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SUMMARY

This paper presents an extension of a structural finite element mesh
improvement technique to heat conduction analysis. The mesh improvement con-
cept was originally presented by Prager in studying tapered,.axially loaded

Sbars. It was further developed by Kittur, et al., who showed that an improved
Smesh can be obtained by minimizing the trace of the stiffness matrix. In this
, paper these procedures are extended and applied to the analysis of heat conduc-

tion in an infinitely long hollow circular cylinder.

NOMENCLATURE

Ne shape function for element e

n number of elements

q temperature gradient, °C/mm

r radius, mm

ro  inner radius of the cylinder, mm

rn outer radius of the cylinder, mm

re_1 inner radius of element e, mm

r e inner radius of element et1 or outer radius of element e, mm

To  temperature at the inner radius, °C

Tn temperature at the outer radius, :C

k e stiffness matrix of element e

K thermal conductivity, W/mm °C

*Work funded under NASA Grant NSG-3188.



Ke thermal conductivity of the material of element e, W/mm °C

-r trace of the global stiffness matrix

INTRODUCTION

The finite element analyst is continually confronted with the decision
of selecting a "good" mesh for a given problem. Unfortunately there seems to
be no simple mesh optimization method which is generally applicable. Recently
Kittur, et al., (ref. 1) have proposed a method which provides an improved mesh
over a uniform mesh for a broad class of structural problems. The method is
based upon the simple procedure of node relocation to minimize the trace of the
stiffness matrix. Figure I presents a flowchart illustrating the procedure.

An advantage of this method is that the analyst may select the nodal
positions prior to solving the equilibrium equations. A posteriori methods
such as those of Shephard (ref. 2) and Carroll (ref. 3) can then be used to
refine the mesh further.

Kittur, et al., have shown that the minimum trace method produces
excellent results for the problem studied by Prager (ref. 4): a uniformly
tapered, axially loaded bar. This problem is governed by Poisson's equation
with Dirichlet boundary conditions.

In this paper we extend and apply the method to analyze the heat con-
duction through the cross section of an infinitely long hollow circular cylin-
der. For this problem, the governing equation is also of the form of Poisson's
equation. In this case, however, since no heat sources are considered the
governing equation reduces to Laplace's equation. Both Dirichlet and mixed
boundary conditions are considered. The results are compared with analytical
solutions and with finite element solutions obtained with a uniform mesh.

CONFIGURATION AND PROBLEM DEFINITION

Consider a hollow circular cylinder of infinite length having inner and
outer radii: ro and rn. Let the thermal conductivity be K, and the temper-
atures at the inner and outer radii be To  and Tn respectively. The govern-
ing equation for the temperature distribution along a radial line is:

d [rK -I = 0 (1)

The boundary conditions are:
T = T at r = r

0 O

and (2)
T = T at r = rn n

The solution of equation (1) subject to equation (2) is:

In(r n)

T =T n '+ (To - T n) T(3
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Next, suppose that the temperature gradient at the inner surface is
specified as: qo. The boundary conditions are then:

di

-r qo at r ro
and (4)

T T n  at r =rn

In this case the solution of equation (1) is:

T = Tn - r0q0 In (r) (5)

FINITE ELEMENT FORMULATION AND MESH OPTIMIZATION

Figure 2 shows the finite element model. Its consists of a series of
annular elements. For element (e) let the inner and outer radii be re and
re+l. The entries of the element stiffness matrix are:

] e dr dr (6)

r e

where K e is the element conductivity constant and where the element shape

functions N7 and N2  are:

e (r e+i -r)

(re+ I -re)

and (7)

e (r - re)

(re.] - r e)

By carrying out the indicated operations the element stiffness matrix
becomes: 6

* [k?~ e [i ] (8)ij] = Se

where Se is defined as: C3

Se= (re+l re (9)-
e e+l - r e

Codem
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Hence the trace E of the global stiffness matrix is:

n

=2 Se (10)

e=1

where n is the number of elements.

The trace may be minimized with respect to the nodal coordinates by set-
ting the partial derivative of T with respect to re equal to zero and solv-
ing for the ratio re+l/re:

e 
_e

are -0 (11)

Since the derivative of a sum is the sum of the derivatives, and assuming that
the conductivity K is uniform thorugh the body (i.e.: Kel = Ke Ketl),
(11) becomes:

Sr e + re- e-1 I re e+l + r e]
+ r. . 1 0 (12)

8r e . . T rr- r el - reJ

which simplifies to:

-2reI) 2re+l 0 (13)

(reel - re

Inverting (13) and factoring:

2 2

re2(~±l1 re(~f~-i)(14)
re+l rel

Rearranging:

=rre

)( _ 1)2(15)

rel r e
Let A r  and B - , then (15) becomes:

re rel

B(A - 1)2 = A(B - 1)2 (16)

or:

AB(A - B) - (A - B) = 0 (17)
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thus:

(A - B)(AB - 1) = 0 (18)

Equation (18) implies that either (A - B) 0 0 or (AB - 1) 0 0. If (A5 - 1) = 0,
re+ 1 re  re+ 1

then AB = 1, which means e e 1 - which is impossible. Thereforere relI  re_1

(A - B) 0 0, which implies that A = B. This leads to the relatively simple
relation:

re+l re (19)

re rel

where y is a constant. The optimal nodal positions are found through
repeated use of equation (19):

r2  rI r3  r2  re+l re rn  r n-l
r. r= r .= y (20)rI  r0  r2  rI  re re-l rn 1  r n-2

Then:

rn = rn (rnl) (re+l)( re (r3))r2 l)r2r- = rn1]r-2' (rel ] ''' r-2] l -0 (21)

rn n
n= y y (i. r . y)n . t e y (22)r 
0

thus: r n =royn and y = (r n/ro 0l Changing n to e, we have:

re = roy e or:

r = r .(nn (23)re 0 (r0)

NUMERICAL EXAMPLES

Example I

To illustrate the effectiveness of the method consider an annular cylinder
with the following temperatures specified on the boundaries and made from a
material with constant thermal conductivity K = Ke = 1.0.

T = To = 100 °C at ro = 20 mm

(24)

T = Tn = O°C at rn = 50 mm
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Consider two finite element models, each with four linear elements and
five nodes: The first model (designated "Uniform Mesh") has equally spaced
nodes. The second model (designated "Improved Mesh") has its nodal spacing
governed by equation (23). The objective is the determinatoion of the internal
temperature distribution.

The solutions of the finite element governing equations lead to the
results listed in table I. The error at the nodes is defined as the difference
between the theoretical results and the finite element results. In order to
compare the error distribution among the elements, rms errors were calculated
using 50 uniformly spaced points through the thickness of each element. Each
element's linear shape function was used to compute the temperature at any
point along the element from nodal temperature values. Error values were
calculated at each point from the difference between theoretical and finite
element temperature values. The rms errors are shown beside the nodal errors
in table I. The standard deviation of the within-element rms errors is shown
at the bottom of table I with the overall rms error for the model which was
calculated using 200 uniformly-spaced points through the model. (These are not
quite the same points used for computing the within-element rms errors.)

The theoretical solution for this example (from eq. 3) is shown in
figure 3. The nodal values for both models are superimposed on the theoretical
solution. At this scale, differences between nodal and FEM values are much
too small to be seen in the figure. The errors for the two models are plotted
on an expanded scale in figure 4. Since linear elements were used, the errors
tend to increase towards the center of each element (away from the nodes).

The uniform mesh has relatively small errors at the nodes and greater
errors near the inner surface of the annular cylinder where the temperature
gradient is greatest. The improved mesh is found to have zero errors at the
nodes and a uniform distribution of errors between elements. The overall rms
error of the improved mesh is 23 percent less than that of the uniform mesh.

Example 2

Next, consider the same cylinder but let the temperature gradient be spec-
ified on the inner boundary. Specifically, let the boundary conditions be:

dT_dr - -5.4567833 °C/mm at ro = 20 mm

(25)

T T n = 0 °C at rn = 50 mm

(The boundary conditions were chosen to yield a nearly identical theoreti-
cal temperature distribution as in the first example.)

Table II shows the comparison between the finite element solution and the
theoretical values of the temperature. Once again the improved mesh shows a
more uniform distribution of rms errors between elements and the overall rms
error is lower (by 15 percent) than that of the uniform mesh. The errors for
the two models are plotted in figure 5.
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Example 3

Since the temperature gradient is specified at the inner boundary, it is
also of interest to know how the values of the temperature gradients obtained
using the two finite element meshes compare with each other and with the theo-
retical values, table III provides such a comparison. The errors as plotted
in figure 6 are much greater (relatively) than in the previous examples, espe-
cially at the nodes. Note that the largest error is at the inside radius where
the derivative boundary condition is applied. Generally the Neumann boundary
conditions are not strongly satisfied in the finite element method (ref. 5).
Therefore, in general, the FE method is not well suited for gradient-type prob-
lems. The improved mesh shows a slightly more uniform distribution of rms
errors between elements and the overall rms error is also slightly lower (by
7 percent)

DISCUSSION

The numerical examples show that the "improved" mesh defined by equation
(23) produces results which are in better agreement with the theoretical values
than those obtained using the uniform mesh. Therefore, the mesh defined by
equation (12) is an improvement over the uniform mesh for both the temperature-
fixed boundary conditions and for the mixed boundary conditions.

In Example 1, the values of the stiffness matrix traces of the uniform and
improved meshes are 74.6667 and 70.1520, respectively. This indicates that for
this example the trace is only moderately sensitive to the nodal locations.
More dramatic differences in the results will occur in problems where the trace
is more sensitive to changes in the nodal positions. This will occur in prob-
lems with less regular geometry.

In the conventional finite element method, if a model with n degrees of
freedom is refined by adding nodes, a new stiffness matrix needs to be con-
structed. In general the new stiffness matrix is different in form from the
original stiffness matrix. However, in the "hierarchical" approach, new ele-
ments are constructed so that the original n x n stiffness matrix forms a
submatrix of the new stiffness matrix. In this case, therefore, it is neces-
sary to compute only the stiffness entries corresponding to the new degrees of
freedom. This reduces the computing time in assembly. (See Zienkiewicz
(ref. 6) for a more detailed discussion on hierarchical finite elements.)
Since error estimation in the hierarchical approach has been established, we
can take advantage of the error analyses in studying conventional finite
elements.

Consider a finite element model with n degrees of freedom (d.o.f). If
the mesh is to be refined by introducing additional nodes (h-type refinement),
then it is necessary to know the expected improvement in error before a refine-
ment step is undertaken. O.C. Zienkiewicz, et al. (ref. 7) and Peano, et al.
(ref. 8) have shown that if the n+lth d.o.f. is to be introduced hierarchi-
cally, then the error in the energy norm is:

2 (fn+l - Kn+l nun)2
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where fn+1 is the force corresponding to the n+1th d.o.f., Kn+ I n+ is the
stiffness of the n+lth d.o.f Kn+ln is the off-diagonal stiffness relating
the n+lth d.o.f. to the original n d.o.f. system, and un is the array of
nodal displacements of the n d.o.f. system. The subscripts n,l of the
error e refer to the n original d.o.f. and the new d'o.f.

Zienkiewicz (ref. 6) has used the above error relation to define an error
indicator in the form:

2 
Nn+ 

d

2 Kn(27)nn, 1  K n+l,n+ 1

where is the finite element residual.

In an adaptive refinement strategy, these indicators are normally calcula-
ted for all the d.o.f. corresponding to the next refinement. The indicators
serve the purpose of identifying the region where refinement is necessary.

Next, the error corresponding to the previous iteration wherein the nth
d.o.f. was added is:

IIen ,llj (fKn - Knn-lUn-1 (28)-~ Kn,n

The corresponding error indicator is:

2 ( s ?~ n d r ) 2( 9

nn-l,1 = Kn, n

These derivations are for hierarchical finite elements. However, the
error with conventional finite elements will be of similar form (ref. 6).

The most general method of generating a good grid is to have an equal dis-
tribution of some specified weight function. (See Eiseman (ref. 9) for a com-
plete discussion on adaptive grid generation.) Often, the error in the finite
element solution is used as the weight function (ref. 10). Therefore the
objective is to distribute the error equally among all elements. However, the
value of the residual C can be obtained only after the equilibrium equations
are solved. Nevertheless, one way of obtaining an equi-distribution of error
a priori is by having a uniform element stiffness. As a consequence will
be nearly uniform among the elements. The trace minimization procedure deve-
loped herein produces such a result. Note that each of the ratios in the opti-
mality condition, equation (19), is a constant y.

r I  r2  re+l rn
. . . . . . .. y (30)

r0  r1  re n_l
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Substituting into equation (9), the element stiffness coefficient is:

Se = e YSy n l (31)

which is a constant. Therefore the trace minimization procedure produces a
uniform element stiffness.

Finally, observe the graphs of the errors in figures 4 to 6. As mentioned
earlier, the errors are more equally distributed with the improved mesh while
there is a skewed distribution with the uniform mesh. In tables I to III, the
standard deviation of the within-element rms errors is lower for the improved
mesh than it is for the uniform mesh. Therefore, in all cases, the improved
mesh distributes the error more uniformly than the uniform mesh. The rms
errors are exactly equal (within precision of calculation) in the case where
temperatures are specified at the boundaries. Therefore the mesh obtained in
this case is optimal. Similar results, however are not obtained in the case
where both temperature and gradient of temperature are specified because of
the inability of FEM to strongly satisfy the Neumann boundary conditions. Nev-
ertheless, it demonstrates the usefulness of the trace minimization procedure
in a priori grid refinement.

CONCLUSIONS

The new method of finite-element grid improvement based on the minimiza-
tion of the trace of the stiffness method has been extended to the problem of
heat transfer in a solid body. In elasticity problems, this procedure is
equivalent to minimizing the potential energy of the model by dividing the
strain energy equally among the elements. The following conclusions were made:

1. Nodal positioning obtained by minimizing the trace of the stiffness
matrix leads to an improved mesh over that obtained by uniform positioning of
the nodes.

2. Since trace minimization is an a priori method, the mesh may be refined
without solving the finite element problem. This makes the minimization proce-
dure computationally inexpensive to perform. The mesh resulting from trace
minimization may be used as a starting mesh for other mesh refinement procedures
such as element division or element enhancement (h-methods or p-methods).

3. The method does not give satisfactory results for analyses in which
both temperature and gradient of temperature are specified boundary conditions
due to the inability of the FEM to strongly satisfy Neumann boundary conditions.
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TABLE I. - COMPARISON BETWEEN UNIFORM MESH, IMPROVED MESH, AND THEORETICAL VALUES FOR

TEMPERATURE SPECIFIED BOUNDARY CONDITION PROBLEM

Radius, Temperature value, OC Uniform mesh error Improved mesh error
mm

Uniform Improved Theory At node In element At node In element
mesh mesh rms rms

20. 100. 100. 100. 0. 0.0000
25.1487 --------- 75.0000 75. 0.0000 0.5171
27.5 65.3550 --------- 65.2453 -0.1096 1.0479
31.6228 -------- 50.0000 50. 0.0000 0.5171
35. 39.0247 38.9260 -0.0988 0.6688
39.7635 -------- 25.0000 25. 0.0000 0.5171
42.5 17.7907 17.7366 -0.0541 0.4422
50. 0. 0. 0. 0. 0.2857 0.0000 0.5171

Standard deviation of within-eleient rms errors 0.3309 0.00001
Overall rms error 0.6801 0.5210

TABLE II. - COMPARISON BETWEEN UNIFORM MESH, IMPROVED MESH, AND THEORETICAL VALUES FOR
TEMPERATURE/TEMPERATURE-GRADIENT SPECIFIED BOUNDARY CONDITIONS

Radius, Temperature value, °C Uniform mesh error Improved mesh error
mm

Uniform Improved Theory At node In element At node In element
mesh mesh rms rms

20. 99.4772 99.5700 100. 0.5228 0.4300
25.1487 ------- 74.6775 75. 0.3225 0.2403
27.5 65.0133 65.2453 0.2321 0.6786
31.6228 ------- 49.7850 50. 0.2150 0.2980
35. 38.8207 38.9260 0.1053 0.4273
39.7635 ------- 24.8925 25. 0.1075 0.3782
42.5 17.6977 17.1366 0.0389 0.3082
50. 0. 0. 0. 0. O.2,11O 0.0000 0.4694

Standard deviation of within..elemenL rms errors 0.0)20 0.0996
Overall rms error 0.4494 0.3803

TABLE Ill. - COMPARISON BETWEEN UNIFORM MESH, IMPROVED MESH, AND THEORETICAL
TEMPERATURE GRADIENT VALUES FOR TEMPERATURE/TEMPERATURE GRADIENT

SPECIFIED BOUNDARY CONDITIONS

Radius, Temperature gradient, °C/mm Uniform mesh error Improved mesh error
mm

Uniform Improved Theory At node In element At node In element
mesh mesh rms rms

20. -4.5952 -4.8347 -5.4568 0.8616 0.6220
25.1487 -------- 3.84490 -4.3396 -0.4947 0.5183
27.5 -3.4923 --------- 3.9686 0.4762 0.6029
31.6228 -------- 3.0578 -3.4512 -0.3934 0.4122
35. -2.8164 --------- -3.1182 0.3018 0.3594
39.7635 -------- 2.4317 -2.7446 -0.3129 0.3278
42.5 -2.3597 --------- -2.5679 0.2082 0.2392
50. -2.3597 -2.4317 -2.1827 -0.1770 0.1134 -0.2490 0.1653

Standard deviation of within-element rms errors 0.2086 0.1490
Overall rms error 0.3755 0.3478
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