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ABSTRACT

Genetic algorithms (GAs) are general purpose algorithms designed to search ir-
regular, poorly understood spaces. They are population based and use the ideas of
evolution and survival of the fittest. For the finite population case, we model a genetic
algorithm by representing the possible populations by the states of a Markov Chain.
For the infinite population case, we use a model developed by Vose and Liepins j#f. We
‘do not use previous models of GAs because they are incomplete in that they do not
incorporate the effects of mutation which is a critical part of the evolutionary process.
We consider the relationships between these models and an actual GA by investigating
two minimal deceptive problems. The results of our computer simulations follow the-

oretical predictions and also reveal an unexpected effect of mutation on the deceptive

problerm.
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Chapter 1

INTRODUCTION

Genetic algorithms (GAs) are general purpose algorithms designed to search irregular,
poorly understood spaces. They are based on the idea of natural selection where ihe
strongest survive to reproduce. Mating consists of two organisms contributing genes
which make up chromosomes forming the gznetic structure of the offspring. Occa-
sionally, some of the genes will mutate producing genetic material in the offspring not
contributed by either parent. Genes in a GA are represented hy characters. For exam-
ple, if the binary alphabet were used, a gene would be either 0 or 1, and a binary string

would represent a chromosome.

In nature, the evolutionary process begins by elimination of weak organisms through
competition, with the strongest surviving to pass genes on to their offspring. In a GA,
the collection of organisms is represented by a collection of strings called the population.
The elimination process is based on an objective function which gives fitness or strength
to each string. The probability of each string being selected is given by normalizing the
fitnesses to sum to 1. These probabilities are then used to select a string from the
population for mating, hence strings with higher relative fitness are more likely to be

selected.




In nature, the reproductive step consists of each parent donating genetic material to
the genetic structrre of the offspring. In a GA, this step is called crossover. It consists
of breaking the two parent strings in the same random position and exchanging the
portions of the strings to the left of the break point. Crossover is performed with some
probability (the crossover rate), otherwise the childrzn are taken to be the parents. One

of the two offspring is kept and the other is discarded.

The next step is mutation which consists of some random change in the genes of the
offspring. In a GA, this is implemented by changing each character in the string with
some small probability (the mutation rate). The combination of crossover and mutation

is referred to as recombination.

Each cycle of selection, crossover, and mutation produces one offspring for the next
generation. Therefore, the cycle repeats using the same old population until the correct
number of offspring have been attained to form the new population, and then the old

population is divcarded.

A GA is based on random choices and probabilities. Inherently, machines are not
capable of making completely random choices, and they make round off errors in the
calculations of probabilities. It is therefore possible that a GA when implemented on a
computer would not behave as theoretically expected. We will investigate the accuracy
of a GA implementation by comparing it with two mathematical models, one based on a
finite population size, and one based on au infinite population. In the finite population
case, we model a GA by representing the possible populations by the states of a Markov
chain. We use the resultant steady state distribution to predict population distribution.
For the infinite population case, we use a model developed by Vose and Liepins [1] which

gives the probability of seeing each particular string for every generation.

We consider two types of objective functions; one that has been shown to make it hard for
the GA to find the best string, and one that is known to make it easy [2]. We compare

the results of a GA implementation with the results predicted by the mathematical
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models for both functions. Goldberg [2] originally investigated these functions but his
model was not powerful enough to incorporate the effects of mutation. We are primarily
interested in comparing a GA implementation, the Markov model, and the model of Vose
and Liepins [1}, and since these models can accommodate mutation, our investigation

is based on a non-zero mutation rate.

Independently, T. Davis has also modeled a simple GA as a Markov Chain [8). However,
our work differs significantly from his. While he considers the asymptotics of steady
state distributions as the mutation rate decreases, we investigate the asymptotics as
population size increases. Moreover, our results concerning the matrix of transition
probabilities are based on the model of Vose and Liepins, which simplifies representation

and calculation.

In chapter 2, we use Markov chains to find a probability distribution which gives the
expected proportions of populations that a GA should encounter if allowed to run an
infinite amount of time. In chapter 3, we summarize a model developed by Vose and
Liepins [1), called operator G, which is used in the Markov model to find the probability
of producing each string in the next generation given the current population. Chapter 4
describes the relationship between the Markov model and a GA and between the Markov
model and operator G. Chapter 5 outlines Goldberg’s [2] two objective functions and
the mathematical model he used to determine if finding the optimal string was easy or
hard. Chapter 6 describes the results of simulations run for the Markov model, operator

G, and GAs and makes conclusions drawn from the results.




Chapter 2

MARKOV CHAIN
DEVELOPMENT

We develop the Markov mode! by letting all possible populations represent the states
of the Markov chain. We find a transition matrix that gives the probability of any
given population being the next population based on the current population. We use
the transition matrix to develop a vector that gives the probability of each population
being encountered by a GA at generation k. We use the steady state distribution of the

model to predict population behavior in a GA as k — oo.

Let © be the collection of length £ binary strings, and let 7 =|Q|= 2¢ be the number of
possible strings. Let a population be a subset of n strings of £ where multiple instances

of a string are allowed.

Definition 1: N is the number of possible populations of strings where populations
are numbered 0...N —1. Z is the N x r matrix where 2;, is the number of occurrences
of string y in the ¢ th population. (The numbers y are identified with their binary

representations.)

Definition 2: ¢; =< 20, ..., Ziy—1 > is the ¢ th row of matrix Z and represent the

I R e D S R M R




incidence vector for the ¢ th population.

As an example, if ! = 2, then the possible strings are {00,01,10,11}. If n = 2, then

2000
1100
1010
1001
Z = 0200 y $o =< 2000 >, andzpp = 2
0110
0101
0020
0011

0002

THEOREM 1

There are

n+r—-1
N =

possible populations of strings.

Proof:

An incidence vector, ¢;, can be represented graphically by using dots and
slashes. Each dot represents one string, therefore a popuiation of n strings
is represented by n dots. To represent z;o instances of string 0, a slash is
put between the z;o and the 2,0 + 1 dot. To represent 2;; occurrences of
string 1, a slash is put between the 2;0 + 2;; dot and the z;0 + 23 + 1

dot. Continuing in this way, a population of n objects from r types can be




represented by n dots and r — 1 slashes. As an example, ifr=4andn =25

then the incidence vector < 2,0,2,1 > would be represented by

)]

where there are two of strings 0 and 2, one string 3, and none of string 1.
If r — 1 dots are added to the » dots, then any population of size n could
be represented by appropriately choosing r — 1 dots through which to put
slashes. Since it ‘= possible to represent all populations uniquely using this
method, the number of possible populations, N, is just the number of ways

of choosing r — 1 dots from a total of n + r — 1 dots. O

A Markov chain with the N possible populations as states is used to model a genetic

algorithm. The rows of matrix Z describe the states of the model.

Definition 3: Random variable Y; is one member of the next population given that the
current population is ¢;, where Y; is an offspring resulting from selection and recombi-

nation of parents from population 7.

Definition 4: p;(y) is the probability of producing the string y in the next generation
given that the current population is ¢;. Thus p; is the probability density function for
Y;.

Definition 5: Random variable ¢(k) for &k = 0,1,... is the incidence vector for the

population at generation k.

Definition 8: Q is the N x N transition matrix where @;; is the probability that the

k th population will be ¢; given that the k& ~ 1 population is ¢;.

Definition 7: m(k) = < mo(k), ..., Tn-1(k) >T is a probability vector where (k) is

the probability that the k th generation is ¢;.

THEOREM 2




(k) = (@) (0) (2.1)

where 7(0) is the probability vector for the initial population.
Proof by induction on k:
A) Base:

If £ =0 then

m(0) = (Q7)°(0)

Since (QT)° is the identity matrix, the base is established.
B) Induction:

The proof of the induction step relies on

w(k) = (QT) (k1) (2.2)
That is
N-1
m,(k) = 2_(:) Qijmi(k ~ 1) (2.3)

for0 < j< N-1.

Recall from definition 6 that ¢);; was defined as the conditional probability

Qi; = p{d(k) = ¢j | (k- 1) = ¢}

where ¢(k) represents the population at generation k. Recall from definition

7 that m;(k — 1) was defined as

mi(k — 1) = p{d(k - 1) = ¢}




By the definition of conditional probability

Qymik=1) = pw(k)paﬁ . S(i-dal}) =) ok 1) = )

=p{d(k) = ¢; A (k- 1) = ¢}

Substituting this into the right hand side of equation (2.3) gives

N-1
Y p{d(k) = ¢; A d(k—1) = ¢}
1=0

Now suppose a set of events Ag,..., Ay_-1 are such that
p{Ao V --- V An_1} =1 and p{4i A A;} =0ifi # j. Then for any event
B

N-1
p(B)= 3 p(B A Ai)

1=0

Substituting ¢(k) = ¢; for B and ¢(k — 1) = ¢; for A;, gives

N-1
p{o(k) = ¢;} = > p{o(k) = ¢; A $(k - 1) = ¢i}

=0

Since p{¢(k) = ¢;} = mj(k) by definition, equation (2.3) is established.

Substituting the inductive hypothesis

m(k~1) = (QT)* x(0)

for m(k — 1) in equation (2.2) gives
n(k) = QT (@) =(0)

= (@) x(0) (2.4)

8




Therefore equation (2.1) is established. O

Let
n = lim w(k)
k—o00
if the limit exists.

Expression (2.4) can be substituted into the right hand side to give

v = lim (@7)*(0)
= lim QT(Q7)*"' x(0)
= Q" {lim (Q7)*"* 7(0)}
= Q{ lim (Q7)" 7 (0)}
=QTr
Therefore if 7 exists, it satisfies Q7 7 = 7 and Ef;f,l ;= 1.

If some power of @ has only positive entries, then limg_,o (k) exists [4]. This corre-
sponds to our situation since we will later observe that a nonzero mutation rate implies

every entry of @ is positive. To solve for 7, routines from EISPACK [6], [7] are used.

There are n members in a population, therefore 0 < zj0 < n. The number of ways
of choosing z;0 occurrences of the string 0 for a population of size n is given by the

biromial coefficient

n
25,0
There are n — z;0 positions remaining to fill, so the possible combinations for string 1

are given by




Continuing in this way, the total possible combinations for all strings would be given by

A}
{ n n = zj0 =20 = %1~ T Zr-2
k zjno zjrl zjvr"l
n! (n — zjo)! o _(a—zjo—zin = - = Zr)
(n - ZJ, )'an ! (n - 2.70 - 2.7,1) z]» (n - szo - Zj,l -t T Zj,r—l)!zj.r—l!
n!

. 2 ]
z.'ho! %1 Zjr—1-

If the next generation is ¢;, then for each y thrre must be z;, occurrences of string y
produced. The probability, given events are independent, is almost given by

r=1

IT {pi(x)}»

y=0
but it must be remembered that exactly which z;, members of the next population are

y is not important, only that the correct number of strings occur.

Therefore, the probability that the next generation is ¢;, given that the current gener-

ation is ¢;, can be written as

n!

Qi; = , HP:(?I)”"

!
ZJ’O zJ] z]yr"' ° y=0

r—1 . zJ'y
nl Pi(y) ' (2.5)
y:O zj!y'

Therefore, if expression (2.5) is indeed the probability of the next generation being ¢;

given that the current population is ¢; then, since probabilities sum to 1,

r—1
I | (2:6)
y:() Iy
é;
LHERS

where |7] =~ 323,

10
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To prove that expression (2.5) gives a probability distribution, it is sufficient to show

THEOREM 3

For all probability distrib: tions p on the integers from 0 to z, and for all

nonnegative integers v < n where n is the population size

n! _ z p(y)zj,v
-(—1;-:_—1}7 = E n!g—'—-—zj’y! (27)
b
lpil =n—v

Proof by induction on z:
A) Base:

To establish the base let z = 0, let ¢; = < 2;0 >, and let p(0) = 1. Substi-

tuting these values in equation (2.7) gives

Z n 1220 ot ) Rnid _ n!

= nl
Z,0=n~-v zjao! (n - v)! (n — 'v)!

so the base is true,
B) Induction:
Let ¢; =< zj0, ..., 2jz-1,2j,z > and ¢; =< 2,0y o0 vy Zjz—1 >

Note that since p(0) + --- + p(z — 1) + p(z) = 1 then
p(0) plz—1)
— + v —_— = 1
1-p(z) 1 - p(z)

Letting p/(y) = 12 gives p'(0)+ -+ +p/(z ~1) = L and p(y) = p(y) (1-
p(z)). Using this relationship we have

11




E n! H p(y) s = E n! I—](:)p (3/) i (1 p(w))z,m

y=0 Y vy '

b; ?;
il =n—v |il =n—v

= & o [T 292 [T - plapys (28)

y=0 %y ! y=0
;

¢l =n—v

The last product of this expression can be rewritten as

1@ -p(e) = (1-p(@)T5 = (1-p(@)*! = (1 - p(a))™
=0

Substituting this into expression (2.8) gives

iy
z n| {H 4 (y) } (1 p(m))n—u
=0 Jiy
b;
l¢jl=n-v
By breaking the sum across all ¢ according to the value z; ., this can be

written as

n—v

S (-pey ¥ om] EE
25,2=0 y=0 va

2

|45l =1~ v =2

)zJ W

- S e T (H p’(y)m)p(x)z'”

y=0 Zjy! Zjze
/
¢;

ZJ,1'=0 y
l¢_,7l EN—-V- 2,

12




5 (L=p(E)™ (_p(=) \¥* p’(y)z“
> 1 (1_1,(:,,)) > "'H

z; 2=0 Zjz ) #=0 Zjy!
3
|¢5l =n—v -z
n—v z~1 2
= 3 (L=p(e)*>= p(z)”" 5 X w5 L (y) (2.9)
25,2=0 y=0 3y

/
3
|¢;| ER—=V- 2z

Substituting v = v+ z;; into the inductive hypothesis (equation (2.7)) gives

! fant BT PRI
(n_vn_ —_ S W] Py

y=0 Zjy!
/
2

|5l =n—v— 2z

Substituting the left hand side of this equation for the right hand sum of

(2.9) gives
iy n!
1= p(z))*"V" %= p(z)= 2.10
D i ey BICED
Note that
n! _ n!(n - v)! _f n-v n!
zigl(n—v—2zz)  (n=v)zl(n—v—2z) 2 (n—-o)
Substituting this result into (2.10) gives
jiniy n—v
(n— i L )ﬂ - p(a))"* " pla)s (2.11)
2y,2=0 Rjx

which by the binomial theorem is

13




n!

=) (1 -p(z) + p(2))"™"

n!
= (n-o)

If v=0and z = r— 1, then as a special case of this theorem we have
r—1
_ p,-(y)zz.v
1= =] P
y=0 Y
;j
HER

To complete the model, the conditional probability function p;(y) which gives the prob-
ability of producing string y from population ¢; must be calculated. This function
was developed by Vose and Liepins [1]. A summary of their model is presented in the

following section on operator G.

14




Chapter 3

OPERATOR ¢

The conditional probability function p;(y) is related to the operator G in the model
developed by Vose and Liepins [1]. Theirs is a mathematical model of a genetic algorithm
based on an infinite population of fixed length strings which are selected with probability
proportional to relative fitness and recombined using crossover and mutation. The

methods used are reproduced here without proofs.

Given a vector z, let |z| denote the sum of its coordinates. Let the operator @ be

exclusive-or on integers and let the operator ® be logical-and.

DEFINITION 1: F is the 7 x r nonnegative diagonal matrix with 4,7 th entry f(3),

where f is the objective function that assigns fitnesses f(7) to string ¢.

DEFINITION 2: s*-! =< s, ...,5,—1 > is the vector representing the probabilities
of the strings in the k£ — 1 generation being selected as parents where s, is the probability

that string a is selected.

The probability of string y being in the next generation is

Z p{ais a parent} p{bis a parent} p{yis a child of aand b} (3.2)
ab

15
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Since ¢: | ¢; |~! is a vector with the y th component equal to the proportion of y in
population ¢, F¢; is a vector pointing in the same direction as the vector having y th

component equal to the probability that y will be selected for recombination. Therefore

p{ais a parent} = st1 = (ii—z’i) (3.2)

To develop p{yis a child ofaand b}, let r,(y) be the probability that y results from
the recombination of parents a and b. Note that r,4(y) = regyeey(0). Using this

relation and equation (3.2) we can rewrite the sum in (3.1) as
D sa sy Tas(v)
a,b

= Z sﬁé},s{f@;ra,b((}) (3.3)
a®y,bdy

Define permutations o; by

T
05 <80y...95N=1 >T = < 80@jy- - -y S(N-1)&F >

where vectors are regarded as columns, and T denotes transpose. Using .his definition,

the sum (3.3) can be rewritten to yield

p{yis in the next generation} = Z(ay 5 1)g (0 $¥71)p 74,5(0) (34)
a,b

If we let M be the matrix with a, b th entry 7,(0), then M, will be the probability
that 0 results from the recombination process based on parents a and b. By letting the

crossover rate be x and ‘he mutation rate be u, we can derive an explicit formula for

M, from the following considerations:

1. The probability that 0 results from parents a and b depends on the probability
that mutation changes the 1’s occurring in the results of crossover to 0 and leaves

the other bits alone.
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2. The number of 1’s occurring in the results produced by crossing a and b at position

yaregiven by | a| —Aqpy and | b | + Agp,y where

Bapy =[(2'-1)®a| - |(2V-1)® b

3. The probability of changing a specified collection of b bits (in a length £ binary

string) via mutation is (1 — p)¢-bub.

These three observations lead to

+

X -1 {ulal"AG.b;v (1 - #)“"lal'l'Aa,b,y #IbH’AQ,b,y (1 — #)t—lb"‘Aa,b,v}
2 2

al (1 _ ,\t-lal M1 _ )M
+(1—x)(””(12”) +£—(12—")———)

1— ¢ 2-1 _ -1
= ( 2/‘) {nlal (1 _ X+ _Z_E_l_zn An,b,y) +n|b| (1 _X+ Zf_lznAa,b,y

y=1 y=1

where 77 = p/(1 — p) and division by zero at x = 0 and p = 1 is to be removed by

continuity.

Define the operator M by

M(z) = < (0o a;)TMao Zy...y(0r1 :c)TMa,_l z>T

Then equation (3.4) can be rewritten as

p{yis in the next generation} = ( .____l ? Z‘ |)
tily

Now we can define operator G by
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Therefore if the current population is ¢;, then the expected next population can be

described as:

G(¢:)

The y th component of G(¢;) is the expected proportion of string y in the next generation
given that the current population is ¢;. Since the expected proportion is equal to the

probability of occurrence, we have

pi(y) = (6(¢4))y

Note that if the mutation rate is nonzero, there is a positive probability of any string
mutating into any other string. Hence the matrix M is positive in this case. It follows
that the system of quadraiic forms represented by operator M is positive definite and
hence G(¢;) has positive coordinates since F' has nonzero diagonal entries. Therefore
the transition matrix @ of the Markov model has positive entries and its steady state

distribution vector = exists.

Let the populations encountered be regarded as points on the simplex

A={zeR :z; > 0and|z|=1}
through the correspondence ¢; « ¢; | ¢; |~* € A. The sequence of populations ¢;,
G(di), G(G(¢:)), ... quickly converges along a simple trajectory in A to a fixed point
of G. Presently, it has not been proven that convergence always occurs, but this is
conjectured by Vose and Liepins and is supported by several simulations. It has been
shown that operator G can have one o~ more fixed points. If only one fixed point exists,
then the initial population is of no consequence. If more than one fixed point exists,

then the initial population determines which convergence path is taken.
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Chapter 4

RELATING THE MARKOV
MODEL TO A GA AND THE
OPERATOR ¢

We relate the Markov model to a GA by developing summary vectors. This vector for the
GA represents the average number of occurrences of each string through generation k.
The vector for the Markov model represents the expected average as kK — co. Operator G
also gives expected string averages, but for an infinite population. We let the population

size n of the Markov model become large to relate the Markov model to operator G.

The vector

1 N-1
(k)= = 3 ¢ (k)

=0

has y th component equal to the proportion of the time string y was encountered in all
populations through generation k, where n is the population size, ¢(k) is a vector having
i th component equal to the number of occurrences of population ¢ through generation

k, and ¢; is the incidence vector for population 7.
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The Markov model behaves exactly like a genetic algorithm, but its steady state distri-
bution models population behavior as k — oco. That is, the steady state distribution is

given by

lim #(k) = lim =(0) Q* = the solution to the equation 7 =7 Q
k~o0 k=00

where 7(0) is the vector describing the probability of each population at generation 0,
and @ is the transition matrix. The j th component of  is the relative proportion of

time that the j th population occurs.

Therefore since

) c(k); o

fim, g =

we have
N-1
. _ 1 . c(k)
fm, o6 = 5 2, Jim =
1 N-1
= - E oim = s

n =0

which is the expected population with respect to the steady state distribution of the

Markov model.

To relate the Markov model to G, we visualize populations as points in the space A. The
successive populations move around in A under the influence of selection, crossover, and
mutation. Since the expected population, s, of the Markov model represents an average
over an infinite number of generations and since a fixed point of G also represents a
similar average, it might be expected that the Markov model would give high probability

to populations near a fixed point of G.

Nix and Vose [3] have shown that as the population size n approaches infinity, the
steady state distributions only have limits which give positive probability only to the

fixed points of G. Therefore as the population size increases, the proportions of strings
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encountered in either a GA or the Markov model converge to the fixed point of G when
only one fixed point exists. If more than one fixed point exists, then the populations
seen are less predictable because of unknown variables such as the number of fixed points

and how strong an attractor each fixed point is.
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Chapter 5

THE MINIMUM DECEPTIVE
PROBLEM

Minimum deceptive problems have been classified by Goldberg into two types according
to whether they make it easy or hard for a GA to find the optimal string [2]. We use
two minimum deceptive problems, one of each type, to investigate the Markov model.
In this chapter, we summarize the problems and the mathematical model that Goldberg

used to make his classification of minimum deceptive problems.

DEFINITION 1: A schema is a sequence of 0s, 1s, and *s representing the set of all
strings which match the sequence, where * matches both 0 and 1. For example, schema

1* represents the strings 10 and 11.

DEFINITION 2: Let f; represent the fitness of string ¢ where strings are identified
with their binary representation. Define the utility of a schema as the average fitness
of all strings represented by the schema. Define different schema to be competing when
they have the same fixed positions. As an example, f. is the utility of schema 1% and
equals the average fitness of strings 10 and 11. Since we are using the binary alphabet,

the only competing schema for 1* is Ox.
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DEFINITION 3: Optimal strings are defined as strings having fitness equal to the

global optimum, suboptimal strings have lesser fitness.

DEFINITION 4: A problem is deceptive when the optimal string z € S; and the

utility of S2 > the utility of 5; for the same two competing schema S; and S,.

The smallest string length where deception is possible is two. Assuming the string
length is two and that string 11 is optimal, there are four possible schemata containing
1 fixed position; two contain suboptimal strings (0%, *0) and two contain the optimal

string (1%, *1). By the definition of deception, either

fou = foo ;— Jo1 S fro -; fu _ fie (5.1)
or
fuo = Joo ';' fio S Jo1 -; u - £ (5.2)

must be true. Without loss of generality, we assume that equation (5.1) is true so that

fox > fi. is the deceptive condition.
The fitness can be normalized with respect to the complement of the global optimum

to give

fu foo ;_ fro

rT=" c==— ¢

Joo foo foo
therefore the globality condition can be written
r>c¢ r>1 r>¢c
and the deceptive condition can be written

r<l4+e-¢

It follows that
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d<l; d<e

From these conditions, it is apparent that ¢ may have a range of values which are

described as two types of deceptive problems:

Typel: for > foo(c > 1)

Type Il foo > fo(c £ 1)

In developing his model of the two-bit problem, Goldberg made some initial obser-
vations. When two-bit strings mate and crogs, the offspring are always copies of the
parents if the parents are noncomplementary and different from the parent if the parents
are complementary. That is, noncomplementary parents 00 and 01 produce offspring 00
and 01. Complementary parents 00 and 11 produce offspring 01 and 10. Using these
observations, Goldberg modeled the expected proportions for strings 11 and 01 in the

next generation by:

Pt =}, "f-}—l [1 - X f—;gpf)o] + X fo;fm P10 (5.3)
st = rhy f;l 1 - f}o i ] + X fo;fu PhoPi (5.4)

where f is the average fitness of the population, fi; is the fitness of string 11, pt, is the

expected proportion of string 11 at generation ¢, and x is the crossover rate.

The proportions of the remaining strings in the next generation can be modeled by

exchanging all strings in (5.3) and (5.4) with their complemen.s.

Goldberg found [2] that as long as there is some initial representation of the string 11
in the population, his model predicted a GA would find the global optimum for Type
1 problems. He also found that when solving the Type 2 problem, his model would

converge to the suboptimal if the string 00 was too great a proportion of the initial
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population. He concluded that the Type 2 problem will find the suboptimal string,
(GA-HARD), and that the Type 1 will find the optimal string, (GA-EASY).

Goldberg did not consider the effects of mutation on the expected proportions of strings
in the next generation when developing his model. Therefore, we use operator G because
it does not 1equire a zero mutation rate and is therefore more characteristic of a true
GA. If we let the mutation rate u = 0, string length £ = 2, and crossover y = 1, the

operator G can be shown equivalent to Goldberg’s model when the string length is two.
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Chapter 6

RESULTS OF SIMULATIONS
AND CONCLUSIONS

Tn this chapter, we define the Type 1 and Type 2 objective functions used for running
simulations. We discuss the methods used for comparison. We discuss the results of

simulations of the Markov model, operator G, and GAs. Finaliy, we make conclusions

based on the results.

Simulations of the Markov model, operator G, and GAs were run using Type 1 and
Type 2 objective functions with crossover and mutation rates of .8 and .01 respectively.

The Type 1 and Type 2 fitness functions used were

Type 1 Type 2

string | fitness || string | fitness

00 4.00 00 4.00

01 4.10 01 3.00

10 0.10 10 1.00

11 4.11 11 5.00
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These functions qualify since fi; is the global optimum, fo. > fi., and for Type 1
c= 54‘%) > 1 and for Type 2 ¢ = %% < 1. Type 2 problems were broken into Type
2A and Type 2B. Type 2A has an initial population that is heavily biased towards
string 00 and Type 2B has approximately equal initial proportions of strings. For our
investigation, we ran simulations for operator G, GAs of population size 10, 100, 1000,
and 10000, and both GA and the Markov Model for population sizes 2, 6, 10, 14, 18,
and 22. Large memory requirements for the Markov model prevent population sizes

larger than 22 from being run since each simulation required two N x N matrices and

six N x 1 matrices of double precision numbers (N is 2300 for population size 22).

Since operator G models an infinite population, we wanted to see if as the population size
of the GA increased, its behavior converged to that of operator G. We use the summary
vector s(k) for the GA and the fixed point(s) of G for making comparisons. Since
convergence normally occurs rapidly at first and slows as the number of generations
increases, all vectors are recorded at generations which are powers of two to give more

detail to lower generations. Graphs representing the results of our simulations are on a

logarithmic scale.

To compare the Markov model to a GA we calculate the expected population, s, with

respect to the steady state distribution and define the function

b(k) = max{|so—s(k)ol, |s1—s(khl | s2—s(k)2], | 33— s(k)s}

to measure how far apart the average populations are. We also calculate the covariance

matrices for the Markov model and GA respectively as:

N-1

D;; = E_:o Wm(%(d’m)i - Si)(%(d’m).i = 55)
N-1
(ks = 3 LB (g - s (8 - a8
m=0

To compare these matrices we define the function
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Functions b(k) and h(k) are used to determine if convergence is occurring, the rate at

which it occurs, and the effect of population size.

In addition to graphing these convergence functions, we also rotate A, which is embed-
ded in four dimensions, into a three dimensional space so that we can visualize it. The
result is a solid tetrahedron. Probability distributions over A are visualized by selecting
a population coordinate in the tetrahedron and summing the probabilities of all popu-
lations within radius r of the coordinate. The sums are used to scale color intensity of
the coordinate where darker color represents larger sums. Therefore, dark areas of the
tetrahedron represent-populations that occur with high probability. For example, fig 51
shows that for population size 22, Type 2, populations with the largest proportions of

string 11 have a higher probability of occurring.

6.1 Type I Results

The Markov Model/GA, Type 1 simulations, figs 1-6 in the appendix, show that func-
tions b and h approach zero, therefore string averages of the GA and the model are
getting closer as the number of generations increases. They also show that as popula-
tion size increases there is less variation in the functions, therefore string averages for
large populations are closer than for small populations. Convergence seems to occur
by 100,000 generations for all population sizes. The tetrahedrons for Markov Model,
Type 1 simulations, figs 39-44, show that as the population size increases, populations
are more probable near the fixed point of G, {0.044, 0.764, 0.008, 0.182; (fig 19). The
fixed point is found by using the components of the vector as coordinates in the tetrahe-
dron. However, they do not conclusively show that as population size increases positive
probability is given only to the fixed point of G. We cannot run simulations of the

Markov model large enough to show this result, but since as the number of generations
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become large the results of GAs seem to match those of the Markov model, we used a
GA to simulate the Markov chain. The tetrahedron in figure 45 clearly shows that the

populations encountered are grouped near the fixed point of G as given in fig 19.

If we compare results of simulations of a GA, figs 20-23, and operator G, fig 19, we see
that as population size increases, convergence to the expected proportions becomes more
rapid. Note that these graphs represent averages of each string. This is not surprising
since operator G models an infinite population and shows fast convergence. All graphs
show that the suboptimal string 01 is the clear winner. Hence the Type 1 problem is
GA-HARD when a mutation rate of .01 is used. This was unexpected since Goldberg
[2] had shown the Type 1 problem without mutation to be easy. We verified Goldbergs
result by using operator G with mutation off, fig 38, and found the optimal string as
Goldberg predicted.

To confirm that for operator G the Type 1 problem with mutation is difficult for every
initial populatic.,, we ran simulations using a lattice of coordinates in the tetrahedron
as initial populations. Each coordinate was colored according to its corresponding fixed
point. The results, fig 52, show only one pixel intensity, therefore only one fixed point
was found. A more extensive simulation used four million initial random populations,
and again all converged under operator G to the same fixed point. Random populations

correspond to random points in A and were chosen uniformly in A according to

L1 1 111 L
<ujujug, ui (1-uj), uiui(l—ug),l1—u >€A

where u;, u, and u3 are independent uniformly distributed random variables in [0,1].
We conclude that mutation makes the Type 1 problem GA-HARD according to Gold-
bergs criteria (remember that on two bit strings, operator G is equivalent to extending

Goldbergs model to accommodate mutation).

Since we were obtaining unexpected results, we wondered how well Goldberg’s results
would model actual GAs. After all, his model assumes an infinite population in addition

to no mutation. We ran simulations for population sizes 10000 and 100000, fig 24-
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25. Population size 100000 finds the optimal string 11 as predicted, but population
size 10000 finds the suboptimal string 01 at 10,000 generations. Evidently 10000 is
not a large enough population size for an infinite population model of the Type 1
problem without mutation to be correct. This should caution the GA community against
applying these models to predict GA behavior (as they currently do) since real GAs-are

run with small populations.

6.2 Type II Results

The objective function used in the Type 2 problem has two fixed points, figs 26 (Type
2A), 33 (Type 2B). To determine the proportion of populations that converged to each
fixed point, we ran simulations as before using random initial populations. The results
show 75% of the populations converge to the Type 2B fired point. A simulation using a
lattice of coordinates in the tetrahedron as initial populations, fig 53, shows the basins

of attraction for the two fixed points of G.

Since the Markov model is independent of initial population, we first look at the tetra-
hedrons for the Type 2 problem, figs 46-51. We can see that as the population size geis
larger, populations are more probable near the Type 2B fixed point. It is apparent that

for the Type 2 objective function, this fixed point i. a stronger attractor than the other.

If we look at the Markov Model/GA, Type 2A simulations, figs 7-12, and the Type 2B
simulations, figs 13-18, we see that the 2A and 2B simulations converge although at
different rates. The graphs show that the 2A function b values are initially larger. This
is to be expected since a string 'ther than the one found by the Markov model initially
dominates. However, since convergence does occur, the GA must eventually agree with

Markov model.

The GA, Type 2A simulations, figs 27, 29-31, showed that population sizes 10 and 100
found the optimal string as predicted by the Markov model while the larger populations

were dominated by the suboptimal. To investigate this apparent anomaly, we ran GAs
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for population sizes 10, 20, 30, 40, 50, and 60, fig 32. As population size increased, the
time required for the GA to find the optimal string increased. This explains the results
for the larger populations, fig 30 and 31; the GA simply was not run large enough.
The Markov Model is based on an infinite number of generations and finds the optimal
string. Operator G is based on an infinite population and and finds the suboptimal.
As population size increases, we expect a GA to more closely follow operator G .for an
increasing number of generations by having populations dominated with the suboptimal.
However, this behavior must eventually reverse since the GA converges to the Markov

model, fig 32, as the number of generations goes to infinity.

The graphs show that the Type 2 problem with mutation is not GA-HARD. Again,
these results were unexpected since Goldberg [2] had shown the Type 2 problem without

mutation to be hard.

We conclude that GAs do closely follow the Markov Model and conjecture that the
Markov model agrees with the fixed point of G which has the largest basin of attraction.
Convergence of GAs to the Markov model occurs quickly for the Type 1 problem, but
we saw in the Type 2 problems that when operator G has more than one fixed point,
convergence may require large numbers of generations. When there is only one fixed
point of operator G, then increasing population size speeds convergence of a GA to
the Markov model. Conversely, if there is more than one fixed point and the initial
population is within the basin of attraction of a suboptimal, then increasing population
size slows convergence. Perhaps the most surprising result is that mutation can make

GA-HARD probleme easy and GA-EASY problems hard.

Since we have shown that GAs using a small population size may not yield the same
results as an infinite population model, and that mutation can reverse results, caution
should be exercised by the GA community when using these model to predict GA

behavior.
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Markov Model for Population 18, Type 2A
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Figure 12. Convergence of a Genetic Algorithm to the
Markov Model for Population 22, Type 2A
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Figure 13. Convergence of a Genetic Algorithm to the
Markov Model for Population 2, Type 2B

function value

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0n.2s
0.20
0.15
0.10
0.05
0.00
-0.05

Fonction b
Tinction b~
\
\
A
\
\ A
\\ / \\
P
I - Zj .\\\
1 T .
generations

1e+00  1e+01 le+02  le+03 le+04  1e+05

le+06

Figure 14. Convergence of a Geanetic Algorithm to the
Markov Model for Population 6, Type 2B

41




function value

Tunction 5__.
1.00 - nction
0.95

0.90
0.85
0.80
075 /\‘\
0.70 \
0.65 X
0-60 \
0.55 )
0.50

0.45
0.40
0.35 \
0.30 Y
025
0.20 \ A
0.15 \ La
0.10 A \

0.05 A7 NN -
07 N / 7

—

-0.05 i
O37c+00 16401 1402 1c403  1e404 16405 1et06= o o™

Figure 15. Convergence of a Genetic Algorithm to the
Markov Model for Population 10, Type 2B

function value

!ﬁncuon b

1.00 nction

095
0.90
0.85
0.80
0.5
0.70
0.65 \/‘\\
0.60 \
0.55 ;
0.50 i
0.45

0.40 —\\
035 \
030 \
025 \
020 C
0.15 q
0.10 <

0.05 S
0.00 /s i

-0.05 generations
le+00  1e+01 le+02 le+03 le+04  1let0S 1e+06

Figure 16. Convergence of a Genetic Algorithm to the
Markov Model for Population 14, Type 2B

42




function value

Encuon 5_“

1.00
0.95

Tanction h

0.90

0.85

0.80

0.75
0.70

0.65

0.60

0.55

0.50

N\

0.45

0.40
0.35

0.30

0.25

3
—
\
\
\

0.20

0.15
0.10

\

0.05

AN

0.00

~

-0.05

1e+00  1et01 1et02 1et03  1let04 1et05  1let06

generations

Figure 17. Convergence of a Genetic Algorithm to the
Markov Model for Population 18, Type 2B
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Figure 18. Convergence of a Genetic Algorithm to the
Markov Model for Population 22, Type 2B
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probe Hility

string 00
1.00 string 01
0.95 string 10”
0.90 string 11
0.85

0.80
075 z e

0.70
0.65 //
0.60
0.55 //
0.50 ——
0.45
0.40 —|
035 —
0.30 AN

} ~_
025

0.20
0.15 LN G
0.10 —} A

0.05 ,_.--:.:; — _ - [~
0‘00 repcce~lg--g--n--b-g-.g-.pl-9p--9--8-

P P S b AR DS |

-0.05 G
let00  le+01 1e+02  1e+03 1e+04 1405 1e4+06 generations

Figure 22. Probability of Encountering String i in k
Gencrations for Population 1000, Type 1

45




probability

sting 00

1.00
095

stiing 01

e To

0.90

String 117

0.85

0.80

0.75
0.70

0.65

0.60

0.55

0.50

0.45

0.40
0.35

0.30

0.25

AN

0.20

AN

\ P T T ol X R gy

0.15
0.10

0.0s

P - L4
hodnd SN 'l

0.00

= wisg T
il &

Ittt o2

-0.05 — rati
1e+00 16401 1402 1e+03  1ct04  1et0s  Eorcronons
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Generations for Population 10000, Type 1
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probability

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
-0.05

generations

le+07

0
0
Y

e
h L, .

1e+00

le+01

let+02

1e+03

let04  le+05

Figure 28. Probability of Encountering String i in k

Generations for Population 10, Type 2A, Mutation 0

48

generations
1e+06



probability
string O
1.00 sttng 1
095 al tiingZ”
0.90 v Y string 3
0.85
0.80 / \\
0.75
0.70
0.65 J/
0.60
0.55
0.50
0.45
0.40
0.35

0.30
0.25

0.20 T —
o/ N !

0.15 S 4
N 7

0.10 SR .

0.05 . ;

0.00 =

-0.05 i
1e+01 1c+03 16405 leto7 Eoncrauons

o -

s e TP
|t ( - b d. o
(L o e
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Figure 31. Probability of Encountering String i in k
Generations for Population 10000, Type 2A
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Figure 33. Probability of Encountering String i in k
Generations for Infinite Population, Type 2B
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Figure 34. Probability of Encountering String 1 ink
Generations for Population 10, Type 2B
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Figure 35. Probability of Encountering String i in k
Generations for Population 100, Type 2B
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Figure 36. Probability of Encountering String i in k
Generations for Population 1000, Type 2B
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Figure 37. Probability of Encountering String i ink
Generations for Population 10000, Type 2B
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Figure 38. Probability of Encountering String i in k Generations
for Infinite Population, Type 1, Mutation O
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Figure 39. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 2, Type 1: (a) view 1, (b) view 2
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Figure 40. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 6, Type 1: (a) view 1, (b) view 2
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Figure 41, Probabilities of Populations within Radius r of Given Population
Coordinates for Population 10, Type 1: (a) view 1, (b) view 2
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Figure 42. Probabilities of Populations within Radius r of Given Populat ion
Coordinates for Population 14, Type 1: (a) view 1, (b) view 2
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Figure 43. Probabilities of Populations within Radius r of Given Populat ion
Coordinates for Population 18, Type 1: (a) view 1, (b) view 2
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Figure 44. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 22, Type 1: (a) view 1, (b) view 2
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Figure 45. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 1000, Type 1
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Figure 46. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 2, Type 2: (a) view 1, (b) view 2
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Figure 47, Probabilities of Populations within Radius r of Given Population
Coordinates for Population 6, Type 2: (a) view 1, (b) view 2
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Figure 48, Probabilities of Populations within Radius r of Given Population
Coordinates for Population 10, Type 2: (a) view 1, (b) view 2

63




@

Figure 49. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 14, Type 2: (a) view 1, (b) view 2
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Figure 50. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 18, Type 2: (a) view 1, (b) view 2
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Figure 51. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 22, Type 2: (a) view 1, (b) view 2
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Figure 52. Basin of attraction for Type 1 problem
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Figure 53. Basin of Attraction for Type 2 Problem
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