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ASSESSMENT OF MODEL GENERATIVE REASONING FOR USE
IN THE INTELLIGENCE PRODUCTION PERFORMANCE MODEL

Introduction

Rationale and Objectives

The best understood part of intelligence analysis is the data
driven process of identifying and locating units by correlating
signatures to equipment, and equipment to units, through tables of
organization and equipment. However, the highest payoff comes not
from simply knowing the identity and location of units, but from
going beyond the unit level to identifying the global
characteristics of the current situation, and from predicting
enemy intentions.

Hypotheses concerning the current situation and threat
intentions are valuable because they enable operations staff to
anticipate future threat actions, to identify threat
vulnerabilities, and to improve performance through added
preparation time. Such hypotheses are, however, difficult to
construct.

Intelligence products are designed to meet the decision needs
of the commander with respect to a given mission. In order to
achieve relevance, the analyst must go well beyond raw data to
generate highly refined, mission-specific descriptions of present
and future situations. Raw data concerning a complex of diverse,
and often dynamic, entities, must be collected, selected,
interpreted, integrated, and evaluated against both stated and
anticipated commander needs. This is, not surprisingly, a
difficult cognitive task. It is also ill understood and very
prone to error.

Intelligence analysis is conducted in a class of task
environments that may be characterized as competitive. In
competitive task environments, each competitor seeks to gain
control over an opponent's decisions by influencing the opponent's
perception of the world. Methods of control typically include the
use of (1) noise, to make it difficult for an opponent to form
and test interpretations of an evolving situation; (2) deception,
to make an opponent accept some desired, and disadvantageous,
interpretation of situations and intentions, and (3) novel
actions, which will confuse the opponent because they lie outside
the explanation space. The effect is to increase uncertainty for
the opposition either by casting doubt on the relevance of data
(through deception and noise) or by decreasing the value of
expectations (through deception and novelty).
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In such environments, the analyst is in a double-bind. If the
current explanation is perceived as tentative, the analyst is in
danger of frequently "losing the picture." If incoherence is
rationalized away through a search for confirming evidence, the
analyst may drive himself into a Bayesian black hole, i.e., the
more that a hypothesis is confirmed, the more evidence that will
be required to disconfirm it. Moreover, difficulties become
increasingly marked as behavioral constraints begin to
predominate.

Folklore has identified a number of strategies that will
enable an analyst to maintain control. The most frequently
encountered strategy, and the one that has some experimental
validation, is the maintenance of a set of alternative hypotheses
in a form suitable for use as contexts for viewing available d -

(see Tolcott, 1989). The emphasis is on the word "alternative,"
since a set of hypotheses is required that spans the set of
alternative operational options open to the opponent. Using this
set, the analyst can: (1) generate efficient collection plans to
reduce the hypothesis space; (2) anticipate alternative enemy
courses of action, and (3) rapidly generate new hypotheses from
the fragments of the old set to explain unexpected patterns of
data.

The intelligence analysis process is sufficiently comr.ex that
it is difficult to study effectiveness analytically. However, a
simulation approach requires commitment to some set of processing
mechanisms. The selection of appropriate mechanisms is critical.
At the very least, they must:

a. Capture domain behavior at some desired level of
description.

b. Be capable of executing over data structures that are
sufficiently expressive to capture significant domain input.

c. Be appropriately parameterized to allow an experimenter to
meaningful control hypothesis generation.

The Army Research Institute (ARI) Field Unit, Ft. Huachuca, AZ
has developed an Intelligence Production Performance Model (IPPM)
as part of its program for enhancing the individual performance of
intelligence staff. This model operates at a normative,
information processing level, rather than at a human cognitive
processing level. This is appropriate given weaknesses in our
understanding of human cognition in competitive task environments,
where the presence of noise, novelty, and deception are the norm.
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As it stands, the IPPM is presented as a set of functional
nodes, joined together in a network which process input
information and pass information through an output link to the
next node. Each node is represented as a black box, i.e., no
particular mechanisms have been associated with the tasks carried
out by each node.

The objective of this report is to assess the applicability of
the Model Generative Reasoning (MGR) problem solving architecture
for supplying information processing mechanisms for use in the
IPPM.

Overview of the Intelligence Production Performance Model (IPPM)

The IPPM is presented as a set of functional nodes joined
together in a network. Internal to each node are information
processing factors believed to influence intelligence production
performance at that node. Intelligence products themselves are
evaluated in terms of their acceptability to an individual user,
and deviations from that individual's standards are explained in
terms of local "errors" occurring within particular nodes.

Input-Output Modes

The IPPM identifies several classes of independent variablez
Information processing at the nodes are influenced by these
variables.

Information State. The Information State constitutes the
information (combat information, processed data, or intelligence)
which must be used to produce the final intelligence output. It
is measured in terms of five dimensions:

The amount of information contained.

The relevance of information to a given node function.

The variety of types of information contained.

The spatial or temporal configuration of information.

The complexity of information.

Control State. Control State variables include factors externally
imposed on processing, for example, as the mission, that provide
processing goals, or operational idiosyncracies that constrain
processing (e.g., that focus attention on, or distract attention
from specific information).
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Task State. Task State variables define the task situation within
which an operator must perform. They include variables which
affect task performance, for example, task difficulty, the time
allowed for performance, workload.

Operator State. Operator State variables define the cognitive
content and procedural knowledge the operator brings to the task,
as well as any physiological states.

Performance Criteria

Final intelligence production performance in the model is
defined in terms of the acceptability to some given intelligence
product to a given user (Burnstein, Fichtl, Landee-Thompson, &
Thompson, 1990). Five criteria :.re used to define
"acceptability."

Completeness: e.g., who, what, when, where, why, and how?

Operational Perspective: how well an information item was put
in the context of current or future friendly force operations.

Clarity: how easily content was understood or followed by the
user.

Timeliness: whether the item was received in time for the
user to take action.

Frequency: how often an item is provided to keep the user
fully-informed.

System "Errors"

Deviations of output from the user defined product are
explained in terms of "errors" originating within the nodes of the
model. In the current state of IPPM development, an error
taxonomy of six behavioral categories has been defined. Classes
of error include the following:

Complying with the control state: Errors related to
the existing administrative constraints, directions,
or guidance.

Collecting the information from the environment:
Errors related to collecting information necessary to
perform the task.

Recalling cognitive knowledge: Errors related to
declarative and procedural knowledge recall.

Executing the procedures: Errors related to:
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Assessment of the information state given
the control and operator state.

Formulation of hypotheses based on
assessment.

Generation of predictors based on
hypotheses.

Hypothesis reformulation or refinement.

Hypothesis testing: Errors relative to refuting or
verifying predictions.

Selecting hypotheses: Errors related to selection of
hypothesis information.

Within each category, generic errors are identified.

The Model Generative Reasoning (MGR) Architecture

Informal Overview

The MGR architecture was developed in the Computing Research
Laboratory (CRL), New Mexico State University to support problem
solving in competitive task environments (Coombs & Hartley, 1987;
1988; Coombs et al., 1990). In particular, it was designed to
accommodate a variety of control mechanisms required for coping
with noisy data, and novel situations. This architecture has
evolved into the formal evolutionary-Model Generative Reasoning
(e-MGR) system. This system allows manipulation of hypotheses at
a higher level by using a simplified representation at its base.
The e-MGR will be embedded in the IPPM.

Problem solving in e-MGR is implemented through a process of
building sets of hypothetical conceptual structures to explain the
concepts in available data. Since all objects in e-MGR are
represented as graphs, it is possible to define "explanation" in
terms of set relations between concept nodes in the graphs
representing data and concept nodes in the graphs representing
knowledge; more specifically, in terms of the set covering
relation between data concepts and knowledge concepts; in e-MGR
pre-defined knowledge structures are termed definitions, data are
termed facts, and explanatory hypotheses are termed models.

In this respect, problem solving in e-MGR is related to the
generalized set covering view of abductive problem solving
developed by Reggia et al. (1985) where, given data, the task is
to find the best set of hypotheses to explain the data in terms of
the most parsimonious cover of the data by this set. However,
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whereas generalized set covering deals with atomic explanatory
hypotheses and pre-defined relevance relations between hypotheses
and data, the requirement that e-MGR should function in noisy and
novel task environments makes it necessary for the system to be
capable of: (1) creating hypotheses autonomously from knowledge
fragments, and (2) autonomously identifying relevant data from the
set of available observations.

Hypotheses, e-MGR models, are generated through a set of graph
transformation operations: (1) specialize, which builds new
graphs from graph fragments, "gluing" together facts with
definitional material to generate models; (2) fragment, which
decomposes graphs into fragments, "ungluing" models to extract
fragments worth preserving as assumptions to be passed on to
subsequent stages of processing, and (3) classify, which tags a
graph with a pre-computed marker graph, using assumptions to tag
new facts to be submitted for processing. The critical problem
solving notions here are that: (1) e-MGR interprets facts by
gluing them together with definitional material to form models;
(2) models are unglued to form assumptions (proto-facts) and (3)
assumptions are used to extract new facts from the world, which
then become interpreted to form new, more complete models.

Formal Overview of e-MGR

The e-MGR is logically a multi-instruction, multi-data
parallel virtual machine (MIMD) that accepts input from the
databases F and D. F is a fact database that receives all input
from external agents; D is a definition database that contains all
of the system's pre-computed explanations, and serve as an initial
set of hypotheses concerning the relatedness of facts. The output
from specialize is a database of models, M, that contains
explanations currently under development. These are then input to
the fragment operator and new hypotheses are produced as models.
These models may then be re-entered into the system as
assumptions, A. Assumptions may: (1) be constructs that help
select new factual information (see Cl below); or (2) contain
definitional information to be used in new covers by specialize.
A data flow diagram of the e-MGR architecture is given in Figure
1. Detailed description of the lower-level operators join, J,
cover, C, project, P and uncover, UC, are given in Hartley and
Coombs (1989). Informally, C identifies a subset of definition
graphs that has some pre-defined set cover relation to all of the
labeled nodes in a given subset of graphs; J merges two graphs at
a single point where both graphs contain related node labels; P is
the inverse of join in that it seeks to identify related labels
between graphs; UC is the inverse of cover in that it partitions
graphs in the neighborhood of subgraph boundaries.
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CL: C SP: C JFr. P U

Figure 1. A data-flow diagram of the e-MGR architecture.

Three operators, classify, Cl, specialize, Sp, and fragment,
Fr act on the databases in an autonomous fashion. The
functionality of these operators is specified completely by the
architecture. Operator actions may be described informally as
follows: (1) Cl selects tagged facts T for interpretation from
processing of A and F; (2) Sp generates model M interpretations by
fusing items from T using definitional "glue" taken from D, and
(3) Fr generates new assumptions by cleaving models through the
removal of "glue" around the items currently in T. The e-MGR
operations can be represented as a closely coupled set of
functions, with coupling at T, M, and A. In the worst case:

Classification
Cl: A x 2F --> 2

T

Specialization
Sp: 2T x 2D -- > 2m

Fragmentation
Fr: M x 2T --> 2

A

The activity of the operators is governed by the control
level, which determines when the operators act, but not their
functionality. Strategy in e-MGR thus consists largely of
scheduling these three operators, along with the additional
activities of selection over F and D, and evaluation of A and M in
order to determine halting conditions. Control strategies are
formally optimizations, represented either as algorithms or
adaptive systems.

Academic Connections

The three e-MGR operations can be interpreted in terms of
Pierce's (Pierce, 1934) explanation cycle \(-> induction \(->
abduction \(-> deduction \(->. Classify implements the induction
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of relevance relations between assumptions and facts, by which
facts are selected to be considered for integration in the next
round of hypothesis building. Specialize implements the abduction
of interpretive contexts for tagged facts. Fragment, on the other
hand, implements the deductive evaluation of hypotheses to create
new assumptions from models in order to focus the next round of
interpretation.

It can be seen that e-MGR moves beyond the current agenda of
artificial intelligence (AI) in its study of automated reasoning
to establish logic as the foundation for inference in intelligent
systems (c.f., Charniak, 1986; Hanks & McDermott, 1986; Hayes,
1985; McCarthy, 1980; Shoham, 1988). The deductive view arises
from the assumption that human reasoning is best characterized as
deduction. The formalization of the deductive component of
inferential behavior thus be-omes a necessary precondition for
understanding intelligent systems.

The counter argument that many inferences are not deductive
has been made both in response to the difficulty of doing AI with
predicate logic (e.g., McDermott, 1987), and as a belief held by
those who argue that, even if intelligence could be described
deductively, the critical axioms would only emerge from a prior
understanding of the mechanisms of reasoning (e.g., Minsky, 1985).
The difficulty of fcrmalizing such inferential forms as abduction
and induction, at least at the level of complexity under-taken by
human reasoners, is typically quoted as evidence that there is
more to reasoning than deduction. However, the debate has largely
ended here. As McDermott has noted (1986) with reference to
abduction, it is not possible to explore the relation between
logic and non-deductive reasoning without a well-defined account
of the non-deductive form. More particularly, a method is
required to link the syntax of logical inference with the largely
unformalized, semantic level of description used for :.-presenting
abduction.

I

The objective of the MGR project in general is to devise a
well-defined architecture that provides a small number of
mechanisms for establishing and preserving the pre-defined
relational properties of a representational syntax and for
relating these in a principled manner to the semantics of
explanation and coherence (Coombs & Hartley, 1987; 1988). In
contrast to other related work in artificial intelligence,
including the ATMS methodology (de Kleer & Williams, 1987) and the

1Our use of the word "semantic" is important because we intend
to show that abductive reasoning can be represented in terms of
well-defined operators which combine purely syntactic operations
on knowledge structures with semantic notions of relevance and
adequacy.



explicit representation of control in expert systems MGR seeks:
(1) to describe both the non-logical domain-specific aspects of
problem solving and the management of alternative viewpoints in
the same formalism, and (2) to describe and formalize control in
terms of measures of structural transformation, rather than at the
knowledge level or the calculus level.3

The focus of current e-MGR work is abduction, rather than
induction, i.e., on the creation of structures to use in the
selection of data, rather than on the role of data in creating new
selective structures. This is because of the social structure of
intelligence analysis, with its emphasis on the development of
mission related products from available data, highlights
interpretation rather than perception.

That e-MGR explanations are truly abductive, and will contain
information of a hypothetical nature (i.e., that is not contained
in the facts), is evident from the operation of the primitive
procedures cover and uncover that implement the gluing and
ungluing of graphs. Cover interprets tagged facts by first
finding some subset of definitions that subsume the facts, and
then fusing facts and definitions by coalescing on common
concepts. The resulting explanations will therefore contain facts
joined by non-factual material. Uncover cleaves an explanation
into one or more fragments around the images of facts projected
onto it by removing links between projections. Links may not
necessarily be cut exactly at projection boundaries, thus leaving
nodes that originate from definitions attached to the fragments.
Uncover is not simply the inverse of cover.

The Integration of e-MGR with the IPPM

IPPM/e-MGR Relationships

The following analogical relationships have been identified
between the IPPM variables and parts of the e-MGR architecture.

Information State (IS). The IS corresponds to the fact database
used by e-MGR. The e-MGR assumes that facts (observations,
intelligence reports) are passed to it. These facts include the
set of current and past propositions about the world. The e-MGR

2For instance, de Kleer and Williams (1987) mention heuristics

and other non-logical relationships such as the management of
reasoning under uncertainty.

3The claim we are making is that control resides in a level of
abstractions intermediate between the calculus and knowledge
levels. It is thus independent of the domain and also of any
knowledge representation scheme. This is the level of the
operators in MGR.
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also assumes that any concept identified in the input data is
present in the knowledge base of the system.

Control State (CSl. The CS corresponds broadly to the schema
database in e-MGR. A schema is a very flexible method of
representing everything from static relationships between cbjects,
to procedures and processes that employ objects. There can be
multiple schemata for any one concept corresponding to different
viewpoints (i.e., opinions, strategies, personal idiosyncracies).

The adaptation of e-MGR to IPPM will require mechanisms to
impose some order in which schema may be processed. This will be
necessary to ensure that mission schemata are taken before
doctrinal schemata, and may damp possibilities for fragmenting
mission statements. Focus of attention, or switches in attention,
may also be implemented in terms of schema priorities.

Task State (TS). The TS corresponds to those elements of the
high-level e-MGR algorithm (see Operator State) concerned with the
management of resources. The e-MGR is a very computationally
expensive process. In fact, any abductive procedure has been
shown to be NP-complete, i.e., exponential in the essential
parameters. The e-MGR has therefore to marshal its resources
carefully and monitor its own progress so as not to exceed the
limitations of the machine it is running on.

Operator State (OS). The OS corresponds to the high-level
algorithm used to drive e-MGR. With the current system, every
application has a hand-crafted algorithm that contains an
algorithmic embodiment of the goal, or goals, that make choices
appropriate to the pragmatic constraints of the domain. A special
purpose language will be used to specify the input to a
parameterized version of e-MGR. The values of parameters may
either be held constant throughout a run, or be varied under
feedback.

The Demonstration Software

Overview

A Low Intensity Conflict (LIC) scenario served to illustrate
the integration of MGR and the IPPM. A fictitious scenario was
developed and is reported on in detail in another document
(Coombs, 1991).

The Hunch Buddy Domain

The software developed to demonstrate e-MGR in this setting is
configured as a decision aid called the "Hunch Buddy." The
essential purpose of such an aid is to give its user the following
capabilities:
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a. To create and maintain a data base of factual information
such as would be obtained from intelligence reports and from data
analysis programs such as telephone toll analysis, link and
pattern analysis, or database searches. This is the fact
database.

b. To create and maintain a knowledge base of schematic
structure representing the base knowledge of the user in chunked
form. This is the control state.

c. To generate hypotheses abductively from selected facts in
the fact database by covering them with appropriate schemata from
the knowledge base. The algorithm for doing this corresponds to
the operator state.

d. To display the results of the abduction to the user, the
facts in the fact database and the schemata in the knowledge base.

e. To enable the user to select new facts in another cycle,
to be used with previous hypotheses, until satisfactory results
are .'tained.

The central schema in the knowledge base concerns an
insurgency drug ring conspiracy and the roles within it. The
schema connects a FIXER as a central player, while a COURIER, a
RECEIVER, a WHOLESALER and a FINANCIER are connected in a network
with him. The purpose of the conspiracy is to gain money to
support terrorism. Other schemata concern the linkage in pairs of
these roles, and the identification of the roles from supporting
evidence such as place of employment.

The scenario also models the piecemeal pattern of data
collection, i.e., the data is not all available instantly, but
either arrives over a period of time, or is the result of data
collection activities based on the prior generation of good
hypotheses.

Modifications to e-MGR

The full MGR software was developed on the Symbolics and is
written in Common Lisp. A much cut-down version, which made many
simplifying assumptions, written in C and runs on any UNIX system.
It was decided to augment the C version to bring it
sufficiently close to the full version so that the Hunch Buddy
would demonstrate the successful completion of the task. In order
to do this, several additions had to be made. These were:

a. To allow the knowledge base to have more than 32 different
concept types. The e-MGR now allows up to 64 (the full version
allows unlimited types).
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b. To add a hierarchy of types to allow graphs to join on
maximal common subtypes of two concept types, not only on the
identical type.

c. To add a mechanism to simulate the repetition of type
labels within a single graph. This involves manipulation of the
type hierarchy to provide multiple subtypes where necessary by the
addition of a suffix digit, e.g., PERSON1, PERSON2, etc., and to
modify the join algorithm to simulate the multiple join
possibilities of the full version.

d. To add a database system to allow interactive input of raw
data and to process this data in a variety of ways to produce fact
graphs for input to the abductive phase.

e. C and D give e-MGR the flexibility of representing
knowledge at the most appropriate level and remove a severe
restriction from the original e-MGR. In addition, they provide
for a good deal of expansion capability for the future. None of
the changes were specific to the LIC domain or the Hunch Buddy.
All are generic additions to either the problem solving capability
of e-MGR or to its capability to accept data from any source.
Indeed, the database facility, albeit simple, is something that
the full version of MGR lacks.

The Demonstration Data

The Database

Below is a table showing the content of the database. Each
entry is self-explanatory, except for the entries with 'CALLS' in
them. Each of these is assumed to be the conclusion of a
telephone toll analysis program and is the single entry made in
the database resulting form the analysis of possibly hundreds of
telephone calls. All other entries come from direct reports of
various sorts.

12



Cycle # Item 1 Relation Item 2 Certainty Date

1 COURIER IS Chavez 90 07-05-88
1 Chavez WORKS Mort-Mex 100 07-05-88
1 IMPORTING BUSINESS Mort-Mex 100 07-05-88
1 Morton OWNER Mort-Mex 100 07-05-88
1 ORGANIZATION IS Mort-Mex 100 07-05-88
1 PERSON IS Morton 100 07-05-88
2 IMPORTING BUSINESS Baroni 100 07-05-88
2 Morton CALLS Ramon 75 09-10-88
2 ORGANIZATION IS Baroni 100 07-05-88
2 PERSON IS Ramon 100 07-05-88
2 Ramon OWNER Baroni 100 07-05-88
3 DISTRIBUTOR IS Doug 80 11-03-88
3 DISTRIBUTOR IS Simpson 80 11-03-88
3 PERSON IS Smith 100 11-03-88
3 Ramon CALLS Boley 60 11-03-88
3 Ramon CALLS Smith 40 11-03-88
3 WHOLESALER IS Boley 80 11-03-88
4 Broder OWNER Sanders 100 11-12-88
4 FINANCE BUSINESS Sanders 100 11-12-88
4 Harvey WORKS Sanders 100 11-12-88
4 Morton CALLS Harvey 65 11-12-88
4 ORGANIZATION IS Sanders 100 11-12-88
4 PERSON IS Broder 90 11-12-88
4 PERSON IS Harvey 75 11-03-88
6 Evans CALLS Sanders 80 01-5-89
6 Evans OWNER Gosling 100 01-5-89
6 INSURANCE BUSINESS Gosling 100 01-5-89
6 ORGANIZATION IS Gosling 100 01-5-89
6 PERSON IS Evans 100 01-5-89

The Knowledge Base

Below are the schemata in e-MGR's knowledge base. Each one
contains the following items:

a. The type of schema (its 'Cast').

b. A measure of its importance (its 'Weight').

c. An identifying label (its 'Name').

d. The links in the schema between its constituent types (its
'Arcs').

Each arc links two labels. The whole set of arcs makes a
graph.
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Graph (
Cast Definition;
Weight 25;
Name FIXER;
Arcs
FIXER -> ORGANIZATION,
ORGANIZATION -> IMPORTING;

Graph {
Cast Definition;
Weight 25;
Name LAUNDERER;
Arcs
LAUNDERER -> ORGANIZATION,
ORGANIZATION -> FINANCE;

Graph {
Cast Definition;
Weight 25;
Name LAUNDERER;
Arcs
LAUNDERER -> ORGANIZATION,
ORGANIZATION -> FINANCE;

Graph {
Cast Definition;
Weight 25;
Name RECEIVER;
Arcs
RECEIVER -> ORGANIZATION,
ORGANIZATION -> IMPORTING;

Graph {
Cast Definition;
Weight 25;
Name COURIER;
Arcs
ORGANIZATION -> COURIER,
ORGANIZATION -> IMPORTING;

Graph {
Cast Definition;
Weight 25;
Name WHOLESALER;
Arcs
WHOLESALER -> ORGANIZATION,
ORGANIZATION -> BUSINESS;
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Graph {
Cast Definition;
Weight 25;
Name FINANCIER;
Arcs
FINANCIER -> ORGANIZATION,
ORGANIZATION -> FINANCE;

Graph {
Cast Definition;
Weight 25;
Name CONSPIRACY;
Arcs
FIXER -> FINANCIER,
FIXER -> COURIER,
FIXER -> LAUNDERER,
FIXER -> RECEIVER,
WHOLESALER -> LAUNDERER,
WHOLESALER -> RECEIVER,
WHOLESALER -> DISTRIBUTOR;

Graph {
Cast Definition;
Weight 25;
Name FRLINK;
Arcs
FRLINK -> FIXER,
FRLINK -> RECEIVER,
FIXER -> ORGANIZATION,
ORGANIZATION -> BUSINESS,

RECEIVER -> ORGANIZATION;

Graph {
Cast Definition;
Weight 25;
Name RWLINK;
Arcs
RWLINK -> WHOLESALER,
RWLINK -> RECEIVER,
RECEIVER -> ORGANIZATION1,
WHOLESALER -> ORGANIZATION2,
ORGANIZATION2 -> BUSINESS,
ORGANIZATION1 -> BUSINESS;

In addition to the schemata, the hierarchy is also necessary
to define the sub/super-type relationships between the type
labels. This is as follows:
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Hierarchy {
BOT -> FIXER,
BOT -> FINANCIER,
BOT -> LAUNDERER,
BOT -> RECEIVER,
BOT -> WHOLESALER,
BOT -> COURIER,
BOT -> DISTRIBUTOR,
BOT -> FRLINK,
BOT -> RWLINK,
BOT -> CONSPIRACY,
BOT -> IMPORTING,
BOT -> INSURANCE,
BOT -> BANKING,
FIXER -> PERSON,
RECEIVER -> PERSON,
LAUNDERER -> PERSON,
FINANCIER -> PERSON,
WHOLESALER -> PERSON,
COURIER -> PERSON,
DISTRIBUTOR -> PERSON,
FRLINK -> LINK,
RWLINK -> LINK,
CONSPIRACY -> LINK,
INSURANCE -> FINANCE,
BANKING -> FINANCE,
IMPORTING -> BUSINESS,
FINANCE -> BUSINESS,
ORGANIZATION1 -> ORGANIZATION,
ORGANIZATION2 -> ORGANIZATION,
PERSON -> TOP,
LINK -> TOP,
ORGANIZATION -> TOP,
BUSINESS -> TOP;

'TOP' is the universal type (which has no super-type), and

'BOT' is the absurd type (which has no sub-type).

Error Processing in the Hunch Buddy Demonstration

The current demonstration software can show only a few of the
error types previously discussed. Hunch Buddy concentrates on Sp,
and to a lesser extent Cl, so the error types that can be
demonstrated are focused on errors in hypothesis generation.
These errors can spring from a variety of sources:

a. Misinterpretation of information, i.e., the spanning set
settles on hypotheses that do not anticipate new facts, or worse,
may be incoherent with new facts.
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b. Failure to integrate information at the right level of
detail, i.e., covers of facts generated by Sp are insufficiently
connected, or insufficiently rich in concepts, or insufficiently
specialized.

c. The generation of sparse hypotheses that do little more
than re-represent available facts, i.e., cover parameters tend to
generate sparse structures.

All of these errors can be demonstrated by altering the
knowledge base. If schemata are incorrect (as opposed to merely
incomplete) then error (a) will occur. If they are incomplete
then error (b) will occur. If the schemata are too small (contain
too few links and introduce too few new concept types) then error
(c) will occur.

In addition to these errors, which are errors in knowledge,
the software can demonstrate how factual errors (in the database)
can be propagated through to hypotheses, or cause no hypotheses to
be generated. For instance if a type is introduced in the data
thAt i -ct contained in any schema, then no covers will be

obtained. If two concepts are linked in a database item that are
never linked in any schema, then the linkage will appear in all
covering hypotheses, possibly leading to errors later on.

Proposals for Further Work

According to the discussion of intelligence analysis, the key
to anticipating a threat's intentions may be the generation an
appropriate spanning set of intentions hypotheses over the larger
set of physical and doctrinal possibilities. There is as yet
little public research either into the nature of effective
spanning sets, or into the dynamics of generation. However,
e-MGR was originally developed with such research in mind. It is
therefore proposed that IPPM/e-MGR work be focused on simulating
those errors arising from hypothesis reformulation or refinement
based on new information or reassessment of old information
(errors IV (4)). The different aspects of the origin of these
errors could then be investigated by altering the parameters of
the e-MGR mechanisms. All of the hypothesis errors (translated
into e-MGR terms) can be simulated parameters to Cl, Sp, and Fr.
It is interesting to note that many of them may have a variety of
causes. Some of these can be demonstrated in the current
software.

a. Misinterpretation of information, i.e., the spanning set
settles on hypotheses that do not anticipate new facts, or worse,
may be incoherent with new facts.
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b. Incomplete use of information, i.e., e-MGR does not
sufficiently specialize its hypotheses from a given fact, or fails
to pick up a new fact because the relevant portion of the
hypothesis has been fragmented away, or Cl weighs assumptions
inappropriately.

c. Failure to revise interpretations of facts given new
information, i.e., Sp fails to generate new covers that join in
new schemata given new facts, or the covers are generated, but not
passed on to Fr, or covers are passed on but have the relevant
interpretive portions fragmented out again.

d. Failure to integrate information at the right level of
detail, i.e., covers of facts generated by Sp are insufficiently
connected, or insufficiently rich in concepts, or insufficiently
specialized.

e. Failure to integrate information coming from different
subject domains, i.e., covers necessary to link facts from
different domains are rejected because of the current complexity
settings to "cover," or there are inappropriate access
restrictions set within the type hierarchy.

f. The generation of sparse hypotheses that do little more
than re-represent available facts, i.e., cover parameters tend to
generate sparse structures.

g. The generation of overly complex hypotheses containing
much unsupported material, i.e., current cover parameter values
tend to generate very integrated structures.

h. Failure to preserve critical information, i.e., the
effects of an over-active Fr.

i. The preservation of unnecessary information, i.e., the
effects of an under-active Fr.

It may be seen that many of the above individual errors can
have several causes in e-MGR terms. It is anticipated that such
one-to-many relationships will be common in the study of
intelligence production mechanisms.

Conclusions

The main conclusion is that e-MGR can provide a suitable set
of mechanisms for augmenting the IPPM. Through the e-MGR
mechanisms, the theoretical levels around the IPPM, and cause and
effect relationships between levels can be clarified. In
addition, the etiology of errors (and their decision effects)can
be dynamically sketched. Furthermore, e-MGR will provide the
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theoretical foundation for developing compensating, or partially
compensating, strategies to minimize the negative effects of
errors. For example, there is evidence that negative effects of
over-assimilation may be avoided by retaining alternative
interpretive structures for data, and of over-accommodation by
forcing the justification of each interpretation in terms of
alternatives.

Work in progress includes that precise mathematical
specification of MGR micro-and macro-theories. MGR software
products are available in CommonLisp on Symbolics and Sun
Workstations. The e-MGR software that forms the basis of the
Hunch Buddy is available on Sun workstations and IBM-compatible
PC's.
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