
LOAN DOCUMENT
PHOTOGRAPH THIS SHEET

Lfl
LEVEL INVENTORY

DV -___ ENTIFICATION

__: A
I - N

D

DISTRIBUTION STATEMENT L

DTIC TRAC
UNANNOUNCED 03
JUSTIFICATION

BY 9" W
DISTRIBUTION/

AVAILABILITY CODES
DISTRIBUTION AVA__BI__ __ S H

DATE ACCESSIONED

A
DISTRIBUTION STAMP

R
E

DATE RETURNED

91-06533

DATE RECEIVED IN DTIC REGISTERED OR CERTWIED NUMBER

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC
DTIC DOU70A oMENr PROCUSING SHEKr NEW7o'n MAY ME I L

LOAN DOCUMENT



II AD-A239 095I II I III I II Ill~ 1 I iMDll IIIl

The Ohio State University

PERFORMANCE OF DIGITAL COW4UNICATION SYSTEMS

WITH ADAPTIVE ARRAYSi
Matthew W. GanzI

I

IThe Ohio State University

- ElectroScience Laboratory
Deportment of Electrical Engineering

Columbus, Ohio 43212

I_ Technical Report 717253-4
Contract No. N00019-85-C-0119

August 1986

I

Department of the Navy

Naval Air Systems Command
Washington, DC 20461i

I
I



NOTICES I

When Government drawings, specifications, or other data are

used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

I
I
I
I

I

I
U

I

I
. . . . - w = • M m m m m |U



50272-1 -

REPORT DOCUMENTATION !. REPORT No. 2. 3. Peei.ta AccessLoE No0

PAGE _

4Title and Subtitle I. Report oat.t

Performance of Digital Communication Systems with Adaptive August 1986Arrays

7. Authors) Performing Organization Rept. No.

Matthew W. Ganz _ _7Z..5_3-4

2. P erfming Ormingation Name and Address .0. Pniject/TaskfWork Una No.

The Ohio State University ElectroScience Laboratory
1320 Kinnear Road 11. coftracuC) o Gra,() No

Columbus, Ohio 43212 c) N00019-85-C-0119
(6)

12. Sponsoring Orageniztion Memo and Address is. Type of Report & Period Covered

Department of the Navy Technical
Naval Air Systems Command
Washington, DC 20461 "-

IS. Supplementary Notes

1* Absract (Limit: 200 words)
This report examines the protection offered to digital communication systems by the LMS

adaptive array. The performances of systems that use binary phase-shift-keyed (BPSK),
quadrature phase-shi ft-keyed (QPSK), binary differential phase-shi ft-keyed (DPSK), and
noncoherent frequency-shift-keyed (FSK) modulation are calculated when the desired signal is
corrupted by continuous wave (CW) interference. The probability of a symbol error at the
system output is used as the measure of system performance.

It is shown that the LMS array provides a significant degree of interference protection
to each of these systems. The most protection is offered when the desired and interfering
signals are spatially well separated. It is also shown that the performance generally
improves as the array input bandwidth is reduced; however, for the modulation types listed
above, the array input bandwidth must be several times larger than the data bandwidth if
intersymbol interference is to be avoided.

A narrowband BPSK system is described that allows relatively small array input
bandwidths to be used. The performance of this narrowband system is examined for both CW
and Gaussian noise interference. It is shown that this system is most vulnerable to noise
interference when the interference bandwidth is equal to the desired signal bandwidth.

The performance of an adaptive array with tapped delay line weights is also examined.It is shown that, with a single noise interferer, a communication system using this array
performs better than one using a conventional LMS array.

317. Oocument Analysis a. Descrtors

b. 410ntlflei'.OperieEnded Terms

e. OSATI !l/ru

IL. Aalblt C Statiementu It. Security Class (This Report) 21. Ne of Pags

A. Approved for public release; distribution -Uncla.ssifi.ed_..... ---230-.
0is unlimited. 20 S "Clase (This Page) 22. Price5 Unclassified

See ANSI$-Z.IS) See Insrncflon4 en Rererse OPTIONAL FORK 272 (4-77)
(Formerly NTIS.-35)

1 Deprltment of Commerce

I jjJJJJJJ J I



I

V TABLE OF CONTENTS

I CHAPTER PAGE

LIST OF FIGURES v

I INTRODUCTION 1

II THE LMS ADAPTIVE ARRAY 6

A. INTRODUCTION 63 B. THE COMPLEX LMS ARRAY 6

III PERFORMANCE OF A BPSK SYSTEM WITH CW JAMMING 17

I A. INTRODUCTION 17
B. ARRAY PERFORMANCE 18
C. BPSK DETECTOR PERFORMANCE WITH CW AND NOISE

INTERFERENCE 24
0. PERFORMANCE CALCULATIONS FOR COMBINED LMS

ARRAY/BPSK DETECTOR 41

5 III PERFORMANCE OF A QPSK SYSTEM WITH CW INTERFERENCE 64

A. INTRODUCTION 64
B. ARRAY PERFORMANCE 65
C. QPSK DETECTOR PERFORMANCE WITH CW AND AWGN

INTERFERENCE 66
0. PERFORMANCE OF THE COMBINED LMS ARRAY/QPSK

DETECTOR 77

V PERFORMANCE OF A DPSK SYSTEM WITH CW INTERFERENCE q3

A. INTRODUCTION 93
B. ADAPTIVE ARRAY PERFORMANCE 94
C. DPSK DETECTOR PERFORMANCE WITH CW AND AWGN

INTERFERENCE 95
D. PERFORMANCE OF COMBINED LMS ARRAY/DPSK DETECTOR 106

5 VI PERFORMANCE OF AN FSK COMMUNICATION SYSTEM WITH CW
INTERFERENCE 130

A. INTRODUCTION 130, B. ARRAY PERFORMANCE 132
C. FSK DETECTOR PERFORMANCE WITH CW INTERFERENCE AND AWGN 1365 D. PERFORMANCE OF THE COMBINED LMS ARRAY/FSK DETECTOR 144

I iii

£



I

CHAPTER PAGE

VII PERFORMANCE OF A NARROWBAND ADAPTIVE ARRAY WITH BPSK f
SIGNALLING AND CW INTERFERENCE 151

A. INTRODUCTION 151
B. BPSK SIGNALLING OVER A NARROWBAND CHANNEL 152 I
C. RPSK SYSTEM PERFORMANCE WITH AN LMS ARRAY AND CW

INTERFERENCE 161 3
VIII PROTECTION OF A BPSK SYSTEM FROM WIDEBAND INTERFERENCE 178

A. INTRODUCTION 178
B. SYSTEM MODEL 179
C. RESULTS OF PERFORMANCE CALCULATIONS 189
0. PERFORMANCE OF A TAPPED DELAY LINE LMS ARRAY WITH

WIDEBAND INTERFERENCE 202

IX SUMMARY AND CONCLUSIONS 214 3
IREFERENCES 217

II
I
I
I
I
I

iv I
I



I

ILIST OF FIGURES

Figure Page

2.1. The complex LMS array. 7

3.1. BPSK signal and spectrum. 19

3.2. Noise spectrum and transfer function for ideal integrator. 26

3.3. The ideal BPSK detector. 28

3.4. Performance of ideal BPSK detector with CW interferenceS (AwT = 0). 37

3.5. Performance of ideal BPSK detector with CW interference
(AwT = 0). 39

3.6. Performance of ideal 9PSK detector vs. SINR for 2 SNRI, values (AwT = 5, noise bandwidth = I/T, INR varying). 40

3.7. Ideal integrator and BPF transfer functions (only positive
frequencies shown). 44

3.8. BPSK P(e) vs. SNR for 3-element array (Bi=lO0 , k=5, AwT=O). 47

1 3.9. BPSK P(e) vs. INR for 3-element array (Si= 100 , k=5, 60T=0). 48

3.10. BPSK P(e) vs. SNR for 3-element array (9i=200, k=5,
AwT=O). 51

3.11. RPSK P(e) vs. INR for 3-element array (ei= 20 ° , k=5,5 A TO). 52

3.12. 9PSK P(e) vs. SNR for 3-element array (8i= 80° , k=5,
SAwT:O). 53

3.13. 9PSK P(e) vs. INR for 3-element array (Si= 80 °, k=5,
AwT=O). 54

3.14. BPSK P(e) vs. SNR for 3-element array (9i= 10 0 , k=10,
AT=0). 55

1 3.15. 9PSK P(e) vs. INR for 3-element array (9 i=1 00 , k=10,
AwT=O). 56

I

I



Figure Page

3.16. 9PSK P(e) vs. SNR for 3-element array (6i= 2 0 , k=10,
AwT=0). 5

3.17. 8PSK P(e) vs. INR for 3-element array (ei=20*, k=10,
AWT=0). 58I

3.18. RPSK P(e) vs. SNR for 3-element array (ei= 80 , k=10,
AwT=O). 59

3.19. 8PSK P(e) vs. INR for 3-element array (Bi= 800 , k=10,

AwT=0). 605

3.20. BPSK P(e) vs. SNR for 3-element array (9i=100 , k=10,
AwT=21r). 613

3.21. BPSK (P(e) vs. INR for 3-element array (oi=lOO, k=10,
AwT=2f). 62

4.1. A typical QPSK waveform with bit-pair assignments. 65

4.2. The ideal QPSK detector. 67

4.3. QPSK decision space. 67

4.4. Normalized decision space showing composite receivedI
signal. 72

4.5. Performance of ideal QPSK detector with CW interferenceJ
(AwT=0). 75

4.6. Performance of ideal QPSK detector with CW interference3
(AWT=0). 76

4.7. QPSK P(e) vs. SNR for 3-element array (6i=10', k=5, A1.T=0). 78

4.8. QPSK P(e) vs. INR for 3-element array (Oi=i00, k=5, AwT=0). 79

4.9. QPSK P(e) vs. SNR for 3-element array (9i=20-, k=5, AuT=0). 80

4.10. QPSK P(e) vs. INR for 3-element array (9i= 200, k=5,
AwT=O). 81

4.11. QPSK P(e) vs. SNR for 3-element array (9i=800, k=5,
AwT=O). 82

4.12. QPSK P(e) vs. INR for 3-element array (9i=80 0, k=5,
AWT=0). 83£

vi



I

Fi gure Page

1 4.13. QPSK P(e) vs. SNR for 3-element array (i=1O0  k=10,
AwT=O). 85

4.14. QPSK P(e) vs. INR for 3-element array (9i=10', k=10,
AwT=O). 86

4.15. QPSK P(e) vs. SNR for 3-element array (ei=20 °, k=10,
AwT=O) . 87

4.16. QPSK P(e) vs. INR for 3-element array (eOi=2 0 , k=10,
-AT=O). 89

4.17. QPSK P(e) vs. SNR for 3-element array (9i=80°, k=10,--- AT=O) . 89

4.18. QPSK P(e) vs. INR for 3-element array (ei=80 ° , k=10,

AuT=0). 9

4.19. QPSK P(e) vs. SNR for 3-element array (Oi= 10 ° , k=10,
I AuT=21r). 91

4.20. QPSK P(e) vs. INR for 3-element array (ei=10*, k=10,
- AwT=2.). 92

5.1. Ideal DPSK Detector. 96

j 5.2. rPSK decision space. 97

5.3. DPSK composite signal. 98

1 5.4. Performance of ideal DPSK detector with CW interference
(%aT=O). 108

5.5. Performance of ideal DPSK detector with CW interference
(AT:O). odh

5.6. Performance of ideal DPSK detector with CW interference(AuT:=1/2). I110

5.7. Performance of ideal DPSK detector with CW interference

i(AT=n/2). 111

5.8. Performance of an ideal DPSK detector as a function of AuT5 (SNR=10 dB). 112

5.9. Performance of an ideal DPSK detector as a function of£ A(,T (SNR=13 dR). 113

-- vii

,I



Figure Page

5.10. DPSK P(e) vs. SNR for 3-element array (ei=10, k=5, I
AwT=O). 114

5.11. OPSK P(e) vs. INR for 3-element array (el=10*, k=5,
AuT=O). 115

5.12. DPSK P(e) vs. SNR for 3-element array (oi=200, k=5, 1
AOT=0). 116

5.13. DPSK P(e) vs. INR for 3-element array (ei= 20 ° , k=5,
AwT=O). 117 a

5.14. DPSK P(e) vs. SNR for 3-element array (9i= 80 ', k=5,
AT=O). 118 U

5.15. DPSK P(e) vs. INR for 3-element array (9i= 80 ', k=5,
AwT=O). 11q I

5.16. OPSK P(e) vs. SNR for 3-element array (9i=100, k=10,
AuT=O). 120

5.17. DPSK P(e) vs. INR for 3-element array (9i=10 ° , k=10,
AwT=O). 121

5.18. DPSK P(e) vs. SNR for 3-element array (9i=200, k=1l,
AT=O). 122

5.19. nPSK P(e) vs. INR for 3-element array (9i=20°, k=10, I
AuT=O). 123

5.20. OPSK P(e) vs. SNR for 3-element array (9i=80', k=10,
AJT=O). 124

5.21. DPSK P(e) vs. INR for 3-element array (9i=80°, k=10,
AuT=O). 125

5.22. OPSK P(e) vs. SNR for 3-element array (9i=10 °, k=10,
AuT=n/2). 126

5.23. DPSK P(e) vs. INR for 3-element array (9i=100, k=10,
6,.T=n/2 ). 127

5.24. OPSK P(e) vs. SNR for 3-element array (ei=lO0 , k=10,
A&T=2t). 128 3

5.25. OPSK P(e) vs. INR for 3-element array (ei=10 ° , k=10,
A.T=2r). 129

6.1. A typical FSK waveform. 131
viii I

I



Figure Page

36.2. FSK detector. 134

£6.3. Performance of ideal FSK detector with CW interference. 142

6.4. Performance of ideal FSK detector with CW4 interference. 143

56.5. FSK P(e) vs. SNR for 3-element array (6i= 10 , k=5). 145

6.6. FSK P(e) vs. INR for 3-element array (ei=1', k=5). 146

16.7. FSK P(e) vs. SNR for 3-element array (Oi= 2fl0, k=5). 147

6.8. FSK P(e) vs. INR for 3-element array (Oi= 200 , k=5). 148

6.9. FSK P(e) vs. SNR for 3-element array (Oi=8O0, k=5). 149

16.10. FSK P(e) vs. INR for 3-element array (Oi= 9O0, k=5). 150

7.1. Narrowband BPSK communication system. 153

7.2. Transmitter processing of baseband pulse. 155

7.3. Baseband signal for simple binary sequence. 159

7.4. Narrowhand BPSK receiver using an adaptive array. 163

37.5. Desired signal PSI). 164

7.6. P(e) vs. SNR for 3-element narrowband array (Od=00, ai= 1O005k=1/2). 167

7.7. P(e) vs. INR for 3-element narrowband array (Od=00 , O =l0o,
k=1/2). 168

17.8. P(e) vs. SNR for 3-element narrowband array (ed=00. ei=20',
k=1/2). 169

17.9. P(e) vs. INR for 3-element narrowband array (Od=00, ei=200,
k=1/2). 170

I7.10. P(e) vs. SNR for 3-element narrowband array (9d=00.
3.i=80o, k=1/2). 171

7.11. P(e) vs. INR for 3-element narrowband array (Od=O0,I e=80 , k=1/2). 172

7.12. P(e) vs. INR for SNR=12 dR for two different k valuesI(Od=00, 01=100). 173

I ix



I

Figure Page

7.13. Adapted antenna patterns for two k values. SNR:12 dR, 174

6d=O , 8i= 10 . 174

7.14. P(e) vs. INR for three k values. SNR=12 dB, Od=O ,  1
oi= 10 .  177

8.1. Interference PSD at element BPF inputs. 179

8.2. Transversal filter with two delay elements and three
weights. 183

8.3. Frequency response of LMS array in the desired signal
direction (ed=O °, ei=10, SNR = 12 dR, INR = 20 dR,
k = 1/2, Bd = Bi .1). I6

8.4. Frequency response of LMS array in the interference
signal direction (Od0 0 , Oi=10, SNR = 12 dB, INR = 20 dB,
k = 1/2, Bd = Bi = 0.I). 188

8.5. Three-element array performance with noise interference
(id=v0  i ,10 % k = 1/2, Bd = 0.1). 191

8.6. Performance of a 3-element array with noise interference
for various SIR values (Od=O° , k=1/2, Bd= 0 .1). Ri values

and scales are the same as those of Figure 8.5. 192

8.7. Performance of a 3-element array with noise interference
for various SIR values (rd= 90 0, k=1/2, Bd=0.1). Ri values I
and scales are the same as those of Figure 8.5. 194

8.8. 3-element array performance - Case (A). 196 1
8.9. 3-element array performance - case (B). 197

8.10. 3-element array performance - case (C). 199 3
8.11. 3-element array performance - case (0). 200

8.12. Sample interference waveform with 8i  0 0. 203

8.13. 2-tap transversal filter. 205 3
8.14. 3-element tapped delay line LMS array. 206

8.15. Performance of thE 3-element T OL LMS array for the same I

cases shown in Figure 8.5. ?13

I
xI

I



I

CHAPTER I

INTRODUCTION

An adaptive array is an antenna that can change its pattern in

5response to the signals it receives [1,2]. By forming pattern nulls in

the directions of undesired signals, an adaptive array can protect a

communicatior system from interference. The Applebaum adaptive array

[1] uses a steering vector to control the direction of its main beam.

I This array nulls signals that arrive from angles other than the

direction specified by this vector. The LMS array [2] uses a reference

signal to control the main beam direction. Both Applebaum and LMS

arrays can be used in communication systems. When the desired signal

arrival angle is known, the Applebaum array is the best choice. The LMS

array is appropriate if we wish to track a desired signal whose arrival

* angle is unknown.

The LMS array requires a reference signal that is correlated with

3 the desired signal and uncorrelated with any interfering signals [31.

Methods for deriving suitable reference signals have been developed for

5 several modulation types including binary phase-shift-keying (BPSK)

[31, quadrature phase-shift-keying (QPSK) [41, conventional amplitude

modulation (AM) [5], and frequency-shift-keying (FSK) [6,7].

5Experimental systems have been built that verify the feasibility of
each of these systems [3,4,5,71.

I
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I
The output of the LMS array is a weighted sum of the signals at its

inputs. The LMS weights maximize the signal to interference-plus-noise 3
ratio (SINR) at the array output [8]. Therefore, in much of the early

work, the output SINR was used as a figure of merit for adaptive array i
performance [8-13]. However, a few recent studies have used the

bit-error probability at the communication system output as a measure of

performance. Al-Ruwais, Acar, and Compton [12,13,141 estimated P(e) at 5
the output of differential phase-shift-keyed (PSK) communication

systems that included LMS arrays. Their estimates were based on the I
assumption that the noise and interference at the array output

contributed equally to the degradation in detector performance.

Furthermore they assumed that the detector performance was not dependent

on the spectral distribution of the noise or interference.

In this report we examine the performance of digital communication i
systems that use LMS adaptive arrays. We consider the performance with 5
BPSK, QPSK, binary DPSK, and binary FSK modulation of the desired

signal. We examine the effects of single tone (i.e., CW) interference

and bandlimited Gaussian noise interference on these systems. We

identify key operating parameters and calculate their effects on system I
performance. These parameters include the received signal powers,

frequencies, arrival angles, and bandwidths. The results will be of

interest to both the theoretician and the system designer.

We use P(e), the probability of a symbol error at the receiver

output, as the measure of system performance. For each combination of I
desired signal and interference, we calculate the signals at the array

23 I
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I output. We then calculate P(e) of the detector when the array output

signals appear at its input. In each case we assume that the system

uses the ideal detector for the desired signal in the presence of white

Gassian noise.

Although a high SINR at the array output is generally desirable, we

show that P(e) at the detector output cannot generally be determined

g from the SINR alone. For example, the performance of most digital

detectors with Gaussian noise and continuous wave (CW) interference

3 depends on several factors including desired signal power, interference

power, noise spectral density, and noise bandwidth. If we hold all but

one of these parameters constant and let the remaining parameter vary,

then we find that P(e) does vary monotonically with SINR. However, if

£ we allow more than one parameter to vary at a time, we find it

impossible to predict P(e) from the SINR alone. In fact, there are many

cases where P(e) becomes worse as the SINR increases. Therefore, we use

3 P(e) and not SINR as the measure of performance.

We find that the performance of a communication system that

- includes an LMS array is strongly dependent upon the bandwidth of the

signals at the array input. Generally, we find the system performance

improves as the array bandwidth decreases (as long as this bandwidth is

large enough to pass the desired signal). However, many systems require

an array bandwidth that is several times larger than the data bandwidth

of the transmitted bit stream. There are many reasons why this might be

the case. First, the spectrum of a signal modulated by any of the

classical digital modulation techniques discussed above is not limited

to the data bandwidth. Such a signal will be distorted if it is

1 3
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filtered to occupy a narrow bandwidth. Second, it may be difficult to

implement the filters required at thc array input to limit the array

bandwidth. Third, the system may be required to operate over a wide

frequency range to accommodate several signal channels or unknown

doppler shifts. Finally, the spectrum of the desired signal may be

intentionally spread for data security or to permit the generation of a

reference signal r3,4,13]. For these reasons we examine the system 5
performance for several array bandwidths.

We first examine the performance of wideband BPSK, OPSK, OPSK, and I
FSK systems with CW interference. Ry wideband we mean that the array I

bandwidth in Hz is at least ten times as large as the transmitted bit

rate in bits/sec. We find that the qualitative performance of the 5
various systems are commensurate with the well-known performance

characteristics of their respective modulation techniques. Therefore, I
for the remainder of the study, we use RPSK modulation with the 3
understanding that similar results would be obtained using other

modulation methods. I
We examine several array bandwidths using the wideband models. In

each case we find that the system performance improves as we reduce the I
array bandwidth. In order to determine the optimum array bandwidth we £
develop a narrowband RPSK modulation method. This method allows the

desired signal to occupy a channel with a bandwidth equal to the desired 3
signal data rate. We examine the system performance for a wide range of

array input bandwidths. Under most interference scenarios, we find the I
best performance when the array bandwidth is as small as possible (i.e., g

4
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when the array bandwidth is equal to the data bandwidth). However, for

I weak interference, this general rule does not always hold. We examine

the reasons for this anomalous behavior.

In addition to CW interference, we also examine the effects of

5 bandlimited noise interference on the BPSK system performance. We find

that the LMS array with a single complex weight behind each element

5often has diffiulty nulling strong broadband interference. This problem

is overcome if we use tapped delay line filters to implement the weights

1 [15]. We compare the performance of arrays using both of these weight

5 implementations for various signals powers, bandwidths, and arrival

angles.

3 Chapter II presents a description of the LMS array and the

calculations required to predict the signal power levels at the array

Im output. Chapters III through VI describe the performance of the BPSK,

-- QPSK, DPSK, and FSK systems with CW interference. Chapter VII examines

the performance of a narrowband 8PSK system with CW interference for

various input bandwidths. Chapter VIII describes the performance of a

BPSK system with broadband interference for both the LMS and the tapped

I delay line LMS arrays. Finally, Chapter IX contains the conclusions.

£

I
I
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CHAPTER I

5 THE LNS ADAPTIVE ARRAY

A. INTRODUCTION

5 In this chapter we will describe the basic operating principles of

the LMS adaptive array. We present the mathematical models used in

3 later sections to predict array performance.

The discussion of array operation presented in this chapter is

I abbreviated and is presented mainly to define the notation used in the

pfollowing chapters. More detailed descriptions of the LMS array and

its operation are given in [21 and [15]. The notation used in this

5 section is generally consistent with that used in these references.

I B. THE COMPLEX LMS ARRAY

5 Figure 2.1 shows a block diagram of an N-element adaptive array.

The signal from each antenna element is fed through an ideal bandpass

I filter (BPF), which limits the thermal noise power and rejects out-of-

band interference at the array input. We denote the analytic signal at

the input to the i array input by i(t). For the N-element array we

113define the signal vector X which is composed of the array input

signals,

11
1

3, 1

1
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Figure 2.1. The complex LMS array.3
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I~ 1l(t)

x2 (t) (2.1)

XN(t) _

Each element signal is multiplied by a complex weight and the weighted

signals are summed to produce the array output s(t). We define the

5 complex weight vector,

w 
1

2 (2.2)

5The array output is given by,

s(t) = W Tx . (2.3)

m The array output is subtracted from a reference signal, (t), to

produce an error signal e(t),

m The LMS array adjusts the array weights to minimize the mean square

5 value of this error signal [2]. A suitable reference signal for the

array can often be extracted from the signals at the array output. The

3 circuit that derives this reference signal typically uses known

*8

m



I
properties of the desired signal (such as spread-spectrum sequence

characteristics) to partially separate the desired and undesired 3
components of the array output r3,4,5]. The signal at the circuit

output should be well correlated with the desired signal and poorly I
correlated with the interference. The references cited in Chapter I 3
discuss reference generation techniques for several types of desired

signal modulation. In this report we do not address the problem of £
reference signal generation. We simply assume that the reference signal

is a perfect replica of the desired signal at the output of BFP1. 3
In steady state the LMS weight vector is given by [1], 3
W =is , (2.5) g

where 0 is the Covariance Matrix, i
= E[X*xT1 , (2.6)

and S is the reference correlation vector, which is given by,

S = E[X*(t)] . (2.7) 3
where E[o] denotes the expected value. It can be shown [151 that the 3
steady state weights given by (2.5) produce the maximum attainable

Signal-to-Interference-plus-Noise-Ratio (SINR) at the array output.

It is often convenient to separate the desired, interfering, and 3
thermal noise components of the incoming signal vector as,

X = Xd  + X n (2.8) I
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If we assume that the desired, interfering, and thermal noise signals

5 are uncorrelated (and zero mean), then we can separate the three related

components of the covariance matrix

:E[X XT]II * T**

= E[X d Xd
T  + E[X i XiT + E[Xn XnT

I d + d + n (2.9)

5 where

d = E[Xd Xd 'I
a i = E[Xi*XiT ] ' (2.11)I and 1 11

3 n = E[Xn Xn (2.12)

3 Thus we have divided the covariance matrix into a sum of three separate

matrices, each involving only one signal. This step simplifies

subsequent derivations.

3 We assume in the derivations below that we have a three

element linear array with one half wavelength spacing between elements.

3Figure 2.1 shows the array geometry. Of course, we can extend our

results to cases where the array has more than three elements; however,

I the three element array calculations suitably illustrate the system

_ operating principles and performance.

We assume in the derivations below that we have a 3-element linear

i array with one-half wavelength element spacing as shown in Figure 2.1.

* 1
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A 3-element array has two degrees of freedom. The array can therefore

steer a null on the interference and simultaneously maximize the desired 3
signal response.*

We assume that the desired signal is incident from an angle of ed

(measured from the broadside direction) and a single interfering signal 3
is incident from an angle of Bi .

The interelement time delay between the signals on £
adjacent elements are given by

Td = (L/c)sined (2.13) 3
and,

Ti = (L/c)sine i  (2.14) 3
for the desired signal and interference respectively, where c is the I
propagation velocity and L is the element spacing. The interelement 5
phase shifts for the desired and interfering signals are given by,

d = rsin(ed) (2.15) 1
and, 3

i = (wi/wd)sin(ei) (2.16) g
respectively, where wd & wi are the desired signal and interference

frequencies. Slight variations in wi about wd have little effect on

*There are limits to the resolution capabilities of the 3-element array. I
We shall find in later chapters that the array cannot keep the desired
signal at a pattern maximum when a very strong interfering signal is
spatially close to the desired signal.

11 I
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most performance calculations. From Equation (2.16) we see that a small

change in wi produces a corresponding change in 4i. Similarly a small

I change in 6i has the same effect. Therefore, the change in the array

performance caused by variations in wi are identical to those caused by

3 a corresponding variation in 6i . If these variations are small, then

the array performance is negligibly affected. In the following chapters

we usually assume that i=nsin~i. This assumption will allow us to

3 calculate the system performance without specifying the operating

frequency.

3 We denote the analytic signal representation of the desired, and

interfering signals as received by element I by (t) and T(t)

3 respectively. We define the complex autocorrelation function (ACF) for

the desired and interfering signals as,

Rd(T) = E[d*(t)d(t+T)j (2.17)
I and,

3 Rj(T) = E[* (t)T(t+T)] . (?. 18)

* We assume that white Gaussian noise is present at the input of each of

the element 8PF's. We assume that the noise signals at the various RPF

U outputs are mutually statistically independent. We denote these signals

g by nl(t), -2 (t) and n3 (t) with,

IE[n i (t)n(t) i , (2.012)

1 1j

where 6ij is the Kronecker delta.

* 12
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We now can write the desired signal, interference signal, and noise

covariance matrices for the three-element array, 3
Rd(O) Rd(-Td) Rd(-2Td) 5

td R (Td) Rd(O) Rd(-Td) (2.20)

Rd(2Td) Rd(Td) Rd(O) _ U
R(O) R-(-Ti) R-(-2Ti) I

i RY(Ti) Ri(O) Ri(-Td) (2.21)_(2Ti ) R_(T i ) R_(O) _

and, I

t 21 ' (2.22) 3
where I is the identity matrix. 3

The covariance matrix can now be determined from (2.9), and

(2.20) through (2.22). 3
We assume the reference signal for the array is of the form,

r(t) = R d(t) (?.23)

We note that the SINR at the array output is independent of the

magnitude of R (for non-zero R). An increase or decrease in R produces 5
a proportionate increase or decrease in the level of each signal at the

array output. We are therefore free to arbitrarily set R without 1
affecting the relative values of the signals at the array output.

Typically a reference generation system generates a reference signal

which is highly correlated with the desired signal and has fixed 3
13
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amplitude. We can model such a fixed-amplitude signal by letting

3 R = 1//-(----in where (Pd)in is the power of the desired signal.

With the reference signal if the form given by (2.23) the reference

I correlation vector is given by,

S = EEX*r(t)]

3 = R E[X*d(t)] . (2.24)

Since d(t), 1(t), and the noise signals are uncorrelated we can expand

(2.24) into,

I S = R E[(Xd* + Xi + Xn*)d(t ) l

3 = R E[Xd*d(t)] . (P.25)

3 Thus, for our three element array

3 - R;(O) -

S = R Rd(Td) (2.26)

3 Rd(2Td)

The complex weight vector is then determined from (2.5), (?.9), and

(2.25).

I We can now determine the desired, interfering and noise signals at

the array output. From (2.3) and (2.8) we write the array output signal

I S as,

U (t) = 5s(t) + s5(t) + sn(t) (2.27)

3 14
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where, 3
Sd(t) = V wja[t-(j-1)Td

j=1 1

3

Si(t) = w[t (2.29)
J=l 

and,I

Sn(t) = wlnl(t) + w2n2 (t) + w3n3 (t) . (2.30) 1
The power of the desired signal at the array output is given by,

Pd = I/2Rd(O) I

= 1/2E{Csd(t)][sd(t)]*} . (2.31) 1
From (2.28) and (2.31), we have I

3 3
P 1/2 1 1 wjwk*Rd[(j-k)Td] (2.32)

j=1 k=1 
I

Similarly we have,

33 1
Pi = 1/2 X I wWk*R-[(J'k)T i  (2.33)j=l k=l

and, 3

33
P n = 1/2 1 1w i I a (2.34)

j=1"I

15 I
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The SINR at the array output is given by,

SINR = + P, 
(2.35)

3 In many of the previous adaptive array studies, the SINR at the

array output was used as a figure of merit. In the following sections

3 we examine several different types of digital communication systems and

determine their performance using the probability of error as a figure

of merit. We show that, although SINR is often useful, it does not

* always give sufficient information to accurately predict the system

performance.

i
I
I
I
I
U
i
I
I
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CHAPTER III

PERFORMANCE OF A BPSK SYSTEM WITH CW JAMMING

I A. INTRODUCTION

3 In this chapter we examine the performance of a BPSK communication

system that includes an LMS array to suppress CW interference. Figure

3.1(a) shows a typical BPSK signal waveform. A "1" symbol is

3 represented by a sinusoidal waveform of duration T seconds. A "0"

symbol is represented by a similar sinusoid waveform which is 180' out

3 of phase with the "I" waveform. The receiver estimates the phase of the

received signal at the end of each symbol interval and decides whether a

3 t1l' or "0"1 was sent during the interval.

3 The model we develop in this chapter assumes that the bandwidths of

the BPFs at the element inputs are several times larger than the data

3 bandwidth of the transmitted bit stream. There are several reasons why

this assumption accurately models many real systems. First, the

I spectrum of a BPSK signal is not limited to the data bandwidth. Such a

3 signal will be distorted if it is filtered to occupy a narrow bandwidth.

Second, it may be difficult to implement the filters required at the

'3 array input to limit the array bandwidth. Third, the system may be

required to operate over a wide frequency range to accommodate several

I signal channels or unknown doppler shifts. Finally, the spectrum of the

g desired signal may be intentionally spread for data security [161 or to

* 17
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permit the generation of a reference signal. In the last case the

spectrum may be spread by either direct-sequence spreading [3,41 or 3
frequency hopping [14]. We defer consideration of more narrowband

systems (those with input bandiwdths that are approximately equal to the m

data bandwidth) until Chapter VII. 5
In Section B we examine the performance of the LMS array with the

desired and interfering signals as described above. In Section C we 3
calculate P(e) for the ideal BPSK detector when the desired signal is

corrupted by both CW interference and Gaussian noise. In Section D we 3
determine the performance of the combined LMS array and BPSK detector. 3
We determine how this performance depends on the received signal power

levels, frequencies, and the bit duration. m

B. ARRAY PERFORMANCE I
During the nth symbol interval the BPSK desired signal at the 3

output of BPF1 is given by,

3(t) = Adexp{j[w dt + n(t) + dl} (n-1)T<t<nT (3.1)

where 5
Ad = the desired signal amplitude at the array input,

wd = the desired signal carrier frequency,

d =  a random phase angle uniformly distributed on [f0,27ij
(We denote this by saying Ud is U[0,2n1.)

-)n(t) = the data modulation during the nth symbol interval where,

) 0 with prob. 1/2 (during "0" symbols)

i with prob. 1/2 (during "1" symbols). 3
18
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I I- T SECONDS L
F

"0 BIT" "1 BIT"

I
3 (a) BPSK waveform.

I
I

I -- 0Jd Wd

I

I (b) BPSK PSD.

3 Figure 3.1. BPSK signal and spectrum.

I
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m

and T is the symbol duration.

We assume that the symbol stream is stationary. The complex 3
autocorrelation function for the desired signal is given by,

Rd( ) = E[d*(T)d(t+T)] m

Ad2 [l - ITI/T] exp[JwdTI (I < T U
(3.2) 1

ITI > 0.

The Power Spectral Density (PSD) of the desired signal is shown in

Figure 3.1(b).

i(t), the CW interfering signal, is given by,

i(t) = Ai exp[jw it+'] (3.3)

where, 3

Ai = the interference amplitude, 3
4'. = the interference phase. i is IJO,2w] and

independent of *d"

and,

W. = the interference frequency.

The complex autocorrelation function of this signal is given by, U
Rj(r) = E[i*(t)T(t+T)]

= Ai2 exp[jw i . (3.4)

20 I
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We assume an independent thermal noise component with power a2 is

3 present in each element signal. We therefore have

E[ni*(t)n.(t) ] = 026ij . (3.5)

We now calculate the array weights and the power levels of the

various signals at the array output. Since d(t), i(t) and the thermal

3 noise are uncorrelated we can determine the covariance matrix by summing

its three components,

ITdI -J4 d i2Tdl J 2 d
-T (---e (1-T)e

S 2  (1 Id J d 1 ITdI -Jd
I d AdZ l--T-)e I( l-T-)e

d2Td, J2'd ITdd J4d 1
32dI )e (1--T)-e _)

(3.6)

1 e e -j2i

Ai2  e Ji 1 ej~ (3.7)U
Ie e i

and,

n a2 1 (3.8)

g where I is the identity matrix and it is assumed that 12TdI<T.

I



I
We make the simplifying assumption that the symbol period is very

long compared with the interelement time delay. This assumption is 3
reasonable since the elements are one-half wavelength apart. Thus only

a fraction of an RF carrier cycle occurs during a time interval of

duration Td. Many such cycles occur, however, during each bit interval

of length T. With this assumption we can calculate the array

performance without specifying the operating frequency or symbol rate. 3
The desired signal covariance matrix becomes

-1 e-J d e-J 2 d

D = A d2 e 1d e- j ( .d

j20 e I-- J2d eJ~d -) I

The total covariance matrix then becomes, I

¢ d + I i + D n

IA2+A.i2 +02  Ad2e~jd +A 2e-~ A d2e j2 d+A i2e- -jiI

Ad2e jd+A i2e j~ Ad 2+A 2+(12 Ad 2e -j~d+ A .2 - I

A d2 e j2 d +A 2ej 24i  Ad2eJ(d+Ai2ej~i A d2 + A + 2

(3.1n) 3
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The reference correlation vector (2.26) is given by,

* 11

S = Ad explj4d] (3.11)

exp[j24d]_

We can now calculate the weight vector from (2.5) and Pd, Pi, and Pn

3 from (2.32), (?.33) and (2.34).

In the next section we derive the performance of the ideal RPSK

3 detector when the desired signal is corrupted by thermal noise and CW

interference. In order to determine the detector performance we must

know the composite signal at the detector input. To determine this

signal we switch to the real representation of the signals at the array

output.

3 At the array output the desired signal is a BPSK signal with power

Pd This (real) signal during the nth bit interval is given by,

Sd(t) = /-Yd cos1wdt+ n(t)+Yd], (3.1?)I
where Pd, wd, and tn(t) are as defined above and Yd is the desired

3 signal phase angle at the array output. Since the covariance matrix

and the reference correlation vector are both independent of 'Pd (the

I phase angle of the desired signal at the array input), the steady state

g weights are also independent of *d- Therefore, Yd is given by (Yd)o +

'd where (Yd)o is some fixed phase angle. Thus, since d is UI0,2i],

3 the (modulo-2N) value of Yd is also U[0,21r]. This is a property of the

modulo-M sum of two variables, one of which is 1J[O,M]. This property is

U proven in [17] by Scire.

23
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We now determine the amplitude and phase of the CW interfering

signal at the array output. This signal, which has power Pi, is given 1

by,

si(t) = V- cos[Wi (t) + Yi , (3.13) I
where yi is the phase angle of the interference at the array output. We

can show that yi is U[0,27] using arguments analogous to those used above 3
to show that Yd is U[0,2T].

Finally, the noise signal at the array output is a zero-mean I
Gaussian random process, sn(t), with variance Pn- This noise is 3
bandlimited Gaussian noise with a flat PSD in the passband of the ideal

BPFs at the element inputs. The value of the two-sided PSO in this 1

passband, which we denote by n/2 is given by, I
No 3

= )Wmn2 (3.14)

where No/2 is the two-sided thermal noise PSD at the element inputs. The 3
PSD of the noise signal at the array output is shown in Figure 3.2(a). I

C. BPSK DETECTOR PERFORMANCE WITH CW AND NOISE INTERFERENCE

In this section we derive the performance of an ideal BPSK detector

when the BPSK desired signal is corrupted by additive white Gaussian I
noise (AWGN) and CW interference. Rosenbaum [181 and Prabhu [1qi have

examined similar problems; however, these early works were typically

rather vague in their description of the "ideal" receiver. The receiver 3
24
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model in these papers assumes that, in addition to a desired and

I interfering signals, there is Gaussian noise with power a2 at the

detector input. However, the importance of the noise PS and the signal

energy-per-bit are generally not discussed in detail. The dependence of

5 performance on the frequency of the interfering signal is also not

discussed.

3 To thoroughly understand the effects of the various signal

energies, the noise PSD, and the interference frequency on the detector

performance we shall carefully derive P(e) of the ideal RPSK detector.

3The BPSK detector shown in Figure 3.3 is ideal if the only undesired

signal is additive white Gaussian noise (AWGN) [201. The incoming

3 signal, s(t), is multiplied by cos(wdt+Yd). The output of the

multiplier is integrated over the bit interval and a bit decision is

made based upon the sign of the integrator output at the end of the bit

3 interval. A positive output indicates a "0" bit and a negative output

indicates a "1" bit.

3 Note that this ideal detector requires a coherent reference signal

to operate. A method for deriving such a signal from the received

I signal is discussed in [31. We assume that a suitable reference signal

3 is available and that this signal is free of amplitude and phase noise.

Summarizing the results of the previous sections, the composite

* signal at the detector input is

3 s(t) = Sd(t) + si(t) + Sn(t) (3.15)

2
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Nois spctu at•Ud Wd 01

(a) Noise spectrum at detector input.
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(b) Noise spectrum at integrator input.

I
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(c) IH(,)I 2 for ideal integrator.

Figure 3.2. Noise spectrum and transfer function for ideal integrator. 3
I

263

I



B where Sd(t) and si(t) are given by (3.12) and (3.13), and sn(t) is a

3 narrowband Gaussian random process which has a flat (two-sided) PSfl with

magnitude n/2 in the passband.

I The signal at the input to the integrator is given by

Is(t)cos(w dt+yd) = sd(t)+Si(t)+Sn(t)] cos(wdt+-Yd) (3.16)

We can substitute sd(t) and si(t) into this expression and

5 integrate between (n-1)T and nT to determine the signal at the

integrator output at the end of the bit interval

3S(n) X Xd(n)+Xi(n )+Xn (r) (3. 17)

* where,

nT
X d(n) f I Ipdcosrwdt + n(t) + _Yd1 cosluwdt + Yd I dt

U nT
X. (n) f I VPT cosrwt+y. dt (3.19)1~~i + (n1) 1 1 coslwdt + d1

3 and,

nT
X X(n) f s sf(t)coswdtId dt (3.2nl)

n (n-I)Tn td

27
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X nITLOGIC DECISIONS

I X (n) > 0 --* nth BIT "0"I

COS(Wdt + Yd X(n) <0= nth BIT"I I

IFigure 3.3. The ideal RPSK detector.I

We now evaluate Xd(n), Xi(n) and Xn(n)* and then combine the results to 3
determine X(n). Application of a standard trigonometric identify to the

integrand in Equation (3.18) yields, 3

Xd (n) = VP-d"2 f cosr2wdt+4n(t) + 2yd ] + cosln(t)I dt . (3.21)

(n-l)T

* Note that Xd(n), Xi(n) and Xn(n) are not the signal vectors Xd, Xi and 3
Xn defined in Chapter 2. Although the similar notation might be
somewhat confusing at first, the intended variable should be clear
from the context. 3
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We ignore the double frequency term since its contribution to the

U value of the integral is negligible due to our assumption that many

carrier cycles occur during each bit interval. Therefore, we have,

nT
Xd(n) = d'2 f cos[ (t)] dt

(n-l)T

= V(Pd/2)T cos[ n(t)] , (3.22)

I
since c n(t) is constant during the bit interval.

3 We now calculate Xi (n). We first expand the integrand in Equation

(3.19),

nT
Xi(n) /Pi1 2 f {cos[(w d+wi)t + Yd + YiI

(n-l)T

+ cOsE(w d'i)t + Yd - Yi }dt . (3.23)

i We let

I
Yrel = Yd - "i ' (3.24)i

and,

i
Aw = wd - .i (3.25)

3 29
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Substitution of these new variables into (3.23) yields,

nT U
Xi (n) = /P-/2 f cos(Awt + Yrel) dt. (3.26)

(n-1)T

after we drop the second harmonic terms. We evaluate the integral to 3
give us, {

Xi (n) = /P 7 2 [sin(nawT + yrel) - sin(n-1)AwT + Yrel] (3.27) @
Simplification of this expression with standard trigonometric identities

yields,

AT2n-1 U
Xi (n) = vP'W T sinc (2--) cos (Y +2AT), (3.2,9)

11 2 rel '2

where the sinc function is given by,

sinc(x) = [sin(x)]/x, (3.29)

with 3

sinc(O) = 1. (3.30)

From (3.28) we see that, for a given interference power level, the 3
amplitude of the interference at the integrator output is directly

proportional to sinc(AwT/2). At the points where the sinc function is

zero (i.e. for AwT/2 = ni) the interference does not disrupt the 3

30n
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detector. At these values of AwT, the baseband interference product at

3 the multiplier output is a sinusoid with an integral number of cycles

occurring during the integration period. Therefore the contribution of

I the interference to the integrator output is zero. The third integral,

Xn(n), is the integral of the product sn(t)cos(wdt+Yd). Xn (n) is most

easily evaluated in the frequency domain. If the input noise signal has

3 the PSD shown in Figure 3.2(a) then the signal at the integrator input

has the PSO N(w) shown in Figure 3.2(b).

* In the frequency domain the integrator is equivalent to a linear

filter with a transfer function of

H(w) 1-exp(jwT)
Hj (3.31)

U At the end of the integration period the noise produces an additive

Gaussian random variable at the integrator output This zero mean random

variable has a variance N', which is given by,

1 1 0

N' = (-) f N(w)IH(w)1 2 dw

3 = ( ) T2 f N(w)sinc 2 (y) dw. (3.32)

I We can make some simplifying assumptions which make evaluation of

(3.32) more straightforward with only negligible effects on the results.
wT

In Figure 3.2(c) we show sinc2 The integrand in (3.32) is the

* 31I
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product of the two curves shown in Figure 3.2(b) and 3.2(c). From
these figures it is apparent that the contribution of N(w)sinc2 (2 ) to

the value of the integral quickly diminishes as w becomes large (due to

the fast roll-off of the sinc 2 term). Since we have assumed that the I
input BPFs are much larger than the data bandwidth of the desired

signal, we can make the approximation that the noise at the integrator

input is white, with PSD L at all frequencies. With this approximation

we can easily evaluate (3.32) I
N' = (1 )T2 (2) f sinc(2-) dw. (3.33)

If we now make the substitution,

2 :(3.34) I
then (3.33) becomes,

N' ( 2)T F sinc2 (x) dx. (3.35)

The integral in (3.35) is found to be equal to fr using Parseval's I
theorem [21]. Thus N', the variance of the noise random variable at the

integrator output, is given by

N' = Tn/4. (3.36)

The error in N' due to our assumption that the noise at the detector I
input is white is less than 2% if the actual noise bandwidth at this

input is greater than approximately 1O/T Hz. The effects of noise

bandwidth are discussed further in the next section. 3
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We now combine (3.22), (3.28), and (3.36) to form the expression

3 for the composite random variable at the integrator output at the

sampling instant. This random variable, X(n), is given by,

IX(n) = /(Pd/2)Tcos 1n4 )
+ /(P i 2)Tsinc(&wT/2)cos(y rel + 2 21 wl + X n (n), (3.37)

3where n (t) is either 0 or N depending on the data bit and X n (n) is

normally distributed with zero mean and variance nTf4.

3 We now can determine the probability of error for the ideal 9PSK

receiver. If both bits are equally likely the conditional probability

Iof error given y rel is given by,

3P(ely el) = 0.5P(eIlYrel911011 sent) + O.'5P(eI-Yrel "1" sent)

3 0.5PtX(n) < Oly rel,4(t)=01 + O.5PtX(n)>Oiy rel4n (t)=I

_______2n -13 ~ ~~P(elye 0 .5Pt(Pd/2) +/P/2)Tsinc(T/)o(r 1

U+ X n(n) < 01

+ ~ ~ 7.P~VP/) + (P /2)Tsinc(AwT/2)co (Yre 1 +

+ X ( n ) > 0 1 .
-

P e l r e l ) = 0 5 P ( X n n ( P -d / 2 T 2 -

-/(P if2)TsinC(AwT/2)cos-Y rel + 2i- AwT)}

+ O.5P{X n(n) > -P2T

I-/(P I2)Tsinc(AwTI2)cos(yre + 2-- AwT)}
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P(elyreI) 2~ PT2-

PdT [TP1  2n-I . I
+ 0.5 erfc + V S .. inc(AwT)coS(Yrel +----AwT)

(3.38)

where erfc is the complementary error function defined by, I

erfc(x) = I f exp(-z 2 /2) dz. (3.39)XI

We now define the desired signal and interference energy-per-bit- 3
interval by,

Ed = PdT ,  (3.40) 3
and

E . = P iT, (3.41)1

respectively. Equation (3.38) can then be rewritten as, I
P(eIyrel) 0.5erfc -(2EId/n)

- ,nsinc Awl" 2-.
,-1 2 -1cos rel + 23

+ 0.5 erfc (Pd~)I

+ (-,)sinc(AwT/2)cos l_ rel+ 2 --T (3.42)
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Since yrel is uniformly distributed on [0,2ir] (due to (3.24) and the

3 theorem proven by Scire in [17]) we can determine the probability of

error by evaluating

P(e) = .f P(elYrel) dyre l  (3.43)

l where P(elyrel) is given by (3.42) above.

Several simplifications can be made before evaluating (3.43).

Since the integrand, P(elyrel), is periodic in Yrel with period 2n and

Uthe integral is over a full period of Yrel, both of the two error

functions which compose the integrand contribute equally to the value of

the integral. The fact that the integration is over a whole period of

Yrel allows us to remove the factor of AwT/2 from the argument of the

cosine in the integrand without affecting the result. With the above

5simplifications and (3.42) and (3.43), the expression for P(e) becomes,

I 27r

P(e) : () f erfc {V-(7dTn)Io
AmT

3 + I(2Ei/n) sinc (-2) cos(Yrel)} dYrel (3.44)

3 We define the signal energy-to-noise density ratio at the detector input

by

SNR = Ed/n, (3.45)

3and similarly define the INR at the detector input by

INR = Ei/n. (3.46)

1
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These definitions can be used together with (3.44) to calculate

P(e) for various values of SNR and INR by numerically evaluating the 3
required inteqral.

Figure 3.4 contains several curves which illusLrate the detector I
performance when the interference frequency offset is zero (i.e. AwT=O). 3
Each curve is a plot of P(e) vs. SNR for a fixed value of signal-to-

interference ratio, SIR (SIR=Ed/Ei) Note that, although this figure

is very similar to that shown by Rosenbaum [101, the approach taken in

the derivation is different here as discussed previously. From this I
figure we see that, for a fixed SIR, P(e) decreases as SNR increases.

Similarly, for a fixed SNR value, P(e) increases as SIR decreases. We

find very poor performance for SIR values of 0 dB and less. 3
Figure 3.5 shows the same data which are plotted in Figure 3.4;

however, in Figure 3.5 the parameterization has been changed. In Figure 1
3.5 P(e) is plotted vs. INR for several fixed values of SNR. Although

Figures 3.4 and 3.5 show the same data, one or the other is often more

useful when trying to understand a particular facet of the system 5
performance. In the remainder of this report we shall often present

results in similar pairs of plots, one showing P(e) vs. SNR (for several 3
fixed SIRs) and one showing P(e) vs. INR (for several fixed SNRs).

*The value of SIR is constant for each curve in Figure 3.4. Therefore,

it is assumed that, as we move along a curve by varying the SNR, the
interference power simultaneously varies in order to keep the SIR
fixed.
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IFigure 3.4. Performance of ideal BPSK detector with CW interference
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It is interesting to examine P(e) for the ideal BPSK detector as a I
function of SINR as defined by (2.31). Since the denominator in this 3
expression for SINR contains two terms, it is clear that different

combinations of interference and noise power can lead to the same value 3
of SINR. However, from (3.44) we see that the ideal detector is not

equally susceptible to interference power and total input noise power. I
From this equation we see that the detector performance is dependent

upon the noise PSI, the interference energy-per-bit-interval, and the

interference frequency. Therefore we might suspect that two different 3
combinations of the input signals which have equal SINR values might

produce different P(e) values. Figure 3.6 shows that this can indeed I
happen. This figure shows how P(e) varies with SINR for two different

SNR values. The interference power was allowed to vary for each curve

but the noise bandwidth, noise PSD level, and the interference frequency

were held fixed for each curve. From this figure we see that vastly

different error rates can occur for the same SINR value. For example, I
for a SINR value of -7 dg, there is a difference of 7 orders of

magnitude between the two P(e) curves.

In general we find that P(e) is a function of desired signal power, I

interference power, interference frequency, noise PSD, and noise

bandwidth. If all but one of these parameters is held constant and the I
remaining parameter is allowed to vary, we find that P(e) does decrease

monotonically as SINR increases. However, in the general case, we must

calculate P(e) for a given scenario using (3.44). The inability to I

accurately predict system performance using SINR alone was the prime

motivation for this study. 3
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D. PERFORMANCE CALCULATIONS FOR COMBINEO LIS
ARRAY/HPSK DETECTOR

In this section we combine the results of the previous two sections

to determine the overall performance of the BPSK communication system

which uses the LMS array. We first present a set of variables (such as

SNR, signal arrival angles, etc.) which completely specify the problem.

We then calculate the adaptive array performance using the derivations

in part B of this chapter. Once we have determined the power of each

I signal at the array output (or PSD in the case of the noise) we

3 calculate P(e) of the system using the results of the previous section.

Several scenarios are then examined in order to obtain both a

qualitative and quantitative understanding of the system performance.

We first present a set of six variables which specify the problem.

3 These variables are:

3 (Ed)in/No = the SNR* at each element input.
Ed is the desired signal energy-per-bit at each element
input and No/2 is the 2-sided noise PS) (in W/Hz).

I (Ei)in/No = the INR at each element input.
Ei is the interference signal energy-per-bit-interval3 at each element input and No/2 is as defined above.

0 d = the desired signal arrival angle as defined in Section
2.

6i = the interference arrival angle as defined in Section 2.

I
*In this report we defiie the SNR and INR as (Ed)in/No and (Ei)in/No,
respectively. These ratios are actually energy-per-bit-interval to
noise PSD ratios. In most previous adaptive array work SNR and INR are
defined as Ad2/02 and Ai2 /o2 . We use the former definition since these
are the forms that SNR and INR typically appear in the expressions for3 the detector P(e).
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k = the array bandwidth factor.
k=BA/(2/T) where RA is the input BPF bandwidth (in Hz.)
and T is the bit duration. Thus k is the ratio of the
input noise bandwidth of the array to the width of the
main peak in the desired signal PSD. Figure 3.7
illustrates this definition.

AwT = the change in phase of the interference signal with
respect to the desired signal during each bit interval
(see section C of this chapter).

To calculate the array weights we only need to specify the ratios
Ad 2 Ai2

02 and 2 . These ratios can be calculated given the first five of the

variables listed above. We first note that the noise power at each RPF 3
output is given by

02 = kNo(2/T). (3.47)

We solve this expression for No,

No = 2
N0-2k (3.4,R)

We now write the desired signal energy at each element input as,

(Ed)in = No(Ed)in/No. (3.4Q) I

Substitution of (3.48) into (3.49) yields

a2 T
(Ed)in = @2T ) (Ed)in/No (3.5n) 3

which we can rearrange as 3
(Ed)in 1 (Ed)in

Ta2  =2k N0 (3.51) I

42

I



I
I

Since the desired signal power (Pd) at each BPF output is equal to

I (Ed)in/T, (3.51) becomes

(Pd)in I (Ed)in
o2  = 2k N (3.52)

I or equivalently,

Ad2  1 (Ed)in

o2  2k N 0 (3.53)

I A similar derivation shows that,

Ai2  1 (Ei)in
02  -2k N O0 (3.54)

Ad2  Ai2

I Having determined -. and aT, we can apply the methods discussed

in section B of this chapter to determine the desired signal and

interference powers at the array output. The noise PSD at the array

output is given by (3.14).

I Once we have determined the signals at the array output we can use

3 the results of the previous section to determine P(e) for the RPSK

detector which follows the adaptive array.

3 The procedure outlined above was performed for several different

scenarios. Figures 3.8 and 3.9 show typical results. These figures

i show how P(e) varies with SNR and NR for the 3-element array when the

desired signal arrives from the broadside direction (i.e., 8d =O)° and

the interference arrival angle Oi, is 100. The array bandwidth factor

I 43I
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Figure 3.7. Ideal integrator and BPF transfer functions (only positive
frequencies shown).

k, was set equal to 5 in each of the cases shown in these figures and 3
awT was set equal to zero.

The array behavior is most easily explained by examination of

Figure 3.9. For each given SNR curve we see that, as INR increases,

P(e) first increases and then decreases. The maximum in the P(e) curve

occurs typically at INR values between 10 and 20 dB. It is in this INR 3
range where the interference and noise powers are roughly equal at the

element inputs. At INR values below approximately 10 dR the thermal

noise is dominant at the array input and the array pattern is relatively

unaffected by the interference. Thus as INR increases, the interference I
power at the array output and P(e) both increase. As the INR increases U
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above approximately 10 dB the array begins to null the jammer. As the

INR is increased further this null becomes deeper and a point is reached

i where any additional increase in input interference power produces a

corresponding decrease in the interference power at the array output.

3 Therefore, at very high INR values, a very deep null is formed in the

interfering signal direction. At these high INR values the interference

power becomes negligible at the array output (when compared with the

thermal noise) and the P(e) curves each asymptotically approach a

constant value.

It is interesting to note that the P(e) value which a particular

curve approaches at high INR values is larger than the value which this

curve has at very low INR values. This phenomenon is easily explained.

At very low INR values the array is not affected by the interference and

it can adjust its weights in order to maximize gain in the desired

ft signal direction. At very high INR values the array behavior is

constrained so that it must keep a deep null in the direction of the

3 interference.

Since the desired and interfering signals are spatially close, the

desired signal lies very close to the null. The 3-element array does

3 not have sufficient resolution to simultaneously steer a null and a

pattern maximum only a few degrees apart. Therefore, at high INR

values, even though the interference power at the array output is

reduced to a negligible level, the desired signal power is also slightly

I reduced. The resulting decrease in the SNR in the array output produces

the larger value of P(e) at very high INR values compared to P(e) at low

INR levels.
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The performance at high INR values can generally be improved by

adding elements (and thus degrees of freedom) to the array or by I
increasing the spatial separation between the desired and interfering

signals. To determine the effects of signal arrival angle on

performance we have calculated the expected system P(e) for interference

arrival angles of 200 and 800. The results for these cases are shown in

Figures 3.10 through 3.13. As in the previous cases the array bandwidth I

factor k, was set equal to at 5. Figures 3.10 and 3.11 show the results

for 6i=200 and Figures 3.12 and 3.13 show the results for Oi= 800 .

Several interesting results can be seen from these figures. From a I

comparison of Figures 3.9, 3.11, and 3.13, we observe the effects of 3i

on system performance. First we see that, at very low INR values, the

system performance is not very sensitive to changes in ei . In these I
cases the effects of the interference are negligible and the array can

easily form a pattern maximum in the desired signal direction. At

moderate and high INR values the performance improves (as expected) as

6i increases.

From Figures 3.8 through 3.13 we see that the interference is most

effective when li-Odl is small and when the INR is in the 10-20 d9

range. 3
In order to illustrate the effects of the noise bandwidth at the

element inputs, the calculations described above were repeated with k

increased from 5 to 10. The results of these calculations are shown in

Figures 3.14 through 3.19. The results in these plots correspond I

I

I
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directly to the data shown in Figures 3.8 through 3.13 (the only

I exception being the increase in k from 5 to 10).

From these new plots we see that the array behaves similarly to the

previous cases. However, when the input bandwidth is increased, the

5 height of the peak in the P(e) vs. INR curves is increased and this peak

is shifted slightly to the right. This behavior can he explained as

3 follows. With the doubling of the input bandwidth twice as much thermal

noise is present at each element input. As described above, the array

does not begin to null the interference effectively until (Pi)in isa roughly equal to the input thermal noise power. Since the increased

bandwidth results in more noise power at the array input, a higher INR

3 is required before the array begins to reject the interference. Hence

the slight rightward shift in the curves. Since the maximum output

interference power level is higher in the wider bandwidth case, the

I maximum P(e) is also higher in this case. In light of these results we

conclude that the system performance is significantly degraded when we

£ doubled the input bandwidth.

We have now shown how the RPSK/LMS array system is affected by SNR,

I INR, signal arrival angles, and array bandwidth. Next we examine how

5 the interference frequency affects the system. The contribution of the

interference to the integrator output (i.e. Xi(n)) is given by Equation

if (3..28). From this equation we see that Xn(n) will be zero for those

frequencies at which sinc(AwT/2) is zero. At these points (i.e., when

3 AwT=2ni where n is any non-zero integer) the detector performance will

not be degraded by the interference.
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Figures 3.20 and 3.21 show the system performance when AwT=27r. In

these figures the array bandwidth factor k was set equal to 10 and the I
interference arrival angle ei was set equal to 100. Since we I
established in section C of this chapter that the detector is not

affected by the interference with AwT=21 we might be surprised to see

that Figures 3.20 and 3.21 show that the system performance becomes

worse as the interference power increases. This behavior should not be 5
surprising, however, since the adaptive array which precedes the

detector must change its pattern to null the interference at high INR I
levels. As the array nulls this interference, the SNR at the array a
output decreases due to the constraints placed on the array by the

nulling requirement (this phenomenon is discussed above). The decreased

performance at high INR levels is caused by this decrease in SNR at the

array output. i
It is interesting to note, however, that there are no relative

maxima in the P(e) curves in Figure 3.21. These peaks, which we

observed in previous P(e) vs. INR curves, were caused by the

interference signal at the detector input (i.e., the array output) at

moderate INR levels. For the case shown in Figure 3.21 the detector is m

not affected by the interference and therefore there are no peaks in the 3
curves. In these special cases (where AwT=2ni) SNR and not SINR is the

most meaningful measure of system performance (since the detector is 3
immune to the interference). We also find that, for array bandwidths of

interest, the SNR as defined by Equation (3.51) is not significantly I
dependent on the array input bandwidth.

Si
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If AwT/2>>O the sinc function in the expression for the detector

3 P(e) will be very close to zero even if AwT*2n7r. Therefore, for this

case, the detector performance is not degraded by the interference.

However, the SNR at the array output is still reduced at high INR

levels. Therefore, even though the interference is outside of the

detector bandwidth, the overall system performance is still adversely

3 affected by the interference. The system designer can limit this

susceptibility to out-of-band interference by keeping the array input

I bandwidth as small as possible.

I
I
I
I
£

I
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ICHAPTER IV

3 PERFORMANCE OF A QPSK SYSTEM WITH CW INTERFERENCE

I A. INTRODUCTION

3 In this chapter we examine the effects of CW interference on a

quadrature phase shift keyed (QPSK) communication system that uses an

LMS array. The organization and analytical techniques of this chapter

3 are very similar to those of the previous chapter. The equations

describing the QPSK and BPSK systems are so similar that we shall often

use the results from derivations in Chapter III with only minor

modifications.

Figure 4.1 shows a typical QPSK waveform. Each of the four possible

3 QPSK symbols represents two bits of information. We shall be careful to

use the word "symbol" and not "bit" to describe a burst of energy at one

3 of the signalling phases. In Chapter III we could use the terms "bit"

and "symbol" interchangeably since, for BPSK signalling, each symbol

I represents only one hit of information.

3 A method for generating a reference signal for an LMS array using

QPSK signalling is described by Winters in [31. This reference-

5 generation technique, like that discussed in Chapter III for RPSK,

relies on spread-spectrum coding of the desired signal in order to

I derive a reference signal from the array output. We assume that a

* perfect reference signal (one which is identical to the incoming desired

signal) is available to the array.
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I
Figure 4.1. A typical QPSK waveform with bit-pair assignments.

R. ARRAY PERFORMANCE

The array performance with QPSK signalling is very similar to that

for the RPSK case. The desired signal at the input to the first array 5
element during the nth symbol interval is given by,

d(t) = Adexprwdt + On(t) + 4dJ, (4.1)

where each variable is identical to the corresponding variable in

Equation (3.1) except that, for OPSK, 0n (t) is equally likely to be any 3
_ 3i

member of the set ., 2, 9, 2-- during each symbol interval.

It is straightforward to show that the autocorrelation function 5
(and thus the PSD) of the QPSK signal is the same as that for 8PSK. We

use the same interference and noise models that were used for The BPSK

system in Chapter I1. Therefore the covariance matrix D, the 3
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reference correlation vector S, and thus the array weights, are

identical to those derived for BPSK in Chapter III. The desired signal,

3 interfering signal and the noise PS) at the array output are given by

(3.12), (3.13), and (3.14) respectively, the only exception being that

I Cn(t) can assume four values in the QPSK case.

Since the array calculations for the RPSK and OPSK systems are the

I same, the only difference in performance for these two systems is due to

the difference in detector performance. In the next section we

determine the performance of the QPSK detector.

I
C. QPSK DETECTOR PERFORMANCE WITH CW AND AWGN INTERFERENCE

In this section we derive the performance of an ideal 9PSK detector

f when the QPSK desired signal is corrupted by CW interference and AWGN.

The QPSK detector shown in Figure 4.2 [201 is ideal if the only

undesired signal is AWGN. This detector is essentially two 8PSK

£ detectors in which the reference signals at the two multipliers are in

phase quadrature. At the end of the nth symbol interval the integrator

5 outputs, X(n) and Y(n), are examined and a symbol decision is made base

dupon the values at these outputs. The decision regions for the

I different symbols are shown in Figure 4.3.

5 In order to determine the probability of a symbol error we must

first calculate the joint statistics of the integrator outputs, X(n) and

5 Y(n). We note that the process by which X(n) is derived is identical to

the process by which X(n) was derived for the ideal 8PSK detector of

3 Figure 3.3. Therefore, from (4.1) and (3.37) the expression for X(n) is
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immediately found to he

3 X(n) =F- T cos[4n(t)]

__T 2n-1
+ 2 T C O( Yre + 2 AwT) + X(n) (4.2)

where (t) is equally likely to be any member of the set {0, , ,

during any symbol interval. The noise term X n(n) is normally
SnT n

distributed with zero mean and variance -Twhere n is the noise PS) at
the array output.

We next examine Y(n) which is given by,

3 Y(n) = Yd(n) + Yi(n) + Yn(n) (4.3)

where,

I nT

Yd(n) = f VT2 d sin(wdt + Yd)cOs[wdt + n(t) + Yd]dt, (4.4)3 (n-1)T

nT

Yi(n) = f /7i sinlwdt + Yd]cOsEwit + yiidt, (4.5)
(n-1)T

* and,

nT

Yn(n) = I sn(t)sinEwdt + Yd]dt. (4.6)£ (n-1)T

As in Chapter III we evaluate each of these three integrals and

then combine the results to determine Y(n).

It is easily shown using techniques very similar to those used to

3 derive (3.22) that Yd(n) reduces to,

168



I

Yd(n) = - T sin[@n(t)]. (4.7)

The second integral to be evaluated, Yi(n), is given by,

Y (n) = -j nT sin[(wd + wi)t + + Yi]

(n-1)T d

+ sinr(wd - wi)t + Yd - yildt. (4.8)

After we drop the double frequency term we have,

Pi nTI
Yi(n) = P sin(Awt + Yrel)dt, (4.9)

1i
(n-l)T

where Aw, Yrel, and T are defined as in Chapter III. Evaluating this

integral we have I
Yi(n) = -- ) - [cos(nAwT + Yrel' - cos(n-1)AwT + Yre1 . (4.10)I

Standard trigonometric identities can be used to simplify this equation 3
to, 2n-1 I
Y i ( n ) T s i n c (-- w- ) s i n ( Y r e l n -A T ) . ( 4 .1 1 )

We denote the noise signal at the integrator output at the end of

the nth symbol interval by Yn(n). Using an analysis nearly identical to

that used to derive the statistics of Xn(n) as in Chapter III it is

straightforward to show that Yn(n) is a zero mean Gaussian random I
nT

variable with variance .I

Furthermore, if we assume that the PS) of the noise at the detector

input is symmetric about wd' then Xn (n) and Yn (n) will be independent of 3
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each other at the end of each symbol interval. This property is easily

shown using the standard decomposition of narrowband noise into

I quadrature components [22j. The values of Xn(n), Yn(n), X(m), and Y(m)

will be uncorrelated (and thus independent) for mn.

3The desired, interfering, and noise signals at the integrator

output can now be combined using (4.3), (4.7) and (4.11) yielding,

Y(n) - Tsin[p (t)

.2 n

Usi2 c (T sin(y 1 + 2n- AwT) + Y(n), (4.13)

where Y n(n) is a zero mean normal random variable with variance -.

3 The probability of a symbol error can be calculated using the

expressions for X(n) and Y(n) given by (4.2) and (4.13), arl the

decision regions shown in Figure 4.3. If we assume equally likely

3symbols, then P(e) is given by
P(e) = [Pejkn(t)=0] + P[eIn(t) =T

P[e. n(t)=f] + P[ej n(t) = 1 (4.14)

The symmetry of the decision regions and the distribution of X(n)

and Y(n) insure that the probability of a symbol error is independent of

5 which symbol is transmitted (for equally likely symbols). Therefore the

probability of error is,

I P(e) = P[elpn(t) = 0] (4.15)

I If l n(t) = 0 then X(n) and Y(n) become,
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XAn) Tn,

X(n) T +' ! Tsinc( -J-cos(Y 1 + AwT" + Xn(n), (4 16)

and,

/-Pi AwT 2n-1 + Y(n)Y(n) ,'2 Tsinc sinYrel +n .(4.17)

The problem of calculating P(e) for QPSK given X(n) and Y(n) is I
very similar to a problem addressed by Rosenbaum [181 and we shall use

similar notation and procedures for ease of comparison. We first

normalize X(n) and Y(n) by dividing each by-%'/ -1'd T yielding
2n -1

n = + bcos(y + -T 2-x (4.18) +

and,

2n -1 3
Y' = bsin(YreI + 2n- wT + ny, (4.19)

where, I

Ti AwT
b =' pd sinc (--), (4.20) ?

and nx and ny are independent and identically distributed normal random

vuriables with zero mean and variance,

2 -(nT/4) 3
xy (PdT2 /2)

-(2Ed/n) (4.?n)

The normalized variables X' and Y' are shown on the decision space

diagram in Figure 4.4. 1
Since X' and Y' are independent jointly Gaussian random variables,

their joint probability density function (PDF) conditioned on Yrel is,
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Figure 4.4. Normalized decision space showing composite received
I signal.

1 1 j---1

f (X' ' Y'IYre l ) = 2 -Txy exp I- [(X'-bsiny) 2 + (Y'-l-bcos-y)2 1-1

where,

Yrel + (-2 "
(4.22)

S After eliminating the dependence of this PFOF on y by integrating

the product of fx(X',Y'i~rel) and 1 (the P)F of the uniformly

distributed variable y) we have,

I

I



2 2 1
f(x',v') ~2o)exp [ ( X'2 + (y--1) 2 + b2]

27 b x [ r-x2 + -(y-l)2 cos(y+r)lldy, ( . 3
0 xy

elt (Y'1) (

where £=-cot X'1 is not a function of y.

This expression can be simplified after we recognize the integral 1

to give us

f (X',Y') = exp (X22 + (y-1)2 + b2 ]
x xy Xy

_ _ I
b_{ /X,1 + (y'-I)2  , (4.24)

where 10 is the modified Bessel function of the first kind of order

zero. 1
We can now change from rectangular to polar coordinates using the

transformation, 1
X = r sin(a), (4.25) I

and,

Y = rcos(a). (4.?_)

The geometrical interpretation of r and a is shown in Figure 4.4.

To implement the transformation we perform the indicated change of 1

variables, and multiply the resulting function by the Jacobian of the a
transformation, r. We can then eliminate the dependency on r by

integrating the density over all possible values of r. The resulting

expression will be the probability density function of the angle o.

This PDF is given by, 3
73 3
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exp 2 +b 2 + 1- 2rcosz]]

b

I { / !r2 + 1 - 2rcosa} rdr. (4.27)

, xy

The probability of error, P(e) will be given by the probabilityI__ -iT i

that a does not lie between - and 7 when r (t) = 0. Thus P(e) is given

by,S-7T/4
P(e) = f f (a)da + f f (a)da (4.28)

From the symmetry of the integrand it is seen that (4.28) can be

3 rewritten,

3 P(e) = 2 Jf (a)da (4.29)

Tr /4

Equation (4.29) was evaluated numerically for several SNR and INR

values. Figures 4.5 and 4.6 show results of these calculations for

3 AwT = 0. Simpson's rule was used to evaluate the integral where the

Bessel function was evaluated by a combination of polynomial and

i asymptotic approximations. From Figures 4.5 and 4.6 we see that these

curves are similar to the curves shown in Chapter III for 8PSK.

However, P(e), the probability of a symbol error is higher for OPSK. We

£ should remember that each symbol in the QPSK symbol stream represents

two bits of information. Thus, for QPSK, it is possible for one symbol

5 error to produce two bit errors.*

3 The probability of two bits being in error for a given symbol is very

small if the bit pair assignments for the decision regions are chosen
properly. If they are chosen so that only one bit differs for any two
adjacent regions then both X(n) and Y(n) must be simultaneously large

to produce a double bit error.
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Figure 4.5. Performance of ideal QPSK detector with CW interference

(AwT=O).
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Figure 4.6. Performance of ideal QPSK detector with CW interference
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5

It should be noted that the detector shown in Figure 4.2 is the

ideal detector for M-ary PSK with AWGN. The only change required is the U
division of the decision space into M regions. The probability of error i

for M-ary PSK is given by (4.29) with the lower limit of integration

changed to .

D. PERFORMANCE OF THE COMBINED LMS ARRAY/QPSK DETECTOR

In this section we combine the results of the previous two sections

in order to determine the overall performance of a QPSK detector that is 5
preceded by an LMS adaptive array. Again in this section we find that

the required derivations closely parallel those of the corresponding

Section in Chapter II1. In fact, the results from the beginning of 5
section D of Chapter III apply exactly through Equation (3.56). Thus

the adaptive array calculations are identical for RPSK and QPSK 3
signalling. The only difference in the performance of the two systems

is caused by the differences in the RPSK and QPSK detectors. I
The performance of the LMS array/OPSK detector was calculated for 3

several scenarios. Results are shown in Figure 4.7 through 4.2n. The

scenarios examined correspond one-to-one with the curves shown in 5
Figures 3.7 through 3.20. Figures 4.7 and 4.8 show the system

performance with Gd = 00, 9i = 100, the array bandwidth factor k = 5, 1
and the interference phase-offset-per-symbol (AwT) equal to zero. 5

Figures 4.9 through 4.12 show similar results for 9i values of 20

and 80 degrees. From these figures we see that the OPSK performance I
curves are shaped similarly to those for BPSK. However, the OPSK symbol

error probability is higher in each case. I
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Figure 4.8. QPSK P(e) vs. TNR for 3-element array (9i=100, k=5, -%,T=l).
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Figure 4.12. QPSK P(e) vs. INR for 3-element array (eOj=80 0, k =5,
AwT=O).3

835



I
U

Figures 4.13 through 4.18 show the system performance with the

array bandwidth factor k, increased to 10 with all other variables the

3 same as in Figures 4.7 through 4.12. Figures 4.19 and 4.20 show the

performance with the interference phase-shift-per-symbol AwT set equal

3 to n. Again in these cases we see that the system performrance is

similar to, but slightly worse than, the RPSK system of Chapter III.

I The qualitative descriptions of the system behavior are identical

for the BPSK and QPSK cases and the discussion at the end of Chapter III

applies directly to the QPSK case. The only difference in the two cases

3 is the uniformly poorer performance of the QPSK case. In return for

this performance degradation, QPSK offers a bit rate double that of PSK

3 for a fixed signal bandwidth.

I
I
3
I
I
I
I
I
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CHAPTER V

3 PERFORMANCE OF A DPSK SYSTEM WITH CW INTERFERENCE

I A. INTRODUCTION

3 In this chapter we examine the effects of CW interference on a

(binary) differential phase-shift-keyed (DPSK) communication system that

uses an LMS array. nPSK and BPSK systems are very similar; however,

3 DPSK systems do not require a phase-coherent reference signal at the

detector. Although the transmitted DPSK signal and PS look identical

3 to those of BPSK (see Figure 3.1) the method of modulating the carrier

with the data bits is different for the two systems. In BPSK systems,

I the phase of the transmitted waveform during each symbol interval is

3 determined directly by the bit to be transmitted, one phase value for a

"0" bit and another for a "1" bit. In DPSK systems the data is encoded

m differentially. That is, a "1' is transmitted by the introduction of a

phase reversal between two successive symbols and a "0" is transmitted

Iby the absence of a phase change between the two symbols.

3 The DPSK detector compares the phase of each received symbol with

the phase of the previous symbol. If the two phases are nearly the same

5 the detector decides that a "0" was transmitted. If the two phases

differ by more than 90° , the detector decides that a "1" was

I transmitted. Of course the DPSK detector can be used with more than two

signalling phases by appropriately partitioning the detector decision

space.

* 93
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We first examine the array performance with a DPSK desired signal. 1
We then calculate the detector performance and the overall system 3
performance. I

B. ADAPTIVE ARRAY PERFORMANCE

The binary DPSK desired signal at the output of BPF1 is given by, I
d(t) = Adexp[w dt + n(t) + Y (n-1)T<t<nT (5.1)

where all variables except *n(t) are defined as in Equation (3.1).

During the nth bit interval cn(t) is given by, 3

1(n-l)(t) during "0" symbols

@n(t) = 
(5.2)

(n-i)(t) + T during "I" symbols. 3
Note that for DPSK, as for BPSK, the (modulo 21) value of n(t) is 3

equally likely to be 0 or i during each symbol interval. To the LMS

array, the BPSK and DPSK signals are indistinguishable. Therefore the 3
results of Section B of Chapter III apply directly to the DPSK case.

These results can be used to calculated the signal powers at the array I
output. 3

The difference in performance for the DPSK and BPSK systems is due

only to the difference in detector performance. In the next section we 3
calculate the performance of the ideal DPSK detector.

9
94 1

I



C. OPSK DETECTOR PERFORMANCE WITH CW AND AWGN INTERFERENCE

In this section we determined the performance of a DPSK detector

when the desired signal is corrupted by both AWGN and CW interference.

We examine the effects of signal powers, arrival angles, and the

interference frequency.

Figure 5.1 shows an ideal DPSK detector [231. The incoming signal

is split and the two resulting signals are multiplied by sin(wdt) and

cos(wdt). These locally generated reference signals are not

phase-coherent with the incoming desired signal (due to the random

phase angle Yd of the desired signal). The multiplier outputs are

integrated over the symbol interval to produce two random variables,

X(n) and Y(n). At the end of the nth symbol interval, X(n) and Y(n) are

compared with X(n-1) and Y(n-1) and a symbol decision is made based upon

thr value of X(n)X(n-1) + Y(n)Y(n-1). The decision rule is,I
X(n)X(n-1) + Y(n)Y(n-1) > 0 => decide nth symbol was "0",

3 X(n)X(n-1) + Y(n)Y(n-1) < 0 => decide nth symbol was "1".

Figure 5.2 shows the DPSK decision space and typical values of X(n-1),

Y(n-1), X(n), and Y(n). From this figure we see that the decision

boundary produces a useful gometric interpretation. If the absolute

value of the angle (6) between The vectors drawn from the origin to the

points <X(n-1), Y(n-1)> and <X(n), Y(n)> is less than 900 a "0" decision

is made. If 161 is gr-ater than 900 a "1" decision is made.

We now calculate the performance of the DPSK detector when the

detector input is of the form,
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3 (<X(n-I),Y(tI-I)>

0O DECISIONU REGION

"I DECISION3 REGION

<X (n), Y (n) >

Figure 5.2. DPSK decision space.

Is(t) = P cos(wdt+ fl(t)+-Yd) + I/M cos(w1 +-i + n(t). (5.3)

3 where all terms are as defined in Chapter III except for Wnt) which is

defined in (5.2).

I The signal at the output of the upper integrator in Figure 5.1 at

3 the end of the nth symbol interval is given by,

nT3X(n) *= f s(t)cos(w dt) d
(n-1)T

U d X(n) + Xi(n) + Xn (n). (5.4)
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Figure 5.3. DPSK composite signal.

where nT

Xd(n) = f 12 d Cos(wdt + *n(t) + Yd)cos(wdt) dt (5.5)

(n-I)T

nT
Xi(n) = f /7 cos(wit +Yi)cos(wdt) dt (5.6)

(n-1)T 
d

and, nT

Xn(n) = f n(t) cos(wdt) dt (5.7)

(n-l)T

Similarly the output of the lower integrator at the end of the nth 3
symbol interval isRT m

Y(n) = f s(t)sin(wdt) dt

(n-1)T m
= Yd(n) + Yi(n) + Yn(n), (5.8)

m
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where, 
n

Y d(n) f (n1) 2Pd C05(w d t + n(t) + Yd )sin (wdt) dt (5.9)

Yi (n) =f nT i27 cos(w t + -yi. i wt)d (5.10)3 1 ~~~(n-1)T isiwd) t

and,

Y n(n) =f nT n(t)sin (wdt) dt (5.11)
(n-1)T

We now determine X d(n). Yd(n), X.(n), and the distribution of the random

Ivariables X n(n) and Y n(n). We simplify X d(n) by first expanding the

integrand in Equation (5.5). We then drop the double frequency term and

obtain the expression,

I Xd(n) = V -d/ 2 fn1) cos(2cd t+ (t)+Yd) + CO5(On(t)+Yd )dt

= -d 2~ Tcos (.n(t) + Yd'(5.12)

Similarly Yd(n) is simplified from (5.9),

nT1 Yd(n) =~ /~d2 fsifl(2tJ d t"(t)+fd) - sn(nt+Y d
(n-1)T

I - 1 2 Tsin ( n(t) + Yd)' (5. 13)

3 The first of the interference terms, Xi(n) is simplified from (5.6) in

the same manner,
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nTI

Xi(n )  : /2 f cos[(Wd +i)t+Yi ]
(n-1)T 3

+ cos[(w d-wi)t -yi] dt

S P/2 (1/Aw){sin[AwnT-yij - sin(Aw(n-1)T-yi)} (5.14)

where Aw is as defined in the previous chapters. We simplify this

expression further using standard trigonometric identities,

Xi(n) = /5,2 Tsinc(AwT/2) cos[(2n-1)(AwT/2) - yi]. (5.15)

A similar procedure shows that Yi is given by,

Yi(n) = Pi2Tsinc (AwT/2) sin[(2n-1)(AwT/2) - yi]. (5.16)

We next determine the distribution of Xn(n) and Yn(n), the noise

terms. These variables are the result of processing that is identical 3
to that used to obtain Xn(n) and Yn(n) for QPSK in Chapter IV. Using

the results from Chapter IV we can immediately determine that Xn(n) and

Yn(n) are independent zero-mean Gaussian random variables each with 3
variance nT/4 (where n/2 is the 2-sided noise PSD at the detector

input.) Xn(n) and Yn(n) will each be independent of Xn(n+c) and Yn(n+c) I

for all non-zero integer values of c.

Figure 5.3 shows each of the components of X(n) and Y(n) as well as I
the composite signals. This figure shows the decision regions, which I
are separated by the line at 161=90°.

In order to determine the probability of error we must determine I

the probability that 161>900 when "0" is transmitted and the probability

that 161<900 when "1" is transmitted. Rosenbaum [181 addressed a I

100 3
I



m

similar problem; however, as in the BPSK and QPSK cases, Rosenbaum's

receiver model differs from ours and his expressions for P(e) must be

3 slightly modified for the integrate-and-dump type detector. The model

discussed in [18] leads to a signal vector diagram very similar to that

m shown in Figure 5.3. The only difference is that Rosenbaum omits the

factor of sinc(AwT/2) for the length of the interference vector. We

I outline Rosenbaum's derivation of P(e) with the appropriate

m modifications of the vector lengths.

In order to determine the P(e) we first define the complex variable

3Z(n),

Z(n) = X(n) + jY(n). (5.17)

We assume that the nth symbol is a "0". We then note that

I coS Re[Z(n)Z*(n-1)] (5.18)
co = Iz(n)IJZ(n-1)l "(.8

I Since the denominator is nonnegative, the conditional probability of

3 error, given AwT, yd' and yi, is,

P(eIAwlT,"O",yd,yi) = P(Re[Z(n)Z*(n-l)i < 0) (5.19)

SincemieZ 
Z(n) + Z(n-1),12 Z(n) - Z(n-1) 2

ReZ(n)Z*(n1)] 2 - 2 , (5.20)

we have,

P(eIAwT,"O",Yd,yi) = P(IZ(n) + Z(n-l)l < JZ(n) - Z(n-1)1), (5.21)
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We now define the variables,

= Z(n) + Z(n-1) I
=C 0(E) +x n(n) + Xn(n-1) + j[Y n(n) + Y n(n-i)] (5.22)

and I

8 = Z(n) - Z(n-1) I

= C0 (0) + Xn(n) - Xn(n-1) + j[Yn (n) - Yn (n-i)] (5.23) I

where C0(Z) and Co(a ) are the components of Z and B not due to the

Gaussian noise,

Co(E ) = Xd(n) + Xd(n-1) + Xi(n) + Xi(n-i) 1
+ j[Yd(n) + Yd(n-1) + Yi (n) + Yi(n-1)] (5.24) I

CO() = Xd(n) - Xd(n-1) + Xi(n) - Xi(n-1) I

+ J[Yd(n) - Yd(n - 1) + Yi(n) - Yi(n-1)] (5.25)

where the subscript "0" indicates that we are assuming the nth symbol is

a zero. Evaluating Co () and C0(a) we find,

Co(Z) = /2dT cos(n
&wT +ATnl AwT

+ /25PIT sinc(-) cosy d - Yi+ Cs T(n-i)] 2TI

+ k-/T sin( n)1

+ s/'T sin siT - y + AwT(n-1)] cos(=z':)] (5.26)
2 Tic(Fj si
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and

ATAwT (.7Co(0) =yVrT sinc(@ t ) sin (5.27)

We can show that IEI and jal are independent Rician random

variables. Therefore, the probability given in (5.21) is the

probability that one Rician random variable exceeds another. This

3 probability is given by [18],

1 I 1Co() ICo()I ) Co(8)I ICo(0.IP(eIAT'"O",Yd'yi) = [1-Q(- 2a ' 2a ) + Q(2 ' 20

3 (5.28)

where a and Q(A,B) is Marcum's Q function,

Q(AB) = T r exp[-(A2 +T2 )/21 10 (AT) dT, (5.29)
B

From (5.26) and (5.27) we find that IC0(1:)l and ICo ($) can be

written,

IC 0(0 ~-d2T[Pd +IPdp. s)nc os( 2-)cos( o) +

Psinc 2(AwT) 2( A ] 1/2 (5.30)

and,
I ~o l V~ T  AwT AwT

I( = -V5 l Tsinc(--w- sin (--w-)(5.31)

3 where o = [Dn - Yd + Yi -(n-1)AwT]. Since Yd and are U[0,2 i, o is

also U[0,2n] (as shown in [17]).
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We now average the expression for P(e), given by Equation (5.28),

over the uniformly distributed random variable Co to determine

P(eIAwT,"O"),

I~o( -)l 1") )1 ICo(()I 1C I 1C0(8) ICo()
P(eAT"O") = 4[-q 2a 2a + Q( 2a ' 2a ] d&o'

(5.32)

A similar analysis performed under the assumption that a "1" symbol

was transmitted yields, I
=1 2ir ICl(E)I 1CZ(8)I

P(elAT,"I") = [1 - O ( 2 ' 2a ) I
0

+OICi(8)I 1Cl(E)I
+ 2 ' 2Q ] d 1 , (5.33)

where, I
IcsicAwT w -AwT

1C1 (Z)I = /2T[Pd + sinc (i )Cos-( - )cos(l)

Pi sin2 T 2 irA& T  1/2I
+ p1 sin cos (;---) ] (5.34)

and, 3
s AwT ir -AwT

ICz(j)l = 27PT sinc - sin ( (5.35)

Iand E I is U[0,21r].

Finally, the expression for P(e) is given by,

P(ejAwT) I P(eAwT,"O") + I P(ejAwT,'"). (5.36)

I
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We evaluated P(e) for several values of SNR and INR (defined by

(3.45) and (3.46)) numerically. Figures 5.4 and 5.5 show typical

m results for AwT=O. These results are very similar to those shown for

AwT=O in [18]. Figures 5.6 and 5.7 show similar results for AwT--f/2.

From Figures 5.6 and 5.7 we see that the system performance decreases

slightly as AwT increases.

The curves shown in Figure 5.6 depict significantly better

3 performance than that predicted by the results of [181 for &wT--I/2.

There is a simple explanation for this discrepancy. For a given

3 interference signal vector length (in Figure 5.3) the DPSK detector is

most prone to errors when AwT--f/2 (±nT). However, the length of this

I vector is proportional to sinc(AwT/2), the factor which is not included

in the analysis of [18]. Therefore, as AwT increases from zero to 1/2,

two processes occur. First, the detector sensitivity to the

m interference decreases due to the sinc(AwT/2) term. Second, the

detector becomes more sensitive to the interference as AwT approaches

I n/2 due to the geometry of the signal vectors.

In order to determine how these two (often conflicting) processes

interact, we examine how P(e) varies as a function of AwT for few

m representative SNR and INR levels. Figures 5.8 and 5.9 show typical

results. Figure 5.8 shows P(e) vs. AwT for several INR values when the

m SNR is 10 dB. Figure 5.9 shows similar data for the same INR values

with an SNR of 13 dB. From these curves we can see that the highest

P(e) values typically occur when AwT is approximately w/2.

I
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D. PERFORMANCE OF COMBINED LfB ARRAY/DPSK DETECTOR I
We now combine the results from the previous two sections in order

to calculate the performance of the DPSK system. Figures 5.10 through

5.25 show typical results. Figures 5.10 through 5.15 show how P(e)

varies with SNR and INR with the array bandwidth factor, k, set equal to I
5. As in the previous chapters, the figures show the performance for

three different interference arrival angles, 10, 2n and 800. Figures

5.16 through 5.21 show similar results when the array bandwidth factor

is increased to 10. From these figures we see that the DPSK system

performance is significantly poorer than that of the BPSK system I
discussed in Chapter III.

Figures 5.22 and 5.23 show how the performance varies when the

interference and the desired signal frequencies are different. For each

of these figures k is 10, ei = 100, and AwT is r/2. From the previous

section we expect this value of AwT to produce the worst performance. I
Figures 5.24 and 5.25 show the performance for AwT=2r (with k = 10

and 8i = 100). For this value of AwT, the detector is not affected by

the interference. Therefore, as we would expect, we observe the best

performance for this value of AwT.

We find that the system behavior with DPSK signalling is similar to i
that with BPSK or QPSK signalling. We find that, in general, the symbol

error probability for DPSK is between that of 9PSK and QPSK. The shapes

of the curves for each of the different types of PSK signalling are very

similar. We find that, for each type of PSK modulation, it is desirable

to have a narrow array input bandwidth.
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In Chapters III, IV, and V we have examined the performance of PSK

communication systems. We found qualitatively similar performance for

each of these systems. In the next chapter we examine the performance

of an FSK system and compare its performance with that observed for the

PSK systems.
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CHAPTER VI

PERFORMANCE OF AN FSK COHMUNICATION

SYSTEM WITH CW INTERFERENCE

A. INTRODUCTION

In this chapter we examine the performance of a noncoherent binary

frequency shift keyed (FSK) communication system that uses an LMS

adaptive array to suppress CW interference. Figure 6.1 shows a typical

binary FSK waveform. "1" and "0" bits are each represented by a burst

of energy at one of two signalling frequencies (wl and wo

respectively).

Figure 6.2 shows a simple non-coherent FSK detector. In this

detector, the received signal is passed through two bandpass filters

(BPFs), each of which is tuned to one of the signalling frequencies.

The output of each filter is envelope detected. The envelope detector

outputs are sampled at the end of each bit interval and bit decisions

are made based upon a comparison of these samples.

Hudson [6] proposed a method of generating an FSK reference signal

for the LMS array. This method requires that the transmitted bit stream

be encoded into a Markov symbol stream prior to transmission. The

reference generation circuit uses the known Markov transition

probabilities of the symbol stream to make symbol predictions. This

circuit uses the symbol predictions to generate a reference signal for
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the array that is partially correlated with the desired signal. The

feasibility of this system was experimentally verified in [7]. 5
In this chapter, as in the previous chapters, we assume that a

reference signal is available to the array which is a perfect replica of I
the desired signal. Although the reference generation method discussed

above does not generate a perfect reference signal (due to symbol

prediction errors) the assumption of a perfect reference signal makes

the array weight calculations more tractable. I
I
I

A MPLITUDE I
4 1 I T " BIT

nAAAAAA A!
01 T

I
I
I

Figure 6.1. A typical FSK waveform. 5
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B. ARRAY PERFORMANCE

In this section we use the results from Chapter II to derive the

signal power levels at the output of the LMS array for the case of an

FSK desired signal. We first describe the real form of the desired

signal and calculate its ACF. We then use this real ACF to calculate

the complex ACF (which we will need in the array calculations).

The desired signal during the nth bit interval is given by,

d(t) = Adcos(w0t + *0), (6.1)

during "0" bits and

d(t) = Adcos(wit + (6.2)

during "1" bits where

Ad =the desired signal amplitude,

W = the "0" signalling frequency,

= the "1" signalling frequency,

0= the phase angle of the carrier during "0" symbols,

I1= the phase angle of the carrier during "1" symbols.

We assume that *0 and *1 are independent and identically

distributed, each IJ[,21r], and that T is the symbol duration. The FSK

signal described above might be generated by switching between two

free-running oscillators, one tuned to each of the signalling

frequencies.
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We assume that the incoming symbol stream is symmetric (i.e. "O"s

and '1's are equally likely) and that each symbol is statistically 5
independent of all others. Thus each symbol represents one bit of

information. m
We assume that the interference is a CW signal that is exactly

aligned in frequency (but not necessarily in phase) with one of the I
desired signal symbols. If we arbitrarily choose w ) as the interference 3
frequency, we have

i(t) = Ai exp(0t + Pi (6.3)

where Ai is the interference amplitude and is the interference phase 3
angle which is -U[0,2] and independent of both *0 and *I" 1

We now calculate the autocorrelation function of the desired and

interfering signals. The analytic ACF for the interference is given by

(3.4). For the desired signal we first determine the ACF for the real

signal d(t) and then calculate Rd(T) using the relationship [15], 1
R = 2[Rd(T) + JRd(T)], (6.4) 3

where Rd(T) is the ACF of 3(t), Rd(T) is the ACF of d(t), and the carat 3
denotes the Hilbert transform.

The ACF of the desired signal as described above was calculated by 1
Bennet and Rice [25] for the case of an infinitely long symbol stream g
under the conditions,

W 0T w rK, I

I
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Figure 6.2. FSK detector.

W T * M,

and,

5oT + w1Ti
T * N,

where T is the symbol duration and K, M, and N are arbitrary integers.

These conditions are not particularly restrictive for real systems since

the instability of real oscillators insures that the inequalities are

satisfied.*

Under the above-listed conditions the ACF for the real signal d(t)

is given by [251,

3 We assume that no special effort is made at the transmitter to

synchronize the bit intervals with the carriers.
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A2 A 21
Rd(T) = 8 T (cosw0 T + cOsW 1T) + - (coSWOT + cOSWIT)

(6.5)

for ITI<T. This result can also be obtained by calculating the ACF of 5
two on-off-keyed (OOK) waveforms, one with carrier frequency w 0 and the

other at frequency w1* Addition of these two ACFs yields Equation 3
(6.5).

Substitution of Rd(T) from (6.5) into (6.4) yields, Rd-

A2

R 2 ,( -2 )[(cosw0T + cosw T) + i(sinw0T + sinw -r)]

d-T(1 - -)[e + e (6.6)

The desired signal covariance matrix is calculated by substitution 3
of (6.6) into (2.20). Before writing the expression for *d we make some

simplifying assumptions similar to those that we made in previous 5
chapters for the PSK systems. First, we assume that the interelement

propagation delay is much shorter than the symbol duration, (i.e. m

Td << T). We also assume that the signalling frequencies are close

enough so that the interelement phase shift for the desired signal is

essentially independent of the transmitted symbol (i.e., woTd - WTd = 3

These simplifying assumptions allow us to approximate the desired I
signal ACF by g

Rd(t) - A e 
jT (6.7)
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Under the above assumptions the desired signal covariance matrix

*becomes,

3 1 e- j d  e-2j d

d e 1 ~ e j . (6.8)

e2j d  ejc d  1

The simplifications used to obtain the approximation (6.8) do not

seriously affect the array performance calculations. Although these

simplifications essentially cause us to neglect the desired signal

bandwidth, it is shown in [15] that the array behavior is not strongly

dependent on the desired signal bandwidth (for the bandwidths of

interest here). These simplifications allow us to calculate the array

performance without specifying the carrier frequencies or the symbol

rate.

re The covariance matrices for the interference and the noise signals

are identical to those given by (3.7) and (3.8) for BPSK with wi=wo.

The total covariance matrix 0, is determined by summing Od, 0i, and In.

The array weights and output power levels are calculated using

Equations (2.5) and (2.28) through (2.34).

C. FSK DETECTOR PERFORMANCE WITH CW INTERFERENCE AND AWGN

In this section we determine the probability of error for the FSK

detector of Figure 6.2 when the desired signal is corrupted by both

white Gaussian nose and CW interference. A similar problem is addressed
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in [26] and the results of this analysis are summarized here.

We assume that the composite signal at the detector input is given U
by 3

s(t) = V7Pd cos(wkt + Y) + / Cos (wot + Yi) + n(t) (6.9)

where K = 0 or 1 depending on the transmitted symbol, Yk is the phase of

the desired signal at the detector input, y i is the interference phase m

(where it is assumed that yI, yo and yi are i.i.d - U[0,2w]), and n(t)

is a white Gaussian noise signal with two-sided PSD n/2.

We assume that the detector BPFs are ideal, each with bandwidths 3
1/T. Therefore the desired and interfering signals will nearly reach

their steady state values at the end of the symbol interval. We assume 3
that the passbands of the two filters are not overlapping and we neglect

any intersymbol interference or crosstalk. The noise produces I
(independent) zero-mean Gaussian random processes with variance n/T at 3
the output of each of the BPFs.

At each BPF output we either have Gaussian thermal noise alone or m

the sum of a CW signal and the Gaussian noise signal. The probability

density function of the amplitude of the filter output has a Rayleigh U
distribution in the former case or a Rician [27] distribution in the 3
latter case. We denote the output of the "0" and "1" envelope detectors

at the end of the given symbol interval by Z0 and Z1 respectively. 3
We first assume that a "0" symbol is transmitted. In this case the

"0" filter has the sum of two sinusoids (the desired signal and the 3
interference) plus the thermal noise at its input. The "1" filter sees
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only the noise signal at its input. We denote by y the phase difference

I between the two sinusoids in the "0" filter (i.e., y = Yo -yi), Tb"

(Rician) PDFs of the amplitudes of the filter outputs conditioned on y

are then given by,

ZO AooZo Z Z2 + A00

f(ZoIy,"0") =(nT) '0 (n/T) exp 2n/T/ (6.10)

for the "0" filter and,

if(Z y' (n/T) 0If(-T) exp 2+/T J ' (6.11)

I for the "1" filter, where In is the modified Bessel function of the

first kind of order zero and Aij is the amplitude of the sinusoidal

signal at the input to the i filter when symbol j is transmitted.

I Therefore, A00 and A10 are given by,

I A0 = 2Pd + 4'/PdPi cosy + 2Pi , (6.12)

5 and,

i AI =O. (6.13)

Since no sinusoidal signal is present at the input of the "1"

I filter when a "0" is transmitted (i.e. since Ai = 0) then the Rician

distribution given in (6.11) is actually a Rayleigh distribution [271,
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f(Z Iy'11011) = Zi A' Zi (6.14)3(niT) exp - 2(ni/T) 5

We now assume that a "1" symbol is transmitted. In this case, each 3
filter has both a CW signal and a Gaussian noise signal at its input.

The (Rician) PDFs for the amplitudes of the filter outputs are given U
by , 2

S(n/T) Ifl (n/T)) exp 2(n/T) (6.15)

for the zero filter and, I
Z1_ (1Z_ Z1 + 2A1

f(Zlly,'1")- (niT) Io ,/T)/ exp - (nITl) (6.16)

where, 3
An1 =,/-Pi, (6.17) 3

and,

All = /2Pd. (6.18) I
For equally likely symbols, the probability of a symbol error

conditioned on y is given by, 3
2 P[Z > ZoIy,"O" sent] + I P[Z0 > Zl1 y,"l"sentl (6.19)

These probabilities can be directly evaluated [261 to give us the I
following expression for the conditional symbol error probability, 3
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5 P(ejy) =~ Q (v flr Ao/n/T

1 'Aj /O A2 + A2
.- 1  0  .exp - 10 no

1A AO

1 11 01) 0

2 1 0\ 2,n /T )exp 2-~ 2ri/T (6.20)

where Q(a,b) is Marcum's Q-function [24]. Since A10=0 we can use the

relationships,

3 Q(O,b) = e- (b/2)2  (6.21)

and,

Io() 1 (6.22)

m to simplify (6.20). The resulting expression for error probability

5conditioned on y is,

A 2  AA

U ~P(ely) = 1 1 e (-12 ) + ( 1 u2IT
2 2 _ -nT (77T'/n7

A01A1 1 A2  2 -

1 0 11( 01 +Ali
2/Tf exp 2 2n/T (6.23)
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We integrate P (ely) over the (uniformly distributed) phase angle y

to obtain the symbol error probability, 5
P(e) = L exp - 01  A1 1

4w') 2 2 7N _/T 712T ___)T

1 A01A11  1 A2 2 + 52
- I0//)exp 01 11 riT) dy. (6.24)

This is the general expression for the symbol error probability for the

FSK detector with a single CW interferer exactly on one of the 3
signalling frequencies.

We note that if Pi =0 then A0 1 = 0 and A 00 = All= 21d In this 1
case we can use (6.21) and (6.22) to further simplify (6.24). In this 3
case P(e) becomes,

P(e) = e- (1/2) (Ed)/n (6.25)I

which is the well known result for non-coherent FSK with AWGN but no I

interference [7].

The general expression for P(e) given by (6.22) was evaluated I
numerically to determine the detector performance. Figures 6.3 and 6.4 3
show the results from calculations of P(e) for several SNR and INR

values. Simpson's rule was used to evaluate the integral in (6.22)

where the iterative method described in [24] was used to evaluate

Marcum's Q function. Either a polynomial or an asymptotic approximation I
was used to estimate Io . We note that the performance of the binary I

FSK detector with CW interference is worse than that of either of the

binary PSK detectors discussed in chapters III and V. 3
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D. PERFORMANCE OF THE COlINED L1S ARRAY/FSK DETECTORI
In this section we calculate the bit-error-probability for the FSK

system that includes the LMS array. As noted at the end of section B of

this chapter, the covariance matrix for FSK signalling given by (6.8) is

identical to that of BPSK (after the simplifying assumptions were made

in both cases). Therefore, the adaptive array calculations for the FSK

and BPSK cases are the same. Thus to calculate the system performance

we need only to calculate P(e) for the FSK detector when the array

output signals appear at the detector input.

Figures 6.5 through 6.10 show the system performance for Bi values

3 of 10, 20 and 800. The array bandwidth factor k is set equal to 5 in

each of the cases shown. Qualitatively, the FSK curves are very similar

5 to those calculated for the other modulation methods. The FSK error

probabilities are slightly worse than either of the binary PSK cases and

I roughly equal to those to QPSK (for the same ei and k values). Actually

FSK is slightly better than QPSK in regions near the "humps" in the P(e)

vs. INR curves, but worse in the other regions. Results for FSK cases

with k=10 were also calculated but are not presented here since they

display no unexpected characteristics.
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CHAPTER VII

PERFORMANCE OF A NARROWBAND ADAPTIVE ARRAY
WITH BPSK SIGNALLING AND CW INTERFERENCE

A. INTRODUCTION

Chapters III through VI examined the performance of several

communication systems that included LMS arrays. We found that P(e) for

these systems increases as the array bandwidth increases. In this

chapter we more closely examine the effects of bandwidth on system

performance.

In the previous chapters we found that the system performance was

similar for BPSK, QPSK, DPSK, and FSK desired signal modulation.

Therefore, in this and the following chapters, we limit our discussion

to the BPSK system with the understanding that similar qualitative

performance would be achieved for each of the other modulation methods.

In Chapters III, IV, and V we used correlator-type PSK detectors.

The P(e) calculations that we made assumed that the detector input

bandwidth was wide enough so that the desired signal was passed with

negligibly small distortion. Therefore, this model did not allow us to

calculate P(e) for values of k less than approximately 5.

In this chapter we describe modified BPSK signalling and detector

models that allow us to calculate P(e) for k values as small as 1/2.

These models are based upon the Nyquist pulse shaping criterion [16,28].

I
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This criterion states that, with appropriate transmit and receive

filtering, we can communicate over a bandlimited channel with no i
intersymbol interference (ISl). Using this Nyquist criterion we can

limit the transmitted signal bandwidth to (l/T) Hz. Furthermore, for a

fixed input SNR, the bandlimited BPSK system can achieve a P(e) value 3
equal to that of standard (infinite bandwidth) BPSK. Several practical

aspects of narrowband signalling are discussed in [29]. 3
In the next section we examine the performance of the narrowband

BPSK system without an adaptive array. In section C we calculate the U
system performance when the adaptive array is added to reject CW 3
interference. In Section C we also examine the effects of the array

input bandwidth on this performance. 3
B. BPSK SIGNALLING OVER A NARROWBAND CHANNEL 3
In this section we describe a narrowband BPSK communication system. 3

In this system the transmitted signal bandwidth is limited to (lI/T) Hz.

This bandwidth corresponds to a bandwidth factor k (as defined in the 3
previous chapters), of 1/2. At the receiver, a matched filter processes

the waveform. The output of this filter is periodically sampled and I
symbol decisions are made based upon the signs of the output samples.

By judicious choice of the transmit and receive filters we can eliminate

ISI by insuring that the receiver response to each symbol is zero at the 3
sampling instants corresponding to all other symbols.

Figure 7.1 shows the narrowband BPSK system model. The transmitted i
baseband signal f(t) is passed through the transmit filter which has a

transfer function,
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I

HT(w) = P(7/T)(w) _inc(_.) (7.1)

where, I - /T 4 w 4 /T

(ir/T)(W) = 1 ; IT> - T (7.2) 1

To understand how this filter works we examine its response to a

single input pulse. Figure 7.2(a) shows a simple input pulse

f(t)=PT/2(w). Figure 7.2(b) shows the filter transfer function HT(w). 3
The filter output (in the time domain) is given by,

g(t) = f(t) * hT(t) (7.3)

where hT(t) is the transmit filter impulse response and * denotes m

convolution. Application of the convolution theorem of Fourier analysis 3
yields,

G(w) = F(w)HT(w) (7.4)

where G(w) and F(w) are the Fourier transforms of g(t) and f(t)

respectively. We calculate F(w) using a standard Fourier transform 3
pair,

F(w) = T sinc(wT/2). (7.5)

We evaluate G(w) from (7.1), (7.4) and (7.5), 3
G(w) = TP(,IT)(w). (7.6) i
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(c) Fourier transform of filtered pulse
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(d) Filtered baseband pulse
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(e) Fourier transform of carrier modulated by a single filtered pulse

Figure 7.2. Transmitter processing of baseband pulse.
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I
Figure 7.2(c) shows G(w). Application of another standard Fourier

transform pair yields, 3
g(t) = sinc(wt/T). (7.7) I

This waveform is shown in Figure 7.2(d).

As we have just shown, the transmit filter converts the rectangular 3
baseband digital pulses into a series of sinc pulses. Note that the

transmitted symbols are separated by T seconds and sinc(wt/T)=O for I
t=nT (n=l, 2, 3, ... ). Therefore, the single symbol represented by f(t) 3
will produce no ISI for any preceding or following symbols.

g(t) is multiplied by a carrier, cos(wdt), prior to transmission.

The transmitted signal is therefore given by,

g(t)cos(wdt) = sinc(wt/T)cos(wdt). (7.8)
~I

Figure 7.2(e) shows the Fourier transform of the transmitted signal.

As the signal propagates through the channel, it is attenuated and 3
corrupted by an AWGN process n(t) with two-sided PSD No/2. Later we

consider the effects of interference added as the signal propagates I
through the channel.

At the receiver the signal is given by

r(t) = Ad sinc(2-t)cos(w dt) + n(t) (7.9) I

where we have neglected the propagation delay. This signal is I
multiplied by cos(wdt) and the resulting signal is passed through the

receive filter which is an ideal low pass filter with cutoff frequency

w/T radians (1/2T Hz). This filter removes the double frequency term f
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and limits the thermal noise power. The signal at the receive filter

input is given by

Ad Wt
r(t)cos(wdt) = -

- sinc(T)[1 + cos(2wdt)] + n(t)cos(w dt) (7.10)

The output from this filter consists of a desired signal term Xd and a

noise term Xn . From (7.10) we see that

Ad Wt
Xd = 2 sinc(-) (7.11)

m since the receive filter eliminates the double frequency term.

The noise signal at the input to the filter n(t)cos(wdt) has

m (two-sided) PSD No/4 or equivalently, a single sided PSD of No/2. Since

the receive filter has a bandwidth of 1/2T Hz Xn is a zero-mean Gaussian

m random variable with variance (No/2)(1/2T)=No/4T.

We note that Xd reaches its maximum value at t=O. The detector

output is sampled at t=O to detect the symbol represented by f(t). The

receiver output is sampled at points where t=nT (n=1, 2, 3, ...) to

dettect the symbols that follow. Figure 7.3 shows the filter output

(without the noise signal) for the transmitted symbol sequence 1011.

From this figure we see that, unlike the conventional BPSK waveform, the

narrowband BPSK signal does not have a constant envelope. The varying

amplitude of the envelope for narrowband BPSK requires that the

transmitter must have a peak-to-average power ratio greater than unity.

The receiver makes symbol decisions based upon the sign of the

receive filter output at the sampling instants. Positive output samples
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produce "1" decisions and negative output samples produce "0" decisions.

The symbol error probability is given by I1 1

P(e) =1 P(X d + Xn < 1" sent) + P(Xd + Xn > 01"0" sent)
(7.12)

From the symmetry of signal space we can show that the two I
conditional probabilities in this expression are equal. Therefore the

expression for P(e) becomes,

1 I
P(e) = P(Xd + Xn < 0 I"l" sent)

-Ad
= P(Xn < 2 (7.13)

where Xn is a zero-mean Gaussian random variable with variance No/4.

Therefore

P(e) = erfc( ). (7.14)

Eb, the energy-per-bit in the desired signal component of r(t), is

given by Ad2 T/2 (this is easily shown by application of Parseval's

theorem to the desired signal component in Equation (7.10)). Therefore, I
Equation (7.14) can be rewritten,

P(e) = erfc (2 ). (7.15)

This expression for P(e) is the same as the well known result for ideal

detection of an unfiltered (and thus infinite bandwidth) BPSK signal in

the presence of AWGN. Equation (7.15) implies that, with a bandlimited
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i (b) Composite 'waveform for the sequence 1011

Figure 7.3. Baseband signal for simple binary sequence.

I
I5



m

system, we can achieve performance equal to that of an infinite

bandwidth standard BPSK system.

The results presented above were derived under the assumption that

AWGN is the only corrupting signal at the receiver input. We now m

calculate the system performance when r(t) also includes a random-phase

CW interfering signal with amplitude Ai. We assume that the

interference is at a frequency where it is not rejected by the receive

filter. In [18] Rosenbaum shows that, in this case, P(e) is given by,

1 ) J2Ed E
P(e) =2 erfc o oco(Yrel) dyrel (7.16)

where Ei and y rel (which can be considered a dummy variable of 3
integration) are as defined in Chapter III. The derivation of this

equation is similar to that used to obtain Equation (3.44) in Chapter m

We note that Equation (7.15) is almost identical to Equation I
(3.44), our general expression for P(e) for BPSK. The only difference m

is the factor of sinc(wT/2) in the interference term Equation (3.44).

This term is caused by the frequency response of the integrator in the 3
integrate-and-dump detector used in Chapter III. The frequency response

of the detector that we use in this chapter is constant over the I
detector passband. m

The preceding analysis suggests that we can transmit (I/T) bits per

second over an RF channel with a bandwidth (l/T) Hz with the same 3
performance as we would have with standard BPSK. However, to achieve

I
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these results, we must be able to realize the transmit and receive

filters in the narrowband model. The noncausal nature of the impulse

response of these filters is evidence that the filters are not

realizable.

Good approximations to ideal Nyquist pulse shaping filters do

exist. Most notably, members of the raised-cosine family of filters

[16] provide performance equal to that achieved with the ideal low-pass

transmit and receive filters used our narrowband model. Actually, the

ideal low-pass filter is one member of the family of raised-cosine

filters. All raised-cosine filters have the same equivalent noise

bandwidth as the ideal filters and produce and same P(e) with no ISI.

These filters have a passband between 0% and 100% larger than the ideal

low-pass filters assumed our model. Approximations for many of these

raised-cosine filters can be realized [30]. Reference [16] provides a

thorough analysis of system performance with non-ideal filters (without

interference).

I
C. BPSK SYSTEM PERFORMANCE WITH AN LNS ARRAY AND CW INTERFERENCE

Figure 7.4 shows a block diagram of a narrowband receiving system

that includes an LMS adaptive array. We assume that the transmitter and

channel are the same as those shown in Figure 7.1. We also assume that,

as in previous chapters, the desired and interfering signals arrive from

angles Od and 6i respectively (measured from the broadside direction).

The BPFs at the element inputs are assumed to be ideal with bandwidth

I k(2/T).
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In order to calculate the adaptive array performance we must

calculate the ACF of the desired signal d(t). d(t), the analytic

desired signal during the nth symbol interval, is given by,

3(t) = bnAdsinc(1rt/T)exp(jwdt) (r-1)T < t < nT (7.17)

where bn +1 if the nth but us a 1 and bn = -1 if the n t  bit is a n.

Figure 7.5 shows Sd(w), the PSD of a(t). R-(T), the ACF of a(t),

the inverse Fourier transform of Sd(w). R-(T) is given by, I
Rd(T) = A2 sinc (4 -;-) exp(jwdT 5  (7.18)

We can use Equations (2.20) and (7.18) to calculate the desired

signal covariance matrix. If we make our usual simplifying assumption I
that Td<<T, then Rd(T) is approximated by, U

Rd(T) - A2 exp(jw dT) (7.19) I
With this approximation the desired signal covariance matrix is the same

as that which we used for each of the previously examined modulation I
methods (see for example Equation (3.9)).

The interference and noise models are the same as in Chapter III.

Therefore, since the desired signal, interference and noise covariance

matrices are the same as in Chapter III, the adaptive array calculations

for the narrowband model are identical to those for the wideband model

of Chapter III.

As discussed in the previous section if the interference is at a I
frequency which falls within the receive filter bandwidth, then P(e)
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will be given by (7.16). As previously noted, this expressio, is the

Isame as Equation (3.44) with AwT set equal to zero. Although the signal

Sand receiver structures assumed in Chapter III and the present chapter

differ significantly, the expressions that describe the performance of

both the array and detector are nearly identical for the two cases. In

fact, for AwT=O, the mathematical formulations for the wideband and

I narrowband models are identical. However, the range of k values over

which each of the models is appropriate is not the same. The widehand

model of Chapter III is only valid for k values greater than

Iapproximately 5. For the narrowband model we can make k as small as

1/2. For k values greater than 5, the narrowband and wideband systems

I, (with AwT=O) perform identically.

Figures 7.6 through 7.11 show the (narrowband) system performance

for k=1/2. For this k value, there are no humps in the P(e) vs. INR

curves. Therefore we might be tempted to state that the bandwidth

corresponding to k=1/2 is optimum. However, upon a careful comparison

of Figures 7.6, 3.9, and 3.15, we see that P(e) for k=1/2 is actually

higher than it is for k=5 or k=1O at the left hand sides of the curves.

Thus we make the unexoected observation that, for low INR values, the

system performance improves as the noise power at the array input

increases.

For easy comparison, curves showing the performance of both the

wideband (k=1O) and narrowband (k=1/2) systems are plotted in Figure

7.12. This figure shows P(e) vs. INR curves for 6i=lO degrees and an

L SNR of 12 dB. For INR values above approximately 10 dB the narrowband
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system performs better than the wideband system. However, for INR

values below 10 dB the wideband system performs better. I
There is a simple explanation for this behavior. As the INR I

increases, the array begins to null the interference when the

interference and noise powers at the array input are approximately I
equal. Therefore the null begins to form at a lower INR value whei

k=1/2 than it does when k=10. Consider the cases shown in Figure 7.12 m

for an INR value of 5 dB. Figures 7.13(a) and (b) show the adapted

antenna patterns for k=10 and k=1/2 respectively. For k=10, the array

has not formed a null in the interference direction and the desired 3
signal is very close to a pattern maximum. When k=1/2, a null is formed

on the interference. Furthermore, since the desired and interfering 3
signals are spatially close, the array no longer keeps the desired

signal near a pattern maximum. Therefore, the SNR at the array output

is lower with k=1/2 than with k=10 for the case shown. The increase in

P(e) due to the SNR reducation with k=1/2 is greater than that which

occurs due to the residual interference power at the array output with 3
k=1O. O,

Figure 7.14 shows the system performance of SNR=12 dB, 6i=10 ° , andI

k values of 1/2, 1, and 2. The curves shown in this figure show that

there is no k value that is optimal for all INR values. The curve for

k=1 lies significantly below that for k=1/2 for INR values below '3
approximately 12 dB. For larger INR values the P(e) for k=1 is only

very slightly greater than that for k=1/2. For k=2 we see even better I
performance below 12 dB but a hump is beginning to form in the curve
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performance below 12 dB but a hump is beginning to form in the curve

above 12 dB. P(e) vs. INR curves were plotted for several other values

of SNR and ei and similar results were observed. In each case the hump
I

in the curve appears for k values greater than about 2.

In previous chapters we examined the performance of the various j
systems when the interference was at a frequency where the detector

performance was not degraded (but where the interference was within the £
array input BPF passbands). For the narrowband system, if ['WI is

greater than 1r/T, the interference will be completely rejected by the

detector. The performance for this case will be the same as we found

for the wideband system when the interference frequency was at a null in

the detector frequency response. Therefore, the results shown in

Figures 3.20 and 3.21 depict the performance of both the wideband and

narrowband BPSK systems when the interference is at a frequency where

the detector is not affected.

In this chapter we have examined the performance of a bandlimited

BPSK system with an adaptive array. We found that the humps in the P(e) f
vs. INR curves are only seen for k values greater than approximately 2.

We found the best performance for k values between 1/2 and 2. Since the I
performance for k values between 1 and 2 is never much worse than that 3
for k = 1/2 (and sometimes better) we conclude that there is little

reason to expend greater cost or effort to reduce k below 2. *

I
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CHAPTER VIII

PROTECTION OF A BPSK SYSTEM FRON WIDEBAND INTERFERENCE

A. INTRODUCTION

In the previous chapters we considered the performance of digital

communication systems in the presence of CW interference. In this

chapter we determine the protection that the adaptive array can offer

to a communication system with bandlimited AWGN interference. We

calculate the performance of the narrowband BPSK system described in

Chapter VII as a function of the signal powers, arrival angles, and the

interference and array input bandwidths.

We also examine the performance of a modified LMS array with noise

interference. This modified array uses tapped delay line transversal

filters to implement the element weights. These filters allow the array

to steer nulls that are much wider in bandwidth than those possible with

conventional LMS array.* We shall find that the modified array often

provides performance better than the conventional array for AWGN

interference.

Section B describes the desired signal and interference models.

Section C describes the results of performance calculations and

discusses the effects of the various system parameters. Section D

summarizes the results and compares these results with those of previous

chapters.

*By conventional we mean the LMS array with a single complex weight

behind each element.
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B. SYSTEM MODEL I
In this chapter we again use the BPSK modulation method described

in the previous chapter. The same desired signal and noise models are 3
used; however, we assume that the interfering signal at each element

input is a zero-mean Gaussian random process with power (Pi)in. T'.e PS 8
of this interference is shown in Figure 8.1. The center frequency is wi

and the bandwidth of the interference is Awi' where the prime indicates

that we are considering the signals at the input to the element BPFs. 5
We assume for simplicity that wi = wd as this assumption has little

bearing on the derived results. We shall show that varying wi slightly V
about Wd has little effect on the array performance. Varying wi about

I
(S)In (w)

I
I

Figure 8.1. Interference PSD at element BPF inputs. I
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wd will never hurt the detector performance since the detector is simply

a multiplier (where the array output is multiplied by cos(wdt)) followed

by an ideal low-pass filter. In fact when wi differs greatly from wd

then the detector filter may completely reject the interference.

We define the relative bandwidth of the interference as,

Bi' = (AWi')/Iw i * (8.1)

Similarly, we define the desired signal relative bandwidth by,

Bd = (,wd)/wd (8.2)

where Awd is the bandwidth of the desired signal and Wd is its center

frequency. The relative bandwidth of each input BPF is

B in = 2kBd, (8.3)

where k is the bandwidth factor as described in the previous chapters.

If Bi  is larger than Bin then the input BPFs will reject some of the

interfering signal. Therefore the relative bandwidth of the

interference at the BPF output is

Bi = MIN(B inBi )  (8.4)

where MIN(A,B) denotes the smaller of the two quantities A and R. Note

that we could not write Bi in this simple form withcut the assumption

that wi = Wd' The bandwidth of the interference at the BPF outputs is

given by Aw1 , where

Awi = w.Bi . (8.5)
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The power in the interference at each BPF output is

0i2 = (Pi)inMIN(Bin/Bi' ' I ) "  (8.6) 1
The ACF of T(T) is given by I

Ri(T) = ai2 sinc(Aw.t/2)exp(jwit). (8.7)

Substitution of Awi from (8.5) into (8.7) yields, 3
R1(T) = ai2 sinc E(0.5)Bi~iT] exp(jciT). (8.8)

From Equations (2.14) and (2.16) we see that i = wiTi; therefore, we

have

Ri (T) = ai2 sinc [(0.5)Bi( i/Ti)T] exp [j(i/Ti)T . (8.9)

Now we can substitute this expression for Ri (T) into (2.21) to determine

the interference covariance matrix i" With this substitution i

becomes

1 n[-i i]e sinc[-Bii]ej 2 iI

G2 sincl[Bi i]e Ji sinc[- 1 .]e'Ji
j$i1 ? i

sinc[Bii]e j 2 i  sincl[1i8 i ] e 1

(8.10)

From this expression we can justify our previous assertation that

the array performance is not very sensitive to slight variations in wi
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about (d. The terms in the interference covariance matrix represent

Equation (8.9) evaluated at t = ±nTi where n=O, 1, or 2. The only

variable in (8.9) that is dependent on wi is the argument of the

exponent of exp[j( i/Ti)t].*

Using (2.16) we can expand the exponential terms in (8.10) to

obtain,

exp[±jnsi] = exp[±jn(wi/wd) 7rsinei ] " (8.11)

From this expression we see that small fluctuations in wi about wd

produce small fluctuations in the interelement phase shift. This is the

same effect that is observed when ei varies slightly. Since a change in

6i of a few degrees does not dramatically change the array performance

we can assert that a small change in wi will not either. This assertion

was verified by performance calculations in which wd, wi, Bd and Bi were

chosen independently. Very slight variations in performance were noted

as the ratio (wd/wi) was varied from approximately 0.9 to 1.1.

We assume that Od and On are the same as in Chapter VII. The array

weights can be calculated, as usual, using (2.9), (2.25) and (2.5).

Both the desired signal and interference are modified by the array.

However, we presently show that the array adds very little distortion to

the desired signal while it changes the spectrum of the interference

considerably. The array acts as a transversal filter when processing the

signals at its input. Such a filter is shown in Figure 8.2. The delay

*Note that the product Bi~i in the argument of the sinc function is
independent of wi. This is easily shown from (8.1), (8.4) and (2.16).
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!
,I

OUTPUT I

Figure 8.2. Transversal filter with two delay elements and three
weights.

between filter taps, which is labeled T in this figure, is the

interelement time delay. The transfer function of the filter for a

three-element array is given by, J
H(W) = wi + w2exp(-jwT) + w3exp(-jw 2T). (8.12) 3
If Od e ei the interelement time delays are different for the g

desired and interfering signals. Therefore these two signals are

processed by different transfer functions. In general, the LMS weights

produce a transfer function for the desired signal that is very close to

the ideal all pass filter (i.e. H(w) has a constant magnitude and linear U
phase shift over the frequency range of interest). The LMS weights 3
typically produce a transfer function for the interference which has

nulls at frequencies where the interference PS) is large. 3
183 3
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As an example of the spectral filtering properties of the 3-element

array, the equivalent filter transfer functions were calculated for a

specific case. Figures 8.3 and 8.4 show the desired signal and

interference transfer functions when ed=O0 , ei=10
0 , SNR=12 dB, INR=20

dB, Bd=O.1, and Bi=O.1. From these figures we see that the array has a

negligible effect on the desired signal while it significantly modifies

the interference signal spectrum.

The power Pd of the desired signal at the array output is given by

Equation (2.32) where Rd(T) is given by (7.17). The desired signal at

the array output is processed by the detector which consists of a

multiplier (where the signal is multiplied by cos(wdt)) and an ideal

low-pass filter which rejects all but the baseband signal components. A

power loss of one half occurs during both the multiplication and

filtering processes so the desired signal power at the detector output

is Pd/4. Therefore the desired signal at the detector output at the nth

bit sampling instant is given by

Xd(n) = bn 1 Fd-I2T sinc[(ir/T)(t-nT)] (8.13)

where bn=l if the nth bit is a "1" and bn=-I if the nth bit is a "0".

The noise signal at the array output has a two-sided PSI) of n/2

where n/2 is given by Equation (3.14). At the multiplier output this

signal has a two-sided PSD of n/4 (at baseband) or equivalently, a

one-sided PSD of n/2. The detector low pass filter has a bandwidth of

1/2T. Therefore, the noise produces a Gaussian random variable (GRV)

Xn(n) at the filter output at the nth sampling instant with variance,
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Var[Xn(n)] = (n/2)(1/2T)

= n/(4T). (8.14)

Calculation of the interference power at the detector input is not I
as straightforward as calculation of the noise power is even though the

interference signal, like the noise signal, is a Gaussian random

process. Since the thermal noise signals are statistically independent 5
white noise processes, their weighted sum at the array output is also a

white noise process. However, the interference signals are correlated U
from element to element; therefore, the spectrum of the interference 5
signal at the array output will be modified by the interference transfer

function of the array as shown in Figure 8.3. 3
Since all of the processing done to the signals is linear, the

random variable produced by the interference signal at the detector I
output is Gaussian. Since only the interference in the frequency band

bounded by wd ± Awd/2 affects the detector we need only to calculate the

array output power of the interference signal in this band to calculate

the detector performance. We denote this power by (Pi)det. Calculation

of the actual PSD of the interference signal at the array output is not 3
necessary.

To calculate the output interference power (Pi)det we usi (2.33)

with Ri(t) set equal to the ACF of the portion of the interference 5
signal at the array input that is in the frequency band of interest.

This ACF is given by, 3

I
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(a) Amplitude response at Od

1 86

NAg' NCw)

(dog)

II

1 I I - BANDWIDTH BL9.NS)

(b) Phase response at 6d

Figure 8.3. Frequency response of LMS array in the desired signal
direction (Od=O , Oi-lO , SNR = 12 d8, INR = 20 d8,
k = 1/2, Bd = Bi = 0.1).
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R )det(R T) = [i 2 MIN[1,(Bd/Bi)l] I

sinc[(1/2)MIN(Bd,Bi)wiTi exp(jWiT) (8.15) 3

Substitution of (Ri)det for R7 in (2.33) yields (Pi)det at the array

output. When this signal is applied to the detector, the multiplication

and filtering processes reduce the interference power by a factor of I

four (just as it did for the desired and noise signals). Therefore the

interference produces a GRV at the detector output at the nth sampling

instant with variance,

Var[Xi(n)] = (Pi)det/ 4  (8.16) 3

The probability of an error for the nth bit is, 3
P(e) = O.4P[Xi(n) + Xn(n) < - /-F(-7 I "1" sent] 1

+ 0.5P[Xi(n) + Xn(n) > T(d-2) "0" sent] (8.17)

The two probabilities in this expression are equal. Therefore P(e) can

be written

P(e) = P[Xi(N) + Xn(n) > -d/ 2) I "0" sent]. (8.18) 1
Since Xi(n) and Xn(n) are independent GRVs with variance (Pi)det/4 and 3
n/4T respectively, their sum is a GRV with variance (Pi)det/4 + n/4T.

Therefore P(e) is given by I

1
187 5

B



I

ii

I

I (a) Am~plitude response at ei

Ang NC)

(dog)

I
I

S-4-i ' ,ANDWIDTH 3:9.19 - I
(b) Phase response at e i

Figure 8.4. Frequency response of LMS array in the interference
signal direction (ed=Oo, Oi=10*, SNR = 12 dg, INR = 20 dR,I k = 1/2, Bd = Bi= 0.1).
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P(e) = erfc[,/Fd/27 / I(Pi)det/4 + n/4T)]. (8.19)

Multiplication of the numerator and denominator in the argument of the

error function by /7 yields, 3
P(e) = erfc[ b TE+--+q] (8.20) 1

where Eb = PdT and Ei = (Pi)detT. g
Since both the interference and noise signal produce independent

zero-mean GRVs at the detector output, P(e) is dependent only upon the 3
SINR at the dettector input where we make the definition,

SINRdet = Ed/(Ei+n). (8.21)

With this definition (8.19) becomes, I

P(e) = erfc[V(2 SINRdet] . (8.22) £
Note that if Ei=O then P(e) = erfc[/(2Ed/n)] the familiar result for U
BPSK with AWGN.

C. RESULTS OF PERFORMANCE CALCULATIONS i

The derivations of the previous section can be used to calculate

the performance of the BPSK system with a 3-element LMS array and noise

interference. In this section the results of such calculations are 5
presented for several signal scenarios.

Figure 8.5 shows the results from typical performance calculations. I
This plot shows P(e) as a function of SNR for several noise bandwidths
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for 6d=O0 , i=10 °, and k=1/2. In each case the signal to interference

power ratio (SIR) is -30 dB. The lowest curve in this plot corresponds

to the case where the relative bandwidth, Bi' = 0. The other curves

I correspond to Bi ' values of 0.01, 0.025, 0.05 and 0.075. From these

curves we see that the array offers less protection as the interference

bandwidth increases.

P(e) was calculated as a function of SNR for several different

values of ei and SIR. Figure 8.6 shows a compilation of the results

which allows easy comparison. The scale of each of the small plots in

Figure 8.6 is the same as that of Figure 8.5. From these figures we see

that the system has the most difficulty in suppressing strong broadband

interference when the desired signal and interfering signals are

spatially close. The effects of a large interference bandwidth are most

detrimental at very low SIR values (i.e. when the interference is

significantly stronger than the desired signal at the array input). For

an SIR value of 0 dB, the system performance with broadband interference

(for Bi' < 0.075) is not significantly worse than it is with Bi' = 0.

In general, the resolution properties of a linear array are

dependent upon the signal arrival angles. A linear array can steer a

null with infinite bandwidth n the broadside direction*. However, it

becomes more difficult to achieve a broadband null as the interference

arrival angle varies from the broadside to the endfire direction.

* For example, a 3-element linear array with a weight vector

W=[-1,2,-1]T has a null in the broadside direction for all
frequencies.
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Figure 8.5. Three-element array performance with noise interference
(Od=00. Oi=1O*, k = 1/2, Bd = 0.1).
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Figure 8.6. Performance of a 3-element array with noise interference
for various "'R values (pd=0 0 , .d=O.1) v
and scales are the same as those of Figure 8.5.
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In order to determine the effects of arrival angle of a broadband

interference signal, we examine several cases for which the desired and I
interfering signals are separated by 200. A mosaic of the resulting 3
P(e) vs. SNR plots for these cases is shown in Figure 8.7. This figure

shows the system performance for two combinations of arrival angles and 5
three SIR values. The left-hand curves in Figure 8.7 show the

performance when oi=o0 and 6d = 200. When ei=0 0 the array steers a I
wideband null in the interference direction and good performance is

noted at all SIR levels.

The right-hand plots in Figure 8.7 show the performance when ei=90 °  I
and Od=70 0 . In these cases the array has significant difficulty nulling

the interference, especially for the broadband interference. Although 5
the performance appears poor in these latter cases it is important to

note that P(e) with no adaptive array would be nearly 0.5 for each of

the cases considered. 3
From the results presented above, we see that the interference is

most effective when it is relatively strong and broadband. In each of 3
the cases that we have examined so far k = 1/2 and Bi ' < Bd. We next

compare the performance for four different cases including some cases 1
where Bi' > Bd and/or k > 1/2. The cases to be examined are: 3

(A) Bd = 0.1, 0 < Bi' < 0.075, k = 1/2

(B) Bd = 0.01, 0 < Bi' < 0.075, k = 1/2

(C) Bd = 0.1, 0 < Bi' < 0.075, k = 10 3
(D) Bd = 0.01, 0 < Bi' < 0.075, k = 10

I
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Figure 8.7. Performance of a 3-element array with noise interference
for various SIR values (Bd=90 , k=1/2, Bd=0.1 ) . Bi values
and scales are the same as those of Figure 8.5.
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In each case Od=00 , ei=lO0 and SNR = 12 dB. Case (A) is the case

considered previous in this chapter (see Figure 8.6). Case (B) is I
similar except that the desired signal bandwidth is reduced by a factor g
of 10. The array bandwidth is also reduced by this factor since k = 1/2

in both cases (A) and (B). In case (B) some of the interference signal 5
is blocked by the array input BPFs when Bi ' is greater than 0.01. k is

equal to 10 for cases (C) and (D). The other variables are the same as 5
in cases (A) and (B) respectively.

Figure 8.8 shows the results for case (A). For this case the

interference is passed by both the input BPFs and the detector filter. i
From Figure 8.8 we see that the interference bandwidth has little effect

on the system performance for INR values below about 15 dB. For large 9
INR values the system performance quickly degrades as the interference

bandwidth increases. These are exactly the observations that we made I
for this case after examination of Figure 8.6. 3

Figure 8.9 shows the results for case (B). The upper two curves in

this figure show the performance when Bi'=O and Bi'=0.01. For these 5
cases Bi' < Bd and the performance is the same as it was in case (A) for

these Bi' values. For the other three cases shown in this figure 3
Bi, > Bd . In these cases the array input BPFs reject some of the 3
interference and the performance monotonically increases as Bi '

increases. Therefore, for the narrowband array, a fixed-power 3
interference signal is most disrupting when its bandwidth is equal to

the array bandwidth. 3

1
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3 Figure 8.8. 3-element array performance - Case (A).
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Figure 8.10 shows the results for case (C). As in case (A), the

interference in this case is passed by both the input BPFs and the

detector filter. We see from Figure 8.10 that the performance becomes

bandwidth dependent for INR values above approximately 25 dB. At high

INR values the curves quickly diverge indicating poor performance with

strong wideband interference. The only difference between the cases

shown in Figures 8.8 and 8.10 is the difference in the value of k.

Examination of these figures indicates the increase in k from 1/2 to 10

produces two effects. First, for the case when k=10, the characteristic

hump apperas in the P(e) vs. INR curves. The appearance of this hump is

not surprising since we have seen it for each of the other modulation/

interference combinations that we have examined so far. The second

important difference to be noted when comparing Figures 8.8 and 8.10 is

the different INR value at which the curves begin to diverge. This

value is approximately 15 dB for the case when kl=1/2 and 25 dR when

k=10*.

Figure 8.11 shows the results of the calculations for case (n). In

this case the interference is passed by the input BPFs but is partially

blocked by the detector filter for Bi' > 0.01. For the cases shown in

the upper two curves, the interference falls entirely within the

passband both the input and detector filters. The performance shown in

these two curves is identical to that shown in the corresponding curves

* Note that the noise power at each element input is 13 dB larger for

case (C) than it was for case (A). Therefore, the curves begin to
diverge at approximately the same value of Pi/Pn at the array input
for the two cases.
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Figure 8.10. 3-element array performance - case (C).
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in Figure 8.10. However, for the larger values of interference

bandwidth, a significant portion of the interference is rejected by the 5
detector filter. For these cases, the performance with a fixed-power

jammer monotonically improves as the bandwidth increases. I
In each of the cases discussed above the system performance became 5

worse as the interference bandwidth increased until the point was

reached where the interference and desired signal bandwidths were equal.

This behavior was noted for each of the array input bandwidths examined.

We found that the performance was best for small k values. Therefore, U
for best performance, the desired signal bandwidth and the array input 3
bandwidths should each be as small as possible. Similarly, from a

different point of view, the most effective jamming strategy is to 3
spread the interference power over as wide a bandwidth as possible while

keepig the bandwidth less than or equal to the desired signal I
bandwidth. 3

It is interesting to compare the results obtained in this chapter

for zero-bandwidth noise interference with those presented in the £
previous chapter for CW interference. We might at first expect these

two cases to produce identical results since the adaptive array I
calculations are identical in the two cases. However, the equations 3
from which P(e) is calculated for each case are significantly different.

When the results are compared for the two cases we note that 5
significantly poorer performance is obtained for the zero-bandwidth

Gaussian noise case. In the CW interference case we assume that we have I
a sinusoidal interference signal with a fixed amplitude and random
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phase. In the noise case we assume that we have a Gaussian random

process for which we know the variance. Figure 8.12 shows a typical

member of the ensemble of noise waveforms under the assumption that

the bandwidth is not zero but is very small*.

For maximum effectiveness with a fixed average power, a narrowband

jammer will be more effective if the CW output signal is modulated with

a Gaussian random process so as to produce an output waveform similar to

that shown in Figure 8.12. If such a signal is to be truly Gaussian,

the transmitter must be capable of transmitting at peak power levels

which greatly exceed the average power level. Whether or not a

particular transmitter can do this depends on its hardware design. If

the maximum and peak power capabilities of a particular narrowband

transmitter are equal then the transmitter might as well send a CW

signal of constant amplitude so that the maximum power level is always

being transmitted.

D. PERFORMANCE OF A TAPPED DELAY LINE LS ARRAY WITH WIDEBAND

INTERFERENCE

In this section we examine the performance of a modified LMS array

with broadband Gaussian interference. This array has transversal

filters (i.e., tapped delay lines) behind each element instead of a

* If we were to assume that the Gaussian process truly has zero

bandwidth then the interference would be a constant amplitude CW
signal. Our Gaussian assumption would therefore apply to the
statistics of the ensemble of possible interference waveforms and not
the time statistics of one ensemble member. Therefore the zero-
bandwidth Gaussian interference process is not ergodic.
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Figure 8.12. Sample interference waveform with Bi - .

single complex weight. The use of tapped delay lines as the weighting I
elements in the LMS array was first suggested by Widrow [1]. Compton

and Rodgers studied the performance of several different structures of

tapped delay line (TDL) LMS arrays in [31]. We first present a short 3
description of the TDL array and why it is. effective against wideband

interference. We then present the results from performance calculations m

which illustrate the performance improvement offered by this type of

processing.

We first examine why TDL adaptive array processing is more 1
effective than conventional LMS processing. We consider a 2-element

array as an example. A 2-element array has a transfer function for the 3
interference of,
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Hi (w) = wI + w2exp[-JwiT i ]  (8.23)

where w1 and w2 are the element weights and Ti is the interelement time

idelay given by (2.14). If the array is to steer a null on the

interference Hi(w) should be zero. Thus, for a null, we require,!1

w = w2exp-jwi Ti ] . (8.24)

Since w1 and w2 are simply complex numbers, (8.24) can only be

satisfied at a single frequency wi" Thus, with appropriate weights, the

2-element array can completely cancel a CW interfering signal. However,

complete cancellation is impossible for broadband interference since the

element weights are frequency independent.

Now let us examine the transfer function of the 2-tap TDL filter

shown in Figure 8.13. The transfer function of this filter is,

H(w) = w1 + w2exp[-jwT] , (8.25)

where T is the time delay produced by the delay line. If we use such a

filter to implement each of the element weights in an adaptive array we

might expect to improve the performance against broadband interference.

This improvement is to be expected since the TDL element weights are not

frequency independent. Therefore the TDL filters can (approximately)

compensate for the frequency dependence of the complex exponential

term in (8.24).

Compton [32] studied the optimum delay line length and number of

taps for suppression of a single wideband jammer. The results of this

study indicated that the length of the delay line is not particularly
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Figure 8.13. 2-tap transversal filter. 3

critical as long as it is shorter than approximately one wavelength. In I
a real array, extremely short delay lines should be avoided since they 3
may require a very large dynamic range for the weights. Compton also

shows that a single wideband noise jammer can effectively be suppressed 3
with just two taps per delay line.

We now consider the 3-element TDL LMS array shown in Figure 8.14. 3
The signal received by each array element is processed by a 2-tap TniL

with complex weights and a quarter wavelength delay between taps. The

weighted signals are summed to produce the array output. Conventioral 3
LMS feedback loops are used to drive each element weight. The signals

at the tap outputs are given by, m
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Figure 8.14. 3-element tapped delay line LMS array.
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= ()+ 'I(t) + 7i1 t) (8.26)

~2(t) = a(t-T d) + 'T(t-T1 ) + ;()(8.27)1

x3(t) = a(t-2T d) + i1:(t-2Ti) + ;3(t) (8.28)

x4(t) = 1(t-T) (8.29)1

5()= '2 (t-T) (8.30)3

~6(t) = 3 (t-T) (8.31)

where T d and T i are the interelement time delays for the desired signalI

and interference. The desired signal covariance matrix is given by,

R R(0) R-(-Td) Rd(-2Td) Rd(O) R-'(-Tr-) R-(-2Td-)-

R-(TdT R-(T) R-(-TdT Rd(T ) R-(O) R'(-Td)I

R-(2TdT Rd(TdT R-(T) R'(2Td) R-(T ) Rd(O)3

d~~~(.2 d1 ) dd - dd

R-(T R--T T) -(-T +) R(O) R-(T R(-I
d d d d d d d 207

R-( +T R-T) -(- +T R-T R(O) R-(Td



Similarly,

R R(0) R7 (-Ti) R7(-2T1) R7(-T) R7(-Ti-T) R7(-2Ti-T)-

I-Ti R7(O) R7(-Tj) R7(T1 T) R7(-T) R?(-T -T)

R(2TiA R.(T.) R7(O) R7(2T.-T) R7(T.-T) R7(-T)

R.(T) R.(-T.+T) R7(-2T.+T) R7(O) R7(-T. R7(-2T.)

R1(T +T) R7(T) R 7(T+) R(Ti) -O R(T

R.(2T +T) R7(T +T) R7(T) Ri(2T.) R7(T.) R7(O)

(8.33)

and the noise covariance matrix is given by,

R-(Q) 0 0 R-(-T) 0 0
*n n

0 R-(0) 0 0 R'(-T) 0

0 0 R70O) 0 0 R-(-T)
= n n

IR-(T) 0 0 R-(0) 0 0
n n

0 R-(t) 0 0 R-(0) 0
n n

o 0 C~(T) 0 0 R-(0)In n

1 (8.34)

where we denote the noise ACF at each element by R-(T).
n
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We assume the same desired and interference signal models used

previously in this chapter. We also assume that the element BPFs have I
the same bandwidth as the desired signal (i.e. the bandwidth factor

k=O.5). Furthermore, for simplicity, we shall only consider the case

where the interference bandwidth is less than or equal to that of the

desired signal.

The calculations of the noise covariance matrix are somewhat more 3
complicated in this case than for the previous cases that we considered.

In each of these previous cases the noise covariance matrix was diagonal

(i.e., On = 021). In these cases, to calculate the covariance matrix, 3
we only needed to know the total noise power (a2 ) at each element input

and not its PSD or ACF. In the present case we must also include the 5
non-zero off-diagonal terms in the noise covariance matrix.

We assume that white Gaussian noise is present at the input to each

element input. The ideal BPFs at the element inputs limit the noise 3
spectrum to a rectangular passband as shown in Figure 8.14. We assume

that the total noise pased by each filter has power a2. Therefore, the

noise complex ACF is given by,

Rn (T) = 02sinc(A~wi /2)exp(jwdT). (8.35)

We assume that the array reference signal is of the form, U
F(t) = 3(t)//(PTn (8.36)

where (Pdin is the desired signal power at each element input. The 3
reference correlation vector S is then given by,
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R (O)
R_ (0)
Rd (Td)

Rd(2Td
S d d) (8.37)

R_ (T)

Rd(T+T)

Rd( 2Td+T)

From the equations given above we can calculate the array

performance. The array weights are calculated first using

W =COd + .i + In 1] 1S. (8.38)

The power levels of the desired signal, interference, and the

thermal noise at the array output are then calculated using (2.32)

through (2.34).

In Chapter II we defined the SINR at the array output as

SINR = - . (8.39)Pi+Pn

Earlier in this chapter we found that P(e) of the ideal detector was

dependent only upon the SINR at the detector input where we defined

SINRdet as

SEd

SINRdet = (Ei)det+ n (8.40)

where Ed = PdT, Ei = (Pi detT and n is the one-sided real noise PSD at

the detector input. We defined (P idet as the power in the portion of
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the interference signal that lies within the band of frequencies for

which the detector is sensitive. Since, in the present case, we assume

that the interference bandwidth is less than or equal to the desired

signal bandwidth then (POidet = Pi. Thus (8.40) becomes I
PdT

SINRdt = PT+ (8.41)

or equivalently I

SINRdet =Pi + n/T (8.42)

Since we assumed that the bandwidth of the BPFs at the element

inputs is 1/T then n/T is the noise power Pn at the detector input U
(i.e., the array output). Therefore 3

P d

SINRdet = Pi + Pn " (8.43)

A comparison of (8.39) and (8.43) indicates that SINRdet, upon 3
which P(e) is a simple function of, is equal to the SINR at the array

output, i.e., 3
SINRdet = SINR. (8.44) 3

Using this expression in (8.22) we have 3
P(e) = erfc[(2)(SINR)]. (8.45)

Thus P(e) for the case at hand can be simply calculated from the SINR at

the array output. m
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We now use the derivations described above to calculate the

performance of the TDL LMS array with BPSK signalling and broadband

noise interference. As an example we consider one of the cases for

which we found particularly poor performance with the standard LMS

array. We examine the system performance when the input signal scenario

is identical to that for the case shown in Figure 8.5. For this case

Bd=O 0 , Bi=l0, SIR = -30 dB, and Bi = 0, 0.01, 0.025, 0.05, and 0.075.

The results for the TDL LMS array are shown in Figure 8.15.

A comparison of Figures 8.5 and 8.15 indicates that adding the TDL

processing to the LMS array greatly improves performance. In fact, the

performance for all of the non-zero Bi values for the TOL array is as

good as the Bi=O case. Therefore, the TDL array has completely

eliminated the performance degradation caused by non-zero bandwidth of

the single jammer. This performance improvement was noted for a wide

variety of input signal scenarios.

Rules for designing TDL LMS arrays did not exist until recently

[23] and several aspects of their performance are yet to be studied.

For example, the performance of the TDL LMS array in the presence of

multiple broadband jammers has yet to be examined in detail. However,

the results presented here indicate it appears that continued study of

the TDL LMS array would be worthwhile.
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Figure 8.15. Performance of the 3-element TDL LMS array for the samem
cases shown in Figure 8.5.I
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CHAPTER IX

SUMMARY AND CONCLUSIONS

In this dissertation we have examined the performance of several

communication systems that use LMS adaptive arrays for interference

suppression. P(e) at the detector output was used as the measure of

system performance.

We have found that the LMS array improves the communication system

performance in many cases. We first examined the performance of BPSK,

QPSK, nPSK and FSK systems with CW interference. We showed that,

qualitatively, the performances of these systems were quite similar. We

found that the variations in performance noted among the different

systems with the same input signals were generally consistent with the

well known relative performance levels of their respective modulation

methods. We found that no particular modulation technique provided

unusually good or poor performance. For this reason we used BPSK

modulation in the latter chapters with the understanding that similar

qualitative performance would be observed with any of the other

modulation methods.

We found that the system performance is dependent upon several

factors. The performance is best when there is a large spatial

separation between the desired and interfering signals. The performance

generally becomes worse as the array input bandwidth increases beyond

the desired signal bandwidth. We defined k as the ratio of the array
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input bandwidth to the reciprocal of the symbol rate. For k values

greater than approximately 2, humps appear in the P(e) vs. INR curves.

The height of these humps becomes larges as k increases. The peaks of

the humps occur at INR values where the interference power is I
approximately equal to the thermal noise power at the array input.

In order to determine the optimum system bandwidth, we described a

minimal bandwidth BPSK system that allows the BPSK signal to occupy a

bandwidth corresponding to k=1/2. We examined the performance of the

narrowband system for k values between 1/2 and 1n. In general we found I
the best performance for small k values. However, for weak

interference, we found that the very narrowband (i.e., k = 1/2) system

performed slightly worse than systems with k=1 or k=2. We found that 3
the array, with k=1/2, successfully nulls the weak interference; but the

constraints imposed on the pattern by the null also produce a slight I
decrease in the desired signal power at the array output. The net

effect of the null, in this case, is to reduce the output SNR and P(e).

However, the differences in performance noted for k values betwen 1/2 3
and 2 are small.

We calculated the performance of the narrowband BPSK system for the 3
case where the interfering signal is a Gaussian noise signal with

non-zero bandwidth. We found that, for a fixed interference power, P(e) I
increases as the interference bandwidth increases until the interference

and desired signal bandwidths are equal. Therefore, the interference is

most effective when its bandwidth is the same as the desired signal. We

found that wideband interference was especially disruptive when the

I
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input interference power is 10 dB or more larger than the desired signal

power. We found that wideband interference is most effective when it

arrives from a direction near endfire since the interelement time delay

is largest in this direction. We suggested that a nonlinear element

geometry would eliminate this susceptibility to endfire broadband

interference.

We next calculated the effects of noise interference on a tapped

delay line (TDL) LMS array. In this array transversal filters are used

to implement the element weights. We found that the TDL LMS array was

not sensitive to the interference bandwidth for any of the signal levels

and bandwidths that we examined. The primary disadvantage of the TDL

LMS array is the added hardware complexity.

In summary we found that the LMS array can offer a significant

degree of interference protection to digital communication systems. The

system performance is not unusually dependent on the modulation method.

For best results we found that the desired signal and array input

bandwidths should each be as small as possible. We also found that the

system performance is best when the desired signal and interference were

well separated spatially. We showed that wideband interference is more

effective than CW interference but that tapped delay line processing

greatly reduces the system susceptibility to wideband interference.
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