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Preface

The United States Air Force Test Pilot School (TPS) seeks to

automate their scheduling process. Current methods used to build

the TPS schedule are manual and time-consuming. Also, after the

initial schedule is developed, interruptions in the schedule

occur that require the TPS to spend many hours trying to

reschedule events. The purpose of this research was to

investigate models that could be used to determine a feasible

schedule for the TPS training program and form the basis for an

automated scheduling system.

The primary model investigated involves binary (0-1) integer

linear programining and the proposed solution method employs

heuristic and standard techniques. It is the conclusion of this

research that the method developed here could produce a feasible

schedule for small problems that are representative of a portion

of the TPS scheduling problem. However, the method cannot

efficiently solve large problems like the full TPS problem.

This thesis recommends that more investigation be done to

determine a way to allow the method developed here to efficiently

solve the large scheduling problem. The method could then be

used in an automated scheduling system for the TPS. Such a

system would reduce the amount of time required for initial

schedule development and rescheduling as well as track program

proc.-ress and resource utilization.

The idea for this research came from ;4ajor Danfel sisZEiL1, an

ii



The idea for this research came from Major Daniel Isbell, an

instructor of test management at the TPS. Major -sbell has

displayed a general concern for improving the TPS scheduling

process and has spent considerable time researching a solution to

the problem. I would like to express my appreciation to him for

his ingenuity, support, and enthusiasm. I would also like to

thank my faculty advisor, Dr. James Chrissis, for his help and

patience, and faculty member Captain John Borsi, for his

enthusiasm, keen insight, and many helpful comments. Finally, I

would especially like to thank Tom, for somehow always being

there.
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Abstract

This study investigated models that could be used to

determine a feasible schedule for the TPS training program and

form the basis for an automated scheduling system. Current

methods for developing the TPS schedule are mostly manual and

equate to mentally scheduling 1,000 events over 46 weeks using 9

different resources, while considering resource and activity

constraints. This process is time-consuming, and makes

rescheduling a nightmare.

A literature search revealed that the TPS scheduling problem

belongs to the class of resource-constrained scheduling (RCS)

problems. Among the methods available for modeling RCS problems

is integer linear programming. This study formulates the TPS

problem as a binary (0-1) integer linear program (BIP) and

employs a solution method consisting of heuristics and the

Branch-and-Bound technique.

The method developed in this study can produce a feasible

schedule for small problems that equate to portions of the TPS

schedule. However, it cannot efficiently solve large problems

such as the full TPS problem because of the computational

complexity of the 0-1 formulation. An efficient solution of the

full TPS problem using the 0-1 formulation would at least require

the development of a specialized Branch-and-Bound algorithm.

Alternatively, a new model could be developed that exploits the

network structure of the TPS problem and thus would solve the

problem more efficiently. However, more work would still need to
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S.

be done to find ways to allcw the network model to handle the TPS

resource constraints.

It is recommended that more investigation be conducted to

alter the method developed in this study so it could be used to

solve the TPS scheduling problem. The method could then form the

basis for an automated TPS scheduling system that could save the

TPS considerable time, resources, and frustration.
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Investigation of a Zero-One Integer Programming Ar"roach

to Automating the Scheduling Process

at the USAF Test Pilot School

1. Introduction

1.1 Background

The United States Air Force conducts flight testing to

ensure that only operationally effective and suitable systems are

delivered to the Air force (7:1,6). In support of flight test

operations, the Test Pilot School (TPS), located at Edwards AFB,

trains technically competent flight test pilots, navigators, and

engineers.

To successfully manage the TPS training program and meet all

of the training objectives, the TPS develops a detailed training

schedule before the start of each class. The term 'class' refers

to a specific group of students who train together in the 46-week

TPS program. Development of the training schedule is a complex,

mostly manual, time-intensive task that can take weeks to

complete initially, and many hours to revise when changes are

needed. For this reason, the TPS desires an automated scheduling

system that would aid the development of the initial schedule and

subsequent revised schedules (12).

The current TPS schedule development process starts about

five to six months before the entry of each class. At that time,
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the schedulers meet in a room equipped with what the TPS refers

to as its "magnetic anomaly board", a wide magnetic board that

shows a rough outline of the entire forty-six week curriculum at

once. With a list of available resources on hand, the schedulers

try to validate the sequencing of the schedule and match

resources to needs. The end product of this meeting is a rough,

weekly schedule, recorded manually. The specific daily schedules

are then developed a few weeks in advance of their intended

execution. The schedules must frequently be revised, however,

due to interruptions such as flight physicals and other medical

appointments, illness, annual standardization and evaluation

inspections, and instructor training. Using current methods, it

can take as long as sixteen hours to develop a new, feasible

schedule (13).

Scheduling in general can be a very complex process because

of its combinatorial nature (24:65). For each TPS class, for

example, the scheduler must consider 500 events over 46 weeks

using 18 different resources. The TPS scheduling process is

additionally complicated because it has 1) specific precedence

requirements (e.g., flight test techniques must precede each

flying session); 2) priorities (e.g., academics should receive a

higher priority in scheduling than flying because the academics

are less flexible); and 3) various resource constraints. These

resource constraints include a limited number of academic and

flight instructors, each of whom can perform up to eleven

2



different tasks -- thus special care must be taken not to over-

task (i.e., expect the instructors to perform two distinct tasks

at the same time) the resources.

As a step toward automating the TPS scheduling process,

planners used spreadsheets such a QUATTRO PRO and TIMELINE to

construct charts and graphs. The school has also surveyed

commercially-available project management software that provide

managers with traditional management aids such as bar charts,

Gantt charts, and Program Evaluation Review Technique

(PERT)/Critical Path Method (CPM). However, none of this

software can adequately handle the TPS resource constraints.

That is, even packages that allow for resource-

constrained scheduling do not allow resources to be defined with

multiple capabilities and, as a result, can over-task resources

(12). As an illustration of how this can happen, consider the

resources and their associated capabilities in Table 1.

3



TABLE 1

Illustration of Resource Conflicts

Pilot Aircraft Capabilities
Resource A B C D

Joe X X

Pete X X

Jim X X

X --> the pilot can instruct in that aircraft

Table 1 indicates, for example, that Joe can instruct in aircraft

A and B. In the available commercial packages, resource

assignments are made by matching the capability directly to the

need, not accuunting for situations where two different tasks

require the same resource, but for different purposes. For

example, if task 1 requires experience in aircraft B and task 2

requires experience in aircraft C at the same time, then Pete

could be erroneuously assigned to both tasks 1 and 2.
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1.2 TPS Curriculum

Each TPS class consists of twenty-five students, including

fifteen pilots, two or three navigators, and seven or eight

engineers. Classes last for forty-six weeks, starting in both

January and July and ending in December and June, respectively.

Thus there is a six-month overlap period between the classes

wherein the two classes share resources. During this overlap

period, the older class is referred to as the "A" class and the

newer class is the "B" class (25).

The TPS curriculum is divided into four distinct phases and

each phase consists of an integrated academic and flying program.

These phases include the following

I. Performance Phase

II. Flying Qualities Phase

III. Systems Phase

IV. Test Management Phase

Ideally, the four phases occur sequentially and within each

phase occurs (in order) 1) academic theory; 2) flight test

techniques (FTT) ; 3) flying; and 4) final reports.

5



1.3 Research Objective

The primary objective of this research is to develop a model

that can be used to determine a feasible schedule for the TPS

training program. Feasibility (i.e., elimination of resource

conflicts) should be the model's objective rather than optimality

(i.e., early graduation) in that a schedule that will allow the

students to graduate on time is more desirable than one that

provides for early graduation. The model developed should form

the basis for an automated scheduling system that can be used for

initial schedule development and rescheduling. To accomplish

this objective, this research

1) Formulates the TPS scheduling problem as a
mathematical programming model;

2) Selects an appropriate algorithm for solving the
formulated problem;

3) Demonstrates the approach for a sample problem
representative of the TPS schedule; and

4) Discusses the application of this process to the
full TPS problem.

1.4 Overview

The thesis effort is described in detail in the remaining

chapters. An overview of the literature that contributed to and

motivated the model formulation is provided in Chapter 2. The

primary model formulation and the solution algorithm investigated

to solve the problem are described in Chapter 3. Chapter 3 also

discusses sample problems solved using this formulation and

6



solution algorithm. Finally, conclusions and recommendations for

continuing the analysis of the TPS scheduling problem are

presented in Chapter 4.
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2. Literature Review

This chapter presents a formulation of the problem, as well

as an overview of the literature that contributes to the

formulation. This first section describes the resource-

constrained scheduling problem in general. The second section

discusses the techniques available to solve this type of

scheduing problem. The chapter concludes with a simplified

formulation of the TPS problem.

2.1 The Resource-Constrained Scheduling (RCS) Problem

Scheduling is "the allocation of resources over time to

perform a collection of tasks." Thus vital elements in

scheduling models include resources and tasks and, as a result,

classification of the scheduling problem depends upon the

configuration of the resources and the behavior of the tasks

(1:26). The TPS scheduling problem can thus be regarded as one

that possesses

multiple resource types;
single stage tasks;
resources available in unit amounts;
priority and precedence among the tasks;
dynamic possibilities (new tasks can occur).

The TPS problem can be further described as:

non-preemptive (tasks cannot be stopped once
started);

deterministic (task durations are certain and
known).

In general, the TPS scheduling problem belongs to the class

8



of RCS problems, scheduling situations where there are fixed

levels of resources available. However, the TPS problem is

slightly more complex than general RCS problems presented in the

literature (20:1205; 23:94; 15:48) because most authors discuss

problems in which the exact resources required by a task are

known in advance. In the TPS problem, several resources could be

used for a task and thus the problem becomes one of assignment as

well as scheduling.

A common objective in solving this type of problem is to

minimize project duration or "makespan", the length of time

required to complete all tasks. This is achieved primarily by

specific sequencing of the activities (1:299). Other objectives

may exist, such as trying to determine least-cost schedules or

optimal amounts of resources to procure (5:298); however, none

of these latter objectives is applicable to the TPS scheduling

problem. Hence, a model of the TPS problem must seek to minimize

total project duration or rather, ensure that all tasks (TPS

curriculum objectives) are completed by the designated graduation

date.

In the literature, project scheduling is sometimes discussed

as job shop scheduling, flow shop scheduling, or assembly line

balancing (ALB) (1:6). However, this thesis refrains from

describing the TPS schedule as a job shop, flow shop, or ALB type

of schedule and does not use any of the associated terminology.

9



2.2 Solution Approaches for the RCS Problem

Solving the RCS problem amounts to answering two kinds of

questions (1:5)

Sequencing: When will each task be performed?

Allocation: Which resources will be allocated
to perform each task?

Among the earliest and simplest techniques used to schedule

projects are bar charts, Gantt charts, milestore charts, and line

balancing techniques. While useful for most simple project

management functions, these techniques are not sufficient for

solving the RCS problem because (3: 8-11,13; 1:53-56)

1) They become unmanageable and unreadable for large
projects which may be comprised of many hundreds of
interrelated activities;

2) They cannot depict the interdependencies of
activities;

3) Their static scales make it difficult to reflect the
dynamic nature of changing plans; and

4) They cannot adequately differentiate between
critical and noncritical problem areas.

A more advanced method for solving the RCS problem involves

formulating a model of the problem and then deriving a solution

from this model using a specific algorithm, where the algorithm

is preferably applied on a computer using any one of a number of

commercially available software packages. A key issue in

selecting an algorithm is its computational complexity, which can

determine how practical the algorithm is (15:4). The next two

subsections describe available modeling alternatives and solution

algorithms for the RCS problem, and the third subsection

discusses the computational complexity of the algorithms.

10



2.2.1 Model Formulation. Two general ways to model or

formulate the RCS problem involve representation of the project

as a network or as a linear program. A network model widely used

in project management is the Program Evaluation Review Technique

(PERT) or the Critical Path Method (CPM). PERT and CPM are very

similar. The only difference between them is that in CPM,

activity completion times are assumed to single, deterministic

values, whereas in PERT, completion times are more uncertain,

expressed in terms of lower and upper bounds (22:271). Much

commercial software implementing PERT/CPM is available to

efficiently solve the RCS/TPS problem. However, PERT/CPM use

only activity time information, without consideration of resource

requirements or availabilities (5:298). In fact, in the general

area of networks, increasing attention has been given in recent

years to the problem of resource allocation associated with

project scheduling (22:296). Given the difficulty in defining

the resource constraints in network models, this thesis will

focus on linear programming as a method of modeling the TPS

problem and will not discuss network approaches.

Relative to network formulations, linear programming uses a

mathematical model to describe the problem in which all of the

functions in the model are required to be linear. Linear

programming involves the planning of activities (represented as

ii



variables in the formulation) to obtain an optimal result, i.e.,

a result that reaches a specified goal best among all feasible

alternatives (11:24). The goal is expressed in an objective

function and feasibility is defined by constraints.

A special type of linear program that can be used to model

the RCS problem is the integer linear program (IP), in which all

of the variables are restricted to integer values. A variant of

the IP is the binary integer linear program (BIP), in which all

variables are restricted to binary (or 0-1) values. As an

illustration of how to represent a project as a BIP, consider the

simple problem of scheduling four tasks over four days, where

1) the objective is to minimize total project duration;
2) each task is completed only once;
3) each task can be completed in one day;
4) no resource constraints are considered;
5) tasks 3 and 1 must precede tasks 1 and 2,

respectively; and
6) task 4 is the terminal activity.

Although this problem is small enough that it can be solved by

inspection (schedule tasks 3, 1, 2, and 4 on days one through

four, respectively), the BIP model for illustrative purposes is

Let x.t = 1, if task j is completed during time period t
0, otherwise,

Minimize 1x 41 + 2x. 2 + 3x 43 + 4x 44

Subject to I) x 11 + x 12 + x -13 + x1 = 1
2) x 21 + X22 + x23 + x24 = 1

3) x 31 + x32 + x 33 + x 34 = 1
4) x41 + X42 + x 43 + x 44 = 1
5) 1x 31 + 2x 32 + 3x 33 + 4x 34 + 1 <=

ix 1 1 + 2x 12 + 3x 13 + 4x 14
6) I1x, + 2x 12 + 3x13 + 4xi, + 1 <=

1X 2 1 + 2x 22 + 3x 23 + 4x24
7) x j = 0 or 1

12



The first four constraints ensure each task is completed only

once. The fifth and sixth constraints represent the required

precedence relationships.

2.2.2 Solution Algorithms. The general procedure for

solving LP problems is the simplex method, "an algebraic

procedure where each iteration involves solving a system of

equations to obtain a new trial solution for an optimality test"

(11:53). It is a very efficient algorithm for solving large

problems. A detailed description of the algorithm is available

in almost any elementary management science text.

Integer programming (IP) problems can be more difficult to

solve than LP problems because the amount of computational work

can grow exponentially as the number of variables increases and,

in contrast to LP problems, the number of variables becomes more

important than the number of constraints. In fact, "developing

IP algorithms continues to an active area of research." A common

technique used in IP algorithms is a technique called LP-

relaxation, where the original problem is considered except that

the integer restriction is deleted. The solution obtained is

then rounded to the nearest integral value(s). However, pitfalls

associated with this approach are that the rounded solution may

not be optimal or even feasible (11:486-489). Certain IP

algorithms are often used to avoid these pitfalls, including

(10:455-456,473)

13



cuttinQ plane algorithms: Iterative approaches that
ignore the integrality constraints but which add
constraints to the problem formulation which exclude
non-integer extreme points.

implicit enumeration and branch-and-bound algorithms:
These algorithms conduct an exhaustive search of all
possible integer solutions but in such a way that it is
often not necessary to explicitly consider every
integer solution to ensure that optimality has been
found.

Each of the implicit enumeration procedures begins the

process by solving only part of the original problem through

relaxation of certain of the constraints or temporarily ignoring

certain imposed restrictions. As fewer and fewer of the

restrictions are ignored, a tree of partial solutions is

generated. The methods differ in how the tree of partial

solutions is generated and in the manner in which inferior

solutions are recognized and discarded (21:855). Patterson

compares these three approaches and concluded that the Branch-

and-Bound technique produced a solution in the minimum amount of

computation time. In fact, the basic IP algorithm used by

commercial software is a Branch-and-Bound algorithm with LP-

relaxation. A summary of the Branch-and-Bound algorithm can be

found in most management science textbooks.

14



2.2.3 Computational Comrlexity. A necessary consideration

when formulating and solving the RCS problem is the computational

complexity of the procedure.

Practical experience makes it clear that some
computational problems are easier to solve than
others. For some scheduling problems, algorithms
have been known for decades that are capable of
solving instances of thousands of jobs whereas
for other problems, the best algorithms strain
to cope with only a handful of jobs (15:4).

As defined and discussed by Lawler, an area known as complexity

theory provides a mathematical framework in which computational

problems can be classified as hard or easy. According to this

theory, a computational problem is viewed as a function f that

maps each input x in some domain to an output f(x) in some given

range. Suppose that n is some measure of the size of the input

problem. Then, letting T(n) represent an upper bound on the

number of steps the algorithm takes on any input x, a problem is

classified as "easy" if T(n) is bounded by a polynomial function

of n. Typically, P is used to refer this class of so-called easy

problems and NP-complete is a term used to refer to problems for

which a polynomial-time algorithm is unlikely to exist (i.e.,

"hard" problems) (15:5-6).

The general integer programming problem is included in the

clas of NP-complete problems, and thus is computationally

intractable for large size problems. As the number of variables

in the problem increases linearly, the amount of comp'itational

time needed for solution can increase exponentially" (2).

15



2.2.3.1 Problem Size. For BIP problems, a procedure

known as preprocessing can be useful in reducing the number of

variables and constraints, thus enhancing the chances for an

efficient solution. "Given a formulation, preprocessing refers

to elementary operations that can be performed to improve or

simplify the formulation by tightening bounds on variables,

fixing values, and so on." Preprocessing can be thought of as a

phase between model formulation and solution whose main purpose

is to prepare a formulation quickly and automatically for a more

sophistocated algorithm (19:17-18,456).

One of the most recent breakthroughs in IP methods that can

be used in preprocessing is an algorithmic approach presented by

Johnson, Kostreva, and Suhl. According to one technique

if setting a variable x- to zero (or one) causes aJ.

constraint to become obviously infeasible, then x.
can be permanently fixed to one (or zero). For example,
the constraint

3x 12 - 4x18 + 8x. <= 2
cannot be satisfied in 0-1 values if x = 1.
Hence, x3 can be fixed to zero.

According to another similar technique, known as Spielberg's

probing, a variable x- is set either to zero or one. If the

problem is infeasible, then the original variable can be fixed in

the other direction (14:803).

16



2.2.3.2 Efficiency of the Algorithm. If the problem

size is small enough (under a few hundered variables in the BIP

formulation), then optimal procedures such as the Branch-and-

Bound algorithm (as used by STORM and most other commercial IP

solvers) can solve the problem in a reasonable amount of time.

However, when the problem size is larger, these procedures can

become computationally intractable.

The complexity of the optimal approaches to solving IP

problems has motivated many authors to seek polynomial time

methods, known generally as heuristics, which may generate

suboptimal or infeasible solutions. Among the heuristics

reported for scheduling problems, those that are applicable to

the RCS problem include (1:286; 20:1203-1207)

critical path based methods: The critical path is
utilized to prioritize the operation of jobs;

priority rule methods: Activities are scheduled first
based upon some aspect of those activities. Factors
that can be used to assign priority include (16:17)

number of successor tasks;
number of predecessor tasks;
task execution time;
earliest execution time;
input resource requirement; and
output resource requirement; and

combination optimal/suboptimal methods: Heuristics are
embedded in optimization methods. For example,
heuristics have been used successfully in the search
phase of the Branch-and-Bound technique.

17



In general, is is not possible to tell in advance which heuristic

will produce the best results. It is often most useful to use a

computer to experiment with several different heuristics to

select the best one (22: 323).

18



3. Model Formulation and Solution Methodology

The RCS problem is recognized as frustrating in that (6:285-

286)

1) It is fairly easy to state and to visualize; and
2) The substantial literature on the subject contains

any number of sophistocated and clever optimum-
seeking schemes, yet are not always computationally
practical.

This chapter presents a BIP formulation of the TPS problem and

outlines a solution procedure that enrloyes preprocessing

(heuristics) and the Branch-and-Bound technique.

A EIP formulation of the TPS problem was chosen over a

network formulation because

1) In the literature, the most common formulation of the

RCS problem was as an LP (17:560; 20:1206; 21:856). A relatively

simple and viable way to represent the TPS problem is as a BIP.

BIPs are "useful in formulating the problem in a rigorous manner

and they also supply theoretical insight to develop other

approaches..." (20:1206).

2) It is easier to formulate the resource constraints in a

BIP model rather than in a network model (2; 22:296).

Since BIP formulations can become computationally

intractable due to their size, preprocessing is applied to reduce

the size of the problem. The solution algorithm employed is the

Branch-and-Bound technique because many (smaller) IP problems

have been solved efficiently using this algorithm (Patterson,

866) and it is the method most commonly used in most commercial
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software to solve IP problems. To demonstrate this solution

method, sample problems representative of portions of the TPS

schedule are solved in the last section.

3.1 Model Formulation

The objective function and constraints represented in this

section are patterned after an RCS problem formulation used by

Pritsker, Watters, and Wolfe (23:94). In particular, the

definition of the decision variables and the first two constraint

types are similar to representations used in the Pritsker

formulation.

The objective function and constraints described in the

following sections represent a simplified formulation of the TPS

problem in that

1) the overlap between classes is ignored, modeling
for now only one class;

2) priority to academic versus flying activities is
not explicitly given;

3) the limit of 15 class hours and 50 sorties per week
is relaxed;

4) rescheduling (the chance that new activities
will be introduced) is not directly addressed;

5) resource-leveling is ignored, whereas the
desired solution should prevent the over- or
under-utilization of the students and instructors;
and

6) flying requires only one instructor pilot
resource per period, whereas in the real TPS
schedule, several flights can be conducted at the
same time, requiring several instructor pilots per
period.
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It is assumed that this simplified version of the TPS

schedule can still represent the essence of the TPS resource

constraints so the key hurdle to overcome is finding a feasible

schedule. These factors were only excluded here to help keep the

model simple in an initial demonstration. To include these

factors in a later model, more constraints would need to be added

to the model and would not increase the number of variables.

3.1.1 Objective Function. As discussed in the literature

review, the objective in solving the TPS problem is to minimize

total project duration (or rather, meet the minimim graduation

date). This is reflected in the objective function defined below

where the terminal activity represents the last event required

for completion before graduation.
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The problem consists of n activities that need to be

scheduled during H time periods, consuming r resources. Let

j = an activity to be scheduled (j = 1,...,n);
t = a time period (t = 1,...,H);
k = a resource (k =
M= time required to complete activity j; and
ak = amount available of resource k.

Define:

Xjkt = 1, if activity j completes in time
period t using resource k

0, otherwise.

Minimize:

ZI 2k- txjkt , where n is the terminalactivity and task n can
use resource k.

3.1.2 Constraints. A special constraint imposed on the

problem is that Xjkt = 0 whenever resource k does not possess the

capability to perform activity j. An important constraint, one

that allows the model to set resources busy so they will not be

over-tasked, is the fourth constraint listed below. In summary,

the constraints are

1) Precedence relationships -- where activity i

must precede activity j

ZtHiZr tx + mj <= ll1. r tXkt

2) Each activity is completed only once

t= 1 l<=j<=n
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3) Restricted activity completion times

Xjkt = 0 if mj > t

4) a. Resource limits -- where not more than the
available amount (ak) of each resource can be used
during each time period t

n
zJ=I Xjkt <= ak for k=(l,r), t=(l,H)

b. For m > 1 (and when activities i and j can both
use resource k),

t
+ X. <= 1 for i(~Xjkt + u=t-mj+l XJku <=1 fri(l1~ 2 '

t=(m,,H), and
k=(1,r)

NOTE: n, and n2 represent the applicable subsets
of n activities for activities i and j,
respectively

5) Restricted flying times -- where flying is
generally only permitted in the morning hours

Xjkt = 0 for t=1-7,11-17,21-27,... and j
is a flying activity

6) Restricted times for academics -- where
academics are only permitted in the afternoon
hours

xikt = 0 for t=8-10,18-20,28-30, .., and j
is an academic activity

A word of caution is necessary in regard to the latter two

constraints in this formulation. That is, because activities are

restricted to particular segments of the day, a solution is

possible where an activity is viewed as completed when actually

it could not have started yet. For example, an academic activity

that requires 2 time units could not complete in time period 8
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because it is restricted from being scheduled in time period 7.

To remedy this situation, a seventh constraint set should be

added to the model. This constraint set would involve a

summation over a subset of times, defined by the activity

durations and their designation as flying or academic activities.

The constraint set should not allow activities to be scheduled

over multiple days. Instead, the model will schedule all

activities so that they are completed in a single day.

3.2 Solution Methodology

The following sections estimate the actual size of the

problem, then present methods for reducing the size of the

problem and solving the reduced problem.

3.2.1 The Size of the TPS Problem.

3.2.1.1 Decision Variables. For each TPS class,

there are roughly 1,000 activities that need to be scheduled

using 9 resources over 46 weeks. A typical TPS duty day is shown

in Table 2.
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TABLE 2

Typical TPS Duty Day

0600-0930: Flying period #1 (for students)
0930-1300: Flying period #2 (for students)
1300-1630: Flying period #3 (for instructors)

1330-1430: Academic period #1
1430-1530: Academic period #2
1530-1630: Academic period #3

Adapted from (Isbell, 20 Sep 90)

The day starts at 0600 and ends at 1630. Note that flying period

#3 can overlap with the academic periods and is used to provide

instructors with the training they need to retain their

qualifications as instructors. Restrictions on the schedule set a

limit of 15 class hours and 50 sorties per five-day week. A sample

weekly schedule for an "A" class (flying activities only) is

provided at Appendix A.

Since each day consists of approximately 10 hours, there are

approximately 50 hours available each week and thus 50 x 46 = 2300

hours available overall. Letting t be in hour time units, t

ranges from 1 to H = 2300. Thus for the model described in Chapter

2, there can be as many as (n x r x H) = (1,000 x 9 x 2,300) =

20,700,00 decision variables. The extreme size of this problem

will be addressed in section 3.2.2.
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3.2.1.2 Constraints. There is also the potential for

quite a large number of constraints due to

1) Precedence relationships -- there can be as many as

'0' = 1000!/2!998! = 499,500 precedence

constraints;

2) Each activity is completed only once -- there will be

exactly n = 1000 constraints; and

3) Resource limits -- there will be r x t 9 x 2,300 =

20,700 constraints, plus well over six million constraints to

ensure resources are set busy. This latter estimate is obtained

from estimates that in the TPS problem,

10% of activities have m, > 5 = (100 activities) x
(9 resources) x (2,300-51 time periods, which
accounts for 100x9x2,295 = 2,063,700 constraints;

10% of activities have m > 4 = (100 activities) x
(9 resources) x (2,300-4i time periods, which
accounts for 100x9x2,296 = 2,066,400 constraints;

10% of activities have m. > 3 = (100 activities) x
9 resources) x (2,300-3) time periods, whichaccounts for 100x9x2,297 = 2,067,300 constraints;

10% of activities have m. > 2 = (100 activities) x
9 resources) x (2,300-2) time periods, which
accounts for 100x9x2,298 = 2,068,200 constraints; and

20% of activities have m > I = (200 activities) x
9 resources) x (2,300-1) time periods, which
accounts for 200x9x2,299 = 4,138,200 constraints.

Note that the remaining 40% of the tasks have m, = 1.
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3.2.2 Prerrocessing. Using any available technique, this

problem would be highly unmanageable and computationally

intractable unless it is reduced in size. As discussed in the

literature review, a certain amount of preprocessing can be done

to reduce the size of the problem. To reduce the number of

decision variables in the TPS problem, there are basically five

rules or heuristics (inherent in the nature of TPS problem) that

could be applied. These rules are summarized in Appendix B and

their potential reductions are dicussed below:

1) Some activities are repetitive and occur at the same

time each week. This holds true for at least three events --

operation- meetings and safety meetings among flying events, and

testing among academic events. These three types of events

include 3x46=138 total events where each requires one hour for

completion. So xjkt = 0 for a total of n x (2,300-t) = 138 x

(2,300-138) = 298,256 decision variables. This means that the

problem can initially be reduced by 298,256 decision variables.

This rule also reduces the number of available time periods to

2,162 and the total number of events that need to be scheduled to

362. It should be noted that an alternate approach here would be

to eliminate the repetitive events from the problem entirely,

thus reducing the initial problem size to (1000-138) = 862 events

and (2300-138) = 2162 time periods, so that the initial number of

decision variables would be (862 events x 9 resources x 2162 time

periods) = 16,772,796, rather than 20,700,000. However, the only
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difference between these two ways to handle repetitive events is

that the latter method is simpler in terms of data management.

2) As stated as a constraint in section 3.1.2, each

resource is applicable to at most only about half of all

activities. This provides a second reduction of the total number

of decision variables by one-half, incurring a reduction of

10,350,000 decision variables.

3) Two other previously-mentioned constraints (that

academic activities should occur in the morning and flying

activities in the afternoon) can also be applied. Using

10,350,000 as the total number of yet unrestricted variables,

this provides a third reduction of l0,350,000x(0.5) = 5,175,000

decision variables.

4) A fourth reduction can be made by applying the condition

that xjkt=0 if m1>t. It can be assumed that (a) approximately 10%

of all activities have mi>= 5; (b) another 10% have mj> 4 ; (c)

another 10% have m?>3; (d) another 10% have mj>2; and finally (e)

yet another 20% have m 1>l. Then using (1,000-138) = 862 as the

total number of events to schedule and 5 as the total number of

applicable resources, we can reduce number of decision variables

by approximately (a) 0.10x862x5x5 = 2,155; (b) 0.10x862x5x4 =

1,724; (c) 0.10x862x5x3 = 1,293 (d) 0.10x862x5x2 = 862; and (e)

0.20x862x5xl = 862. This provides a total reduction of 6,896

decision variables.
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5) As a final reduction, events can be designated to occur

within specific months. Since there are 862 activities and 2,162

hours that arc still not scheduled (or used), there remains

approximately (862 activities/12 months) = 72 activities per

month tha-t can occur among (2,162 hours/12 months) = 180 hours.

As reflicted in the flying/academic activity constraints in

sectioT. 3.1.2, the number of flying and academic activities and

hours available for each occur in a ratio of 2:1. Thus, of the

180 hours available each montl,, 120 are flying-designated hours

and the remaining 60 are academic hours. Also, of the 72

activities, 48 are flying and 24 are academic. Over the year,

the total number of hours available for flying activities is

(2,162 x 2/3) = 1,441 hours and the number of hours for academic

activities is (2,102 x 1/3) = 720 hours. Thus, by specifying

activities in a month period, xjkt can be set to zero for

flying activities: (1,441 - 120) = 1,321 hours and 48

activities; thus (48 activities x 1,321 hours x 5 resources) =

317,040 uecision variables;

academic activities: (720 - 60) = 660 hours and 24

activities; thus (24 activities x 660 hours x 5 resources) =

79,200 decision variables.

The total reduction is 396,241 decision variables.

Table 3 provides a summary of the variable reduction rules

available.
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TABLE 3

Decision Variable Reduction Rules

Reduction (# of
Rule decision variables)

1. Repetitive events 298,356
2. Resource Applicability 10,350,000
3. Flying/academic time

restrictions 5,175,000
4. x ... 0 for m.>t 6,896
5. Designate activities within

specific months 396,240 per month

Application of the first four reduction rules reduces the

problem from 20,700,000 to approximately 4,869,748 decision

variables. Then, if specific events are pre-set for all twelve

months, the problem could be reduced to (4,869,748 - 396,240 x

12) = 114,868 decision variables. This is still an extremely

large problem. However, the estimates made in the reduction

techniques were conservative. It is hoped that in a real

application, the reductions will turn out to be much greater.

However, it may happen that no techniques can be found to reduce

the size of the problem. Then the problem will remain

computationally intractable. These ideas are discussed further

in later sample problems.

In reducing the number of decision variables, certain
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constraints will be eliminated. However, if a large number of

constraints remains (not estimated here due to the difficulty in

tracking over 20 million decision variables), there are

techniques that can be used to reduce the number of constraints.

Such techniques include those derived by Johnson (14:803) and

discussed in the literature review. By employing Johnson's ideas

to the TPS problem, some variables could be set to one, rendering

some constraints redundant. This idea is illustrated in section

3.3, where it is applied to a sample problem.

3.2.3 Application of the Branch-and-Bound Technique. Once

the original TPS problem is reduced to a manageable size (under a

few hundred decision variables), the Branch-and-Bound technique

could be applied to obtain a solution using any one of a number

of available commercial software packages. In this thesis, the

STORM software (8) was used. STORM, like most commercial

packages, uses an LP-relaxation in the bounding phase and a

depth-first search in the branching phase of the Branch-and-Bound

technique. In a depth-first search, if the current subproblem

(parent node) is not fathomed, then the next subproblem

considered is one created from the parent node (called a child

node). A depth-first search offers three principal advantages

(2; 19:358)

1) The LP-relaxation for a child is obtained from the LP-

relaxation of its parent by the addition of a simple lower- or
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upper-bound constraint. Hence, given the optimal solution for

the father node, the optimal solution for the new subproblem (the

child node) can easily be found by using a dual simplex algorithm

without a basis reinversion or a transfer of the data;

2) Experience seems to indicate that feasible solutions are

more likely to be found deep in the tree rather than at nodes

near the root (original problem); and

3) A smaller set of solutions o subproblems needs to be

retained (stored in the computer) for further consideration.

At each successive level of the search tree, STORM fixes one

or more variables at integral values and finds a new solution.

3.3 Sample Problems and Solutions

This section discusses two sample problems that illustrate

how the proposed model formulation and solution methodology can

be used to solve problems representative of portions of the TPS

scheduling problem.

3.3.1 Small Sample Problem. This small sample problem is

helpful in demonstrating how the proposed BIP formulation

described in section 3.1 could be used to schedule events similar

to the needs of the TPS. Because the problem is of a manageable

size (72 decision variables), preprocessing is not necessary to

reduce the size of the problem. The problem description is

provided in Table 9 of Appendix C. The associated model
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formulation is also provided in Appendix C.

The given problem is so simple that a solution could be

found manually. For example, a feasible schedule is shown in

Table 4

TABLE 4

Feasible Schedule for the Small Sample Problem

Time period t Activity j Resource k

1 1/2 1/2
2 2 2
3 3/4 1/2
4 4 2
5 5/6 1/2
6 6 2

This means, for example, that activity 5 is scheduled to

start and end in time period 5 using resource 1 and activity 6 is

scheduled to start in time period 5 and end in time period 6

using resource 2.

However, the STORM software provided the following automated

solution

X1 1 1, x 2 2 2 , X 3 2 3, X4 1 3 , X 5 1 2 , and x 6 2 5 = 1,

which Provides the schedule in Table 5.
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TABLE 5

Automated Solution for the Small Sample Problem

Time period t Activity j Resource k

1 1/2 1/2
2 2/5 2/1
3 3/4 2/1
4 6 2
5 6 2
6

The problem input to STORM is shown in Appendix D. As shown

in this file, only 33 of the constraints listed were actually

included as input. This subset of constraints was used because

STORM limits the problem size to 40 constraints and after three

trials, it was discovered that this subset of constraints was

able to produce a feasible schedule.

The automated solution differs from the manual solution but

is also a feasible schedule. However, the automated solution

completes the project before the targeted 6th period and, as

stated previously, an early completion is not desirable for the

TPS schedule. The automated solution allows for an earlier

completion time because

1) all time periods are not being used (e.g., period 6 in

the automated solution has no activity); and

2) several activities occur at once (e.g., activities 1 and

2 and 2 and 5 occur simultaneously).
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These two deficiencies suggest that a few more constraints

should be added to the model. The constraints are discussed in

section 4.1.

3.3.2 Large Sample Problem. In this sample problem,

preprocessing is used to reduce the problem size so that it can

be easily solved using the STORM software (or any other IP

solver). The problem description is provided in Table 10 of

Appendix D. The specific numbers used in the problem were chosen

from a sample manually-devised schedule shown in Table 6.
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TABLE 6

LarQe Sample Problem Schedule

DAY 1 DAY 2

Act Res Act Res

0600-0900 Fly period #i 2 1 6 3
0900-1300 Fly period #2 4 1 8 1

1300-1400 Academic #1 1 3 5 1
1400-1500 Academic #2 3 2 7 3
1500-1600 Academic #3 3 2 9 1

DAY 3 DAY 4

Act Res Act Res

0600-0900 Fly period #i 14 2 18 3
0900-1300 Fly period #2 16 2 20 2

1300-1400 Academic #1 11 1 15 3
1400-1500 Academic #2 11 1 17 2
1500-1600 Academic W3 13 3 19 1

Act = activity
Res = resource

In this example, activities 10 and 12 are special instructor

flying training periods that, for now, must be pre-set in the

model because they need to be scheduled for Flying Period #3

(recall Table 2) and the current model does not allow for flying

to be scheduled in the afternoon. A later modification to the

model's fifth and sixth constraints could allow for this special

flying period. So the model will really only be scheduling 18

activities.

In this problem, there are potentially 18x3x40 = 2,160
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decision variables. To reduce this number, several decision

variable reduction rules were applied. To record which variables

remained nonzero, the MATLAB software (MATLAB Manual) was used.

The reductions are discussed below and a sample portion of the

MATLAB files are at Appendix. E. The list of nonzero decision

variables remaining is provided at Appendix F. Given activities

j, resources k, and time periods t:

1) Resource applicability:

Xjkt = 0 for all t and for J
k=l: 1,3,6,7,13,15,16,17,18,20
k=2: 2,6,8,9,18,19
k=3: 4,5,11,14,16,20

This rule reduces the number of decision variables by
880.

2) Restricted flying/academic times: Note that the
"morning hours" consist of t = 1-7, 11-17, 21-27, and
31-37, and the "afternoon hours" consist of t = 8-10,
18-20, 28-30, and 38-40.

Xjkt = 0 for the morning hours, all k, and
j = 1,3,5,7,9,11,13,15,17,19

xjkt = 0 for the afternoon hours, all k, and
j = 2,4,6,8,14,16,18,20

Disregarding redundant reductions with the first rule
(as tracked in MATLAB), this second rule reduces the
number of decision variables by 716.

3) xjk t = 0 if m. > t:

Xjk1 = 0 for all k and j = 2,3,4,6,8,11,14,16,18,20

xjk2 = 0 for all k and j = 2,4,6,8,14,16,18,20
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Xjk3 = 0 for all k and j = 4,8,16,20

This rule reduces the number of decision variables by
18.

4) Similar to the fifth reduction rule, assume certain
activities completed in hours 1-20 and 21-40:
Restrict activities 1-9 to the hours 1-20 and activities
11 and 13-20 to the hours 21-40. Thus

Xjkt 0 for

t = 1-20 and k=1: 11,14,19
k=2: 11,13,14,15,16,17,20
k=3: 13,15,17,18,19

j
t = 21-40 and k=l: 2,4,5,8,9

k=2: 1,3,4,5,7
k=3: 1,2,3,6,7,8,9

This rule reduces the number of decision variables by
282.

5) Also similar to the fifth reduction rule, assume
activities 13 and 20 will not be completed before
t=30 and t=37, respectively. Then

X13,k,t = 0 for t = 1-29 and k=2,3

X20,k,t = 0 for t = 1-36 and k=2

6) Set certain events: Let x 1 ,3 8, x 2 1 3, xj 2 10, and x 4 ,2 7 =

1. This is equivalent to setting 'the fir'st day of the
schedule in Table 8. Then

Xl,kt = 0 for t = 1-7, 9-40, and k=2,3

X2,kt = 0 for t = 1-2, 4-40, and k=l,3

X30kt = 0 for t = 1-9, 11-40, and k=2,3

X4,kt = 0 for t = 1-6, 8-40, and k=l,2
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This rule reduces the number of decision variables by
10, 22, 10, and 22 variables, respectively, for an
average of 16.

A list of the nonzero decision variables remaining is in

Appendix F. In total, these rules reduce the problem to about

183 decision variables. Table 7 compares these reductions to the

reductions projected for the full TPS problem.

Table 7

Decision Variable Reduction Comparison

TPS Problem Sample Problem

Original # of
variables 20,700,000 2,160

Projected Actual
Rule # reduced (%) @ reduced (%)

1. Repetitive events 298,356 ( 1.44) N/A
2. Resource 10,350,000 (50) 880 (40.74)

applicability
3. Flying/academic

time restrictions 5,175,000 (25) 716 (33.15)
4. xkt = 0 for t. > t 6,156 (0.03) 18 ( 0.83)
5. Designate actlvities to

specific times (months) 396,240 (1.91) 315 (1.46)
per month

As shown in Table 7, the actual reductions in this sample

problem appear to be consistent with the reductions projected for

the full TPS problem. Even though the problem is now smaller, it
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is not quite yet small enough (the target is under a few hundred

decision variables) to solve efficiently. Also, a large number

of constraints remain. Reduction rules can be applied to reduce

the number of constraints (and, in the process, reduce the number

of decision variables). The approximate number of constraints,

by constraint type, are

Precedence -- 18 constraints (activity 12 precedes
activity 17 and all activities precede
activity 19);

Each activity is completed only once -- 18 constraints;
and

Resource Limits --

Only one type of each resource is available per each
time period -- 3 x 40 = 120 constraints,

Resources must be set busy -- approximately 10 x 2 x
40 = 800 constraints.

This represents a total of 956 constraints. The key constraints

to consider here are the first part of the resource constraints.

Of these, all but 35 (listed in Appendix G) can be disregarded

because they are of the form xj,k,t <= 1, which is redundant with

the restriction that xj,k,t = 0 or 1 To reduce this number

further, the Johnson method of preprocessing where variables are

set to 0 or 1 can be employed. A summary of how this method can

be applied to the sample problem is provided in Appendix G. The

variable settings made were selected using the schedule in Table

8 as a guideline.
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A word of caution must be mentioned here. The reduction

methods described in Appendix G rely upon prior knowledge of

feasible settings (from Table 6). In the real TPS scheduling

process, known feasible settings are not available (otherwise the

scheduling process would be trivial), but could be known

approximately from previously-executed schedules or expert

knowledge. However, if any setting (say variable x123 = 1)

produces an infeasible solution, then the problem should be re-

run with the opposite setting (x123 = 0). For cases where the

number of feasible solutions is not as large, this is an

efficient approach. A better way to apply the reduction

technique would be as a special branching routine in the Branch-

and-Bound algorithm itself. This idea will be discussed in more

detail in Chapter 4.

At the end of the process the following variables have been

set to one (recall that xi,1 3 8 , x2,13, x3,2,10, and x4 1,4 = 1 as a

result of setting the first day):

X5,1,8 x8,1, 17  x9,1, 20  X 11,1,29  X 13,3,20  X 14 ,2,23

x15,3,38  x16,2,27  x17,2,39  x20,2,37
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Also, all of the first set and all but four of the second set of

resource constraints have been eliminated.

Now only 46 decision variables and 11 constraints remain.

The resulting problem is shown in Appendix D. Solved in STORM,

the automated solution provided x 6,3 ,3 x 7,2, 18 , x 18,3,21, x 19 3 28 = ,

resulting in the schedule in Table 8.

TABLE 8

Automated Solutir for the La:cqe Sample Problem

t j k t j k

1 2/6 1/3 21 14/18 2/3
2 2/6 1/3 22 14 2
3 2/6 1/3 23 14 2
4 4 2 24 16 2
5 4 2 25 16 2
6 4 2 26 16 2
7 4 2 27 16 2
8 1/5 2/1 28 11 1
9 3 2 29 11 1
10 3 2 30 13 3
11 31
12 32
13 33
14 8 1 34 20 3
15 8 1 35 20 3
16 8 1 36 20 3
17 8 1 37 20 3
18 7 2 38 15 3
19 39 17 2
20 9 1 40 19 1

The solution in Table 8 is feasible, which means that the

variables that were pre-set are allowed to stand. However, as

with the small sample problem, the solution here indicates that a

few more constraints should be added to the model to ensure that
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1) all time periods are being used; and

2) simultaneous activities do not over-task the students.

For example, activities 2 and 6 should possibly not occur

simultaneously if both events involve the same class of students.

However, a provision should be made that some activities can

overlap -- such as would occur when a third flying period is

added to occur in the afternoon.

3.4 Application to the Full TPS Problem. In the large sample

problem, the Johnson reduction technique of pre-setting variables

was used to reduce the problem from 183 decision variables to 46.

As mentioned earlier, such feasible settings are not always known

in the real TPS scheduling situation. At best, previously-

executed schedules could be used as a guideline. An advantage of

the TPS schedule is that a number of different feasible solutions

exists (Isbell, 90) so that the chance of selecting feasible

settings is increased. However, more often than not, the process

would have to be repeated. It may not be practical, then, to

include this procedure explicitly (as was done for the large

sample problem) as a standard method for solving the TPS problem.

Without the Johnson reduction technique, the large sample

problem (which equates to about one week of the TPS schedule)

would remair at 183 decision variables -- too large to be solved

efficiently using the Branch-and-Bound algorithm. This means

that less than one week of the TPS schedule could be solved

efficiently using the methods investigated in this study.
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However, as discussed in the literature search, success has been

found in applying combination optimal/suboptimal methods where

heuristics are embedded within optimization methods. Although

not specifically applicable to the TPS problem, Mazzola (17:569)

solved scheduling problems of up to 2,500 0-1 decision variables

using an altered Branch-and-Bound algorithm.

So a possible solution approach using the BIP model

formulation of the TPS problem could be a specialized Branch-and-

Bound algorithm where the branching phase uses the ideas of the

Johnson reduction technique (i.e., pre-setting certain

variables). This would reduce the amount of branching that would

be done, especially since many alternate feasible solutions do

exist (12). Another feature that could be added to the algorithm

would be to stop as soon as any feasible solution is found --

again, because the objective in solving the problem is one of

feasiblity and not optimality.

Another alternative for rolving the TPS problem would be to

formulate the problem as a network, for which algorithms exist to

efficiently very large problems (of the size of at least one

month of the TPS problem) (2). But, as mentioned in the

literature review, further study would be required to find ways

to adequately represent the resource constraints.
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4. Conclusions and Recommendations

4.1 Conclusions

The current TPS scheduling process is manual and time-

consuming. The objective of this thesis was to investigate

algorithms or methods that could be used as the basis for an

automated scheduling system. The primary method investigated

formulates the problem as a BIP and solves the problem using the

Branch-and-Bound technique. Application of this method to sample

problems demonstrated that the method can produce a feasible

schedule for small problems (under 100 variables) that equate to

portions of the TPS schedule. However, it cannot efficiently

solve large problems such as the full TPS problem.

Although more work needs to be done to develop an efficient

algorithm to solve the TPS scheduling problem, much has been

learned about the nature of the problem that should be used in

future investigations. In general,

1) like most RCS problems, the size of the TPS problem is

formidable and needs to be reduced before any solution algorithm

could be applied;

2) feasibility rather than optimality is the key objective

in solving the TPS problem. That is, the objective is to find a

schedule that will meet the expected graduation date;

3) the basic resource constraints that should be included

in the TPS problem formulation are provided in the BIP model
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formulation described in this study; however, as discussed in

section 3.1.2, one significant constraint set that should be

added to further restrict activity completion times.

4) heuristics should be applied to reduce the problem size

and for use in a specialized Branch-and-Bound algorithm (to

enhance solution efficiency).

Specifically, the ideas of the Johnson reduction technique

could be used in the branching phase of the Branch-and-Bound

technique. Another feature that could be added is to stop the

search process whenever any feasible solution is found.

The need for a specialized Branch-and-Bound algorithm stems

from the fact that Branch-and-Bound algorithms based on linear

relaxation, cutting planes, and Lagrangean relaxation of the

constraints are reasonably effective for problems with only up to

three resources and 25 jobs.

More specifically, to use the BIP model formulation

investigated in this study for the TPS problem, then the model

should be modified (or expanded) to

1) give priority to academic versus flying activities;

2) allow concurrent scheduling of the A and B classes;

3) address re-scheduling (i.e., the introduction of new

events);

4) impose resource leveling so that neither the students

nor the instructors are over- or under-utilized; and

5) ensure that all time periods are being used.
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Although not addressed in the study, the BIP model

formulation could be simplified by using periods (as in Table 2)

rather than hours as the units of time. In this schema, the

large sample problem, for example, would consist of only 25 time

periods of 1.5 hours each (rather than 40 hours). The problem

would then consist of (nxrxH) = (20x3x25)=l,500 decision

variables rather than 2,400 decision variables. However, this is

still a very large problem and the reduction rules would have

less of an effect in that less time periods are available for

manipulation.

4.2 Recommendations

Further study should be conducted to find a more efficient

solution algorithm for the TPS scheduling problem. To use the

BIP model formulation would require at least a specialized

Branch-and-Bound solution algorithm, described in section 4.1.

Alternatively, the problem could be formulated as a network but

further study would be required to find ways to adequately

represent the resource constraints.

The development of an efficient solution algorithm for the

TPS problem would enable the development of an automated TPS

scheduling system. An automated system could in turn reduce the

scheduling process from weeks to days or hours. It could also be

used to track resource usage and program progress. These

47



features would spare the TPS and the Air Force time, money, and

much frustration.
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Appendix A

Sample TPS Weekly Schedule

DAY PERIOD COURSE INSTRUCTOR REMARKS

MONDAY 1330 PROPULSION 6 GALLUPS MAJ STOFFERAHN
17 SEP

1430 PROPULSION 7 GALLUPS MAJ STOFFERAHN

1530 NT-33 HUD CALSPAN
DEMO FTT

TUESDAY 1330 ASTTA PREP
18 SEP

1430 ASTTA PREP

1530 PROPULSION 9 GALLUPS MAJ STOFFERAHN

WEDNESDAY
19 SEP ALL FLY

THURSDAY 1330 QUAL FLT MAJ SHELLEY ALL

20 SEP ORAL (F18)

1430 PROPULSION 10 GALLUPS MAJ STOFFERAHN

1530 PROPULSION 11 GALLUPS MAJ STOFFERAHN

FRIDAY 1330 PROPULSION LTC LEWIS
21 SEP FTT

1430 OPS MEETING LTC LUTZ AUDITORIUM

1600 SAFETY MEETING O'CLUB

FLYING: A-37 SPIN (3) TEST MGMT PROJECT (20)
T-38 SPIN CHASE (3) T-38 TGT (W/TACAN) (8)
A-7 DEPARTURES (2) NT-33 HUD DEMO (8)
A-7 QUAL FAM (2) ASTTA (DAY) (8)
A-7 IP CHASE (4) ASTTA (NIGHT) (1)
C-141 QUAL (4)

Adapted from (Isbell, 20 Sep 90)
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Appendix B

Decision Variable Reduction Rule Summary

The reduction rules available to reduce the number of

decision variables in the BIP model formulation of the TPS

problem are described below. As illustrated in the large sample

problem, MATLAB (or any other matrix software) can be used to

record the decision variables that are set to zero as a result of

applying these reduction rules.

1) Repetitive events. Determine which activities occur

each week (or each time period). Then set the appropriate

decision variables to one and zero. For example, if activity 5

(j=5) occurs in the last time period each week (say, t=50, 100,

150,...) and can use resource 1 (k=l), then set x5 1,,p = 1, where

p=50n, n = 1,2,3,...,46. Also set x5,kq = 0 for all k where k

does not equal 1 and q = 1-49, 51-99, 101-149,...,2252-2300.

2) Resource applicability. If resource k cannot be used in

activity j, then set xj,k,t = 0 for the specific j and k, and all t

such that t = (1, 2300). For example if activity 3 cannot use

resources 1 and 4, then set x3,, and x3,4,t = 0 for t = (1, 2300).

3) Flying/academic time restrictions. Of the remaining

decision variables, set xJ,k,t = 0 for all k and

j even (thus j is a flying activity) and t = 1-7, 11-17,

21-27,...,2221-2297;

j odd (thus j is an academic activity) and t = 8-10, 18-
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20, 28-30,...,2298-2300.

4) Xi,k,t = 0 for m t > t. If the projected completion time

(m,) of activity j exceeds one time period, set xj,k,t = 0 for j,

all k, and t, where t < mt. For example, assume task 8 requires

2 time units for completion. Then x5,k,t = 0 for all k and t =

1,2.

5) Designate activities to specific months. If activity j

could be designated to occur only in a certain month, then set

XJik~t = 0 for all values of k and all values of t that occur in

all the other months. For example, assume activity 9 will only

occur in the the first month. Then set x9,kt = 0 for all k and t,

where t >= 193 (because values of t = (1, 192) constitute the

first month).
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Appendix C

Small Sample Problem Description and Model

TABLE 9

Small Sample Problem Description

Given: 6 activities (n = 6), terminal activity is
activity 6

6 time periods (H = 6), and
2 resources (r = 2)

Resource applicability (Resource k can be
used by activity j):

J

k=l: 1,3,4,5
k=2: 2,3,4,6

Activity completion times (activity durations)
mi:

m1 , M 3 , m5 = 1
M 2 , m 4 , M 6 = 2

Precedence requirements: Activity i precedes
activity j (i --> j)

1 -- > 3
1,2,3,4,5 -- > 6

Note that since activities 1 and 2 cannot consume resources

2 and 1, respectively, xi.20t and x2,1,t are both zero. Also, since

activities 2, 4, and 6 exceed one time period, X2.k.1, X 4 ,k.l, and

X 6 ,k.I are all zero.
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MODEL:

Minimize 2x 6 ,2,2 + 3x 6,2,3 + 4x 6,2,4 + 5x 6,2, 5 + 6x 6,2,6

Subject to

(1) Precedence Constraints

1: x1 1 +2x 112+3x 113+4x 114+5x 115+6x 116-ix 31 -2x 312 -3x 313

-4x 314-5x 315-6x 316-1x 321 -2x 322-3x 323-4x 324-5x 325-6x 326 < -1

2: ix 111+2x 112+3x 1 3+4x 114+5x 115+6x 116-2x 622- 3x 623-4x 624
-5x 62 5-6x 6 26 <= -2

3: 2 x 222+ 3 x 223+4 x 224+ 5x 225+6x 226- 2 x 622- 3 x623- 4 x 624- 5x 625
-6x 6 26 <= -2

4: 1X3 11 + 2x 3 12 + 3x 3 13 +4X 3 14+5x 3 15 +6x 3 16 +1x 3 2 1 +2x 322 +3x 323

+4x 3 24+5x 32 5+6x 3 26 -2x 62 2-3x 6 23 -4x 6 24-5x 6 25 -6x 6 26 <= -2

5: 2x 412+3x 413+4x 414+ 5x 4 15+ 6 x 416+ 2 x 422+ 3 x 423+ 4 x4 2 +5x 425
+6x 426 - 2x 6 22 - 3x 6 23 - 4x 6 24 - 5x 62 5 -6x 626 <= -2

6: lx 5 1+2X512+3x 13+4y 14+5x 5 5+6X516-2X 622-3X 623-4X 62,

-5X 6?5-6X 626 <= -2

(2) Each activity is conpleted only once

7: x 1 1 1+x 1 1 2 +x 1 1 3 +X 1 1 4 +X 1 1 5+X1 1 6 = 1

8: X 2 2 2 +X 2 2 3+x 2 2 4+X 2 2 5+X 2 2 6  1

9: x 3 1 l+x 3 1 2 +X 3 1 3 +X 3 1 4 X 3 1 5 +X 3 1 6 +X 3 2 1 +X3 2 2 +X 3 2 3 +X 3 2 4
+x325+X326 = 1

10: x 4 1 2 +X 4 13 +X 4 1 4+X4 1 5+X 4 1 6+) 4 2 2 +X 4 23 +X 4 2 4+X 4 2 5

+X42= 1

11: X51 +X512+XI3+X514+X515+X516 1
12: X622+X623+x624+X625+X626  1

(3) Resource limits

13: for k=-1, t=1: x111+x3 11+x511 <= 1
14: t=2: xll 2+x3 12+x41 2+x512 <= 1
15: t=3: x113+x3 13+x4l3+x 513 <= 1
16: t=4: x,14+x3 14+x414+x51 4 <= 1
17: t=5: xI 15+x 3 15+X 41 5+X5 15 <= 1
18: t=6: x 1 1 6 +X31 6 +X 4 1 6 +X5 1 6 <= 1
19: for k=2, t=1: x321 <= 1 (redundant since all variables are

bounded by 1)
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20: t=2: X222tX 322+X422+X622 <=
21: t=3: x223+X,2,+X423+X623 <=1
22: t=4: x224 +X324+X424 +X624 <=1

23: t=5: X225 +X325 +x 425 +X 625 <=1

24: t=6: x226*X326+X.26+X626 <=1

(S ince m.2, m.4, and mn6 =2) :

for j=2, k--2, and i = 3,4,6

25: t=2: x222+X321+X322 <= 1
X222+X422 <=1
x222+x622 <=1

26: t=3: x223+X322+X323 <-- 1
X223+X422+X423 <= 1
X223 +X 622 i+X 623 <= 1

27: t=4: x224+X323+X324 <= -1
X224-4-x423+X424 < 1

X22 + 62+X24<= 1

28: t--5: x22 +X 32 4+sX324 <= 1
X22 + 44+42 < 1

X225-iX624+X625 <= 1
29: t=6: x226+X325+X326 <= 1

X22+X45+X26<= 1

X 2 2 6 +X 6 2 5 +X 6 2 6 <= 1

for j=4, k=1-, and

30: t=2: X412+X1 1+Xl 12 <= 1
X412 +X31 1+X312 <= 1
X412+X51 +X512 <= 1

31: t=3: X413+Xl 12+Xl 13 <= 1
X 4 1 3-IX 3 1 2 +X 3 1 3 <= 1

X41+X52+X3<= 1
32: t=4: X414+Xl 13+Xl 14 <= 1

X41+X33+X14<= 1
X 4 14 +-I- 5 1 3 +X 5 1 4 <= 1

33: t=5: X415+Xl1 4+Xl 15 <= 1
X41+X34+X15<= 1

X 4 1 5+X 5 1 4 +X 5 1 5 <=- 1
34: t=6: X416+Xl 15+Xl 16 <= 1

x4 16+X315+X316 <= 1
X41+X55+X16<= 1

for j=4, k--2, and

35: t=2: x422+X222 <=1
X 4 2 2 +X 3 2 l+X 3 2 2 <

x422 +X622 <=1
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36: t=3: X423+X222+X223<= 1
X423+X+X323<= 1
X423+X622+X623<--

37: t-4: x424+X223+X224 <= 1
X424 +X323+X324 <= 1
X424+X623+X624 <= 1

38: t=5: X4 25+X 2 24+X2 25 <= 1
X425 +x 324+X325 <= 1
X425+X624+X625 <= 1

39: t=6: x426+X225+X226 <-- 1
X426+X325+X326 <= 1
X426+X625+X626 <-- 1

for j=6, k=2, and

40: t=2: x62z+X221+x222 <= 1
X622+X321+X322 <= 1

X622+X421+X422 <= 1

41: t=3: X623+X222+X223 <= 1
X623+x322+X323 <= 1

X623+X422+X423 <= 1

42: t=4: X624+X223+X224 <= 1
X624+X323+X324 <= 1

X624+X423+X424 <= 1
43: t=5: x625+x224+X225 <= 1

X6 25 +x324 +x 3 25 <=1

X625+X424+X425 <= 1
44: t=6: x626+X225+x226 <=

X626+x325+X326 <- 1
X6 26 +x 42 5+X 4 26 <= J

Because this problem is so small, the constraint that restricts flying

and academic activities to the morning and afternoon, respectively, has been

excluded.
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Appendiix D

Large Sample Problem Description and Model

TABLE 10

Large Sample Problem Description

Given: 20 activities (n=20), where j=19 is 'he terminal
activity,

40 time periods (H=40) in hours, and 3 resources

NOTE: even-numbered activities represent flying
activities an odd-numbered activities represent
academic activities

Resource Applicability:

J

k=l: 2,4,5,8,9,11,14,19
k=2: 1,2,4,5,7,10,11,12,13,14,15,16,17,20
k=3: 1,2,3,6,7,8,13,15,17,18,19

Activity completion times

m l11  M5 , M7 , M9 , m 1 3 , m 1 5 , M17 , 1 9  = 1
m3, 1m11 = 2
m,,' 6 6  Tf4, 18 = 3
m4 , i 8 , mn16 , m20 = 4

MODEL:

Minimize 30x 19.1:30+38x 19.1 38+39x 19 1.39 +40x1 9 1:40 +
28x,9,3 28+29x 19 ,3 ,29+30x 9,3 20+38X 9:9 °38+39x 19,339

Subject to

(1) Precedence constraints

1: 3x6 ,3, 3+4x 6 3 ,4+5x 6, 3 ,5+6x 6, 3,6+7x 6 ,3,7+11x 6,3,11+12x6,3, 12

56



+13X 6, 3, 13+14x6 3 14+15X 6 3, 15+16X6, 3,16+17X 6 3 17-30x 19 130-38x.. -19 ' -4 ,,302 x 2
-38x 1 9 1 3 8-39X 19 .1, 3 9-4 X1 9 1 40 -28X 19 3,28 2 19 ,3,29

-30X 19 ,3 0-38X1 9, 3,38-39X 19,3,39 < -i

2: 18X7 2 18+19X 7 2,19+20X 7, 2, 20 +18X7 3, 18+19X7 3,19+2 0X x320
-3 0x 19 1,30-38x 1 9, 1O38 - x3 91, 1,39 -  

19 1,40 -  
19 ,3,28-29x 1 903 29

-30X 19. 3.30- 38Xx 93 3 8-39X19 3 39 <= -i

3: 21x8 3 21+22, 3,22 +23X 8,3,23 r 2 4X18 3 24+25x3 5+ 2 6 x 18 326
+27X 3 .27+3 1X18 3 31 +32X, 3,32+33X +,3,33 39XI8,3,34+35X 18 3, 3 5

+36x 18 .3 36 +37x 18 .3, 37 -30x 1 9 ,1, 30 -3 8X 19, 1 38 -39 19,, 39 - <= 19 ,1 f.40

-28x 19 3,28_29x, 9,3 ,29-30x 19,3,30- 38x 19 3,38-39x 19 ,3 39 <=

(2) Each activity is completed only once

4 : X6,3, 3 +X 6 ,3, 4 +X6, 3 , 5 +X 6, 3 , 6 +X 6 , 3 , 7 +X 6, 3 ,11+X 6, 3 , 12

+X6, 3 ,13 +X6,3,14+X6,3,15+X6,316+X6,3,17 = 1

5: x 7.2 18+X7.2, 19+X7 ,2 ,20+X 7 ,3,18+X7 3 19+x7, 3,20 1
6: x' 3 2 1 +x 1 8 3 2 2+x 1 8 3 2 3 +X 18 3 2 4  18,3,25+X18 3 26+X18,3,27

+3 1 8 ,3 31 +2X 18 ,3, 32 3 3x 18 3 3 3 +34x 18
3 , 3

4+ X 18 ,33 5

7: X19 1 30
4 "x19,1,38+X 1 ,39+X19,1, 40+x 19 ,3,2 8+x 19,3,29+X19,3,30

X19,3,38+X 19,3,39 1

(3) Resource limits

8: x1, 3 2 1+X7 ,3, 19 +X7 , 3, 2 0 <= 1

9: x 18 3 :22+X 7 .3, 2 0  1

10: X 18 ,3 ,3 1+x 19 ,3 ,30 <= 1

18: x, 3 , 3 2+x 19 ,3 ,3 0 <= 1
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Appendix E

MATLAB Tracking for Large Sample Problem

MATLAB (MATLAB citation) was used to record which decision

variables were eliminated (i.e., set to zero) during the

preprocessing phase in solving the large sample problem. To

represent all 2,160 decision variables in the problem, three 720-

element matrices were generated where each matrix represented one

of the three resources. That is, the first matrix represented

all xjl1 variables, the second represented all xj2 t variables, and

the third matrix represented all xi3 t variables, where j = (1,20)

and t = (1,40) in each case. Initially, all elements in the

matrices were one -- implying that all decision variables were

active. Then, as a reduction rule was applied, MATLAB code was

used to zero out the appropriate elements of each matrix. After

applying all reduction rules in this manner, the ones that

remained represented all of the nonzero (i.e., active) decision

variables in the problem.

A sample portion of the code used to track decision

variables for the third resource is provided below:

c=ones(20,40); generates a 20x40 matrix (but recall that 80
elements will be eliminated because
activities 10 and 12 are pre-set)

for t=l:40, c(10,t) = 0;
for t=l:40, c(12,t) = 0; set xi0 3 t and x12 3,t = 0 to

represent the fact that activities
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10 and 12 are pre-set because they
are special cases

for t=l:40, c(4,t) = 0; sets x4 3,t = 0 because resource 3
cannot b5 used for activity 4

for t=1:40, c(5,t) = 0; sets X5 3,t = 0 because resource 3
cannot be used for activity 5

for t=1:7, c(l,t) 0; sets xl03 = for t=(1,7) because
activity 1 is an academic activity
and thus restricted to the afternoon

for t=8:10, c(2,t) = 0; sets x 13 3 = 0 for t=(8,10) because
activity is a flying activity and
thus restricted to the morning

c(2,1)=0; sets X2,3,= 0 since activity 2 requires two time
periods to complete and thus cannot
be completed during the first
period

c(8,3)=0; sets x16 30t = 0 for t=(l,3) since activity 8
requires four time periods to complete and thus
cannot be completed during the first three time
periods

for t=l:20, c(13,t) = 0; sets x, 3 3 t = 0 for t= (1,20) since
activity 3 was designated to not
start until after t=10

for t=l:7, c(l,t) = 0;
for t--9:40, c(l,t) = 0; set x1 l3, = 0 for t=(1-7) and (9-40)

since activity 3 is designated for
week 8

As an illustration, consider the small sample problem of

section 3.3.1 that consisted of six activities, six time periods, and two

resource. Corsider a decision variable of the problem. For exarple, consider
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0 0 00 00

for t=(1:3), c(1,t)=O
for t=(1:3), c(3,t)=0

fo 0=l) 0(51t1=1

C 0 0 00000
001 1 11
01101 11

for t=(4:6), c(2,t)-0
for t=(4:6), c(4,t)=0
for t=(4:6), c(6,t)=0

c 0 0 00000
001 1 100
1 1 100

c(2,1)=0, c(4,1)=0, c(6,1)=0

0 0 00000
001 1 100
010 0 011

Thus the rermainirg decision variables include:

X4,, 1 15  X416 , 31X51 4 X51 5 1 Y-51 6
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Appendix F

Nonzero Decision Variables After Variable Reduction

After applying the variable reduction rules (described in

3.2.2) during preprocessing, the following decision variables remain:

(NOTE: x, 3 8 , x2 1 ,3 , x3 ,2,10, and x,,1, 4 have all been set to
one)

x 5 ,1, 8  X5,1, 9  X5,1, 18  X5,1, 19  x5, 1 , 20  x5,2, 8  X5,2, 9  X5,2, 10  X5,2, 18

X5,2,19 x5,2, 20

X 6 ,3, 3  X6 ,3, 4  X 6 ,3, 5  X 6 ,3, 6  X6 ,3, 7  X 6 ,3, 11  X 6 ,3, 12  X 6 ,3, 13  X 6,3,14

X6,3,15  X 6 ,3,16  X 6 ,3,17

X7,2, 8  X7,2, 9  X7,2, 1 0  X7,2, 18  X7,2, 19  X7,2, 20  X7,3, 18  X7,3, 19  X7,3, 2 0

X8,1,4  X8,1,5  X8,1,6  X8,1, 7  X8,1, 11  X8,1, 12  X8,1, 13  X8,1, 14  X 8,1,15

X 8,1 , 16  X 8,1,7  X 8 ,3,4  X 8 , , 5  X 8 ,3,6  X 8 ,3,7  X8,3,11  X 8 ,3,12

X8,3,13  x8,3,14  x8,3,15  x8,3,16 x8,3,17

X 9 , 8  X 9 , 1, 9  X 9 ,1, 10  X 9 ,1 18  X 9 , 1, 19  X 9 ,1, 2 0  X 9 ,3, 8  X 9 ,3, 10 X 9 ,3, 1 8

x9,3,i19  x9,3, 2 0

X11,1,28 X11,1,29 X 11,1,30 X 11,1,38 X11,1,39 X11,1,40 X 1,2,27 X11,2,28

X 1 1,2,29  x11,2,3 8  X 11 ,2,39  x 11 ,2,40

X13,2,38 X13,2,39 X 13 ,2, 4 0  X 1 3 ,3, 3 0  X13,3,38 X 1 3 ,3, 39  X 1 3 ,3,40

X 14 ,1, 2 1  X 1 4 ,1, 2 2  X 14 ,1, 23  X 1 4 ,1, 24  X 14 ,1, 25  X 14  ,26 X14,1,27 X14o1,31

X14,1,3 2  X 1 4 ,1, 3 3  X 1 4 ,1, 3 4  x 1 4 ,1, 3 5  X 1 4 ,1, 3 6  x 1 4 ,1, 3 7  X 1 4 , 1 , 4 0

X 1 4 ,2, 2 1  X 14 ,2, 2 2  X 14 , 2 , 2 3  X 1 4 ,2, 2 4  X 1 4 ,2, 2 5  X14,2, 26  X14,2,2 7

X 14 ,2 , 3 1  x 14 , 2 , 3 2  X 14 , 2 ,33  X 1 4 ,2, 34  X 1 4 ,2, 3 5  X 1 4 ,2, 3 6  X14,2, 3 7

x 15 ,2,28  x 15 ,2,29  x15,2,3 0  X 15 ,2,3 8  X 15 ,2,3 9  X 15 ,2,4 0  x 15 ,3,2 8  x 15 ,3,2 9
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X 15 ,3, 3 0  X 15 ,3, 3 8  X 15 ,3, 3 9  X15,3, 4 0

X 1 6 ,2, 2 1  x 1 6 ,2, 2 2  X 1 6 ,2, 23  X 1 6 , 2 ,24  X 1 6 ,2, 25  X 1 6 , 2 , 26  X16 ,2 , 27 X 16 ,2, 3 1

x 16 ,2, 3 2  X 16 ,2, 3 3  x 16 ,2, 34  X16,2,3 5  x 1 6 ,2, 3 6

X 1 7 ,2, 28  X 17 ,2, 29  X 17 ,2,3 0  X 17 ,2, 38  X17,2, 3 9  X 17 , 2 , 40  X17,3, 28 X 17 ,3, 2 9

X 1 7 3, 3 0  X 1 7,3,38 X 1 7 ,3, 3 9  X1 7 ,3, 4 0

X 1 8 ,3, 2 1  X 1 8 ,3, 22  X 18 ,3, 23  X 1 8 ,3, 24  X 18 , 3 ,25  X 18 , 3 ,26  X 18 ,3 ,27 X 18 ,3,3 1

X 18 ,3, 32  X 1 8 ,3, 3 3  X18,3, 34  X 18 ,3, 3 5  X18,3, 3 6  X 18 ,3, 3 7

X19,1, 28  x 1 9 , 1, 29  x 1 9 ,1, 3 0  X 1 9 ,1, 3 8  X 1 9 ,1, 39  X 19 ,1, 4 0  X 19 ,3 , 28 X 19 ,3, 2 9

X 19 ,3,30 X19,3,38  X19,3,39

x 2 0 ,3 , 37
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Appendix G

Type IV Resource Constraints for Large Sample Problem

Most of the first set of type 4 resource constraints are
eliminated because the number of decision variables has been
reduced. Among the constraints that are still active, certain
variables in them can be set to zero during preprocessing (as
discussed in 3.2.2, and ultimately, all of the constraints can be
eliminated. The constraints are:

1) x 5,1 8 +x 9 ,1,8 <= 1 19) x14,2,22+x 16,2,23 <= 1
2) x5 ,119+x8,1,9+x 9,1,9  < 1 20) X14,2,24+X 16,2,24  <= 1
3) x5,1,10+x9,1,10  <= 1 21) x14,2,25+x16,2, 25  <= 1
4) X5 1,18 +x 9 ,1 18  <= 1 22) X 14,2,26+x 16,2,26 <= 1
5) x5,1 19+X9,1, 19  <= 1 23) x14,2,27+X 16,2,27  <= 1
6) x5 1 20+x9 1 20 <= 1 24) x15 228+x17 228 <= 1
7) X 11 1,28+X 191, 28  < 25) x13,2,29+x 15,2,29+x 17 ,2 29  < 1
8) x11 1,29+x 19,1,29 <= 1 26) x15,2,30  x17,2,30  <= 1
9) xI. 30+x 9 130 <= 1 27) x16 23 +x202 37 <= 1

10) x11 1,38+x 19,1,38  <= 1 28) x13,2,38+x1502, 38+x 17,2,38  <= 1
11) X1111, 39+X 19,1,39 <= 1 29) X13,2,39+x15,2,39+x 17,2,39  <= 1

12) x11 1,40+x19,1, 40  <= 1 30) x13,2,40+ x15 2,40+x17,2,40  <= 1
13) x +X ' <= 1 31) x,5,3,28+X 19,3,28 <= 11 )x1,2,8 +x 7,2,8 <= 32 x ' + < 1
14) x5,2,8+X7,2,8 <= 1 32) X15 3,29 x19,3,29 <=1
15) x,,2,9+x7,2,9  <= 1 33) x13,3,30+X 19,3,30  <= 1
16) x ,2 ,1 0+X7,2,10  <= 1 34) X13 ,3,38+x 15,3,38+x 19,3,38  <= 1
17) x1 ,2 1,+X 16,2,21  <= 1 35) x 13,3,39+X15,3,39+x 19,3, 39  <= 1
18) x 14:2,22+X16,2,22  <= 1

In constraint 1 above, set x5 ,18=1. This forces x9 1 and
x5 k to be zero, thus eliminating constraints 1, 3-6, a'n 13-16.

Sim'ilarly, the following settings eliminate the indicated
constraints:

Settings Constraints Eliminated

x 8,1, 17=1 : 2
x 11,1,29=i: 7-12
x14,2,23= : 7-22
x16,2,27=1: 23
x 20,2 ,37=1: (by default)
x 13,3,30=1 and x 15,3,38=i: 24-26, 28-35.

Thus, constraints 1-35 have been eliminated.
Only four constraints from the second set of resource

constraints are still active. These constraints include
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36) xi8. 3 .2+X7 ,31 9+XT, 3 j <=n
37) x,,,,,,,+x,3 .2 0 <=n.f

38) x18 3,31+X19 .3 ,30 <-
39) X16 3.32+X19 33 <=1
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