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This grant has supported research in the following areas:
¢ Optimal Control of Distributed Systems

e Adaptive Identification

e Adaptive Control

o Robust Control

The Publications section of this report lists six PhD dissertations and sixteen research
papers produced by research supported in whole or in part by this grant. Most of these pub-
lications have been provided to AFOSR previously. The Appendix to this report contains
five of the research papers, which are representative of the project.

Optimal Control of Distributed Systems

The main focus of this component of the research is approximation theory and numeri-
cal methods for design of finite dimensional compensators for optimal control of systems
represented by linear partial and functional differential equations. The primary class of
applications is large flexible space structures. Papers dealing mainly with approximation
theory and numerical methods for optimal control of distributed systems are [1, 2, 3, 4]. The
paper (5] has substantial results on approximation of digital input/output models, as well
as results on infinite dimensional system theory that are useful in adaptive identification
and control of distributed systems. The paper [6], which deals exclusively with stability
theory for a class of wave equations, is motivated by certain stability issues that arise in
approximation theory for control of equations governing many flexible structures.

Adaptive Identification

This segment of the research has dealt with fast methods for real-time adaptive identification
and prediction of systems with unknown parameters and unknown order. The class of such
methods to which this research has contributed most is least-squares lattice filters. The
paper [7] demonstrated the application of a lattice filter for adaptive identification and
prediction of an experimental flexible structure. The paper [8] and the PhD dissertation
[9] developed a new lattice filter, called an unwindowed lattice, which achieves much faster
convergence to parameter estimates and accurate prediction than prewindowed lattices.

Adaptive Control

This part of the research has concentrated on adaptive control and tracking problems for
flexible structures and manipulators with flexible links and joints. The papers {10, 11, 12,
13, 14] and the PhD dissertations (15, 16, 17] have developed adaptive control methods that
appear to have wide application to flexible space structures and high-speed manipulators.




Robust Control

The goal of this part of the research has been to develop numerically efficient methods for
determining robustness margins for control systems with uncertain parameters and for de-
signing plants and controllers that have desired robustness margins. For parameter values
within these robustness margins, the systems are guaranteed to be asymptotically sta-
ble. The papers [18, 19) presented new robustness margins along with numerically efficient
methods for computing these margins, and the paper [20] presented a method for numerical
design of robust control systems. These papers were based on the PhD dissertations [21, 22].
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Abstract

This paper develops an abstract framework for analysis and approximation of linear ther-
moelastic control systems, and for design of finite-dimensional compensators. The thermoelastic
systems in this paper consist of abstract wave and diffusion equations coupled in a skew self-
adjoint fashion. Linear semigroup theory is used to establish that the abstract thermoelastic
models are well posed and to prove convergence of generic approximation schemes. Open-loop
uniform exponential stability for a subclass of thermoelastic systems is proved via a Lyapunov
function. An example involving the design of an optimal LQG compensator for a thermoelastic
rod illustrates the application of the abstract theory. Results of an extensive numerical study,
including a comparison of the dosed-loop performance of different compensator designs, are
presented and discussed.

*This author was supported by AFOSR Grant 87-0373.
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1 Introduction

The transfer of energy between its mechanical form and heat generally has been ignored as a source
of both structural damping and excitation in the vast literature on control of flexible structures.
Only a few recent papers have considered control of thermoelastic structures [1, 2, 3, 4, 5], [6, 7, 8,
9]. However, the thermally induced vibrations that hampered the recently launched Hubble space
telescope have highlighted the coupling between mechanical vibration and heat transfer and the need
to model and control thermoelastic phenomena in flexible structures.

This paper has two main objectives: first, to develop a theoretical framework for analysis and
approximation in the design of feedback control systems for a broad class of linear thermoelastic
systems; second, to illustrate the application of the theory by presenting the most interesting re-
sults from an extensive numerical study of LQG optimal control of a thermoelastic rod. Both the
theory and the example focus on numerical methods and convergence analysis for the design of
finite-dimensional compensators based on finite-dimensional appraximations of distributed models
of thermoelastic systems.

By a thermoelastic system, we mean an abstract wave equation coupled in a skew self-adjoint
fashion with a diffusion equation. While some of the theory developed here pertains specifically to
problems in which the generalized wave equation is second-order (in time), much of the theory applies
to a broader class of problems, including, for example, problems in which a Schrodinger equation
is coupled with a diffusion equation. In this paper, we are particularly interested in second-order
generalized wave equations because they are common in flexible structures, but the results here
that allow a more general class of wave equations are intended to apply also to problems such
as thermal blooming in lasers [10]. Although the theoretical framework developed in this paper
handles a wide variety of thermoelastic systems, it is not clear whether our hypotheses hold for the
thermo-viscoelastic systems with memory studied by Burns et al. [1, 2, 3].

Our philosophy in the abstract formulation of thermoelastic control systems in Section 2 and in
the appraximation theory in Section 4 is to base the results on hypotheses that require as little as
possible beyond conditicns that normally hold for the individual wave and diffusion equations. This
means that, in analyzing a particular application, most of the work is done on the uncoupled wave
and diffusion equations, and the work required to couple the systems is minimised. For example,
in verifying the hypotheses for Theorem 4.6, which concerns convergence of approximations to the
open-loop thermoelastic system, once the convergence conditions for independent approximations to
the uncoupled wave and diffusion equations are verified, no further work is necessary to guarantee
convergence of the appraximations to the thermoelastic system when the straightforward Galerkin
scheme that we assume for approximating the coupling operator is used.

The approach to compensator design in Sections 3 and 4.1 of this paper is to approximate an
ideal infinite-dimensional LQG compensator with a sequence of finite-dimensional compensators.
Bowever, the abstract formulation of thermoelastic control systems in Section 2, the appraoximation
and convergence theory in Section 4.2, and the result in Section 5 on open-loop uniform exponential
stability should be useful in any method for analysis and design of controllers for thermoelastic
systems.

An important issue in both convergence of the approximating compensators and performance
of the closed-loop systems is uniform exponential stability of the open-loop thermoelastic system.
While several authors [6, 11, 4, 12, 13] have proved strong stability for various linear and nonlinear
thermoelastic systems, few results have been published on uniform exponential stability. A result
in [12] on integrability of the energy, when applied to the linear case, yields uniform exponential
stability for thermoelastic rods with certain sets of boundary conditions. Also, a recent eigenvalue
analysis in {6] yields uniform exponential stability for linear thermoelastic rods with the same sete
of boundary conditions to which the result in [12] applies. The proof of our Theorem 5.1 uses a
Lyapunov function to establish uniform exponential stability for a large class of linear thermoelastic
systems, but does not improve on the results in [6] and [12] for the rod. The results in {6, 12] and




our Section 5 do not apply to the set of boundary conditions for which uniform exponential stability
has been proved recently in [14].

In Section 6, we apply the theory developed in Sections 2-5 to design finite dimensional compen-
sators for a thermoelastic rod. We present numerical results for the functional control and estimator
gains that represent the compensators graphically. We also compare the closed-loop eigenvalues pro-
duced by three of the finite-dimensional compensators based on different damping models. These
eigenvalues were obtained from simulations in which each compensator was connected to a model of
the rod with dimension significantly higher than the dimension of the compensator. This compar-
ison illustrates the importance of modelling even very light thermoelastic damping, or possibly an
artificial viscous equivalent, if no stronger damping mechanism is present.




2 Abstract Thermoelastic Systems

Throughout this paper, H or H; (j = 0,1,2) will be a Hilbert space with inner product (-,-) or
(,-); and corresponding induced norm |- j or |- |;. Also, V or V; will be a reflexive Banach space
with norm || - || or || - |l;. The continuous dual of V will be denoted by V', and

Ve HoV (1)

will mean that V is embedded densely and continuously in H, whick implies that H is embedded
densely and continuously in V’ (see, for example, [15, 16]). In this case, (-,-) will denote both the
H-inner product and the duality pairing on V x V',

Lemma 2.1 Let V and H be related as in (2.1), let A be & linear isomorphism (i.c., ¢ continsous
linear bijection with continvous inverse) from V to V' such that A is dissipative in the sense that

Re(v, Av) <0 Vv eV, (2.2)

and define
Dom(A) = A-lH, A= .Alpom(,q). (2.3)
Then Dom(A) is dense in H and A~! € B(H,H). Also, A is a mazimal dissipative operator on H.

Proof That Dom(A) is dense in H follows from the fact that H is dense in V' and A~! is bounded
from V' to H. To see that A is maximal dissipative, suppose that there exists a dissipative linear
operator A : Dom(A) C H — H that is a proper extension of A. Since R(A) = H, there exists
he Dom(A)\Dom(A) and v € Dom(A) such that A # 0, Ah = 0, and Av = h. Then, for any real o,
(v+ ah, A(v + ah)) = (v, Av) + alh[?, and, for sufficiently large a > 0, Re{v + ah, A(v + ah)) > 0,
contradicting the dissipativity of A. O

Theorem 2.2 Let the Hilbert space Hy, the reflezive Banach space V; and the operator A, be as in
Lemma 2.1. Let the Hilbert space Ha and the reflezive Banach space V3 be as in Lemma 2.1, and
let A2 be a linear isomorphism from V to V) that is Vi-coercive; i.c., there erists a positive real
number a such that

Re(¢,A28)2 2 aligll}, ¢€Va (24)
Also, let £ € B(V4,V3). Define
H=H,xH;, V=VixW (2.5)
and .
A= [ «21 -_-ﬁz ] (2.6)

where L* € B(V3, V) is defined by
(L8 =(8,L¢);, VEW,$€EV; (2.7)
(i.c., L* is the Banach-space adjoint of £). Then H,V, V' and A ere as in Lemma 2.1.

Proof Since A, is dissipative and A; is V3-coercive, the operator (As — LAT!L®) € B(V;,V3) is
Va—coercive. Hence, for f; € V{ and f2 € V4, the pair (v;,v3) € V given by

va= (A= LATIL )Y MLAT i = f2), wi=ATN L v+ f1) (28)

is the unique solution to
a(2)=(4)

The mapping that takes (f,, f3) to (v1,va) is clearly bounded from V' = V{ x V to V. D




Remark 2.3 We define the edjoint operators A} € B(V;,VY), A3 € B(V3,V;) and A° € B(V, V")
as in (2.7) with the appropriate duality pairing in each case. Under the hypotheses of Theorem 2.2,
1, A3 and A° Aave the same properities, respectively, as A,, A; and A.

Remark 2.4 We define the operator L : Dom(L) C Hy — H; to be the restriction of £ to Dom(L) =
{¥ € Vi : Loy € H3}. If Dom(L) is dense in V;, we define the operator L* : Dom(L*) C H3 — H,
to be the Hilbert space adjoint of L with respect to the Hy and H, inner products. It can be showm
that L*® is the restriction of L* to Dom(L*) = {¢ € V3: L ¢ € H,}.

For the class of systems of primary interest in this paper, there exist Hilbert spaces H, and H;,
and reflexive Banach spaces Vo and V; such that Vp « Hg — V] and V3 « Hj; «— V] (with each
injection continuous and dense). The thermoelastic evolution equations have the form

w(t) + Dow(t) + Aow(t) + L30(t) = fo(t), t>0, (2.10)

6(t) + As8(t) ~ Loir(t) = fa(t), >0, (2.11)
where Do, Ao € B(Vo, Vy), Lo € B(Vo, V), A2 € B(V3,VY), fi € L1(0,1; H;) fori = 0,2 and all { > 0.
We assume that Ay is symmetric in the sense that

<¢'IAO¢)0 = (¢!A0¢)Oi ¢:¢ € VO) (212)

and that Ao is Vo-coercive and Aj is V3-coercive. We assume that Dy is nonnegative in the sense
that

Re(4,Doyp)o 20, Y€V (2.13)
To derive a semigroup generator for the thermoelastic system in (2.10) and (2.11), we first

consider the semigroup generator corresponding to (2.10) for the case Lo = 0. We make Vj into a
Hilbert space by defining

(¢, 8)vo = (¥, Aod)o, &, ¥ EVL. (2.14)

Our bypotheses on A, imply that the norm induced by the inner product in (2.14) is equivalent to
the original V5 norm. We define

Hx = Vo X Ho, Vl = Vo x Vo, (2.15)

and we identify Vp with Vj in the first component of H, and V; and write V} = Vp x V{. It follows
that Vi — H; < V.
Next we define

=10 1 /
A= [ —A; Dy ] € B(i, V). (216)
That A, is an isomorphism from V; to V] follows from

At = [ ‘A5I'7’° 'f ' ] € B(V!, ). (2.17)

We define A; by (2.3) with A, A and H replaced by A,;, A; and H,, respectively. According to
Lemma 2.1, A, generates a contraction semigzoup on H;. (See (15, 16, 17, 18] for similar approaches
to obtaining semigroup generators of the form in (2.16).) Also, we note that the restriction of —A;
to A3 ! H; generates a uniformly exponentially stable analytic contraction semigroup on Hj. For the
thermoelastic system, we define

L=[0 £Lo)eBW,V;) (2.18)




to obtain the situation in Theorem 2.2 with A; defined by (2.16). The corresponding A defined by
(2.6) is

0 I 0
A=| -4, -Dy L3 | € BV, V) (2.19)
0 Ly —-A;
where
VaVWoxWxVa—sH=VoxHoyxHy =V =V x V) xVj. (2.20)

The semigroup generator A for the thermoelastic system in (2.10) and (2.11) ther is defined by (2.3).
Explicitly, the domain of this semigroup generator is

Dom(A) = {(¢,%,6) € V : A(¢,¥,6) € H}. (2.21)

The system in (2.10) and (2.11) now can be written as
)= Az(t)+ f(t), t>0, (2.22)
where z(t) = (w(t),w(t),0(t)) € H and f = (0, fo,f2) € L1(0,f; H) for all £ > 0. If {T(t) : t > 0}

is the semigroup generated by A, the mild solution to the initial value problem consisting of (2.22)
and an initial condition z(0) = (w(0),w(0),6(0)) € H is

2(8) = T(£)2(0) + /o T(t-s)f(s)ds, t30. (2.23)




3 The LQG Optimal Control Problem

In the abstract thermoelastic system (2.10)-(2.11), we consider inputs of the form
f(t) = Bu(t)+ By(), >0 (3.1)

and an output given by
y(t)=Cz(t) +v(t), >0, (32)
where z is the mild solution to (2.22), u(t) € R™, 1(t) € R, y(t) € R*, () € R?, B € B(R™, H),
B € B(R',H), and C € B(H,RP). Also, 7 and v are stationary sero-mean Gaussian white noise
processes with covariance matrices I’ and R, respectively, and R is posxtwe definite.
The lmear-quadratnc-Gaussxan (LQG) optimal control problem is: given the output y in (3.2),
choose u to minimize

. 1 (v T
1) = Jim B(- [ 1@=(0),2(0) + u(tT Ru(oler (33)

where Q € B(H, H) and R € R™*™ a ¢ self-adjoint with Q nonnegative and R positive definite; as
in (3.2), z is the mild solution to the thermoelastic system (2.10)—(2.11) (or, equivalently, (2.22))
for the input of the form (3.1).

In view of (2.10) and (2.11), the operator B has the form

0
= Bo (3'4)
B,
where
B; = [b.'lb.'z .. .b.'m], b.'j €H;, 5=12,...m, i=0,2. (35)
The operator B has the same form. The operator C in (3.2) has the form
= [Co1 Co2 C3), (3.6)

where Co, € B(Va, R?), Coa € B(Ho, R?) and C; € B(H,, RP).

Theory for the infinite dimensional LQG optimal control problem with bounded input and output
operators can be found in 19, 20, 21, 22, 18). We triefly summarize the relevant results and essential
features of the theory here. As in finite dimensions, the LQG problem separates into a deterministic
linear-quadratic reguiator problem on the infinite interval and a dual state estimator, or filtering,
problem.

First, we consider the regulator problem, which is to choose the contro} u to minimize the integral
in (3.3) when both noise processes in (3.1) and (3.2) are sero, the output operator C is the identity,
and ¢y = oo. If the operator pair (A, B) is uniformly exponentially stabilizable (i.e., there exists a
bounded linear operator K such that A — BK generates a uniformly exponentially stable semigroup
on H) and the pair (Q, A) is uniformly exponentially detectable (i.e., the pair (A°,Q) is uniformly
exponentially stabilizable), then there exists a unique nonnegative self-adjoint solution I € B(H, H)
to the operator algebraic Riccati equation

A'lI+0A-TIBR'B'I+Q=0, (3.7)

with [I(Dom(A)) C Dom(A*). The optimal control for the infinite-time linear-quadratic regulator
problem has the feedback form

u(t) = —Kz(t), t>0, (3.8)
where
K:R“B’HEB(H.R"'). 3.9)
]




For the filtering problem, we define .
Q= BI'B". (3.10)

If the pair (C, A) is uniformly exponentiaily detectable and the pair (4, Q) is uniformly exponentially

stabilizable, the operator algebraic Riccati equation
Al +A*-fiCCR ' cli+ Q=0 (3.11)
admits a unique nonnegative self-adjoint solution Il € B(H, H) with [i(Dom(A*)) C Dom(A). The
minimum-variance estimate of z(t) given y(r) (r < t) is a mild solution £(t) to the evolution equation
£(t) = Az(t) + Bu(t) + R{y(t) - Cz(1)) (3.12)

where o

K =1C"R™ € B(R*,H). (3.13)

The optimal LQG compensator consists of the filter, or state estimator, in (3.12) and the control
law

u(t) = -Ki(t), >0, (3.14)

with the control and filter gain operators given by (3.9) and (3.13), respectively.
The optimal closed-loop system then takes the form

z(t) = Sq(t — 8)z(s), 0<s<t (3.15)

where z(t) = (z(t),£(t)) € Z = H x H and {Su(t) : t > 0} is the Co-semigroup of bounded linear
operators on Z with infinitesimal generator

-BK

A= A )
=1 kc A-BK-KC ]|’

Dom(A.) = Dom(A) x Dom(A). (3.16)
If {S(t) : t > 0} and {S(t) : 2 > 0} are the semigroups of bounded linear operators generated on

H by infinitesimal generators A — BK and A — KC, respectively, then it is easy to show that
e(t) = S()e(0), t20, (3.17)

where e(t) = z(t) — £(t). Moreover, if for some real @ and M,

IS < Me™, 20, (3.18)
IS@ll < Me™*, t20, (319)

then for each b < g, there exists a constant My > 0 for which
ISa(ll < Mae™",t2> 0. (320)

Finally, as in the finite dimensional case, it can be shown that
o(Aa) = o(A - BK)Uo(A- KC) (3.21)

where 0(A4) denotes the spectrum of the closed-loop semigroup generator in (3.16).

We note that the uniform exponential stabilisability and detectability conditions stated in this
section are sufficient for the existence of unique nonnegative self-adjoint solutions to the operator
algebraic Riccati equations (3.7) and (3.11). These conditions are not necessary for some problems
with finite rank Q and Q. A sufficient and usually necessary condition for uniform exponential
stabilizability and detectability is that the open-loop system be uniformly exponentially stable except
possibly on a controllable and observable finite-dimensional subspace.
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It is convenient to note that, since R(K) C R™ and Dom(K) = RP, there exist k = (k;, ..., kn)

and k = (k,, k,) with &; and k in H such that
Kz} =(z,k), ze€eH, j=12,...,m, (3.22)
and ,
Kr=) krj=[bky ... k), rePr. (3.23)
=1

Also, kj,k; € H implies that ky = (k;1,ky3,k;3) s0d k; = (Ejy, B0, E;5) with &4, E;, € Vo,
k', 3,k,’3 € Hy, and k,'a, 3,3 € Hj. It follows that

(2, kl) = (¢) Aok ',1)0 + (d’) kj.?)o + (01 k),S)z (3.24)

for z = (¢,,0) € H. The vectors k; and E; and their components, k;; and £;;, are referred to as
Sunctional control and estimator (or obuncr) gains, respectively.




4 Approximation and Convergence

4.1 Approximation Theory for the LQG Control Problem

An approximation and convergence theory for the optimal LQG problem for infinite-dimensional
systems was developed in [21, 23, 24, 18]. Here, we shall first briefly summarize the generic theory
and then take a closer look at it in the context of abstract thermoelastic control systems.

Hypothesis 4.1 There ezisis a sequence of finite-dimensional subspaces H" (n = 1,2,...) of H, and
sequences of operators A™ € B(H™,H"), B” € B(R™,H"),B" € B(R',H") Q" € B(H",H"),C" €
B(H", RP). The operalors Q™ are monnegative and self-adjoint for each n.

From here on, we take Q" = B"I'(B")* € B(H").

Hypothesis 4.2 TAe finite dimensional algedraic Riccati equations

(A" I+ oA~ O"B"R}(B")OI"+Q" =0 (4.1)
and ) X i . i )

AO" 4+ O0°(A™) - O*(C*YR™ICMI"+ Q" =0 (42)
admit unigue nonnegative self-adjoint solutions I" € B(H™, H") and [I” € B(H", H™), respectively.
We define gain operators

K" = R"Y(B")'II" € B(H",R™), (4.3)
and R A )
K" =1"(C")°R~! € B(R?,H"), (4.4)

for a sequence of finite-dimensional compensators for the control system (2.10)—2.11) with input of
the form (3.1) and output of the form (3.2). The n-th compensator is given by

u”(t) = -K"2"(¢), (4.5)
£"(t) = A"z"(t) + B u(t) + K"[y(t) - C*2"(1)). (4.6)

The resulting closed-loop system is then given by
"(t) = SH(t — 6)z(s), 0<s<t<oo (4.7)

where z"(t) = (z"(t),2"(t)) € 2" = H x H", and {S7(t) : t > 0} is the Cy-semigroup of bounded
linear operators on Z™ with infinitesimal generator A7, : Dom(AJ) C 2™ — 2™ given by

= g o im g | DomAD=Domx Y. 49
Since K™ € B(H", R™) and K™ € B(R?, H™) we have
(K*2") = (&), =")g, j=1,2,---,m (49)
for z” € H" and ’
Ke=)Y Ery=[it k5 ...E)r (4.10)

=1
forre R” with i), B2 € H*, i=1,2,...,m, j=1,2,---,p.
The convergence theory can be summarised as follows. We will refer to the following finite
dimensional semigroups:
T (t) =A™,  S°(t) = elA-B°K°k gn(g) = JAT-RCTR (4.11)
and their adjoints T"(t)*, S™(t)* and S™(1)".




Hypothesis 4.3 For each n, there ezists o linear mapgping P* from H onto H™ such that

lim Pz = z, z€H. (4.12)
N =00
For each z € H and each t > 0,
nlingo T(t)P"z = T(t)z, (4.13)
“linczo T"(t)*P"z = T(t)°z. (4.14)
where, in eack case, the convergence is uniform in t for t in bounded intervals. Also,
"lln;: B"u = By, u€R™, (4.15)
lim Q"P"z = Qz, Z€H, (4.16)
n=-00
and
lim CP"z = Cz, z€H. (4.17)
=00
If -
sup|[0”|]]< oo  and sup |[II"]| < o0 (4.18)
n n

and there exist positive constants M and @, independent of n, for which
ISPl < Me™®,  and ISl S Me™*, 20, (4.19)

then the algebraic Riccati equations (3.7) and (3.11) admit bounded nonnegative self-adjoint solu-
tions [T and II, and

"l_i.ngo O"P*z =Ilz, ZT€H, (4.20)
Jim i"pPrz=1z, z€H. (4.21)
Also,
“lingo S™(t)P"z = S(t)z, z€H, (4.22)
and ) .
nlin;S"(t)P"z = S(t)z, z€H, (4.23)

with the convergence uniform in ¢ in bounded t-intervals. If, in addition, the operators Q" and (a gl
are coercive and bounded away from 0 uniformly in n, then the uniform boundedness of ||I"|| and
||| yields the existence of positive constants M and a independent of n for which (4.19) holds.

The easiest way to guarantee (4.18) and (4.19) is to show that there exist positive constants M
and a, independent of n, for which

Tl < Me™*, 20, (424)

although such a uniform decay rate for the approximating open-loop semigroups does not always
exist. When (4.18) holds but the semigroups {S™(t) : ¢ > 0} and {S"(t) t > 0} are not necessarily
uniformly exponentially stable, uniformly in n, then bounded nonnegative ulf-td)omt solutions II
and 1 to (3.7) and (3.11) exist, but II, and II, are guaranteed only to converge weakly to II and
11, respectively, as n — oo.

When the strong convergence in (4.20) and (4.21) holds, we obtain

Jim [[K*P" - K|ls(a.=) =0, (4.25)
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lim |IK™ - Klla(re, ) =0,

=0

and therefore
lim&;‘=k1, j=l|2)"'!ml

L B~ ]

and ) A
lim k7 = k;, i=12,---,p,

n—oco 4
_11 o0
d=lo P}

in H. If we define P3}: Z — Z™ by
"linolo Sa(t)Pgz = Su(t)z, z€ 2,

3

then we obtain further that

uniformly on bounded t—intervals.

11

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)




4.2 Abstract Approximation Theory for Linear Thermoelastic Systems

Now we condiser the construction of the appraximating finite dimensional subspaces H™, the map-
pings P" and the operators A", B", Q", etc. We establish a generic approximation theory for
abstract linear thermoelastic systems that includes relatively easily verified sufficient conditions for
the convergence in Hypothesis 4.3.

We assume the hypotheses of Theorem 2.2.

Hypothesis 4.4 For j = 1,2, end n = 1,2,3,..., H} is ¢ finile dimensional subspace of V; and
A} € B(H},H') sxch that the followng conditions hofd.

(9) For each vj € V; (j = 1,2), there exists a sequence v} € H} such that

v =, vj. (431)
(i5) For each n, A} is dissipative; i.c.,
Re(v, ATv); <0, v € HT. (4.32)
(#i5) For each f € V{ and each real X > 0,
A= AN RS D - A (433)
end
(A= A7) P 4 (M- A, (4:34)
‘where PP € B(V,-'.H}‘) is defined by
(. Ni=(v.f);, veH}, =12 (4.35)

(iv) There ezsits @ positive constant a such that, for all n,
Re(v, ASv); > af|v]l3, vE HZ. (4.36)

(v) For each f € V] and each real A > 0,

(A+A3)7 PP 2 (A4 Ay)1f (437)
and .
A+ AF)Pf L A+ A3 (4.38)

Remark 4.5 The operator P} restricts & functional f € Vi to H} and identifies f|g; with an
element of H} vis the Riess map for H}. If f can be identified with an element of Hj (via the Riesz
map for Hj), then P}{ is the Hj- projection of f onto H}.

With P} defined by (4.35), we define L™ € B(H}, H}) and L™ € B(H},H]}) by

L~=FPL larp oo (u,L%w)r=(n,Lvn)s, v, €H],vneEH], (439)
L™ =PLla; o (0,L"0)i=(w,L%) weH,ueE H3. (4.40)
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Hence L™* is the Hilbert-space adjoint of L". The operator L" is a straightforward Galerkin ap-
proximation of £. On the other hand, Hypothesis 4.4 does not require that AT and A3 be Galerkin
approximations. Next, we define

H" = H} x H} (4.41)
md A'l Lﬂ.
n_ 1 -
A" = [ I* -A7 ]GB(H",H"). (4.42)
Theorem 4.6 For f € V{, f € V] and A > 0,
(A =A™ ( ;’;:ﬁ ) Y- A ( ;; ) asn — oo (4.43)
and -
(A= A™)"! ( ‘;";,;; ) X a=a)? ( ﬁ ) a8 1 — co. (4.44)

Proof For f; € V{ and f2 € V3, we set

u=(:;)=(,\-A)-l(§;), (4.45)
and _
r=()-0rr (L)
We note that (4.46) is equivalent to
P = (A=A NP A - L) = (A= A BP(fy - £ (447)
and
v3 = (A+ A3 (PP fa+ L"v3) = (A + A3)™ PP (f2 + Lo3). (448)
Substituting (4.47) into (4.48) yields
(A +43)+L"(A = A} L3 = PL 3+ L"(A= A})' PP fh. (449)

From (4.32), (4.36), (4.39) and (4.49), we have

allvli3 < Re((v3,[(A + A7) + L"(A - A7)~ L™]v3),)
= Re((v3, P} fa)2 + (v, L"(A - AD) ' B} f1)2)
(4.50)
= Re((v3, f2)2 + (v, L(A = AD)} PP 11)a)
< liv3lha(falv; + 1N - IQA = AD)2 2P AlL)-
Since (4.33) implies that [|(A = AT)~1 PP fi|: is bounded in n, (4.50) shows that ||v}]i} is bounded

in n. Then, it follows from (4.33) and (4.47) that ||v]||, is bounded in n.
Next, we note that, for z = (z,,23) € H™,

Re(s, (A = A")s) = Rel(z1, (A = AD)21)s + (s, (A + AD)12)a) 2 allall 4+ Al (451)
Weset (A= A7) 1BP(fy - Lon)
- _ U - - AT)" - L%vy

v= ( 3 ) = ( A+ AD) VPP (f2 + Lwn) ) “2)
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and
zﬂ
z".-:( }.):0“—1‘)". (4.53)
%5
Then, recalling (4.47) and (4.52) yields
(1, (A= AD)zth = (7, (A = AD)o} — (A = A7)TT
= =21, L°(v3 —va)h = — (31", L2531 — (], L°(53 — )1 (454)
and similarly (4.48) gives
(3, (A + A3):3)2 = (23, (A + AF)vF — (A + A3)T3),
= (55, £07 = v = (5, £5)a + (3, L5 = w))a- (4.55)
Hence,
Re((z7, (A = AD)z0h + (23, (X + A3)23);) = Re(— (21, L7(73 — v2)h1 + (23, L(IT — w1))2). (4.56)
In view of (4.51) then,
allvz = 5313 < 15l - WEW - 155 — wall2 + W23 1la - CN - 15T = wally (4.57)
According to (2.6), (4.45), (4.52) and conditions (iis) and (v) of Hypothesis 4.4,
Jdm |7 - vl =0 aad  lim |17 - valla =0. (438)
Hence, ||t"]| is bounded in n, and we have seen that ||v"|| is bounded in n. Hence }|z"] is bounded
in n. Therefore, (4.57) and (4.58) show that v converges in V3 to v3. Then (4.47), condition (tis)

of Hypothesis 4.4 and (4.58) show that v} converges in V; to v, and (4.43) is proven. The proof of
(4.44) is the same except that all operators except Py and PJ are replaced by their adjoints. O

Hypothesis 4.4 holds for most common approximation schemes, Galerkin schemes, in particular.
The following theorem establishes conditions (iv) and (v) of Hypothesis 4.4 when AJ represents a
Galerkin approximation of Aj.

Theorem 4.7 Assume the hypotheses of Theorem 2.2 regarding Ha, V2 and A3, and assume con-
dition (i) of Hypothesis 4.4 for j = 2. Define A3 € B(H7,H3}) by

A3=PfA3le;  or  (v,Aju)s=(v,Asw)s, v,uwEH]. (4.59)
Then conditions (iv) and (v) of Hypothesis 4.4 Aold.

Proof condition (iv) is immediate. To prove (4.37), let f € V and set
v=(A+A)7Yf, (4.60)
v =(A+ AP (4.61)
Also, let ¥ € HY such that ||7™ — v]|3 converges to 0. Then
allv* I < (o™, (A + A3)")al = (o™, B Nl = (o™, Nal < le™[lalfly;- (4.62)

Hence ||v"||; is bounded in n. Next,

alle™ - T3 < Ko™ - 5%, (A + AT)(e" - )l
=[PP — (" - T, (A+ )T )l = [(v° -7, - (A + A)T)a].  (4.63)
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Since #™ converges in V; to v and A3 € B(V3, V3), it follows that ||t"]|2 is bounded in n and (A+.4;)?"
converges in Vj to (A+.A3)v = f. Therefore, (4.63) shows that [|[v" — ||z converges to 0 as n — oo,
so that v® converges in V3 to v.

The proof is the same when A3 and A7 are replaced by their adjoints. O

When A; has the form (2.16) and A7 is a Galerkin approximation of A;, condition (#i) of
Hypothesis 4.4 can be proved either by arguments similar to the proof of Theorem 4.7 or by projec-
tion arguments like those in {18]. Also, see [17].

Usually, the operator P" in Hypothesis 4.3 is the H-projection onto H™ = H} x H7, so that
condition (i) of Hypothesis 4.4 guarantees (4.12). In this case, if f; € Hj, then P*(f}, f2) =
(f’," . }-’5‘ f2) (recall Remark 4.5). Hence, it follows from Theorem 4.6 and the Trotter-Kato theorem
[25] that the spproximating open-loop semigroups T,(t) and T () converge as in Hypothesis 4.3.

Also, when P" is the H"-projection, it is most common to define the approximating input,
state-weighting and output operators by

B*"=P"B (4.64)
Q" = P"Qlg-, (4.65)

and
C" =Clu-, (4.66)

so that (4.15), (4.16) and (4.17) follow from (4.12).

4.3 Matrix Representations of Approximating Operators

We assume now that A} bhas the form in (2.16), that £ has the form in (2.18) and that H, and V;
have the forms in (2.15). Then H} has the form H x Hg with H3 C Vp. We assume that, for each
n, Hg is the span of a finite pumber of basis vectors e5; and H7 is the span of a finite number of
basis vectors €3 ;. (The spaces Hy and H} may have different dimensions.)

Also, we use Galerkin appraximations of both A; and A;. The matrix representation of the
operator A™ in (4.42) is then

0 I 0
matrix representation of A® = [A") = | -MZ'Kp -MP'K? -M3T'RTT (4.67)
0 M;T'Ky M3 K3
where
Mg = [(e5.4s€5)a) M3 = [(e34,€34)a]
K3 = [(€0.4, Aoed )o] K3 = [(e3,A2¢3,)a) (4.68)

K3 = [("z',ucocsﬁz] K= [(‘3.::90434)01-
The matrix represcatation of the operator B® in (3.1) and (3.4) is

0
(B*)= ME::[(ea'.uhu)ol ' (4.69)
M3 [(e3.4:80)d]

and the matrix representation of the operator B® is similar. The mstrix representation of the
operator C in (3.2) and (3.6) is

[C"] = [[Coi5,] [Cozeg,) [Cae3,] ) (4.70)
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To discuss the matrix representations of the operators Q*, Q”, II" and 11", it is convenient to
define basis vectors

53,-' = (e{,',,-,o. 0) ?l.,i = (0, 08’,-,0) E’z',i = (0, O,C;_‘) (4‘71)

and the block-diagonal matrix
M® = diag{M{, K3, M). (472)

The matrix representations of Q" and Q" are
@)= M"-ll(?".-',.--QE}“J)]. Q=M "-1[(3".-'.‘-05}".;)], ¥,7=0,1,2. (4.73)

The matrix representations [lI") and [I*] of II" and II®, respectively, are determined by solving
Riccati matrix equations equivalent to the operator equations (4.1) and (4.2). The form of [I"] is
like that of [Q"], and in general neither of these matrices is symmetric. Hence, rather than solving
the matrix representation of (4.1) directly, it is preferable to premultiply the matrix representation
of (4.1) by M™ to obtain a Riccati matrix equation that can be solved for the symmetric matrix
M*"[I"]. Also, instead of solving the matrix representation of (4.2), it is preferable to postmultiply

the matrix representation of (4.2) by M n~! to obtain a Riccati matrix equation that can be solved
for the symmetric matrix [{I")M nt (See [18).)

Finally, it follows from (4.3) and (4.4) that the approximating functional control and estimator
gains in (4.9) and (4.10) are given by

(k7 kD ...E°] = &*M" T [P M (B ]R-?, (4.74)
(B} By ...E0) =M [C)T R, (4.75)

where » '
& =[]l el (4.76)

and [€3,], for example, is the row matrix containing the basis vectors &3; in order. See [18] for
details on computing similar functional gains.
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5 Stability of the Open-loop System
We consider the system in (2.10) and (2.11), and we define

Dom(Ao) = Ag'Ho, Ao = Aolbom(as)- (5.1)
Since Ag is symmetric and Vp-coercive, Ag is self-adjoint and Vo-coercive. We recall the operators

L and L, in (2.18) and note that £, € B(V;, V7).
In this section, we assume that

Lo = Lo € B(Vo, H3), (5-2)
and we assume that there exists a positive real number a such that
Dom(Ao) = {v € Dom(Lyo) : Lov € Dom(Lg)} and Ag = aLjLo, (53)

where Lg is the Hilbert-space adjoint of Ly with respect to the Hy and H, inner products (recall
Remark 2.4). In this case,

(v,w)v° = a(Lov,Low)o. v,w€ Vy. (5.4)

The conditions (5.2) and (5.3) are common in thermoelastic structures because the thermal stress
enters the equation governing mechanical vibratious in the same way as the stress due to elastic
deformation [26, 27)].

Theorem 5.1 Assume the conditions stated so far in this section and that the damping operator
Do s symmetric (in the sense of (2.12)). If the range of the operator

Ao = LoAp! (55)

is in Va or if Do 1 Hy-coercive, then the semigroup gencrated on the space H in (220) by the
operator A defined in (2.19)-(2.21) is wniformly ezponentislly stable.

Proof First consider the case where R(Ag) C V3 but Dy is not necessarily Ho-coercive. It is

clear that Ao € B(Ho,H3) and Aj € B(Hi,Ho). Hence, R(Ag) C V3 implies Ap € B(Ho,V3).

Furthermore, it can be shown that Aj € B(H3,V,) and aLoAj is the Hy-projection onto R(Le).
Now define the following self-adjoint bounded linear operator on H:

ol A;? 0
Q=11 el <=2aA} (5.6)
0 <2aAp ol

where ¢ is a positive real number. For o sufficiently large, Q is H-coercive. Also, since R(Ao) C V3
and R(A3) C Vo, QV C V. For Do =0 and : = (v,A,6) € Dom(A) C V,
Re(Qsz,Az) = Re(Qz,Az) =
(5.7)
~ivll3 = |Al3 = oRe(6, A26)s + (2a — 1)Re(8, Lov)s + 2a{LoA3h, 6)3 + 2aRe(Agi, . 436),.
Since
I(Aoh, A36)3] < ||Aohl2 - [l 4sllacvs,vy) - 11612, (58)

and Ap € B(H,,V3), it follows from (5.7) that, for ¢ sufficiently large, there exists a positive real
pumber £ such that
Re(Qz,Az) < -B|z>,  z € Dom(A). (59)
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When Dy # 0, the right side of (5.7) has more terms, but (5.9) can be obtained in & similar manner.
The generalized Schwarz inequality {(v, Doh)o|? < |(v,Dov)ol - [(h, Doh)o] is useful.

If Dy is Ho-coercive, then replacing o with 0 in (5.6) allows (£.9) to be obtained for o sufficiently
large and some positive . O

Remark 5.2 The condition R(Ag) C V3 is equivalent to the following two conditions combined:
Dom(L3) NN(L3)* c Va (5.10)
end there ezrisis & real number u such that
livll < piLsvlo, v € Dom(L3) NA(LE) . (6.11)

Remark 5.3 To generalize Theorem 5.1 to the case where Dy is not symmetric, we wosld have to
impose further conditions on Dy, which would take us deyond the focus of this paper.

The hypotheses of Theorem 5.1 hold for many but not all linear thermoelastic systems that
seem likely to be uniformly exponentially stable. In most applications, the conditions (5.10) and
(5.11) restrict the combinations of boundary conditions. For example, if (2.10) and (2.11) represent a
thermoelastic rod, as in the example in the next section, (5.10) and (5.11) hold for Dirichlet boundary
conditions on the wave equation at both ends of the rod and Nuemann boundary conditions on the
heat equation at both ends, and for various other combinations. However, (5.10) and (5.11) do not
hold for Dirichlet boundary conditions on both equations at both ends of the rod.

Recently, J.U. Kim {14] bhas proved that the linear thermoelastic rod with all Dirichlet boundary
conditions is uniformly exponentiall stable. We have tried without success to modify the hypotheses
of Theorem 5.1 to cover this case. Also, it might be possible to apply the methods used by Slemrod
in [12] for nonlinear thermoelasticy to prove uniform exponential stability for the linear all-Dirichlet
case, but (5.10) and (5.11) hold for the boundary conditions treated in {12]. Hansen [6] has shown
that all of the eigenvalues are bounded strictly to the left of the imaginary axis for the linear
thermoelastic rod with all Dirichlet boundary conditions, but Hansen’s analysis suggests that the
eigenvectors do not form a Riesz basis.

The conditions (5.10) and (5.11) say that the operator A3 in the diffusion equation is bounded
in a certain sense with respect to the stiffness operator A;. We believe that some such relative
boundedness is necessary for uniform exponentially stability. A numerical experiment in which
we used the one-dimensivnal wave equation for (2.10) and a fourth-order one-dimensional partial
differential operator for A; in (2.11) yielded a sequence of complex eigenvalues that appeared to
approach the imaginary axis asymptotically.
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6 An Example and Numerical Results

6.1 Linear Model of a Thermoelastic Rod "

We consider the axial vibrations of a visco-thermoelastic rod that is clamped and insulated at both
ends. The length of the rod is normalized to 1. Control actuation is produced by a single force
directed parallel to the rod and distributed uniformly over the rod segment ; < n < 3. A sensor
measures axial displacement at 5 = 5, (i.e., the left end of the rod segment over which the actuator
force is distributed). Finally we assume that both the actuator input and sensor output are corrupted
by zero-mean Gaussian white noise with unit intensities.

The dynamics of the plant are described by the equations of one-dimensional linear thermoe-
lasticity (see, for example, [26, 28, 13]), which consist of coupled one dimensional wave and heat
equations. If the rod has Kelvin-Voigt viscoelastic damping in addition to thermoelastic damping,
then the state equations, boundary conditions, and output equation are

2 . 3w 2
p%‘,ﬂ(t. n) —ap(A+ 2")0317&(" -+ 2,‘)%;,“-’(:,1,) (6.1)

+ar (32 + 2#)3—3(1, 7) = bo(nu(t) +bo(m)r(t), O<n<i, t>0,

89 8% _ 8?
pegy(tm) = mgz(tn) + dar (31 + 2,1)%;’7(:,,,) =0 0<n<l, t>0, (6.2)
w(t,0)=0=1w(t,1), >0, (6.3)
Y] 89
F’;(t,o) =0= 5’—7(1, 1), i>0, (64)
y(t) = w(t,m) + v(t), L (6.5)

where w and 6 are respectively the axial displacemer.. and absolute temperature, p is the mass
density, A and u are the Lamé (elasticity) .azameters, c is the specific heat and « is the thermal
conductivity. The positive constant # is a reference temperature-the absolute temperature of a
stress-free reference state for the roc. The nonnegative constants ap and ay are respectively the
viscoelastic coefficient and the coefficient of thermai exparsicu, 7 and v are the noise processes, and
the function by € L3(0,1) is given by

1L mSn<m
bo(n) = { 0, otherwise. (66)
Because of the insulated, or Neumann, boundary conditions in (6.4) on the temperature dis-
tribution, the open-loop system corresponding to (6.1)-(6.2) has a sero eigenvalue for which the
associated eigenvector consists of sero displacement and velocity and nongero uniform temperature
distribution. This eigenvector is orthogonal (in L,(0, 1)) to the control input function 8y and is in the
null space of the output operator corresponding to the measurement in (6.5), 0 that the span of this
eigenvector is uncontrollable and unobeervable. It follows that (i) the only part of the temperature
distribution that can be controlled or obeerved is the part that is orthogonal to uniform tempe-ature
distributions; (ii) the average (over n) temperature in the rod, which we denote by 6,4, is peither
stabilizable nor detectable; (iii) 8,,, is a constant function of t.
Consequently, in the thermoelastic control problem, we replace the temperature distribution
6(t,n) with .
6(t,n) = 0(t,n) — Opee. 6.7)
The state equations, then, are (6.1)(6.5) with 0 replaced by §. The state space H has the structure
in (2.20) with
HG = L?(on l)’ VO = H%(ovl)' (68)
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1
Hy= {6 € Ls(0,1) : / ¢dn=0), Va=HY0,1)NH,. (6.9)
(]
All of the spaces in this example are real. We use the standard L inner product for Hg, but we use
c
@vh=75 [ ovdn (6.10)

for the inner product on Hj. This inner product on Hj is required to get the £3 for which the
semigroup generator in this example has the form in (2.19). For Vo and V3, we use the norms

1 1
el = ([ 18P any72,  ligla = / 112 dm)2. (6.11)
[+ 0
We define the operators A; € B(V;,V}), j = 0,2, Do € B(Vo, Vy) and £, € B(V,, V) by
. 1
(6, Ao¥)o = / At UWawdn,  bvEVR, (6.12)
0 14
1 K
(6 Az9)s = /o Sevdn,  gve, (6.13)
1
(6, Dow)o = / A+ yprdn  sveve, (6.14)
0 P

and

1
ar(3X 4+ 2p) &' dn, d€EVL, eV, (6.15)

(6. Lovta = - [
With these operators, the system in (6.1) and (6.2), with & replaced by &, has the form in (2.22)
with a semigroup generator of the form in (2.19).

From (6.12)-(6.15), it follows that we have all of the conditions in Section 5, including the
hypotheses of Theorem 5.1 (assuming a; > 0, else we would not have a thermoelastic problem).
Hence, the open-loop thermoelastic system is uniformly exponentially stable, even if ap = 0.

For the numerical studies in this paper, we chose the parameters in (6.1) and (6.2) for an alu-
minum rod of length 100in (see {27, 20]). With the length normalized to 1, the parameters take the
values in Table 6.1.

p=982x10"2 A=2064x10"! u=111x10"1
ce=540x10"! x=702x10"7 6=68
ar=120x10"% ap=0

m = 385 m = .488

Table 6.1: Parameters for (6.1)-(6.6)

The numerical results in this paper focus on the effects of thermoelastic damping. In {7}, we
presented numerical results for a similar example that included nonsero viscoelastic damping (ap >
0). The functional gains were much smoother than the gains for the case with thermoelastic damping
only, and the approximating functional gains converged much faster. The numerical results in
[7] indicate that, if Voigt-Kelvin viscoelastic damping is present, its effect dominates the effect of
thermoelastic damping, but it is not clear whether Voigt-Kelvin viscoelastic damping is present at
significant levels in common metals.




6.2 The Optimal Control Problem and the Approximation Scheme
We have m = £ = p =1 with the input operators given by

"Bof = Bor = (%bo)r, re Rl, Bg = E: = 0, (616)
and the output operator given by
C(¢,%,0)=¢(m), ($,9,0)€H=VoxHoxH,. (6.17)
In the quadratic performance index, we take the operator Q € B(H) to be given by
Qz = Q(w, ".’»6) = (v, v, 0), (6.18)

and we take R = 1. This Q penalizes the total mechanical energy in the rod but does not penalize
temperature variations from the constant average value. The operator Q € B(H) is given by (3.10)
with B = B given by (3.4) and (6.16). Since 7(t) and v(t) have unit intensities, ' = R = 1.

_ The optimal functional control and estimator gains bave the form &y = (k,,k; 2,k 3) and
ky = (ki k12, k1 3) with kg by € HQ(0,1), kr2, ki 2 € L2(0,1), and by s, ki 3 € H2 € L2(0,1). If
K and K are, respectively, the control and estimator gain operators, then

1 1 1
Kz= / B, ¢ dn+ / havdn+ 3 / Ls8dn, z=(é,%.6)€H, (6.19)
1] 1] 0

and ) _ R
= (rkyy,rky vk 3)€H, reR. (6.20)

In [7], we compared two Galerkin approximations for solving alinear-quadratic regulator problem
for the thermoelastic rod in this example. One scheme was a finite element appraximation in which
linear splines were the basis vectors; in the other appraximation, the open-loop eigenvectors of the
distributed systems were the basis vectors. The modal appraximation gave faster convergence for
the approximating functional control gains. In this paper, we use the modal approximation only.

It is easy to see that, for the boundary conditions in this example, the eigenspaces of the open-loop
thermoelastic rod are three-dimensional subspaces each spanned by a two-dimensional subspace o”
the undamped wave equation and a one-dimensional eigenspace of the heat equation. The eigenvec-
tors of the wave equation are sine waves, and the eigenvectors of the heat equation are cosine waves.
The sequence of three-dimensional subspaces of the thermoelastic rod are mutually orthogonal and
complete in the state space H. Thus it is easy to show that all the conditions of Hypothesis 4.4
hold.

The open-loop eigenvalues can be determined as the solutions to the cubic characteristic equations
corresponding to the three-dimensional eigenspaces. For the values of the parameters that we used,
the eigenvalues corresponding to each open-loop subspace consist of a complex conjugate pair and
a real eigenvalue, all with negative real parts. It can be shown by analysis of the sequence of
cubic equations that, asymptotically, the real eigenvalues approach ~co and the complex pairs of
eigenvalues approach s vertical line strictly to the left of the imaginary axis. This, together with the
orthogonality and completeness of the eigenspaces, guarantees (4.24); ie., that the appraoximating
open-loop semigroups are uniformly exponentially stable, with a decay rate uniform in n {the order
of appraximation, or number of modal subspaces). Hence (4.18) and (4.19) hold. Therefore, (4.20)-
(4.30) are guaranteed.

To obtain the approximating control and estimator gains shown in Figures 6.1 and 6.2, we used
the matrix sign function method in [30) to solve Riccati matrix equations equivalent to the finite
dimensional Riccati operator equations (4.1) and (4.2), as discussed in Section 4.3. We used (4.74)
and (4.75) with m = p = 1 to compute the approximating functional control gains k7, (i = 1,2,3)
and approximating functional estimator gains &7, (i = 1,2,3).
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6.3 Numerical Results for Finite-Dimensional Compensators

In each of the figures, we have plotted the approximation to the particular functional gain for each n
between 18 and 33, where n is the number of modal subspaces used. Because the damping produced
by thermoelastic dissipation is so small in this example, we see nothing resembling gain convergence
until we use at Jeast n = 15. The convergence results for approximations to the infinite-dimensional
LQG problem guarantee that all of the functional gains do converge, but the convergence theory does
not indicate the rate at which the gains converge. Numerical experience has shown that, generally,
greater damping causes faster gain convergence.

We are not sure that we are seeing convergence in Figure 6.1. Increasing n past 40 does not
make the functional control gains look closer to any limit, and between n = 40 and n = 50, the
numerical solution to the Riccati equation is so inaccurate in some cases that the corresponding
gains do not resemble thoee in Figure 6.1. While the functional gains must converge, it is possible
that the order of approximation required for convergence exceeds our capability to solve the Riccati
equations accurately. Another reason that we question whether our plots of the functional control
gains show convergence is that when we compute the control gains for both ap = 0 and az = 0,
the plots look identical to Figure 6.1. But with no damping for the wave equation and the coercive
weighting that we place on the solution to the wave equation in the performance index, the norms
of the finite dimensional Riccati operators are guaranteed to grow without bound as n increases
{31, 18]. Indeed, when ap = 0 and az = 0, our numerical solutions to the Riccati equations break
down for smaller n than they do when ap = 0 and az > 0. There is some difference between the
finite-dimensional gain matrices that we compute with and without thermoelastic damping in the
plant model, but that difference is too small to be seen in plots of the functional gains.

The question arises, then, whether the very light structura! damping produced by the thermoe-
lastic effect in the rod is significant in compensator design. To address this question, we computed
cigenvalues for two closed-loop systems. Each closed-loop system was constructed by connecting a
compensator based on a control model consisting of the first 20 modal subspaces to a simulation
model, or truth model, consisting of the first 30 modal subspaces of the rod. Each compensator
thus has dimension 60 while the simulation model has dimension 90. The 30-mode simulation model
was the same in each case; it had the parameters in Table 6.1, including az = 1.29 x 10-3. The
20-mode control model for Compensator 1 also had the parameters in Table 6.1. The control model
for Compensator 2 had a; = 0, and all of the other parameters had the values in Table 6.1. This
means that there is no damping for the mechanical vibrations of the rod in the open-loop control
model for Compensator 2. Because the temperature distribution is not penalized in the performance
index, the control gains k; 3 and k75 and estimator gains k;,g and k, 3 are all zero in Compensator
2, and the gains ky; and k7,, k11 and £f,, k2 and k], k12 and E7, are those that would be
computed for a 20-mode model of the undunped wave equation alone.

Table 6.2 shows typical eigenvalues for the open-loop system and for the closed-loop system
produced by each compensator. Since each compensator contains a copy of each of the first 20
modal subspaces, each closed-loop system contains six states, and six eigenvalues, corresponding to
each of the first 20 modal subspaces. Each closed-loop system also contains the 30 states in twenty-
first through thirtieth modal subspaces. While the closed-loop performance in the first ten or so
modes is similar with both compensators, the closed-loop eigenvalues corresponding to several of the
bigher-frequency modes reveal important differences between the two compensators. In particular,
we note the second complex pair of closed-loop eigenvalues listed for mode 18. The magnitude of the
real part produced by Compensator 1 is more than 20 times the corresponding number produced by
Compensator 2. The same is true for mode 19. In certain high-frequency closed-loop states, then,
the decay rates produced by Compensator 1 are more than 20 times the decay rates produced by
Compensator 2.

The eigenvalues in Table 6.2 for modes 21 and 22, the first modes not modelled in the com-
pensators, are typical of the eigenvalues for all ten modes that are present in the simulation model
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but not in the control models. These eigenvalues show that we have modelled enough modes in the
compensators * ) eliminate any significant spillover between modelled and unmodelled modes.

Because the magnitudes of the real eigenvalues, which correspond to the heat equation (6.2),
are so much larger than the magnitudes of the complex eigenvalues, we suspected that it might be
possible to eliminate the states corresponding to the real open-loop eigenvalues from the control
model and base a compensator design on a control model consisting of a sequence of second-order
modes with eigenvalues equal to the complex open-loop eigenvalues of the thermoelastic rod. This
amounts to putting artificial viscous damping in the wave equation.

We carried out such & design with twenty second-order modes having eigenvalues equal to the first
twenty pairs of complex open-loop thermoelastic eigenvalues and mode shapes the same as the first
twenty modes of the undamped rod. This compensator had dimension 40. When we closed the loop
with the 30-mode simulation model used for Table 6.2 and computed the closed-loop eigenvalues, we
obtained virtually identical results to those for Compensator 1, except that this third closed-loop
system had only half as many real eigenvalues because the corresponding states were not modelled
in the compensator. Even for modes 18 and 19, all of the closed-loop eigenvalues produced by
the third compensator matched to at least three digits the corresponding eigenvalues produced by
Compensator 1.
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Mode Open-loop Closed-loop Closed-loop
Number with Compensator 1 with Compensator 2
~230x10"7+i657x10° | ~3.15x 10-' +£4i6.57 x 10° | —3.13 x 10~! £ i6.58 x 10°
1 ~144x10°+i6.89 x 10° | —1.45 x 10° +i6.87 x 10°

~1.30 x 10~* ~1.30 x 10~ —1.30 x 104
~1.30 x 10— —-1.31 x 10~

—9.19x10"7+41.31 x 10! | ~1.26 x 10~ +§1.31 x 10' { —1.63 x 10~! £i1.31 x 10!

2 ~122x10"' +4i1.31 x 10! | —8.50 x 102 % §1.32 x 10?
-5.21 x 10—* ~5.21 x 10~4 —5.21 x 104
~521 x 10-4 -5.23x 104

—2.07x10"¢£§1.97 x 10* | —2.55 x 10~? £41.97 x 10 | —2.17 x 10~! + {1.97 x 10!

3 ~345x 10" +4§1.97x 10" | —3.84 x 10~! +i1.96 x 10!
-117x 1073 ~1.17x10-3 —1.18 x 10-3
-1.17x 1073 -1.17x 1073

~2.30x 105 +i657 x 10! | —1.82x 10-! +i6.57 x 10! | —2.16 x 10~! £ ¢6.56 x 10!

10 —803x10"2+i657x 10" | —4.66 x 10-2 % i6.58 x 10}
~1.30x 10~2 ~1.30 x 10-2 -1.30 x 10-2
-1.30 x 10-? -1.31x 1072

~450x 107544920 x 10' | —3.44x10"2+£i9.20 x 10! | —3.76 x 10-2 + {9.19 x 10!

14 -341x10"3+i9.20 x 10! | —2.66 x 10~* £ i9.20 x 10}
—2.55 x 102 -2.55 x 10~? -2.56 x 102
-2.55 x 10~2 -2.55x 10~2

—745x10"%+41.18x10% | —1.53 x 10~2+41.18 x 102 | —1.74 x 10~2 £ i1.18 x 10?

18 ‘ -216x 10344118 x 10?2 | —9.75 x 10~% + {1.18 x 10?
—4.22x 1072 —4.22 x 10~2 —4.22 x 1072
—422 x 1072 —424 x 1072

-830x10"%4+41.25%x10% | -1.03x10"2+i1.25x 10 | —-1.22 x 1072 £11.25 x 102

19 -198 x 103 +41.25x 10? | —9.05 x 1075 4 §1.25 x 10?
-4.70 x 10~2 ~4.70 x 10~2 —4.70 x 10~?
—4.70 x 10~32 ~-4.72x 10°2

-9.19x10°54+4§131x102 | -251 x 103 +41.31 x 10% | —3.18 x 10-3 £ 41.31 x 10?

20 —667x10"%+4i1.31x10% | —9.33 x 10-54+:1.31 x 10?
-5.21x 10-2 -5.21 x 10-32 -5.21 x 10-2
-5.21x10"2 -5.23 x 10~2

21 —1.01x10"44+¢138x10% | -1.04 x10-*+i1.38x 102 | -1.04 x 10~* £ i1.38 x 10?
-5.75 x 10-2 -5.75x 102 -5.75 x 10-2

22 —111x10"%%+i145x10% | -1.34 x10-*+i1.45x 102 | -1.34 x 10~* +i1.45 x 10?

—6.31 x 10-2

—6.31 x 10-2

-6.31 x 10-2

Simulation Model:
Compensator 1:
Compensator 2:

30 Modal Subspaces, o = 1.29 x 10~3
20 Modal Subspaces, oz = 1.29 x 10~3

20 Modal Subspaces, ar =0

Table 6.2: Typical Open-loop and Closed-loop Eigenvalues
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7 Conclusions

The abstract formulation of distributed models and the approximation theory developed in this
paper apply to a wide variety of thermoelastic control systems. The uniform exponential stability
result in Section 5 applies to a large class of thermoelastic problems, but not to certain systems that
are known to be uniformly exponentially stable [14].

The numerical study in Section 6 focussed on the effect of thermoelastic damping in optimal
control of a flexible structure. The eigenvalue results demonstrate that, even though thermoelastic
damping is small in common metals, a compensator based on a thermoelastic model of a fiexible
structure can produce significantly better response in high-frequency modes than a compensator
based on an undamped model can produce.

The theory in Sections 2—4 also applies to thermoelastic control problems in which a thermal
disturbance excites mechanical vibrations. This class of problems, which includes vibrations in
flexible space structures caused by solar heating, might provide the most important applications for
the theory developed here.
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Abstract

This paper derives sufficient conditions for nniform exponential stability of solutions to
abstract linear evolution equations that are second-order in time. The main problems motivating
the paperinvolve sets of coupled partial differential equations with nonsymmetric damping. Such
systems arise in acoustics problems when the interaction between compressible fluids and elastic
boundaries produces a skew-symmetric damping term.
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1 Introduction

By abstract wave equations, we mean evolution equations that are second-order in time. This
class includes both classical wave and biharmonic equations. The evolution equations that are the
primary motivation for the paper are sets of coupled partial differential equations that represent
acoystic waves in a compressible fluid interacting with an elastic boundary.

‘This paper has two main objectives: first, to derive sufficient conditions for the solutions to
abstract linear wave equations with coercive damping to be uniformly exponentially stable; second,
to demonstrate that the class of coupled partial differential equations of greatest interest in this
paper do indeed have the abstract second-order form treated here. Uniform exponential stability is
important in active control of distributed systems {1,2,3], and having the abstract second-order form
allows an extensive theory of approximation derived especially for control and estimation problems
to be applied (see [1,2,3,4], for example).

The most interesting property of the equations motivating this paper is that the damping op-
erator is not symmetric. A nonzero skew-symmetric damping operator makes the issue of uniform
exponential stability more complicated than in the case of symmetric damping. In particular, when
the damping operator is symmetric, it must only be coercive with respect to the kinetic-energy norm
to guarantee uniform exponential stability. However, an example in Section 3 of this paper shows
that, in general, more is needed when the damping is not symmetric. (While the operator in the
term with the first-order time derivative in second-order evolution equations is referred to commonly
as damping, the skew-symmetric part of this operator represents conservative energy transfer among
different states, as opposed to dissipation.)




2 Abstract Linear Wave Equations

Throughout this paper, # or H; (j = 0,1,2) will be a Hilbert space with inner product (-,) or (-, -},
and corresponding induced norm |- | or |- |;. Also, V or V; will be a Hilbert space with norm |} - ||
or || -|; and inner product {-,-)v or (,,-}v,. The continuous dual of V will be denoted by V', and

Ve HoV (2.1)

will mean that V' is embedded densely and continuously in H, which implies that H is embedded
densely and continuously in V. In this case, {-,-} will denote both the H-inner product and the
duality pairingon V x V',

For an operator £ € B(V;, V), we define £L* € B(V;, V") (the Banach-space adjoint of £) by

(v, L7uw)i = (w, Lv);, veEVi, weV,. (2.2)
We say that £ € B(V,V’) is symmetnc if £ = £°. We say that £ € B(V, V') is nonnegative if
Re{v, Lv) > 0, veV, (2.3)

and that £ is dissipative if —L is nonnegative. We say that £ € B(V, V') is H-coercive if there exists
a positive real number y such that

Re(v,Lv) 2 ulvl’,  veV, (24)
and that £ € B(V,1") is V'-coen :ve if there exists a positive real number u such that
Relv, Lv) > pllv]l?, veV. (2.5)
We assume
Vo — Ho — Vg, (2.6)

and we study evolution equations of the form
W(t) + Dow(t) + Aguw(t) =0, t>0, (2.7)

where Do, Ao € B(10, V) with Do nonnegative and Ao equal to the Riesz map on V,. Thus,

(vlw)VO = (U,.AQUJ)O, (28)
and Ag is symmetric and 13-coercive.
We define
U= Vox 1y H=lox Hp= V' = Vo x 1. (2.9)
(We identify V4, with Vj in the first component of H only.) We define
- O 1 y
A= [ —Ao -Do ] € B(V,V'). (2.10)
If follows from _ 4
ATt = [ 'AOI Do "‘(‘)0 ] € B(V!,V,) (2.11)
that A is an isomorphism from V to V/. Now we define A : Dom(A) C H — H by
Dom(A4) = {(v,h) € V : A(x,h) € H}, A = Alpam(a)- (2.12)

According to Lemma 2.1 in (3], A is a maximal dissipative operator on H. Hence A generates a
strongly continuous contraction semigroup on H. (See [4,2,5] for similar approaches.)




3 Uniform Exponential Stability
Theorem 3.1 If Dg is Ho-coercive and there ezists a posilive real number v such that

[Re(v, Doh)o| < 7llvllo - [Re(h, Doh)ol'/?,  v,h € Vg, (3.1)
then the semigroup generuled on H by the operator A in (2.12) is uniformly ezponentially stable.

Proof We define the following self-adjoint bounded linear operator on H:
_[el A
Q= [ I ol ] (3.2)

where o is a positive real number. For o sufficiently large, Q is H-coercive. Also, QV C V. For
z = (v,h) € Dom(A) C V,

Re(Qz, Az) = Re (Qz, Az) = —||v||? + |h|2 = oRe(h, Doh)o — Re(v, Dohlo. (3.3)

Since Dy is Hg-coercive, it follows from (3.1) and (3.3) that, for o sufficiently large, there exists a
positive real number u such that

Re(Qz, Az) < —plz}?, z € Dom(A). D (3.4)

Remark 3.2 A sufficient condition for the ezistence of a positive real number 4 such that (3.1)
holds 1s that Dy be Vy-coercive.

Remark 3.3 If Dy $s Hg-coercive, the generalized Schuarz inequality and the fact that Dy €
B(V,,Vy) imply that |Re(v,(Do + Dg)h)o] is bounded by the right side of (3.1) for some positive
v independent of v and h. Thercfore, when Dy is Hy-coercive, (3.1) holds for some 4 independent
of v and h if and only if

[Re (v, (Do — D§)hYol < Yllvllo - IRe (b, Dech)ol?, v,k €V, (3.5)

for some v independent of v and h. When Dy is Hy-coercave, one sufficient condition for (3.5) is
that R(Do — Di) C Ho (this includes the case Do = Dy ).

The following example shows that Dy being Hg-coercive without (3.1) or some other condition
is not sufficient for the semigroup generated by A to be uniformly exponentially stable.
Let a be a negative real number, and let 8, and w, be sequences of positive real numbers such
that
W =~ OO and Bn/wn — as n-— 0o (3.6)

and
8up fn/w? < co. (3.7)

Let Hy be £;, let T be the infinite-dimensional diagonal matrix with the sequence w, on the diagonal,
let Vo = Ty 'Hp with 4g = T3, and let Dy be the infinite-dimensional diagonal matrix with the
sequence a + if, on the diagonal.

The eigepvalues of the corresponding semigroup generator A are the solutions to a sequence of
quadratic equations. Elementary analysis shows that these eigenvalues approach the imaginary axis
as n — co. Hence the semigroup generated on H by A is not uniformly exponentially stable.




4 Coupled Abstract Wave Equations

In this section, we assume that the Hilbert spaces Ho and Vj and the operators A; and Dy have the
forms

H0=H1 XH), Vo:Vl XVQ, (41)
_ 1A O
a= 0], (42)
Du Dn
Do = . 4.

We assume that A;; is the Riesz map for V;, i = 1,2, and that D;; € B(V;,V;') with D,; nonnegative.
We are particularly interested in problems where the wave equation on V; x H; represents an
elastic boundary condition for the wave equation on V3 x H,. In this case, we have

R(D13) C H,. (44)
We should note that (4.4) does not imply
R(D},) C Ha. (4.5)

We consider the domain of the semigroup generator A for the coupled system when (4.4) holds.
It follows from {2.9)-(2.12) that Dormn{A) is the set of all elements

(v,,v;,hl,h2)€V=V1 XVQXVlXV) (46)

such that
Anvy +Duhy € Hy, (4.7)
Azvz + Dhy — Dizhy € Ha. (4.8)

Frem (4.7), we see that the conditions on vy and h; are independent of the coupling operator D3
and are the sarie as when the two wave equations are uncoupled. On the other hand, if R(D7,) is
not contained in H, then the conditions on v; and hy do depend on D,;. In most applications. i,
affects the ‘natural boundary conditions’ for v, and h,.

To be more concrete, we take T, € B(Vz, H) such that

(. w)y, = (v. Az2w)s = (Tov, Thw),, v,we€ Vs, (4.9)

and we take 7> to the Hilbert space adjoint of T; with respect to the H-inner product. It is a
straightforwarc exercise 1o show that (4.8) is equivalent to

Tovy + T3 A3 Daghy — T A7} D3, hy € Dom(T3). (4.10)

In many examples, it is easy to determine T;A;,’D;g and Tz.A;} 12-  R(D1;) C H2, the term
T2A3;7 Da2hy drops out of (4.10), but this i1s not the case in which we will be interested from here
on.

Before considering an example, we will give a sufficient condition for solutions to the system of
coupled abstract wave equations to be uniformly exponentially stable in H = V, x Hy.

Theorem 4.1 Let Hy, Vy, Ag and Dy have the forms in (4.1)«(4.3) with D;; symmetric, i = 1,2.
Let (4.4) hold. If D)y is Hy-coercive and Dyy is Va-coercive, then the semigroup generated on H by
the operator A in (2.9)<{2.12) is uniformly ezxponentially stable.

Proof Since Dya € B(V4. V), (4.4) implies Dyz € B(Vs, Hy). For vy, hy € Vi and v, hg € Va.
[(v1, D1zha)r + (v2, D1ahy)a] = [(v1, Daaha)y + (hy, Diava), |
< I Daallsqvs. ) (1l - [[hallz + [Ay]y - flvall2). (4.11)

Since D,; is ssmmetric and Hj-coercive, D33 is symmetric and V3-coercive and the Vi-norm is
stronger than the H;-porm, it follows from (4.11) that (3.5) holds for some postive vy independent
of v=(v;,12) € Vo and h = (h],’l))e Vo. O




5 An Example from Acoustics

In this one-dimensional application, the wave equation on Vo x Ha governs the velocity potential
in a compressible fluid, and the wave equation on V; x H) reduces to the equation of motion of a
mass-spring-damper system on one boundary of the fluid. We assume zero velocity potential oo the
other boundary of the fluid.

We have

H1=‘II=R1) (5'1)
Hy=L,(0,1), Va={é€ H'(0,1):¢(1) =0}, (5.2)
Ay =1 (5-3)

1
(¢, An2¢)2 = /0 ¢'v'dn ¢, veV;, (54)
Du=¢q, (5.5)
Dz = €Az, (5-6)
(B.D1z¥hr = =-By¥(0), BeEV,veEW. (5.7

We have taken all physical constants to be 1, except the nonnegative real numbers ¢; and ¢,.
The operator T; in (4.9) and (4.10) is given by

Dom(T3) = V3, ¢ =¢', (5.8)
and its adjoint is given by
Dom(T3) = {¢ € H(0,1): ¢(0) =0}.  T3é=—¢'. (5.9)
In this example, TzA;21D;2 is a function in L2(0,1). From (5.7), it follows that
(AL DLA() =B, 0<n<l, BER. (5.10)

Also,
.A;;Dgz = ¢q]. (511)

It follows from (4.6), (4.7) and (4.10), then, that Dom(A) is the set of all quadruples (a,0,8,v)
satisfying

a,pER!, (5.12)
o,y € H(0,1), ¢(1)=v(1)=0, (5.13)
(¢+eav—~B)YeH 0,1), &0 +e&¥(0)-8=0. (5.14)

From (2.10)-(2.12) and the definitions of the various operators in this example, it {ollows that, for
(@, 9,8, ¥) € Dom(A),

a B
¢ ¥
Al 8 1= —a~aB+%(0) (5.15)
v (¢' + eav')
We define w(t) = (a(t),é(t)) € Vo = V; x V3 to be the solution to
w(0) d(wi)\ _ (t)
(5 )eremar 5 (20)=4(30). oo (¢10)




Equivalently, a(t) and ¢(t) = ¢(¢, n) satisfy

&(1) + €16(1) + a(t) = %(LO) t>0, (5.17)
8%¢ d ,6¢ 8%¢ _
‘875'(‘»'7) - a—""(% + 625’76—1)(1,77) =0, 0<n<l, t>0, (5.18)
¢ ) .
a—”(t,O) +e m(t,O) =a(t), 120, (5.19)
#(t,1)=0, 0. (5.20)

If ¢; and ¢ are positive, then Theorem 4.1 says that the semigroup generated on H by A and
consequently all solutions to (5.17)-(5.20) are uniformly exponentially stable. It is important to
note that, to apply Theorem 4.1, we need the D,; in (5.6), or something similar, as opposed to, say,
D2z = €21. The Dy, in (5.6) is a realistic dissipation term for waves in a compressible fluid because
it represents viscosity [6, page 315), [7].

6 Conclusions

It is straightforward to generalize the example here to wave equations in higher dimensions. For
example, the wave equation on V} x H; could represent an elastic membrane interacting with the
waves in a three-dimensional volume of fluid, represented by the wave equation on V3 x H,. In such
cases, the product on the right side of (5.7) becomes an Li-inner product on the elastic boundary.

In the higher-dimension problems, the damping operator Dy, for the elastic boundary need be
only Hj-coercive for uniform exponential stability, if D2 represents viscosity, as in the example here.
This is important because many common damping models for flexible structures are H;-coercive but
not Vj-coercive.

Whether the hypotheses in Theorem 3.1 or the requirement in Theorem 4.1 that D33 be V;-
coercive can be weakened is an open and interesting question. The example at the end of Section
3 suggests that significantly weaker sufficient conditions than those given in this paper for uniform
exponential stability might not exist.
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ABSTRACT

Adaptive lattice algorithms are denived for solution of unwindowed least-squares estimat:on problems
for AR and FIR models. The basic approach is to embed the unwindowed problem in a !:irger prewin-
dowed problem and then eliminate superfluous terms in the lattice. Initializations are given to allow the
lattice to use no initial parameter estimates or to include initial parameter estimates with desirs ‘veightings

in the quadratic criterion for parameter estimation. A numerical example is given.
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1. Introduction

This paper treats two initialization problems for unnormalized lattice implementation of recursive
least-squares estimation of AR and FIR models. The first problem, usually called unwindowed estimation,
is to obtain the exact least-squares fit to data when the data preceding the initial point used cannot be as-
sume(‘i to be zero. The second problem is to penalize deviation from initial parameter estimates. Although
solutions to both problems are straight-forward in the classical recursive least-squares algorithm, solutions
via lattices require not only special initializations but more complicated lattices than the common prewin-
dowed lattice [1,2,3,4].

The terms prewindowed and unwindowed refer to how data is handled in estimation, rather than to the
AR or FIR model. In prewindowed estimation, all data before some initial time is assumed to be zero.
Although this assumption usually is not correct, it affects only the first few terms in the cumulative least-
squares criterion, and therefore the affect on estimated parameters and predicted data fades as the number
of processed data points increases. Whether the error caused by the prewindowing assumption, when it is
incorrect, is tolerable depends on the application. This error is eliminated by unwindowed estimation,
where the criterion to be minimized tries to fit only true data with the AR or FIR model. In unwindowed
estimation, no asspmption 1s made about data preceding that used.

Including initial parameter estimates makes practical sense only in unwindowed estimation. Initial pa-
rameter estimates can be included in prewindowed estimation, but their effect and that of the error induced
v/ the prewindowing assumption fade at the same rate. Also, to include initial parameter estimates in a
fattice filter for an AR model, the model must be embedded in an FIR model. This is necessary to preserve
the shift structure of the recursion vectors for the AR lattice.

Both problems addressed in this paper have been addressed with previous lattice filters. Normalized
lattices for unwindowed estimation were given in [5,6]. An unnormalized lattice for the scalar-channel
(single experiment) unwindowed, or covariance problem was given in [2). An unnormalized lattice and
initializations for unwindowed RLS estimation with and without initial parameter estimates was proposed
in [ 7], although, as discussed in Section 5 of this paper, we have concluded that the lattice and initializations
in 7] do not solve unwindowed problems. While the lattice here and the initialization of parameter esti-
mates are different from those in [7], the basic idea of using the initial parameter estimates as initial data

for the output channel of an FIR model is common to Section 4 of this paper and [7].




The basic 1dea behind the unwindowed AR lattice in Section 3 of this paper is to use an artificial
measurement channel in the prewindowed lattice in [3]. This idea is straightforward, and it has been ex-
plored previously (see {8]). However, the additional channel makes the lattice more complex. The most
important objective in developing the AR lattice is to exploit the special structure associated with the arti-
ficial channel to reduce the expanded lattice to an efficient solution of the unwindowed least-squares esti-
mation problem. In particular, expanding the lattice with the artificial channel increases the dimension of
the coefficient matrices that must be inverted in the prewindowed lattice. By using the structure induced
by the artificial channel and generalizing a well-known formula for low-rank updates of matnix inverses,
we obtain an unwindowed lattice in which the matrices 1o be inverted have the same dimension as the
corresponding matrices in the prewindowed lattice.

The authors of [8] concluded that the normalized lattice they derived using an artificial channel was not
competitive in terms of computational requirements with the covariance lattice in [3], whereas we believe
that the lattice developed hzre will be competitive with any unnormalized lattice for solving the unwindowed
problem. These different conclusions about the two lattices based on the artificial-channel idea appear to
stemn in large part from the ability to reduce the dimension of the matrices that must be inverted in our
lattice and the inability to reduce the dimension of the matrices of which square roots must be computed
1n the lattice in [8].

The remainder of the paper is organized as follows. Section 2 defines unwindowed and prewindowed
estimation problerns for an AR model. embeds the unwindowed problem in the prewindowed problem and
reduces the prewindowed lattice to produce an efficient solution of the unwindowed problem. The basic
algorithm for the entire paper is Algorithm 2.1, the residual-error lattice for the AR problem. Algorithm
2.2 is used to generate the 2stimated AR coefficients. Section 3 defines unwindowed and prewindowed es-
timation problems for an FIR model and develops the additional update equations that must be appended
to the algorithms in Section 2. Section 4 shows how to include initial parameter estimates in the FIR
problem. For this, the lattice algorithms in Sections 2 and 3 are used but the time-injtializations are replaced
with those in Section 4.

Section 5 presents an example to demonstrate the faster convergence of the unwindowed lattice versus
the prewindowed lattice and the advantage of including initial parameter estimates in the presence of
measurement noise. Section 6 presents our conclusions, and the Appendix contains the matnx inversion

lemma that we use in Section 2.




2. The AR Problem

We consider an m x p measurement matrix

W = D'y - Aoy, (2.1

where ¢ is any integer and the i* column y{/) is a real /n-vector, referred 10 as the i* measurement channel.
The k# element of p(¢) is called the k* measurement in the i* channel. By an n* —order AR model, we

mean
AD = Y A= Anj + £400), (22)
=1

where the 4, 's are p x p matrices referred 10 as AR coefficients. We denote the i* column of 4, , by A, ,.

As in [3], we define the Hilbert space

{Z(Rm,).)= {z= [xlrxzrx_{ ...]r . each x; € R™ and |z$2= (z.2) <00}, (2.3)
where
o0 i TA
{(z,2) = Z /'.J"‘xj x; (2.9)
=1

and A is a positive real number called the forgetting factor. Throughout the paper, (., .) means the inner
product in (2.4). For k = 0, 1, 2, .., M, is the subspace of /{R", ~) such that each element of M, has

the form of z in (2.3) with the m-vector x, = Oforj > k, and
Q, = orthogonal projection of {Z(Rm, L) onto M, . (2.5)
We denote the infinite history of (1) by
U = OV - 901 = BT 05T 2 T (2.6)
so that ¥/ (1), the i* column of u(r) , is the infinite history of y(1), and v{t)€ ¢{R", 7). For any integer t,
we define Hy(t) = {0}, which is the zero subspace of Z(R*, 2}, and

Hyt) = span (' (t=1) .. ¥2(t=1) y'(1=2) ... ¥P(1-2)

2.7
VN t=n) . YPU=-n)., n=12 .. . 21

Fork = 0, 1, 2, ..., we define H (1) = Q,H(1) . Hence H{t) = H i) = H.{t) = {0}. We use the

projection operators




P,(t) = orthagonal projection o ¢ (R™. /) onto H (1), (2.8)
Pp 1) = orthogonal projection of ¢(R™. /) onto I, (1). (2.9)

(We note P(nju(t) = [PLOY'(1) . PAu (0] and P, {0y(1) = [PL0¥'(1) .. P ()¢ (1)].) Computing
P,,_,,(l)‘./(l) 1s an unwindowed least-squares problem, and computing P () (¢) when v(¢) has a finite number
of nonzero entries i1s a prewindowed least-squares problem.

Throughout this paper, J{¢) will denote the m x p measurement matrix for unwindowed problems and
y(#) will denote the m x p measurement matrix for prewindowed problems. The histories of () and j(1)
are y(t) and y':(t). respectively. The projections defined by (2.8) and (2.9) corresponding to j{(¢) and y(¢) are

P(tyand P, (0): the projection defined by (2.8) corresponding to 3(¢) and J/(l) 1s i’,,l'().

Problem 2.1. (Unwindowed AR Problem) For ¢t =12, ... and n =0, 1. 2, .., t— 1, compute
P, (0u() = P,._(0) Q.. u(1); equiralently. (for n=1, 2. ..., 1—1) find matrices A4, (1) such that, for
eachi(i = 1. .., p). thz i* column: of the matrices 4, (¢) minimize
' -
K= Y AT e = Nte-pag o0 (210
1=n+ =1

where | - | 15 the Euclidean norm of an m -vector.
Problem 2.2. (Prewindowed AR Problem) Assume j(/) = 0 for t<0 . For¢= 0, 1.2, .., and
n= 20,1, 2 ...t compute I;,,(l) U;l:): equivalently, (for n=1, 2, .., 1) find matnces z;,,_,(l) such that,

foreach i (i = 1. .., p). the i* columns of these matrices minimize

./zi'n(l)

Py =Y fe—pa o, (2.1)
=

We note that. in Problem 2.1, nonzero data for 1 < 0 is allowed but not used, whereas in Problem 2.2, all
data is assumed zero for r < 0. The initial times in Problem 2.1 and 2.2 are, of course, arbitrary. We denote
them dufferently so that we can embed Problem 2.1 in Problem 2.2 most conveniently.

The lattice tn {&JG1.] solves Problem 2.2. We will need the following definitions from [&JG1.]. For

any integer ¢ and any nonnegative integer n ,

L) = UN0) - f700] = U= PL0T9(0), 2.12)




b(1) = [6)(0) . 82T = (= Pyt + DIdt=n), 2.13)

e 1) = top m rows of (), forward residual error, (2.14)
r(t) = top m rows of b(t), backward residual error, (2.15)
Ko \(1) = pxp matrix whose (i, j) element is {f1), bl(t— 1)), (2.16)
REt) = p x p matrix whose (i, j) element is (0, £y, (2.17)
E,:(:) = :5 * ; matrix whose (i, j) element is (b,l,(l), b;l,(l)) . (2.18)

The matrices e(¢), 7.(¢), K1) , R{(¢) and RJ(¢) are used in the lattice in [3]. The matrices f(z) and br), whose
columns are infinitely long, are used in denving the lattice in [3] but not in the final algorithm. These in-
finite dimensional matrices are used to denive the lattices in this paper also.

To embed Problem 2.1 in Problem 2.2, we define
Yy =0 1<0, (2.19)

O =00 1 [ 7, (2.20)

mxp ‘mxm

JO =[] 0 3, t=12 . . (2.21)

mxp mxm

Thus p = p+ m. Itis easy to verify

QunPaDV(D) = [PrrW(®) 0, t=12, .., n=12, .., t2n. (2.22)

This shows that the first (¢ — n)m rows of the first p columns of F,(I)Zl(l) are equal to the first (¢ — nym rows
of P, {tW(t). Since all rows of P, . (tW(?) past the first (¢ — nyn are zero, (2.22) shows that the solution
to Problem 2.1 for the sequence (1) is embedded in the solution to Pro'blcm 2.2 for the sequence j¢).
Therefore, we can solve Problem 2.1 with the lattice in [3].

To make this solution efficient, though, we must exploit the special structure of the prewindowed
problem for y(f). From (2.19)-(2.21), it follows that, for t = 1, 2, .. ,and n = 0, 1, ... , the matrices
K1), RY(t) and &{1) can be written




pxp

-~ -~ K xp -~ e,
50 = [e0 101, K= [--"-(-’-)}" L Rw= R0 (223)
mxp mxm 0 mx p 0 N

Also, the mtializations in (2.24) and (2.25) are straightforward from (2.12)-(2.21). The residual-error lattice
in Section I11.B of [3] then becomes Algorithm 2.1 for Problem 2.1.
Initialization 2.1 (For Unwindowed AR Problem)

pxp
~ _ oy — [ O O _
WO =00 111, Ro=[3 ,.im]' G0) = 1 . (2.24)
Kih=0, n>t>0. (2.25)

Algorithm 2.1 (Residual Error Lattice for the Unwindowed AR Problem)

Foreacht> 1,

7o0) = [e(0) | 0 = M) | 07, (2.26)
RY(1) = [R%(’) /_91] = 7O + iR t= 1), Gyt = I. (2.27)

Forn = 0 to min{t— 1.V} (where N is the maximum order),

Kppit) = 7Knprli= 1) + M GZ(t= D)7 (1= 1) (2.28)
Grai(0) = Got) = 70) READFT(0) (2.29)
R (D) = Ri(t=1) = KL (0 RE(O) Ky y (1) (2.30)
RELD = RXD = Knp () R0 = D) KT, (1) (2.31)
enpil) = ) = rlt= ) RMe— 1)KL, (1) (2.32)
Frat(t) = Tt = 1) = e R0 Ky (1) (2.33)

Asin [3], G{1) is an m x m matrix. For a matrix M, M" means any matrix such that MM'M = M.
The residual-error lattice for the unwindowed AR problem has the same form as the residual-error lattice

in [3] for the prewindowed problem, but in the lattice for the unwindowed problem the amrays K(1), r{r)




and /3;(:) are larger than the corresponding arrays in the prewindowed lattice. While the matrices R(¢) and
G.(1) have the same respective dimensions as in the prewindowed problem, the matnx IE,:(I) in the unwin-
dowed problem has dimension (p + m) x (p + m) as opposed to p x p for the corresponding matrix in the
prewindowed problem. The unwindowed lattice should be more complex than the prewindowed lattice.
but inverting the larger matrix IE,',(I) 1s both undesirable and unnecessary.

From the way in which RJ(¢), IE,:(I) and K(f) anise in [3] (they are used in computing projections), it
follows that (K (1)) < A(R(?)) and Q(K:,l(!))c .Q(R::(: — 1)). According to Lemma A.l in the Appendix

then, we can generate an I}:( 7) directly with

RE(D = REt—1) + R = DK (DR () Ky (DR~ 1),

o ~. - (2.30°)
RGOy = RGOy = Ry0),

where M~ is the usual pszudo inverse of a matrix M [9]. For the initialization in (2.30"), recall (2.24). The
RC(1) generated by (2.30") is not (1) in general.

In the most efficient version of Algorithm 2.1 then, (2.30") replaces (2.30) and R (1) is used for RS(¢) in
(2.30). (This is true for solving the FIR problems in Sections 3 and 4, also.) Although it is not necessary,
it is most natural to use G_(f) in (2.28).

Also, we normally do not compute R; (¢) and G, (¢) exactly when these matrices are singular or near

singular. Rather, we choose a small number & and for det(R(¢)) < & or det(G (1)) < 8, we use the approxi-

mation
(f + MTA ' M s (2.39)

for small positive 2. Numerical studies in [10] show that using (2.34) to approximate R (:) and G, (1)
produces negligible error in the lattice results. For the numerical results in Section 5, we used
a=45= 10710,

The AR coefficients A_ (1) for problem 2.1 can be generated at any ¢ by the following algorithm. Like
Algorithm 2.1, Algorithm 2.2 is derived from the corresponding algorithm in [3] by embedding Problem
2.1 in Problem 2.2 and then climinating the parts of the expanded prewindowed algorithm that are not need

for the solution of Problem 2.1.




Algorithm 2.2 (AR Coeflicients for the Unwindowed AR Problem)

Forn=1,2, .. ,t—=landj=1,2, .. ,n
Crar (0 = Co {0 = By (ORZWOTN0),
.Bn+|.,-+,<t)= (B () = Cp {DG(OT{0] — Ap (DR (1) Knyr(0),
App1 f0 = Ap () = [Bo f0) = Gy AOGTOTLOT Rt~ DK, (0),
The end conditions, forn=0, 1, ... , t— 1, are
Apprnai(d = LRI = 1], 5 K110,
Brpa(0) = R Kni(0),

Crvtnni(® = [RTD),, 5 7200,

where [ R (1)],.; means the top p x p block in R).

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)




3. The FIR Problem (Joint Process Estimation)
Now we assume that, in addition to the sequence of m x p measurement matrices j{), we have a se-

quence of 1 - ¢ measurement matrices
) = [0 X0 - xw]. (3.1)
By an n*-order FIR model, we mean
n
s A
M) = Y qt=j+ DA + g0, (3.2)
=

where the 4, s are p x ¢ matnices referred to as FIR coeflicients, and the i* column of 4, is denoted by

/2,;,. We denote the history of x(¢) by

() = [0 . %) = [x" W x" 1= DxTe=2) .. 17 . (3.3)
Problem 3.1. (Unwindowed FIR Problem) For ¢t = 1,2, ..., and n= 0, 1, .. ., compute
P Lt+Do()= P, Lt+1)0._, &), equivalently, (for n=1, 2, ... , 1) find matrices .3,,_,(!) such
that, foreach i (i = 1. ..., ¢q), the i* columns of these matnices minimize

t n

K=Y T A = Y e+ AL 0 R (34

i=n =

Problem 3.2. (Prewindowed FIR Problem) Assume x(t)=0 and p(t{)=0for t<0. Fort =0, 1, 2, ..,

and n =0, . .. , 1+ 1, compute .E’,,(1+ 1) ¢(1); equivalently, (for n=1, 2, ... , t+ 1) find matrices
A?M(l) such that, for each i(i = 1, ... , ¢), the i* columns of these matrices minimize
. ! . 4 A
S = YA A - Y S+ Ay (3:5)
t=0 J=1

As in Section 2, we embed the unwindowed problem in the prewindowed problem by defining the
measurement sequence y(¢) for the prewindowed problem in terms of the measurement sequence )(?) for the

unwindowed problem according to (2.19)-(2.21). We have

Oroton P+ 1)) = (Popyr -+ DS 0], 1=1,2, .., n=12 ., (3.6)




so that the first (1 + 1 — n)ym rows of the first ¢ columns of i’,,(l + 1)¢(!) are equal to the first (¢t + 1 — n)m
rows (the only possibly nonzero rows) of P, .,_(t+ 1)¢(¢). Therefore, the solution to Problem 3.1 for the
sequences x(1) and j{1) is embedded in the solution to Problem 3.2 for the sequences x(7) and y(1) .

To obtain a lattice for Problem 3.2, we must append some new update equations to the prewindowed

lattice in [3]. For nonnegative integers ¢ and n, we define

70 = U0 - 301 = U= P+ DI, 37
&0 = top m rows of (1), SENEY )
Rooi(t)=qx b matrix whose (i, j) element is (fX1), b(1)) . (3.9)
REt)= g x g matrix whose (i, j) element is <f0), JA0 (3.10)

where, as in Section 2, };,,(1) is the orthogonal projection onto H(¢) when, in (2.7), p is replaced by p and

-~

v (¢ — j) is replaced by l,T/'(l—j) fori=1, .. ,p.

To denive order updates, we define

PX(e) = orthogonal projection onto span{b(1) .. 0) ) (3.11)
with b,(1) defined as in (2.13). We have then

(7= P (0] = (1 - PY~ DI - P(0]. (3.12)
From (3.7), (3.9), (3.12) and (2.18), we obtain

Juat®) = 1) = PUOLAD) = Ji) — b0 REO KT - (3.13)

It 15 straightforward to use (3.7)-(3.10) and (3.13) to derive Initialization 3.1 and the order updates in Al-
gorithm 3.1. With the foregoing equations in this section, the denvations of the time update for IA(_(I) and
of Algorithm 3.2 are similar to those in Sections [II.B and III.C of [3] (see [10]). The most difficult of

these denivations is that for the time update of i(,(t).
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Initialization 3.1 (For the Unwindowed FIR Problem, append this initialization to Initialization 2.1.)

R&0) = xT0)x0), K0 = [0 x"(0)] (3.14)
Ry =0, n>t20 ) (3.15)

Algorithm 3.1. (For the Unwindowed FIR Problem, append this algorithm to Algorithm 2.1.)

Fort > 1

60 = x1),  RYD = xT()xt) + ARGt~ 1). (3.16)

Forn= 0tot

Rooit) = 2 Koyit= 1) + 8T G )7 (0) (3.17)
s = (1) = TR KT, (1) (3.18)
RE (0 = RYD = Kopr(0 RO KT, (). (3.19)

Algorithm 3.2. (For the FIR problem, append this algorithm to Algorithm 2.2.)

Forn=1,2, .., tandj=1, 2, .., n
2 _ ord,  oT 5
Appr (O = Ay {(0) = By (DR, (1) Kpyr(0). (3.20)
The end condition , forn=0, I, ... , ¢ 1is
A Hr= AT .
An+|ﬁ+l(z) = [Rn (I)Jp)(; Kn+l(‘)' (3‘21)

Algorithms 3.1 and 3.2 with Initialization 3.1 solve Problem 3.1. When the solution to Problem 3.2
with arbitrary p(f), 12 0 , is desired, Algorithm 3.1 can be appended to the prewindowed lattice in [3]. For
this case, the only change in Initialization 3.1 is that l?,(O) = xT0)(0) must be used in (3.14). Algorithm
3.2 generates the full matrices A(1) for Problem 3.2 if A, () B, (1) and [R7(1)],,; are replaced by A, (1)

E,,‘ ,[(t)and i-i:'(l). where éw(’) is the matrix B, (¢) generated by the algorithm in [3] for the AR coeflicients.

11




4. Including Initial Parameter Estimates
The algorithms and initializations in the previous sections do not use initial parameter estimates. To
include initial estimates of the FIR parameters corresponding to a given order N, we need only change In-

itializations 2.1 and 3.1.

Problem 4.1. (Unwindowed FIR Problem with Initial Parameter Estimates) For ¢t = 1, 2, .., and
n=1, .., N, find matrices A?,,. ,(f) such that, for each i(i = 1, ... , g), the i* columns of these matrices
imize
n A
I = S0+ wd Y AL 0 - A b (4.1)
=1
where A_'N_, is the initial estimate of 2,"_, , D =diag {8,, 6;, .. ,5,} 2 0,lal}=a"Da and u>0.

Like Problems 2.1 and 3.1, Problem 4.1 can be embedded in a prewindowed problem. e define a

prawindowed FIR prcblem similar to Problem 3.2 except that the nonzero data begins at 1= — p.N instead

oft=0. Forj=1,2, .., Nandk=1, 2, .., p, we define
_ kd'phce
iy 1ol rowk of Ay i |1x ; p
Xy ik = uhz 6}(12 -------- {:--[.V.,.j q , ﬁk - #112 6}‘/2['@'9'""! _____ 9.9_]([XP .. (42)
' 00..0 Jm—tixq 00 .. 0. 00}m-1x>
M—1=Nky= ;DY 1< N, IS ksp. (4.3)
We replace (2.19) with
. —(k—1)N72
;(I) = /.—< ) ! ﬂky ’=—klv' l S k S py (4_4)
, all other t < Q.

For 2 0, y(t) is defined by (2.20)-(2.21). It is straightforward to see that the prewindowed FIR problem
for these histories of x(¢) and y(r) is equivalent to Problem 4.1. Furthermore, for ¢ = 0, the various matrices
in (2.12)~(2.18) and (3.8)-(3.10) can be computed directly from the definitions of x(f) and y(t) to yield the

following.
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Initialization 4.1

0 =(0 ([ 1, r0)=0 n=1,2 .., N=1 (4.5)

mxp mxm

pxp pxp
A~ n ~ - N—n
roy = |u4D 0 roy = |us"" "D 0 - -
Ro(0) [ o 1 ] Ry(0) [ o 0 ] n=1,2 ., N-1 (4.6)
mxm mxm
Ko(0)=0, n=0,1, .., N=2 4.7)
G0) =1, G(0)=0, n=1,2 .. ,N-1 (4.8)
A l\‘ .
RO = u )y ML DAy, + xT(0)x(0) (4.9)
=1

K(0) = [wi¥T5,D 1 xT(0)], Rpoi(0) = [(wi¥"A5, D101, n=1,2, .., A=1. (4.10)

For the solution to Problem 4.1, Initialization 4.1 replaces Initializations 2.1 and 3.1. Algorithms 2.1,
2.2, 3.1 and 3.2 are used as they are stated, except that the maximum » in Algorithms 2.1 and 2.2 is N =2
and the maximum »n in Algorithms 3.1 and 3.2is N — 1.

Note that for u = 0, Initialization 4.1 reduces to Initializations 2.1 and 3.1. On the other hand, for
Ay, ,= 0, Initialization 4.1 is different from the previous initializations because they imply no initial param-

eter estimates, which is different from setting initial parameter estimates equal to zero.
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5. Example

We used a sixth-order AR model with m= p =1 to generate the data sequence W), 1= 1, 2, .., 100,
from nonzero initial conditions. The true paramecters and initial conditions are given in Table 1. These
AR coeflicients represent a single measurement from a system of coupled, lightly damped oscillators sam-
pled at the rate of 50 Hz.

TABLE 1
True AR Coeflicients and Initial Data

J A, A=)
1 4.0021 0.27

2 —7.8919 0.18

3 9.6013 0.029

4 —7.5673 0.096

5 3.6927 0.35

6 —0.89871 0.50

First, we will compare results obtained with the unwindowed AR lattice in this paper and results ob-
tained with the prewindowed lattice in [3]. Rather than show the estimates of the AR parameters, we plot

in Figure 1 the three frequencies computed from the parameter estimates according to
w = Im((log{)x 50), (5.1)

where { is an eigenvalue of the AR model. The frequencies corresponding to the true parameters are

@, = 14549, w; = 40743, w; = 58.862. (5.2)

Also, we plot in Figure 2 the one-step-ahead prediction error; at any time ¢, this is the error between }(¢)
and the summation on the right side of (2.2) evaluated with the estimated parameters.

In Figures 1 and 2, solid curves correspond to parameters generated by the algorithms in Section 2 of
this paper, and the dashed curves correspond to parameters generated with the prewindowed lattice in [3).
In both lattices, we used the forgetting factor 4 = .98. All numerical results presented here are for n= 6.
If enough data is used, the frequencies corresponding to the parameter estimates from the prewindowed

lattice eventually will converge to the true frequencies. This convergence is faster for smaller values of /,




but to make the convergence significantly faster, 7 must be so small that the lattice filter becomes very
sensitive 1o noise.

To illustrate the effect of setting inutial parameter estimates with Initialization 4.1. we added zero-mean
white noise to the data generated by the AR model for 30 £ 1< 50. The standard deviation of the noise
was .01, which is between 1.5% and 2° of the amplitude of y(1). We generated two sequences of parameter
estirnates with the unwindowed FIR lattice (i.e., Algorithms 2.1, 2.2, 3.1 and 3.2) and Initialization 4.1 with
N =6. We obtained an FIR problem by setting x(¢)= (¢t + 1), > 1. For the first sequence of parameter
estimates, we started at t=1 with g = 0 (i.e., no initial parameter estimates) and continued until ¢ = 100.
For the second sequence of parameter estimates, we also started at ¢ = | with g = 0, but at 1= 30, we re-
initialized the FIR lattice, using u = 100, D= [ and ZN_, = Ay ,(29)in Initialization 4.1.

For each of these sequences of parameter estimates, Figure 3 shows the norm of the error between the
estimated parameter vector and the true parameter vector. For 1 < 1< 29, the two sequences of parameter
estimates are identical.

For ¢ > 30, the measurement noise affects the parameter estimates generated with no resett.ag much
more than it affects the parameter estimates generated after resetting, since the reinitialized FIR coefficients
are held near the correct values at 1= 29 by the heavy weighting u . With smaller forgetting factor /, the
parameter estimates would return to true values faster after ¢ = 50, but smaller /. would defeat the purpose
of u.

We compared the performance of the lattices in this paper, the prewindowed lattice in 3], and the un-
windowed lattice in [7] on the current example. Since [7] did not indicate how to generate estimates of
either AR or FIR parameters, we compared the values produced by our lattices for the forward residual
errors e/t) and ef¢) to the corresponding quantities produced by the lattice in {7]. We made this compar-
ison for the AR problem corresponding to Figures 1 and 2, so that eft)= et + 1). The quantities e/¢),
e{1) and R(r) should correspond, respectively, to the quantities €., 4, £.,.., and 2,,, (with k= r) in [7].

The Exact Initialization in [7], with the nonzero value for x, indicated in [7], yielded values for the
forward error e,,, , the error ¢, ,.,, and squared error norm z,,, all very close to the corresponding quan-
tities from the prewindowed lattice. Both the lattice in [7] and the prewindowed lattice yielded values of
€4s and ¢, on the order of 10-? and values of 2, , on the order of 10-!. Our unwindowed lattice yielded
values of e/() and e{¢) on the order of 10-'? and values of RY(t) on the order of 10-*. These results indicate

that our unwindowed lattice was solving the unwindowed problem and that the lattice in [7] was not.
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When we shifted all data for £ > 0 formard by one step and set x,= 0 in the Exact [nitialization, the
lattice in [7] viclded e, ,. £64-,, and 2, that agree with the corresponding quantities from the prewin-
dowed lattice to nine digits. all that we printed. We also ran the lattice in (7] with the Soft-Constraint [n-
itialization on page 368 in [7] and compared the results to those from our lattice with soft-contraint
inutialization. Again. the forward errors from the lattice in [7] were much larger than those from our lattice.

Our analysis of the denivations and algorithms in [7] indicates that, when all data 1s zero for t < 0, the
lattice in [7] with the Exact [nitialization solves the prewindowed problem, but the lattice in [7] with either
initialization in [7] does not solve the unwindowed problem. These conclusions are confirmed by our

numencal results.

6. Conclusions

The purpose of the paper has been to derive efficient lattice filters 10 solve Problems 2.1, 3.1 and 4.1.
Problem 2.1, the unwindowsd AR problem with no initial parameter estimates, is solved by Algonthms 2.1
and 2.2 with Initialization 2.1. The residual-error lattice, Algorithm 2.1, is recursive in both time and order.
Algorithm 2.2. which generates the estimates of the AR coefficients, also has a lattice structure, but this
algorithm is recursive in order only. It can be run at any time ¢, but it need not be run at every ¢. For
Problem 3.1, the unwindowed FIR problem with no initial parameter estimates, Algorithms 3.1 and 3.2 and
Initialization 3.1 are run along with Algonthms 2.1 and 2.2 and Initialization 2.1. The solution to Problem
4.1, the unwindowed FIR problemn with imtial parameter esurnates, also requires Algonthms 2.1, 2.2, 3.1
and 3.2, but lnuiahization 4.1 replaces Initializations 2.1 and 3.1.

To make the lattices in this paper most efficient, the generalized inverse RT(1) is generated directly with
(2.30"); R(t) need not be generated and (2.20) need not be used. Lemma A.l, on which (2.30") is based, is
a generalization of a well known formula. whose diverse a.pp]jcations were surveved recently in [11].

Lemma A.l appears to be new.
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APPENDIX
Lemma A.1 Let A, B and C be rcal p» p. px p and p p matrices. respectively, with Z(B)c R(A) ,
AB )< RO N(A)e M(B ) and MC)c M(B). Suppose that matrices 4. C. 4~ , C. 1" and C satisfv

A=4-BCBT, (4.1)
“C=C-B"478, (4.2)

A =47+ A°BC BT 47, (4.3)
and

AdA 4=4, CC°C=C, CCC=C. (4.4)
Then

AT 41=4. (4.5)
Proof The inclusion N(4)< N(B") and A[474 — [1= 0 imply

BTi 1=8"T. (4.6)
Then

BT4"1=B"474-B"47BC*B" = cCc*BT-B"47BC*B" = CC=8". (4.7)
Hence

ABT4*T)c ). (4.8)
Also, replacing 4, 47, B, C and C in (A.7) and (A.8) with C. C", B". 4 and A7, resrectively, yields

BC°C=AA4"B. (4.9)
Now,

AL47 - 4*BTBT47)T = TA°T + (AA*BTBT4°T L10)

=341 +BC°CCB 4" A =44 T+ BCB 4" 1=44"1=1.

The last identity in (A.10) follows from A(4)c A(4), which follows from RA(B)c A(A4) and (A.].

In general. T % A (the pseudo inverse of 4), even when 4 and C_ are used for " and C, respectively,

in the right side of (A.3). For example, if

12 I _
a=[11] B‘[l]' =1
then
- = _[10] =_ = _
=1 _[00].C-C"-0,
and
= e = a7 = [ ]

(A4.11)

(4.12)

(4.13)




A VARIABLE-ORDER ADAPTIVE CONTROLLER FOR A MANIPULATOR
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ABSTRACT

A digital adaptive controller for a robotic manipulator with a sliding
flexible 1ink 1s presented. The most important feature of the controller is its
capability to vary the order of the control law adaptively. This capability
results from using a lattice filter for adaptive parameter estimation. The
superifority of the variable-order adaptive controller to a fixed-order adaptive
controiler is demonstrated by numerical simulations, in which the manipulator is

. represented by the nonlinear equations of motion for a finite element model of
the manipulator.
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1. INTRODUCTION

Adaptive control of robotic manipulators with rigid 1inks has been studied
by many authors [BDS1, DD1, K2, KG1, LE1, NT1, TH1, VK1]. While several authors
have studied nonadaptive, usually optimal, control of manipulators with flexible
links [BMW1, CS1, F2, UNM1], the 1iterature contains only limited treatment of
adaptive controf of manipulators with flexible 1inks. In [NM1, NMB1], an
unknown payload was estimated on-1ine to update optimal control gains used to
control a linear model of a flexible 1ink. Parameters were identified in [RC1]
and then used to design a steady-state linear-quadratic-Gaussian compensator,
which was used to control a flexible one-1ink manipulator. In [CL1], a static
elastic deflection was modeled in one simulation of adaptive pole placement for
the Stanford arm. A discrete-time adaptive controller designed for a rigid link
was applied to a flexible 1ink in [Y1], and the adaptive controller did not

appear to suppress all oscillations of the 1ink about the final position.

This paper presents a digital adaptive controller for a manipulator with
two 1inks, the second of which is a fiexible beam that slides out of the first
link (i.e., there is a prismatic joint). The simulation model of the manipula-
tor is nonlinear with time-varying coefficients, but the adaptive controller is
based on a 1inear Auto Regressive-Moving Average (ARMA) model of the input/out-
put characteristics of the plant. Both the parameters and the order of this

ARMA model vary adaptively. Becasue the control law 1s based explicitly on the

ARMA model, the adaptive control algorithm is indirect.

The most important feature of the adaptive controller in this paper is that
its order can vary adaptively. This capabiliity is important in the problem here

because the flexible 1ink abruptly ceases sliding and the associated large axial




deceleration has the effect of a lateral impulse on the 1ink. The impulse ex-
cites previously unexcited elastic modes of vibration, so that the effective
order of the plant fncreases. Such changes in plant order, which might result

also from impacts or releasing payloads, are handled much better by a controller

whose order can vary adaptively.

The order of the controller can vary adaptively because the parameter esti-
mator is a least-squares lattice filter, which 1s an algorithm for least-squares
parameter estimation that is recursive in both time and order. The lattice
filter is more efficient than the standard least-squares method for large
orders, and 1t s numerically stable [LL1]. Lattice filters have become promi-
nent in adaptive signal processing {F1, GS1, HM1, LFM1, LMF1, LS1]. Their use
in control and identification of flexible structures has been studied in [MS1,
SM1, SM2, SM3, W1, WG1], and recently the capability of high-order lattices to
identify many modes of very flexible structures has been demonstrated in [J1,

JG1, JG2].

Recursive (in time) least-squares estimation is used widely in adaptive
parameter 1dént1f1cation. See [LS1, GS1] and many other references for the
classical algorithm and its convergence properties. This method has one serious
limitation for identification of systems like the manipulator in this paper: the
classical recursive least-squares algorithm is based on a fixed-order input/
output model. In a flexible system, different numbers of modes may be excited
at different times, especially in problems with impulse phenomena. For such
problems, determination of effective plant order 1s needed along with iden-
tification of parameters. With its order-recursive property, the lattice filter
can identify the number of substantially excited modes of a flexible system as

well as the parameters of a digital input/output model.




Section 2 describes the manipulator, the finite element model used for
simulations, and the ARMA model on which the control law is based. Section 3
discusses the adaptive parameter estimation and presents the lattice filter
algorithm. The adaptive control law s discussed in Section 4, along with the
reference signal, learning period, control-torque bounds and the criterion for
changing the order of the controller. Numerical simulations are presented and

discussed in Section 5, and the paper's conclusions are stated in Section 6.

2. MANIPULATOR MODEL

Figure 2.1 shows the manipulator to be controlled, which consists of the
rotor whose center is fixed at point 0, the rigid link M1 and the flexible link
Mz. The rotor is modeled as a rigid disc and the rigid 1ink 1s cantilevered to
the rotor. The flexible 1ink 1s a uniform Euler-Bernoulli beam that slides in
the rigid link. The free end of the flexible 1ink carries a payload, modeled as
a point mass MPL‘ As Table 2.1 indicates, the manipulator 1s unusually long and
slender. This design 1s motivated by possible space applications of robotics
and by the desire for a highly flexible, rather unwieldy manipulator to

challenge the controller.

We assume that the radial motion of the flexible 1ink 1s controlled by an
actuator with sufficiently wide bandwidth and short time constant to make the
flexible 1ink follow a specified radial position profile r(t) exactly.
Consequently, we treat r(t) and its derivatives as time-varying parameters. The

control variable in this paper is a torque u that acts on the rotor at 0.




Figure 2.1: Robotic Manipulator with Sliding Flexible Link

TABLE 2.1

Manipulator Data

Combined Rotor and Rigid Link
Radius of rotor plus length of rigid link = L = 3m
Combined moment of inertia about rotor axis = ]|6848Kgm

2

Flexible Link(steel)
Length = 3m
Length of segment outside of rigid link =r (Imgr<2m)
Cross section = 0.02mx0.02m
Mass per unit volume = 7.8x10° I(‘g/mJ
Modulus of elasticity = E = 200x 10° N/m2
Voigt-Kelvin damping coefficient = ¢ = 0.00!
Fundamental cantilevered beam frequency:
For r=1m, fi=1635Hz
For rm2m, fi= 4089H:




In the dynamic mode) of the manipulator:

. first-order (linear) transverse deformations of the flexible 1ink are
modeled;

. axial elastic deformations are neglected;

. coupling between rigid-body angular velocity and elastic displacements is
included;

. the contribution of the inertial axial load to bending stiffness 1s
included;

. torques due to gravity are included.

For simulating the response of the manipulator, we use three finite ele-
ments of equal length to approximate the part of the flexible 1ink outside the
rigid 1ink. Since this portion of the flexible 1ink varies with time, the
length r(t)/3 of each of the three elements must vary with time. We use cubic
B-splines [S1] as basis functions. This means that we have three elastic
degrees of freedom, which we take to be the transverse elastic displacements of
nodes 2, 3 and 4. (Node 1 1s the point on the flexible 1ink at the end of the
rigid 1ink; node 4 is the end of the flexible 11nk to which the payload is
attached.) In all then, there are four degrees of freedom in our simulation

model of the manipulator. We represent the rigid-body degree of freedom by the

angle 6.

For the finite element model of the manipulator, the generalized displace-
ment vector is q = (@ qz D) q4]T where 9y Q3 and q are the transverse elastic

displacements of nodes 2-4 on the flexible link. Lagrange's equations for the

finite element mode) have the form

M(t)d + D(t)q + K(t)q = Qg(t)g sin © + Bu, (2.1)




where the 4x4 matrices M(t), D(t) and K(t) and the 4-vector Qg(t) have the forms

M(t) = M(q,r(t)), (2.2)
D(t) = Dy(.Q,F(t)) + F(£)D,(a,r(t)), (2.3)
K(t) = K (8,8,r(t),g) + F(£)K,(r(t)) + F(L)K3(r(t)), (2.4)
0g(t) = Qg(r(t)), (2.5)
B=[1 0 0 0], (2.6)

and g is the acceleration of gravity. Of course, the generalized coordinates q
vary with time, but we want to emphasize that r(t) introduces time-varying coef-
ficients into the equations of motion. We model small Yoigt-Kelvin viscoelastic
damping (See [CP1]) in the 1ink, which means that the matrix D(t) contains

COKb where Kb is the part of K(t) that represents the bending stiffness of the
flexible 1ink and c, 1s a damping coefficient. For a complete derivation of the

equations of motion, see [Ki].

The flexible 1ink slides out of the base 1ink according to the length-
versus-time profile in Figure 2.2. During the time between O and to. which will
be used for preliminary parameter identification by the adaptive controller, the
radial velocity r is zero and the rigid-body angle remains near zero (See
Section 4.3). Between to and tl’ the flexible 1ink has the circular radial
motion profile with positive r and # indicated in Figure 2.2. Between t1 and
t,. T is constant, and starting at t,, r decreases according to the indicated
circular radfal motion profile until the siiding stops at time ty. We chose the
circular transitton segments between to and t1 and between t, and t3 in Figure
2.2 because the acceleration ¥ is proportional to p;l and p; ; we found this to

be a convenient parameterization for studying the effects of the radial acce-
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Figure 2.2: Radial Position Profile of the Sliding Link

One of the most important features of the application in this paper results
from the fact that we spectfy that the radial velocity of the flexible 1ink stop
very quickly; 1.e., t3 - tz and p, are small and the radial acceleration f(t) is
very large between t, and t,. With this large F(t), the term F(t)K3(r(t))q 1n
the equations of motion produces the equivalent of a lateral impulse on the

flexible 11nk, unless q(t) is near zero between tz and t3.

Two observations about (2.1) that are important for adaptive control can be

made from the detailed equations of motion in {K1]. First, (2.1) can be written

-




M(t)d + D(t)d + K(t)q = Bu, | (2.7)
where
K(t) = K(t) - Q (t)8g(stn 8(t))/6(t). (2.8)

Second, for sufficiently small elastic vibration of the flexible 1ink, no domi-
nant terms in the matrices M(t), D(t) and E(t) fnvolve the elastic displacements
Qs Q3 and q, or their time derivatives. Hence the dominant terms in the coef-
ficient matrices in (2.1) and (2.7) vary no faster than the rigid-body angle
6(t), the corresponding angular velocity, F(t) and F(t). This conclusion
follows from a tedious but straightforward examination of the detailed equations
of motion in [K1]. It results essentially from the fact that we use a linearly
elastic mecdel for the flexible 1ink, so that no significant terms in the

equations of motion are more than first order in the elastic degrees of freedom.

Now we consider digital control of (2.1) and (2.7) by zero-order sample and

th

hold; 1.e., at the beginning of the k~ sampling interval (k = 0, 1, 2, ...), we

sampl> an output vector y(k) and apply a constant control vector u(k) for the

duration of the kth

sampling interval. We measure the rigid-body angle and the
elast‘c deflection of the free end of the flexible link (the end holding the
payload), so that |

b\ /g (k)
(k) = 1=

: (2.9)
ag()  \y,(k)

.ccording to standard 1inear system theory, an input/output model for (2.7)

with digital input and digital linear output has the form of the ARMA mode!

N N
y(k) + 2:; A1(k)y(k-1) - 2[; 81(k)u(k-1) (2.10)




where A1(k) and 81(k) are matrices of appropriate dimension and N depends on the
number of excited flexible modes. In our application A1(k) is 2x2 and Bi(k)

is 2x1. For our simulatfons, N need not exceed 8 because our simulation model
has four degrees of freedom. If the sampling rate is fast compared to the time
rates of change of the dominant terms in the coefficient matrices in (2.7)(1.e.,
if the sampling rate 1s “ast compared to the rigid-body angular velocity and
acceleration and r and i), then the coefficient matrices in (2.10) can be con-
sidered to vary slowly. 1In this case, an adaptive parameter estimator should be
able to track the coefficients in (2.10) and predict y(k) from data taken
through time k - 1. Such prediction i1s the basis for the subsequent adaptive

control algorithm.

The sampling rate used in the simulations in Section 5 1s 100 Hz.
Numerical results indicate that the slowly-varying-coefficients hypothesis is
valid for our problem except between the times tz and t3 when the impulsive
effect of the large radial acceleration first excites higher flexible modes that
usually are not excited, causing both the ARMA coefficients and the minimum ARMA
order to change abruptly. Since t2 - t3 is only 10% of one sampling interval,
the adaptive controller just sees a switch from one set of slowly varying coef-
ficients to another. The numerical results in Section 5 demonstrate that it is
ifmportant for the adaptive controller to be able to change both the ARMA coef-
ficients and the ARMA order.

To shed further 1ight on the system to be controlled, we consider the
linearized open-1o0p dynamics of the manipulator with constant r, payload "PL .
.IMZ. and no gravity moment for the initial value of r = 1m and the final value
of r = 2m. Table 2.2 gives the poles and zeros of the continuous-time _transfer

functions from the control torque to the two measurements. In the complex form




of poles and zeros, the frequency 1s given in rad/s; for the poles, the damping
ratio { and the frequency f in Hertz are given in parentheses. We shall empha-
size that the numbers in Table 2.2 were not present explicitly in the nonlinear
finite-element model that we used for all simulations. We computed these poles

and zeros after we linearized the simulation model.

As s common with flexible structures, we have a mimimum-phase transfer
function for the sensor colocated with the actuator (i.e., the hub-rotation sen-
sor). The transfer function for the noncolocated sensor, which measures the
elastic tip deflection,1s also minimum-phase after the double pole-zero can-
cellation. (The transfer function from the control torque to the absolute tip
displacement for r = lm has a real zero at +175, but our controller does not use

the absolute tip displacement.)

Another common feature in digital control of flexible structures 1s that,
whatever the samp'ing rate, there will be some modes with frequencies above the
Nyquist frequency. Thus we have selected the parameters in Table 2.1 so that,
for MPL 3 .IMZ and r = Im, the linearized plant has two frequencies above the
Nyquist frequency (50 Hz in our problem) and, for r s 2m, there is one plant
frequency above the Nyquist frequency. As {llustrated by the simulations
described in Section 5, the modes with the two nighest frequencies have suf-
ficient open-loop damping that they are important in the control probiem only
after being excited by the internal impulse at tz.

For any value of r, the continuous-time linearized system is controllable
because there are no open-loop mode shapes in which the hub rotation is zero and
there are no repeated open-loop eigenvalues besides zero, which corresponds to

the rigid-body mode. For any constant value of r at which no frequency is a
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multiple of 50 Hz, the discrete-time ... ~ ... sysztem (InClucing ths mezes with
frequency above 50 Hz) {s controllable in the sénse that the state vector can be
driven to zero in a finite number of steps. With the positive damping modeled
in the beam, even the nonlinear plant {s stabfilfzable for any constant value of
r. These conclusions are all easy to verify. We beljeve and all of our simula-
tions indicate that similar statements about controllability and stabilizability

hold for time-varying r, but we have not done the rigorous analysis.

While we have selected the parameters in the simulation model to produce
plant characteristics that are common in control problems for flexible
structures, this paper does not address the questions that arise wvhen a
sequence of finite element models with increasing dimensions is used for
control design and simulation. Using more elements in the simulation model in
this paper would add more high frequency modes above the Nyquist frequency,
and under some excitations these additional modes might require the order of
the controller to be larger than the maximum order used in the simulations
here. The question of what order the finite slement models used for
controller design and simulation must have so that the controller can be
guaranteed to work well for a distributed model of a flexible structure
requires approximation theory and convergence analysis beyond the scope of
this paper. Such issues have been addressed extensively for optimal control
of flexible structures (see [GAl, GA2] for example), and corresponding theory
for adaptive control of flexible structures is a focus of current research.
The purpose of this paper is to demonstrate the desiradbility of a controller
that can vary its order adaptively to account for modes that sometimes are

excited and sometimes not, and to damonstrate hov such a controller can be

constructed.
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TABLE 2.2

Continuous-Time Poles and Zeros for

MPL = 0.1 x Mz

re=1Im

Poles

o

0
'2.8 t 1
-137.5 ¢ ¢

74.7
506.1
960.4

Zeros
Channel 1

leros

(C,7)

(.037, 11.9Hz)
(.272, 80.5Hz)
(1.33, 152.9Hz)

Zeros
Channel 2

0

0 -
-173.5 £ 1563.0
-1135.4 = 1990.8

(C.7)

(.015,  4.3Hz)
(.078, 24.7Hz)
(.232, 70.2Hz)

Zeros
Channe) 2

0

0
-15.5 t 1176.2
-86.7 £ 1407.2
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3. PARAMETER IDENTIFICATION

For adaptive identification of the coefficient matrices A1(k) and 81(k) in
(2.10) and determination of the ARMA order N, we use the least squares lattice
algorithms in Tables 3.1 and 3.2. These algorithms are from [JG1], and similar

algorithms can be found in [LMF1, F1, HM1] and other references.

We will discuss the structure of the lattice filter only briefly to indi-
cate the most important points for the application here. For more detail see
[F1, HM1, J1, JG1, LS1]. The lattice structure is based on two sets of vectors
called forward and backward residual errors. The forward residual error vectors
are obtained from projection of the most recent regression vectors onto the span
of previous regre-zsfon vectors. (Regression vectors contain measurement
histories. In the lattice filter, both control system inputs and outputs must
be treated as measurements.) The order of the lattice is the order of the ARMA
model with which the lattice attempts to fit the data. The norm of the Nth-
order forward residual error §s the minimum value of the objective functional
to be minimized by a least-squares estimate of the parameters in an ARMA model
of order N. The backward errors are a set of Gram-Schmidt vectors that span the
same space as the regression vectors. At each step, the filter updates the
first element of each of the error vectors and the norms of the error vectors.

The Nth-order lattice generates the equivalent of the least-squares fit to data

for every ARMA order between 1 and N.

The main lattice algorithm, to be run at every time step, is listed in
Table 3.1. The 1x3 matrices eN(k) and rN(k) are the first components of the
forward and backward residual errors, respectively. See [JG1]. Also, R:(k).

R;(k). KN(k) are 3x3 matrices and GN(k) is a scalar. The forgetting factor A is

13




a positive real number less than or equal to 1, which (when A < 1) recuces expo-

nentially the effect of older data., For the simulations in Section 5, we used

A = 0990

The statement that the lattice is order recursive refers to the fact that
the maximum lattice (ARMA) order can be increased by 1 at each time step, up to
some 1imit determined by on-1ine computing capacity. In practice, N is
increased unti) either 4t reaches the upper 1imit or some criterion involving

the matrix Rﬁ(k) indicates that N need not be increased further.

The diagonal elements of the matrix R;(k) are the squares of the norms of
the forward residual errors, which are related closely to prediction error (see
[JG1]). These diagonal elements indicate the degree to which an Nth-order ARMA
model fits the data, and they can be used to determine the order of the plant.
In particular, the (1,1) element of Rﬁ(k) is a measure of the accuracy of the
channel of the ARMA model corresponding to the rigid-body angle of our manipula-
tor. We will use this number to determine the order of the ARMA model to be

used for adaptive control, as discussed in Section 4.5.

The ARMA coefficients are obtained from the algorithm in Table 3.2, where
AN,1(k)’ BN,1(k) and CN’1(k) are 3x3 matrices. For each N, the matrix AN'1(k)

has the form
(k) o |ty A0S (3.1)
AN.1 81(k) l x ¢

where A1(k) and 81(k) are the leasi-squares estimates at time k of the matrices

in (2.10).
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Initialize:
R(-1)=Rf~N=0l, Ky, (k)=0 for N+1>k20

where ¢ is a small number (¢.g., 0= 10'7)

For each k2> 0:
etk = rk)=[yT(k) uk)], Gk)=1
RE(k) = RYk)= eglk) etk) + LRk ~ 1)
Foreachk2 1, forN=0to k- I
Kna (k)= 2Ky (k= 1)+ epkIGR (k= 1y pik = 1)
ens1(K) = epk) = Ttk = DRY(k = KR, (K)
rae1(K) = raCk = 1) = en(R)RR (kMK pg 1 (K)
Ry (k)= REAK) = Ky (KIRR (k= DK, ()
Rivy () = Rk = 1) = Ky (RS (KM (K)
Gy 1(K) = Gkk) = rACKIRR (K (k)

Table 3.1 Residual Error Lattice Algorithm

ForN=1,k—-1andfori=1, N:
Crar fK) = Cy fk) = By JRORR (k¥ k)
By, wi(k)= [By;— Cy ARG R (K MK)) = A fRORY (KK vy r(K)
Aner fKy= Ay )= [Byy; = Cy JROGR KW MKIIRR (k= DK R1(k)
with
A i (K) = Ry (k= DK (K)
By (k) = Ry MK pey 1K)
Chria1, Na1(k) = RY/ (kI LK)

Table 3.2 Algorithm For AR Coeflicients




The adaptive controller in this paper is computationally efficient
because the bulk of the computation is in the lattice filter and lattice
filters are the fastest digital signal processing algorithms for recursive
least-squares estimation. The signal-flow structure of the lattice lends
itself particularly well to parallel architectures. These points are

discussed widely in the digital signal processing literature (e.g., [F1l, GS1,
HM1, IMF1, LS1}).
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4., ADAPTIVE CONTROL
4.1 Control Law

The adaptive control law is based on (2.10) with estimated coefficient
matrices Ai(k) and Bi(k). For defining and computing the control law, the ARMA
order N {s assumed to be fixed; changing N adaptively 1s discussed in Section

4.5.

We set

N N
e(k) = ; 31(k) y(k-1) - g B, (k) u(k-1) - ¥ y(k-1) + (1490, (K)  (4.1)

where Y is a real number with r.2agnitude less than 1 and yr(k) is a reference

signal to be discussed later. We choose u(k-1) to minimize
T 2
J(k) = e(k) Qe(k) + ngu (k-1) (4.2)

where Q is the nonnegative matrix
nl_O
o  § (4.3)
0 n,

and g is a nonegative real number. When (n0 + Bl(k)TQBI(k)) > 0, the unique
control u(k-1) that minimizes (4.2) is

u(k-1) =

N N
Bl(k)o!g A (k) y(k-1) - ; By(K) u(t=1) - ¥ y(k-1) + (14v)y ()}

- - (4.4)
ng + By (k)08 (k)
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The opjective J(k) 1s motivated by the fact that if e(k) = 0, then (4.1)

and (2.10) yield
y(k) + ¥ y(k-1) = (1+¥)y (k). (4.5)

Since in our problem y(k) and yr(k) are 2-vectors and u(k-1) 1s a scalar, 1t 1s
almost never possible to obtain e€(k) = 0. On the other hand, if n > 0 and n, =
No ® 0, the first element of e(k) will be zero, so that (4.5) will hold with

y(k) and yr(k) replaced by their respective first elements. (The first element

of B1 is nonzero in our problem.)

The adaptive control law in (4.4) 1s a variation on a family of model
reference schemes discussed in [GS1, Section 6.3]. For a plant that can be
represented exactly by (2.10) with fixed order N and constant coefficients, sta-
biifty results for the closed-loop system produced by the adaptive controller
here are similar tc stability results in [GS1, Chapters 5 and 6]. In par-
ticular, 1f the first element of B1 is nonzero, ny > 0 and n, =Ny = 0, then the
adaptive controller here reduces to a one-step-ahead model reference adaptive
controller for a SISO system. In that case, a sufficient condition for asymp-

totic stability 1s that all plant zeros 1ie inside the open unit disc.

While (2.10) with constant coefficients cannot represent the manipulator in
our problem exactly, we have considered 1inearized motion about the final
equilibrium position for asymptotic stability analysis. (In this case, the
flexible 1ink no longer slides, and the control torque is perturbed about the
appropriate static torque.) A root locus analysis in [K1] shows how the
(discret+-time) zeros of the open-loop ARMA model that relates torque pertur-
bations to perturbations in the rigid-body angle depend on the viscoelastic

damping 1n the flexible 1ink. All of these zeros 1ie on the unit circle when no
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damping is moueled in the open-loop man1pu1ator, and all of these zercs move
inside the unit circle when damping 1s modeled in the flexible link. This root
locus analysis s straight forward. The analogous distributions of continuous-

time zeros for flexible structures with colocated actuators and sensers 1s well

known.

For controlling the manipulator, we take n = 1000 and n, = 1. Hence the
control law in (4.4) almost amounts to SISO control of the rigid-body angle,
except near the final position, where the relatively small penalty on the
elastic tip deflection slightly improves settling. Also, we take Ny * leo'9 in
(4.2) and (4.4) so that the control law will be determined uniquely, and because
a root locus analysis in [K1] indicates that values of ny on the order of 10'9,
as opposed to Ny = 0, improve the asymptotic stability of the closed-loop system

without producing measurabie steady-state error.

During the first 10 steps when the manipulator starts to rotate (1.e.,
after the learning period), we set vy = 0 to get the manipulator moving rapidly.

Then we set v = 0.96 for the remainder of the motion so that the controller does

not try to eliminate the error between y(k) and yr(k) unrealistically fast.

4.2 Reference Signal

We are most interested in commanding the absolute position of the manipula-
tor tip, which 1ies on a circle of radius L + r. Since r(k)(k = 0,1,2, ...) 1s
already specified by Figure 2.2, we concern ourselves with the tip position

yt1p(k) measured as arc length along the circle of radius L + r(k). Since

Yerp(k) = B(K)(L4r(K)) + yp(k), W

we command yt1p(k)(whose desired profile 1s shown in Figures 5.1-5.6) indirectly
through the reference signal yr(k) for the output vector in (2.9).
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In er(t). the commanded rigid-body angle, we must account for the static
tip deflection due to gravity. We cannot determine this deflection off-line
without using the exact data for the flexible 1ink and the exact payload.
Therefore, to give the control system the capability to adapt to unknown 11nk
characteristics, different payloads and different desired final positions, we
use an estimate of the static tip deflection in the reference signal. We

construct this estimate, denoted by 92(k). with the low-pass filter
¥o(k+1) + 8y, (k) = (1+a)v(K),
v(k) = stgn(y,(k))-min {ly,(k)].8,}, (4.7)

which attenuates oscillations in yz(k). The constants in (4.7) are a = -0,986
and A.y = 0.1 m. During the large-angle motion, it is important only that §z(k)
be small; near the final position §2(k) should approximate closely the steady-

state tip deflection.

We denote the polar coordinates of the desired final tip position by (ef.

Lf) where Lf =L + Fe and Fe is the final value of r. The reference signal for

the output vector in (2.9) 1s

B, (k)
yr(k) - PY (4'3)
yz(k)
with
0_(k) = [8,L,(1-e7"9%K) - ¥ (k) 1/(Ler(K)). ' (4.9)
r 1 2

This definition of er(k) is motivated by and equivalent to
o,L,(1-0"295%) o B_(k)(L+r(K)) + ¥,(K) (4.10)
f r r AN : *

which 1s obtained from (4.6) by replacing yz(k) with the estimate §2(k) and
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-.05k

replacing ytip(k) by the desired tip position efo(l-e ).

We acknowledge that the reference signal here 1s unusual because it in-

cludes implicitly a sensor measurement. We see no way to avoid this feature if

the control system 1s to be truly adaptive.

4.3 Learning Period

To allow the lattice filter to obtain initial parameter estimates before
the manfipulator starts to move significantly, we use an 1nftfal learning period

of 0.2 sec, or 20 samples. During this period, the control torque is

'oOOlk

Because of the frequency of this input, the manipulator does not move signifi-
cantly from i1ts initial position at 6 = 0. We do not attempt to identify the
plant order or parameters precisely during this learning period because the ARMA
model will begin to change as the flexible 1ink begins to siide and nonlinear
terms involving the angular velocity build up during the fast rigid-body rota-
tion. Since the flexible modes are not excited significantly when the manipula-
tor starts to rotate at .2 sec, we use the ARMA order 2 during and immediately
after the learning period. Therefore, we need only a simple input for a short
learning period to obtain parameter estimates sufficient for beginning the

rigid-body motion.
4.4 Bound on Control Nagnitude

In the simulations in Section 5, we impose the bound Unax ® leo‘ Nm on the
magnitude of the control torque to demonstrate that the algorithm 1s robust with

respect to actuator saturation. This means that 1f the magnitude of the control
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, then u

torque in (4.4) exceeds u x times the sign of the expression on the

max ma
right side of (4.4) 1s used for u(k-1).

4 Nm is approximately the torque required to produce

The torque 1imit 5x10
the angular acceleration associated with the reference signal in the simula-
tions. It is not clear whether such a torque 1imit is realistic for robot
actuators; however, our objective in the simulations 1s to demonstrate an adap-
tive control algorithm that can control fast slewing in the presence of elastic
vibrations and a variable-order plant. If lower torque 1imits on available
actuators dictate slower angular accelerations, the adaptive control problem
should be less challenging because the slower rigid-body motion will excite the

elastic modes less than in our simulations.
4.5 Changing the Order of the ARMA Nodel

As we said in Section 3, the size of the diagonal elements of R;(k)(which
must be nonnegative) indicates how well an ARMA model of order N fits the input-
output data taken through time k. 1In [JG1], data from a simulated flexible
structure was$ used to demonstate how Ra(k) indicates the number of excited modes
when small measurement noise 1S present, The idea is to increase N and look for
large drops in the diagonal elements of R:(k). It might appear then that Rﬁ(k)
should be examined to determine the plant order detected by the lattice filter,
and that that ARMA order should be used for adaptive control. However, order
determination for adaptive control 1s not so simple, for two reasons. First, an
ARMA model with constant coefficients cannot fit exactly the nonlinear, time-
varying manipulator to be controlled here (even without measurement noise), so
that we should not expect the kind of sharp drop in R:(k) at the correct order
that was seen in [JG1]. Second, as demonstrated in [JG2] with data from an

experimental flexible structure, the lattice filter can detect very marginally
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excited flexible modes, which usually do not need to be controlled actively.

Our simulations have indicated repeatedly that using an ARMA order that
corresponds to the total number of modes in the plant leads to poor fden-
tification and control 1f some of the modes are only marginally excited. While
marginally excited modes were identified in [JG1, JG2], much longer data records
were required than an adaptive controller has time to process before the contro)l

law must be computed and executed.

Our criterion for choosing the ARMA (lattice) order adaptively after the
learning period combines information in R;(k) with a measure of the control
system performance to obtain an indication of the order of the ARMA model needed
for effective control. The (1,1) element of R:(k). denoted by R:(k.l.l). is the
term in Rﬁ(k) most closely related to the accuracy of one-step-ahead prediction
for the rigid-body measurement in our problem (again, see [JG1]), and most per-
tinent for our controller because of the relative weighting in the matrix Q. At

each sampling time, the following test indicates whether to change N:

e(k) = - ¢ ; (4.12)
[8 + J):o y(3) - v, (1)12]
R:(k.l.l) Ce(k) -8, =>NaN-1,
(4.13)

R:(k.l,l) >e(k) + 4, => N=N+1,

We have chosen the constants ¢ = 50.0, Ao - 1.0x10'5. and Al = 0.005
empirically.

This order-change criterion is admittedly ad hoc, and further research

might produce a more sophisticated criterion. However, the test here has two
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features that we believe wiil be important in any criterion for changing the
order of an adaptive controller: 1) the model-fit-to-data error can remain large
if the control system achieves the desired response; 2) the dead band repre-
sented by A1 reduces chattering of the ARMA order significantly (although the
simulations in Section 5 show that order chattering has not been eliminated
entirely). Because magnitudes of desired and true responses and number of
sampling points for a typical motion vary with the application, we suspect that
any criterion with features 1) and 2) will have constants that must be adjusted

empirically for each application.

5. SIMULATION

In the simulations, the nonlinear equations of motion (2.1) were solved
numerically with the control torque generated by the adaptive control law in
(4.4) and the reference sfgnal gfven in Section 4.2. (See [K1] for details of
the numerical integration). The parameters in the ARMA model (2.10) were esti-
mated with the lattice algorithms in Tables 3.1 and 3.2, and the order of the
adaptive controller (i.e., the order of the ARMA model upon which the control
law {s based) was determined adaptively by the criterion in Section 4.5. Also,

the learning period and control torque bounds 1n Sections 4.3 and 4.4 were used.

Representative examples of the numerous simulations in [K1] are presented
in Figures 5.1-5.6. For these figures, the initial position 1s the vertical
position corresponding to © = 0 1n Figure 2.1. In the final position,
f1lustrated by the all-dotted position in Figure 2.1, the polar coordinates of
the manipulator tip are e, s 2 rad and Lf e 5m (recall Section 4.2). 1In the
figures, TIP POSITION {s the Yeip tn (4.6) and DESIRED TIP POSITION at time k 1s
8oL, (1-e7°0%)(recall (4.9) and (4.10)). TIP POSITION 1s in meters, and TIME 1s
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in seconds. CONTROL TORQUE in the figures is the control u divided by the bound

Ymax*

For all six figures here, the same adaptive controller was used (fi.e., all
the same constants in the equations in Section 4), except that in Figures 5.2
and 5.4, the order N of the adaptive controller was fixed at 2. For Figures
5.1, 5.3, 5.5, and 5.6, the maximum allowable order of N was 8. To emphasize
the role that the lattice filter plays 1n adjusting the order of the controller,
the order of the controller is labeled LATTICE ORDER in the figures.

The gravitational moment on the manipulator was included in the simulation
model for Figures 5.1-5.4, but no gravity was modeled for Figures 5.5 and 5.6.
In other words, the manipulator moved in a vertical plane for Figures 5.1-5.4
and in a horizontal plane for Figures 5.5 and 5.6. Thus a steady-state control
torque equal to approximately 1% of the maximum control torque 1s required in
Figures 5.1-5.4 to offset the torque due to gravity. The steady-state control

torque in Figures 5.5 and 5.6 1s zero.

Figures 5.1 and 5.2 compare the variable-order adaptive controller with an
adaptive controller of fixed order 2 for a payload MPL equal to 10% of the mass
of the flexible link. Until the effective lateral impulse at 0.8 sec produced
by the sudden halt of the radial motion, the second-order adaptive controller is
sufficient. The impulse greatly excites transient elastic vibration in the
manipulator and the lattice (ARMA) order in Figure 5.1 1s adjusted automatically
(1n six steps) to the maximum order N = 8. When most of the vibration is taken

out of the system, the lattice order 1s decreased back to 2.

It 1s not surprising that a second-order controller produces poor transient

response in the presence of significant vibrations of the flexible 1ink. A more
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“
interesting question {s whether we should not Just fix the order of the

controller at 8 throughout the motion. We have simulated the response for
fixed-order controllers with N = 8 and other orders between 2 and 8, and the
simulations almost always show a response that becomes unstable before .8 sec,
when the higher order is needed in the controller. It appears that when the
order of the ARMA model {is higher than that needed to fit the input/output data
for the plant, the estimates of the redundant parameters are so poor that the

adaptive prediction upon which the control law is based 1s very poor.

Figures 5.3 and 5.4 compare the varfable and fixed-order adaptive
controllers for a payload equal to 50% of the mass of the flexible 1ink. While

the superiority of the variable-order controller s still clear from Figures 5.3
and 5.4, these and other simulations in [K1] show that the difference between
the performance produced by the variable-order controller and that produced by
the fixed-order controller decreases with increasing payload. With a payload
equal to 70% of the mass of the flexible 1ink, both the variable and the fixed-
order controllers produce & response very similar to that in Figure 5.3 (when

the gravitational moment is present).

We are not certain why the change in controller order is less important for
heavier payloads. The need to increase the controller order 1s greatest when
the internal impulse at 0.8 sec has its greatest effect on the transverse vibra-
tions of the flexible 1ink, and the magnitude of this impulse is proportional
to the magnitude of the elastic deformation at the time of the impulse. More
extensive data in [K1] indicates that, for the commanded motion in the simula-
tions here, the elastic deformation with the larger payloads is small at 0.8
sec. For heavier payloads, when we time the internal impuise to coincide with

larger elastic deformation, the improvement made by the variable-order control-
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ler over the fixed-order controller becomes larger; however, in most simulations

the difference between variable-order and fixed-order controllers is sti11

greater for lighter payloads.

The control constants Ngs Ny» Moy etc. in the adaptive control law were
selected empirically to produce good response for a wide range of payloads when
the manipulator moves in a vertical plane under the influence of g-avity.
Figures 5.5 and 5.6 demonstrate that the varjable-order adaptive controller is
sufficiently robust to continue to stabtilize the manipulator about the desired
final position when the gravitational torque is removed from the simulation
model, although the response does degrade. The control constants can be
adjusted to optimize the response in the horizontal plane, but using the same

controller for all of the Figures here better demonstrates the adaptive capabi-

11ty of the controller.

Figures 5.1 and 5.5 show some chatter in the lattice order. The criterion
in Section 4.5 for order-determination has eliminated most such chatter. A
better criterion might eliminate the chatter entirely. We have no simulations
with the ordér determination criterion here in which this chatter appears to

degrade the response of the manipulator.

6. CONCLUSIONS

The motion of the manipulator, in both the horizontal and vertical planes,
can be controlled adaptively for a wide range of payloads. Because of the
internal impulse associated with the sudden halt in sliding of the flexible
1ink, the capability of the controller to vary its order adaptively is very

important. The lattice filter used for the on-1ine parameter estimation pro-

26




vides the variable-order capability, which the standard least-squares algorithm
and other parameter estimation schemes commonly used in adaptive control do not
provide. Also, since a lattice of order N generates parameter estimates for
ARMA models of all orders between 1 and N, the additional computation required
for the controller capable of varying its order between 1 and N, as opposed to a
controller of fixed order N, is only the minor computation required for the

order determination criterion in Section 4.5.
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A LYAPUNOV ROBUSTNESS BOUND FOR LINEAR SYSTEMS
WITH PERIODIC UNCERTAINTIES

U.L. Chen and J.S. Gibson
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ABSTRACT

For linear systems involving uncertzin parameters with known,
constant nominal values and uncertain perturbations that vary
sinusoidally with time, Lyapunov robustness analysis i{s used to determine
a stability bound, or margin, for the amplitudes of the parameter '
perturbations. This bound is the size of a hypercube in parameter space
for which asymptotic stability is guaranteed. The bound, which is based
on a quadratic Lyapunov function that depends linearly on parameter
perturbations, varies with the frequency of the uncertain parameter
perturbations. The bound is asymptotically proportional to the square
root of this frequency as it becomes large.
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1. Introduction

Numerous recent papers [Bl-KBHl1, PT1-ZK2] have used quadratic Lyapunov
functions to develop robustness bounds for linear systems with uncertain
parameters. Some papers {(HB2, PT1l, Y1-ZK1) have dealt with robustness
anal}sis only, while some [Bl, HB1l, KBH1, P1, PHl, ZK2]) have used Lyapunov-
based robustness analysis as a basis for design of robust controllers. A
common feature of the references just cited and most related work is that a
single Lyapunov function is used for the entire set of parameters for which
stability is guaranteed. Because of this, the Lyapunov robustness analysis
applies to time-varying uncertain parameters (although the nominal plant must
be constant). However, the robustness bounds, or margins, produced by such
analysis involve only the magnitude of parameter variations; the analysis
cannot detect how the allowable magnitude of uncertain time-varying parameters
depends on their frequency.

In [L1, LGl], a quadratic Lyapunov function was developed that varies
linearly with uncertain plant parameters. Because of the linear dependence on
parameters, the method in (L1, LGl] is called a first-order method. For all
but one example to date, this first-order method has yielded larger robustness
bounds than the sharpest possible method based on parameter-independent
Lyapunov functions (see [L1l, LGl]). The first-order method in [L1l, LGC1l] does
not apply to problems with time-varying uncertainties, though.

This paper extends the approach in (L1, LGl] to linear systems in which
the nominal system is time-invariant but the perturbations in uncertain
coefficients vary sinusoidally with time. As in [L1l, 1Gl), the Lyapunov
function here varies linearly with uncertain parameters. The first-order tera
in the Lyapunov matrix satisfies a differential equation in which the forcing

term contains the sinusoidal perturbations from the nominal plant. As a
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result, the Lyapunov function and the resulting robustness margin depend on
the frequency of the parameter perturbations. In general, the robustness
margin is proportional to the square root of the frequency of the

. perturbations at large frequencies.

2. Preliminaries

We consider the system

(2.1) x(t) = A(t) x(t)
where x(t) is a real n-vector and the n x n matrix A(t) has the form
(2.2) A(t) = A(t,p) = Ag + G(p) sinwt

where the real matrix G(p) is a linear function of the constant parameter
vector p = [p} Py .- pm]T ¢ R® and the real matrix Ag is constant and

independent of p.

initio . A reial n x n matrix function P(t) is a Lyapunov matrix for
A(t) 1if i) P(t) is periodic with period 2x/w; ii1) P(t) is symmetric and
positive definite for each t, its maximum eigenvalue is bounded uniformly in t
and its minimum eigenvalue is bounded away from O uniformly in t; iii) P(t) is

piecewise continuously differentiable and the real symmetric matrix
(2.3) Q) = -[B(c) + A()T P(t) + P(r) A(E))
is nonnegative. Furthermore, P(t) is a strict Lyapunov matrix for A(t) if

Q(t) is positive definite with its minimum eigenvalue bounded awvay from O

uniformly in t.




Theorem 2.2. (Standard Result) The system (2.1) is uniformly exponentially

stable if and only if there exists a strict Lyapunov matrix for A(t).

We assume that the eigenvalues of Ay all have negative real parts, so
that for each positive definite symmetric real n x n matrix Qg there exists a

unique positive definite symmetric real n x n matrix P, satisfying
(2.4) AJ Py + By Ag = -Q,.

We will factor Qg uniquely as
(2.5) Q = Lt

where L is a real n x n lower triangular matrix with positive diagonal

elements.

3. The First-order Method

We define

3.1 P(t,p) = Py + Py(t,p)

where, for each value of the parameter vector p, Py(t,p) is the unique

periodic solution to

(3.2)  Py(c,p) + Ag Py(t,p) + Py(E,p) Ag = -[GT(P) Py + Py G(p)] simwt.
That (3.2) has exactly one periodic solution follows from the fact that the
eigenvalues of Ag all have negative real parts. The matrix Pl(t.p) is a

linear function of the parameter vector p, since G(p) is. Furthermore,

Pl(t.p) has the form

(3.3) P,(c,p) = P‘(p) coswt + P\ (p) simnut




where the real symmetric nxn matrices P, (p) and P, (p) are the unique nxn

matrices that solve the equations

(3.4), -0, () + AQPy(P) + Py(P)Ag = -[GT(p) Py + Py G(p))

(3.5) WPy(p) + AGPA(R) + Po(p)Ag = O.

To motivate our terminology, we note that, if the solution P(t,p) to (2.3) for

fixed Q = Q; 1s expanded as a Taylor series in p, the zero-order term is P,

and the first-order term is Pl(t.p).

Next, we define some quantities that will be useful in determining

whether P(t,p) is a Lyapunov matrix for A(t,p). Firse,
(3.6) w(e,p) = L1(6T(p) Py(t,p) + Py(r,p) G(p)} LT sinwe
where L is the matrix in (2.5). For a matrix M:

3.7) amax(ﬂ) = maximum singular value of M;

(3.8) A M) = max ({A): A is an eigenvalue of M) (for square M).

max (

Since PO is a strict Lyapunov matrix for Ag, the following two
conditions, together, are sufficient for P(t,p) to be a strict Lyapunov matrix
for A(t,p) for a given p:

Condition 3.1. A.‘X(Po'lrl(t.p)) is bounded strictly below 1 uniformly in t.

Condicion 3.2, a.‘x(w(t.p)) is bounded strictly below 1 uniformly in t.

Definition 3.3.(Hypercube in R®). For s > O,
C(s) =(p=1(pPp Py --- p,.IT: n:x lpgl < 8).

We note that C(s) is the convex hull of its 2% vertices.




e tion 3.,4. If f 1Is a real-valued function defined on C(l), then

pl(f) = max (f(p): p is a vertex of C(1l)}.

Lempa 3.5. Llet (£, £, ... {i) be a finite collection of points in a linear
space’, let S be the convex hull of (€1, 62. .o« €, and let £ be a convex

function defined on S. Then max (f(£): £eS} = f(fj) for some j.
The proof of this lemma is elementary. See [L1].

Ve recall that oy, (<) is a norm for any space of finite dimensional
matrices. Hence op . (+) is a convex function on any such space. Also, for a
(MNMT) is a convex function on the space of

fixed matrix M, A (HTMN) - g

max max

symmetric matrices N of a given dimension. We will use these facts, along

with Lemma 3.5, to estimate the largest hypercube C(s) such that, for each p

in the interior of C(s), P(t,p) is a strict Lyapunov matrix for A(t.p).
Since P (p) and P, (p) are linear in p and since a convex function of a

linear function is convex, Lemma 3.5 yields

(3.9) Agax (PO Pa(sP)) = S (BoTRL(PY) € 5 wy(Ag. (o Re)).

p ¢ C(1) and s > O,

and similarly for ?b(p). Then, since a sum of convex functions is convex and

since the square of a nonnegative convex function is convex,

(3.10) Agax (B0 P1(t.$P)) < 5 00nay(Qy). P ¢ C(1), s, €20,
wvhere
(3.11)  oppax (@) = #1CUAgax(Po Pa)? + Agax (Po ) 21/2).

We factor G(p) as

(3.12) G(p) = Gocl(P)




where Go i{s independent of p and Gl(p) is linear in p. Since [L'lPa(p)Go] and
[Gl(p)L'T] are linear functions of p, amax(L'IPa(p) Gp) and amax(cl(p)L-T) are
convex functions of p, and similarly for P (p). Therefore, Lemma 3.5 and
eleméﬁtary properties of o .. () yield
(3.13) Omax(W(E,P)) € 2 57 (0pay (L7 1Py (£,p)Gosmot)) + by (00, (G117 D),

p ¢ C(1).

(Recall y1(~) from Definition 3.4.). From

(3.14) 2 (Pa(p) coswt + Pp(p) sinwt) sinwt =
Pp(p) + P (p) sin2wt - Pp(p) coslwt,

it follows that

(3.15) 2 o, (L71P) (£,p)Cgsinwt) < o, (L72Ry (p)Gy)

+ [ogay (L IR, (p)Ge)2 + o, (L1, (p)Gg) 21 Y/2.

Hence (3.13), (3.15) and Lemma 3.5 yield

(3.16) Opax (W(E,5p)) < 82 03022 (Q)) 090a0(Qp), P € C(1), s, 20,
where
(3.17) %1max(QW) = ”l(amax(L.IPch))

+ by ([ogay (L 1P,60)2 + o, (L71B 6022112

and
(3.18) 920ax(Q) = #1(Fpex (G1L7T)).
Now we define
(3.19) $1(Qp) = 1/8ax(000,,(Q0) + (910ax(Q) * T2max(Q)) /2.

For p in the interior of c('l(QO))' it follows from (3.10)-(3.11) that

Condition 3.1 holds and it follows from (3.16)-(3.18) that Condition (3.2)




holds. Therefore, we have the following theorem, which is the main result of

the paper.

Theorem 3.6. For each p in the interior of C(s1(Qp)), P(t,p) is a strict

Lyapunov matrix for A(t,p).

From (3.3)-(3.5), it follows that P;(t,p) is proportional to l/w for
large w. From (3.11) and (3.17) then, it follows that %0max(Q) 8nd 91,.,(Q)
are asymptotically proportional to l/w. Since 92max{Q) is independent of o,
(91max(Q0) °2max(Q0))1/2 dominates ”Omax(QO) for large w, so that 51(Qq) is
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proportional to w for large w.

4. Numerical Solution of the Lyanpunov Equations

Eliminating Pb(p) from (3.4) and (3.5) yields
(4.1) w2 P (p) + AG R,(P) + P (PIAS + 2A0P, (P)Ag =
' w [6T(p) Pg + Py G(P)].

The Bartels-Stewart algorithm [BS1] for solving standard Lyapunov algebraic
equations can be generalized in the following way to solve (4.1) for P (p).
let U be a real unitary matrix such that UTAOU - Ag where A, has quasi Schur
form. Then premultiplying (4.1) by UT, postmultiplying by U and inserting vul
where needed yields

T2

(4.2) ? By(p) + ALZB(p) + B (PIAZ + 2A0F,(p)A, =
w UT[6T(p) By + Py G(p)JU

where §‘(p) - UTP.(p)U. The various 1xl, 1x2, 2x1 and 2x2 blocks of (4.2) can

be solved recursively as in [BS1].




5. Example

The matrices Ag and G(p) in (2.2) are the following 4x4 matrices:

(5.1) Ag =1 0 1| G(p) =10 0|
g |-Kg ~-D | [-Ky 0|
where
(5.2) Ko = |1 O] D = .05 K, Ky = [pp Pal.
10 4] Ip2 P3l

Figure 1 shows s;(1) as a function of w for G(p) factored as in (3.12) with

(5.3) Gy = 10] (4x2), G1(p) = I-Ky O] (2x4),
By

and for G(p) not factored (i.e., GO = I and Gl(p) = G(p)). That sl(I) is
asymptotically proportional to w1/2' as predicted in Section 3, is clear from
Figure 1.

Perhaps more interesting are the local minima at w = 1, 2, 3 and 4. Ve
recall a classical result for the undamped Mathieu equation (see [NM1l] or
other standard references): a parametric excitation of frequency twice that of
the nominal system makes the solution to the equation unstable. Thus the
local minima at w = 2 and w = 4 (twice the natural frequencies of the nominal
system) might be expected. Furthermore, results in [NMl, Chapter 5] for a
multi-degree-of-freedom Mathieu equation indicate additional instabilities
produced by parametric excitation frequencies equal to sums and/or differences
of natural frequencies of the nominal system. {(For the one-degree-of-freedon
damped Mathieu equation obtained by taking Ay and G(p) to be 2x2 matrices of
the forms in (5.1) and (5.2) with Kg = 1 and Ki = p., ve have obtained an

$1(I) plot similar to Figure 1 but with only the local aminimum at w = 2.)
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Figure 5.1. Controller Order Variable
Payload Mass = 0.1 x Flexible Link Mass
Gravity Included
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Figure 5.2. Controller Order Fixed, N = 2
Payload Mass = 0.1 x Flexible Link Mass

Grayvity Included
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Figure 5.3. Controller Order Variable
Payload Mass = 0.5 x Flexible Link Mass

Gravity Included
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Figure 5.4. Controller Order Fixed, N=2

Payload Mass = 0.5 x Flexible Link Mass
Gravity Included
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Figure 5.5. Controlier Order Variable

Payload Mass = 0.1 x Flexible Link Mass
Gravity Not Included
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Payload Mass = 0.7 x Flexible Link Mass

Gravity Not Included




