9), (3.12) and (2.18), we obtain

A A b A A-rf,+ I(t) = f(t) -P,' (t)f-n(t) =fn,(t ) -bn,(t ) R, ( r 4()(.3

It is straightforward to use (3.7)-(3.10) and (3.13) to derive Initialization 3.1 and the order updates in Al-

gorithm 3. 1. With the foregoing equations in this section, the derivations of the time update for K.(t) and

of Algorithm 3.2 are similar to those in Sections II.B and I1.C of [3] (see [10]). The most difficult of

these derivations is that for the time update of K,,(t).

10



Initialization 3.1 (For the Unwindowed FIR Problem, append this initialization to Initialization 2.1.)

0(o) = x(0) Ao), KM 0 1 xTO)l (3.14)

A
-K,,+(t) = 0, n > t > 0 (3.15)

Algorithm 3.1. (For the Unwindowed FIR Problem, append this algorithm to Algorithm 2.1.)

For I > I

o(= ), R (t) = X (t)X(t) + ),4(t - 1). (3.16)

For n = 0 to t

A A

"+I(t) = ;.Kx+(t- 1) + (t G+(t)7.(t) (3.17)

e,, e) e. K(+)1 (1) (3.18)

,A Ae A -r AT

nee-t() = R,.() - K,, 1(t)R ( )K (t). (3.19)

Algorithm 3.2. (For the FIR problem, append this algorithm to Algorithm 2.2.)

Forn= 1, 2,..riand j= 1, 2. n,

A A A T
= A, 1 (i)- B,j(t)R, (t)K,'+1(t). (3.20)

The end condition , for n = 0, 1, ... , t, is

A A.,=,.A4n+,,n+l(t) =- [Rn-()U. 1 Kr+,t). (3.21)

Algorithms 3.1 and 3.2 with Initialization 3.1 solve Problem 3.1. When the solution to Problem 3.2

with arbitrary ;(t), t 2 0 , is desired, Algorithm 3.1 can be appended to the prewindowed lattice in [3]. For

this case, the only change in Initialization 3.1 is that K,(o) = xjO);(O) must be used in (3.14). Algorithm

3.2 generates the full matrices A(t) for Problem 3.2 if A.j:t) B.j(t) and [ k(t)],.; are replaced by A(t)

B!,,(t) and R,(t), where Bj(t) is the matrix B.jJt) generated by the algorithm in [3] for the AR coefficients.

I1



4. Including Initial Parameter Estimates

The algorithms and initializations in the previous sections do not use initial parameter estimates. To

include initial estimates of the FIR parameters corresponding to a given order N, we need only change In-

itializations 2.1 and 3.1.

Problem 4.1. (Unwindowed FIR Problem with Initial Parameter Estimates) For t = 1, 2 ... , and

n= 1, ... , N, find matrices A,.j(t) such that, for each i(i = 1 ..... q), the ill columns of these matrices

minimize

AJ 1An t)A' t t- J I A t i-. A , (4.1)J W Ji + U;i+I Z, n Ai(t)- A.jID

j-=I

where ;,,, is the initial estimate of A, , D= diag (51, 62. , 6,} > 0, 1 al= aTDa and > 0.

Like Problems 2.1 and 3.1, Problem 4.1 can be embedded in a prewindowed problem. We define a

prewindowed FIR prcblem similar to Problem 3.2 except that the nonzero data begins at - pN instead

oft=0. Forj=l, 2, ... N Vandk=l, 2. p,wedefine

k A place

;4112A2I kJfNJ lxq ;2 1k = P1261/2[ I ... 00 11x;
, O0 ... 0 J(m-I)xq 00 ... 0 ... 00,,-I)xp'

x(j- I - .Vk) - 1--,N,j, 1 1 ,, I < k < p. (4.3)

We replace (2.19) with

Y t.k-l)NI2 k t=-kN, 1 < k _ p, (44)
) 0 ,all other t < 0.

For t;> 0, ;(t) is defined by (2.20)-(2.21). It is straightforward to see that the pre%%indowed FIR problem

for these histories of x(t) and j;(t) is equivalent to Problem 4.1. Furthermore, for t = 0, the various matrices

in (2.12)-(2.18) and (3.8)-(3.10) can be computed directly from the definitions of x(t) and ;t) to yield the

following.

12



Initialization 4.1

ro(o) = [0 II ], r,(0) = 0 n= 1, 2,. N- (4.5)
MXP mxm

pxp pxp

R'(O) 0 n 1, 2, A. - 1 (4.6)
mxmr mxm

K,,+ j(0)= 0, n =0, 1, N.. N-2 (4.7)

Go(O) = I, G,(O) = 0, ,---1,2 ... N-1 (4.8)

R• (0) . ;.,.-j+ AIjT 'DAAj + xT(O)X0) (4.9)
j=1

A

K(-- x'(0)], K(= "(0) = [ DZ'"0A..K+ 1 D I 0], n= 1, 2 .... - I. (4.10)

For the solution to Problem 4.1, Initialization 4.1 replaces Initializations 2.1 and 3.1. Algorithms 2.1,

2.2, 3.1 and 3.2 are used as they are stated, except that the maximum n in Algorithms 2.1 and 2.2 is N - 2

and the maximum n in Algorithms 3.1 and 3.2 is N- 1.

Note that for / = 0, Initialization 4.1 reduces to Initializations 2.1 and 3.1. On the other hand, for

ANj = 0, Initialization 4.1 is different from the previous initializations because they imply no initial param-

eter estimates, which is different from setting initial parameter estimates equal to zero.

13



5. Example

We used a sixth-order AR model with m =p= I to generate the data sequence y(t), I = i, 2,..., 100,

from nonzero initial conditions. The true parameters and initial conditions are given in Table 1. These

AR coefficients represent a single measurement from a system of coupled, lightly damped oscillators sam-

pled at the rate of 50 Hz.

TABLE I

True AR Coefficients and Initial Data

A6,j ( -)

1 4.0021 0.27

2 -7.8919 0.18

3 9.6013 0.029

4 -7.5673 0.096

5 3.6927 0.35

6 -0,89871 0.50

First, we will compare results obtained with the unwindowed AR lattice in this paper and results ob-

tained with the prewindowed lattice in [3]. Rather than show the estimates of the AR parameters, we plot

in Figure 1 the three frequencies computed from the parameter estimates according to

w = Im((log) x 50), (5.1)

where C is an eigenvalue of the AR model. The frequencies corresponding to the true parameters are

co, = 14.549, w2 = 40.743, co3 = 58.862. (5.2)

Also, we plot in Figure 2 the one-step-ahead prediction error; at any time t, this is the error between At)

and the summation on the right side of (2.2) evaluated with the estimated parameters.

In Figures I and 2, solid curves correspond to parameters generated by the algorithms in Section 2 of

this paper, and the dashed curves correspond to parameters generated with the prewindowed lattice in [3].

In both lattices, we used the forgetting factor A = .98. All numerical results presented heme are for n = 6.

If enough data is used, the frequencies corresponding to the parameter estimates from the prewindowed

lattice eventually will converge to the true frequencies. This convergence is faster for smaller values of 2,

14



but to make the convergence significantly faster, ; must be so small that the lattice filter becomes very

sensitive to noise.

To illustrate the effect of setting initial parameter estimates with Initialization 4.1. we added zero-mean

white noise to the data generated by the AR model for 30 _ t < 50. The standard deviation of the noise

was .b1, which is between 1.5% and 2 6 of the amplitude of y(t). We generated two sequences of parameter

estimates with the unwindowed FIR lattice (i.e., Algorithms 2.1, 2.2, 3.1 and 3.2) and Initialization 4.1 with

N= 6. We obtained an FIR problem by setting x(t)=y(t+ I), t> ; . For the fust sequence of parameter

estimates, we started at t = I with p = 0 (i.e., no initial parameter estimates) and continued until t = 100.

For the second sequence of parameter estimates, we also started at t = 1 with p = 0, but at t = 30, we re-

initialized the FIR lattice, using p = 100, D = I and A., = A.,,(29)in Initialization 4.1.

For each of these sequences of parameter estimates, Figure 3 shows the norm of the error between the

estimated parameter vector and the true parameter vector. For 1 < 1 < 29, the two sequences of parameter

estimates are identical.

For t> 30, the measurement noie affects the parameter estimates generated with no resett-ag much

more than it affects the parameter estimates generated after resetting, since the reinitialized FIR coefficients

are held near the correct values at t = 29 by the heavy weighting p . With smaller forgetting factor ;., the

parameter estimates would retum to true values faster after t = 50, but smaller .would defeat the purpose

ofA .

We compared the performance of the lattices in this paper, the prewindowed lattice in [3], and the un-

windowed lattice in [7] on the current example. Since [7] did not indicate how to generate estimates of

either AR or FIR parameters, we compared the values produced by our lattices for the forward residual

errors e6(t) and a(t) to the corresponding quantities produced by the lattice in [7]. We made this compar-

ison for the AR problem corresponding to Figures 1 and 2, so that ;(t) = e,(t + 1). The quantities e,(t),

;jt) and R,(t) should correspond, respectively, to the quantities e.., ,.,., and a,,., (with k = t) in [7].

The Exact Initialization in [7], with the nonzero value for x0 indicated in [7], yielded values for the

forward error e.,., , the error t,. -,.k and squared error norm 2.. all very close to the corresponding quan-

tities from the prewindowed lattice. Both the lattice in [7] and the prewindowed lattice yielded values of

e.. and c,.I., on the order of 10-2 and values of a6" on the order of 10-'. Our unwindowed lattice yielded

values of e,(t) and '(t) on the order of 10-12 and values of R(t) on the order of 10-l ' . These results indicate

that our unwindowed lattice was solving the unwindowed problem and that the lattice in [7] was not.
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When we shifted all data for k > 0 form ard by one step and set x0 = 0 in the Exact Initialization, the

lattice in [7] yielded e6,.,. c6.,-_., and 2,. that agree with the corresponding quantities from the prewin-

dowed lattice to nine digits. all that we printed. We also ran the lattice in [7] with the Soft-Constraint In-

itialization on page 368 in [7] and compared the results to those from our lattice with soft-contraint

initialization. Again. the forward errors from the lattice in [7] were much larger than those from our lattice.

Our analysis of the derivations and algorithms in [7] indicates that, when all data is zero for t < 0, the

lattice in [7] with the Exact Initialization solves the prewindowed problem, but the lattice in [7] with either

initialization in [7] does not solve the unwindowed problem. These conclusions are confumed by our

numerical results.

6. Conclusions

The purpose of the paper has been to derive efficient lattice filters to solve Problems 2.1, 3.1 and 4.1.

Problem 2. 1, the unwindowed AR problem with no initial parameter estimates, is solved by Algorithms 2.1

and 2.2 xith Initialization 2.1. The residual-error lattice, Al2orithm 2.1, is recursive in both time and order.

Algorithm 2.2. which generates the estimates of the AR coefficients, also has a lattice structure, but this

algorithm is recursive in order only. It can be run at any time t, but it need not be run at every t. For

Problem 3.1, the unwindo ed FIR problem with no initial parameter estimates, Algorithms 3.1 and 3.2 and

Initialization 3.1 are run along with Algorithms 2.1 and 2.2 and Initialization 2.1. The solution to Problem

4.1, the unwindowed FIR problem with initial parameter estimates, also requires A2orithms 2.1, 2.2, 3.1

and 3.2, but Irutialization 4. 1 replaces Initializations 2.1 and 3.1.

To make the lattices in this paper most efficient, the generalized inverse R'(t) is generated directly with

(2.30'); R,(t) need not be generated and (2.3(I) need not be used. Lemma A.I, on which (2.30') is based, is

a generalization of a well known formula. whose diverse applications were surveyed recently in [11].

Lemma A. 1 appears to be new.
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APIPENDIX

Lemma .4.1 Let 4, B and C be real p x p. p x p and p x p matrices. respcctivclv, with ,R(B) c (.4)

R(B' ) c R(O \(A)c .\(B) and ,(C)c .N(B). Suppose that matrices .. C..4 C.. and C satisfy

A = .4 - BC=BT (41)

.TC C- B.4=B. (.4.2)

A= .4= + ABZ=BT (43)

and

AA =.4 = A, CCC = C, C-- = C. (.4.4)

Then

A .4-.4 = A. (.4.5)

Proof The inclusion .\(A)c .\(BT) and .4[A.4 - 1] = 0 imply

BT.4 '.4 = BT . (.4.6)

Then

B T.4 =. = B 4=A - B .A=BC=B = CC=B -B.4 =BC=Br= CC=B . (.4.7)

Hence
T(B T.4 R(E).

Also, replacing.4, A4, B, C and C in (A.7) and (A.8) with C. C, BT A and A =, resnectively, yields

BCC = A .- B. (.4.9)

Now,

A [.- .BC T.=]A = AA-A + (.AB)C7BT  ... 10)
- -T - - -T - .. 0= ... 4. +BCTCC=B .4-A = AA-.4 + BC=B .-. 4 = A.4.4 = .4.

The last identity in (A. 10) follows from R(.4) c .(A.4), which follows from R(B) c R(4) and (A. i.l

In general.- * ;T (the pseudo inverse of .A), even when .4- and CZ- are used for .4= and C, respeciively,

in the right side of (A.3). For example, if

then

;T +C 0 + 0 , (.4.12)
0 0

and

= . ' +A-'BCBTA-  = A ' [ ] (.4.13)= 2 .4u
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ABSTRACT

A digital adaptive controller for a robotic manipulator with a sliding
flexible link is presented. The most important feature of the controller is Its
capability to vary the order of the control law adaptively. This capability
results from using a lattice filter for adaptive parameter estimation. The
superiority of the variable-order adaptive controller to a fixed-order adaptive
controller is demonstrated by numerical simulations, in which the manipulator is

,-represented by the nonlinear equations of motion for a finite element model of
the manipulator.
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1. INTRODUCTION

Adaptive control of robotic manipulators with rigid links has been studied

by many authors [BDS1, DD1, K2, KG1, LEt, NT1, THI, VK1). While several authors

have studied nonadaptive, usually optimal, control of manipulators with flexible

links [BMW1, CSI, F2, UNM1], the literature contains only limited treatment of

adaptive control of manipulators with flexible links. In [NM1, NMB1], an

unknown payload was estimated on-line to update optimal control gains used to

control a linear model of a flexible link. Parameters were identified in ERCi]

and then used to design a steady-state linear-quadratic-Gaussian compensator,

which was used to control a flexible one-link manipulator. In [CL1], a static

elastic deflection was modeled in one simulation of adaptive pole placement for

the Stanford arm. A discrete-time adaptive controller designed for a rigid link

was applied to a flexible link in [Y1], and the adaptive controller did not

appear to suppress all oscillations of the link about the final position.

This paper presents a digital adaptive controller for a manipulator with

two links, the second of which is a flexible beam that slides out of the first

link (i.e., there is a prismatic joint). The simulation model of the manipula-

tor is nonlinear with time-varying coefficients, but the adaptive controller is

based on a linear Auto Regressive-Moving Average (ARMA) model of the Input/out-

put characteristics of the plant. Both the parameters and the order of this

ARMA model vary adaptively. Becasue the control law is based explicitly on the

ARMA model, the adaptive control algorithm Is indirect.

The most important feature of the adaptive controller In this paper is that

its order can vary adaptively. This capability is important in the problem here

because the flexible link abruptly ceases sliding and the associated large axial



deceleration has the effect of a lateral impulse on the link. The Impulse ex-

cites previously unexcited elastic modes of vibration, so that the effective

order of the plant increases. Such changes In plant order, which might result

also from impacts or releasing payloads, are handled much better by a controller

whose order can vary adaptively.

The order of the controller can vary adaptively because the parameter esti-

mator is a least-squares lattice filter, which Is an algorithm for least-squares

parameter estimation that is recursive in both time and order. The lattice

filter Is more efficient than the standard least-squares method for large

orders, and it is numerically stable [LLi]. Lattice filters have become promi-

nent in adaptive signal processing [F1, GS1, HM1, LFM1, LMFI, LS1Q. Their use

in control and identification of flexible structures has been studied in [MS1,

SM1, SM2, SM3, W1, WG1), and recently the capability of high-order lattices to

identify many modes of very flexible structures has been demonstrated in [Jl,

JGl, JG2].

Recursive (in time) least-squares estimation Is used widely in adaptive

parameter Identification. See [LSI, GSl) and many other references for the

classical algorithm and its convergence properties. This method has one serious

limitation for identification of systems like the manipulator in this paper: the

classical recursive least-squares algorithm is based on a fixed-order input/

output model. In a flexible system, different numbers of modes may be excited

at different times, especially In problems with impulse phenomena. For such

problems, determination of effective plant order Is needed along with iden-

tification of parameters. With its order-recursive property, the lattice filter

can identify the number of substantially excited modes of a flexible system as

well as the parameters of a digital input/output model.
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Section 2 describes the manipulator, the finite element model used for

simulations, and the ARMA model on which the control law Is based. Section 3

discusses the adaptive parameter estimation and presents the lattice filter

algorithm. The adaptive control law is discussed in Section 4, along with the

reference signal, learning period, control-torque bounds and the criterion for

changing the order of the controller. Numerical simulations are presented and

discussed in Section 5, and the paper's conclusions are stated in Section 6.

2. MANIPULATOR MODEL

Figure 2.1 shows the manipulator to be controlled, which consists of the

rotor whose center is fixed at point 0, the rigid link MI and the flexible link

M2. The rotor is modeled as a rigid disc and the rigid link Is cantilevered to

the rotor. The flexible link is a uniform Euler-Bernoulli beam that slides in

the rigid link. The free end of the flexible link carries a payload, modeled as

a point mass MPL. As Table 2.1 indicates, the manipulator Is unusually long and

slender. This design is motivated by possible space applications of robotics

and by the desire for a highly flexible, rather unwieldy manipulator to

challenge the controller.

We assume that the radial motion of the flexible link is controlled by an

actuator with sufficiently wide bandwidth and short time constant to make the

flexible link follow a specified radial position profile r(t) exactly.

Consequently, we treat r(t) and its derivatives as time-varying parameters. The

control variable in this paper is a torque u that acts on the rotor at D.
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Figure 2.1: Robotic Manipulator with Sliding Flexible Link

TABLE 2.1

Maaipulator Data

Combined Rotor and id Link
Radius of rotor plus length of rigid link = L- 3m
Combined moment of inertia about rotor axis - 168.48Ag m2

Flexible Link(steel)
Length = 3m
Length of segment outside of rigid link - r (I mS r5 2m)
Cross section - 0.02mmO.02m
Mass per unit volume - 7.8x 10( Kg/rn
Modulus of elasticity a E a 200x09 2
Voigt-Kelvin damping coefficient a r0 - 0.001
Fundamental cantilevered bean frequency,

For r- I m, A - 16.356Hz
For r-2"; A- 4.089Hz
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In the dynamic model of the manipulator:

first-order (linear) transverse deformations of the flexible link are

modeled;

* axial elastic deformations are neglected;

* coupling between rigid-body angular velocity and elastic displacements is

included;

* the contribution of the inertial axial load to bending stiffness is

Included;

" torques due to gravity are included.

For simulating the response of the manipulator, we use three finite ele-

ments of equal length to approximate the part of the flexible link outside the

rigid link. Since this portion of the flexible link varies with time, the

length r(t)/3 of each of the three elements must vary with time. We use cubic

B-splines [Sl1 as basis functions. This means that we have three elastic

degrees of freedom, which we take to be the transverse elastic displacements of

nodes 2, 3 and 4. (Node 1 is the point on the flexible link at the end of the

rigid link; node 4 is the end of the flexible link to which the payload is

attached.) In all then, there are four degrees of freedom in our simulation

model of the manipulator. We represent the rigid-body degree of freedom by the

angle S.

For the finite element model of the manipulator, the generalized displace-

ment vector Is q = IS q2 q3 q4JT where q2, q3 and q4 are the transverse elastic

displacements of nodes 2-4 on the flexible link. Lagrange's equations for the

finite element model have the form

M(t)§ + D(t)4 + K(t)q - Qg(t)g sin 0 + Bu, (2.1)
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where the 4x4 matrices M(t), D(t) and K(t) and the 4-vector Q 9t) have the forms

M(t) - M(q,r(t)), (2.2)

D(t) - Dl(q,q,r(t)) + r(t)D 2 (q,r(t)), (2.3)

K(t) - Kl(q,4,r(t),g) + r(t)K2 (r(t)) + F(t)K 3(r(t)), (2.4)

Qg(t) - Qg(r(t)), (2.5)

B • [1 00 0 ]T, (2.6)

and g is the acceleration of gravity. Of course, the generalized coordinates q

vary with time, but we want to emphasize that r(t) introduces time-varying coef-

ficients into the equations of motion. We model small Voigt-Kelvin viscoelastic

damping (See [CP1]) in the link, which means that the matrix D(t) contains

coKb where Kb is the part of K(t) that represents the bending stiffness of the

flexible link and c0 is a damping coefficient. For a complete derivation of the

equations of motion, see [K1].

The flexible link slides out of the base link according to the length-

versus-time profile in Figure 2.2. During the time between 0 and to, which will

be used for preliminary parameter identification by the adaptive controller, the

radial velocity r is zero and the rigid-body angle remains near zero (See

Section 4.3). Between t0 and t1, the flexible link has the circular radial

motion profile with positive r and P Indicated in Figure 2.2. Between tI and

t2 , ; is constant, and starting at t2, ; decreases according to the Indicated

circular radial motion profile until the sliding stops at time t3. We chose the

circular transition segments between t0 and tI and between t and t3 in Figure
-1 -I

2.2 because the acceleration P is proportional to p, and P2 ; we found this to

be a convenient parameterization for studying the effects of the radial acce-
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Figure 2.2: Radial Position Profile of the Sliding Link

One of the most Important features of the application in this paper results

from the fact that we specify that the radial velocity of the flexible link stop

very quickly; i.e., t3 - t2 and P2 are small and the radial acceleration F(t) is

very large between t2 and t3. With this large i(t), the term F(t)K3 (r(t))q in

the equations of motion produces the equivalent of a lateral impulse on the

flexible link, unless q(t) is near zero between t2 and t3.

Two observations about (2.1) that are important for adaptive control can be

made from the detailed equations of motion in EKI]. First, (2.1) can bt written
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M(t)4 + D(t)q + K(t)q a Bu, (2.7)

where

i(t) - K(t) - Q (t)B Tg(sin e(t))/e(t). (2.8)

Second, for sufficiently small elastic vibration of the flexible link, no domi-

nant terms in the matrices M(t), D(t) and K(t) involve the elastic displacements

q2, q3 and q4 or their time derivatives. Hence the dominant terms in the coef-

ficient matrices in (2.1) and (2.7) vary no faster than the rigid-body angle

0(t), the corresponding angular velocity, (t) and F(t). This conclusion

follows from a tedious but straightforward examination of Lhe detailed equations

of motion in [Ki]. It results essentially from the fact that we use a linearly

elastic model for the flexible link, so that no significant terms In the

equations of motion are more than first order in the elastic degrees of freedom.

Now we consider digital control of (2.1) and (2.7) by zero-order sample and

hold; i.e., at the beginning of the kth sampling interval (k - 0, 1, 2, ...), we

sampli an output vector y(k) and apply a constant control vector u(k) for the

duration of the kth sampling interval. We measure the rigid-body angle and the

elast4 c deflection of the free end of the flexible link (the end holding the

payload), so that

/((k)1 (Yk). (2.9)

\q4(k/ y 2(k)

.ccording to standard linear system theory, an inputloutput model for (2.7)

with digital input and digital linear output has the form of the ARA model

N N

y(k) + T'Ai(k)y(k-1) - B(k)u(k-i) (2.10)
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where Ai(k) and Bi(k) are matrices of appropriate dimension and N depends on the

number of excited flexible modes. In our application Ai(k) is 2x2 and Bi(k)

is 2xl. For our simulations, N need not exceed 8 because our simulation model

has four degrees of freedom. If the sampling rate is fast compared to the time

rates of change of the dominant terms in the coefficient matrices in (2.7)(i.e.,

if the sampling rate is last compared to the rigid-body angular velocity and

acceleration and r and P), then the coefficient matrices In (2.10) can be con-

sidered to vary slowly. In this case, an adaptive parameter estimator should be

able to track the coefficients in (2.10) and predict y(k) from data taken

through time k - 1. Such prediction is the basis for the subsequent adaptive

control algorithm.

The sampling rate used in the simulations in Section 5 is 100 Hz.

Numerical results indicate that the slowly-varying-coefficients hypothesis is

valid for our problem except between the times t2 and t3 when the impulsive

effect of the large radial acceleration first excites higher flexible modes that

usually are not excited, causing both the ARMA coefficients and the minimum ARMA

order to change abruptly. Since t2 - t3 is only 10% of one sampling interval,

the adaptive controller just sees a switch from one set of slowly varying coef-

ficients to another. The numerical results in Section 5 demonstrate that it is

important for the adaptive controller to be able to change both the ARMA coef-

ficients and the ARMA order.

To shed further light on the system to be controlled, we consider the

linearized open-loop dynamics of the manipulator with constant r, payload MPL

.1M29 and no gravity moment for the initial value of r a 1m and the final value

of r a 2m. Table 2.2 gives the poles and zeros of the continuous-time.transfer

functions from the control torque to the two measurements. In the complex form
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of poles and zeros, the frequency is given in rad/s; for the poles, the damping

ratio C and the freqLency f in Hertz are given In parentheses. We shall empha-

size that the numbers in Table 2.2 were not present explicitly in the nonlinear

finite-element model that we used for all simulations. We computed these poles

and zeros after we linearized the simulation model.

As is common with flexible structures, we have a mimimum-phase transfer

function for the sensor colocated with the actuator (i.e., the hub-rotation sen-

sor). The transfer function for the noncolocated sensor, which measures the

elastic tip deflection3 is also minimum-phase after the double pole-zero can-

cellation. (The transfer function from the control torque to the absolute tip

displacement for r a 1m has a real zero at +175, but our controller does not use

the absolute tip displacement.)

Another common feature in digital control of flexible structures is that,

whatever the samp'ing rate, there will be some modes with frequencies above the

Nyquist frequency. Thus we have selected the parameters in Table 2.1 so that,

for MPL 0 .1m42 and r a 1m, the linearized plant has two frequencies above the

Nyquist frequency (50 Hz in our problem) and, for r a 2m, there is one plant

frequency above the Nyquist frequency. As illustrated by the simulations

described in Section 5, the modes with the two nighest frequencies have suf-

ficient open-loop damping that they are important in the control problem only

after being excited by the internal impulse at t2.

For any value of r, the continuous-time linearized systen is controllable

because there are no open-loop mode shapes In which the hub rotation is zero and

there are no repeated open-loop etgenvalues besides zero, which corresponds to

the rigid-body mode. For any constant value of r at which no frequency Is a
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multiple of 50 Hz, the discrete-time I_.... .. 5tem (incl2:. t ' m,:es with

frequency above 50 Hz) is controllable in the sense that the state vector can be

driven to zero in a finite number of steps. With the positive damping modeled

in the beam, even the nonlinear plant Is stabilizable for any constant value of

r. These conclusions are all easy to verify. We believe and all of our simula-

tions indicate that similar statements about controllability and stabilizability

hold for time-varying r, but we have not done the rigorous analysis.

While we have selected the parameters in the simulation model to produce

plant characteristics that are common in control problems for flexible

structures, this paper does not address the questions that arise when a

sequence of finite element models with increasing dimensions is used for

control design and simulation. Using more elements in the simulation model in

this paper would add more high frequency modes above the Nyquist frequency,

and under some excitations these additional modes might require the order of

the controller to be larger than the maximum order used in the simulations

here. The question of what order the finite element models used for

controller design and simulation must have so that the controller can be

guaranteed to work well for a distributed model of a flexible structure

requires approximation theory and convergence analysis beyond the scope of

this paper. Such issues have been addressed extensively for optimal control

of flexible structures (see [GA1, GA2] for example), and corresponding theory

for adaptive control of flexible structures is a focus of current research.

The purpose of this paper is to demonstrate the desirability of a controller

that can vary its order adaptively to account for modes that sometimes are

excited and sometimes not, and to demonstrate how such a controller can be

constructed.
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TABLE 2.2

Continuous-Time Poles and Zeros for

M PL '0.1 x M 2

r a Im

Poles (clf)

0
0

-2.8 ± 1 74.7 (.037, 11.9Hz)
-137.5 ± 1506.1 (.272, 80.5Hz)

-1278.7 ± 1960.4 (1.33, 152.9Hz)

Zeros Zeros
Channel 1 Channel 2

0
-2.3 ±1 67.8 0

-132.7 ± 1497.8 -173.5 ± 1563.0
-1263.7 ± 1964.6 -1135.4 ± 1990.8

r a2mi

Poles RIOf

0
0

-0.4 ± 1 26.8 (.015, 4.3Hz)
-12.1 ± 1155.1 (.078, 24.7Hz)

-102.5 ± 1441.0 (.232, 70.2Hz)

Zeros Zeros
Channel 1 Channel 2

0
-0.3 ± 1 22.8 0

-11.3 ± 1149.7 -15.6 ± 1176.2
-100.1 ± 1436.1 -86.7 t 1407.2
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3. PARAMETER IDENTIFICATION

For adaptive identification of the coefficient matrices Ai(k) and Bt(k) in

(2.10) and determination of the ARMA order N, we use the least squares lattice

algorithms in Tables 3.1 and 3.2. These algorithms are from [JG1], and similar

algorithms can be found in [LMF1, F1, HM1) and other references.

We will discuss the structure of the lattice filter only briefly to Indi-

cate the most important points for the application here. For more detail see

EFI, HM1, J1, JG1, LS1]. The lattice structure is based on two sets of vectors

called forward and backward residual errors. The forward residual error vectors

are obtained from projection of the most recent regression vectors onto the span

of previous regre:sion vectors. (Regression vectors contain measurement

histories. In the lattice filter, both control system inputs and outputs must

be treated as measurements.) The order of the lattice is the order of the ARMA

model with which the lattice attempts to fit the data. The norm of the Nth -

order forward residual error is the minimum value of the objective functional

to be minimized by a least-squares estimate of the parameters in an ARMA model

of order N. The backward errors are a set of Gram-Schmidt vectors that span the

same space as the regression vectors. At each step, the filter updates the

first element of each of the error vectors and the norms of the error vectors.

The Nth-order lattice generates the equivalent of the least-squares fit to data

for every ARMA order between 1 and N.

The main lattice algorithm, to be run at every time step, Is listed In

Table 3.1. The 1x3 matrices eN(k) and rN(k) are the first coonents of the

forward and backward residual errors, respectively. See [JGI]. Also, Ra(k),

RN(k), KN(k) are 3x3 matrices and GN(k) is a scalar. The forgetting factor A is

13



a positive real number less than or equal to 1, which (when A < 1) reduces expo-

nentially the effect of older data. For the simulations in Section 5, we used

The statement that the lattice is order recursive refers to the fact that

the maximum lattice (ARMA) order can be Increased by 1 at each time step, up to

some limit determined by on-line computing capacity. In practice, N Is

increased until either It reaches the upper limit or some criterion involving

the matrix Re(k) indicates that N need not be Increased further.

The diagonal elements of the matrix Re(k) are the squares of the norms of

the forward residual errors, which are related closely to prediction error (see

[JG1)). These diagonal elements indicate the degree to which an Nth-order ARKA

model fits the data, and they can be used to determine the order of the plant.

In particular, the (1,1) element of Re(k) is a measure of the accuracy of the

channel of the ARMA model corresponding to the rigid-body angle of our manipula-

tor. We will use this number to determine the order of the ARKA model to be

used for adaptive control, as discussed in Section 4.5.

The ARMA coefficients are obtained from the algorithm in Table 3.2, where

AN'i(k), BNi(k) and CNi(k) are 3x3 matrices. For each N, the matrix AN,(k)

has the form

Nti(k) B (k)TI x (3.1)

where i(k) and Bi(k) are the least-squ~res estimates at time k of the matrices

in (2.10).
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lnitializc:

Roe(-I)=RP (-l)=U , KN+i(k)=O0 for A'+ I> k;-O

whcre or is a small numbcr (c.g., a 10'7

For each k : 0:

e0(k) ro~k)= [y '(k) &4k)]J, G(k)=- I

4k) RQk) =eqk)re~k) +).R.(k - 1)

For each k zI, for N= 0 to k-I1:

KNv+ (k) = Av 1k- 1) + Je~k)G-'(k - l)r,,(k - 1)

eNv+ 1(k) = eh~(k) - rA.(k - I )R-"(k - I)Kr 1(k)

rv+ 1(k) = r,(k - 1) - e,(k)R,-V(k)K,.. 1(k)

R~v 1(k) = R;,(k) - ICN+ (k)R-P(k - I )KT 1(k)

RQ" 1(k) = R,Xk - 1) -Tj% ~)-~)v 1(k)

GV+I () =C,4k AI (k)R7(kWN+~k

Table 3.1 Residual Error Larticc Algorithm

For N - 1, k - I and for i-I1, N:

CNv+ I k) -CN k) - B, k)R-V()r k)

Bv+ 1,1+ 1(k) = [Evd- CN~k)G'(k)r.(k)J - Av~k)R-(k)XN+ (k)

A~f 1 I k) A AN~k) - [BNJ - CNkG'(k,,(k)),R-(k - I)Kr+.,(k)

with

C,hj,I(k)m R(k)Jrjk)

Table 3.2 Algorithm For AR Coefficients
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The adaptive controller in this paper is computationally efficient

because the bulk of the computation is in the lattice filter and lattice

filters are the fastest digital signal processing algorithms for recursive

least-squares estimation. The signal-flow structure of the lattice lends

itself particularly well to parallel architectures. These points are

discussed widely in the digital signal processing literature (e.g., IFl, GS1,

HMl, LMF1. LSl]).
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4. ADAPTIVE CONTROL

4.1 Control Law

The adaptive control law is based on (2.10) with estimated coefficient

matrices Ai(k) and Bi(k). For defining and computing the control law, the ARMA

order N is assumed to be fixed; changing N adaptively is discussed in Section

4.5.

We set

N N

t-1 k 1~-)-1Te(k) u A(k ~ki)- . u(k-i) - y y(k-1) + (Y)rk) (4.1)

where Y Is a real number with ,..gnitude less than I and Yr(k) is a reference

signal to be discussed later. We choose u(k-1) to minimize

J(k) - e(k)TQc(k) + nou2 (k-1) (4.2)

where Q is the nonnegative matrix

o (4.3)
0 21

and no is a nonegative real number. When (no + BI(k)TQB1 (k)) > 0, the unique

control u(k-1) that minimizes (4.2) is

u(k-1) a

N N

Bj(k)Q1Z ;1(k) y(k-i) - Z B1,(k) u(t1i) - y y(k-1) + (1+Y).yr (k))
1.1 1-2

(4.4)
no + BI(k)Q81 (k)
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The objective J(k) is motivated by the fact that if e(k) w O, then (4.1)

and (2.10) yield

y(k) + Y y(k-1) - (l+Y)Yr(k). (4.5)

Since in our problem y(k) and yr(k) are 2-vectors and u(k-1) is a scalar, it Is

almost never possible to obtain e(k) - 0. On the other hand, If >i > 0 and n2 -

no a 0, the first element of e(k) will be zero, so that (4.5) will hold with

y(k) and Yr(k) replaced by their respective first elements. (The first element

of B1 is nonzero in our problem.)

The adaptive control law in (4.4) Is a variation on a family of model

reference schemes discussed in [GS1, Section 6.3)]. For a plant that can be

represented exactly by (2.10) with fixed order N and constant coefficients, sta-

bility results for the closed-loop system produced by the adaptive controller

here are similar tc stability results in [GS1, Chapters 5 and 6]. In par-

ticular, if the first element of B1 is nonzero, n, > 0 and 1 12 nO = 0, then the

adaptive controller here reduces to a one-step-ahead model reference adaptive

controller for a SISO system. In that case, a sufficient condition for asymp-

totic stability is that all plant zeros lie inside the open unit disc.

While (2.10) with constant coefficients cannot represent the manipulator In

our problem exactly, we have considered linearized motion about the final

equilibrium position for asymptotic stability analysis. (In this case, the

flexible link no longer slides, and the control torque is perturbed about the

appropriate static torque.) A root locus analysis In [K13 shows how the

(discrtl-time) zeros of the open-loop ARMA model that relates torque pertur-

bations to perturbations in the rigid-body angle depend on the viscoelastic

damping in the flexible link. All of these zeros lie on the unit circle when no
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damping is rnoceled In the open-loop manipulator, and all of these zeros move

inside the unit circle when damping is modeled in the flexible link. This root

locus analysis is straight forward. The analogous distributions of continuous-

time zeros for flexible structures with colocated actuators and sensors is well

known.

For controlling the manipulator, we take ill a 1000 and 11 - 1. Hence the

control law in (4.4) almost amounts to SISO control of the rigid-body angle,

except near the final position, where the relatively small penalty on the

elastic tip deflection slightly improves settling. Also, we take no a 5xi0 "9 in

(4.2) and (4.4) so that the control law will be determined uniquely, and because

a root locus analysis in [KI] indicates that values of nO on the order of 10-9 ,

as opposed to no a 0, improve the asymptotic stability of the closed-loop system

without producing measurable steady-state error.

During the first 10 steps when the manipulator starts to rotate (i.e.,

after the learning period), we set y w 0 to get the manipulator moving rapidly.

Then we set Y a 0.96 for the remainder of the motion so that the controller does

not try to eliminate the error between y(k) and yr(k) unrealistically fast.

4.2 Reference Signal

We are most interested in commanding the absolute position of the manipula-

tor tip, which lies on a circle of radius L + r. Since r(k)(k a 0,1,2, ...) is

already specified by Figure 2.2, we concern ourselves with the tip position

Ytip(k) measured as arc length along the circle of radius L + r(k). Since

Ytlp (k) m 6(k)(L+r(k)) + Y2 (k). (4.6)

we command Ytlp(k)(whose desired profile Is shown In Figures 5.1-5.6) Indirectly

through the reference signal yr(k) for the output vector In (2.9).
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In 8r(t), the con-anded rigid-body angle, we must account for the static

tip deflection due to gravity. We cannot determine this deflection off-line

without using the exact data for the flexible link and the exact payload.

Therefore, to give the control system the capability to adapt to unknown link

characteristics, different payloads and different desired final positions, we

use an estimate of the static tip deflection in the reference signal. We

construct this estimate, denoted by y2 (k), with the low-pass filter

y2 (k+1) + ay2 (k) a (1+a)v(k),

v(k) a sign(y2 (k)).min [1Y 2 (k)1,Ay), (4.7)

which attenuates oscillations in Y2 (k). The constants in (4.7) are a a -0.986

and Ay a 0.1 m. During the large-angle motion, it is important only that y2 (k)

be small; near the final position y2 (k) should approximate closely the steady-

state tip deflection.

We denote the polar coordinates of the desired final tip position by (ef

Lf) where Lf * L + rf and rf is the final value of r. The reference signal for

the output vector in (2.9) is

Yr(k) _ 2(k)) (4.8)

with

Or(k) - [efLf(l-e"'05k) - y2(k)]/(L+r(k)). (4.9)

This definition of Sr(k) is motivated by and equivalent to

OfLf(I- "'e05 k) a r(k)(L+r(k)) + y2(k), (4.10)

which is obtained from (4.6) by replacing Y2 (k) with the estimate Y2(k) and
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replacing yip(k) by the desired tip position BfLf(l-e"05k).

We acknowledge that the reference signal here is unusual because it In-

cludes implicitly a sensor measurement. We see no way to avoid this feature if

the control system is to be truly adaptive.

4.3 Learning Period

To allow the lattice filter to obtain Initial parameter estimates before

the manipulator starts to move significantly, we use an initial learning period

of 0.2 sec, or 20 samples. During this period, the control torque is

Ulearn(k) a 10e " O01k cos(.4rk) Nm. (4.11)

Because of the frequency of this input, the manipulator does not move signifi-

cantly from its initial position at 8 a O. We do not attempt to identify the

plant order or parameters precisely during this learning period because the ARMA

model will begin to change as the flexible link begins to slide and nonlinear

terms involving the angular velocity build up during the fast rigid-body rota-

tion. Since-the flexible modes are not excited significantly when the manipula-

tor starts to rotate at .2 sec, we use the ARMA order 2 during and Immediately

after the learning period. Therefore, we need only a simple input for a short

learning period to obtain parameter estimates sufficient for beginning the

rigid-body motion.

4.4 Bound on Control Magnitude

In the simulations in Section 5, we impose the bound umax a 5x10 4 Nm on the

magnitude of the control torque to demonstrate that the algorithm Is robust with

respect to actuator saturation. This mans that If the magnitude of the control
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torque In (4.4) exceeds Umax' then Umax times the sign of the expression on the

right side of (4.4) is used for u(k-1).

The torque limit 5x104 Nm is approximately the torque required to produce

the angular acceleration associated with the reference signal in the simula-

tions. It Is not clear whether such a torque limit is realistic for robot

actuators; however, our objective in the simulations is to demonstrate an adap-

tive control algorithm that can control fast slewing In the presence of elastic

vibrations and a variable-order plant. If lower torque limits on available

actuators dictate slower angular accelerations, the adaptive control problem

should be less challenging because the slower rigid-body motion will excite the

elastic modes less than in our simulations.

4.5 ChangIng the Order of the ARMA Model

As we said in Section 3, the size of the diagonal elements of Re(k)(which

must be nonnegative) indicates how well an ARMA model of order N fits the input-

output data taken through time k. In [JG1], data from a simulated flexible

structure was used to demonstate how Re(k) indicates the number of excited modes

when small measurement noise is present. The idea is to increase N and look for

large drops in the diagonal elements of R (k). It might appear then that Re(k)

should be examined to determine the plant order detected by the lattice filter,

and that that ARMA order should be used for adaptive control. However, order

determination for adaptive control is not so simple, for two reasons. First, an

ARMA model with constant coefficients cannot fit exactly the nonlinear, time-

varying manipulator to be controlled here (even without measurement noise), so

that we should not expect the kind of sharp drop In R (k) at the correct order

that was seen in [JG1]. Second, as demonstrated In [JG2] with data from an

experimental flexible structure, the lattice filter can detect very marginally
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excited flexible modes, which usually do not need to be controlled actively.

Our simulations have Indicated repeatedly that using an ARKA order that

corresponds to the total number of modes in the plant leads to poor iden-

tification and control if some of the modes are only marginally excited. While

marginally excited modes were identified in [JGI, JG2], much longer data records

were required than an adaptive controller has time to process before the control

law must be computed and executed.

Our criterion for choosing the ARMA (lattice) order adaptively after the

learning period combines information In Re(k) with a measure of the control

system performance to obtain an indication of the order of the ARMA model needed

for effective control. The (1,1) element of R (k), denoted by RN(k,1,1), is the

term in Re(k) most closely related to the accuracy of one-step-ahead prediction

for the rigid-body measurement in our problem (again, see [JGI), and most per-

tinent for our controller because of the relative weighting in the matrix Q. At

each sampling time, the following test indicates whether to change N:

e(k) c (4.12)
k

[a0 + E IY(j) Yrlj)1 2 ]
J-0

Re(k,1,1) < e(k) - A,-- N - N - 1,N (4.13)

Re(k,1,1) > e(k) + Ai ) N a N + 1.

We have chosen the constants c a 50.0, A0 - 1.OxO 5 and A 0.005

empirically.

This order-change criterion is admittedly ad hoc, and further research

might produce a more sophisticated criterion. However, the test here has two
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features that we believe will be Important in any criterion for Changing the

order of an adaptive controller: 1) the model-fit-to-data error can remain large

if the control system achieves the desired response; 2) the dead band repre-

sented by Al reduces chattering of the ARMA order significantly (although the

simulations in Section 5 show that order chattering has not been eliminated

entirely). Because magnitudes of desired and true responses and number of

sampling points for a typical motion vary with the application, we suspect that

any criterion with features 1) and 2) will have constants that must be adjusted

empirically for each application.

5. SIMULATION

In the simulations, the nonlinear equations of motion (2.1) were solved

numerically with the control torque generated by the adaptive control law in

(4.4) and the reference signal given in Section 4.2. (See [KI] for details of

the numerical integration). The parameters in the ARMA model (2.10) were esti-

mated with the lattice algorithms in Tables 3.1 and 3.2, and the order of the

adaptive controller (i.e., the order of the ARMA model upon which the control

law is based) was determined adaptively by the criterion in Section 4.5. Also,

the learning period and control torque bounds In Sections 4.3 and 4.4 were used.

Representative examples of the numerous simulations in [KI] are presented

In Figures 5.1-5.6. For these figures, the initial position is the vertical

position corresponding to S a 0 in Figure 2.1. In the final position,

illustrated by the all-dotted position in Figure 2.1, the polar coordinates of

the manipulator tip are S f a 2 rad and Lf a Sm (recall Section 4.2). In the

figures, TIP POSITION is the ytip in (4.6) and DESIRED TIP POSITION at time k is

OfLf(l-e O5k)(recall (4.9) and (4.10)). TIP POSITION is in meters, and TIME is
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in seconds. CONTROL TORQUE in the figures is the control u divided by the bound

Umax"

For all six figures here, the same adaptive controller was used (i.e., all

the same constants in the equations in Section 4), except that in Figures 5.2

and 5.4, the order N of the adaptive controller was fixed at 2. For Figures

5.1, 5.3, 5.5, and 5.6, the maximum allowable order of N was 8. To emphasize

the role that the lattice filter plays In adjusting the order of the controller,

the order of the controller is labeled LATTICE ORDER in the figures.

The gravitational moment on the manipulator was included in the simulation

model for Figures 5.1-5.4, but no gravity was modeled for Figures 5.5 and 5.6.

In other words, the manipulator moved In a vertical plane for Figures 5.1-5.4

and in a horizontal plane for Figures 5.5 and 5.6. Thus a steady-state control

torque equal to approximately 1% of the maximum control torque is required in

Figures 5.1-5.4 to offset the torque due to gravity. The steady-state control

torque in Figures 5.5 and 5.6 is zero.

Figures 5.1 and 5.2 compare the variable-order adaptive controller with an

adaptive controller of fixed order 2 for a payload MPL equal to 10% of the mass

of the flexible link. Until the effective lateral impulse at 0.8 sec produced

by the sudden halt of the radial motion, the second-order adaptive controller is

sufficient. The impulse greatly excites transient elastic vibration in the

manipulator and the lattice (ARMA) order In Figure 5.1 Is adjusted automatically

(in six steps) to the maximum order N a 8. When most of the vibration is taken

out of the system, the lattice order is decreased back to 2.

It is not surprising that a second-order controller produces poor transient

response in the presence of significant vibrations of the flexible link. A more
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interesting question is whether we should not just fix the order of the

controller at 8 throughout the motion. We have simulated the response for

fixed-order controllers with N a 8 and other orders between 2 and 8, and the

simulations almost always show a response that becomes unstable before .8 sec,

when the higher order is needed In the controller. It appears that when the

order of the ARMA model is higher than that needed to fit the Input/output data

for the plant, the estimates of the redundant parameters are so poor that the

adaptive prediction upon which the control law is based Is very poor.

Figures 5.3 and 5.4 compare the variable and fixed-order adaptive

controllers for a payload equal to 50% of the mass of the flexible link. While

the superiority of the variable-order controller is still clear from Figures 5.3

and 5.4, these and other simulations in [Ki] show that the difference between

the performance produced by the variable-order controller and that produced by

the fixed-order controller decreases with increasing payload. With a payload

equal to 70% of the mass of the flexible link, both the variable and the fixed-

order controllers produce a response very similar to that in Figure 5.3 (when

the gravitational moment is present).

We are not certain why the change in controller order is less Important for

heavier payloads. The need to increase the controller order Is greatest when

the internal impulse at 0.8 sec has Its greatest effect on the transverse vibra-

tions of the flexible link, and the magnitude of this impulse Is proportional

to the magnitude of the elastic deformation at the time of the Impulse. More

extensive data In [KI] indicates that, for the commanded motion In the simula-

tions here, the elastic deformation with the larger payloads Is small at 0.8

sec. For heavier payloads, when we time the internal Impulse to coincide with

larger elastic deformation, the improvement made by the variable-order control-
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ler over the fixed-order controller becomes larger; however, in most simulations

the difference between variable-order and fixed-order controllers is still

greater for lighter payloads.

The control constants no , n , n2, etc. In the adaptive control law were

selected empirically to produce good response for a wide range of payloads when

the manipulator moves in a vertical plane under the Influence of gravity.

Figures 5.5 and 5.6 demonstrate that the variable-order adaptive controller is

sufficiently robust to continue to stabilize the manipulator about the desired

final position when the gravitational torque is removed from the simulation

model, although the response does degrade. The control constants can be

adjusted to optimize the response in the horizontal plane, but using the same

controller for all of the Figures here better demonstrates the adaptive capabi-

lity of the controller.

Figures 5.1 and 5.5 show some chatter in the lattice order. The criterion

in Section 4.5 for order-determination has eliminated most such chatter. A

better criterion might eliminate the chatter entirely. We have no simulations

with the order determination criterion here In which this chatter appears to

degrade the response of the manipulator.

6. CONCLUSIONS

The motion of the manipulator, In both the horizontal and vertical planes,

can be controlled adaptively for a wide range of payloads. Because of the

Internal Impulse associated with the sudden halt in sliding of the flexible

link, the capability of the controller to vary its order adaptively Is very

important. The lattice filter used for the on-line parameter estimation pro-
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vides the variable-order capability, which the standard least-squares algorithm

and other parameter estimation schemes commonly used in adaptive control do not

provide. Also, since a lattice of order N generates parameter estimates for

ARMA models of all orders between 1 and N, the additional computation required

for the controller capable of varying Its order between I and N, as opposed to a

controller of fixed order N, is only the minor computation required for the

order determination criterion in Section 4.5.
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ABSTRACT

For linear systems involving uncertain parameters with known,
constant nominal values and uncertain perturbations that vary
sinusoidally with time, Lyapunov robustness analysis is used to determine
a stability bound, or margin, for the amplitudes of the parameter
perturbations. This bound is the size of a hypercube in parameter space
for which asymptotic stability is guaranteed. The bound, which is based
on a quadratic Lyapunov function that depends linearly on parameter
perturbations, varies with the frequency of the uncertain parameter
perturbations. The bound is asymptotically proportional to the square
root of this frequency as it becomes large.
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1. Introduction

Numerous recent papers [Bl-KBHI, PTl-ZK2] have used quadratic Lyapunov

functions to develop robustness bounds for linear systems with uncertain

parameters. Some papers [HB2, PTl, Yl-ZKl have dealt with robustness

analysis only, while some [B1, HK1, KXBH, P1, PH1, ZK2] have used Lyapunov-

based robustness analysis as a basis for design of robust controllers. A

common feature of the references just cited and most related work is that a

single Lyapunov function is used for the entire set of parameters for which

stability is guaranteed. Because of this, the Lyapunov robustness analysis

applies to time-varying uncertain parameters (although the nominal plant must

be constant). However, the robustness bounds, or margins, produced by such

analysis involve only the magnitude of parameter variations; the analysis

cannot detect how the allowable magnitude of uncertain time-varying parameters

depends on their frequency.

In [Li, LG1], a quadratic Lyapunov function was developed that varies

linearly with uncertain plant parameters. Because of the linear dependence on

parameters, the method in [Ll, LG1] is called a first-order method. For all

but one example to date, this first-order method has yielded larger robustness

bounds than the sharpest possible method based on parameter-independent

Lyapunov functions (see [Li, LG1]). The first-order method in (Li, LW] does

not apply to problems with time-varying uncertainties, though.

This paper extends the approach in (LI, LG1] to linear systems in which

the nominal system is time-invariant but the perturbations in uncertain

coefficients vary sinusoidally with time. As in [Li, LC1], the Lyapunov

function here varies linearly with uncertain parameters. The first-order term

in the Lyapunov matrix satisfies a differential equation in which the forcing

term contains the sinusoidal perturbations from the nominal plant. As a



result, the Lyapunov function and the resulting robustness margin depend on

the frequency of the parameter perturbations. In general, the robustness

margin is proportional to the square root of the frequency of the

perturbations at large frequencies.

2. Preliminaries

We consider the system

(2.1) x(t) - A(t) x(t)

where x(t) is a real n-vector and the n x n matrix A(t) has the form

(2.2) A(t) - A(t,p) - A0 + G(p) sinwt

where the real matrix G(p) is a linear function of the constant parameter

vector p - [Pl P2 ... Pm IT ' Rm and the real matrix A0 is constant and

independent of p.

Definition 2.1. A real n x n matrix function P(t) is a Lyapunov matrix for

A(t) if i) P(t) is periodic with period 2x/w; ii) P(t) is symmetric and

positive definite for each t, its maximum eigenvalue is bounded uniformly in t

and its minimum eigenvalue is bounded away from 0 uniformly in t; Iii) P(t) is

piecewise continuously differentiable and the real xyu=etric matrix

(2.3) Q(t) - -[#(t) + A(t)T P(t) + P(t) A(t)]

is nonnegative. Furthermore, P(t) is a strict Lyapunov matrx for A(t) if

Q(t) is positive definite with its minimum eigenvalue bounded away from 0

uniformly in t.
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Theorem 22,. (Standard Result) The system (2.1) is uniformly exponentially

stable if and only if there exists a strict Lyapunov matrix for A(t).

We assume that the eigenvalues of A0 all have negative real parts, so

that for each positive definite symmetric real n x n matrix QO there exists a

unique positive definite symmetric real n x n matrix PO satisfying

(2.4) A6 P0 + P0 A0 - "Q0"

We will factor Q% uniquely as

(2.5) QO " L LT

where L is a real n x n lower triangular matrix with positive diagonal

elements.

3. The First-order Method

We define

(3.1) P(t,p) - P0 + P1 (tp)

where, for each value of the parameter vector p, Pl(t,p) is the unique

periodic solution to

(3.2) fi(t,p) + p P1 (t,p) + P1 (t,p) A0 - "[GT(p) PO + P0 G(p)] sinwt.

That (3.2) has exactly one periodic solution follows from the fact that the

eigenvalues of A0 all have negative real parts. The matrix Pl(t,p) is a

linear function of the parameter vector p, since G(p) is. Furthermore,

Pl (t,p) has the form

(3.3) Pl(t,p) - Pa(p) Co5t + Pb(p) sirwt
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where the real symmetric nxn matrices Pa(p) and Pb(p) are the unique nxn

matrices that solve the equations

(3.4), WP ()+ T G+PGp)P) + AOPb(P) + Pb(P)AO - "[GT(p) PO + P0 G(p)

(3.5) "Pb(p) + A6Pa(P) + Pa(P)A0 - 0.

To motivate our terminology, we note that, if the solution P(t,p) to (2.3) for

fixed Q - QO is expanded as a Taylor series in p, the zero-order term is PO

and the first-order term is Pl(t,p).

Next, we define some quantities that will be useful in determining

whether P(t,p) is a Lyapunov matrix for A(t,p). First,

(3.6) W(t,p) - L-[GT(p) Pl(t,p) + Pl(t,p) G(p)] L-T sirnt

where L is the matrix in (2.5). For a matrix M:

(3.7) amax(M) - maximum singular value of M;

(3.8) Amax(M) - max (JAI: A is an eigenvalue of M) (for square M).

Since P0 is a strict Lyapunov matrix for AO , the following two

conditions, together, are sufficient for P(t,p) to be a strict Lyapunov matrix

for A(tp) for a given p:

Condlirlon 3.1. AM(P 0 "IPl(t,p)) is bounded strictly below 1 uniformly in t.

Condition 3.2. oma(W(tp)) is bounded strictly below I uniformly in t.

Definition 33..(Hypercube in R). For s Z 0,

C(s) - (p - [P1 P2 ... PalT : max IPj1 I s).

i

We note that C(s) is the convex hull of its 2m vertices.



Definition 3.4. If f is a real-valued function defined on C(l), then

pl(f) - max (f(p): p is a vertex of C(l)).

3. Let ( l, f2) ... k) be a finite collection of points in a linear

space', let S be the convex hull of (Cl, f2 .... k) , and let f be a convex

function defined on S. Then max (f(f): eS) - f(f4 ) for some J.

The proof of this lemma is elementary. See [Li].

We recall that amax(-) is a norm for any space of finite dimensional

matrices. Hence amax(-) is a convex function on any such space. Also, for a
fixed matrix M, Amax(MTMN) - amax(MNMT) is a convex function on the space of

symmetric matrices N of a given dimension. We will use these facts, along

with Lemma 3.5, to estimate the largest hypercube C(s) such that, for each p

in the interior of C(s), P(t,p) is a strict Lyapunov matrix for A(tp).

Since P.(p) and Pb(p) are linear in p and since a convex function of a

linear function is convex, Lemma 3.5 yields

(3.9) A max(P01Pa(sP)) - sAmax(POIPa(p)) : s Ml(Xmax(PO 1Pa)),

p e C(l) and s > 0,

and similarly for Pb(p). Then, since a sum of convex functions is convex and

since the square of a nonnegative convex function is convex,

(3.10) Amax(O 1 Pl(tsp)) : s 0pmax(QO). P e C(l), s, t 0,

where

(3.11) Tomax(QO) - Ml([ A.ax(Po PA) 2 + AA(Po lb)2l/2).

We factor G(p) as

(3.12) G(p) - G0G1 (p)
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where GO is independent of p and Gl(p) is linear in p. Since [L'1Pa(P)Go] and

[GI(p)L-T] are linear functions of p, omax(L'1 Pa(p) Go) and amax(Gl(P)L'T) are

convex functions of p, and similarly for Pb(p). Therefore, Lemma 3.5 and

elementary properties of amax(.) yield

(3.13) omax(W(t,p)) S 2 pl(amax(L'Pl(tp)G0 sinwt)) •l(*max(GiL-T

p e C(l).

(Recall pl(.) from Definition 3.4.). From

(3.14) 2 (Pa(p) coswt + Pb(p) sinwt) sinwt -

Pb(p) + Pa(P) sin2wt - Pb(p) cos2wt,

it follows that

(3.15) 2 amax(LIPl(t,P)Gosinwt) : amax(L'IPb(P)GO)

+ [amax(L-1Pa(p)GO) 2 + Omax(LIPb(p)G) 211 /2.

Hence (3.13). (3.15) and Lemma 3.5 yield

(3.16) amax(W(t,sP)) c s2 Clmax(QO) 02max(QO), p C C(l), s, t > 0,

where

(3.17) 7lmax(QO) - pl(vmax(L'1 PbGo))

+ pl([amax(L'IPaGo) 2 + omax(L'IPbGo) 2 ]1/2)

and

(3.18) 02max(QO) - ul(vmax(GiL'T

Now we define

(3.19) sl(Qo ) - 1/ma(uxox (Qo), (0umax( o) - 02Q x(Qo))1/2.

For p in the interior of C(sl(QO)), it follows from (3.10)-(3.11) that

Condition 3.1 holds and it follows from (3.16)-(3.18) that Condition (3.2)
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holds. Therefore, we have the following theorem, which is the main result of

the paper.

Theorem 3.6. For each p in the interior of C(sI(Qo)), P(t,p) is a strict

Lyapunov matrix for A(t,p).

From (3.3)-(3.5), it follows that Pl(t,p) is proportional to l/W for

large w. From (3.11) and (3.17) then, it follows that vOmax(Qo) and almax(Qo)

are asymptotically proportional to 11w. Since 02max(QO) is independent of W,

(almax(Q0 ) - a2max(QO))1/ 2 dominates 00max(QO) for large w, so that sl(Qo) is

proportional to w 1 /2 for large w.

4. Numerical Solution of the Lyanpunov Equations

Eliminating Pb(p) from (3.4) and (3.5) yields

(4.1) w2 Pap + Ab Pa(P) + Pa()A 2 + 26Pa(p)A - T

W [GT (p) P0 + P0 G(p)].

The Bartels-Stewart algorithm (BSI] for solving standard Lyapunov algebraic

equations can be generalized in the following way to solve (4.1) for Pa(p).

Let U be a real unitary matrix such that UTAo - A. where As has quasi Schur

form. Then premultiplying (4.1) by U T , postmultiplying by U and inserting UUT

where needed yields

)2 p T2- + 2T-_ -

(4.2) a(p) + As Pa(p ) + 2A (P)As

W UT (GT(p) P0 + P0 G(p)]U

where pa(p) - UTPa(p)U. The various lxi, x2. 2xl and 2x2 blocks of (4.2) can

be solved recursively as in [BS1].



5. Example

The matrices A0 and G(p) in (2.2) are the following 4x4 matrices:

(5.1) AO - I 0 I I G(p) - I 0 0 1
I-Ko  -D I I-Ki 0 1

where

(5.2) K% - II 01 D - .05 KO Kl - IPl P21-
10 41 IP2 P31

Figure 1 shows Sl(0) as a function of w for G(p) factored as in (3.12) with

(5.3) Co - 101 (4x2), Gl(p) - I-K1 01 (2x4),
III

and for G(p) not factored (i.e., Go - I and Gl(p) - G(p)). That sl(I) is

asymptotically proportional to w/2 , as predicted in Section 3, is clear from

Figure 1.

Perhaps more interesting are the local minima at w - 1, 2, 3 and 4. We

recall a classical result for the undamped Mathieu equation (see [NMI] or

other standard references): a parametric excitation of frequency twice that of

the nominal system makes the solution to the equation unstable. Thus the

local minima at w - 2 and w - 4 (twice the natural frequencies of the nominal

system) might be expected. Furthermore, results in [NMI, Chapter 5] for a

multi-degree-of-freedom Mathieu equation indicate additional instabilities

produced by parametric excitation frequencies equal to sums and/or differences

of natural frequencies of the nominal system. (For the one-degree-of-freedom

damped Mathieu equation obtained by taking A0 and G(p) to be 2x2 matrices of

the forms in (5.1) and (5.2) with K0 - 1 and K1 - pl' we have obtained an

sl(1) plot similar to Figure 1 but with only the local minimum at w - 2.)
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