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ABSTRACT

The stability of a boundary layer on a heated flat plate is investigated in the linear
regime. The flow is shown to be unstable to longitudinal vortex structures which in general
develop in a nonparallel manner in the streamwise direction. Solutions of the nonparallel
equations are obtained numerically at O(1) values of the appropriate stability parameter,
ie the Grashof number. The particular cases investigated relate to the situations when the
instability is induced by localized or distributed wall roughness or nonuniform wall heating.
The case when the vortices are induced by freestream disturbances is also considered. The
fastest growing mode is found to be governed by a quasi-parallel theory at high wavenumbers.
The wavenumber and growth rate of the fastest growing mode are found in closed form. At
low wavenumbers the vortex instability is shown to be closely related to Tollmein-Schlichting

waves, the effect of wall heating or cooling on the latter type of instability is discussed.
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tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in
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1 Introduction

Our concern is with the instability of forced convection boundary layers over hori-
zontal heated flat plates. Such flows are unstable to at least two types of hydrodynamic
instabilities; firstly we expect a convective Rayleigh-Benard type of instability because
the fluid at the plate is hotter than the fluid in the freestream. Secondly we expect a
Tollmien-Schlichting type of instability because of the similarity of the flow to isothermal
boundary layers where that type of disturbance is known to be important. In this paper
we shall be primarily be concerned with the vortex mode of instability which we inves-
tigate in a self-consistent manner using au approach suggested by related work on the
closely connected Gortler vortex problem, see for example Hall (1990) and Denier, Hall
and Seddougui (1991). However in the small wavenumber limit of the vortex mode we
find an unexpected relationship between the vortex mode and Tollmien-Schlichting waves;
in effect we find that in this limit the two modes coalesce. We are thus able to describe
both propagating vortex modes and determine the effect of wall heating on the growth of
longitudinal vortex structures in boundary layers.

Interest in forced convection boundary layers is generated by the wide range of prac-
tical problem where such flows occur; in particular we refer to the heat transfer problems
associated with solar heating, clectronic devices and nuclear reactors. In such situations
it is important to know the paramecter regime where instability begins because of the
associated change in heat transfer properties of the flow.

Experimental investigations of the vortex mode of instability in a forced convection

boundary layer have been carried out by Gilpin, Imura and Cheng (1978) for water, and




by Wang (1982) for air. Here we shall concentrate on boundary layers in air and attempt
to explain some of the results found by Wang. In fact both authors demonstrated the
existence of the onsct of a vortex mode of instability and suggested that this onset occurs
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at the same value of G, R, when the local Grashof nuinber, G, and Reynolds number
R, are varied. We also note that a related instability occurs in channel flows when one
wall 1s heated, the rcader is referred to the paper by Akiyama, Hwang, and Cheng (1971)
for an experimental investigation of that problem.

Theoretical investigations of the vortex mode of instability have been given by Wu
and Cheng (1976) and Moutsoglou, Chen and Cheng (1984). In both of these calculations,
and all other investigations we are awarc of, the growth of the boundary layer is not taken
into account in a self-consistent manner. In effect it has been previously assumed that
the streamwise variation of the vortex mode is on a short lengthscale compared to that
over which the basic flow evolves. However, at finite values of the Grashof number, where
instability first sets in, the destabilizing buoyancy forces are sufficient only to provoke a
response on the same streamwise lengthscale as that over which the basic state develops. In
that case it follows that previous calculations have ignored a crucial property of the vortex
instability; thus the intrinsic nonparallel nature of the disturbance has been neglected.

A similar parallel flow assumption was made for inany years by researchers concerned
with the Gortler mechanism in curved houndary layers. More recently Hall (1983) showed
that the nonparallel nature of the vortex mode at finite values of the Gortler number

must be accounted for by numerical investigations of the disturbance cquations. At high

Gortler nunbers analytical progress can be made because the growth rates become large

(S




and nonparallel effects may be neglected at zeroth order; sce Hall(1982a,1982b), Denier
Hall and Seddougui (1991).

In this paper we shall concentrate on the vortex mode at finite values of the appropriate
stability parameter, ie the Grashof number. A question of fundamental importance in
this, and in fact any other parameter regime, is that of what is the physical process which
triggers disturbances in the flow and causes them to amplify. This, the so-called receptivity
problem, has been addressed for the Gortler problem by Hall (1990), and Denier, Hall and
Seddougui (1991). In particular the receptivity problems for wall roughness and freestream
disturbances were investigated in those papers. The corresponding receptivity problems
will be investigated here for heated boundary layers.

Thus, following a formulation of the instability equations in Section 2, we shall in
Section 3 investigate the stability problem at finite Grashof numbers using a numerical
scheme outlined in Section 3. In Section 4 we concentrate on the amplification of vortex
disturbances induced by localized wall rougliness or nonuniforin wall heating. In Section
5 we will investigate the generation of vortex disturbances by freestream inhomogeneities,
whilst in Section 6 some results for distributed forcing are given.

In Section 7 we concentrate on the high Grashof number limit, this regime is relevant
to disturbances which have passed through the order one Grashof number regime without
sufficient amplification to be controlled by nonlincar effects. At order one wavenumbers
we show that the now unique growth rate is determined by an inviscid eigenvalue problem.
However the growth rate predicted by the inviscid theory increases monotonically with the

wavenumber so that the fastest growing mode cannot be described by a purely inviseid




theory. In fact at sufficiently high wavenumbers viscous effects come back into play and
the fastest growing mode is determined by a viscous eigenvalue problem. At small vortex
wavenumbers viscous effects again dominate and we show that the vortex mode ultimately
takes on a triple-deck like structure. This structure 1s shown to describe both vortex and
Tollmien-Schlichting modes. Finally in Section 8 we compare our results with previous

experimental and theoretical work and draw some conclusions.
2 Formulation of the Instability Equations

We consider the flow of a viscous fluid over a heated semi-infinite flat plate. Suppose
that Uy 1s a typical freestream velocity, L is a typical lengthscale in the streamwise
direction and v is the kinematic viscosity. The Reynolds number is defined by Re = Q?L
and throughtout we assume that Ite >> 1. The wall is defined with respect to dimensional

Cartesian coordinates z*,y*, z* by
-1l 1
y* = LARc™2f(a*/L,Rezz* L)

where A is a small dimensionless constant. We take the temperature of the fluid a long

way from the plate to be zero whilst at the plate the temperature is given by
T* = To(1 + Ag(a* /L, Retz*/L)).

Here Ty is a constant reference temperature and ¢ represents the effect of a shight nonuni-

form heating of the plate.

We define (&, y,z) by

(¢,y.2) = (¢*/L.Re3y* /L. Re¥z* /L)
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and a dimensionless velocity vector by writing

* Lox L
+ +)_(u.,Re?L, ,Rezw)

(ut, vt wh) =" i . (2.1a)
We take the corresponding pressure function to be
+ 5, T (. 2 N & 2
pT =pla)+ ARe™2p(a,y,2) + O(A®) = ——, (2.1b)
Us.p
where p is the fluid density and p* is the dimensional fluid pressure. We now write
(ut, et w™) = (%,7.0) + A(d, 5.0) + O(A?), (2.1¢)
and the temperature field then expands as
T + -37 -3 2
—T—zT = Re 2T(z,y) + ARe™20(z,y,z) + O(A?) . (2.1d)
0

In the forced problem for the order A field the basic velocity and temperature fields u, v, T
will be known functions of z and y. The perturbed velocity and temperature fields @, o, w, 6
depend on all three dimensionless coordinates. The steady Navier Stokes equations for the

problem involving buoyancy forces are

_19p*

uruz.e + v ug. twtul. = P F U(Uge o+ Uyeye + UZe 0 ), (2.2a)
T por*

1 01)‘ : - - - - 9
u*vy. +vivg. +wtvl = -—;01/' + gBT" + v(vgepe + Ve ye + 050 .0), (2.2b),

190p”

utwie + 0 wy. +wtwl. = _—0[)" (W e + Wye e +W3a0), (2.2¢)
e :

where § is the acccleration due to gravity and A is the cocfficient of expansion. The energy

equation takes the form

I
n"T;. + U"Tu*. + w'T:. C\_ (T:.‘. . TJ. y* + T:. s* ), (22({)
3 pC, !
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where K is the thermal conductivity and C}, is the constant specific heat. It is to be noted
that, since we are considering a low speed subsonic flow, the term representing the net rate
at which shearing forces perform work on the fluid is negligible.

We now write (2.2a-d) in dimensionless form and consider the limiting form of these
equations when A is small and the Reynolds number is large.

At leading order order we obtain

ur + vy =0, (2.3a)
Wiy + Uity = —pyp + Uyy, (2.3))

for the basic velocity and temperature ficlds where o is the Prandt]l number. At next order

we obtain

Uy + 0y +w, =0, (2.4a)
Uity + Wity + Uity + DUy = Uy + U::, (2.4b)
Uby + UD, + DD, + 0V, = ~py + Oyy + 0:z + GO, (2.4¢)
Wiy + 0y = —pP; + Wyy + Wiz, (2.4d)

s A e 1 - 5
uf, + 08, +aT, + 0T, = ;(Hyy +6..), (2.4¢)

where G is the Grashof number defined by

=3
]

G = L*iTy3R.2 v 2.




The basic flow is taken to be the Blasius velocity profile

a=f), b= —

V2z
where " + ff' =0 with f(0)= f(0)=0,

(nf' = f),

fl(e0) =1.

Here the similarity variable n is defined by

n = Y
= \/(Q.E).

The basic pressure p is then zero and the basic temperature profile is then a function of

just n. The boundary conditions on the order A field are obtained by setting up Taylor

series expansions about y = 0; we obtain

i=—fi,,t=w=0 0=g~fT,, y=0,)
) (2.5a)
w,o,w,3 =0, y— o0 J
t=0=0 T=1, y=0 )
). (2.5b)
@—1, T—0, y—oo J
We assume that f,g are such that we can write fu, = —Fl(:r)(](z), g— fT, =

F2(2)Q(2) in (2.5) which enables us to Fourier transform the disturbance equations in the
z variable. Thus if we Fourier transform the equations (2.4),(2.5) with a as the transform

variable, and denote the transform of ¢, . ete by ¢,w cte. we obtain

uy kv, + aw = 0. (2.6a)

Uy + DUy + VUy + Wb, = Uy, — a’u, (2.6b)
wvy + vy, + v, + uv, = —p, + vy, — a’v + GE, (2.6¢)
wwy + 0wy, = —p; + Wyy + W:s, (2.6d)

1 . ,
uT, + ub, + T, + v, = ;(()yy - a’9), (2.6¢)




u=qF, v=0, w=0,0=0QF, y=0, u, v, w, 8§ >0asy— oo. (2.6f)

We now eliminate the pressure p and the spanwise velocity component w from the

above equations to give

2

(Tryy + a* + a®0y)v + Oy + (rry + @0 )0+ (ityy — 228—2- + a*a)v,
Yy
7 . . 9.2
+ 2ty + “I‘O‘IJ)UI + Uyyyy = Clyyy — (g 207 Juyy,
+ (tigy + a*t)v, — *GE = 0. (2.7)

Hence, given the basic velocity and temperature profiles, then by solving the system of
equations (2.60), (2.6¢), (2.7) subject to the boundary conditions (2.6 f) we can determine
the solution of the forced convection problem by numerical integration for finite values of
the Grashof number. In the following section we shall describe a numerical scheme which

we have used to integrate the disturbance equations found above.

3 The numerical scheme and some preliminary results

The disturbance equations (2.6Dh), (2.6e), (2.7) are parabolic in z and hence, having
imposed an initial disturbance on the flow, we can march the equations downstream from
the position where the forcing begins and monitor the vortex growth or decay. The par-
tial differential cquations describing the perturbed velocity and temperature fields were
integrated using a spectral collocation method with Chebychev polynomials used to ap-
proximate the normal dependence of the disturbance. The Chebychev polynomials are

defined on a€[—1,1] by

Ti(a) = cos(kcos™ o) for k =0,1,2...

[0 4]




and we approximate the strecamwise velocity component u, for example, using an nth degree

Chebychev polynomial

e,

u(a) =
k=0

and B are the unknown Chebychev coctlicients of the expansion. The change of variable

(z,y) to (z,n) where = is made in the disturbance cquations which are then solved

7)
Var

on 1¢€[0, 00]- The n 4 1 collocation points were chosen to be

) — 1)7 ,
a; = CoS u , 1 <:1<n+1.
n

. ; 7
We denote the value of u at nn = 7;, «; = & + jé by u] where ; = %(ai + 1),

3t

is the position at which the initial disturbance is imposed, j is an integer value and €
is the steplength in the z direction. A similar notation was employed for the other flow
quantities. We suppose these quantities are known at the jth step and illustrate how they

are advanced to z = z;4; = T + (j + 1)e. Consider the z-momentum equation (2.6b):

o o N\ 9 o _; 2rjul :
+1 ~ ~ 7 +1 = e 2 +1
WU{ + 77'-«11{ - ’U;-’ 2’11) a—I’U{ + 77,"8—/u3 — _g—' —a 21/-] u-l?
. a . .')I-uj
N Do vl B By Lot
= v] \/21; o = ——", (3.1)

where u, has been replaced by its tinite difference approximation

+1
At

1 u;

: +1
We approximate uf+ by

I] P
uf“ = Z ik—lTk((\’),




and

{ 1
ot . ) A ‘
j+r l> Ok b, C 1
—u; = = E — T (a) (=1,2....
£ B . k :
01/ Z =0 Tk

We are able to generate the successive Chebychiev polynomials using the relationship

Tk_f.](.’:) = QZT[;(:) — Tk—l(:) for & > 0.

In a similar manner we can determine a relationship for the derivatives of the Chebychev

polynomials. We rewrite (3.1) in the form

2
B n e s
o ——2°3 T/ (a;) + —;‘: (ou? — ol /20T (a;)

o . 2 ‘ : Jd s
gy s Tt T @2 | Tdag p = ol 2 pn — e ey (32)

for 1 <k<n-—1withi=1n+1 for cach value of .

We use the streamwise velocity boundary conditions (2.6 f) to replace the bk =0, k =n
values in (3.2). The righthand side of (3.2) is known and by inverting the square full matrix
on the left hand side using a Gauss-Jordan climination method, the values of the Chebychev
cocfficients 3 for 0 < k < n can be determined. In a similar manner we can update (2.7)
and (2.6e). The method is totally implicit so that we expect to have a numerically stable
scheme for a streamwise steplength comparable witl, the vertical steplength. The spanwise
velocity component w cau then be caler lated from the continuity equation. The parameter
N Was varied and 14, = 10 was found to provide sufficiently accurate results. The number
of collocation points n in the g direction was chosen to be 720 and the Prandt] number

o was chosen to be .72, the value for air. The ealeulations were carried out on an ANT
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DAPS510 and the code was written so as to take advantage of the architecture of that
machine.

In order to validate our scheme we carried out some calculations for the case when the
initial form of the disturbance is imposed and not provided by a receptivity calculation.

In that case the boundary conditions at the plate and far from the wall are

'uzvsg—;:tg:O, y =0, (3.3a)
7]
uzus,vzez(), Y = 00, (3.3b)
Jy
We also require
v=ugly), v=ugly), I=0p(y), ==7, (3.4)

where the initial conditions (3.4) describe some given vortex perturbation imposed on the
flow at * = 7. This initial disturbance must be consistent with (3.3). Further constraints
on the initial perturbation (3.4 ) arc rcquired in order to avoid singularities in the velocity
and temperature fields at =¥, y = 0. If we expand u, v, 8 as Taylor scries about z =T

and y = 0 we find that the required conditions are:

u'p(0) =0, u3(0) = au'y(0), (3.5a)
Vi (0) = 2a0(0), (3.5b)
BO) =0,  67(0) = a’6},(0). (330

The perturbation imposed on the flow was taken to be ather

upg = 7’5(\“'12 \ vy = 0 . 9” = O \ I = E, (36)

11




or

-

up =0, vp =0, 63 =n’e , r =T, (3.7)

Y
Vax

numerical scheme described in this section was used to solve the linear disturbance equa-

where n = . Note that both (3.6) and (3 7) satisfy the conditions (3.3), (3.5). The
tions (2.60), (2.6¢), (2.7). subject to th» boundary conditions (3.3) with initial conditions
given by cither (3.6) or (3.7).

For the calculations reported here we took € = 0.1. Of course the accuracy of our
calculations was checked by varying € aud the vertical grid spacing in some cases. The

vortex growth downstream is determnined by monitoring

/-OO
E, = 0] dy
Jo
1 OF )
and the local growth rate oy (z) = o8 -Z,)—l~ . The neutral point was taken to the downstream
1 Ir

location where this growth rate vanishes, the local Grashof and wavenumber corresponding

to this point are then obtained from

1 /9 v ¢ ¢
ay = art’? G, = Ga*? .

Different ncutral curves were generated for fixed G = 0.025 by varying the location T
of the initial disturbance. Figures (3.1a-d) demonstrate the downstream velocity and
teinperature fields for an initial disturbance given by (3.4) with G = 0.025 and a = 0.069.
The corresponding neutral curves are given in Figure (3.2). For an initial disturbance of
the form (3.7), the development of the velocity and temperature fields is shown in Figures
(3.3a-d) with the corresponding neutral curves shown i Figure (3.4). The perturbed
velocity profiles for the initial disturbance given by (3.4) is shown in Figures (3.1a-c)

12




take the same form as those found by Hall {1983). The essential shape of the perturbed
velocity and temperature components do not alter radically with increasing x. Initially the
spanwise vclocity component w is proportional to Ju/dx from continuity, since the normal
velocity component v of the initial disturbance 1s zero. Hence both the streamwise velocity
component u and w initially decay downstream of T before growing at larger values of .
The velocity and temperature profiles for a perturbation described by (3.7) are of a similar
form but take the opposite sign. It is clear from Figures (3.2), (3.4) that the concept of
a unique neutral curve is untenable and that the growth or decay of the resulting vortex
structure is dependent upon its initial form and location. However far downstream the
flow is disturbed the growth rate o,{x) is initially negative. On the right hand branch of
the neutral curve G, ~ az*, but for a fixed wavenumber disturbance, G, ~ a,3 as the flow
develops GQ% — 0 and the flow is locally stable. Thus any disturbance of fixed wavelength

xr

will ultimately be stable sufficiently far downstream of the leading edge.

4 The localized forcing problem
We now consider the case when the wall forcing is described by isolated forcing func-
tions and therefore allow Fy(z), Fo(z) to vary on a relatively fi © O(e) lengthscale, we

write

(4.1)

where € is small and we assume that the forcing starts at @ = T. By cmploying a faster
strcamwisc lengthscale for the isolated heating function problem we will provide unique
initial conditions for the disturbance equations, We take Fy o(x) = F;t,(X) and choose T =

% without loss of generality. This fixes the original lengthscale L in terms of the distance

13




between the leading edge and the starting point of the forcing. In the following discussion
we have also taken ¢ = @ = 1, the more general case can be recovered by inserting these
factors in our final results. In order to find the forced flow in a neighbourhood of T we note
that @u, ~ uy, for small y if y ~ O(¢'/?) and hence the convection and diffusion effects
are of the same order of magnitude in a layer of depth €'/3. For small y the basic velocity

and temperature fields can be approximated by
(@3,T) = Ay p?, L+ oy) + -,

where A = U;(%—,O), = m(%,O) ¢ = T;( .]3,0) and the wall forcing implies that u, 8 are

O(1) in the region y ~ O(el/?). We define € = —:‘/—
€

73 and assume that £ = O(1). The

appropriate expansions near the wall are then found to be

(v, v,w,p,8) = (uo(X,6) + ... ,62/31’0(}(,5) e w (X, 6 + ..,

o (X, 6) 4+ ..., 0,(X, 6) +...) . (4.2)

The expansions (4.2) are substituted into (2.7) and comparing leading order terms yields

0? o | &*v, _
{652 — ’\50.\’} e =0 (4.3)

If we now take the Laplace transform of (4.3) with s as the Laplace transform variable we

can show that

G,
322 = A1),
d?s, & -
dg :A/ AATSEO dE+ B, (4.4)
0

14




where v,(s, £) is the Laplace transform of vo(X,€), 47 is the Airy function and A and B

are constants. Transforming the continuity equation and evaluating it at the wall yields
B = —sFy(s),

where F) (s) is the Laplace trausform of F; 1+(X) . Furthermore we require that 1305 vanishes
at infinity, so that

A= —=3B)/3,1/3

and

. < 3 (As)/%¢
Do = _SF(s){g - 3/0 d¢ (/0 Ai(y)dy) } (4.5)

The transformed temperature perturbation and streamwise velocity component are ob-

1 tained from (2.6b,e) which give

(12 z P
7122— — A3 J Uy = VoA, (4.6)

1 d? = -
(; @ /\f.s) 8, = Vo), (4.7)

where 6, is the transformed zeroth order temperature ficld. For large £ the asymptotic

forms of u,,?, and 8, are given by

T ~ —3F:’13_1/3/\"’/3w£—1 +...= —3&15_1/3)\—1/31061/33/_1 +... (4.8a)
5o~ 3E2PAT Py (4.8b)
éo ~ —317:'23_1/3/\—4/3¢1()61/33/'1 4. (4.8¢)

15




where w = —Ai'(0). Hence the flow within th~ wall layer region induces the motion of the

fluid in the y = O(1) region where u, v, 6 are expanded as

u=U,e+, ... (4.9a)
v= Ve By, .. (4.9)
6 =0,e/?+ ..., (4.9¢)

and the Laplace transforms of U,, V, and O, arc found to be given by
P 8 A

~ c -1
¥ Fiu 5—1/3

Uv,=-3 AP em(y,a) + ... (4.10a)
u

‘:/0 = 3]?‘132/3/\'1/3wm(y,a) +... (4.100)

: BT

O, = =353 Bum(y,a) + ... (4.10¢)

U

where m is a solution of the stationary Rayleigh equation problem.

u(dl —a®ym —u'"'m =0, (4.11a)

m(0) =1, m(oo) = 0. (4.11b).

The functions in (4.10) decay to zcre exponentially as y — oo and satisfy the matching
conditions (4.8). We can invert the Laplace transforms and use the large X form of the
velocity and temperature fields as the initial conditions for the solution of the perturbation
equations (2.6b), (2.6e), (2.7) subject to (2.6f). For the isolated wall functions Flfz(X) =
6(X) inversion of (4.5) and the corresponding forms for i, and 50 yields the similarity

solution




£

. g
where U,y, V4, 84 are known functions of i

We now demonstrate how the similarity solution can he obtained directly from the
A\ /3
disturbance equations. The similarity variable is chosen to be € = y(;) where z =
7

x —T. For £ = O(1) we expand the perturbed velocity and temperature components as

/\1/3
U= —u,(€)+ u~11(/£3) + ..., (4.13a)
T Tl
1 : I 1 4130
v = A.-z:5/3"°(€)+W‘/‘(O“LX“Z“H”" (4.13b)
)\1/3 i )
6="—08,(6) + }1(/53) + ..., {4.13¢)
T T
and impose the wall conditions
U =uL =v, =6, =6, =0, E=0. (4.13d)
The above expansions are substituted into (2.7) and at leading order yield
U”” + gl"” + Zé,vll _ 0 (4 14)
o 3 0 3 o ? *

where a prime denotes differentiation with respect to €. Equation (4.14) can be soived
for v} in terms of Whittaker functions and it can be shown that there exists a solution
of (4.14) for which v, = v, = #, £ = 0, and such that at infinity », ~ 1+ exponentially
small terms. It is to be noted that the solutions of (4.14) which, for large £, behave like
¢ and €7° terms do not appear in the required solution for v,. Indeed if these terms did
occur the wall layer solutions could not be matched in the y = O(1) region of the flow.

Equations (2.6b), (2.6¢) yield at leading order

2
" f / v

Uy + ——u, +Euy = (4.15a)

17




Lo + —ie’ €6, = Yof (4.15b)
c? 3 Az )
The homogeneous forms of (4.15a,b) have the eigensolutions
_£3 _ £3
Up = Clﬁex1)<T) . = Cgfexp( 5 ) (4.16)

where C,,C, are arbitrary constants. It follows that, since the inhomogeneous solutions
of (4.15) must satisfy u, = 0, 6, = 0 at £ = 0, the algebraically decaying solutions of the
homogencous forms of (4.15a,b) are required. However if these solutions are retained we
cannot match with the corcflow so vy must be zero. Hence the highest order term in the

expansion of v is v; and (2.7) then gives

3 £,
N - o 4= f 2,\’{uo+ =€ul +?u } (4.17)
_\!/
which has the solution v; = —€uo satisfying the boundary conditons. The functions

=

Uo, V1, 8, are shown in Figure (4.1). At leading order in the expansions of u, v and 8 it
is clear that the disturbed flow is confined to the wall layer region, however at next order

the flow is no longer contained in the wall layer. The function u; satisfies the equation

{2 a’u,
“1 —-u1+—-u1— NVR

3

(4.18a)

and hence
—3Ca? ] —63 @1(§)
U = —/\]—/—3——{(..\1)<T - m s (418b)

where 4, is the exponentially decaying solution of

|
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and 8, is similarly given by

_ —3C>a? ] -80 él(f)
8, _—;XT/—,J—{O.\1)< 5 ) 91(0)} (4.19)

1 -
29"+ >
01+3

At higher order vy is found to satisly

PRSP AW @ (g €2 )
de + T;—(g-f— 3 3/\1/J(111+3£u + £? ul) + IE 2uy ———v +§£v1 . (4.20)

Equation (4.20) is solved subject to the boundary conditions v, = v4 =0, £ =0 and
¢ = constant + exponentially small terms as { — 0. Integration of (4.20) numecrically
shows that this constant is nonzero, hence the perturbed velocity and temperature fields

for the y = O(1) region arc of the form

c,ia CoiT
ke miy,a) v~ mly,a), g~ -2 —m(y,a), (4.21)
u

u~ — g
%

where m satisfies (4.11). Hence it follows that («,v,8) — 0 asy — oo. The function m(y, a)
is shown in Figure (4.2) for different vortex wavenumbers. By combining (4.13,4.20) a
composite disturbance field is obtained for some small value of ¥ which can be used as
the initial condition for the solution of the full lincar disturbance equations (2.6b), (2.6¢),
(2.7), subject to the boundary conditions (2.7f).

The calculations we now report on were carried out using the numerical scheme de-

scribed earlier with the starting point of the caleulation at @ = 0.505 and with the stepsize
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in the z direction € equal to 0.004. In order to determine the effects of the wall forc-
ing functions, imposed at the position T = 1, on thc flow downstream of that point the

dimensionless energy E(x) of the flow was monitored where

E = / {u*(z,y) + v*(a,y) + w(z,y)} dy
0

_ OE/0x
- E

and the local growth rate () . The position of neutral stability is defined as the
position at which @ = 0. Of course other instability criteria can be defined but some limited
experimentation showed that the neutral curve is not greatly dependent on the choice of
flow property used to monitor the growth of the disturbance. Moreover, we believe that
the flow property we have used is a sensible one because it accounts for the changes in all
of the velocity components in some scuse averaged across the flowfield. For a given wall
forcing function, G and different values of @ we marchied downstream and calculated the
position at which the vortex structure began to grow. The local wavenumber a, and the
local Grashof number G; were calculated and a neutral curve in (a,;,G,) space formed.

This process was repeated for different values of G. Two sets of initial conditions were

considered. Firstly the problem was solved for an initial disturbance of the form
£ EN : -
u = £exp -5/ v=—"—u, 6=0 imposed at r =T + .005. (4.22)

This type of disturbance correspondes to the situation when the vortices are stimulated by
wall roughness, later we shall look at the case when the vortices are induced by non-uniform
wall heating.

The development of the velocity and temperature fields downstream is shown in Fig-
ures (4.3a-c) for G = 5, a = 0.4. The corresponding neutral curves for the problem are
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shown in Figure (4.4). We sce that as G varies the neutral curves move around in the
wavenumber-Grashof number plane. Our calculations show that there is a neutral curve
corresponding to ¢ near 2 which has the lowest minimumn. Furthermore the minimum value
of the Grashof number on that curve is about 4. When the Grashof number is increased
or decreased from this value the curves move upwards so the the flow is more stable. It
should be noted that the effect of changing G in the caleulation of the neutral curves shown
in Figure (4.4) is exactly equivalent to calculations carried out with a fixed G but with
the position where the forcing begins now being varied. Thus in Figure (4.4) increasing G
corresponds to moving the forcing further downstream from the leading edge. In that case
it 1s not surprising that the curves in the «, — G, plane move upwards since the forcing
cannot initially generate an unstable vortex since the form of the initial disturbance is not
typical of a growing vortex flow. Likewise when G is decreased in Figure (4.4) the forcing
is being moved progressively towards the leading edge, the fact that the curves move up-
wards in this case again implics that roughness near the edge has a relatively weak effect
on the flow. In an experiment one would expect that localized roughness elements would
be distributed at several sites along the wall so that the most dangerous mode would be
the one excited. We postpone a discussion of the available experimental results until the
final section of this paper.

In fact the discussion given above applics equally well to the case when the forcing

corresponds to a localized temperature variation at the plate. In particular for the problem




u=0, v= —-5—, £ exp (—-69—3) , 0= £oxp<——5—;f—), imposed at z =7 + .003.

(4.23)
We now find that the most dangerous disturbance occurs when G is close to 8 whilst
the local Grashof number corresponding to this most dangerous mode is about 2. The
downstream development of the velocity and temperature fields is shown in Figures (4.5a-
¢). The corresponding neutral curves are shown in Figure (4.6). Again for large values of G
we can sec that the forcing applied does not initially generate unstable vortex structures. It
is also clear that the forcing becomes less dangerous when it is moved close to the leading
edge. In each of the above calculations it was found that the dimensionless energy E
decreases by several orders of magnitude before the growth rate o becomes positive. This
mecans that the forcing applied generates vortices which decay significantly before they
begin to grow. Hence a localized wall forcing function is not a particularly efficient means
for the production of longitudinal vortices. However note that,despite being an inefficient
generator of longitudinal vortex rolls, in the absence of other forcing modes an isolated
wall heating forcing will result in vortex growth downstream. We conclude this section by
noting that if instability is caused by isolated wall roughness or nonuniform wall heating

then we expect instability will occur when the local Grashof number exceeds about 2.

85 Free-stream Disturbances

We shall now consider the generation of vortex structures due to a freestream lon-

gitudinal vortex field impinging on the leading edge rather than imposing some initial

[Sv]
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disturbance on the flow. We take the streamwise velocity component to be of the form
=1+ A" uly) ,r =0, (5.1)

and hence we have assumed a dependence of the impinging vortex structure on the bound-
ary layer lengthscale. However it will later be shown that the case of u. independent
of y gives rise to the most dangerous vortex mode. We consider u. to be of the form
uc(y) = cos(by + @) where b and ¢ are constants so that the disturbance is periodic in both
the y and z directions. We need to consider two regions, the boundary layer y ~ 2 and
also an outer region y ~ 0(1), this is because the wavelengths in the spanwise and normal
directions are large compared with the boundary layer scale .

Consider the boundary layer region y ~ +7 with ¢+ << 1 and allow y/\/T — oo, the

disturbance equations (2.6, 2.7) may be written in the form

{05—(12—6%— \;%Oy}ztzo, (5.2a)
{%é - g ~ 0y = %0,,}9 =0, (5.2b)
{03 —at -0, - \/’—;—_laj} {a‘j —a*Yo = a*GOH+ 2’:)3 uyy + (%2-13)—2 (5.2¢)
where
# = lim (nf" = f), (5.3)

17—

1s the Blasius constant.
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We require a solution of (5.2a-¢) which will maintain the periodicity — in the y

]
direction, hence we take
U=, = e cos(by + o — bIv2r), (5.4a)
0=6,= 91(‘—_21 cos(by + ¢ — bﬁ\/il—'), (5.4b)
b=, = {[W’_-J s A.l}f—an _ 1_C91L—/}
v/ 20 v (1 — o)

cos(by + o — bIV2r) for o #1, (5.4¢)
1 F(b? — a?
V= ‘Up = {a—z((LQGel‘l‘ _+__ .._(_)_L)) + ]"l}

e™"F cos(by + ¢ — b3V2r) for o =1, (5.4d)

where 6,.k; and k; are arbitrary constants.

There is an eigensolution of (5.2¢) v = Q(x)e™*Y for arbitrary Q(x) and this solution
is needed in order to match with the boundary layer solution. Hence the appropriate
solution of (5.2¢) is

v=1, + Qr)e? (5.5)

and it is to be noted that the boundary layer structure causes the periodic form of v to
occur only when ¢y >> 1. For the region where @+ = 0(1) and ay >> 1, at the edge of the

boundary layer, we must solve the disturbance equations subject to
(uoe b)) = (u,ov,.00,). (5.6)

We now consider the 5y = 0(1) region with » << 1 and we determine Q(r) by matching

with the boundary layer solution. The functions w, 0 and 8 are obtained from expansions




in powers of % in the disturbance equations by perturbing the basic flow in the form

u=cosdlf +n/2f" Y+, (5.7a)
6 =coso{h' +n/2k"} +---, (5.7b)
_coso 1 2 o Fur
v = \/3{5(7“‘ _f)+’7 /-'f }+ . (576)
where  A(1) satisfies h" = —o fh”, (5.7d)
and as n — oo
cos ¢f3
v — Nerh (5.8)
Matching with the boundary layer solution for n >> 1 yields
- b 2a LR A ‘. 12 T
O + cos (¢ ij/ ) H(b a )5%7 ey (2 GO 420
v? Vor J v(o — 1) (5.9)
__ fPcos¢
T2V

A composite solution is formed, from the y ~ z? and y ~ 0(1) solutions, for small r to
give the asymptotic forms for w,v and 8, and hence initial data, for the solution of the
disturbance equations using the numerical scheme starting at a small value of z.

We note that when ¢ = 0. the function v, takes the form u, = cos(by) which means
that the incoming vortex field does not satisfy the no-slip condition at the wall. Hence we
choose ¢ to be zero since this relates to the most physically relevant case corresponding to

u.(0) # 0. We again monitored the dimensionless nergy E(xr) of the flow where

E = / {u(2,y) + v (a,y) + w? (e, y)}dy.
0

OFE/Ox

and the local growth rate o(2) = - The position of neutral stability is defined as

the position at which o = 0.

o
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For the receptivity problem formulated above the disturbance equations were marched

downstream using the numerical scheme described in Section 3. The steplength in the
streamwise direction was taken to be 0.00001, this very small x steplength was necessary
due to the singular behaviour of v for small .

The profiles for the disturbance velocity and temperature components as the vortex
develops downstrcam arc shown in Figures (5.1a-¢). We can see that the edge velocity for
the streamwise velocity component decreases monotonically with z as does the temperature
component. The normal velocity component v at the edge of the boundary layer is seen
to increase as we move downstream,however for larger values of z the edge velocity begins
to decrease with z due to the exponential factor in (5.4¢). In Figures (5.2)-(5.3) the local
Grashof number and the local wavenumber have been calculated at the points of neutral
stability where the local growth rate vanishes;this enables us to generate neutral curves in
the local wavenumber - Grashof number space. For these two cases the parameters chosen
were G=70,0;=1. We conclude from thesc calculations that instability first occurs when
b=0, in fact further calculations for different values of b produced neutral curves located
above that for b = 0. We deduce that v, ~ cosaz i1s the most dangerous form for the
incoming vortex field. We conclude from Figure (5.2) that freestream disturbances are
able to cause the onset of instability when the local Grashof number is bigger than about
.02; this is significantly lower than the critical Grashof number associated with isolated
wall foreing.

46 Distributed Roughness




We shall now consii' .« Jie effects of wall heating on the forced convection flow when
the wall forcing is described by a non-localized forcing function and occurs on an O(1)
strcamwise lengthscale. Again we concentrate on the O(1) wavenumber regime. The lin-
carized disturbance equations (2.6D), (2.6¢), (2.7) were solved together with the boundary

conditions (2.6 f) where Fj(x) is given by

Y
I =

Fi(z) =40 (1 - %)fl—”(f-l/?)? . T (6.1)

-

and F; = 0 so that the vortex is induced by wall roughness rather than non-uniform wall
heating. Given a function ¢(«) the disturbance cquations can be marched downstream
from & = 0 for various values of ¢ using the numerical scheme described in section 3 with
no initial disturbance. We then invert this transformed flowfield in (a, z,y) space to give
the flowfield in (2, 2,y) space induced by a forcing function of height proportional to ¢{z)

the inverse Fourier transform of ¢(a). A symmetric obstacle §(z) was considered with

ilz) = %—;cxp<—i>, (6.2)

1
ola) = se.\'p(—4a2). (6.3)

We then combine (6.1) and (6.3) to give the boundary conditions (2.6 f) in (a, x,y) space.
The disturbance equations were marched downstrecam and 6*(«, r,y), the maximum value
of 8, was calculatced. This procedure was repeated for various values of a and the transform

in z was then inverted numerically to give 6(z,.x, ). The parameters chosen were r varying
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between 0 and 10 whilst z varies between 0 and 10. The calculation was repeated for
different values of the Grashof number G.

The velocity and temperature profiles for the symmetric obstacle are shown in Figures
(6.1a-c) for G = 8, a = 0.45. It is to be noted that the maximum value of 8 occurs initially
at the wall and as x increases its position moves away from the wall.

For a distributed wall forcing function there is a strong coupling between the induced
vortex field and the wall forcing with the ratio between the two being a fuﬁction of the
wavenumber and the Gortler number. In principle we could maximise the coupling between
the vortex field and the forcing by varying ¢ and G though this would require a large
amount of computer time.

The contours of 8*(z,z,y) arc shown in Figure (6.2). They demonstrate that
innediately after the obstacle the perturbed temperature field decays and is formed nto
a wake solution behind the obstacle. However, further downstrcam the effects of thermal
instability due to the heated wall reamplifics this disturbance into longitudinal vortex rolls.
The distance between the reamplification of the disturbance and the obstacle dccreases
as we increase the Grashof number. The same effect could have been demonstrated by
following the same method as in section 5 by fixing the Grashof number and varying the
position at which the forcing was first applied.

Tlic same calculations were repeated for an asymmetric obstacle of the form

Ng ¢
§(z)=wzzexpl——= ) . 6.4
j(2) = 5 zex) ( ] G) (6.4)
The results are shown in Figure (6.3) . A similar flow structure to that of the symmetric

obstacle was observed with the perturbed flowfield formed into a wake before subsequently
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being reamplificd further downstream into longtitudinal vortex roll structures. Again
the distance of the resulting vortex structure from the leading edge is dependent upon
the Grashof number.It is worth noting that similar flow structures have been reproduced
experimentally by Mangalam et al.(1987) for the analogous Gértler type vortex problem.
87 The high Grashof number limit and the fastest growing mode.

At high values of the Grashof number we expect that viscous effects will be negligible
except at low or high vortex wavenumbers. An examination of (2.6) for G >> 1 with a
held fixed suggests that inviscid disturbances have 0, ~ G %; we are thercfore led to the

expansions
[u, G_%v,G_%w, G p, 6] = [(uog.vo,wo,po,6o) + - -]efr G%B(”dr, (7.1)
where ug, vo, etc. are functions of @ and vy only whilst ,[; expands as
B=8+HG F 4. (7.2)

If the above expansions are substituted inte (2.6) and the dominant terms are retained in
the limit G — oo we obtain

Buuo + vy + 1awy = 0,
130 wuy + vouy =0,
,é()lnll'() = —Doy + 90, (73(1 — C)
[;'()IIU‘() = —I‘(lp().,

HOH.(}” +opdly = 0.




and we can eliminate wg, wo,py and ¢y from this system to give

Wlvgyy — avo) — @y, ve = 7 —vg. (7.4)

This equation must be solved subject to vy = 0 at y = 0, oo and this specifies an eigenvalue
problem /;0 = Bu(a).

Thus in the inviscid limit the growth of the disturbance is governed by a quasi-parallel
stability problem since in that case the disturbance varies on a relatively short, G~ %,
lengthscale in the z direction. We shall restrict our attention here to the determination of
Bo; higher order terms in the expansion of the growth rate can be obtained in a routine
manner. We note that we have assuimed that there are unstable solutions of (7.4), this is
assured if there are regions where 7, < 0 in 0 < y < co. The numerical solution of the
eigenvalue problem specified by (7.4) together with the conditions vy = 0,y = 0, oo is made
nontrivial because of the singularity in the equation at y = 0. An examination of (7.4)
for y << 1 shows that for y << 1,v ~ y%‘ In fact (7.4) is more easily solved by making

. 1
the transformation = -

‘U.y(l‘,O)

log y and the results presented below were obtained using
that transformation.

In Figure (7.1) we show the most unstable eigenvalue for o = 1, it can be scen that
the growth rate increases monotonically with a. The cigenvalue shown is in fact just one
of an infinite sequence of unstable modes. For small value a we see that the growth rate
gocs to zero like some powers of «; actually our caleulations suggest that 80 ~ a? for
a << 1 and this asymptotic limit will be considered later in this section. In Figure (7.2)
we have shown vy(y) for three different values of «; we note that the disturbance becomes
less concentrated as a decreases. Now we investigate further the inviscid problem at large
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wavenumbers. This will enable us to identify the scale on which viscous effects come into
play and therefore we will be in a position to identify the fastest growing mode.

For large values of « the effect of normal diffusion of heat and vorticity can only be
comparable with that in the spanwise direction if the vertical depth of vortex activity is
compressed to 0(a™!). We shall therefore seck a solution of (7.4) within a layer of depth

a”! at the boundary: we therefore define

~1
[

¢ = ay,

and note that u, T expand as
u=pla '+, T=1-wla ' +---. (7.6a,b)

in order that the dominant terms on the left hand side of (7.4) are comparable with the

term on the right hand side we must write
.’j() = (1/30() + ... (77)

The zeroth order approximation to the cigenvalue problem for gy then reduces to

32,12 -
—(ﬂ—{l‘ugc - UU} = —vg{ 2~'1'0 =0, (¢(-0,00. (7.8)

The solution of the above equation can be expressed in terms of modified Bessel functions
of imaginary order. However we were unable to find the required asymptotic properties of
such functions so we must solve it numerically. Since out primary aim at this stage is to

see how viscous effects come into play it is not necessary for us to solve (7.8); in fact we
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can, if necessary, infer the value of 3yy from the limiting small wavenumber approximation
to the viscous calculations to be discussed next.

The large a inviscid analysis given above must, of course, breakdown when 48, ~ 9y?
in which case viscous effects cannot be ignored. This balance is achieved where a ~ G# so

we now write

and modify (7.1) to give

3 N F s -
[u.G™F0,G™Fw, G5 p, 6] = (g, o, o, Po. Bo) + -+ JeJ T84, (7.9)

~

where o, U9, etc. are functions only of = and ¢ defined by (7.5). The eigenvalue 3 now
expands as

3=3(,+;;|G:4—l + - (7.10)

and the zeroth order growth rate is found to be determined by the eigenvalue problem
Bytig + (AllA’Q( + rawg =0,

Ko

[,170 = 7(’0,
a
oL 6
ty = (T’I)ng - ”—2
‘ (7.11a — f)
. r,
Livg = —=pg.
a
v A —0w .
LO) = — 1.
a

I}() = I"() = Ii'u = F)() = (]. C == 0. .

Here the operator £ 1s defined by




A more convenient form of the disturbance equations can be obtained by eliminating po
and wy to give

Cag =50, L& ~1)iy = -9, L= —225
a

a? a* (7.12a — d)

Ug = Vg = Uy = (;0 =0, (=0,

A point which should be noticed here is that the £ momentum equation decouples from the
other equations so that the eigenrelation is determined by the sixth order system associated
with 9g,60. It is also possible to scale ;1,0 and w out of the above eigenvalue problem by
redefining @ and 8. In Figure (7.3) we show the most unstable eigenvalues of (7.12); the
results shown were obtained using a fourth order finite difference scheme to discretize the
differential equations for ¢y and é().

For small values of @ we see that ,30 ~ @ so that we obtain the required match with the
large wavenumber limiting form of the inviscid mode. The growth rate attains a maximum
at a fnite value of @ and then passes through zero at a sufficiently large value of a. In fact
this zero of the growth rate corresponds to the right hand branch of the neutral curve in
the Grashof number - wavenumber planc. Actually it is only possible to find solutions of

(7.12) with Bg # 0; the case [;’0 = 0 corresponds to the case when

0 ~ ow
5 Vo = /o
2 a2

—fg =

Q>

so that a* = ow which means that the zerotl order approximation to the right hand branch
of the neutral curve is given by

G="+. (7.13)
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An investigation of (7.12) with .[;0 << 1 shows that the wall layer becomes thicker in
this limit and higher order terms in (7.13) can be found when it has become 0(G#); the
structure in that case is similar to that found by Hall (1982a) for the Taylor problem.

In Figure (7.4) the eigenfunctions fr(,,éo are shown for three different values of the
wavenumber. We note that at the largest value of the wavenumber the eigenfunctions have
spread further away from the wall whilst at the smallest wavenumber the temperature
disturbance develops a wall layer structure consistent with the inviseid limit discussed
above. Thus we have shown above that at Ligh Grashof numbers the fastest growing
disturbance is localized at the wall and is dominated by viscous effects. The unstable band
of wavenumbers cuts out at the right hand branch of the neutral curve where a ~ (awG)%.
For a ~ 0(1) the disturbances are essentially inviscid with a growth rate which leads to zero
where a — 0. At some stage viscous effects will reappear for sufficiently small a and then
we cxpect that the left hand branch of the neutral curve will be encountered. Though the
growth rates in this regime are relatively small it is important for disturbances localised
very close to the leading edge of the wall. In addition there is an unexpected connection
between vortex disturbances and Tollmien-Schlichting waves here so it is now considered
in some detail. As a first step we consider the limiting form of (7.3) where a — 0. It is

clear from (7.4) that we must consider scparately the regions y = 0(1) and y = 0(a™!).
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For y = 0(1) we write
U= 1ug+au; +---

1 a
v=azvg t+azvy 4 -,

1 a
w=azwy+azwy + ---,
0=0+ab; +---,

P=potapi+-,

and fp then expands as

o= Pat 4 Plat ..

(7.14a —¢)

(7.15)

If we now substitute the above expansions into (7.3) and solve the leading order approxi-

mation to this system we nd that

Ug = —Uy,
vo = A4,
6y = —T,,
po=—-T+ 1.

Meanwhile in the upper, 0(a™!), layer we can casily show that

p:e_ay+...
1
az _
V= e Y +

so that for small a the eigenrclation associated with (7.3) takes the form

/}():(l%+"‘.
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(7.17a, b)

(7.18)




The small a inviscid solution discussed above fails when ud, ~ (93 in the viscous layer of

depth a— ! adjacent to y = 0. This occurs when a ~ G~7 and we then have a triple-deck
P J y P

like structure with three layers of depth 0G™7), 0(1),0(Gl7) to consider. (Note that the

structure described below applies also to the Gortler problem and was alluded to by Denier,

Hall, and Seddougui (1991).) We therefore write a = G 7a .

In order to allow for the possibility of unstable Tollmien-Schlichting waves we must

modify (2.6) to allow for the possibility of time-dependent modes. This is simply done by

inserting the term w, into the momentum equations and the term 6, into the temperature

equation. In the lower deck where y = 0(G

{U,G‘%U,G‘%u».G_lp,H} = {(wo,v0,wo,po,b0) + - '}szwdr_im}

1 1 .
7) we define £ = G and write

o 3 3 ; 2 : :
where 3 = 3,G7 4+, Q= QG? + -, whilst ug, vg,etc. are functions of £, z. We assume

that the frequency Q of the disturbance is constant. The equations to determine the zeroth

order approximation to the disturbance in the lower deck are found to be
/%UO + voe + tawy = 0,
—1Quy + Bo/lfuo + vopt = upge,
0 = poc,
—iQuwy + /;0/1&00 = —ipolt + wogg,
1

-6, + ;’9()/1590 + Vgw = ;9055,

which must be solved subject to

g = 'y = Wy = 9() = (). E = 0.
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and appropriate matching conditions at £ = oo. Thus in the lower deck we have that

P = PO)
. —a*P, 4 - .
Sottg + tawy = —2————/ Ai(d)do,
T AT A (60) S

1Y

5o 5ol
where Py is a constaut, ¢ = p3y)s (& — -
Ldo

).00 = (€ = 0),A = Bop and 4, is the Airy
function. In the main and upper decks the disturbance takes on essentially the same form

as that discussed above for the small a lmit of the inviscid problem. In particular we find

that in the main deck

p=CG{ p -T}
u = —Cly,

where C is a constant.

Thus matching between the main and lower decks is achieved if

1 ; 3 a*Py <
C[—j—l] :P(), ﬁu/,lc = — A,(I¢
a AsA:(éO) do
which leads to the cigenrelation
;;’,02 =2 > ~ 3 ! ~
[-1+ —d—]a Adiy = A3 Al(¢o). (7.21)
@0

We note that if we take the further limit ¢ — oo we recover the limiting inviscid solution

(7.18) whilst in the limit a — 0 we obtain

~1
Q]
o

—193(‘1/ Aidy = A%A',-((f)o) (7.22)
Ies)

0

and this cigenrelation can be found from the limiting large wavenumber analysis of Hall

and Smith (1984). In fact, rather than solve (7.21) for 3y as a function of a, it is more




instructive to rewrite this equation using the inverse of the spanwise wavenumber rather

than G as the appropriate large parameter. In order to do this we write
G=Gya™ ", F=53 Q=Q%a""*
in which case (7.21) becomes

—i%{_GU"{“B*?}\':B*%"l,io’ (

=1
[V
w
S

where

-1

\ :/ L Ay, A, = A (=7 57H) (7.24)

—itQegeT s

If we set Go = 0 in (7.23) the resulting equation determines the scaled growth rate of a 3D
Tollmien-Schlichting wave of frequency Q*. By varying Go in the range —oc < Gy < o
we can then infer the cffect of heating or cooling on very oblique Tollmien-Schlichting
waves. Alternatively by sctting * = 0 we can obtain the required match with the inviscid
low wavenumber modes discussed carlier. In fact we can sce directly from (7.24) that. if
Gy >> 1 with Q* held fixed, then the zeroth order approximation to the eigenrelation 1s
simply

/;OZ(GU)%'*-. G()>O (

~1
19
(1]

This corresponds to the limiting inviscid form (7.18) and we also deduce that instability
occurs only for positive Grashof munbers. Now we shall present results for the solution of
(7.23) for a range of values of G. It is well-known that neutral solutions of (7.23) occur
I. 1 -~ -~ ~
when —2 = Nis with N ~ 1.001. Thus the neutral values of 3* are given by 3* = 3%
where
%2 ' 0 -’;) e
A + Gy = N3y, (7.20)
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The solutions of this equation are shown in Figure (7.5). The frequency Qn associated

with each of the neutral points is given by

Zalv

Qn ~ —i22.2083

Thus neutral solutions exist only for nonzero frequencies although we note that for Gy <

0,|Gy| >> 1 equation (7.23) yiclds

i%]Golt ALy
5 T

-

8* = i|Gy|? +

The leading order term here reproduces the leading order neutral inviscid result appropriate
to negative Grashof numbers whilst the second viscous term always has negative real part
so that the ow is stable in that case. The latter results holds for all frequencies.

In Figure (7.6) we show the dependence of 3* on the frequency Q* for a range of
values of the scaled Grashof number Gy. We see that the mode with Gy = 0 is unstable
for Q* > 2.298, 3* > 1. Between Q* = 0,2.298 the mode is stable but we ~note that the
growth rate approaches zero when Q* — 0. If Gy is now taken to be slightly positive
then this limiting neutral point moves to a small positive value of * and there is then a
small but finite band of unstable disturbances of small frequency. When Gy is increased
beyond about .06 this unstable band connects with the other unstable band corresponding
to the modes with Q* > 2.298 for G = 0. At this stage there are no neutral solutions
and as Gy is increased the growth rates at small frequencies increase and approach the
limiting case 8* = |G0|% for Gy >> 1. However, at any fixed value of Gg, we sce that the

growth rate asymptotes to its Tollmien-Schlichting wave value at sufficiently large values
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of Q*. We conclude that wall heating has a progressively increasing destabilizing effect on
Tollmien-Schlichting waves.

If the wall is instead cooled, so that the Grashof number is negative, then the stable
band of modes in the interval 0 < Q* < 2.298 for G¢ = 0 increases with the neutral value
of 3: given by B,* {GU|% when Gy — —oc. However we again note that for any given value

of Gy the growth rate approaches the Tolliien-Schlichting value at large values of 2*.

8 Conclusion

We shall firstly consider the conclusions to be drawn about the generation of vortex
structures by surface imperfections when the spanwise lengthscale is comparable to, but
shorter than, the body lengthscale. We have demonstrated how the vortices develop in
a nonparallel manner and shown that a unique growth rate does not exist for a growing
vortex structure. We have also shown the ncutral curve associated with a particular flow
property depends on the upstrcam history of the disturbance.

In Section 4 we have discussed the localized forcing problem when the forcing operates
on a short stremwise lengthscale. It was shown for a forcing function of the type considered
in Section 4 that the forcing has the effect of producing a similarity solution of the linear
disturbance equations in the region where the forcing is applied. The similarity solution
can then be used to form a composite disturbance field associated with an isolated forcing
function, if the Grashof number is then varied we can determine the effect of the location
of isolated forcing on the onsct of mstability. Our results show that there is an optimum
position for the forcing which will produce stability at the lowest value of the local

Grashof nuinber, this lowest value 1s about 2.
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In Scction 5 we have considered the freestream receptivity problem. We have demon-
strated the growth of vortex structures downstream and have shown that the receptivity
calculation with b = 0 lecads to the most dangerous mode. In this case u, ~ cosaz at the
leading edge of the wall. The explanation of this may be that if the disturbance develops
in some type of quasi-parallel fashion then for higher values of b the incoming distur-
bances stimulate the higher modes and which are more stable. It is of interest to note
that freestream disturbances provoke instability at a much lower Grashof number than do
roughness induced motions. It would appear then that, in an experiment where care has
been taken to reduce the size of disturbances from all sources, it will be the freestream
ones which cause the growth of streamwise vortices.

For the case where the forcing varies on the body lengthscale as discussed in Section 6
we have demonstrated how the initial disturbance decays and is formed into a wake before
its subsequent recamplification within a wedge shape region further downstream. We have
noted that this type of flow structure has heen observed experimentally for the related
Gortler type vortex problem of flow over a concave wall. In fact the results of Gilpin,
Imura and Cheng(1978) are also consistent with this picture.

The results found in Section 7 show an unexpected coupling between Tollmien-Schlichingl]
waves and streamwise vortices at low spanwise wavenumbers; in fact in that regime the
two types of disturbances are virtually indistinguishable. Though disturbances with much
higher growth rates are possible at high Grashof nuiubers, these low wavenumber distur-
bances might be particularly relevant when the forcing mechanism which generates the

vortices operates on a long spanwise scale. Moreover it could well be that, even though
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larger linear growth rates arc possible downstream where the local wavenumber has be-
come O(G I%), the disturbances might be sufficiently amplified near the left hand branch
of the neutral curve for nonlinear effects to come into play. In that case the fact that larger
linear growth rates were available downstream would be irrelevant.

We now make some further comparisons with previous theoretical and experimental
results. In order to make such comparisons it 1s convenient to define the parameters:

Gr, = gBTOIT:; , Rey = -U&u’—.

The local Grashof number in our notation,G, is then given by G, = Gr; Re, :22 Thus
if the instability is caused by wall forcing we expect that instability will occur whenever
G’rzRezz23 >~ 2. Wu an Cheng (1976) made a parallel flow stability analysis of the
problem investigated here and found that for air instability occurred for Gr, Re,_Ts >~
292. Later results given by Moutsoglou, Chen and Cheng (1981) contradicted those of Wu
and Cheng and Figure 1 of their paper suggest instability at zero Grashof number. This
result is not unlike some of the physically unrealistic results given by parallel flow theories
of Gortler vortex growth. In order to remove this difficulty Moutsoglou, Chen and Cheng
retained higher order buoyancy effects even though they are formally negligible. The latter
approach is equivlent to the attempts made to alleviate the corresponding Goértler problem
by retaining higher order curvature effects. Our results show that if nonparallel effects are
accounted for in a self-consistent matter then instability occurs at a finite Grashof number
and the difficulty is not present.

Wang (1982) investigated experimentally the onset of the vortex instability, his results

=5 . .
suggest that instability occurs for Gr,Re; ™ >~ 55.. This is not consistent with our




prediction which has the % power replaced by % We presume that the experimental result
1s not consistent with ours because of the uncertainty associated with identifying the onset

of vortex activity.

43




References

Akiyama, M., Hwang, G.J. and Cheng, K.C. 1971 Experiments on the onset of longitudinal
vortices in laminar forced convection between horizontal plates. Journal of Heat Transfer,
93, 335-341.

Chen, K. and Cheng, M. M. 1984, Thermal instability of forced convection boundary layers.
Journal of Heat Transfer, 106, p 284-289.

Denier, J. P. , Hall, P. and Seddougui, S. 1991, On the receptivity problem for Gortler
vortices: vortex motion induced by wall roughness. Phil. Trans. Roy. Soc (A), In Press.
Gilpin, R. R., Imura, H. and Cheng, K. C. 1978, Experiments on the Onset of Longitudinal
Vortices in Horizontal Blasius Flow Heated from below. Journal of Heat Transfer 100, p
71-77.

Hall, P. 1982a Taylor Gortler vortices in fully developed or boundary layer flows: linear
theory. J Fluid Mech. 124, 475-494.

Hall, P. 1982b On the nonlinear evolution of Gortler vortices in nonparallel boundary
layers. J. Inst. Maths. Applics. 29, 173-196.

Hall, P. 1983 The linear development of Gortler vortices in growing boundary layers. J.
Fluid Mech. 130, 41-58.

Hall, P. 1990 Gortler vortices in growing boundary layers: the leading edge receptivity
problem, linear growth and the nonlinear breakdown stage. Mathematika, In Press.

Hall, P. and Smith, F.T. 1984 On the effects of nonparallelism, three-dimensionality and
mode interaction in boundary layer stability theory. Studies in Applied Maths. 70, 91-120.

Mangalam S. M., Dagenhart, J. R. and Meyers, J. F. 1987 Experimental Studies on G6

44




rtler vortices. NASA Symposium on Natural Laminar Flow and Laminar Flow Control

Research, to appear as a NASA TM.

Moutsoglou, A., Chen, T. S. and Cheng, K. C. 1981 Vortex Instability of mixed convection
flow over a Horizontal Flat Plate. Journal of Heat Transfer 103 p 257-261.

Wang, X. A. 1082 An cxperimental study of Mixed Forced and Free Convection Heat
Transfer from a Horizontal Flat Plate to Air. Journal of Heat Transfer, 104 p 139-144.
Wu, R. S. and Cheng, K. C., 1976. Thermal Instability of Blasius Flow along Horizontal

plates. Int. J. Heat Mass Transfer, 105 pp 907-913.




Fig(3.1a)
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Figure (3.1a-d) The downstream development of u,v,w, 8 for the initial disturbance given

by (3.4) with G = .025,a = .069.
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Fig(3.c)

Figure (3.1a-d) The downstream development of w, v, w, 8 for the initial disturbance given

by (3.4) with G = .025,a = .069.




Fig(3.2)
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Figure (3.2) The neutral curves for different values of z for the initial conditions (3.4).

Fig(3.30)

Figure (3.3a-d) The downstream development of u, v, w, 8 for the initial disturbance given

by (3.7) with G = .025,a = .069.
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Fig(3.3b)
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Figure (3.3a-d) The downstream development of u,v,w, 8 for the initial disturbance given

by (3.7) with G = .025,a = .069.
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Fig(3.3d)

Figure (3.3a-d) The downstream development of u,v,w, 8 for the initial disiurbance given

by (3.7) with G = .025, a = .069.

Fig(3.4)
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Figure (3.4) The neutral curves for different values of  for the initial conditions (3.7).




Fig(4.1)
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Figure (4.1) The functions u,, v, 8y defined by (4.15-4.17).

Fig(4.2)

Figure (4.2) The function m(y) for a = .2,.3, 4, .5, .6,.7.




Fig(4.3q)

Fig(4.3b)
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Figure (4.3a-c) The downstream development of the functions u,v,w associated with

(4.22), the curves shown correspond to x=.505,.905,8.
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Fig(4.3c)
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Figure (4.3a-c) The downstream development of the functions u,v,w associated with

(4.22), the curves shown correspond to x=.505,.905,8.
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Figure (4.4) The neutral curves corresponding to the downstream development shown in
Figure (4.3).
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Fig(4.5q)

Figure (4.5a-c) The downstream development of the functions u,v,w associated with

(4.23), the curves shown correspond to x=.505,.905,8.
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Fig(4.5¢)

4
A
3+ / »=0905
i
I
i 3
24 ‘," i
i X increasing |
(] i
Hi y
] \
i 3
l; iy
0_
1 T T T T 1

T T T T
4

Figure (4.5a-c) The downstream development of the functions u,v,w associated with

(4.23), the curves shown correspond to x=.505,.905,8.

Fig(4.6)

Figure (4.6) The neutral curves corresponding to the downstream development shown in

Figure (4.5).
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Figure (5.1) The downstream development of u, v, 8 for the freestream receptivity problem.
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Fig(5.1c)
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Figure (5.1) The downstream development of u, v, 8 for the freestream receptivity problem.

Fig(5.2)
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Figure (5.2) The neutral curve for the freestream receptivity problem with b = 0.
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Figure (6.1a-

shown correspond to G — 8,a = 45.
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Fig(6.1b)
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Figure (6.1a-c) The development of u,v,8 for the obstacle given by (6.1). | The results
shown correspond to G = 8,a = .43,
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Figure (6.2) Contours of constant 6* for the obstacle given by (6.1,6.2).
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‘ Figure (6.3) Contours of constant 6* for the obstacle given by (6.1,6.4).
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o2 Fig. (7.1)
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Figure (7.1) The most unstable inviscid eigenvalue associated with (7.4).
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Fig. (7.2)
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Figure (7.2) The eigenfunctions associated with (7.4) for different values of the wavenum-

ber.
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Fig. (7.3)
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Figure (7.3) The fastest growing viscous mode growth rate as a function of wavenumber.
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Fig. (7.4a)
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Figure (7.4a-b) The eigenfunctions of (7.12) for different values of the wavenumber. Note
that in Figure (7.4b) the eigenfunction associated with the smallest wavenumber has been

magnified by a factor of 1000. 65




foe- Fig. (7.4b)
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Figure (7.4a-b) The eigenfunctions of (7.12) for different values of the wavenumber. Note
that in Figure (7.4b) the eigenfunction associated with the smallest wavenumber has been

magnificd by a factor of 1000.
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Go Fig. (7.5)
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Figure (7.5) The neutral eigenvalues given by (7.26).
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Fig. (7.6a)
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Figure (7.6a-b) The real and imaginary parts of 3* as functions of Q*.
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Fig. (7.6b)
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Figure (7.6a-b) The real and imaginary parts of #* as functions of Q*.
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