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ABSTRACT

A Multi-layer Perceptron Neural Network methodology is used
to clessify eight types of large-scale cloud patterns. The data
are taken from GOES-W visible images from Oct. 1 - Dec. 31, 1983.
Large-scale features are previously identified by a human expert
to prcvide a data set for supervised learning. Discriminant
Analysis is used to reduce the set of networ: inputs and as a
comnpariscn classification methodology. 1In three different tests,
the neural netwerk technique classifies the cases with consist-
ently higher accuracy than Discriminant Analysis. The problem of
image segmentation is addressed in a prelirminary test of the

Hierarchical Stepwise Cptimization algcrithm.
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_ APPLICATION OF MNEURAL NETWORKS TO
LARGE-SCALE CLOUD PATTERN RECOGNITION
1. Introduction

In a previous study Peak (1990) proposed the use of neural
netwecrks for the interpretaéion of certain cloud features on
satellite images. That paper includes a preliminary experiment
in wrich large-scale cloud patterns (fronts, cirrus and vortices)
on GCES infrared images are distinguished using a neural network.
The rreliminary experiment was designed to explore the use of
neural nets with simple areal cloudiness percentages as inputs.
The success of that simplified approach led to the proposal cf a
more advanced approach using cloud-type inputs instead of cloud
percentages.

The purpose of this paper is to document this new apprcach
for neural classification of large-scale cloud features. The
reader 1is referred to Peak (1920) for background information on
neural networks including a comparison cf several types of neural
networks and a mathematical description of the multi-layer per-
ceptron rets used here.

The data usced in this study are described in the next sec-
tion. An initial screening of the network inputs using sterwise
discriminant analysis is described in Section 3. 1In Section 4
the n=ural net derivation will ke described including the network
resul=s on test data. 1In Section 5 the problem of automated
image segmentation is addressed. Finally, the conclusions of
this study and suggestions fcr future research will be presented.
2. Data description

As described in Peak (1990), rmulti-layer perceptron neural

retwocrks require a set of training cases with known outputs.




Thecse cases are used in a supervised-learning mode to derive the
network weights. In this section the data used for training and
testing the neural net will be presented.

As in the previous study (Peak, 1990), GOES imagery is used
because of its wide field of view. Since TESS*does not receive
GOES imagery, the problem of using polar-orbiting imagery must
evenrtually be addressed. However, for these preliminary studies
the more important issue is to determine the feasibility of using
neural nets to accorplish image feature classifications. There-
fore it was decided, with the approval of the User Project Manag-
er, to continue using GOES data for these initial studies.

In this study archived GCES-West images were acgquired from
the pericd October-December 1983. The 2045 UTC visible and IR
imaces were selected every three days beginning O:t. 1, yielding
31 western North Pacific scenes containing various large-scale
cloud features. Because the nulti-layer perceptron neural net-
worx is trained using supervised learning (Peak, 1990), it was
necessary that the large-scale features in these images be clas-
sified a pricri. 1In addition, the types of clouds present had to
be cdetermined to provide inputs for the network. The ideal
metrnod of determining the cloud types would be to use an objec-
tive cloud classification scheme. Unfortunately, the methods
currently under development have not yet reached a sufficient
level of capability to be used for this experiment. Therefcre it
was decided, again with the approval of the User Project Manager,
to use cloud and feature classifications performed by an image

interpretaticn expert. 1In future studies, these steps would have

* Tactical Environmental Support System
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to re accomplished by automated processes. However, for the
purpose of this study this approach can be likened to a '"perfect
prog" because an automated approach would probably include some
errcroneous classifications.

The large-scale feature identification and cloud-typing of
these images was kindly performed by Mr. R. Fett of NOARL-W. The
eight large-scale feature types he identified and the number of
occurrences of each are presented in Table 1. Some features that
were labeled differently on different images have been combined
intc the same category. For exarple, features labeled "Frontal
band" are concidered the same type as thcse labeled "Cold Front.™
Similarly, "Trough" and "Upper cold low" were combined, as were
"Stratocumulus" and "Open cells," "Tropical cyclcne" and "Hurri-
cane," and "Cirrus" and "Cet cirrus." l!otice also that there is
a distinction between frontal bands with a vortex at the northern
end and those with no vortex (Takle 1). There were also a few
other features that were excluded kecause they appeared only c¢nce

in the data set.

Table 1. Large-scale clcud feature types and nurber cf occur-
rences of each type identified in the GOES-W 1image set.

FEATURE NUMBER
Frontal band/Cold front (no vortex) 37
Frontal band/Cold front (with vortex) 10

Trough/Upper cold low 12
Stratocunulus/Open cells 53
Fog 9
Tropical cyclone/Hurricane 8
Cirrus/Jet cirrus 7
ITC 36
Total 172




The next task is to define the inputs to the neural net. As
in the first experiment (Peak, 1990) the procedure 1is to keep the
data used as simple as possible. If the results indicate that
the information in the network inputs is inadequate, then more
complex predictor information can always be included later.

A specific goal of this study is to use the type of cloud as
an input for the network. The cloud type categories identified
by Mr. Fett are "High," "Low," "Multi-layer" and "Stratocumulus."
Obviously, the "Stratocunulus" feature-type (Table 1) contains
that particular cloud-type. However, it would be meaningless to
1denzify the "Stratocurmulus" cloud feature by telling the neural
netwsrk that it is nmade up of stratocunmulus clouds. Since
"Stratccurulus'" is the orly meteorological cloud type included,
it was decided that the cloud type predictor should be "Low" for
that feature.

Each cloud type is assigned to a corresronding network input.
If the cloud type is prez2nt in the feature at hand, the input is
assigred the value 1.0; ctherwise the input is 0.0. If a feature
contains regicons of different types cf clouds, more than one

input could ke assigned th

w

1.0 valuc. For exanmple, scme frontal
bands have rulti-layer clouds at their northern end and low
cloulds at their southern end.

It seems reasonable that the identification of a cloud fea-
ture requires some information about its shape. As a verv rough,
first estimate of shape it was decided to include the zonal and
meridional dimersions (in degrees longitude and latitude, respec-

tively) of each feature. Intuitively, this shape measure should




protably be inadequate for some features, but as will be seen
later, it suffices quite well for this experiment when combined
with the other information at hand.

Because it was found to be important in the preliminary
study (Peak, 1990), the northmost latitude of the cloud feature
is also included as an input. When combined with the zonal and
meridicnal dimensions and the three clcud types, the northmost
latitude provides a total of six inputs for the neural network.
There are many other potential inputs that cculd be included, but
these six were considered a gcecd set with which to start the
ana.ysis. The ccmplete set of 172 cases including input values

and feature type is presented in Table 2.

Table 2. 1Initial cose set for large-scale neural net develop-
ment. Date and Label are included for reference, Del-x and Del-y
dencte zonal and meridicnal dirensions (degrees/100), Mult, High
and Low denote cloud type presence, North is northnost extent of
the feature (degrees la+titude/100) and Type is large-scale fea-
ture class.

Date Label Del-x Del-y Mult High Low North Tyvpe
Oct 1 a-1 0.55 0.490 1 o 0 0.60 Front(nv)
Oct 1 a-2 0.15 0.10 0 1 0 0.20 Trough
Oct 1 a-3 0.20 0.3 8] 0 1 0.45 Stratocu
Ccct 1 a-4 0.25 0.2% 1 0 0 0.45 Front(v)
Cct 1 a-5 0.0z 0.2 0 1 0 0.23 Trough
Oct 1 a-5 1.05 0.13 1 0 0 0.15 ITCCZ
Oct 1 a-7 0.10 O0.10 1 0 0 0.1% Trop Cyc
oct 4 b-1 0.55 ~7.25 1 0 0 .53 Front(nv)
Oct 4 b-2 0.353 .20 0] 0 1 0.57 Stratcecu
Oct 4 Db-3 0.1C .05 0 0 1 .40 Fcg
Ooct 4 b-4 0.40 0..5 0 C 1 0.25% Stratocu
Cct 4 Db-5 0.15 0.15% 1 0] 1 T.4n  Cirrus
Oct 4 Db-6 0.03 0.03 1 p 0 .27 Trop Cyc
Ooct 4 Db-7 1.10 0.13 1 & ) 1 T2
Oct 7 c-2 0.20 0.22 1 - R ‘ Prome o)
Oct 7 «¢-3 0.04 0.2 O ’ Irooah
Oct 7 c-4 0.05 0.C# H
Oct 7 c¢-5 0.0 Q.17 B B
Ooct 7 <c-6 0.25 0.2¢ . :
Ooct 7 c-7 0.1% ©.1 -

Y Yy R R




Table 2 (continued).

Oct 7 c¢-8 1.00 0.15 1 0 0 0.15 1ITCZ

oct 10 d-1 0.35 0.35 1 0 0 0.60 Cirrus

Oct 10 4-2 0.20 0.20 0 0 1 0.50 Stratocu

Oct 10 d-3 0.2%5 0.20 Q 1 0 0.45 Trough

Oct 10 d-4 0.15 0.10 o] ¢] 1 0.25 Stratocu

Oct 10 d-5 0.15 0.10 1 0 0 0.15 Trop Cyc

Oct 10 d-6 0.65 0.15 1 0 0] 0.15 1ITCZ

Oct 10 4d-7 0.30 0.15 1 Q 0 0.15 ITCZ

Oct 13 e-1 0.40 0.35 1 0 1 0.60 Front(nv)

Oct 13 e-2 0.30 0.25 1 Q 1 0.50 Front(nv)

Oct 13 e-3 0.15 0.20 0 ¢] 1 0.50 Stratocu

Oct 13 e-4 0.20 0.15 0 0 1 0.28 Stratocu

Oct 13 e-5 0.35 0.25 ¢ 1 0 0.45 Trough

Oct 13 e-6 0.10 0.10 1 0 0 0.23 Trop Cyc
oct 13 e-7 0.55 0.10 1 0 0 0.15 ITCZ

Oct 13 e-8 0.50 0.15 1 0 0 0.10 ITICZ

oct 13 e-9 0.10 0.08 1 0 0 0.18 Trecp Cyc
Ccct 16 f-1 0.30 0.25 0 0 1 0.60 Stratocu
oct 16 f-2 0.45 0.30 1 0 1 0.60 Front(nv)
oct 16 £-3 0.25 0.15 4] 1 0 .50 Trough

oct 16 f-4 0.10 0.10 0 1 0 0.30 Trough

oct 16 £-5 0.10 0.15 1 0 0 0.25 Trop CycC

oct 16 £-6 0.20 0.25 0 0 1 0.38 Stratocu
Oct 16 f-7 0.03 0.10 1 0 0 0.23 Trop CycC

Oct 16 £-38 0.35 0.10 1 0 0 0.15 ITCZ

oct 16 £-9 0.5%5% 0.10 1 0 0 0.13 ITCZ

Ooct 19 g-1 0.55 0.2 1 0 0 0.55 Front(nv)

Oct 13 g-2 0.30 0.15 0 o] 1 0.60 Stratocu
ct 19 g-3 0.40 0.35 1 C 0 0.60 Front(nv)

Oct 19 g-4 0.40 0.25 0 0 1 0.38 Stratocu

cct 19 g->5 0.75 0.10 1 0 0 0.1%5 ITCZ

Cct 22 h-1 0.10 0.10 0] 1 0 0.50 Trough

Oct 22 h-4 .45 0.20 0 0 1 0.35%5 Stratocu

oct 22 h-5 0.10 0.13 0 0 1 0.40 Fog

Oct 22 h-6 1.05 0.10 1 0] 0 0.15 ITCZ

oct 25 1i-1 0.30 0.30 0 0 1 0.60 Stratocu
Ooct 25 i-2 0.50 0.2 1 0 1 0.55 Front(nv)
Cct 25 i-3 0.15 0.10 0 0 1 0.35 Stratocu
Ooct 25 1-4 0.40 0.15 0 0 1 0.25 Stratocu

Oct 25 i-6 0.45 0.10 1 0 0 0.10 1ITCZ

oOoct 25 1i-7 0.50 0.10 1 0 0 0.15 ITCZ

oct 28 -1 0.25 0.20 0 0 1 0.55 Stratocu
Oct 28 j-2 0.45 0.25 1 0 1 0.50 Front(nv)
oct 28 J-3 0.40 0.15 0 0 1 0.30 Stratocu

Oct 28 J-4 0.40 0.30 1 0 C 0.40 Front(nv)

Oct 28 3-5 0.45 0.10 1 0 0 0.15 1ITC2

Oct 28 3J-5 0.65 0.10 1 0 0 0.10 1ITCZ

Oct 31 k-1 0.50 0.30 1 Q 0 0.60 Front(nv)

Oct 31 k-2 0.25 0.30 1 0 0 0.55 Front(nv)
oct 31 k-3 0.85 0.10 1 0 0 0.15 1ITCZ

Nov 3 1-1 0.50 0.20 1 0 0 0.45 Front(nv)
Nov 3 1-2 0.35 0.25 0 0 1 0.55 Stratocu




Table 2 (continued).

Nov 3 1-3 0.40 0.30 1 0 0] 0.55 Front(nv)
Nov 3 1-4 0.15 0.10 0] 0 1 0.38 Fog

Nov 3 1-5 0.40 0.15 0 0] 1 0.28 Stratocu
Nov 3 1-6 0.90 0.10 .1 0] 0 0.15 ITCZ

Nov 6 m-~1 0.60 0.25 1 0 1 0.50 Front(nv)
Nov € m-2 0.20 0.20 0 0 1 0.55 Stratocu
Nov 6 m=-3 0.10 o0.10 1 0 0 0.55 Trough
Nov 6 m-4 0.20 0.10 0 0 1 0.30 Stratocu
Nov 6 m-5 .25 0.10 1 0 0 0.15 ITCZ

Nov 6 m-6 0.25 0.10 0 1 0 0.20 Cirrus
Nov 9 n-1 0.25 0.25 0 0 1 0.55 Stratocu
Nov 9 n-2 0.20 0.60 1 0 1 0.45 Front(nv)
Nov 9 n-3 0.15 0.15 0 0 1 0.35 Fog

Nov 9 n-4 0.95 0.10 1 0 0 0.15 1ITCZ

Nov 12 o-~1 0.45 0.25 1 0 0 0.50 Front(nv)
Nov 12 o=-2 0.25 0.10 1 0 0 0.45 Front(v)
Nov 12 o-3 0.35 0.290 1 0] 1 C.40 Front(nv)
Nov 12 o©-4 0.10 0.1 G 0 1 0.30 Stratocu
Nov 12 o0-5 1.00 0.10 1 0 0 0.15 1ITCZ

Nov 15 p-1 0.55 0.30 1 0 0 0.55 Front(v)
Nov 15 p=2 0.20 0.10 0 0 1 0.55 Stratocu
Nov 15 p-3 0.15 0.20 0] 0 1 0.55 Stratocu
Nev 15 p-~4 0.40 0.30 1 0] 1 0.55 Front(nv)
Nov 15 p-5 0.15 0.15 0 0 1 0.30 Stratocu
Nov 15 p-6 1.05 0.20 1 C 0 0.15 1ITCZ

Nov 18 g-1 0.50 0.3:0 0] 0 1 0.60 Stratocu
Nov 18 g-2 C.50 0.40 1 0 0 0.55 Front(v)
Nov 13 g-3 0.10 ¢C.10 0 0 1 0.40 Fog

Now 18 g-4 0.40 0.15 0 0 1 0.30 Stratocu
Nov 18 ¢~5 0.50 0.15 1 0 0 0.15 ITCZ

Nov 21 r-1 0.55 0.4 1 0 0 0.65 Front(v)
Nov 21 r-2 0.30 0.30 0 0 1 .50 Stratocu
Nov 21 r-3 0.30 0.25 1 0 1 0.45 Front(nv)
ov 21 r-4 0.25 0.20 0 0 1 0.30 Stratocu
Nov 21 r-5 0.95 0.10 1 0 0 0.15 1ITCZ

Nov 24 s-1 0.45 0.35 1 0 1 0.55 Front(nv)
Nov 24 s-2 0.15 ¢0.20¢ 0 0 1 0.50 Stratocu
Nov 24 s-3 0.40 0.25 1 0] 1 0.45 Front(nv)
Nov 24 s-4 0.90 0.20 1 0 0 0.20 ITCZ

Nov 27 t-1 0.25 0.1% 1 0 0 0.45 Front(v)
Nov 27 t-2 0.10 0.15 v 0 1 0.45 Stratocu
Ncv 27 t-=3 0.20 0.35 1 0 0 0.55 Front(nv)
Ncv 27 t-4 0.20 0.2> 0 0 1 0.55 Fog

Nov 27 t-5 0.20 0.15 0 0] 1 0.325 Stratocu
Nov 27 t-6 0.20 0.3 1 0 1 0.40 Front(nv)
Nov 27 t-7 1.05 0.15 1 0 0 0.15 1ITCZ

Nov 30 u-1 0.25 0.15 0 0 1 0.50 Stratocu
Nov 30 u-2 0.55 0.49 1 0 1 0.60 Front(v)
Nev 30 u-3 0.15 0.10 Q 0 1 0.30 Stratocu
Nov 2 u-4 0.35 0.20 1 0] 1 0.45 Front(nv)
Nov 32 u->5 0.15 0.065 0 0 1 0.20 Stratocu
Nov 30 u-6 0.35 0.10 1 0 0 0.15 1ITCzZ




Table 2 (continued).

pec 3 v-1 0.25 0.15 1 0 0 0.40 Front(nv)
Dec 3 V-2 0.45 0.30 1 0 1 0.50 Cirrus
Dec 3 vVv-3 0.20 0.25 0 ¢] 1 0.55 Stratocu
Dec 3 v-4 0.25 0.25 1 0 1 0.50 Front(nv)
Dec 3 v-=5 0.30 0.15 0 Q 1 0.30 Stratocu
Dec 3 v-6 0.706 0.15 1 0 0 0.15 1ITCZ

Dec 6 w-1 0.20 0.15 1 0 1 0.45 Front(v)
Dec 6 w-2 0.20 0.10 0 0 1 0.50 Stratocu
Dec 6 w-3 0.40 0.25 1 0 Q 0.55 Front(nv)
Dec 6 w-4 0.20 0.20 0 0] 1 0.35 Stratocu
Cec 6 Ww-5 0.25 0.15 0 1 0 0.30 Cirrus
Dec 6 w-6 0.20 0.15 o] 1 0 0.25 Cirrus
Dec 6 w=7 0.55 0.15 1 0 0 0.15 1ITCZ

Dec 9 x-1 0.10 0.15 0 0 1 0.50 Stratocu
Dec 9 x-=2 0.45 0.30 1 0] 1 0.55 Front(nv)
Dec 9 x-=3 0.25 0.20 0 0 1 0.30 Stratocu
Dec 9 x-4 0.55 0.15 1 0 0 0.13 ITCZ

Dec 12 y-1 0.20 0.25 0 0 1 0.4 Stratocu
Dec 12 y-2 0.60 0.20 1 0 1 0.45 Front(nv)
Dec 12 y-3 0.50 0.25 0 0 1 0.35 Stratocu
Dec 12 y-4 0.95 0.15 1 0 0 0.15 ITICZ

Dec 15 z-1 0.10 0.15 1 0 0 0.3% Frent(nv)
Dec 15 z-2 D.15 ©0.2Z5 1 0 0 0.40 Front(nv)
Dec 15 2-3 0.10 0.10 0 0 1 0.45 ate]

Dec 15 2z-4 .20 0.33 1 0 1 ¢.50 Frent(nv)
Dec 15 2-5 0.20 0.25 G 0 1 0.4 Stratocu
Dec 13 2-6 0.25 0.15 1 0 0 0.15 ITCZ

Dec 18 !=-1 n.,20 0.20 1 0 1 0.40 Front(v)
Dec 18 =2 D.20 0.25 1 0 0 0.3% Trough
Dec 18 1-3 0.30 0.15 0 0 1 0.3% Stratocu
Dec 18 -4 0.10 0.10 0 0 1 0.45 Fog

Dec 18 '-35 1.02 0.15 1 0 0 0.15 ITICZ

Dec 21 -1 0.10 0.20 0 0 1 0.4 Stratocu
Dec 21 €-2 0.20 6.2 1 0] 1 0.+«0 Front{nv)
Dec 21 €-3 0.20 0.15 0 0 1 0.35 Stratocu
Dec 21 @-4 0.95 0.15 1 0 0 0.20 1ITCZ

De< 24 =-1 0.25 0.320 1 0 1 0.4 Fronc(nv)
Lec 24 =-2 .20 0.10 0 0 1 0.50 Stratocu
Dec 24 =-3 0.10 ©0.10 0 1 0 0.3, Trough
Dec 24 -3 0.15 0.10 0 0 1 0.25 Stratocu
Dec 24 £-5 0.60 0.15 1 0 0 0.15% ITCZ

Dec 27 $-1 0.15 0.15 0 1 0 0.45 Trough
Dec 27 6-2 0.50 0.30 1 0 1 0.50 Front(nv)
Dec 27 5-3 0.35 0.10 0 0 1 0.30 Stratocu
Dec 27 5$-4 .90 0.18 1 0 0 0.18 1TCZ

Dec 30 %-1 c.20 0©.20 0 1 0 0.45 Cirrus
Dec 30 %-2 0.25 0.290 0 0 1 0.30 Stratocu
Dec 30 %-3 1.0 0.15 1 0 0 0.15 ITCZ

[oh}




3. Stepwise Discriminant Analysis

The training of a neural net can require a large number of
iterations of the back-propagation procedure. The larger the
network, the more computations that must be performed in each
iteration. Therefore it is advantageous to keep the network as
small as possible. Any inputs that do not actually contribute to
the classification process (e.g., have weights close to zero)
still require computational effort to derive the network.

To avecid the inclusion of such noncontributing inputs it is
useful to perform a preliminary analysis of the data set so that
such inputs can be screened frcn the data set. The statistical
rethod used here is the stepwise discriminant analysis program in
the Biomedical Computer Programs FP-Series (Dixon and Brown,
1579¢). In discriminart analysis, cases are divided into grougs
and statistical analysis is used to find classificaticn functicns
(lirsar ccrkinations of the wvariarles) that best charactericze the
differences betweaen the groups. Variakbles are entered into the
functicns one at a time, beginning with the one that centributes
ncst toward differentiating the groups and ending when the group
separation fails to irprcve rnsticeakly. The contribution of each
variable is reasured ky a ratio, called "F-to-Enter," of the sum
of the sguared errors kefcre and after entry into the eguations.

A stepwise discriminant aralysis was perfcrmed on the cases
in Table 2. The first variakle entered into the equations was
"Mult," the presence of rmultiple clouds (Table 3). As can be
seer in Table 3, the "H.gh" input value h2s no contribution

towsrd discriminating these groups. Therefore the "High" value




Table 3. Order of entry of variables into stepwise discriminant
analysis of cases in Table 2.

Entry Number Variable F-to-Fnter
1 Mult 270.51
2 North 55.27
3 Del~y 29.95
4 Low 25.85
S Del-x 2.84
Not entered High 0.00

is removed from the set of inputs in the neural network deriva-
tion described in the next section. It should be emphasized,
however, that this result applies only to the data set used here.
The "High" cloud parameter may prove to be very useful in future
attenpts to discriminate different classes cf features than those
examined here.
4. Neural Network Derivation

Before deriving the neural network, the cases were separated
into a dependent, training set and an independent, testing set.
The nurmber of cases needed for training depends on the network
configuration. The minimun required number of training cases
(Ntrain) 1s heuristically determined by the relation

Ntrain = (Nin - Nout)*5.0 (1)

where MNin and Nout are the nunmber cf inputs and the nurber of
ocutruts, respectively (S. Sengupta, personal compunication).
Given that we have five inputs and eight outputs (i.e., feature
typ's in Takle 1), the training sample should have (5+8)*5=¢%
cases. The training set should also include an egual number of
cases cf each output class. Thus, the 65 case set divided by

igtt yields 8.125 cases needed of each type. As can be seen in

10




Table 1, there is an insufficient number of cases of both "Tropi-
cal cyclones" and "Cirrus."

If we exclude these cases frem consideration, we now have
five inputs and six outputs, requiring (5+6)*5=55 training cases.
For an equal number of cases of the six types, we now need 9.167
of each. Now the Fog cases must be excluded due to insufficient
numbers (Table 1). With five inputs and five outputs, (5+5)*5=50
tra.ning cases are needed, and 10 of each type will suffice.
There are enough cases in the remaining five categories (Table 1)
to train the network. Unfortunately, there are no "Frontal band
(with vortex)" cases left fcr testing, and only two "Trough"
cases left.

Since we do indeed want an independent test of all of the
feature types classified by the network, these two classes are
also excluded. Now we are left with five inputs and three out-
puts. The ftraining set needs (3+3)*5=40 cases, and there must be
at least 12.333 of each type. Thus, we can train the net with 14
cases each of the "Frontal kand (no vortex)," "Stratocunulus" and
"ITCZ" features which lerves 23, 2372 and 22 cases, respectively,
for testiry (Tabkle 1).

4.1 Three-Output MNeural Netork

The network configuration used is depicted in Figure 1. The
five inputs connect to a hidden layer of seven units. The first
hidien layer connects to a second hidden layer containing four
units. Finally, the second hidden layer connects to three out-
putz, each corresponding to cne cf the three large-scale clcud

fea*ures. Although not explicitly shcwn in this figure, bias

11
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terms are also included for all of the hidden-layer units. This
network configuration was somewhat arbitrarily chosen; the only
consideration used was to increase the number of nodes in the
first hidden layer comparea to the input layer, and then decrease
the number in the seccnd hidden layer to "fan-in" to the output
layer. Had the results not bkeen satisfactory, scme experimenta-
tion in the network configuration would have been tried.

The dependent sample is cormprised of the first 14 occur-
rences in the data set (Table 2) of each of the three features.
The retwork was trained on this 42-case set for 300 cycles before
convergence. For this experirent a variakle learning rate was
used to achieve faster cornergence. The initial learning rate
was 2.005. This value was sufficient to cause rapid initial de-
creases in the total sumn cf the sguared errcors (tss) between the
network outputs and the desired ocutputs. After absut 50 1tera-
tions, the tss value had settled dcwn such that it was decreasing
by only about 0.001 per cycle. When this cccurred, the process-
ing was manually interrupted, the learning rate was increased to
0.01, and training was reinitiated. Whenever the tss value de-
crease slowed, the learning rate was again oradually increased.
In this fashion, convergence was achieved ruch faster than with a
constant learning rate. lNetwork ccnvergence kecomes apparent
when the tss value kegins to oscillate around some low value and
no change in the learning rate will cause it to decrease any
further. In this experiment the final tss3 was 0.405.

The performance of the netwcrk cn the dopendent sample cases

is indicated in the ccntingency takle preserted in Table 4. The




Table 4. Contingency table of dependent sample cases for the
network classifying Fronts, Stratocumulus (Strato) and ITCZs.
The actual (ACTUAL) classes are presented in the columns while
the network-determined (NET) classes are presented in the rows.
Tot and Pcnt indicate the totals and percent correct in each
line.

ACTUAL
Front Strato I1TCZ Tot Pcnt
N Front 14 0 0 14 100%
E Strato 0 14 0 14 100%
T 1ITCZ 0 0 14 14 100%
Tot 14 14 14 42
Pcnt 100% 100% 100% 100%

network performs perfectly (100% correct) on these dependent
sample cases. When tested on the independent sample cases, the
network also performs perfectly (Takle 5).

To provide a performance corparison with an alternate tech-
nique, discriminant analysis 1s again used. This time, however,
the classification functions are used as classifiers and the
results ccmpared with those ¢of the neural net. A discriminant
analysis was first run on the dependent sarple cases. As can be
seen in Table 6, the discriminant analysis classification func-
tions classify 90% of the cases correctly. When applied to the

independent sample cases (Takle 7) only 86% were classified

Table 5. As in Table 4 except for independent sample cases.

ACTUAL
Front Strato ITCZ Tot Pcnt
N Front 23 0 0 23 100%
E Strato 0 39 0 39 100%
T ITCZ 0 0] 22 22 100%
Tot 23 39 22 84
Pcnt 1002 100% 100% 100%
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Table 6. As in Table 4 except for dependent sample classifica-
tiors using discriminant analysis (DA).

ACTUAL
Front Strato ITCZ2 Tot Pcnt
Front 11 1 0 12 92%
D Strato 3 13 0 16 81%
A ITCZ 0 0 14 14 100%
Tot 14 14 14 42
Pcnt 79% 93% 100% 90%

Table 7. As in Table 6 except for independent sample cases.

ACTUAL
Front Strato ITCZ Tot Pcnt
Front 12 1 0 13 92%
D Strato 11 33 0 49 738%
A ITCZ o) 0 22 22 100%
Tot 23 9 22 84
Fcnt 52% 575 1C55% 86%

correctly. Thus, the discriminant analysis technigque does not
perform as well as the neural nstwork on the same cases {(Table 7
vs. Table 5).

4.2 Five-Output Keural Network

Although the above results demcnstrate the ability of the
neural netwcrk approach to the probler of classifying large-scale
features, the experirent is limited to only three quite dissimi-
lar types of features. Befcre the approach can be considered
truly applicable to images in an operational environment, it must
be cemonstrated that it can successfully distinguish between more
thar three types of large-scale features. For this reason, we

return to the analysis at the beginning of Section 4 in which the
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requirerments of Equation (1) led to paring of the data set.
There was a point in the paring process where the potential
neural net had five inputs and five outputs, requiring 10 train-
ing cases of each type. The five output classes were "Frontal
Band (no vortex)," "Frontal Band (with vortex)," "Trough,"
"Stratocumulus"” and "ITCZ." This network was not used at that
time because there were not enough "Frontal band (with vortex)"
and "Trough" cases left for an independent test of the network.
In an effort to prcvide a net that distinguishes a wider range of
classes, it 1s nevertheless ccnsidered useful at this time to
derive a neural network using this larger data set. The depend-
ent sample results may in themselves be enlightening. 1In the
author's experience so far with neural networks, their perform-
ance seemns not to degrade as ruch when applied to an independent
sanple as do ccnventional statistical methods such as regression
or discriminant analysis. 1In addition, the net can still be
partially verified using the available independent sanple cases.

There are 27 "Frontal banrd (ro vortex)," 0 "Frontal band (with

1

trateoccurulus" and 26 "ITCZ" cases

U

vortex,," 2 "Trough," 43 "
availakl2 for such an independent test.

The network configuraticn used for this experiment is de-
picted in Figure 2. As before, there are five inputs leading to
seven hidden units. This first hidden layer is connected to a
seccnd hidden layer of six units. The output layer has five

units, each corresponding to one of the five large-scale feature

typr .
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As 1in the first network derivation (Section 4.1), the de-
pendent sample 1s comprised of the first 10 occurrences of each
feature type. The network was trained on this 50-case set, again
using the technique of a variable learning rate. The network
conerged to a tss value of 7.66 after 600 iterations.

The network was next verified using the dependent sample
cas~s (Table 8). As in the earlier network results, the "Frontal
bard (no vertex)," "Stratocurmulus" and "ITCZ" classifications are
very good (50%, 100% and 100% correct, respectively). The new
"Trcugh" category is also classified with 100% accuracy. The

network has difficulty distinguishing "Frontal band (with

oW

vortex;" cases (only 60% ccrrect) since they are so similar to

the "Frontal kand (no vortewx)" cases (Table 8), thus lowering the

i

overall accuracy to $03% for the dependent sample. It seens
likely that scme more sophisticated shape-measurement input would
help the rst to classify these cases more accurately.

In the independent sarmple test (Table 9), the "Stratocunmu-

lus" and "ITCZ" cases are again classified very accurately (98%

Table 8. As in Table 4 except for the netwcrk classifying Fron-
tal bandids (without vortices) (Front), Frontal bands (with vor-
tices) (Fr/Vort), Troughs, Stratocunulus (Strato) and ITCZs.

ACTUAL

Front Fr/Vort Trough Strato ITCZ Tot Pcnt
I'ront 9 4 0 0 0 13 69%
N Ir/Vcrt 1 6 0 0 0 7 86%
E Trough 0 0 10 C 0 10 100%
T <ftrato 0 0 0 10 0 io 100%
ITCZ 0 0 0 0 10 10 100%

Tot 10 10 19 10 10 50
Iznt 90% 6C% 100% 100% 100% 90%
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Table 9. As in Table 8 except for independent sample cases.

ACTUAL
Front Fr/Vort Trough Strato ITCZ Tot Pcnt
Front 18 0 . 0 1 0 19 95%
N Fr/Vort 7 0 0 0 0 7 0%
E Trough 2 0 2 0 0 4 50%
T Strato 0 0 0] 42 0 42 100%
ITC2 0 0 0 0] 26 26 100%
Tot 27 0 2 43 26 98
Fcnt 67% -- 100% 98% 100% 90%
and 100% correct, respectively}. The two "Trough" cases are also

correctly classified. The net has difficulty, though, with the
"Frcntal band (no vortex)" cases; seven are mistaken as "Frontal
band (with vortex)" and two are mistaken as "Trough." Neverthe-
less, the overall network perforrance remains at 90% correct.
Again, the absence of any "Frontal band (with vortex)'" and addi-
tional "Trough" cases reduces the significance of this independ-
ent sample test.

As in the first experiment, discriminant analysis provides
an alternate methodology for ccmparison. As with the neural net,
the "Stratocumulus" and "ITCZ" cases were perfectly classified
(Table 10) and the "Frontal band (with vortex)" cases were 60%
correct. Two of the "Trough'" cases were incorrect, as were four
"Frontal band (no vortex)" cases which lowers the accuracy to
80%. Thus, the neural method seems superior to discririnant
analysis for the five-category classification as well.

When the discriminant functions were tested on the independ-
ent sample, the performance actually increases to 89% (Table 11).

This improved independent sample performance is almost certainly
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Table 10. As in Table 8 except for dependent sample classifica-
tions using discriminant analysis.

ACTUAL
Front Fr/Vort Trough Strato ITCZ Tot Pcnt
Front 6 4 0 0 0 10 60%
Fr-Vort 4 6 2 0 0 12 50%
D Trough 0 0 8 0 0 8 100%
A Strato 0 0 0 10 0 10 100%
ITCZ 0 0 0 0 10 10 100%
Tot 10 10 10 10 10 50
Pent 60% 60% 80% 100% 100% 80%
Table 11. As in Table 10 except for independent sample cases.
ACTUAL
Front Fr/Vert Trough Strato ITCZ Tot Pcnt
Frent 16 0 0 0 0 le 1C0%
Fr, Vort 11 0 0 0 0 11 0%
D  Trcugh 0 0 2 0 0 2 100%
A Strarvo 0 0 0 43 0 43 100%
ITCZ 0 0 0 0 26 26 100%
Tot 27 2 43 26 98
Pcrt 59% -- 100% 100% 100% 89%

due to the independent sample bias toward "Stratocumulus" and
"ITCZ" cases. It makes no sense for a statistical method to
perform better on independent cases than it does cn the develop-
mental set. Of course, it is likely the neural net independent
set statistics would also benefit from this bias.

4.3 Eight-output Neural Network

s a final experiment, we again return to the analysis of
the data set with respect to Equation (1). If we are not con-
cerned with an independent sample test, there are nearly enough

depencent sample cases to derive a net with eight output classes.
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A total of 65 cases (8.125 of each type) is needed. If we assume
that eight cases of each type are enough, it can be seen from
Table 1 that all except the "Cirrus" category have the required
number and the "Cirrus" is only short by one case. With the
caveat that the developmental sample may not be sufficient, we
can cerive a neural net and, hopefully, still learn from the
results.

The network configuration used is depicted in Figure 3.
Agair, Linere are five inputs leading to seven hidden units. The
second hidden layer contains eight units as does the output
laye: .

As before, the first eight cccurrences of each feature type
(or all seven "Cirrus" cases) are used to form a 63-cases depend-
ent sarple. The network converged with a tss of 15.07 after 600
iterations.

The dependent sarple verification is presented in Takle 12.
The r.et performs well (82% correct), although it clearly has
troukble with the "Frontal kand (with vortex)" and "Cirrus" cate-
gories (Table 12). Again, a mcre scphisticated shape measure
would likely assist in these classifications.

The independent sample test (Takle 13) is again strongly
biased toward the inclusion of "Frontal band (no vortex),"
"Stratocurulus" and "ITCZ" cases. The network continues to
misclassify "Frontal band (with vcrtex)" cases. Notice also that
seven of the "Stratocumulus'" cases are misclassified as "Fog"
(Tab.e 13). It is clear that some new type of input 1is needed to

separate "Fcg" from "Stratocumulus'" since bcth phencmena are of
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Table 12. As in Table 4 except for the network classifying
Frontal bands (withou® vortices) (Frnt), Frontal bands (with vor-
tices) (Fr/Vor), Troughs (Trf), Stratocumulus (Strt), Fog, Tropi-
cal Cyclones (TrCy), Cirrus (Cirr) and ITCZs.

ACTUAL
Frnt Fr/Vor Trf Strt Fog TrCy Cirr ITCZ Tot Pcnt
Frrt 8 5 0 0 0 0 2 0 15 53%
Fr/vor O 3 0 0 0 0 0 0 3 100%
N Trf 0 0 8 0 0 0 1 0 9 89%
E Strt 0 0 0 7 2 0 0 0 S 78%
T Foaq o 0 0] 1 6 0 0 0 7 86%
TrCy 0 0 0 0 0 8 0 0 8 100%
Cirr 0 0 0 0 0 0] 4 0 4 100%
ITCZ 0 0 0] 0 0 0 0 8 8 100%
Tct 8 8 8 3 e 7 63
Pcrrt 100% 38% 100% 88% 75% 100% 57% 100% 33%
Table 13. As in Table 12 except for independent sample cases.
ACTUAL
Frnt Fr/“vecr Trf Strt Fzg ~ "y Cirr ITCZ Tot Pcnt
Frrt 20 2 0 0 i = G Q 22 81%
Fr,vor 4 0 0 a 0 0 0 0 4 100%
N Trt 0] 0 3 0] 0 0 0 0 3 160%
E Strt 1 0 0 38 0 0 0 0 39 97%
T Foc 0 0 0 : 1 0 0 0 8 13%
TrCy 2 0 1 0 0 0 0 0 3 03
Cirr 2 0] 0 0] 0 0] 0 0] 2 0%
ITCZ 0 0 0 0 0 C 0 23 28 10C%
Tot 29 2 4 &5 1 0 0 28 109
Fcrit €23% C3 75% g4 100% -- -= 100% 83%
similar cloud type and dimensicns. The cverall percent correc

stays the same, however (83%).

As before, discriminant analysis is used for compariscn.
The <ependent sarple results (Takle 14) show a decrease 1in over-
all performance (73% vs. 83%) compared to the neural net, even
thouch the "frontal band (with vorsex)" cases are actually pre-

dicted with rmore skill {Takle 12 vs. Table 14).
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As in Table 12 except for dependent sample classifica-
tions using discriminant analysis.
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in handling the "Frontal kand (with vortex)" cases is not appar-
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however.

In addition,
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4.4 Discussion

The common thread to these results is that the neural net-
work technique is better able to discriminate the feature classes
than is discriminant analysis. The reason for this difference is
the way each method parses the decision space. In Peak's (1990)
Figure 5 and the related discussion, it is shown how different
neural net configurations can separate a problem space into
various geometric regions. The most complex regions result from
the ure of nonlinear neural nodes in multiple layers. The dis-
criminant analysis procedure, however, is linear in its combina-
tion of input contributions. Thus, the most complex decision
regions that can result are convex ones, which are comparable to
those defined by a two-layer neural net (Peak, 1990, Fig. 5).

The additional power of a second hidden layer allows neural
nets to define concave or even enbedded decision regions. Thus,
neural nets are inherently superior to discriminant analysis for
problems with cormplex problem spaces.

The set of inputs used in these experiments is probably
insufficient for distinguishing such similar features as frontal
bands with vs. without vortices, and stratocumulus vs. fog. It
would be desirable to have a more complex shape measure than
simple zcnal/meridional dimensions. For example, a medial-axis
transformation might be used to determine the majcr- and minor-
axis lengths of the feature. In addition, actual cloud types
would be very useful in place of the simple cloud heights used.
Even some measure of the cloudiness density might be used, an

indicator which might enable separation of stratocumulus from
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fog. The problem with adding more inputs is that the number of
training cases required increases by five for each new input.
Since the data set was just barely large enough for the experi-
ments presented here, it was not feasible to begin adding new
input data types in these experiments.

5. Image Segmentation Considerations

The ultimate goal of this work is to provide an automated
image analysis. The data used in the above experiments was
acquired only after significant effort by a human interpretation
expert in two areas: dividing the image into meaningful, large-
scale features and then identifying the cloud types contained in
each feature. Automated approaches for cloud-typing are present-
ly under development at NOARL-W. However, the image segmentation
problem remains to ke addressed. 1In this section a preliminary
experiment in image segmentation will be presented as a possible
apprcach for future research efforts.

There are two apprcaches to the segmentation problem. In
the first approach, the image is analyzed to find strong gray-
scale gradients that correspond to cbject edges. Once all of the
edges are found, the image 1s separated intc regions with common
bouncaries. The main difficulty with this approach is that edge
detection operators not only respond to gradients that actually
defire region boundaries, but also to gradients that indicate
regicn detalls or shadows. For images containing regions of
nearly the same gray-shade, critical edges may not be detected.
In the satellite image problen, adjacent cloud features would be

difficult to distinguish in this fashion.




The second segmentation approach involves clustering of
regions with similar gray-scales. The analysis begins at the
pixel level where some measure of similarity is used to decide
which adjacent pixels are most similar. These pixels are com-
bined to form new regions. The process continues as similar
adjacent regions are combined until the desired image segmenta-
tion is achieved. 1In this process, it is not the edges that are
important, but rather the homogeneity of the interior of each
feature.

In the satellite image segmentation problem, cloudy regions
have generally lighter gray-scales compared to the darker back-
ground ocean or land regiors. This characteristic would tend to
suppcrt the use of the clustering methodology. The unanswered
guestion is what happens when there are adjacent clcud features.
Both methodologies may have difficulty in such situations. There
may rot be well-defined edges when features are adjacent. ©On the
cther hand, adjacent clcudy regions nay tend to be combined due
to similar gray-shades.

The approach prescnted here is called the Hierarchical
Stepwise Optimization (HSVWO) algorithm (Beaulieu and Goldberg,
1989). As will ke shcwn, it appears that the region-combining
function used by HSWO can accormplish clustering while (hopefully)
keeping such adjacent cloudy regions from being combined.

The basis for clustering technigues is the progressive
combination of regions, which can be represented by a tree
(Fig. 4). 1In the tree, segments at lower levels are joined to

form segments at higher levels. Through a mathematical deriva-
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(a) (b)
Figure 4. (a) Segment combination heirarchy during the cluster-

ing process (bottom-to-top) and (b) corresponding segment tree
(From Beaulieu and Goldkerg, 198%).

tion rot repeated here, Beaulieu and Goldberg (1989) arrived at a
critericn for defining the similarity of adjacent regicns. This
similarity is defined in terms of the cost of combining adjacent

regions:

(2)

where the subscripts i and j derote adjacent regions 1 and j, C
is the Cost c¢f combining the two regicns, N is the number of
pixels in a region and x is the mean gray-scale value of the
pixels contained in a regiocn. The procedure is to calculate the
Cost of combining any two adjacent regions in the image. The two
regiors that result in the lcwest Cost are determined to be the
most similar and, therefore, are selected to be comkined. Notice
that the Cost function is equal to zero when adjacent regions
have the same average gray-scale. Thus, the HSWO procedure first
combires all of the homogenecus adjacent pixels. As the average

gray-scale difference increases, the Cost value rises exponen-
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tially. Since the nunmerator of Equation (2) is the square of the
regicn sizes and the denoninator is cnly their sum, larger re-
gions tend to have higher costs. Thus, the scheme tends to
distinguish large-scale regions better than small-scale regions.
For the purpose of large-scale feature identification, this
property is desirable. The ratio in Equaticn 2) also ensures
that the cost of corbining regions of about the same size is
higher than the cost of annexing a small region into a large one.
It ic hoped that this property will cause the HSWO method to
distinguish adjacent large-scale features rather than combining
then.

The ESWO algorithm is structured to corbine the two lowest-

cost reglons repeatedly until cnly a single region (the entire

o3
} e

image) remains. For a nmeaningful irage segmentation, the merging

procedure nust be stopped after the noisy, small-scale regions

are ~=sirilated but befsore the rearingful, large-scale regicns
are ccrkbined. Beaulleu and Goldkerg (1229) present the exanple
of an irazge cf a checkerbcard (Fig. 5). The mininun Cost func-

tion value 13 plctted as a functicn cf the nurber of segments or

1y

iterz<icns (

m

ig. 6). As the sgirmlilar reglons are conkined (fol-

et

lowiry the curve from right to left), the minimum Cost grcws
gradually. Once the checkerkcard sguares have all been defined,

the cyst

b

m kegins to comkine then as well. These coembinations
causc a jurp in the minirmunm Ccst function curve (Fig. 6). Thus,
the correct stcpping point is just before the rapid increase in
rminirum Cest. Ways to halt the prosess based on the minimum Cost

func: ion increase are a topic fcr further research and experimen-




Figur= 5. Image of a checkerboard used to demonstrate the HSWO
algorithn stepping point (From Beaulieu and Goldberg, 1989).
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bocard segmentation prokclen. Arrow indicated cptirmun stopping
(Fr Beaulieu and Goldkerg, 1583).

tation, kecause the shape of the curve depends cn the type of
image being segmented. It seems reasconable that a satellite

image with dark, background regions and bright, cloud features

would experience a similar jump that might be detectable as being

a good stopping point.




As a dermonstration of the HSWO methodology, a satellite
image was chosen for segmentaticn. The image (Fig. 7) is the
GOES-W visible image for 2045 UTC on 15 Nov. 1983. The region of
interest is the western No?th Pacific from 105°W to 175°E and
from the equator to 55°N. This region contains two frontal
rands, two stratocumulus regions and a breoad ITCZ. Because the
actuel gray-scale values are not available, it was decided to use
simple percent cloudiness of 5°x3° squares. The visually-esti-
mated cloudiness percentages are presented in Fig. 8.

The HSWO algorithm was prcgranrmed in the Prolog language
because of 1ts ability to specify the regicns dynamically.

Initially, each data square is asserted as a Prolog fact contain-

t
n

ing its cloudiress value and a list of i adjacent neighbors.
As the regicns are ccnmbined, the individual region facts are
deleted from the Prolog datakase and replaced by a new fact

representing the corbined reqicn, with its new average percent

djacent regicns. In this

o]

clcucdiness and a new, conbined list cf
way, Prolog is a ruch easier and efficient irsplementation lan-
guag< than would be one such as C that regquires fixed array
storaje.

At this time, the prcklem of when to stcp the routine is nct
addressed kecause the goal of this experiment is to demonstrate
the ESWO application to a satellite image. Instead, the evolving
segm~ntation is examined and the process stopped when the image
segmentation appears to be at its cptinun.

The data values in Fig. 8 were prccessed by the HSWO pro-

gram. The resulting regicns are depicted in Fig. 9. Here, there

31




Figure 7. GOES-W visible image used to test the HSWO algorithm.
Dark lines define 5%x5° squares from which cloudiness percentages

are estimatsd.
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visually-estinmated cloudiness percentages for the

32




are tour distinct cloud features plus a non-cloudy, background
regicn (not numbered in Fig. 9 for clari.y). To demonstrate the
actual cloud regions distinguished in the image, the four cloud
feature segments are overlaid on a nencloudy template (Fig. 10).
The long, frontal band in the western Pacific is captured quite
well by the algorithm. The main body of the second front in the
Pacific Northwest is also captured, but its thin, trailing frecn-
tal tand was combined into the ncnclcudy background regicn rather
than into region 2 (Fig. 10). Also, the stratocurulus regions
have keen lost. It iz likely that the use of actual gray-scales
and higher resolution would provide a ketter segnmentation of
thesce features. It 1is interesting that the kroad ITCIZ 1s seg-
mented well, kot i° . .orthward meander from 110°9-1325%w is not
inciuded.

These r_ elimirary results are very encourajing. A digitized
gray-sca'e transform of this image, with 60 pixels-per-inch reso-
luticr, was acguired by the authcr. Unfcrturately, there has not
vet teen encugh tire to prccess the data using HSWC. Such a
large data set may be too kig for the FC-based routine. The
avallapility of Quintus Frclcg con the TESS rachine wculd provide
the cecmputing power required. Until that Prolog is available,
the resolution may have to ke reduced by averaging to make the
data set more manageable.

6. Conclusions

Three experiments using neural networks to distinguish

large-scale cloud features are prescnted. The data used are

taken from GCES-W 1majges frcm the period Octokear-December 1983.
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Figure 9. Segmentation regions derived by the ESWO algorithm for
the data depicted in Fig. 8. Background region not numbered for

clarizy.

Figure 10. HSWO-derived image segments f{ron Fig. 6 cverlaid on
the regions in Fig. 9.
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Large-scale features and cloud types in the images were catego-
rized by Mr. R. Fett of NOARL-W.

There are eight different cloud features identified on the

images. These include "Frontal band (no vortex)," "Frontal band
(with vortex)," "Trough," "Stratocumulus," "Fog," "Tropical
cyclcne," "Cirrus" and "ITCZ." When classified by a neural net,

each feature is assigned a different network output ncde.

The set of five inputs to the network include the zcnal and
mericdional feature dimensions, the presence of multi-level or low
clcucds, and the north-rost latitude of the feature. A potential
high cloudiress irput was eliminated when discriminant analysis
showed that it had no contribution to the discriminaticn cf the
feature grcups.

when the data set was analyzed to determire the applicable
netwcrk ccnfigurations, it was found that only the "Frontal tkand
(no vortex)," "Stratocumulus" and "ITCZ" features were present in
sufficient gquantity to prcvide ercugh cases for both training and

netwcrk derived to classify these

X
0

testing a neural network. Th
three features 1is very succes=ful in that all 42 dependent sanple
and all 54 Iindependent sarple caszes are correctly classified.
This performance corpares favorakble with the alternate method,
discriminant analysis, which could only classify 90% and £6% of
the d=pendent and independent sample cases, respectively.

By foregoing the need for a ccrplete independent sample, the
number of classes was enpanded to five by adding the "Frontal
band (with vortex)" and "Trough" faitures. The resulting neural

netwcr¥ 1is able to classify 90. of kcth the 50-case degpendent,

(&%)
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and the 98~case independent sanples correctly. The independent
sample is strongly biased because it contains no "Frontal band
(with vortex) and only two "Trough! cases. The discriminant
analysis methcd can only categorize 80% of the dependent sample
cases correctly. Discriminant analysis does categorize 89% of
the independent sample cases, but this apparent skill is almost
certzinly anonalous due to the sample bias.

A third experiment was performed in whichi £3 cases are used
to derive a neural net to classify the eight different feature
types. The dependent sarple results sheow that the neural net can
clascsify 22% of these cases correctly conpared to only 73% for
discriminant analysis. Althcocugh the indepsndent sanmple is inade-

quate for tzsting this netwerk, the results again indicate supe-

oo

rior perfcrrance to discrinmirant analysis (83% ccrrect vs. 72

These results indicate that neural networks can claissify
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large-scale cloud features with surprising skill using only very
crude input parareters. The eventual inclusion of an autcnmated

cloud classificaticn should provide even better input information

14}

for future neural net experirent

The proklen of irmage segmentation 1is also addressed in this
study. A prototype image segnmentation rocutine is developed based
on tre Hierarchical Stepwise Optinmization (HSWO) algorithm of
Beaulieu and Goldberg (198%). When tested on a satellite image,
the routine seems to be able to segment cloud features while

retaining valuable infcrrmaticn about their shapes.




Further research in using the HSWO rcutine is recommended.
The goal is to develop this methodology to the pcint where cloud
features can be distinguished. If one of the automated cloud
classification routines aléo becomes available, neural classifi-
cation experiments similar to those presented here could proceed

using automated data exclusively.
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