LOAN DOCUMENT

AR

AD-A239 095

PHOTOGRAPH THIS SHEET

LEVEL

DTIC ACCESSION NUMBER

\

INVENTORY

RV \Qo«\ o N\oﬂ%\\\é\em‘b - Q\L

IIIIIIIIIIIII

Que, Wb
i - / DISTRIBUTION STATEMENT
| 2
NTIS GRAAI
DTIC TRAC
UNANNOUNCE u

DATE ACCESSIONED

DISTRIBUTION STAMP

——9—1—7 u u U206
: HIIHIIIIIIlll'lllﬂlIlll!llllllﬂlllmlllt

EHRPO DH-E=E DT Z T

DATE RETURNED

91-06

DATE RECEIVED IN DTIC

PHOTOGRAFPH THIS SHEET AND RETURN TO DTIC-FDAC

REGISTERED OR CERTIFIED NUMBER

—Rm
DTIC ™ 70A

DOCUMENT PROCESSING SHEET

LOAN DOCUMENT




l

AD-A239 0
|III?IIIIIIIIIIIIllllllllf!lllllllllll HIII

OSU

The Ohio State University

PERFORMANCE OF DIGITAL COMMUNICATION SYSTEMS
WITH ADAPTIVE ARRAYS

Matthew W. Ganz

The Ohio State University

ElectroScience Laboratory

Department of Electrical Engineering
Columbus, Ohio 43212

Technical Report 717253-4
Contract No. N00019-85-C-0119
August 1986

Department of the Navy
Naval Air Systems Command
_Washington, DC 20461




NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.




30272100

REPORY DOCUMENTATION |3. REPORT NO. 2.
PAGE ) M'
(4. Title and Subtitle

Performance of Digital Communication Systems with Adaptive
Arrays

e e e

7. Author(s)
Matthew W. Ganz

9. Purforming Organizetion Name snd Address
The Ohio State University ElectroScience Laboratory
1320 Kinnear Road
Columbus, Ohio 43212

12. Sponsorning omaniut_ion Name on-d Addr;ss

——— e ——— e ———_— s ——— = ———

v —t— e ——

] 3. Reciprent's Accession No.

s. Report Oate

August 1986

6.

& Pertorming Organization Rept, No.
| 717253-4 B

10. Pmiod/?onmo.vu -U:ﬂ.( No. ’

u_.'c;m‘;u(cfo-r Grant(G) N;- T
«© N00019-85-C-0119

(-]

13. Type of Report & Period Covered

Department of the Navy Technical
Naval Air Systems Command
Washington, DC 20461 1a.

— —— i ————— —— ]

135. Supplementary Notes

e ———— i ——— e o —— R, [ —

16. Abstract (Limit: 200 words)

This report examines the protection offered to digital communication systems by the LMS
adaptive array. The performances of systems that use binary phase-shift-keyed (BPSK),
quadrature phase-shift-keyed (QPSK), binary differential phase-shift-keyed (DPSK), and
noncoherent frequency-shift-keyed (FSK) modulation are calculated when the desired signal is
corrupted by continuous wave (CW) interference. The probability of a symbol error at the
system output is used as the measure of system performance.

It is shown that the MS array provides a significant degree of interference protection
to each of these systems. The most protection is offered when the desired and interfering
signals are spatially well separated. It is also shown that the performance generally
improves as the array input bandwidth is reduced; however, for the modulation types listed
above, the array input bandwidth must be several times larger than the data bandwidth if
intersymbol interference is to be avoided.

A narrowband BPSK system is described that allows relatively small array input
bandwidths to be used. The performance of this narrowband system is examined for both CW
and Gaussian noise interference. It is shown that this system is most vulnerable to noise
interference when the interference bandwidth is equal to the desired signal bandwidth.

The performance of an adaptive array with tapped delay line weights is also examined.
It is shown that, with a single noise interferer, a communication system using this array
performs better than one using a conventional LMS array.

17. Document Aneiysis @. Descriptors

b. ldentifiers/Open-Ended Terms

ec. COSATI Fiela/Group

— ———

18, Avsiledility Statement

———

-—— . o - - ——— - ————— . = ——h —

19. Securty Class (This Report) 21. No of Pages

A. Approved for public release; distribution _Llncl_asiifi.gg__;;_)__-- 3223’0...._____
i i 20. Secu lass 1 . Prce
is unlimited. UnCIZZSified

(See ANSI-Z39.18) OPTIONAL FORM 272 (4-71)

(Formerly NTIS-3%)
'i Deportment of Commerce

Soe Instructions on Reverse




Al

- E E T NP S N I e S T e G A Al U R T En

TABLE OF CONTENTS

CHAPTER

LIST OF FIGURES

I
I

ITI

ITI

VI

INTRODUCTION
THE LMS ADAPTIVE ARRAY

A. INTRODUCTION
B. THE COMPLEX LMS ARRAY

PERFORMANCE OF A BPSK SYSTEM WITH CW JAMMING

INTRODUCTION

A
B. ARRAY PERFORMANCE
C

INTERFERENCE
D. PERFORMANCE CALCULATIONS FOR COMBINED LMS
ARRAY /BPSK DETECTOR

PERFORMANCE OF A QPSK SYSTEM WITH CW INTERFERENCE

A. INTRODUCTION

B. ARRAY PERFORMANCE

C. QPSK DETECTOR PERFORMANCE WITH CW AND AWGN
INTERFERENCE

N. PERFORMANCE OF THE COMBINED LMS ARRAY/QPSK
DETECTOR

PERFORMANCE OF A DPSK SYSTEM WITH CW INTERFERENCE

A. INTRODUCTION

B. ADAPTIVE ARRAY PERFORMANCE

C. NPSK DETECTOR PERFORMANCE WITH CW AND AWGN
INTERFERENCE

D. PERFORMANCE OF COMBINED LMS ARRAY/DPSK DETECTOR

PERFORMANCE 0OF AN FSK COMMUNICATION SYSTEM WITH CW

INTERFERENCE

A. INTRODUCTION

B. ARRAY PERFORMANCE

C. FSK DETECTOR PERFORMANCE WITH CW INTERFERENCE AND AWGN
D. PERFORMANCE NF THE COMBINED LMS ARRAY/FSK DETECTOR

iti

BPSK DETECTOR PERFORMANCE WITH CW AND NOISE

PAGE

N

17

17
18

41
h4

64
65

66
77
93

93
94

95
106

130

130
132
136
144




CHAPTER

VII PERFORMANCE OF A NARROWBAND ADAPTIVE ARRAY WITH BPSK
SIGNALLING AND CW INTERFERENCE

A. INTRODUCTION

B. BPSK SIGNALLING OVER A NARROWBAND CHANNEL

C. BPSK SYSTEM PERFORMANCE WITH AN LMS ARRAY AND CW
INTERFERENCE

VIIT  PROTECTION OF A BPSK SYSTEM FROM WINEBAND INTERFERENCE

. INTRODUCTION

SYSTEM MODEL

RESULTS OF PERFORMANCE CALCULATIONS

PERFORMANCE OF A TAPPED DELAY LINE LMS ARRAY WITH
WIDEBAND INTERFERENCE

DO P
.

e @

IX SUMMARY AND CONCLUSIONS
REFERENCES

iv

PAGE

151

151
152

161
178
178
179
189
202
214

217

My aE A e 3 D Iw T S W Gy By S W & W a5 Ay W




Figure

2.1,
3.1.
3.2,
3.3.

3.4,

3.5.

3.6.

3.7.

3.8,
3.9.
3.10.

3.11.

3.12.

3.13.

LIST OF FIGURES

The complex LMS array.

BPSK signal and spectrum.

Noise spectrum and transfer function for ideal integrator.
The ideal BPSK detector.

Performance of ideal BPSK detector with CW interference
(AwT = 0).

?erforma?ce of ideal BPSK detector with CW interference
AwT = 0).

Performance of ideal BPSK detector vs. SINR for 2 SAR
values (AwT = 5, noise bandwidth = 10/T, INR varying).

Ideal integrator and BPf transfer functions (only positive
frequencies shown}).

BPSK P(e) vs. SNR for 3-element array (8j=10°, k=5, AwT=0).
BPSK P(e) vs. INR for 3-element array (9;=10°, k=5, AwT=0).

BPSK P(e) vs. SNR for 3-element array (95=20°, k=5,
AwT=0),

BPSK P(e) vs. INR for 3-element array (8;=20°, k=5,
AwT=0). ~

BPSK P(e) vs. SNR for 3-element array (8;=80°, k=5,
awT=0).

BPSK P(e)
AwT=0).

<

s. INR for 3-element array (9;=80°, k=5,

BPSK P(e)
AwT=0).

<

s. SNR for 3-element array (93=10°, k=10,

BPSK P(e) vs. INR for 3-element array (9;=10°, k=10,
AwT=0).

39

40

44
47
43

51

53

54

55

56




Figure
3.16.

3.17.

3.18.

3.19,

3.20.

3.21,

4.1.
4.2.
4.3.
4.4,

4.5.

4.6.

4.7.
4.8.
4.9.
4.10.

BPSK P(e) vs. SNR for 3-element array (8;=20°, k=10,
AwT=0).

BPSK P(e) vs. INR for 3-element array (6;=20°, k=10,
AwT=0),

BPSK P(e) vs. SNR for 3-element array (6;=80°, k=10,
AwT=0).

BPSK P(e) vs. INR for 3-element array (64=80°, k=10,
AwT=0).

BPSK P{e) vs. SNR for 3-element array (9{=10°, k=10,
AwT=27),

BPSK (P(e) vs. INR for 3-element array (84=10°, k=10,
AwT=27).

A typical QPSK waveform with bit-pair assignments.
The ideal QPSK detector,
QPSK decision space.

Normalized decision space showing composite received
signal.

Performance of ideal QPSK detector with CW interference
(AwT=0).

Performance of ideal (QPSK detector with CW interference
(AwT=0).

QPSK P(e) vs. SNR for 3-element array (0;=10°, k=5, AxT=0),
QPSK P(e) vs. INR for 3-element array (8;=10°, k=5, AwT=0).
QPSK P(e) vs. SNR for 3-element array (9;=20°, k=5, AwT=0).

QPSK P(e) vs. INR for 3-element array (9;=20°, k=5,
AwT=0).

QPSK P(e) vs. SNR for 3-element array (9;=80°, k=5,
AwT=0),

QPSK P(e) vs. INR for 3-element array (9;=80°, k=5,
AwT=0).

vi

Page

57
58
59
60
Al

62
h5
67
67

72
75

76

83

an G Oy um Or Uy Gx By Ay e Sy s o o N O @ Ay W




Figure

4.13.

4,14,

4,15,

4.16.

4.17.

4,18.

4.19.

4,20,

5.1.
5.2.
5.3.
5.4,

5.7.

5.8.

5.9.

QPSK P(e) vs. SNR for 3-element array (0;=10°, k=10,
AwT=0).

QPSK P(e) vs. INR for 3-element array (95=10°, k=10,
AwT=0).

QPSK P(e) vs. SNR for 3-element array (9j=20°, k=10,
AwT=0),

QPSK P(e) vs. INR for 3-element array (9;=20°, k=10,
AwT=0).

QPSK P(e) vs. SNR for 3-element array (8=80°, k=10,
AwT=0).

QPSK P(e) vs. INR for 3-element array (8;=80°, k=10,
AwT=0).

QPSK P(e) vs. SNR for 3-element array (9;=10°, k=10,
AwT=27),

QPSK P(e) vs. INR for 3-element array (6;=10°, k=10,
AwT=2.).

Ideal DPSK Detector.
NPSK decision space.
DPSK composite signal.

Performance of ideal DPSK detector with CW interference
(AwT=0).

Performance of ideal DPSK detector with CW interference
(awT=0).

Performance of ideal NPSK detector with CW interference
(AwT=w/2).

Performance of ideal DPSK detector with CW interference
(AuT=7/2).

Performance of an ideal NDPSK detector as a function of AwT
(SNR=10 dB).

Performance of an ideal NPSK detector as a function of
AwT (SNR=13 dB).

vii

Page

85

36

87

38

89

90

91

92
96
97

98

108

109

110

11

112

113




Figure

5.10.

5.11,

5.12.

5.13.

5.14,

5.15,

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

5.22,

5.23.

5.24,

5.25,

6.1,

DPSK P(e)
AwT=0).

NPSK P(e)
AwT=0).

NPSK Ple)
AwT=0).

NPSK P(e)
AwT=0),

NPSK P(e)
aeT=0).

DPSK P(e)
AwT=0),

NPSK P(e)
awT=0),

DPSK P(e)
AwT=0).

NPSK P(e)
AwT=0).

NPSK P(e)
AeT=0),

NPSK P(e)
AwT=0).

NPSK P(e)
AwT=0).

NPSK P(e)
AwT=w/2).

DPSK P(e)
AwT=nw/2),

DPSK P(e)
AeT=27).

DPSK P(e)
AwT=27).

A typical

VS'

vS.

vsS.

VS.

vVS.

VS.

VSQ

vS.

vS.

vVS.

VS,

vsS.

vs.

vsS.

VS.

VS.

FSK

SNR for 3-element

INR for 3-element

SNR for 3-element

INR for 3-element

SNR for 3-element

INR for 3-element

SNR for 3-element

INR for 3-element

SNR for 3-element

INR for 3-element

SNR for 3-element

INR for 3-element

SNR for 3-element

INR for 3-element

SNR for 3-element

INR for 3-element

waveform.
viii

array

array

array

array

array

array

array

array

array

array

array

array

array

array

array

array

(85=10°,
(83=10°,
(95=20°,
(85=20°,
(91=80°,
(91=80°,
(9;=10°,
(94=10°,
(95=20°,
(9;=20°,
(9;=80°,
(95=80°,
(95=10°,
(8;=10°,
(85=10°,

(ei=10°9

k

5,

k

5,

k=10,

k=10,

k=10,

k=10,

k=10,

k=10,

k=10,

k=10,

k=10,

k=10,

Page

114

115

116

117

118

119

y GE A oy Gu SN Gy v Sm B Sy Ay G0 S @B W Ay A




R U U &R EE S sE P uE S v e G On g B TR Ve Em

Figure
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9,
6.10.
7.1.
7.2,
7.3.
7.4,
7.5.
7.6.

7.7.

7.8.

7.9.

7.10,

7.11,

7.12.

FSK detector.

Performance of ideal
Performance of ideal
FSK P(e) vs. SNR for
FSK P(e) vs. INR for
FSK P(e) vs. SNR for
FSK P(e) vs. INR for
FSK P(e) vs. SNR for

FSK P(e) vs. INR for

FSK detector with CW interference.
FSK detector with CW interference.
3-element array (6;=10°, k=5).
3-element array (6;=10°, k=5).
3-element array (87=20°, k=5).
3-element array (90;=20°, k=5).
3-element array (6;=80°, k=5).

3-element array (9;=90°, k=5).

Narrowband BPSK communication system.

Transmitter processing of baseband pulse.

Baseband signal for simple binary sequence.

Narrowband BPSK receiver using an adaptive array.

Nesired signal PSD.

P(e) vs. SNR for 3-element narrowband array (64=0°, 84=10°,

k=1/2).

P(e) vs. INR for 3-element narrowband array (64=0°, 8;=10°,

k=1/2).

P(e) vs. SNR for 3-element narrowband array (84=0°, 6;=20°,

k=1/2).

P(e) vs. INR for 3-element narrowband array (64=0°, 8;=20°,

k=1/2).

P(e) vs. SNR for 3-element narrowband array (84=0°.

8;=80°, k=1/2).

P(e) vs. INR for 3-element narrowband array (84=0°,

8;=80°, k=1/2).

P(e) vs. INR for SNR=

(84=0°, 84=10°).

12 dB for two different k values

ix

Page
134
142
143
145
146
147
148
149
150
153
155
159
163

164

167

168

169

170

171

172

173




Figure

7.13.

7.14,

8.1.
8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

Adapted antenna patterns for two k values. SNR=12 dB,
9d=0°, Bi=10°.

P(e) vs. INR for three k values. SNR=12 dB, 84=0°,
i=10°
1 .

Interference PSD at element BPF inputs.

Transversal filter with two delay elements and three
weights.

Frequency response of LMS array in the desired signal
direction (84=0°, 8;=10°, SNR = 12 dB, INR = 20 dB,
k = 1/2, By = Bj = 0.1).

Frequency response of LMS array in the interference
signal direction (84=0°, 85=10°, SNR = 12 dB, INR = 20 dB,
k =1/2, By = By = 8.1).

Three-element array performance with noise interference
(84=0°, 84=10°, k = 1/2, Bq = 0.1).

Performance of a 3-element array with noise interference
for various SIR values (84=0°, k=1/2, B4=0.1). By values
and scales are the same as those of Figure 8.5.

Performance of a 3-element array with noise interference
for various SIR values (ry=90°, k=1/2, B4=d.1). Bj values
and scales are the same as those of Figure 8.5.

3-element array performance - Case (A).
3-element array performance - case (B).
3-element array performance - case (C).
3-element array performance - case (D).

Sample interference waveform with By = 0.
2-tap transversal filter.
3-element tapped delay line LMS array.

Performance of the 3-element DL LMS array for the same
cases shown in Figure 8.5. .

Page

174

177
179

183
186

188

191
192

194
196
197

199

203
205

206

213

NN GE ON ms Gn ) am Gy m Wy A Un G5 U= @& S &5 am




CHAPTER I
INTRODUCTION

An adaptive array is an antenna that can change its pattern in
response to the signals it receives [1,2]. By forming pattern nulls in
the directions of undesired signals, an adaptive array can protect a
communicatior system from interference. The Applebaum adaptive array
[1] uses a steering vector to control the direction of its main beam.
This array nulls signals that arrive from angles other than the
direction specified by this vector. The LMS array [2] uses a reference
signal to control the main beam direction. Both Applebaum and LMS
arrays can be used in communication systems. When the desired signal
arrival angle is known, the Applebaum array is the best choice. The LMS
array is appropriate if we wish to track a desired signal whose arrival
angle is unknown,

The LMS array requires a reference signal that is correlated with
the desired signal and uncorrelated with any interfering signals [37.
Methods for deriving suitable reference signals have been developed for
several modulation types including binary phase-shift-keying (BPSK)
(37, quadrature phase-shift-keying (QPSK) (47, conventional amplitude
modulation (AM) [5], and frequency-shift-keying (FSK) [6,7].
Experimental systems have been built that verify the feasibility of

each of these systems [3,4,5,7].




The output of the LMS array is a weighted sum of the signals at its
inputs. The LMS weights maximize the signal to interference-plus-noise
ratio (SINR) at the array output [8]. Therefore, in much of the early
work, the output SINR was used as a figure of merit for adaptive array

performance [8-13]. However, a few recent studies have used the

bit-error probability at the communication system output as a measure of

performance. Al-Ruwais, Acar, and Compton [12,13,14] estimated P(e) at
the output of differential phase-shift-keyed (DPSK) communication
systems that included LMS arrays. Their estimates were based on the
assumption that the noise and interference at the array output
contributed equally to the degradation in detector performance.
Furthermore they assumed that the detector performance was not dependent
on the spectral distribution of the noise or interference.

In this report we examine the performance of digital communication
systems that use LMS adaptive arrays. We consider the performance with
BPSK, QPSK, binary DPSK, and binary FSK modulation of the desired
signal. We examine the effects of single tone (i.e., CW) interference
and bandlimited Gaussian noise interference on these systems. We
identify key operating parameters and calculate their effects on system
performance. These parameters include the received signal powers,
frequencies, arrival angles, and bandwidths. The results will be of
interest to both the theoretician and the system designer.

We use P(e), the probability of a symbol error at the receiver
output, as the measure of system performance. For each combination of

desired signal and interference, we calculate the signals at the array




output. We then calculate P(e) of the detector when the array output
signals appear at its input. In each case we assume that the system
uses the ideal detector for the desired signal in the presence of white
Gassian noise.

Although a high SINR at the array output is generé]ly desirable, we
show that P(e) at the detector output cannot generally be determined
from the SINR alone. For example, the performance of most digital
detectors with Gaussian noise and continuous wave (CW) interference
depends on several factors including desired signal power, interference
power, noise spectral density, and noise bandwidth, If we hold all but
one of these parameters constant and let the remaining parameter vary,
then we find that P(e) does vary monotonically with SINR. However, if
we allow more than one parameter to vary at a time, we find it
impossible to predict P(e) from the SINR alone. In fact, there are many
cases where P{e) becomes worse as the SINR increases., Therefore, we use
P(e) and not SINR as the measure of performance.

We find that the performance of a communication system that
includes an LMS array is strongly dependent upon the bandwidth of the
signals at the array input. Generally, we find the system performance
improves as the array bandwidth decreases (as long as this bandwidth is
large enough to pass the desired signal). However, many systems require
an array bandwidth that is several times larger than the data bandwidth
of the transmitted bit stream, There are many reasons why this might be
the case. First, the spectrum of a signal modulated by any of the
classical digital modulation techniques discussed above is not limited

to the data bandwidth., Such a signal will be distorted if it is




filtered to occupy a narrow bandwidth, Second, it may be difficult to
implement the filters required at the array input to limit the array
bandwidth., Third, the system may be required to operate over a wide
frequency range to accommodate several signal channels or unknown
doppler shifts., Finally, the spectrum of the desired signal may he
intentionally spread for data security or to permit the generation of a
reference signal [3,4,13]. For these reasons we examine the system
performance for several array bandwidths.

We first examine the performance of wideband BPSK, NPSK, NPSK, and
FSK systems with CW interference. By wideband we mean that the array
bandwidth in Hz is at least ten times as large as the transmitted bit
rate in bits/sec., We find that the qualitative performance of the
various systems are commensurate with the well-known performance
characteristics of their respective modulation techniques. Therefore,
for the remainder of the study, we use BPSK modulation with the
understanding that similar results would be ohbtained using other
modulation methods.

We examine several array bandwidths using the wideband models. 1In
each case we find that the system performance improves as we reduce the
array bandwidth., 1In order to determine the optimum array bandwidth we
develop a narrowband RPSK modulation method., This method allows the
desired signal to occupy a channel with a bandwidth equal to the desired
signal data rate. We examine the system performance for a wide range of
array input bandwidths. lnder most interference scenarios, we find the

best performance when the array bandwidth is as small as possible (i.e.,




when the array bandwidth is equal to the data bandwidth). However, for
weak interference, this general rule does not always hold. We examine
the reasons for this anomalous behavior.

In addition to CW interference, we also examine the effects of
bandlimited noise interference on the BPSK system performance. We find
that the LMS array with a single complex weight behind each element
often has diffiulty nulling strong hroadband interference, This problem
is overcome if we use tapped delay line filters to implement the weights
[15]. We compare the performance of arrays using both of these weight
implementations for various signals powers, handwidths, and arrival
angles.

Chapter 11 presents a description of the LMS array and the
calculations required to predict the signal power levels at the array
output. Chapters III through VI describe the performance of the BPSK,
OPSK, NPSK, and FSK systems with CW interference, Chapter VII examines
the performance of a narrowband BPSK system with CW interference for
various input bandwidths, Chapter VIII describes the performance of a
BPSK system with broadband interference for both the LMS and the tapped

delay line LMS arrays. Finally, Chapter IX contains the conclusions.




CHAPTER II
THE LMS ADAPTIVE ARRAY

A. INTRODUCTION

In this chapter we will describe the basic operating principles of
the LMS adaptive array. We present the mathematical models used in
later sections to predict array performance.

The discussion of array operation presented in this chapter is
abbreviated and is presented mainly to define the notation used in the
following chapters. More detailed descriptions of the LMS array and
its operation are given in [2] and [15]. The notation used in this

section is generally consistent with that used in these references.

B. THE COMPLEX LMS ARRAY

Figure 2.1 shows a block diagram of an N-element adaptive array.
The signal from each antenna element is fed through an ideal bandpass
filter (BPF), which limits the thermal noise power and rejects out-of-
band interference at the array input. We denote the analytic signal at

the input to the 1th

array input by §i(t). For the N-element array we
define the signal vector X which is composed of the array input

signals,




Figure 2.1.
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The complex LMS array.




X = . (2.1)

Xt |

Each element signal is multiplied by a complex weight and the weighted
signals are summed to produce the array output s(t). We define the

complex weight vector,

_.Wl -
W = W? (2.2)
— WN I
The array output is given by,
S(t) = WX . (2.3)

The array output is subtracted from a reference signal, r(t), to

produce an error signal e(t),
a(t) = r(t) - s(t) . (2.4)

The LMS array adjusts the array weights to minimize the mean square
value of this error signal [2]. A suitable reference signal for the
array can often be extracted from the signals at the array output. The

circuit that derives this reference signal typically uses known




properties of the desired signal (such as spread-spectrum sequence
characteristics) to partially separate the desired and undesired
components of the array output [3,4,5]. The signal at the circuit
output should be well correlated with the desired signal and poorly
correlated with the interference. The references cited in Chapter I
discuss reference generation techniques for several types of desired
signal modulation. In this report we do not address the problem of
reference signal generation. We simply assume that the reference signal
is a perfect replica of the desired signal at the output of BRFP1,

In steady state the LMS weight vector is given by [1],

where 9 is the Covariance Matrix,

*
» = EIXx7y (2.6)
and S is the reference correlation vector, which is given by,

s = E[X"F(t)] . (2.7)

where E[e] denotes the expected value. It can be shown [15] that the

steady state weights given by (2.5) produce the maximum attainable

Signal-to-Interference-plus-Noise-Ratio (SINR) at the array output.
It is often convenient to separate the desired, interfering, and

thermal noise components of the incoming signal vector as,

X=Xd+Xi+xn (2.8)




If we assume that the desired, interfering, and thermal noise signals
are uncorrelated (and zero mean), then we can separate the three related

components of the covariance matrix

*
o = E[X xT]
* T * T * T
= E[Xd Xd 1+ E[X1 Xi 1+ E[Xn xn 1.
VI PR (2.9)
where
* 7
2y E[Xd Xy 1, (2.10)
* T
by = E[Xi Xi 1, (2.11)
and
* T
o, = E[Xn Xn 1. (2.12)

Thus we have divided the covariance matrix into a sum of three separate
matrices, each involving only one signal., This step simplifies
subsequent derivations.

We assume in the derivations below that we have a three
element linear array with one half wavelength spacing between elements.
Figure 2.1 shows the array geometry. Of course, we can extend our
results to cases where the array has more than three elements; however,
the three element array calculations suitably illustrate the system
operating principles and performance.

We assume in the derivations below that we have a 3-element linear

array with one-half wavelength element spacing as shown in Figure 2,1.
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A 3-element array has two degrees of freedom. The array can therefore
steer a null on the interference and simultaneously maximize the desired
signal response.*

We assume that the desired signal is incident from an angle of 8,
(measured from the broadside direction) and a single interfering signal
is incident from an angle of 9;,

The interelement time delay between the signals on

adjacent elements are given by

—
n

(L/c)sing, (2.13)

—
1]

(L/c)sine; (2.14)

for the desired signal and interference respectively, where ¢ is the
propagation velocity and L is the element spacing. The interelement

phase shifts for the desired and interfering signals are given by,

b4 = msin(8) (2.15)

and,

©
[l

= m(w; /wy)sin(e,) (2.16)

respectively, where wq & w;j are the desired signal and interference

frequencies, Slight variations in wj about wy have little effect on

*There are limits to the resolution capabilities of the 3-element array.
We shall find in later chapters that the array cannot keep the desired
signal at a pattern maximum when a very strong interfering signal is
spatially close to the desired signal.
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most performance calculations. From Equation (2.16) we see that a small
change in wj produces a corresponding change in $j. Similarly a small
change in 0; has the same effect. Therefore, the change in the array
performance caused by variations in w; are identical to those caused by
a corresponding variation in 83, If these variations are small, then
the array performance is negligibly affected. In the following chapters
we usually assume that ¢j=msindj. This assumption will allow us tn
calculate the system performance without specifying the operating

frequency.

We denote the analytic signal representation of the desired, and
interfering signals as received by element 1 by d(t) and T(t)
respectively. We define the complex autocorrelation function (ACF) for

the desired and interfering signals as,

£rd (£)d(t+r)] (2.17)

Pl
a. g
—~
~
S~
n

BT ()T (t+1)T (2.18)

Ry (1)

We assume that white Gaussian noise is present at the input of each of
the element BPF's, We assume that the noise signals at the various BPF

outputs are mutually statistically independent. We denote these signals
by nl(t), \z(t) and n3(t) with,
Py Py = o2
E[ni(t)nj(t)] =g 61j . (2.19)

where 5ij is the Kronecker delta.
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We now can write the desired signal, interference signal, and noise

covariance matrices for the three-element array,

~ R4() R4 (-Tq) R4(-2Tq) —

% = | Rd(Tq) R4(0) Rd(-Tq) | (2.20)
_RICTa) RETY) Rglo)
~ Ry(0) RT(-T4) RT(-2T4) —

¥ 0= | Ri(Ty) R7(0) R7 (-Tq) (2.21)
_RET) R R

and,
3, =9l , (2.22)

where 1 is the identity matrix.
The covariance matrix » can now be determined from (2.9), and
(2.20) through (2.22).

We assume the reference signal for the array is of the form,

r(t) = R d(t) (2.23)

We note that the SINR at the array output is independent of the
magnitude of R (for non-zero R). An increase or decrease in R produces
a proportionate increase or decrease in the level of each signal at the
array output., We are therefore free to arbitrarily set R without
affecting the relative values of the signals at the array output.
Typically a reference generation system generates a reference signal

which is highly correlated with the desired signal and has fixed

13




amplitude. We can model such a fixed-amplitude signal by letting

R = 1/V(P4q)in where (Pq)jn is the power of the desired signal.
With the reference signal »f the form given by (2.23) the reference

correlation vector is given by,

ECX*r (t)]

w
]

R E[X*d(t)] . (2.24)

Since d(t), 1(t), and the noise signals are uncorrelated we can expand

(2.24) into,

w
H

REC(Xy* + X * + xn*)H(t)]

R E[xd*a(t)] . (2.25)

Thus, for our three element array

~Rq(0) —
S =R | R4(Tq) (2.26)

RE(ZTd)._

The complex weight vector is then determined from (2.5), (2.9), and
(2.25).

We can now determine the desired, interfering and noise signals at
the array output. From (2.3) and (2.8) we write the array output signal

s(t) as,

s(t)

Sd(t) + sq(t) + sp(t) (2.27)
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and,

Sp(t)

The power

R
a
#

From (2.28) and (2.31), we have

0
]

Similarly

o
]

and,

©
]

3
= 7 wdlt-(3-1DT,] (2.28)
RN d
j=1
3 ~
) wiile-(3-1)T4] (2.29)
J=1
= wlﬁ'l(t) + wZﬁg(t) + W3'ﬁ3(t) . (2.30)

of the desired signal at the array output is given by,
1/2R4(0)

1/2E{{sq(t) Wsq(t) 1% . (2.31)

3 3

2 T 1w RLG=0T,] (2.32)
j=1 k=1
we have,
3 3 .
172 .2 Y ijk*Ri[(j-k)Ti] (2.33)
j=1 k=1
3
172 3 |w.1%° . (2.34)
o
j=1
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The SINR at the array output is given by,

(2.35)

In many of the previous adaptive array studies, the SINR at the
array output was used as a figure of merit. 1In the following sections
we examine several different types of digital communication systems and
determine their performance using the probahility of error as a fiqure
of merit. We show that, although SINR is often useful, it does not
always give sufficient information to accurately predict the system

performance.
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CHAPTER III
PERFORMANCE OF A BPSK SYSTEM WITH CW JAMMING

A.  INTRODUCTION

In this chapter we examine the performance of a BPSK communication
system that includes an LMS array to suppress CW interference. Figure
3.1(a) shows a typical BPSK signal waveform. A "1" symbol is
represented by a sinusoidal waveform of duration T seconds. A "0"
symbol is represented by a similar sinusoid waveform which is 180° out
of phase with the "1" waveform, The receiver estimates the phase of the
received signal at the end of each symbol interval and decides whether a
1" or "0" was sent during the interval,.

The model we develop in this chapter assumes that the bandwidths of
the BPFs at the element inputs are several times larger than the data
bandwidth of the transmitted bit stream, There are several reasons why
this assumption accurately models many real systems. First, the
spectrum of a BPSK signal is not limited to the data bandwidth. Such a
signal will be distorted if it is filtered to occupy a narrow bandwidth.
Second, it may be difficult to implement the filters required at the
array input to limit the array bandwidth, Third, the system may be
required to operate over a wide frequency range to accommodate several
signal channels or unknown doppler shifts., Finally, the spectrum of the

desired signal may be intentionally spread for data security [167 or to
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permit the generation of a reference signal. In the last case the
spectrum may be spread by either direct-sequence spreading [3,4] or
frequency hopping [147. We defer consideration of more narrowband
systems (those with input bandiwdths that are approximately equal to the
data bandwidth) until Chapter VII.

In Section B we examine the performance of the LMS array with the
desired and interfering signals as described above. In Section C we
calculate P(e) for the ideal BPSK detector when the desired signal is
corrupted by both CW interference and Gaussian noise. In Section N we
determine the performance of the combined LMS array and BPSK detector.
We determine how this performance depends on the received signal power

levels, frequencies, and the bit duration,

B.  ARRAY PERFORMANCE

Nuring the nth symbol interval the BPSK desired signal at the

output of BPF1 is given by,

d(t) = Aexp{ilugt + o, (t) + v ] (n-1)T<t<nT (3.1)
where

Aq = the desired signal amplitude at the array input,

wq = the desired signal carrier frequency,

a random phase angle uniformly distributed on [N,2n]
(We denote this by saying Uy is U[0,2r].)

pp(t) = the data modulation during the nth symbol interval where,

b (t) = 0 with prob. 1/2 (during "0" symbols)
n 7 with prob, 1/2 (during "1" symbols).
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and T is the symbol duration.
We assume that the symbol stream is stationary. The complex

autocorrelation function for the desired signal is given by,

Rg(t) = E[d*(x)d(t+r)]
A2 - [7]/T] expliugt] [t] <T
= (3.2)
0 <] > 0.

The Power Spectral Density (PSND) of the desired signal is shown in
Figure 3.1(b).
?(t), the CW interfering signal, is given by,

~

1(t) = Ai exp[jm1t+¢i] (3.3)
where,
Ai = the interference amplitude,
b = the interference phase. . is U[N,2n] and
independent of wd' !
and,
w, = the interference frequency.

The complex autocorrelation function of this signal is given by,

R7 (1) = E[T*(t)T(t+1)]

A, 2explju,t] . (3.4)
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We assume an independent thermal noise component with power o2 is

present in each element signal. We therefore have

E[Fi*(t)ﬁj(t)] = 02855 .

(3.5)

We now calculate the array weights and the power levels of the

various signals at the array output. Since d(t), i(t) and the thermal

noise are uncorrelated we can determine the covariance matrix by summing

its three components,

B |Tdl  -joq
1 (1- T Ye
ITdl  joq
- A2 -
by = Ad (1 T e 1
12Td|  j2p4 ITal 56
—_— 290 d
(1 )e (1-=)e
—_— -. A -.2 .
1 e Jj e JZdj
3. = A2 eMi 1 e-J¢i
i i
2 -
eJ $3 eJ¢1 1
and,
- o2
¢n = g4 |

2Tq|  _iow. —
(1-‘ le)e 3§24
art -4
15—
1
(3.6)
(3.7)
(3.8)

where 1 is the identity matrix and it is assumed that |2T4|<T.

21




We make the simplifying assumption that the symbol period is very

long compared with the interelement time delay.

reasonable since the elements are one-half wavelength apart.

This assumption is

Thus only

a fraction of an RF carrier cycle occurs during a time interval of

duration Ty4.

of length T,

Many such cycles occur, however, during each bit interval

With this assumption we can calculate the array

performance without specifying the operating frequency or symbol rate.

The desired signal covariance matrix becomes

= A2

eJ¢d

J2¢4
e

e-J¢d

eJ¢d

-j264
o Jédq

e-J¢d

The total covariance matrix then becomes,

¢ = bd + @1 + on
—Ad2+Ai2+°2 Adze-j¢d+Ai2e-j¢i
= Adzej¢d+A12ej¢i Ad2+AiZ+°2
_ﬁd28j2¢d+A12ej2¢i Adzej¢d+A12ej¢i
22

. (3.9)

-j2 -j2sy
Adze J ¢d+Ai2e J204

-Jbg -iby
2 2
Ad e + Ai

2 2 2
Ad + Ai + 0

(3.1n)




The reference correlation vector (2.26) is given by,

1
S = A4 explieqd] (3.11)
exp[i2¢4]

We can now calculate the weight vector from (2.5) and P4, Pj, and Pj
from (2.32), (2.33) and (2.34).

In the next section we derive the performance of the ideal RPSK
detector when the desired signal is corrupted by thermal noise and CW
interference. In order to determine the detector performance we must
know the composite signal at the detector input. To determine this
signal we switch to the real representation of the signals at the array
output,

At the array output the desired signal is a BPSK signal with power

Pq- This (real) signal during the nth bit interval is given by,
sq(t) = /2Pq coslwgt+en(t)+v4]l, (3.12)

where P4, wq, and $,(t) are as defined above and yq4 is the desired
signal phase angle at the array output. Since the covariance matrix

and the reference correlation vector are both independent of yq (the
phase angle of the desired signal at the array input), the steady state
weights are also independent of yq. Therefore, yq is given by (vq)o +
yq where (vq)o is some fixed phase angle. Thus, since yq is U[0,27],
the (modulo-2n) value of vq is also U[0,2n]. This is a property of the
modulo-M sum of two variables, one of which is U[0,M]. This property is

proven in [17] by Scire.




We now determine the amplitude and phase of the CW interfering
signal at the array output. This signal, which has power Pj, is given

by,
si(t) = v2Pjcosfwi(t) + vl , (3.13)

where y; is the phase angle of the interference at the array output. We
can show that y; is U[N,2n] using arguments analogous to those used above
to show that yq is U[N,2r].

Finally, the noise signal at the array output is a zero-mean
Gaussian random process, sp(t), with variance P,. This noise is
bandlimited Gaussian noise with a flat PSD in the passband of the ideal
BPFs at the element inputs. The value of the two-sided PSH in this
passband, which we denote by n/2 is given by,

No 3
/2 =7 1 lwml? (3.14)
m=1

where No/2 is the two-sided thermal noise PSD at the element inputs. The

PSND of the noise signal at the array output is shown in Figure 3.2(a).

C. BPSK DETECTOR PERFORMANCE WITH CW AND NOISE INTERFERENCE

In this section we derive the performance of an ideal BPSK detector
when the BPSK desired signal is corrupted by additive white Gaussian
noise (AWGN) and CW interference. Rosenbaum [18] and Prabhu [19] have
examined similar problems; however, these early works were typically

rather vague in their description of the "ideal" receiver. The receiver
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model in these papers assumes that, in addition to a desired and
interfering signals, there is Gaussian noise with power o2 at the
detector input. However, the importance of the noise PSD and the signal
energy-per-bit are generally not discussed in detail. The dependence of
performance on the frequency of the interfering signal is also not
discussed.

To thoroughly understand the effects of the various signal
energies, the noise PSD, and the interference frequency on the detector
performance we shall carefully derive P(e) of the ideal BPSK detector.
The BPSK detector shown in Figure 3.3 is ideal if the only undesired
signal is additive white Gaussian noise (AWGN) [20]. The incoming
signal, s(t), is multiplied by cos(wqt+yq). The output of the
multiplier is integrated over the bit interval and a bit decision is
made based upon the sign of the integrator output at the end of the bit
interval., A positive output indicates a "“0N" bit and a negative output
indicates a "1" bit,

Note that this ideal detector requires a coherent reference signal
to operate. A method for deriving such a signal from the received
signal is discussed in {3]. We assume that a suitable reference signal
is available and that this signal is free of amplitude and phase noise.

Summarizing the results of the previous sections, the composite

signal at the detector input is

s(t) = sy(t) +s;(t) + s (t) (3.15)
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Figure 3.2. Noise spectrum and transfer function for ideal integrator.
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where sy(t) and s;(t) are given by (3.12) and (3.13), and sp(t) is a

narrowband Gaussian random process which has a flat (two-sided) PSD with

magnitude n/2 in the passband.

The signal at the input to the integrator is given by

s(t)cos(mdt+yd) = [sd(t)+si(t)+sn(t)] cos(wdt+yd)

We can substitute sq(t) and s;(t) into this expression and
integrate between (n-1)T and nT to determine the signal at the

integrator output at the end of the bit interval

S(n) = Xd(n)+xi(")+xn(")

where,
nT .
Xg(n) = [ /2P cosfugt + 0,(t) + v ] cosfuyt +v47 dt
(n-1)T
nT .
X, (n) = [ /2P, cosfu;t + v;] coslugt + v 1 dt
(n-1)T
and,
nT
X (n) = [ s, (t)cosfuw t+y ] dt
(n-1)T

(3.1R)

(3.17)

(3.18)

(3.19)
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cos(w,t + y,) X{n) <O athBIT""

Figure 3.3. The ideal BPSK detector.

We now evaluate X4(n), Xj(n) and X,(n)* and then combine the results to
determine X(n). Application of a standard trigonometric identify to the

integrand in Equation (3.18) yields,

nT
X4(n) = /Pd/2 { 1)Tcos[2mdt+¢n(t) + Zyd] + cos[@n(t)] dt . (3.71)
n-

* Note that X4(n), Xj(n) and X,(n) are not the signal vectors X4, Xj and

X, defined in Chapter 2, Although the similar notation might be
somewhat confusing at first, the intended variable should be clear

from the context,




We ignore the double frequency term since its contribution to the
value of the integral is negligible due to our assumption that many

carrier cycles occur during each bit interval. Therefore, we have,

nT
Xy(n) = /Py/2 / cos[¢n(t)] dt
(n-1)T

= V(Py/2)T coslo, (t)] , (3.22)
since ¢n(t) is constant during the bit interval.

We now calculate Xi(n). We first expand the integrand in Equation

(3.19),

nT
X, (n) = /P72 | {cosT(wgrwi)t + vq + v,]
(n-1)T
+cosf(wy-w, )t + vy - v Thdt . (3.23)
We let
Trel = Y9 " Yi o (3.24)
and,
Aw = Wy - Wy (3.25)
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Substitution of these new variables into (3.23) yields,

nT
X;(n) = VP72 / cos(Awt + v . q) dt. (3.26)
(n-1)T

after we drop the second harmonic terms. We evaluate the integral to

give us,

1 . .
X;(n) = /P, /2 Z;‘[s1n(nAmT * Ypep) - sin(n-1)awT +y (3.27)

rel]

Simplification of this expression with standard trigonometric identities

yields,

. AwT 2n-1
X;(n) = /P,/2T sinc ( > ] cos (Ype1 * 2 2aT), (3.28)

where the sinc function is given by,

sinc(x) = [sin(x)]/x, (3.29)

with

sinc(0)

1)
b
.

(3.30)

From (3.28) we see that, for a given interference power level, the
amplitude of the interference at the integrator output is directly
proportional to sinc(AwT/2). At the points where the sinc function is

zero (i.e. for AwT/2 = nm) the interference does not disrupt the
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detector. At these values of AwT, the baseband interference product at
the multiplier output is a sinusoid with an integral number of cycles
occurring during the integration period. Therefore the contribution of
the interference to the integrator output is zero. The third integral,
Xn(n),~is the integral of the product sn(t)cos(wdt+yd). xn(n) is most
easily evaluated in the frequency domain. If the input noise signal has
the PSD shown in Figure 3.2(a) then the signal at the integrator input
has the PSD N{w) shown in Figure 3.2(b).

In the frequency domain the integrator is equivalent to a linear

filter with a transfer function of

H(w) = 1-exp (juT)

Tu . (3.31)

At the end of the integration period the noise produces an additive
Gaussian random variable at the integrator output This zero mean random

variahble has a variance N', which is given by,

1 e <]
N' = (57) [ Nw)[H(w)]? do
1 *° . wT
= (E;) T | N(w)s1nc2C§‘) dw. (3.32)

We can make some simplifying assumptions which make evaluation of

(3.32) more straightforward with only negligible effects on the results.
wT

In Figure 3.2(c) we show sinc2(37), The integrand in (3.32) is the
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product of the two curves shown in Figure 3,2(b) and 3.2(c). From
these figures it is apparent that the contribution of N(w)sincz(gl) to
the value of the integral quickly diminishes as w becomes large (due to
the fast roll-off of the sinc? term). Since we have assumed that the
input BPFs are much larger than the data bandwidth of the desired
signal, we can make the approximation that the noise at the integrator
input is white, with PSD'% at all frequencies., With this approximation

we can easily evaluate (3.32)

1,0

® wT
N' = (E;) 2(4) i sinc(E-) dw. (3.33)

-0

If we now make the substitution,

wT

X =5 (3.34)

then (3.33) becomes,

[+ ]

I

N' = (lj(ﬁjT [ sinc2(x) dx. (3.35)

-0

The integral in (3.35) is found to be equal to m using Parseval's

theorem [21]. Thus N', the variance of the noise random variable at the

integrator output, is given by

N' = Tn/d. (3.36)

"The error in N' due to our assumption that the noise at the detector
input is white is less than 2% if the actual noise bandwidth at this
input is greater than approximately 10/T Hz. The effects of noise

bandwidth are discussed further in the next section.
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We now combine (3.22), (3.28), and (3.36) to form the expression
for the composite random variable at the integrator output at the
sampling instant. This random variable, X(n), is given by,

X(n) = /ZPd/ZSTcos[¢n(t)1

2n-1
+ /(Pi/25Tsinc(AwT/2)cos(yre] * T AwT + Xn(n), (3.37)

where ¢n(t) is either 0 or v depending on the data bit and Xn(n) is
normally distributed with zero mean and variance nT/4.

We now can determine the probability of error for the ideal BPSK
receiver, [If both bits are equally likely the conditional probability

of error given y 1 is given by,

re
P(eiyre]) = O’SP(E‘Yre1’ “0" sent) + O.SP(elyre], “1" sent) .
= 0.5P{X(n) < Ofy, 156, (t)=0b + 0.5PLX(n}>0(y q.8, (t)=r}
. 2n-1
P(e|Yre1) = O.SP{/(Pd/Z)T + /(Pi/2)Ts1nc(AwT/2)cos(yr91+-~3r'mmT
+ Xn(n) < 0}
2n-1
+ 0.5P{-/(Pd/2§T + /(Pi/?stinc(AwT/Z)cos(yre1 +'75—3wT)
+ Xn(n) > 0},

D(eere]) = 0.5P(X (n) < - /ZDd/ZST

2n-1 T
Yrel * 2 BwT)}

/(Pi/Z)Tsinc(Alez)cos(

+

0.5P(X, (n) > /TP 72)T

2n-1
Yrel + 2

- /(Pi/Z)Tsinc(AwT/Z)cos( AwT)}
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l 2Py T \/7P1T AT on-1
P(e'Yre1) = 0.5erfc‘ i msinc( 7 Jcos{y 1+ _Z—AwT)

2PyT 2P T . n-1
+ 0.5 erfc \/ ot \/ n—‘smc(AwT)cos(Yre] A\ AwT)

(3.38)

where erfc is the complementary error function defined by,

erfc(x) = %;) fm exp(-z2/2) dz. (3.39)
X

We now define the desired signal and interference energy-per-bit-

interval by,

E, = P,T, (3.40)

d d
and

E, = P.T, (3.41)

respectively. Fquation (3.38) can then be rewritten as,

Plely

re1) = 0.5erfc l /(2Ed/n)
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Since Yol is uniformly distributed on [0,2nr] (due to (3.24) and the
theorem proven by Scire in [17]) we can determine the probability of
error by evaluating

71 7| 2n

g PlelY o) @Y o (3.43)

2n

P(e) =

where P(e|ypre1) is given by (3.42) above.

Several simplifications can be made before evaluating (3.43).
Since the integrand, P(e|ypa1), is periodic in ypq1 with period 2r and
the integral is over a full period of ype), both of the two error
functions which compose the integrand contribute equally to the value of
the integral. The fact that the integration is over a whole period of
Yre]l allows us to remove the factor of AwT/2 from the argument of the
cosine in the integrand without affecting the result. With the ahove

simplifications and (3.42) and (3.43), the expression for P(e) becomes,

1
P(e) = (37) [ erfe {yT2EG/Y

. AwT
+/ (26, /n) sinc (57) cos(y )} dv oy - (3.44)

We define the signal energy-to-noise density ratio at the detector input
by

SNR = E4/n, (3.45)

and similarly define the INR at the detector input by

INR = E /n. (3.46)
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These definitions can be used together with (3.44) to calculate
P(e) for various values of SNR and INR by numerically evaluating the
required integral.

Figure 3.4 contains several curves which iliusirate the detector
performance when the interference frequency offset is zero (i.e. AwT=0).
Each curve is a plot of P(e) vs. SNR for a fixed value of signal-to-
interference ratio, SIR (SIR=Ed/Ei)*. Note that, although this figure
is very similar to that shown by Rosenbaum [10], the approach taken in
the derivation is different here as discussed previously., From this
figure we see that, for a fixed SIR, P(e) decreases as SNR increases.
Similarly, for a fixed SNR value, P(e) increases as SIR decreases., We
find very poor performance for SIR values of 0 dB and less.

Figure 3.5 shows the same data which are plotted in Figure 3,4;
however, in Figure 3.5 the parameterization has been changed, In Figure
3.5 P(e) is plotted vs. INR for several fixed values of SNR. Although
Figures 3.4 and 3.5 show the same data, one or the other is often more
useful when trying to understand a particular facet of the system
performance. In the remainder of this report we shall often present
results in similar pairs of plots, one showing P(e) vs. SNR (for several

fixed SIRs) and one showing P(e) vs. INR (for several fixed SNRs).

*The value of SIR is constant for each curve in Figure 3.4. Therefore,
it is assumed that, as we move along a curve by varying the SNR, the
interference power simultaneously varies in order to keep the SIR
fixed.
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It is interesting to examine P(e) for the ideal BPSK detector as a
function of SINR as defined by (2.31). Since the denominator in this
expression for SINR contains two terms, it is clear that different
combinations of interference and noise power can lead to the same value
of SINR. However, from (3.44) we see that the ideal detector is not
equally susceptible to interference power and total input noise power.
From this equation we see that the detector performance is dependent
upon the noise PSD, the interference energy-per-bit-interval, and the
interference frequency. Therefore we might suspect that two different
combinations of the input signals which have equal SINR values might
produce different P(e) values. Figure 3.6 shows that this can indeed
happen. This fiqure shows how P(e) varies with SINR for two different
SNR values. The interference power was allowed to vary for each curve
but the noise bandwidth, noise PSD level, and the interference frequency
were held fixed for each curve, From this figure we see that vastly
different error rates can occur for the same SINR value, For example,
for a SINR value of -7 dB, there is a difference of 7 orders of
magnitude between the two P(e) curves.

In general we find that P(e) is a function of desired signal power,
interference power, interference frequency, noise PSD, and noise
bandwidth, If all but one of these parameters is held constant and the
remaining parameter is allowed to vary, we find that P(e) does decrease
monotonically as SINR increases. However, in the general case, we must
calculate P(e) for a given scenario using (3.44). The inability to
accurately predict system performance using SINR alone was the prime

motivation for this study.
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D. PERFORMANCE CALCULATIONS FOR COMBINED LMS
ARRAY/BPSK DETECTOR

In this section we combine the results of the previous two sectinns
to determine the overall performance of the BPSK communication system
which uses the LMS array. We first present a set of variables (such as
SNR, signal arrival angles, etc.) which completely specify the problem.
We then calculate the adaptive array performance using the derivations
in part B of this chapter. 0Once we have determined the power of each
signal.at the array output (or PSD in the case of the noise) we
calculate P{e) of the system using the results of the previous section,
Several scenarios are then examined in order to obtain both a
qualitative and quantitative understanding of the system performance.

We first present a set of six variables which specify the problem,

These variables are:

(Eq)in/Ng = the SNR* at each element input.
Eq is the desired signal energy-per-bit at each element
input and Ny/2 is the 2-sided noise PSD (in W/4z).
(E5)in/No = the INR at each element input.

E; is the interference siqgnal energy-per-bit-interval
at each element input and N,/2 is as defined above.

8q = the desired signal arrival angle as defined in Section
2.

8; = the interference arrival angle as defined in Section 2.

*In this report we define the SNR and INR as (Eq)in/Ny and (E;)in/Ng,
respectively. These ratios are actually energy-per-bit-interval to
noise PSN ratios. 1In most previous adaptive array work SNR and INR are
defined as Ad2/0?2 and Ai2/02. We use the former definition since these
are the forms that SNR and INR typically appear in the expressions for
the detector P(e).
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k = the array bandwidth factor.
k=Bp/(2/T) where Bp is the input BPF bandwidth (in Hz.)
and T is the bit duration. Thus k is the ratio of the
input noise bandwidth of the array to the width of the
main peak in the desired signal PSD, Fiqure 3.7
illustrates this definition,

AwT = the change in phase of the interference signal with

respect to the desired signal during each bit interval
(see section C of this chapter).

) To ca;culate the array weights we only need to specify the ratios
A4 Aj
—52 and 2 - These ratios can be calculated given the first five of the
variables listed above. We first note that the noise power at each BRPF

output is given by
0% = kNo(2/T). (3.47)

We solve this expression for Ny,

2T
No = ¢ (3.48)

We now write the desired signal energy at each element input as,
(Ed)in = No(Eq)in/Ng- (3.49)

Substitution of (3.48) into (3.49) yields

2T
(Ed)in = (E;'j(gd)in/No (3.50)

which we can rearrange as

(Ed)in 1 (Ed4)in

T2 = 2k NO (3.51)
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Since the desired signal power (P4) at each BPF output is equal to

(Eq)in/T, (3.51) becomes

(PdYin 1 (Ed)in

o2 T2k N, o’ (3.52)

or equivalently,

Ag2 1 (Ed)in

T2 Tk No . (3.53)

A similar derivation shows that,

Az 1 (Ei)in

@2 2 N, (3.54)

2 .2

Having determined gg—'and g%—, we can apply the methods discussed
in section B of this chapter to determine the desired signal and
interference powers at the array output. The noise PSD at the array
output is given by (3.14).

Once we have determined the signals at the array output we can use
the results of the previous section to determine P(e) for the BPSK
detector which follows the adaptive array.

The procedure outlined above was performed for several different
scenarios.” Figures 3.8 and 3.9 show typical results. These figures
show how P(e) varies with SNR and INR for the 3-element array when the
desired signal arrives from the broadside direction (i.e., 6d=0°) and

the interference arrival angle 6., is 10°. The array bandwidth factor
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Figure 3.7. 1Ideal integrator and BPF transfer functions (only positive
frequencies shown).

k, was set equal to 5 in each of the cases shown in these figures and

AwT was set equal to zero.

The array behavior is most easily explained by examination of
Figure 3.9. For each given SNR curve we see that, as INR increases,
P(e) first increases and then decreases. The maximum in the P(e) curve
occurs typically at INR values between 10 and 20 dB. It is in this INR
range where the interference and noise powers are roughly equal at the
element inputs. At INR values below approximately 10 dR the thermal
noise is dominant at the array input and the array pattern is relatively
unaffected by the interference. Thus as INR increases, the interference

power at the array output and P(e) both increase. As the INR increases

44

D T N I S AR O 5 A B AN B B aE Ee




above approximately 10 dB the array begins to null the jammer, As the
INR is increased further this null becomes deeper and a point is reached
where any additional increase in input interference power produces a
corresponding decrease in the interference power at the array output.
Therefore, at very high INR values, a very deep null is formed in the
interfering signal direction. At these high INR values the interference
power becomes negligible at the array output (when compared with the
thermal noise) and the P{e) curves each asymptotically approach a
constant value.

It is interesting to note that the P(e) value which a particular
curve approaches at high INR values is larger than the value which this
curve has at very low INR values. This phenomenon is easily explained.
At very low INR values the array is not affected by the interference and
it can adjust its weights in order to maximize gain in the desired
signal direction. At very high INR values the array behavior is
constrained so that it must keep a deep null in the direction of the
interference,

Since the desired and interfering signals are spatially close, the
desired signal lies very close to the null., The 3-element array does
not have sufficient resolution to simultaneously steer a null and a
pattern maximum only a few degrees apart. Therefore, at high INR
values, even though the interference power at the array output is
reduced to a negligible level, the desired signal power is also slightly
reduced. The resulting decrease in the SNR in the array output produces
the larger value of P(e) at very high INR values compared to P{e) at low
INR levels,
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The performance at high INR values can generally be improved by
adding elements (and thus degrees of freedom) to the array or by
increasing the spatial separation between the desired and interfering
signals. To determine the effects of signal arrival angle on
performance we have calculated the expected system P(e) for interference
arrival angles of 20° and 80°. The results for these cases are shown in
Figures 3.10 through 3,13, As in the previous cases the array bandwidth
factor k, was set equal to at 5. Figures 3.10 and 3.11 show the results
for 9;=20° and Figures 3.12 and 3.13 show the results for 6;=80°,

Several interesting results can be seen from these figures, From a
comparison of Figures 3.9, 3.11, and 3.13, we observe the effects of 3;
on system performance. First we see that, at very low INR values, the
system performance is not very sensitive to changes in 65, In these
cases the effects of the interference are negligible and the array can
easily form a pattern maximum in the desired signal direction. At
moderate and high INR values the performance improves (as expected) as
9; increases.

From Figures 3.8 through 3.13 we see that the interference is most
effective when [85-84| is small and when the INR is in the 10-20 d8
range.

In order to illustrate the effects of the noise handwidth at the
element inputs, the calculations described above were repeated with k
increased from 5 to 10, The results of these calculations are shown in

Figures 3.14 through 3.19. The results in these plots correspond

46




- Pk W G am W W W am

Y , .
. i . .

P(E) VS. SNR

LOG (PLE))

Figure 3.8, BPSK P(e) vs. SNR for 3-element array (0;=10°, k=5, awT=0),

47




array (9;=1n°, hw .

INR

////\

48

>
WAV
/>

yauna

nE
. INR .(DB)

P(E) VS.

P
-
1]

! . o
LB i : Q.-
. L ]

‘K- °g- .g- .Fl
((Id) 907

Figure 3.9. BPSK P(e) vs.




i S T A gk Em T an

U D Bm PN SN NS SN By mw = )

|

directly to the data shown in Figures 3.8 through 3.13 (the only
exception being the increase in k from 5 to 10).

From these new plots we see that the array behaves similarly to the
previous cases. However, when the input bandwidth is increased, the
height of the peak in the P(e) vs. INR curves is increased and this peak
is shifted slightly to the right. This behavior can be explained as
follows. With the doubling of the input bandwidth twice as much thermal
noise is present at each element input. As described ahove, the array
does not begin to null the interference effectively until (P;)i, is
roughly equal to the input thermal noise power. Since the increased
bandwidth results in more noise power at the array input, a higher INR
is required before the array begins to reject the interference. Hence
the slight rightward shift in the curves. Since the maximum output
interference power level is higher in the wider bandwidth case, the
maximum P(e) is also higher in this case. 1In light of these results we
conclude that the system performance is significantly degraded when we
doubled the input bandwidth,

We have now shown how the BPSK/LMS array system is affected by SNR,
INR, signal arrival angles, and array bandwidth. Next we examine how
the interference frequency affects the system. The contribution of the
interference to the integrator output (i.e. Xj(n)) is given by Equation
(3.28). From this equation we see that X,(n) will be zero for those
frequencies at which sinc(AwT/2) is zero. At these points (i.e,, when
AwT=2nm where n is any non-zero integer) the detector performance will

not be degraded by the interference.
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Figures 3.20 and 3.21 show the system performance when AwT=2w. In
these figures the array bandwidth factor k was set equal to 1N and the
interference arrival angle 8; was set equal to 10°. Since we
established in section C of this chapter that the detector is not
affected by the interference with AwT=2r we might be surprised to see
that Fiqures 3.20 and 3.21 show that the system performance bhecomes
worse as the interference power increases. This behavior should not be
surprising, however, since the adaptive array which precedes the
detector must change its pattern to null the interference at high INR
levels. As the array nulls this interference, the SNR at the array
output decreases due to the constraints placed on the array by the
nulling requirement (this phenomenon is discussed ahove). The decreased
performance at high INR levels is caused by this decrease in SNR at the
array output,

It is interesting to note, however, that there are no relative
maxima in the P{e) curves in Figure 3,21. These peaks, which we
observed in previous P(e) vs. INR curves, were caused by the
interference signal at the detector input (i.e., the array output) at
moderate INR levels. For the case shown in Figure 3.21 the detector is
not affected by the interference and therefore there are no peaks in the
curves, In these special cases {where AwT=2n7) SNR and not SINR is the
most meaningful measure of system performance (since the detector is
immune to the interference). We also find that, for array bandwidths of
interest, the SNR as defined by Equation (3.51) is not significantly

dependent on the array input bandwidth,
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If awT/2>>0 the sinc function in the expression for the detector
P(e) will be very close to zero even if AwT#2nm, Therefore, for this
case, the detector performance is not degraded by the interference.
However, the SNR at the array output is still reduced at high INR
levels. Therefore, even though the interference is outside of the
detector bandwidth, the overall system performance is still adversely
affected by the interference. The system designer can limit this
susceptibility to out-of-band interference by keeping the array input

handwidth as small as possible,
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CHAPTER IV
PERFORMANCE OF A QPSK SYSTEM WITH CW INTERFERENCE

A.  INTRODUCTION

In this chapter we examine the effects of CW interference on a
quadrature phase shift keyed (NPSK) communication system that uses an
LMS array. The organization and analytical techniques of this chapter
are very similar to those of the previous chapter. The equations
describing the QPSK and BPSK systems are so similar that we shall often
use the results from derivations in Chapter III with only minor
modifications.

Figure 4.1 shows a typical QPSK waveform., Fach of the four possible
)PSK symbols represents two bits of information. We shall be careful to
use the word "symbol" and not "bit" to describe a burst of energy at nne
of the signalling phases. In Chapter IIl we could use the terms "bit"
and “"symbol" interchangeably since, for BPSK signalling, each symbol
represents only one bit of information.

A method for generating a reference signal for an LMS array using
NPSK signalling is described by Winters in [31. This reference-
generation technique, like that discussed in Chapter III for BPSK,
relies on spread-spectrum coding of the desired signal in order to
derive a reference signal from the array output. We assume that a
perfect reference signal (one which is identical to the incoming desired
signal) is available to the array.
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Figure 4,1. A typical NPSK waveform with bit-pair assignments.
B.  ARRAY PERFORMANCE

The array performance with QPSK signalliing is very similar to that
for the BPSK case. The desired signal at the input to the first array

element during the nth symbol interval is given by,

d(t) = Agexplugt + ¢on(t) + v4ql, (4.1)

where each variable is identical to the corresponding variable in
Equation (3.1) except that, for QPSK, ¢n(t) is equally likely to be any
member of the set {0, %; ", 311 during each symbol interval,

It is straightforward to show that the autocorrelation function
(and thus the PSD) of the OPSK signal is the same as that for BPSK., We

use the same interference and noise models that were used for .he BPSK

system in Chapter IIl. Therefore the covariance matrix b, the
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reference correlation vector S, and thus the array weights, are
identical to those derived for BPSK in Chapter III. The desired signal,
interfering signal and the noise PSD at the array output are given by
(3.12), (3.13), and (3.14) respectively, the only exception being that
on(t) can assume four values in the QPSK case.

Since the array calculations for the BPSK and 0OPSK systems are the
same, the only difference in performance for these two systems is due to
the difference in detector performance. In the next section we

determine the performance of the QPSK detector.

C. (QPSK DETECTOR PERFORMANCE WITH CW AND AWGN INTERFERENCE

In this section we derive the performance of an ideal NPSK detector
when the (QPSK desired signal is corrupted by CW interference and AWGN,
The QPSK detector shown in Figure 4,2 [20] is ideal if the only
undesired signal is AWGN. This detector is essentially two BPSK
détectors in which the reference signals at the two multipliers are in
phase quadrature. At the end of the nth symbol interval the integrator
outputs, X(n) and Y(n), are examined and a symbol decision is made bhase
dupon the values at these outputs. The decision regions for the
different symbols are shown in Figure 4.3.

In order to determine the probability of a symbol error we must
first calculate the joint statistics of the integrator outputs, X(n) and
Y(n). We note that the process by which X(n) is derived is identical to
the process by which X(n) was derived for the ideal BPSK detector of

Figure 3.3. Therefore, from (4.1) and (3.37) the expression for X(n) is
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immediately found to be

P
X(n) == T cos[s(t)]

EIINE

P st n-1
+7 5 T osine(T Jeos(y o1 + > AuT) + X (n) (4.2)
m 3
where bn(t) is equally likely to be any member of the set {0, PTRE ;rﬂ

during any symbol interval. The noise term Xn(") is normally

nT n
distributed with zero mean and variance —z where'z is the noise PSN at
the array output.

We next examine Y(n) which is given by,

Y(n) = Yg(n) + Y;(n) + Y, (n) (4.3)
where,
nT
Yq(n) = { 1y V2Pq sin{wgt + vq)cosluqt + op(t) + vqldt, (4,4)
n-
nT
Yi(n) = [ V2P; sinfugt + yqlcos[wjt + v;ldt, (4.5)
(n-1)T
and,
nT
Yn(n) =] sp{t)sinfwgt + vqldt. (4.6)
n-1)T

As in Chapter III we evaluate each of these three integrals and

then combine the results to determine Y(n).

[t is easily shown using techniques very similar to those used to

derive (3.22) that Y4q(n) reduces to,
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Pd
Yg(n) = - 5 T sinfe, (t)]. (4.7)

The second integral to be evaluated, Y;j(n), is given by,
i nT _
Y.(n) =\ J sinf(wg + wi)t + vy +v,]
(n-1)T
+ Sin[(wd - wi)t *Yq - Yijdt. (4.8)

After we drop the double frequency term we have,
nT

Py
Y'i (n) = "Ef sin(Awt + Y,
(n-1)T

e1)dts (4.9)

where Aw, Ypel, and T are defined as in Chapter III. Evaluating this

integral we have
NS ]
Yi(n) = > \Aw)[cos(nAmT + Yrel) - cos(n-1)awT + Yrel)" (4.10)

Standard trigonometric identities can be used to simplify this equation

to,
P.
i ) AwT, 2n-1
Yi(n) = \/—E'Ts1nc (—7;1 sin (Yrel + 5 AwT). (4.11)
We denote the noise signal at the integrator output at the end of
the nth symbol interval by Yn(n). lsing an analysis nearly identical to

that used to derive the statistics of Xn(n) as in Chapter IIT it is

straightforward to show that Yn(") is a zero mean Gaussian random

. . . nT
variable with variance ——

40
Furthermore, if we assume that the PSD of the noise at the detector

input is symmetric about wy, then Xn(n) and Yn(") will be independent of
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each other at the end of each symbol interval. This property is easily
shown using the standard decomposition of narrowband noise into
quadrature components [22]. The values of X,(n), Y,(n), X(m), and Y(m)
will be uncorrelated (and thus independent) for mn,

The desired, interfering, and noise signals at the integrator

output can now be combined using (4.3), (4.7) and (4.11) yielding,

Y(n) = -0 /Ei

> Tsin[¢n(t)]

+1/3T AwT 2n-1

— T sinc (G)sin(y g + 5 8wT) + Y (n), (8.13)

4

i : : : nT
where Yn(") is a zero mean normal random variable with variance —

4.
The probability of a symbol error can be calculated using the

expressions for X(n) and Y{(n) given by (4.2) and (4.13), ar1 the

decision regions shown in Figure 4.3. If we assume equally likely

symbols, then P(e) is given by
1 T
Ple) =7 [Plels, (t)=0] + Plefs (t) = 3]
37
+ Plefs, (t)=r] + Ple|s (t) = 7] (4.14)

The symmetry of the decision regions and the distribution of X(n)
and Y(n) insure that the probability of a symbol error is independent of
which symbol is transmitted (for equally likely symbols). Therefore the

probability of error is,
P(e) = Plelon(t) = 0] (4.15)
If $o(t) = 0 then X(n) and Y(n) become,
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/'PE [Pi AwT 2n-1
2

X(n) =" T+ = Tsinc(5)cos(y oy + 5 awT) + X (n), (4.16)
and,
P; AwT 2n
/ -1
Y(n) =1/-—E s1nc("‘)51n( Yrel * 2 AwT) + Yn(n). (4.17)

The problem of calculating P(e) for QPSK given X(n) and Y(n) is
very similar to a problem addressed by Rosenbaum [187 and we shall use
similar notation and procedures for ease of comparison. We first

! 7d
normalize X(n) and Y(n) by dividing each by‘(t‘g T yielding

o 2n-1
X' =1 + bcos(yre] + “E——'AwT) N, (4.18)
and,
' ) 2n-1
Y'o=bsin(y g + > AwT) + nys (4.19)
where,
P,
i AwT
-_-W‘ ~p-d— sinc (—(2_')’ (4.20)

and n, and ny are independent and identically distributed normal random

vuriables with zero mean and variance,

2 _ _(nT/4)
“xy T (PyT2/2)

1
= TEE;7;Y' (4.20)

The normalized variables X' and Y' are shown on the decision space
diagram in Figure 4.4,
Since X' and Y' are independent jointly Gaussian random variables,

their joint probability density function (PNDF) conditioned on Yrel 18,
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Figure 4.4, Normalized decision space showing composite received
signal.

1 |~ -1 |
' ' = ' _hei 2 LS ~ )2
fxy(X .Y |Yre1) 2"°§y exp 2°§y [(X'-bsiny)2 + (Y'-1-bcosy)2] ;
(4.21)
where,
fuT
T Ve F ( 2 ). (4.22)

After eliminating the dependence of this PDF on y by integrating

1 .
re]) and . (the PDF of the uniformly

distributed variable y) we have,

the product of fxy(x Y'Y
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1 .2 -1
Voyty 12 1_13\2 2
Fry(XsY') = (2"°xy) exp [2°§y [(X'2 + (Y'-1)2 + b2]]

2r b

<[ exp 7 [VX'2 + (Y-1)2 cos(y+")1]dy, (4.23)
0 Xy
1 (y'-1) .

where I'=-cot X' is not a function of vy.

This expression can be simplified after we recognize the integral

to give us
1,2 - 2 2 2
f ] ] = ——— r ] l_ b
xy (X's¥") (zﬁoxyj exp [2°§y [(x'2 + (Y'-1)2 + b2]]
b
- 1 {57 /X2 4 (Y'-1)2 (4.24)
0 20Xy

where I, is the modified Bessel function of the first kind of order
zero,

We can now change from rectangular to polar coordinates using the
transformation,

X = r sin(a), (4.25)

it

and,

Y = rcos{a). (4.25)
The geometrical interpretation of r and a is shown in Figure 4.4,
To implement the transformation we perform the indicated change of
variables, and multiply the resulting function by the Jacobian of the
transformation, r. We can then eliminate the dependency on r by
integrating the density over all possible values of r. The resulting

expression will be the probability density function of the angle a.

This PDF is given by,
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1 @ -
f(a) =775 [exp[ 35— [r2 +b2 +1 - 2rcosa]]
a 2“°xy 5 2°xy
b 2
. Io { ;g;'/r + 1 - 2rcosa} rdr. (4.27)

The probability of error, P(e) will be given by the probability

-7 m

that o does not lie between 2 and Z‘when ¢n(t) = 0. Thus P(e) is given
by,
r-w/4 T
P(e) = | fa(a)da + [ fa(a)da (4.28)
-T TT/4

From the symmetry of the integrand it is seen that (4.28) can be

rewritten,

Ple) =2 f (a)da (4.29)

Equation (4.29) was evaluated numerically for several SNR and INR
values. Figures 4.5 and 4.6 show results of these calculations for
AwT = 0. Simpson's rule was used to evaluate the integral where the
Bessel function was evaluated by a combination of polynomial and
asymptotic approximations. From Figures 4.5 and 4.6 we see that these
curves are similar to the curves shown in Chapter III for BPSK.
However, P(e), the probability of a symbol error is higher for OPSK. We
should remember that each symbol in the QPSK symbol stream represents
two bits of information. Thus, for QPSK, it is possibie for one symbol

error to produce two bit errors.*

* The probabiTity of two bits being in error for a given symbol is very
small if the bit pair assignments for the decision regions are chosen
properly. If they are chosen so that only one bit differs for any two
adjacent regions then hoth X(n) and Y(n) must be simultaneously large
to produce a double bit error,
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It should be noted that the detector shown in Figure 4,2 is the
jdeal detector for M-ary PSK with AWGN. The only change required is the
division of the decision space into M regions. The probability of error
for M-ary PSK is given by (4.29) with the lower limit of integration

-
changed to -,

D. PERFORMANCE OF THE COMBINED LMS ARRAY/QPSK DETECTOR

In this section we combine the results of the previous two sections
in order to determine the overall performance of a QPSK detector that is
preceded by an LMS adaptive array. Again in this section we find that
the required derivations closely parallel those of the corresponding
Section in Chapter IIl. In fact, the results from the beginning of
section D of Chapter III apply exactly through Equation (3.56). Thus
the adaptive array calculations are identical for BPSK and OPSK
signalling, The only difference in the performance of the two systems
is caused by the differences in the BPSK and 0QPSK detectors.

The performance of the LMS array/OPSK detector was calculated for
several scenarios. Results are shown in Figure 4,7 through 4,20, The
scenarios examined correspond one-to-one with the curves shown in
Figures 3.7 through 3,20, Figures 4.7 and 4.8 show the system
performance with 84 = 0°, 9; = 10°, the array bandwidth factor k = 5,
and the interference phase-offset-per-symbol (AwT) equal to zero.

Figures 4.9 through 4.12 show similar results for 95 values of 20
and 80 degrees. From these figures we see that the (PSK performance
curves are shaped similarly to those for BPSK. However, the 0OPSK symbol

error probability is higher in each case.
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Figures 4.13 through 4,18 show the system performance with the
array bandwidth factor k, increased to 10 with all other variables the
same as in Figures 4.7 through 4,12, Figures 4,19 and 4,20 show the
performance with the interference phase-shift-per-symbol AwT set equal
to m. Again in these cases we see that the system perforrance is
similar to, but slightly worse than, the BPSK system of Chapter III.

The qualitative descriptions of the system behavior are identical
for the BPSK and QPSK cases and the discussion at the end of Chapter III
applies directly to the QPSK case. The only difference in the two cases
is the uniformly poorer performance of the QPSK case. In return for
this performance degradation, NPSK offers a bit rate double that of RPSK

for a fixed signal bandwidth,
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CHAPTER V
PERFORMANCE OF A DPSK SYSTEM WITH CW INTERFERENCE

A. INTRODUCTION

In this chapter we examine the effects of CW interference on a
(binary) differential phase-shift-keyed (DPSK) communication system that
uses an LMS array. 0NDPSK and BPSK systems a;e very similar; however,
NPSK systems do not require a phase-coherent reference signal at the
detector. Although the transmitted DPSK signal and PSD look identical
to those of BPSK (see Figure 3.1) the method of modulating the carrier
with the data bits is different for the two systems. 1In BPSK systems,
the phase of the transmitted waveform during each symbol interval is
determined directly by the bit to be transmitted, one phase value for a
"0" bit and another for a "1" bit. 1In DPSK systems the data is encoded
differentially., That is, a "1" is transmitted by the introduction of a
phase reversal between two successive symbols and a "0" is transmitted
by the absence of a phase change between the two symbols.

The NDPSK detector compares the phase of each received symbol with
the phase of the previous symbol. If the two phases are nearly the same
the detector decides that a "0" was transmitted. If the two phases
differ by more than 90°, the detector decides that a "1" was
transmitted. Of course the DPSK detector can be used with more than two
signalling phases by appropriately partitioning the detector decision
space.
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We first examine the array performance with a DPSK desired signal.
We then calculate the detector performance and the overall system

performance.

B. ADAPTIVE ARRAY PERFORMANCE

The binary DPSK desired signal at the output of BPF1 is given by,

d(t) = Adexp[mdt + ¢n(t) + wd] (n-1)T<t<nT (5.1)

where all variables except ¢n(t) are defined as in Equation (3.1).

During the nth bit interval ¢n(t) is given by,

¢(n-1)(t) during "0" symbols
p(t) = (5.2)
¢(n_1)(t) + 7 during "1" symbols.

Note that for DPSK, as for BPSK, the (modulo 2n) value of $,(t) is
equally likely to be 0 or 7 during each symbol interval. To the LMS
array, the BPSK and DPSK signals are indistinguishable. Therefore the
results of Section B of Chapter III apply directly to the NPSK case.
These results can be used to calculated the signal powers at the array
output.

The difference in performance for the NPSK and BPSK systems is due
only to the difference in detector performance. In the next section we

calculate the performance of the ideal NPSK detector.
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C. DPSK DETECTOR PERFORMANCE WITH CW AND AWGN INTERFERENCE

In this section we determined the performance of a DPSK detector
when the desired signal is corrupted by both AWGN and CW interference.
We examine the effects of signal powers, arrival angles, and the
interference frequency.

Figure 5.1 shows an ideal DPSK detector [23]. The incoming signal
is split and the two resulting signals are multiplied by sin(wqt) and
cos(wqt). These locally generated reference signals are not
phase-coherent with the incoming desired signal (due to the random
phase angle yq of the desired signal), The multiplier outputs are
integrated over the symbol interval to produce two random variables,
X(n) and Y(n). At the end of the nth symbol interval, X(n) and Y(n) are
compared with X(n-1) and Y(n-1) and a symbol decision is made based upon

the value of X(n)X(n-1) + Y(n)Y(n-1). The decision rule is,

X(n)X(n-1) + Y(n)Y(n-1) > 0 => decide nth symbol was "0",

X(n)X(n-1) + Y(n)Y(n-1) < 0 => decide nth symbol was "1".

Figure 5.2 shows the NPSK decision space and typical values of X(n-1),
Y(n-1), X(n), and Y(n). From this figure we see that the decision
boundary produces a useful gometric interpretation. If the absolute
value of the angle (&) between the vectors drawn from the origin to the
points <X(n-1), Y(n-1)> and <X(n), Y(n)> is less than 90° a "N" decision
is made. If |8| is gr.ater than 90° a "1" decision is made.

We now calculate the performance of the NDPSK detector when the

detector input is of the form,
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s(t) = y2p4 cos(mdt+¢n(t)+yd) + V25 cos (w, ;) + n(t). (5.3)

where all terms are as defined in Chapter III except for ¢pn(t) which is
defined in (5.2).
The signal at the output of the upper integrator in Figure 5.1 at

the end of the nth symbol interval is given by,

nT
/ s(t)cos(wdt) dt
(n-1)T

X(n) .

Xg(n) + X (n) + X (n), (5.4)
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where
nT
Xg(n) = J /2P, cos(uyt + ¢ (t) + vq)cos(ut) dt (5.5)
(n-1)T
nT
Xi(n) = [ /53; cos(wit + Yi)cos(“dt) dt (5.6)
(n-1)T
and,
nT
X (n) = [ n(t) cos(uw,t) dt (5.7)
(n-1)T

Similarly the output of the lower integrator at the end of the nth

symbol interval is

nT
Y(n) = f s(t)sin(u,t) dt
(n=-1)T
= Yq(n) + Yi(n) + ¥ (n), (5.8)
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where,
nT
Yy(n) = / /EF; cos(uyt + ¢ (t) +yvy)sin(uyt) dt (5.9)
(n=1)T
nT -
Yi(n) = {n-l)T 2P, cos(w;t + y;)sin(u t) dt (5.10)
and,
nT
Y (n) = / n(t)sin(wdt) dt (5.11)
(n-1)T

We now determine Xd(n), Yd(n), Xi(n), and the distribution of the random
variables Xn(n) and Yn(n). We simplify Xd(n) by first expanding the
integrand in Equation (5.5). We then drop the double frequency term and

obtain the expression,
Xq(n) = VP72 / cos (2ut+o (t)+yy) + cos(e (t)+y,)dt

= /Pd/2 Tcos(¢n(t) + Yd). ' (5.12)
Similarly Yd(n) is simplified from (5.9),

nT :
/PyI2 sin(2u t+e (L)+y,) - sin(o (t)+y,)dt
(n-1)T

Yy(n)

- /Pd/z Tsin(¢n(t) + Yd). (5.13)

The first of the interference terms, Xi(n) is simplified from (5.6) in

the same manner,
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Xy(n) = /P/2 f cos[ (w0 )t+y;]
(n-1)T

+ cos[(wd-wi)t-Yi] dt
= /Pi/Z (1/Aw){s1'n[AmnT-y1.] - Sin(Aw(n-l)T-Yi)} (5.14)

where Aw is as defined in the previous chapters. We simplify this

expression further using standard trigonometric identities,
X (n) = /5 2 Tsinc(AwT/2) cos[(2n-1)(AwT/2) - Y; 1. (5.15)

A similar procedure shows that Yi is given by,
Yi(n) = /Pi/2 Tsinc (AwT/2) sin[(2n-1)(AwT/2) - Yi]' (5.16)

We next determine the distribution of X,(n) and Y,(n), the noise
terms. These variables are the result of processing that is identica1
to that used to obtain X,(n) and Y,(n) for QPSK in Chapter IV. Using
the results from Chapter IV we can immediately determine that X,(n) and
Yn(n) are independent zero-mean Gaussian random variables each with
variance nT/4 (where n/2 is the 2-sided noise PSD at the detector
input.) Xu(n) and Ya(n) will each be independent of Xp(n+c) and Yp(n+c)
for all non-zero integer values of c.

Figure 5.3 shows each of the components of X(n) and Y(n) as well as
the composite signals. This figure shows the decision regions, which
are separated by the line at |§]=90°.

In order to determine the probability of error we must determine
the probability that |§]|>90° when "0" is transmitted and the probability

that |§|<90° when "1" is transmitted. Rosenbaum [18] addressed a
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similar problem; however, as in the BPSK and QPSK cases, Rosenbaum's
receiver model differs from ours and his expressions for P(e) must be
slightly modified for the integrate-and-dump type detector. The model
discussed in [18] leads to a signal vector diagram very similar to that
shown in Figure 5.3. The only difference is that Rosenbaum omits the
factor of sinc(AwT/2) for the length of the interference vector. We
outline Rosenbaum's derivation of P(e) with the appropriate
modifications of the vector lengths.

In order to determine the P(e) we first define the complex variable
Z(n),

Z(n) = X(n) + jY(n). (5.17)

th

We assume that the n~ symbol is a "0". We then note that

Re{Z(n)Z*(n-1)]
cosé = |Z(n)||Z(n-1)| . (5.18)

Since the denominator is nonnegative, the conditional probability of

error, given AwT, Yo» and s is,
P(e|AwT,"0",Yd,Yi) = P(Re[Z(n)Z*(n-1)] < 0) (5.19)

Since

2(n) + Z(n-1)|2 Z(n) - Z(n-1),2

2 I 2 ’

Re[Z(n)Z*(n-1)] = (5.20)

we have,

P(e|AwT,"0"sYd,Yi) = P(|Z(n) + Z(n-1)| < |Z(n) - Z(n-1)]), (5.21)
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We now define the variables,

1= 2(n) +2(n-1)
= Co(z) + X (n) + X,(n-1) + JLY (n) + Y, (n-1)] (5.22)
and
8 = 2(n) - 2(n-1)
= Cy(8) + X (n) - X (n-1) + J[¥,(n) - ¥, (n-1)] (5.23)

where Co(z) and CO(B) are the components of £ and B not due to the

Gaussian noise,

CO(Z) = Xd(n) + Xd(n-l) + Xi(n) + Xi(n-l)

+

I0Yg(n) + Yy(n-1) + Y;(n) + ¥; (n-1)] (5.24)

CO(B) = Xq(n) - Xd(n-l) + Xi(n) - Xi(n-l)

+

j[Yd(n) - Yd(n-l) + Yi(n) - Yi(n-l)] (5.25)

where the subscript "0" indicates that we are assuming the nth symbol is

a zero. Evaluating Co(z) and CO(B) we find,

co(z) = /EFET cos(¢n)

AwT AwT
+ JZPiT sinc('%%j cos[yd -yt AwT(n-1)] cos('%}j

+ k[-VZPdT sin(¢n)

AwT

+ fzﬁT sinc(é%T-) sinlyy - v4 + 8wT(n-1)] COS('Z—)] (5.26)
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and
o AwT. o AwT
C,(8) =y/2P,T sinc(=;) sin ry (5.27)
We can show that |Z| and || are independent Rician random
variables. Therefore, the probability given in (5.21) is the
probability that one Rician random variable exceeds another. This

probability is given by [18],

1 1Co(z)] [Co(B)] |Co(8)] [Co(z)]
P(e|AwT’"0“’Yd’Yi) = E-[I-Q( 20 > 20 ) * 0( 20 > 20 )]

(5.28)
nT .
where o =-\/z—; and Q(A,B) is Marcum's Q function,
Q(A,B) = [ 1 exp[-(A2+12)/2] IO(Ar) dt, (5.29)

B

From (5.26) and (5.27) we find that |Co(z)| and |CO(B)I can be

written,

AwT AwT
|Co(z)[ =\/E}[Pd +‘/Pdpi sinc('};ﬂcos(‘zrjcos(go) +

AwT AwT
p,sinci(S5) cos {51 1/2 (5.30)
and,
o AwT o AwT
ICo(2)| =/2P,T sinc(57) sin (57 (5.31)

where £ = [¢n =Ygt Yy -(n-1)awT]. Since Y4 and Y; are uro,2n1, £y 18

also U[N,2r] (as shown in [17]).
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We now average the expression for P(e), given by Equation (5.28),
over the uniformly distributed random variable Eo to determine
P(e|swT,"0"),

| 1Co(z)] [Co(8)] 1Co(8)] [Col2)]
P(e|AwT,“0“) =<%F [I-Q( Zc ’ ;o ) * Q( ;o ’ ;o )] dEo’

(5.32)

A similar analysis performed under the assumption that a "1" symbol

was transmitted yields,

| o I€4(2)] 1q(8)]
PlelawT,"1") = 4= | [1 - ()
0

IC1(8) 1Cy(x)]
oL 18)],

20+ 20 ] % (5.33)
where,
/- . AwT m-AwT
|C1(Z)| = 2T[Pd + /P4P; sinc ( > ) cos( > )cos(gl)
AwT -AwT
+ P sin<:2("2‘")cosz(1r zw )]1/2 (5.34)
and,
AwT n-AwT
IC,(8)] = /2PiT sinc (57) sin (T5) (5.35)
and ¢, is U[0,2r].
Finally, the expression for P(e) is given by,
1 1
P(elawT) = E‘P(e|AwT,"0“) Ay P(e|awT,"1"). (5.36)
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We evaluated P(e) for several values of SNR and INR (defined by
(3.45) and (3.46)) numerically. Figures 5.4 and 5.5 show typical
results for AwT=0, These results are very similar to those shown for
AwT=0 in [18]. Figures 5.6 and 5.7 show similar results for AwT=n/2,
From Figures 5.6 and 5.7 we see that the system performance decreases
slightly as AwT increases.

The curves shown in Figure 5.6 depict significantly better
performance than that predicted by the results of [18]1 for AwT=n/2,
There is a simple explanation for this discrepancy. For a given
interference signal vector length (in Figure 5.,3) the DPSK detector is
most prone to errors when AwT=r/2 (¢nt). However, the length of this
vector is proportional to sinc(AwT/2), the factor which is not included
in the analysis of [18]. Therefore, as AwT increases from zero to 7/2,
two processes occur. First, the detector sensitivity to the
interference decreases due to the sinc(AwT/2) term. Second, the
detector becomes more sensitive to the interference as AwT approaches
n/2 due to the geometry of the signal vectors.

In order to determine how these two (often conflicting) processes
interact, we examine how P(e) varies as a function of AwT for few
representative SNR and INR levels. Figures 5.8 and 5.9 show typical
results. Figure 5.8 shows P(e) vs. AwT for several INR values when the
SNR is 10 dB. Figure 5.9 shows similar data for the same INR values
with an SNR of 13 dB. From these curves we can see that the highest

P(e) values typically occur when AwT is approximately w/2,
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D. PERFORMANCE OF COMBINED LMB ARRAY/DPSK DETECTOR

We now combine the results from the previous two sections in order
to calculate the performance of the DPSK system. Figures 5.10 through
5.25 show typical results. Figures 5.10 through 5.15 show how P(e)
varies with SNR and INR with the array bandwidth factor, k, set equal to
5. As in the previous chapters, the figures show the performance for
three different interference arrival angles, 10, 20 and 80°, Figures
5.16 through 5.21 show similar results when the array bandwidth factor
is increased to 10. From these figures we see that the DPSK system
performance is significantly poorer than that of the BPSK system
discussed in Chapter III.

Figures 5.22 and 5.23 show how the performance varies when the
interference and the desired signal frequencies are different. For each
of these figures k is 10, 65 = 10°, and AwT is n/2. From the previous
section we expect this value of AwT to produce the worst performance.

Figures 5.24 and 5.25 show the performance for AwT=2r (with k = 10
and 8; = 10°). For this value of AwT, the detector is not affected by
the interference. Therefore, as we would expeét, we observe the best
performance for this value of AwT,

We find that the system behavior with DPSK signalling is similar to
that with BPSK or QPSK signalling., We find that, in general, the symbol
error probability for DPSK is between that of BPSK and QPSK. The shapes
of the curves for each of the different types of PSK signalling are very
similar., We find that, for each type of PSK modulation, it is desirable

to have a narrow array input bandwidth.
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In Chapters III, IV, and V we have examined the performance of PSK
communication systems. We found qualitatively similar performance for
each of these systems. In the next chapter we examine the performance
of an FSK system and compare its performance with that observed for the

PSK systems,
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Figure 5.8,
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CHAPTER VI

PERFORMANCE OF AN FSK COMMUNICATION
SYSTEM WITH CW INTERFERENCE

A. INTRODUCTION

In this chapter we examine the performance of a noncoherent binary
frequency shift keyed (FSK) communication system that uses an LMS
adaptive array to suppress CW interference. Figure 6.1 shows a typical
binary FSK waveform. "1" and "0" bits are each represented by a burst
of energy at one of two signalling frequencies (w; and wq
respectively).

Figure 6.2 shows a simple non-coherent FSK detector. In this
detector, the received signal is passed through two bandpass filters
(BPFs), each of which is tuned to one of the signalling frequencies.
The output of each filter is envelope detected. The envelope detector
outputs are sampled at the end of each bit interval and bit decisions
are made based upon a comparison of these samples.

Hudson [6] proposed a method of generating an FSK reference signal
for the LMS array. This method requires that the transmitted bit stream
be encoded into a Markov symbol stream prior to transmission. The
reference generation circuit uses the known Markov transition
probabilities of the symbol stream to make symbol predictions. This

circuit uses the symbol predictions to generate a reference signal for
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the array that is partially correlated with the desired signal. The
feasibility of this system was experimentally verified in [7].

In this chapter, as in the previous chapters, we assume that a
reference signal is available to the array which is a perfect replica of
the desired signal. Although the reference generation method discussed
above does not generate a perfect reference signal (due to symbol
prediction errors) the assumption of a perfect reference signal makes

the array weight calculations more tractable,

AMPLITUDE
“1"sT "o" BT

TIME

Figure 6.1. A typical FSK waveform.
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B. ARRAY PERFORMANCE

In this section we use the results from Chapter II to derive the
signal power levels at the output of the LMS array for the case of an
FSK desired signal. We first describe the real form of the desired
signal and calculate its ACF. We then use this real ACF to calculate
the complex ACF (which we will need in the array calculations).

The desired signal during the nth bit interval is given by,

d(t) = Adcos(mot + wo), (6.1)
during "0" bits and

d(t) = Adcos(wlt + wl), (6.2)

during "1" bits where

>
1]

d the desired signal amplitude,

[
]

0 the "0" signalling frequency,

the "1" signalling frequency,

€
—t
i

the phase angle of the carrier during "0" symbols,

<
[
L]

the phase angle of the carrier during "1" symbols.

<
—
[}

We assume that wo and wl are independent and identically
distributed, each ~ U[N,2r], and that T is the symbol duration. The FSK
signal described above might be generated by switching between two
free-running oscillators, one tuned to each of the signalling

frequencies.
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We assume that the incoming symbol stream is symmetric (i.e. "0"s
and "1"s are equally likely) and that each symbol is statistically
independent of all others. Thus each symbol represents one bit of
information.

We assume that the interference is a CW signal that is exactly

aligned in frequency (but not necessarily in phase) with one of the

desired signal symbols., If we arbitrarily choose w, as the interference

frequency, we have
T(t) = Ai exp(wot + ¢i) (6.3)

where Ai is the interference amplitude and ¥; is the interference phase
angle which is ~U[0,2r] and independent of both ¥y and 128

We now calculate the autocorrelation function of the desired and
interfering signals. The analytic ACF for the interference is given by
(3.4). For the desired signal we first determine the ACF for the real

signal d(t) and then calculate R;(r) using the relationship [15],
Ry(t) = 2[Ry(t) + jRy(1)], (5.4)

where R;(r) is the ACF of d(t), Ry(t) is the ACF of d(t), and the carat
denotes the Hilbert transform,

The ACF of the desired signal as described above was calculated by
Bennet and Rice [25] for the case of an infinitely long symbol stream

under the conditions,

on + TTK,
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Figure 6.2. FSK detector.

wlT t M,
and,

wnT + wlT + =N,

DECISIONS

where T is the symbol duration and K, M, and N are arbitrary integers.

These conditions are not particularly restrictive for real systems since

the instability of real oscillators insures that the inequalities are

satisfied.*

Under the above-listed conditions the ACF for the real signal d(t)

is given by [25],

* We assume that no special effort is made at the transmitter to
synchronize the bit intervals with the carriers.
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2 2
Moo A
Rd(r) =3 T (c05wor + coswlr) + g (coswor + COSwlr)

(6.5)
for |t|<T. This result can also be obtained by calculating the ACF of

two on-off-keyed (00K) waveforms, one with carrier frequency W, and the

other at frequency w,. Addition of these two ACFs yields Equation

(6.5).
Substitution of Ry(t) from (6.5) into (6.4) yields, R;,
2
o Mo
Rd =2 'Z'(l -1 )[(coswor + c05m1t) + j(sinmor + sinwlr)]
2
Ad || jwor jwot
= 2 (1 - 27T )[e + e ] (6'6)

The desired signal covariance matrix is calculated by substitution
of (6.6) into (2.20). Before writing the expression for ¢d we make some
simplifying assumptions similar to those that we made in previous
chapters for the PSK systems. First, we assume that the interelement
propagation delay is much shorter than the symbol duration, (i.e.

Td << T). We also assume that the signalling frequencies are close
enough so that the interelement phase shift for the desired signal is

essentially independent of the transmitted symbol (i.e., man - wle =
by)-

These simplifying assumptions allow us to approximate the desired

signal ACF by

Zejwt

R;(7) = A2 (6.7)
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Under the above assumptions the desired signal covariance matrix

becomes,
- ~Jjo -2j6, ~

1 e d e d
AL -j¢

2 d d

%q Ay e 1 e . (6.8)
2i¢ jo

e d e d 1

The simplifications used to obtain the approximation (6.8) do not
seriously affect the array performance calculations. Althougnh these
simplifications essentially cause us to neglect the desired signal
bandwidth, it is shown in [15] that the array behavior is not strongly
dependent on the desired signal bandwidth (for the bandwidths of
interest here). These simplifications allow us to calculate the array
performance without specifying the carrier frequencies or the symbol
rate.

The covariance matrices for the interference and the noise signals
are identical to those given by (3.7) and (3.8) for BPSK with wj=uwq.
The total covariance matrix ¢, is determined by summing ¢4, ¢, and &,.
The array weights and output power levels are calculated using

Equations (2.5) and (2.28) through (2.34).

C. FSK DETECTOR PERFORMANCE WITH CW INTERFERENCE AND AWGN

In this section we determine the probability of error for the FSK
detector of Figure 6.2 when the desired signal is corrupted by both

white Gaussian nose and CW interference. A similar problem is addressed

136




in [26] and the results of this analysis are summarized here.
We assume that the composite signal at the detector input is given

by
s(t) = /2Pq cos(uwkt + vk) + Y2P; cos (wot + vi) + n(t) (6.9)

where « = 0 or 1 depending on the transmitted symbol, Yy is the phase of
the desired signal at the detector input, Y; is the interference phase
(where it is assumed that Yis Yg and y; are i.i.d ~ U[0,2r]), and n(t)
is a white Gaussian noise signal with two-sided PSD n/2.

We assume that the detector BPFs are ideal, each with bandwidths
1/T. Therefore the desired and interfering signals will nearly reach
their steady state values at the end of the symbol interval. We assume
that the passbands of the two filters are not overlapping and we neglect
any intersymbol interference or crosstalk. The noise produces
(independent) zero-mean Gaussian random processes with variance n/T at
the output of each of the BPFs.

At each BPF output we either have Gaussian thermal noise alone or
the sum of a CW signal and the Gaussian noise signal. The probability
density function of the amplitude of the filter output has a Rayleigh
distribution in the former case or a Rician [27] distribution in the
latter case. We denote the output of the "0" and "1" envelope detectors

at the end of the given symbol interval by Z_ and Z. respectively.

0 1
We first assume that a "0" symbol is transmitted. In this case the
"0" filter has the sum of two sinusoids (the desired signal and the

interference) plus the thermal noise at its input. The "1" filter sees
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only the noise signal at its input. We denote by y the phase difference
between the two sinusoids in the "0" filter (i.e., v = yg =yi). Tho
(Rician) PDFs of the amplitudes of the filter outputs conditioned on y

are then given by,

2 2
f Z lloll - ZO I AOOZO MQ 6 10
( 0|Ys ) = (n/T) 0 (H/T) exp - 2n/T ’ ( . )
for the "0" filter and,
2 2
f(Z "0") = 1 I AIOZ) 'E) M AIO\\ 6.11
Q") =Tmy o m - T (6.11)

for the "1" filter, where Iy is the modified Bessel function of the
first kind of order zero and Ajj is the amplitude of the sinusoidal

signal at the input to the i filter when symbol j is transmitted.

Therefore, Agg and Ajq are given by,

Ago =«/2Pd + 8, [P P cosy + 2P, (6.12)

and,

A10 = 0. (6.13)

Since no sinusoidal signal is present at the input of the "1"

filter when a "0" is transmitted (i.e. since A . = 0) then the Rician

10
distribution given in (6.11) is actually a Rayleigh distribution [277,
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z

npn — 1
f(ley, 0") = n/T) exp

We now assume that a "1" symbol is transmitted.

72

1

T2

(n/T)

(6.14)

In this case, each

filter has both a CW signal and a Gaussian noise signal at its input.

The (Rician) POFs for the amplitudes of the filter outputs are given

by,
Zg

f(ZO|Y,"0") = (n/T) IO

for the zero filter and,

Z;

(

A11Zq

Ao1zd>
(/M) &P \”

f(Z,1v."1") =7y Lo

where,

Aoy = /2P,
and,

A1y = /2P .

For equally likely symbols, the probability of a symbol error

conditioned on y is given by,

(

(n/T)

Yoo (-

2(n/T)

Z% + A%

2(n/T)

28 + A§1:>

)

1 1
E’P[Z1 > Zo|y,"0" sent] + 5 PLZ, > ley,“l"sent]

These probabilities can be directly evaluated [26] to give us the

following expression for the conditional symbol error probability,
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1 Ao Poo’
Plelv) =5 | 0\ 777 > 7oore

2 2
1 A10%00 1 Mo+ Ao
"2\ T )P\ - T o)
AMi o Ao
A\ Ton/T * 7on/T
2 2 - |
1 Ar1hor 1 M1t Am
2o\ T )X \ - T ) (6.20)

+

where Q(a,b) is Marcum's Q-function [24]. Since A10=0 we can use the

relationships,

Q(0,b) = e'(b/z)2 . (6.21)

and,

1,(0) = 1 (6.22)

to simplify (6.20). The resulting expression for error probability

conditioned on v is,

2
111 ; Poo Ao A
Plely) =75 | Zexp|- 27t ) P O\ Tangt 0 Tt

2 2 -

1 Ao1hn 1 Po1 * An
2 o\ "/ exp -3 (—?1—/?_) (6.23)

140




We integrate P (e|y) over the (uniformly distributed) phase angle v

to obtain the symbol error probability,

2
1 Poo AL TR :)

1 —_— —
Ple) =% | 2o\ -27am )t O\ T&rr » T,

2 2 N\~
1 Aorh11 , Po1tAn
-2 W\ ToT ) exp -3 ( /T ) dy. (6.24)

This is the general expression for the symbol error probability for the

FSK detector with a single CW interferer exactly on one of the
signalling frequencies.

01 = 0 and A00 = A11 = 2/Pd.
case we can use (6.21) and (6.22) to further simplify (6.24). In this

We note that if Pi = 0 then A In this

case P(e) becomes,

- (1/2) (E
P(e)=';'e (/)(d)/’ﬂ

(6.25)
which is the well known result for non-coherent FSK with AWGN but no
interference [7].

The general expression for P(e) given by (6.22) was evaluated
numerically to determine the detector performance. Figures 6.3 and 6.4
show the results from calculations of P(e) for several SNR and INR
values. Simpson's rule was used to evaluate the integral in (6.22)
where the iterative method described in [24] was used to evaluate
Marcum's Q function. Either a polynomial or an asymptotic approximation
was used to estimate I,. We note that the performance of the binary

FSK detector with CW interference is worse than that of either of the

binary PSK detectors discussed in chapters III and V.
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Figure 6.3.
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Performance of ideal FSK detector with CW interference.
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Figure 6.4, Performance of ideal FSK detector with CW interference.
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D. PERFORMANCE OF THE COMBINED LMS ARRAY/FSK DETECTOR

In this section we calculate the bit-error-probability for the FSK
system that includes the LMS array. As noted at the end of section B of
this chapter, the covariance mairix for FSK signalling given by (6.8) is
identical to that of BPSK (after the simplifying assumptions were made
in both cases). Therefore, the adaptive array calculations for the FSK
and BPSK cases are the same. Thus to calculate the system performance
we need only to calculate P(e) for the FSK detector when the array
output signals appear at the detector input.

Figures 6.5 through 6.10 show the system performance for 6; values
of 10, 20 and 80°. The array bandwidth factor k is set equal to 5 in
each of the cases shown., Qualitatively, the FSK curves are very similar
to those calculated for the other modulation methods. The FSK error
probabilities are slightly worse than either of the binary PSK cases and
roughly equal to those to QPSK (for the same 65 and k values). Actually
FSK is slightly better than QPSK iﬁ regions near the "humps" in the P(e)
vs. INR curves, but worse in the other regions. Results for FSK cases
with k=10 were also calculated but are not pfesented here since they

display no unexpected characteristics.
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Figure 6.5. FSK P(e) vs. SNR for 3-element array (8j=10°, k=5).
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Figure 6.8. FSK P(e) vs. INR for 3-element array (6;=20°, k=5).

148

10. 0.
INR (DB)




P(E) VS. SNR

-2.

SIR«0dB
48

44

-8,
1
|

LIS |
~-30

LOG (P(EM)

-7
1

'.o
i

\
\

\

¥ L) ¥

12, . e
SNR (DB)

.-l?.
.

34

.

[ 4

L

Figure 6.9. FSK P(e) vs. SNR for 3-element array (6;=80°, k=5).

149




P(E} VS. INR

'
)
¥
. SNR=6dB| -t
o -
4
» /"\
i &
wa
-
u
& ..- e ———
-y / ———
SN
)
=
\
e
v
9:- j/-'
' '.;/
3
o
3 . | T T T
«30 -20. - 0. 20. 30
INR (DB)
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CHAPTER VII

PERFORMANCE OF A NARROWBAND ADAPTIVE ARRAY
WITH BPSK SIGNALLING AND CW INTERFERENCE

A. INTRODUCTION

Chapters III through VI examined the performance of several
communication systems that included LMS arrays. We found that P(e) for
these systems increases as the array bandwidth increases. In this
chapter we more closely examine the effects of bandwidth on system
performance,

In the previous chapters we found that the system performance was
similar for BPSK, QPSK, DPSK, and FSK desired signal modulation.
Therefore, in this and the following chapters, we limit our discussion
to the BPSK system with the understanding that similar qualitative
performance would be achieved for each of the other modulation methods.

In Chapters III, IV, and V we used correlator-type PSK detectors.
The P(e) calculations that we made assumed that the detector input
bandwidth was wide enough so that the desired signal was passed with
negligibly small distortion. Therefore, this model did not allow us to
calculate P(e) for values of k less than approximately 5,

In this chapter we describe modified BPSK signalling and detector
models that allow us to calculate P(e) for k values as small as 1/2.

These models are based upon the Nyquist pulse shaping criterion [16,28].
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This criterion states that, with appropriate transmit and receive
filtering, we can communicate over a bandlimited channel with no
intersymbol interference (ISf). Using this Nyquist criterion we can
limit the transmitted signal bandwidth to (1/T) Hz. Furthermore, for a
fixed input SNR, the bandlimited BPSK system can achieve a P(e) value
equal to that of standard (infinite bandwidth) BPSK., Several practical
aspects of narrowband signalling are discussed in [29].

In the next section we examine the performance of the narrowband
BPSK system without an adaptive array. In section C we calculate the
system performance when the adaptive array is added to reject CW
interference. In Section C we also examine the effects of the array

input bandwidth on this performance,

B. BPSK SIGNALLING OVER A NARROWBAND CHANNEL

In this section we describe a narrowband BPSK communication system,

In this system the transmitted signal bandwidth is limited to (1/T) Hz.

This bandwidth corresponds to a bandwidth factor k (as defined in the

previous chapters), of 1/2., At the receiver, a matched filter processes

the waveform, The output of this filter is periodically sampled and

symbol decisions are made based upon the signs of the output samples.

By judicious choice of the transmit and receive filters we can eliminate

ISI by insuring that the receiver response to each symbol is zero at the

sampling instants corresponding to all other symbols.

Figure 7.1 shows the narrowband BPSK system model. The transmitted

baseband signal f(t) is passed through the transmit filter which has a
transfer function,
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- 1 -
HT(w) = P(“/T)(w) E?EE?%IT ‘ (7.1)
where,
1 ; ~-m/T < w < w/T
o) = 7.2
Playmy(©) = | 0 5 Je| >w/T 72

To understand how this filter works we examine its response to a
single input pulse. Fiqure 7.2(a) shows a simple input pulse
f(t)=pT/2(m). Figure 7.2(b) shows the filter transfer function HT(w).

The filter output (in the time domain) is given by,

g(t) = F(t) * ho(t) (7.3)

where hT(t) is the transmit filter impulse response and * denotes

convolution., Application of the convolution theorem of Fourier analysis

yields,
G(w) = F(w)HT(w) ‘ (7.4)

where G(w) and F(w) are the Fourier transforms of g(t) and f(t)

respectively. We calculate F(w) using a standard Fourier transform

pair,
F(w) = T sinc(wT/2). (7.5)
We evaluate G(w) from (7.1), (7.4) and (7.5),

Glw) = Tp("/T)(w). (7.6)
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(e) Fourier transform of carrier modulated by a single filtered pulse
Figure 7.2. Transmitter processing of baseband pulse.
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Figure 7.2(c) shows G(w). Application of another standard Fourier

transform pair yields,

g(t) = sinc(nt/T). (7.7)

This waveform is shown in Figure 7.2(d).

As we have just shown, the transmit filter converts the rectangular
baseband digital pulses into a series of sinc pulses. Note that the
transmitted symbols are separated by T seconds and sinc(nt/T)=0 for
t=nT (n=1, 2, 3, ...). Therefore, the single symbol represented by f(t)
will produce no ISI for any preceding or following symbols.

g(t) is multiplied by a carrier, cos(wqt), prior to transmission.

The transmitted signal is therefore given by,

g(t)cos(wqt) = sinc(nt/T)cos(wqt). (7.8)

Figure 7.2(e) shows the Fourier transform of the transmitted signal.

As the signal propagates through the channel, it is attenuated and
corrupted by an AWGN process n(t) with two-sided PSD N,/2. Later we
consider the effects of interference added as the signal propagates
through the channel.

At the receiver the signal is given by
vt
r(t) = A, sinc(T7)cos(w,t) + n(t) (7.9)
d T d
where we have neglected the propagation delay. This signal is
multiplied by cos(wqt) and the resulting signal is passed through the

receive filter which is an ideal Tow pass filter with cutoff frequency

n/T radians (1/2T Hz). This filter removes the double frequency term
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and limits the thermal noise power. The signal at the receive filter

input is given by

Ad mt .
r(t)cos(wdt) =5 sinc(?‘][l + cos(det)] + n(t)cos(wdt) (7.10)

The outbut from this filter consists of a desired signal term X4 and a
noise term X,. From (7.10) we see that

Mt
xd =9 S"‘C(T ) (7.11)

since the receive filter eliminates the double frequency term.

The noise signal at the input to the filter n(t)cos(wqt) has
(two-sided) PSD N,/4 or equivalently, a single sided PSD of Ny/2. Since
the receive filter has a bandwidth of 1/2T Hz X, is a zero-mean Gaussian
random variable with variance (Ny/2)(1/2T)=Ny/4T.

We note that X4 reaches its maximum value at t=0. The detector
output is sampled at t=0 to detect the symbol represented by f(t). The
receiver output is sampled at points where t=nT (n=1, 2, 3, ...) to
dettect the symbols that follow. Figure 7.3 shows the filter output
(without the noise signal) for the transmitted symbol sequence 1011.
From this figure we see that, unlike the conventional BPSK waveform, the
narrowband BPSK signal does not have a constant envelope. The varying
amplitude of the envelope for narrowband BPSK requires that the
transmitter must have a peak-to-average power ratio greater than unity.

The receiver makes symbol decisions based upon the sign of the

receive filter output at the sampling instants. Positive output samples
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produce "1" decisions and negative output samples produce "0" decisions.
The symbol error probability is given by
l uwqn l nwn"
P(e) =5 P(Xy + X, < 0]"1" sent) +% P(X, + X > 0|"0" sent)
(7.12)
From the symmetry of signal space we can show that the two

conditional probabilities in this expression are equal. Therefore the

expression for P(e) becomes,

1
P(e) E'P(Xd + X%, <0 |"1" sent)

-A
= p(xn <-7d-) (7.13)

where X, is a zero-mean Gaussian random variable with variance Ny/4.

Therefore
AST
P(e) = erfc N . (7.14)
(o}

Eb, the energy-per-bit in the desired signal component of r(t), is
given by AdzT/Z (this is easily shown by application of Parseval's
theorem to the desired signal component in Equation (7.10)). Therefore,

Equation (7.14) can be rewritten,

2,
— | . (7.15)
N0

This expression for P(e) is the same as the well known result for ideal

detection of an unfiltered (and thus infinite bandwidth) BPSK signal in

the presence of AWGN. Equation (7.15) implies that, with a bandlimited
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(a) Individual waveforms representing the sequence 1011

— . 1 | |

(b) Composite aveform for the sequence 1011

Figure 7.3. Baseband signal for simple binary sequence.
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system, we can achieve performance equal to that of an infinite
bandwidth standard BPSK system.

The results presented above were derived under the assumption that
AWGN is the only corrupting signal at the receiver input. We now
calculate the system performance when r(t) also includes a random-phase
CW interfering signal with amplitude A;. We assume that the
interference is at a frequency where it is not rejected by the receive

filter. In [18] Rosenbaum shows that, in this case, P(e) is given by,
1w [264  [2E;
Ple) = on é erfc {\' W5 + VTN cos(yre]) dy oy (7.16)

where Ei and Yrel (which can be considered a dummy variable of
integration) are as defined in Chapter III. The derivation of this
equation is similar to that used to obtain Equation (3.44) in Chapter
I11.

We note that Equation (7.15) is almost identical to Equation
(3.44), our general expression for P(e) for BPSK. The only difference
is the factor of sinc(wT/2) in the interference term Equation (3.44).
This term is caused by the frequency response of the integrator in the
integrate-and-dump detector used in Chapter III. The frequency response
of the detector that we use in this chapter is constant over the
detector passband.

The preceding analysis suggests that we can transmit (1/T) bits per
second over an RF channel with a bandwidth (1/T) Hz with the same

performance as we would have with standard BPSK. However, to achieve

160




these results, we must be able to realize the transmit and receive
filters in the narrowband model. The noncausal nature of the impulse
response of these filters is evidence that the filters are not
realizable.

Good approximations to ideal Nyquist pulse shaping filters do
exist. Most notably, members of the raised-cosine family of filters
{16] provide performance equal to that achieved with the ideal low-pass
transmit and receive filters used our narrowband model., Actually, the
ideal low-pass filter is one member of the family of raised-cosine
filters. All raised-cosine filters have the same equivalent noise
bandwidth as the ideal filters and procduce and same P(e) with no ISI.
These filters have a passband between 0% and 100% larger than the ideal
low-pass filters assumed our model. Approximations for many of these
raised-cosine filters can be realized [30]. Reference [16] provides a
thorough analysis of system performance with non-ideal filters (without

interference).

C. BPSK SYSTEM PERFORMANCE WITH AN LMS ARRAY AND CW INTERFERENCE

Figure 7.4 shows a block diagram of a narrowband receiving system
that includes an LMS adaptive array. We assume that the transmitter and
channel are the same as those shown in Figure 7.1. We also assume that,
as in previous chapters, the desired and interfering signals arrive from
angles 04 and 8; respectively (measured from the broadside direction).
The BPFs at the element inputs are assumed to be ideal with bandwidth

k(2/T).
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In order to calculate the adaptive array performance we must
calculate the ACF of the desired signal a(t). E(t), the analytic

desired signal during the nth symbol interval, is given by,

d(t) = b Agsinc(mt/T)exp(ju,t) (r-1)T <t < nT (7.17)

where b = +1 if the nt" but us a 1 and b = -1 if the nt’ bit is a 0.

Figure 7.5 shows s;(w), the PSD of d(t). R;(r), the ACF of d(t),

the inverse Fourier transform of S;(w). R;(r) is given by,

~ 2 . mT .
Rd(r) = A sinc (irj exp (juyT) (7.18)

We can use Equations (2.20) and (7.18) to calculate the desired
signal covariance matrix, If we make our usual simplifying assumption

that T4<<T, then R;(T) is approximated by,
R3(7) = Ag exp(jugr) (7.19)

With this approximation the desired signal covariance matrix is the same
as that which we used for each of the previously examined modulation
methods (see for example Equation (3.9)).

The interference and noise models are the same as in Chapter III,
Therefore, since the desired signal, interference and noise covariance
matrices are the same as in Chapter IIl, the adaptive array calculations
- for the narrowband model are identical to those for the wideband mode!
of Chapter III.

As discussed in the previous section if the interference is at a

frequency which falls within the receive filter bandwidth, then P(e)
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Figure 7.5. Desired signal PSD.
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will be given by (7.16). As previously noted, this expressioa is the
same as Equation (3.44) with AwT set equal to zero. Although the signal
and receiver structures assumed in Chapter III and the present chapter
differ significantly, the expressions that describe the performance of
both the array and detector are nearly identical for the two cases. In
fact, for AwT=0, the mathematical formulations for the wideband and
narrowband models are identical, However, the range ¢f k values over
which each of the models is appropriate is not the same. The wideband
model of Chapter III is only valid for k values greater than
approximately 5. For the narrowband model we can make k as small as
1/2. For k values greater than 5, the narrowband and wideband systems
(with AwT=0) perform identically.

Figures 7.6 through 7.11 show the (narrowband) system performance
for k=1/2. For this k value, there are no humps in the P(e) vs. INR
curves, Therefore we might be tempted to state that the bandwidth
corresponding to k=1/2 is optimum. However, upon a careful comparison
of Figures 7.6, 3.9, and 3.15, we see that P(e) for k=1/2 is actually
higher than it is for k=5 or k=10 at the left hand sides of the curves.
Thus we make the unexpected observation that, for low INR values, the
system performance improves as the noise power at the array input
increases.

For easy comparison, curves showing the performance of both the
wideband (k=10) and narrowband (k=1/2) systems are plotted in Figure
7.12. This figure shows P(e) vs. INR curves for 8;=10 degrees and an

SNR of 12 dB. For INR values above approximately 10 dB the narrowband
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system performs better than the wideband system. However, for INR
values below 10 dB the wideband system performs better.

There is a simple explanation for this behavior. As the INR
increases, the array begins to null the interference when the
interference and noise powers at the array input are approximately
equal. Therefore the null begins to form at a lower INR value when
k=1/2 than it does when k=10. Consider the cases shown in Figure 7.12
for an INR value of 5 dB. Figures 7.13(a) and (b) show the adapted
antenna patterns for k=10 and k=1/2 respectively. For k=10, the array

has not formed a null in the interference direction and the desired

signal is very close to a pattern maximum. When k=1/2, a null is formed

on the interference. Furthermore, since the desired and interfering
signals are spatially close, the array no longer keeps the desired
signal near a pattern maximum. Therefore, the SNR at the array output
is lTower with k=1/2 than with k=10 for the case shown. The increase in
P(e) due to the SNR reducation with k=1/2 is greater than that which
occurs due to the residual interference power at the array output with
k=10,

Figure 7.14 shows the system performance of SNR¥12 dB, 8;=10°, and
k values of 1/2, 1, and 2. The curves shown in this figure show that
there is no k value that is optimal for all INR values. The curve for
k=1 lies significantly below that for k=1/2 for INR values below
approximately 12 dB. For larger INR values the P(e) for k=1 is only
very slightly greater than that for k=1/2. For k=2 we see even better

performance below 12 dB but a hump is beginning to form in the curve
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k=1/2).
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performance below 12 dB but a hump is beginning to form in the curve
above 12 dB. P(e) vs. INR curves were plotted for several other values
of SNR and 6; and similar results were observed. In each case the hump
in the curve appears for k values greater than about 2.

In previous chapters we examined the performance of the various
systems when the interference was at a frequency where the detector
performance was not degraded (but where the interference was within the
array input BPF passbands). For the narrowband system, if |Aw]| is
greater than w/T, the interference will be completely rejected by the
detector. The performance for this case will be the same as we found
for the wideband system when the interference frequency was at a null in
the detector frequency response. Therefore, the results shown in
Figures 3.20 and 3.21 depict the performance of both the wideband and
narrowband BPSK systems when the interference is at a frequency where
the detector is not affected.

In this chapter we have examined the performance of a bandlimited
BPSK system with an adaptive array. We found that the humps in the P(e)
vs. INR curves are only seen for k values greater than approximately 2.
We found the best performance for k values between 1/2 and 2. Since the
performance for k values between 1 and 2 is never much worse than that
for k = 1/2 (and sometimes better) we conclude that there is little

reason to expend greater cost or effort to reduce k below 2.
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CHAPTER VIII
PROTECTION OF A BPSK SYSTEM FROM WIDEBAND INTERFERENCE

A. INTRODUCTION

In the previous chapters we considered the performance of digital
communication systems in the presence of CW interference. In this
chapter we determine the protection that the adaptive array can offer
to a communication system with bandlimited AWGN interference. We
calculate the performance of the narrowband BPSK system described in
Chapter VII as a function of the signal powers, arrival angles, and the
interference and array input bandwidths.

We also examine the performance of a modified LMS array with noise
interference. This modified array uses tapped delay line transversal
filters to implement the element weights. These filters allow the array
to steer nu]]s‘that are much wider in bandwidth than those possible with
conventional LMS array.* We shall find that the modified array often
provides performance better than the conventional array for AWGN
interference.

Section B describes the desired signal and interference models.
Section C describes the results of performance calculations and
discusses the effects of the various system parameters. Section D
summarizes the results and compares these results with those of previous .

chapters.

*By conventional we mean the LMS array with a single complex weight
behind each element.
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B. SYSTEM MODEL

In this chapter we again use the BPSK modulation method described
in the previous chapter. The same desired signal and noise models are
used; however, we assume that the interféring signal at each element
input is a zero-mean Gaussian random process with power (Pj)jn. Tie PSD
of this interference is shown in Figure 8.1. The center frequency is w;
and the bandwidth of the interference is Aw;' where the prime indicates
that we are considering the signals at the input to the element BPFs,

We assume for simplicity that wj = wq as this assumption has little
bearing on the derived results. We shall show that varying w; slightly

about wyq has little effect on the array performance. Varying wj about

Si)in (w)
1 7(Pj)in
Lw,
| 1

Figure 8.1. Interference PSD at element BPF inputs.
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wq will never hurt the detector performance since the detector is simply
a multiplier (where the array output is multiplied by cos{w4qt)) followed
by an ideal low-pass filter. In fact when w; differs greatly from wq
then the detegtor filter may completely reject the interference.

We define the relative bandwidth of the interference as,

B = (aw; ) /u, . (8.1)

Similarly, we define the desired signal relative bandwidth by,
By = (Awd)/wd R (8.2)

where Awq is the bandwidth of the desired signal and wq is its center

frequency. The relative bandwidth of each input BPF is

By, = 2B, (8.3)

where k is the bandwidth factor as described in the previous chapters.
If Bil is larger than Bin then the input BPFs will reject some of the
interfering signal. Therafore the relative bandwidth of the

interference at the BPF output is

B, = MIN(B, ,B.') (8.4)

where MIN(A,B) denotes the smaller of the two quantities A and R. Note
that we could not write Bi in this simple form withcut the assumption

that wy = The bandwidth of the interference at the BPF outputs is

wd.
given by Awi’ where

Awy = wiBi . (8.5)
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The power in the interference at each BPF output is

0,2 = (P;); MIN(B, /B *,1). (8.6)

i)in
The ACF of 1(T) is given by

R;(r) = o,iz S‘inc(Awit/Z)exp(jwir). (8.7)

Substitution of Awj from (8.5) into (8.7) yields,

R (7) = 052 sinc [(0.5)Biw;t] exp(ju;t). (8.8)
From Equations (2.14) and (2.16) we see that ¢; = wiTi; therefore, we
have

R;(r) = 0,2 sinc [(0.5)B,(¢;/7;)] exp [i(e;/T,)7]. (8.9)

Now we can substitute this expression for R;(r) into (2.21) to determine

the interference covariance matrix °i‘ With this substitution °i

becomes
] 1 Sinc[‘%3i¢i]e-j¢i sinc[-Bi¢i]e-j2¢i_
¢, = o? sinc[%31¢i]ej¢i . sinc[-%81¢i]e—j¢i
_stnclByey 1" stncl ;e 1e7 T
(8.10)

From this expression we can justify our previous assertation that

the array performance is not very sensitive to slight variations in w;
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about w4y, The terms in the interference covariance matrix represent
Equation (8.9) evaluated at t = *nT; where n=0, 1, or 2. The only
variable in (8.9) that is dependent on wj is the argument of the
exponent of exp[j(¢i/Ti)t].”

Using (2.16) we can expand the exponential terms in (8.10) to

obtain,

exp[+jne,] = exp[tjn(wi/wd)nsinei] . (8.11)

From this expression we see that small fluctuations in w;j about wy
produce small fluctuations in the interelement phase shift. This is the
same effect that is observed when 6; varies slightly. Since a change in
8; of a few degrees does not dramatically change the array performance
we can assert that a small change in w;j will not either. This assertion
was verified by performance calculations in which wq, wj, By and B; were
chosen independently. Very slight variations in performance were noted
as the ratio (wq/w;j) was varied from approximately 0.9 to 1.1.

We assume that ¢4 and ¢, are the same as in Chapter VII, The array
weights can be calculated, as usual, using (2.9), (2.25) and (2.5).

Both the desired signal and interference are modified by the array.
However, we presently show that the array adds very little distortion to
the desired signal while it changes the spectrum of the interference
considerably, The array acts as a transversal fi1§er when processing the

signals at its input. Such a filter is shown in Figure 8.2. The delay

*Note that the product Bj¢; in the argument of the sinc function is
independent of w;. This is easily shown from (8.1), (8.4) and (2.16).
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INPUT

OUTPUT

Figure 8.2. Transversal filter with two delay elements and three
weights,

between filter taps, which is labeled T in this figure, is the

interelement time delay. The transfer function of the filter for a

three-element array is given by,

H({w) = W, 4 wzexp(-jmT) + w3exp(-jm2T). (8.12)

If 84 # 8; the interelement time delays are different for the
desired and interfering signals. Therefore these two signals are
processed by different transfer functions. In general, the LMS weights
produce a transfer function for the desired signal that is very close to
the ideal all pass filter (i.e. H(w) has a constant magnitude and linear
phase shift over the frequency range of interest). The LMS weights
typically produce a transfer function for the interference which has

nulls at frequencies where the interference PSD is large.
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As an example of the spectral filtering properties of the 3-element
array, the equivalent filter transfer functions were calculated for a
specific case. Figures 8.3 and 8.4 show the desired signal and
interference transfer functions when 64=0°, 87=10°, SNR=12 dB, INR=20
dB, B4=0.1, and Bj=0.1. From these figures we see that the array has a
negligible effect on the desired signal while it significantly modifies
the interference signal spectrum.

The power P4 of the desired signal at the array output is given by
Equation (2.32) where R;(T) is given by (7.17). The desired signal at
the array output is processed by the detector which consists of a
multiplier (where the signal is multiplied by cos(wqt)) and an ideal
lTow-pass filter which rejects all but the baseband signal components. A
power loss of one half occurs during both the multiplication and
filtering processes so the desired signal power at the detector output
is Pq/4. Therefore the desired signal at the detector output at the nth

bit sampling instant is given by

Xq(n) = by V(P4/2) sinc[(n/T)(t-nT)] (8.13)

where bp=1 if the nth bit is a "1" and bp=-1 if the nth bit is a "0".
The noise signal at the array output has a two-sided PSD of n/2
where n/2 is given by Equation (3.14). At the multiplier output this
signal has a two-sided PSD of n/4 (at baseband) or equivalently, a
one-sided PSD of n/2. The detector low pass filter has a bandwidth of
1/2T. Therefore, the noise produces a Gaussian random variable (GRV)

Xn(n) at the filter output at the nth sampling instant with variance,
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(n/2)(1/2T7)

var[X,(n)]

n/(47). (8.14)

Calculation of the interference power at the detector input is not
as straightforward as calculation of the noise power is even though the
interference signal, like the noise signal, is a Gaussian random
process. Since the thermal noise signals are statistically independent
white noise processes, their weighted sum at the array output is also a
white noise process. However, the interference signals are correfated
from element to element; therefore, the spectrum of the interference
signal at the array output will be modified by the interference transfer
function of the array as shown in Figure 8.3.

Since all of the processing done to the signals is linear, the
random variable produced by the interference signal at the detector
output is Gaussian. Since only the interference in the frequency band
bounded by wq * Awq/2 affects the detector we need only to calculate the
array output power of the interference signal in this band to calculate
the detector performance. We denote this power by (Pj)qet. Calculation
of the actual PSD of the interference signal at the array output is not
necessary.

To calculate the output interference power (P;)4et we us: (2.33)
with R;(t) set equal to the ACF of the portion of the interference
signal at the array input that is in the frequency band of interest.

This ACF is given by,
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Hag H(w)
(dB)

| e————— BANDWIDIH B=0.100 ————|
(a) Amplitude response at 64
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| ¢é————— BANDMIDIH B=0.100 ——— |

(b) Phase response at 64
Figure 8.3. Frequency response of LMS array in the desired signal

direction (84=0°, 8;=10°, SNR = 12 d8, INR = 20 dB,
k = 1/2, By = By = 0.1).
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(RY) get (T) = [o;2MINL1,(B,/8,)1]
SinC[(l/Z)MIN(Bd,Bi )wi‘r] exp(jwit) (8.15)

Substitution of (Rj)get for R; in (2.33) yields (Pj)get at the array
output. When this signal is applied to the detector, the multiplication
and filtering processes reduce the interference power by a factor of
four (just as it did for the desired and noise signals). Therefore the
interference produces a GRV at the detector output at the nth sampling

instant with variance,

var[Xi (n)] = (Pi)det/4 - (8.16)

The probability of an error for the nth bit is,
P(e) = 0.4P[X;(n) + Xa(n) < - /{Pq/2) | "1" sent]
+ 0.5P[Xi(n) + Xa(n) > ¥Y{Pg/2) | "0" sent] (8.17)

The two probabilities in this expression are equal. Therefore P(e) can

be written
P(e) = PLX;(N) + Xp(n) > /(Pd725 | "0" sent]. (8.18)

Since Xj(n) and X,(n) are independent GRVs with variance (Pj)qet/4 and
n/4T respectively, their sum is a GRV with variance (P;j)4ey/4 + n/4T.

Therefore P(e) is given by
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(a) Amplitude response at 6
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(b) Phase response at 6
Figure 8.4. Frequency response of LMS array in the interference

signal direction (04=0°, 85=10°, SNR = 12 dB, INR = 20 dB,
k = 1/2, B4 = B; = 0.1).
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P(e) = erfc[,/TPg/2) / /TPiVdet/¥ + n/AT)]. (8.19)

Multiplication of the numerator and denominator in the argument of the

error function by V4T yields,

P(e) = erfc[/ZE,7(E;3+ )] (8.20)

where Ep = P4T and Ej = (Pj)getT.
Since both the interference and noise signal produce independent
zero-mean GRVs at the detector output, P(e) is dependent only upon the

SINR at the dettector input where we make the definition,
SINR4et = Eq/(Ej+n). (8.21)

With this definition (8.19) becomes,

P(e) = erfc[Y{2 SINRget)] . (8.22)

Note that if E;=0 then P(e) = erfc[V{2Eq/n)] the familiar result for
BPSK with AWGN.

C. RESULTS OF PERFORMANCE CALCULATIONS

The derivations of the previous section can be used to calculate
the performance of the BPSK system with a 3-element LMS array and noise
interference. In this section the results of such calculations are
presented for several signal scenarios.

Figure 8.5 shows the results from typical performance calculations.

This plot shows P(e) as a function of SNR for several noise bandwidths
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for 64=0°, 6;=10°, and k=1/2. In each case the signal to interference
power ratio (SIR) is -30 dB. The lowest curve in this plot corresponds
to the case where the relative bandwidth, B;' = 0. The other curves
correspond to B;' values of 0.01, 0.025, 0.05 and 0.075. From these
curves we see that the array offers less protection as the interference
bandwidth increases.

P(e) was calculated as a function of SNR for several different
values of 64 and SIR. Figure 8.6 shows a compilation of the results
which allows easy comparison. The scale of each of the small plots in
Figure 8.6 is the same as that of Figure 8.5. From these figures we see
that the system has the most difficulty in suppressing strong broadband
interference when the desired signal and interfering signals are
spatially close., The effects of a large interference bandwidth are most
detrimental at very low SIR values (i.e. when the interference is
significantly stronger than the desired signal at the array input). For
an SIR value of 0 dB, the system performance with broadband interference
(for Bj' < 0.075) is not significantly worse than it is with B;' = 0.

In general, the resolution properties of a linear array are
dependent upon the §igna1 arrival angles. A linear array can steer a
null with infinite bandwidth n the broadside direction®. However, it
becomes more difficult to achieve a broadband null as the interference

arrival angle varies from the broadside to the endfire direction.

* For example, a 3-element linear array with a weight vector
W=[-1,2,-1]T has a null in the broadside direction for all
frequencies,
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Figure 8.5. Three-element array performance with noise interference
(84=0°, 84=10°, k = 1/2, Bq = 0.1).
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Figure 8.6. Performance of a 3-element array with noise interference
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and scales are the same as those of Figure 8.5.
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In order to determine the effects of arrival angle of a broadband
interference signal, we examine several cases for which the desired and
interfering signals are separated by 20°. A mosaic of the resulting
P(e) vs. SNR plots for these cases is shown in Figure 8.7. This figure
shows the system performance for two combinations of arrival angles and
three SIR values. The left-hand curves in Figure 8.7 show the
performance when 8;=0° and 64 = 20°. When 64=0° the array steers a
wideband null in the interference direction and good performance is
noted at all SIR levels.

The right-hand plots in Figure 8.7 show the performance when 6;=90°
and 64=70°. In these cases the array has significant difficulty aulling
the interference, especially for the broadband interference. Although
the performance appears poor in these latter cases it is important to
note that P(e) with no adaptive array would be nearly 0.5 for each of
the cases considered.

From the results presented above, we see that the interference is
most effective when it is relatively strong and broadband. In each of
the cases that we have examined so far k = 1/2 and B;' < Bq. We next
compare the performance for four different cases including some cases

where B;' > Bq and/or k > 1/2. The cases to be examined are:

(A) Bg = 0.1, 0 < B;' < 0,075, k = 1/2
(B) B4 = 0.01, 0 < Bj' < 0.075, k = 1/2
(C) B4 = 0.1, 0 < B;' < 0.075, k = 10
(D) Bq = 0.01, 0 < B;j' < 0.075, k = 10
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Figure 8.7. Performance of a 3-element array with noise interference

for various SIR values (84=90°, k=1/2, B4=0.1).
and scales are the same as those of Figure 8.5.

194

Bi values




In each case 64=0°, 64=10° and SNR = 12 dB., Case (A) is the case
considered previous in this chapter (see Figure 8,6). Case (B) is
similar except that the desired signal bandwidth is reduced by a factor
of 10. The array bandwidth is also reduced by this factor since k = 1/2
in both cases (A) and (B). In case (B) some of the interference signal
is blocked by the array input BPFs when B;' is greater than 0.01. k is
equal to 10 for cases (C) and (D). The other variables are the same as
in cases (A) and (B) respectively.

Figure 8.8 shows the results for case (A). For this case the
interference is passed by both the input BPFs and the detector filter.
From Figure 8.8 we see that the interference bandwidth has little effect
on the system performance for INR values below about 15 dB. For large
INR values the system performance quickly degrades as the interference
bandwidth increases. These are exactly the observations that we made
for this case after examination of Figure 8.6.

Figure 8.9 shows the results for case (B). The upper two curves in
this figure show the performance when B;'=0 and B;'=0.01. For these
cases B;' < By and the performance is the same as it was in case (A) for
these By' values., For the other three cases shown in this figure
Bi' > B4. In these cases the array input BPFs reject some of the
interference and the performance monotonically increases as B;'
increases. Therefore, for the narrowband array, a fixed-power
interference signal is most disrupting when its bandwidth is equal to

the array bandwidth,
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Figure 8.9. 3-element array performance - case (B).
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Figure 8.10 shows the results for case (C). As in case (A), the
interference in this case is passed by both the input BPFs and the
detector filter. We see from Figure 8.10 that the performance becomes
bandwidth dependent for INR values above approximately 25 dB, At high
INR values the curves quickly diverge indicating poor performance with
strong wideband interference. The only difference between the cases
shown in Figures 8.8 and 8.10 is the difference in the value of k.
Examination of these figures indicates the increase in k from 1/2 to 10
produces two effects. First, for the case when k=10, the characteristic
hump apperas in the P(e) vs. INR curves. The appearance of this hump is
not surprising since we have seen it for each of the other modulation/
interference combinations that we have examined so far. The second
important difference to be noted when comparing Figures 8.8 and 8.10 is
the different INR value at which the curves begin to diverge. This
value is approximately 15 dB for the case when k1=1/2 and 25 dB when
k=10%,

Figure 8.11 shows the results of the calculations for case (D). In
this case the interference is passed by the input BPFs but is partially
blocked by the detector filter for B;' > 0.0l1. For the cases shown in
the upper two curves, the interference falls entirely within the
passband both the input and detector filters. The performance shown in

these two curves is identical to that shown in the corresponding curves

* Note that the noise power at each element input is 13 dB larger for
case (C) than it was for case (A). Therefore, the curves begin to
diverge at approximately the same value of P;/P, at the array input
for the two cases.
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Figure 8.11. 3-element array performance - case (D).
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in Figure 8.10. However, for the larger values of interference
bandwidth, a significant portion of the interference is rejected by the
detector filter. For these cases, the performance with a fixed-power
jammer monotonically improves as the bandwidth increases.

In each of the cases discussed above the system performance became
worse as the interference bandwidth increased until the point was
reached where the interference and desired signal bandwidths were equal,
This behavior was noted for each of the array input bandwidths examined.
We found that the performance was best for small k values. Therefore,
for best performance, the desired signal bandwidth and the array input
bandwidths should each be as small as possible. Similarly, from a
different point of view, the most effective jamming strategy is to
spread the interference power over as wide a bandwidth as possible while
keepig the bandwidth less than or equal to the desired signal
bandwidth,

It is interesting to compare the results obtained in this chapter
for zero-bandwidth noise interference with those presented in the
previous chapter for CW interference. We might at first expect these
two cases to produce identical results since the adaptive array
calculations are identical in the two cases. However, the equations
from which P(e) is calculated for each case are significantly different.
When the results are compared for the two cases we note that
significantly poorer performance is obtained for the zero-bandwidth
AGaussian noise case. In the CW interference case we assume that we have

a sinusoidal interference signal with a fixed amplitude and random
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phase. In the noise case we assume that we have a Gaussian random
process for which we know the variance. Figure 8.12 shows a typical
member of the ensemble of noise waveforms under the assumption that

the bandwidth is not zero but is very small™,

For maximum effectiveness with a fixed average power, a narrowband
jammer will be more effective if the CW output signal is modulated with
a Gaussian random process so as to produce an output waveform similar to
that shown in Figure 8.12. If such a signal is to be truly Gaussian,
the transmitter must be capable of transmitting at peak power levels
which greatly exceed the average power level, Whether or not a
particular transmitter can do this depends on its hardware design. If
the maximum and peak power capabilities of a particular narrowband
transmitter are equal then the transmitter might as well send a CW
signal of constant amplitude so that the maximum power level is always

being transmitted.

D. PERFORMANCE OF A TAPPED DELAY LINE LMS ARRAY WITH WIDEBAND
INTERFERENCE
In this section we examine the performance of a modified LMS array
with broadband Gaussian interference. This array has transversal

filters (i.e., tapped delay lines) behind each element instead of a

* If we were to assume that the Gaussian process truly has zero
bandwidth then the interference would be a constant amplitude CW
signal. Our Gaussian assumption would therefore apply to the
statistics of the ensemble of possible interference waveforms and not
the time statistics of one ensemble member. Therefore the zero-
bandwidth Gaussian interference process is not ergodic.
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i(t)

Figure 8.12, Sample interference waveform with Bj =~ 0.

single complex weight. The use of tapped delay lines as the weighting
elements in the LMS array was first suggested by Widrow [1]. Compton
and Rodgers studied the performance of several different structures of
tapped delay line (TDL) LMS arrays in [31]. We first present a short
description of the TDL array and why it is effective against wideband
interference. We then present the results from performance calculations
which illustrate the performance improvement offered by this type of
processing.

We first examine why TDL adaptive array processing is more
effective than conventional LMS processing. We consider a 2-element
array as an example., A 2-element array has a transfer function for the

interference of,
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Hi(w) =W + wzexp[-jwiTi] (8.23)

where L} and W, are the element weights and Ti is the interelement time
delay given by (2.14). 1If the array is to steer a null on the

interference Hi(w) should be zero. Thus, for a null, we require,
Wy =‘Wéexp{-jw1Ti] . (8.24)

Since Wy and W, are simply complex numbers, (8.24) can only be
satisfied at a single frequency ws . Thus, with appropriate weights, the
2-element array can completely cancel a CW interfering signal, However,
complete cancellation is impossible for broadband interference since the
element weights are frequency independent.

Now let us examine the transfer function of the 2-tap TDL filter

shown in Figure 8.,13. The transfer function of this filter is,
H(w) = wy + woexp[-juT] , (8.25)

where T is the time delay produced by the delay line. If we use such a
filter to implement each of the element weights in an adaptive array we
might expect to improve the performance against broadband interference.
This improvement is to be expected since the TDL element weights are not
frequency independent. Therefore the TDL filters can (approximately)
compensate for the frequency dependence of the complex exponential
term in (8.24).

Compton [32] studied the optimum delay line length and number of
taps for suppression of a single wideband jammer., The results of this

study indicated that the length of the delay line is not particularly
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Figure 8.13. 2-tap transversal filter,

critical as long as it is shorter than approximately one wavelength. In
a real array, extremely short delay lines should be avoided since they
may require a very large dynamic range for the weights. Compton also
shows that a single wideband noise jammer can effectively be suppressed
with just two taps per delay line.

We now consider the 3-element TDL LMS array shown in Figure 8.14,
The signal received by each array element is processed by a 2-tép ™mL
with complex weights and a quarter wavelength delay between taps. The
weighted signals are summed to produce the array output. Conventioral
LMS feedback loops are used to drive each element weight. The signals

at the tap outputs are given by,
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Figure 8.14, 3-element tapped delay line LMS array.
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El(t) =d(t) + T(t) + ﬁl(t) 4 (8.26)
Xp(t) = d(t-Ty) + T(t-1,) + Ez(t) (8.27)
§3(t) = d(t-21y) + T(t-ZTi) + E3(t) (8.28)
24(t) = §1(t-T) (8.29)
Is(t) = Iz(t-r) (8.30)
Xg(t) = Xg(t-T) (8.31)

where Td and Ti are the interelement time delays for the desired signal

and interference, The desired signal covariance matrix is given by,

Ry(0) Ry(-Tq)  Ry(-2T,)  Ry(-T)  Ry(-T,-T) Ry(-2T4-T)
Ry(T4) Ry(0) - Ry(-Ty) RY(Tg=T) Ry(-T)  Ry(-T,-T)

sy = Ry(2T,)  Ry(Ty) Ry(0) ‘R;(ZTd-T) RY(T4-T)  Ry(-T)
RY(T) Ry(-T4+T) Ry(-2T,+T) R (0) RY(-T4)  Ry(-2T,)
RY(T4*T)  Ry(T) RY(-T4+T)  Ry(T4)  Ry(0) Ry (-T4)
RY(2T4+T) Ry(T4+T)  Ry(T) RY(2T,)  Ry(T4)  Ry(0)

(8.32)
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RY(T;+T)  RY(T)

Similarly,
Ri(o) Ri('Ti)
RI(T) R{(0)
) Ri(ZTi) Ri(Ti)
$. =
i
R; (T) R; (=T, +T)

RT(2T,+T)  RY(T,+T)

R;(-ZTi)
R;(-Ti)

Ry (0)
R;(-2T1+T)
R (-T;+T)

RY(T)

RY(-T)  RY(-T,-T) Ry(-2T,-T)
RI(T;=T) RI(-T)  RI(-T.-T)
R;(ZTi-T) RT(T;-T) R (-T)
R;(O) R;(-Ti) R;(-zTi)
R;(Ti) R;(O) R;(-Ti)

R;(ZTi) R7(T) RS (0)

and the noise covariance matrix is given by,

Rp(0)

Ry (0)

Ra(t)

0

0

(8.33)
R;(-T) 0 0
0 R;(-T) 0
0 0 R;(-T)
R;(O) 0 0
0 R;(O) 0
0 0 R;(O)
(8.34)

where we denote the noise ACF at each element by R;(r).
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We assume the same desired and interference signal models used
previously in this chapter. We also assume that the element BPFs have
the same bandwidth as the desired signal (i.e. the bandwidth factor
k=0.5). Furthermore, for simplicity, we shall only consider the case
where the interference bandwidth is less than or equal to that of the
desired signal,

The calculations of the noise covariance matrix are somewhat more
complicated in this case than for the previous cases that we considered.
In each of these previous cases the noise covariance matrix was diagonal
(i.e., &y = 021). In these cases, to calculate the covariance matrix,
we only needed to know the total noise power (02) at each element input
and not its PSD or ACF. In the present case we must also include the
non-zero off-diagonal terms in the noise covariance matrix.

We assume that white Gaussian noise is present at the input to each
element input, The ideal BPFs at the element inputs limit the noise
spectrum to a rectangular passband as shown in Figure 8.14. We assume
that the total noise pased by each filter has power ¢2. Therefore, the

noise complex ACF is given by,

Rn(r) = ozsinc(AwiT/Z)exp(jwdr). (8.35)

We assume that the array reference signal is of the form,
r(t) = APy, (8.36)
where (Pd)in is the desired signal power at each element input. The

reference correlation vector S is then given by,
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500)
RY(Ty)

R (2T,)

S = E d (8.37)
Ry(T)
R;(Td+T)
Rg(zrdu)

From the equations given above we can calculate the array

performance. The array weights are calculated first using

- -1
W= [od +0; ¢+ ¢n] S. (8.38)

The power levels of the desired signal, interference, and the
thermal noise at the array output are then calculated using (2.32)
through (2.34).

In Chapter I1 we defined the SINR at the array output as

P4
SINR = . 8.39
P +P, | | ( )

Earlier in this chapter we found that P(e) of the ideal detector was
dependent only upon the SINR at the detector input where we defined

Ed

det = TE Vg n e (8.40)

SINR

where Ed = PyT, E; = (Pi)detT and n is the one-sided real noise PSD at

the detector input. We defined (Pi)det as the power in the portion of
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the interference signal that lies within the band of frequencies for
which the detector is sensitive. Since, in the present case, we assume
that the interference bandwidth is less than or equal to the desired

signal bandwidth then (Pi)det = P,. Thus (8.40) becomes

PdT
SINRdet = ;;qrf:j; (8.41)
or equivalently
Pd
SINR (8.42)

det ~ Pi +n/T°

Since we assumed that the bandwidth of the BPFs at the element
inputs is 1/T then n/T is the noise power P, at the detector input

(i.e., the array output). Therefore

P4

SINR =T,
det Pi + Pn

(8.43)

A comparison of (8.39) and (8.43) indicates that SINR{at, upon
which P(e) is a simple function of, is equal to the SINR at the array

output, i.e.,
SINRdet = SINR. (8.44)

Using this expression in (8.22) we have

P(e) = erfc[(2)(SINR)]. (8.45)_

Thus P(e) for the case at hand can be simply calculated from the SINR at
the array output.
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We now use the derivations described above to calculate the
performance of the TDL LMS array with BPSK signalling and broadband
noise interference. As an example we consider one of the cases for
which we found particularly poor performance with the standard LMS
array. We examine the system performance when the input signal scenario
is identical to that for the case shown in Figure 8.5. For this case
04=0°, 6;=10°, SIR = -30 dB, and B; = 0, 0.01, 0.025, 0.05, and 0.075.
The results for the TDL LMS array are shown in Figure 8.15.

A comparison of Figures 8.5 and 8.15 indicates that adding the TDL
processing to the LMS array greatly improves performance. In fact, the
performance for all of the non-zero B; values for the TDL array is as
good as the B;=0 case. Therefore, the TDL array has completely
eliminated the performance degradation caused by non-zero bandwidth of
the single jammer. This performance improvement was noted for a wide
variety of input signal scenarios.

Rules for designing TDL LMS arrays did not exist until recently
[23] and several aspects of their performance are yet to be studied.
For example, the performance of the TDL LMS array in the presence of
multiple broadband jammers has yet to be examined in detail, However,
the results presented here indicate it appears that continued study of

the TDL LMS array would be worthwhile,
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Figure 8.15. Performance of the 3-element TDL LMS array for the same
cases shown in Figure 8.5.
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CHAPTER IX
SUMMARY AND CONCLUSIONS

In this dissertation we have examined the performance of several
communication systems that use LMS adaptive arrays for interference
suppression. P(e) at the detector output was used as the measure of
system performance.

We have found that the LMS array improves the communication system
performance in many cases. We first examined the performance of BPSK,
NPSK, NPSK and FSK systems with CW interference. We showed that,
qualitatively, the performances of these systems were quite similar. We
found that the variations in performance noted among the different
systems with the same input signals were generally consistent with the
well known relative performance levels of their respective modulation
hethods. We found that no particular modulation technique provided
unusually good or poor performance. For this reason we used BPSK
modu]ation’in the latter chapters with the understanding that similar
qualitative performance would be observed with any of the other
modulation methods.

We found that the system performance is dependent upon several
factors. The performance is best when there is a large spatial
separation between the desired and interfering signals. The performance
generally becomes worse as the array input bandwidth increases beyond

the desired signal bandwidth. We defined k as the ratio of the array
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input bandwidth to the reciprocal of the symbol rate. For k values
greater than approximately 2, humps appear in the P(e) vs. INR curves,
The height of these humps becomes larges as k increases. The peaks of
the humps occur at INR values where the interference power is
approximately equal to the thermal noise power at the array input.

In order to determine the optimum system bandwidth, we described a
minimal bandwidth BPSK system that allows the BPSK signal to occupy a
bandwidth corresponding to k=1/2, We examined the performance of the
narrowband system for k values between 1/2 and 10. In general we found
the best performance for small k values. However, for weak
interference, we found that the very narrowband (i.e., k = 1/2) system
performed slightly worse than systems with k=1 or k=2. We found that
the array, with k=1/2, successfully nulls the weak interference; but the
constraints imposed on the pattern by the null also produce a slight
decrease in the desired signal power at the array output. The net
effect of the null, in this case, is to reduce the output SNR and P(e).
However, the differences in performance noted for k values betwen 1/2
and 2 are small,

We calculated the performance of the narrowband BPSK system for the
case where the interfering signal is a Gaussian noise signal with
non-zero bandwidth., We found that, for a fixed interference power, P(e)
increases as the interference bandwidth increases until the interference
and desired signal bandwidths are equal. Therefore, the interference is
most effective when its bandwidth is the same as the desired signal. We

found that wideband interference was especially disruptive when the
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input interference power is 10 dB or more larger than the desired signal
power. We found that wideband interference is most effective when it
arrives from a direction near endfire since the interelement time delay
is largest in this direction. We suggested that a nonlinear element
geometry would eliminate this susceptibility to endfire broadband
interference,

We next calculated the effects of noise interference on a tapped
delay line (TDL) LMS array. In this array transversal filters are used

to implement the element weights. We found that the TDL LMS array was

not sensitive to the interference bandwidth for any of the signal levels
and bandwidths that we examined. The primary disadvantage of the TDL
LMS array is the added hardware complexity.

In summary we found that the LMS array can offer a significant
degree of interference protection to digital communication systems. The
system performance is not unusually dependent on the modulation method.
For best results we found that the desired signal and array input
bandwidths should each be as small as possible. We also found that the
system performance is best when the desired signal and interference were
well separated spatially. We showed that wideband interference is more
effective than CW interference but that tapped delay line processing

greatly reduces the system susceptibility to wideband interference.
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