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INTRODUCTION

Spall is a widely observed phenomenon accompanying underground nuclear

explosions, and its seismic consequences are therefore of considerable interest in the

context of verification of test limitation treaties. The proper representation of spall is of

importance for forward and inverse seismic modeling of explosions for yield estimation

and discrimination studies.

While spall is expected to have negligible effect on long period seismic waves (see

Day et al., 1983), several studies suggest that it is a significant contributor to the short

period seismic signal from explosions. If this is the case, spall may complicate explosion

yield estimates, or at least influence our interpretation of empirically based yield estimation

formulas.

For example, the isotropic seismic moment provides one estimate of explosion
yield. Patton (1988) used regional, higher mode Rayleigh waves in the 0.2 to 0.5 Hz band

to estimate the isotropic moment of the underground explosion HARZER. He concluded

that the isotropic moment estimate was sensitive to assumptions about the amount of spall

and its efficiency in generating seismic waves in this frequency band.

As a second example, several studies (e.g., McLaughlin, et al., 1988; Taylor and

Randall, 1989) have suggested that spall could be a significant contributor to the regional

phase Lg, which currently shows great promise as a low-variance yield estimator for

explosions at the Soviet Shagan River test site (Hansen et al., 1990). This suggestion

arises because spall has a deviatoric source component, which may significantly enhance

the production of short period SV waves, compared with the predictions of purely isotropic

explosion source models.

Teleseismic P wave amplitudes provide a third basis for yield estimation. At

teleseismic distances, the effect of spall is to partially cancel the pP phase, replacing it with
an attenuated and delayed phase which is not a replica of the direct P wave (e.g., Day et al.,

1986). Schlittenhardt (1990) presents theoretical calculations showing that spall can

potentially influence teleseismic P wave amplitudes, given plausible, but uncertain,

assumptions about the characteristic mass and momentum of spall.
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Day et al. (1983) (hereafter referred to as paper D83) presented a theoretical

argument that surface waves of period 20 seconds and longer are not significantly affected

by spall. These authors then proposed that the seismic consequences of spall be modeled

by a shallow, horizontally oriented tension crack. They analyzed the implications of this

model for surface waves with wavelength long compared to the crack dimension and depth,
and showed that, in this approximation, the tension crack model was equivalent to a

vertically oriented point force acting at the free surface, with the force time history

proportional to the crack-separation acceleration history.

The resulting point force model has the property that the model parameters are, at

least in principle, observable quantities. The spali mass and momentum, for example, can

be estimated from near-field strong motion recordings at the U.S. Nuclear Test Site (NTS)

(e.g., Viecelli, 1973; Sobel, 1978; Patton, 1990). This property of relating seismic waves
to near-field observables has proven attractive, and the point force model of D83 has been

applied extensively (e. g., Stump, 1985; Patton, 1988; Taylor and Randall, 1989),

sometimes under conditions which depart significantly from those for which it was

originally conceived, namely, low-frequency surface waves.

For this reason, we conclude that a useful purpose is served by presenting a

derivation of the point force model which is more general than the original derivation. The

new derivation brings out more clearly the relation of the point force repiesentation to the

tension-crack model, from which it arises by approximation. The derivation also clarifies

the relationship between point force and moment tensor representations for spall, a result
which has implications for the explosion-source inverse problem. We then examine

numerically the limitations of the point-force representation. Finally, we show that some of

the assumptions inherent in the original tension-crack model can be relaxed without

requiring revision of the point-force and moment tensor representations.

This paper addresses the seismic representation of spall primarily within the

confines of the point source approximation, i.e., wavelength long compared with the

characteristic source dimensions. This is the framework within which most previous

forward modeling and source inversion has been conducted. The important ancillary
effects of lateral finiteness of the spall source will be discussed in a subsequent paper

(Barker and Day, in preparation).
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TENSION CRACK MODEL

D83 proposed that spall be represented as a horizontally oriented tension crack that
opens and closes in the vertical direction (see Figure 1). With the aid of a Green's tensor

G, the displacement field u due to a tension crack can be written as a surface integral over

the crack surface Z (Aid and Richards, 1980, p. 39):

u (X)= f Vj(c) 8Uk( ) Cjkpq() Gip,q(X, ) dZ

where v is the unit normal to the crack, is the general position on Z, 8u is the spall

separation,

i. e., the displacement discontinuity across the crack, and C is the elastic tensor. For
horizontal crack orientation, vertical spall separation, and crack depth h, (1) can be written

in the form

Ui (x) = mpq&1)Gipq(x;71) d3r
iv (2)

where 77 is the general position in the source volume V, and m is the volumetric moment

tensor density,

mpq( 17) = 8U3(1'T2)C33pq (073-h) (3)

(5(.) is the Dirac delta function). Then, in the point source approximation (wavelength
large relative to the maximum dimension of 1), (2) reduces to

Ui (x) = MpqGip.q(x;O,O,h)'  (4)

where the moment tensor M (volume integral of m) for an isotropic earth model has the

following matrix components: 10O UWmnouneed 1
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0 0
M=&3A 0 Aq 0

0 0 A+ 2y (5)

Here bu-3 is the spall separation averaged over the crack area A, and X and g. are the Lame
constants. It will be convenient to refer to (4) and (5) as the spall moment tensor

representation.

POINT FORCE REPRESENTATION

An expression equivalent to (2) is

U (x) = ff 6U3(71, 2) T3 3 ( 1 , 7'2 'h) d~qld (2 6ii (6)

in which we introduce the notation

T33(7) = C33pqGipq(X ;11) . (7)

This notation is introduced to emphasize that this factor can be interpreted, by reciprocity,
as a component of the stress tensor Tinduced at the (source) location 'q in response to a
point force (in the i direction) acting at the (receiver) location x. That is, T is simply the
stress tensor derived from the elastodynamic displacement field of a point force (note that
this usage of the symbol T differs from that of chapters 2 and 3 of Aki and Richards, in
which T represents a general traction vector). We expand the 173 dependence of '133 in a
Taylor series about the free surface, 173 = 0:

T33(77l,772,h) = T33(711,7l 2,0) + hT33,3(71.fl 2,0) + 0(h2). (8)

The first term is zero by virtue of the free surface boundary condition, Furthermore, T

satisfies the equation of motion, so (in any region which excludes the point x) we have

T3j.(r1) = -o 2pGi3(x;7).(9 )

The free surface boundary conditions ensure that T3,,k vanishes, for allj and for k=1,2, in
the limit that r/3 goes to zero. Hence, the limiting form of the momentum equation (9) is
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T33,3(71,712,0) = -C02pGi 3 (x;7jI,712 ,0)• (10)

Substituting (10) into the Taylor series (8), and the result into the surface integral

representation (6), yields, to first order in the spall depth h,

ui (x) = -hfJ pO)2U3(1l ,712) Gi3(x;il ,172,0) d7ildII 2
ff (11)

In (11), the Green's function is evaluated for source points at the free surface, so

that its coefficient

as = -h p W28U3(71,712) (12)

can be interpreted as a normal traction applied at the earth's surface (not the spall surface),
with amplitude given by the areal density of the spall layer, ph, and time history

proportional to the acceleration of the spall layer relative to the substrate. The integral (11)

thus represents spall as a distributed vertical surface traction; this is an accurate alternative

to the moment tensor density representation (2) as long as the higher order terms in the
Taylor series (8) are negligible, i.e., when the wavelength is long compared to the source

depth. This criterion will frequently be satisfied in practice; for example, for a depth of 150

meters and wavespeed of 3000 m/sec, a quarter wavelength criterion for spall depth

corresponds to 5 Hz seismic waves. Numerical experiments discussed below indicate that,
in practice, (11) is actually accurate for spall depths up to about half a wavelength.

Finally, in the point source approximation, (11) becomes what we will call the spall

point force representation:

uj (x) = Fs G-3(x;0), (13)

where the point force amplitude F, is the surface integral of o, and equals the product of

the spall mass ms and the crack separation acceleration:

Fs = -mns o-)2 bf33 (14)

ms- phA (15)
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Strong motion observations show that the lateral extent of spall typically exceeds its

depth by a substantial amount. For example, Patton (1990) finds that, on average, spall

radius is roughly a factor of 6 greater than spall depth at the Pahute Mesa area of NTS. As

a consequence, lateral finiteness effects will vitiate the point source approximation long

before the half wavelength criterion for the spall depth is violated. Thus, the spall moment

tensor and spall point force are, in practice, equivalent mathematical representations of the

tension crack model. From (5), (14), and (15), it follows that the source spectra M and F,

are related by

V (X + 2,) 0 0
M(o)) =_ a2-( F,(o) o

h 0), 0

0 0 1 (16)

where a is the P wave speed. The spall moment tensor time history is a2lh times the

doubly time integrated point force time history.

NUMERICAL EXAMPLE

We use regional-distance synthetic seismograms to verify the assertion that the

point force and moment tensor formulations are. equivalent throughout the frequency range
in which lateral finiteness can be neglected. Our focus on regional distance reflects the

importance of that distance range for the seismic verification problem. Moreover, regional

seismograms contain a complex mixture of wave types, and provide an appropriate test of

generality of the purported equivalence of point force and moment tensor. Synthetics are

computed using the PROSE code developed by Apsel (1979).

Figure 2 compares synthetic vertical component displacements at 300 km range for

the two source representations. The spall separation time history is a delta function, the

earth model (Table 1) is the Eastern Kazakhstan crustal model of McLaughlin et al. (1988),

and the synthetics are complete for the 0 - 5 Hz frequency band. The point force and

moment tensor representations give indistinguishable results for all seismic phases over this

pass band when the spall depth is 100 meters. For larger spall depths, the agreement at

high frequency only gradually degrades.
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Figure 3 compares the Fourier spectra for the two representations, for windows

taken around the Pg, Lg, and Rg phases, respectively. Evidently, in the absence of lateral

finiteness effects, the spall point force representation is an excellent approximation to the

spall moment tensor representation for spall depths up to at least one half wavelength.

Patton (1990) found, for Pahute Mesa explosions below the water table, that maximum

spall depth was approximately 60 m/kt/'3. For a 125 kt event, for example, the point force

representation would not be expected to deviate significantly from the moment tensor

representation for frequencies less than roughly 2.5 Hz (assuming a near-surface S wave

velocity of about 1.6 km/sec, following Bache et al., 1978). As already noted, the point

source approximation is invalidated by lateral finiteness effects at considerably lower

frequencies than this.

GENERALIZED TENSION CRACKS

In the tension crack model which is the basis of the foregoing analysis, material

failure is confined to a horizontal plane. It is possible, however, that in actual explosions,

the depth of the detachment horizon may vary laterally across the spall region. For

example, Stump (1985) found evidence of variable-depth spall in sub-surface accelerometer

recordings of a buried chemical explosion. Furthermore, some nainerical simulations of

buried explosions indicate spalling over a roughly conical surface, deepest beneath ground

zero and shallowing with increasing radial distance from ground zero (see, e.g., Figure 1

of Walton and Heuze, 1989). In such cases, vertical movement of the spall mass implies

both normal and tangential components of relative motion across the spall surface. It might

be supposed that such an effect would require modification of the spall representations

discussed in the previous sections.

However, a simple analysis shows that the spall moment tensor and spall point

force representations derived from the horizontal tension crack model will usually be valid

even when the spall surface I is non-planar, provided (i) spall separation is predominantly

vertical, and (ii) the mean dip of Z is small (but arbitrarily rough relief is permitted on X).

Assumption one is supported by strong motion observations in the spall zone. Likewise,

assumption two is supported by the observation that lateral extent of spall generally exceeds

its depth by a substantial factor (recall that Patton, 1990, infers a radius to depth ratio of

roughly 6). Furthermore, any axisymmetric spall surface has zero mean dip, and any spall

surface which terminates by intersecting the earth's surface has, neglecting asymmetric

topography, zero mean dip.

7



To, verify the assertion that the moment tensor and point force derived from the

horizontal tension crack have this more general validity, we take the spall depth to be a

given function h(Tih,r12) of the horizontal coordinates, so that the spall surface is specified

by

713 -h(41,112) = 0. (17)

The representation theorem (1) becomes

Ui (x)= &, 8U3 Vi Cjpq Gip,q dZ

= ft6U3 Vj Cjpq Gip,q d3 (18)

f -p V3(18)

(the double integration is over the projection of Y onto the 771, 172 plane). We decompose

the summation on j, which is implicit in (18), into two parts. The first part, Iv,
corresponds to j = 3 (vertical component of the normal vector v), the second part, 11,

corresponds toj = 1, 2 (horizontal components of v):

ui (x)= Iv + ff, (19)

in which

Iv = f f u3 T33( 7h , 72,h( 1h 1d2))d ih d 2, (20)

11= 8 113 T3a" -dTld772
=f V3 , (21)

where a = 1, 2, and the summation convention on a applies. The first term, Iv, is

analogous to our result for the simple tension crack, and can be transformed to a surface

traction representation by the same steps leading to (11-12):

IV = f f as( 77h,2) G,3(x;7h,?12,O) d hdr 22
JJ , (22)



where as is the surface density of the (variable-depth) spall layer times the spall

acceleration,

as = -Ph(17l,172)0)28u 3 (77,12) (23)

In the point source approximation, we obtain the analogue of (13-15),

Iv = Fs G,3 (x;O) (24)

where

FS = (( s( 1,i 2) d i11d72Li (25)

The second tenn, IH (Equation 21), can be transformed using the identity

Vy_= A
V3  D7la (26)

to give

1 H =I 8u3 T3 a)ahd ld ?72JJ (27)

Since T3a vanishes at h = 0, (27) is, to first order in h,

IiI = JJ hbah 8u3 T3 a,3 di7hdr12

JJ f 3 143 T3a,3 djld72  (28)

where

2 (29)
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In the point source approximation, (28) becomes

H =  T3 a,3 f a 4 643 d illdr 2JJ (30)

and if we add the assumption that 8U3 is uncorrelated with aa 0, then we can factor the
mean spall separation 65-3 out of the integral in (30). The result is

I =  I 3T3a 3 h2 a dl2 f(31)

where the line integral is over the periphery of the projection of the spall surface 7 onto the
horizontal plane, and 7 is the unit (two-dimensional) outward normal to this curve (lying in
the 771, 712 plane). The line integral in (31) vanishes whenever the spall surface is bounded
by a level curve, and will be small whenever the mean dip of the spall surface is small. The
latter interpretation follows if h is expanded to first order about the mean depth, ho. Then
the integral reduces to hoAda , where A is the (projected) area of spall, and da is the
average value of the slope Dah. Thus, it is likely that IH can be neglected in most cases of
interest. The remaining term, Iv, is identical to the point force representation for the simple
crack, as shown by comparing (24-25) with (13-15) (although we can no longer factor Fs,
Equation 25, into the product of spall mass and average acceleration, unless &j and h are

uncorrelated in 7h, 712).

DISCUSSION

D83 derived the point force representation (Equations 13 - 15) for the special case

of Rayleigh waves. The present derivation justifies the subsequent application of the point
force representation, by numerous authors, to model other seismic phases (i.e., the
approach is justified to the extent that the generalized tension crack approximates the
geometry uf actual spall, the separation function &j is appropriately prescribed to represent
the kinematics of spall, and the wavelength limitation is honored). The derivation also
serves to underscore that faca that, while the spall moment tensor is located at spall depth,
the spall point force is located at the earth's surface.
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The derivation makes clear the redundancy of representing spall using both the spall

moment tensor and the spall point force concurrently; since the two are equivalent, any

attempt to infer simultaneously the spectra of both of these source terms from seismic

waveforms will lead to a singular inverse problem. This was previously noted by Stump

(1987, 1990) on the basis of numerical experiments. Generally, a singular inverse

problem will result if the point force representation is combined with any moment tensor

representation from which (5) can be constructed by linear combination.

Equation 16, which expresses the correspondence between the source spectra M(op)

and F,(o), has an additional consequence which should be aoted, If M(o)) is estimated by

inversion of seismic data (e. g., Stump, 1988, 1990; Johnson, 1988), the numerical values

associated with M(aw) are expected to depend inversely upon the source depth which is

assumed for the inversion (whereas inversion for F,(o) does not incorporate an assumption

of source depth). This point becomes important when inversions based on the two

alternative representations are compared quantitatively , as they sometimes have been in the

seismic literature on spall.
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FIGURE CAPTIONS

Figure 1. Geometry of the tension crack spall n'9del.

Figure 2. Synthetic seismograms for the point force and moment tensor representations.

Sources for the 4 depths h have been scaled to constant spall mass phA.

Figure 3. Fourier spectral ratios for the synthetics shown in Figure 2. Separate spectra are

shown for time windows about the Pg, Lg, and Rg phases, respectively.
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