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1. Introduction. A stationary stochastic process {z:} with finite second moment

has mean £z; = y and covariance or autocovariance sequence

(11) g(zt - ﬂ')(xt+a - P’) = 0(3)’ s = 0, :t]-’ AR

The covariance sequence can be expressed in terms of the variance of the process

o(0) and the correlation or autocorrelation sequence

_ 9(s) -
(1.2) =gy S=0EL

If the process is Gaussian, the mean and the covariance sequence or alternatively
the mean, variance, and correlation sequence completely specify the process.
Inference about the process may be based on a sample of n consecutive obser-

vations z;,...,z,. The sample covariance sequence may be defined as

n—h

1
(1.3) Ch=C-h = ;Z(-’Bt—#)(ztﬂ—#), h=0,1,...,n -1,
t=1

if u is known and as

. . 1 n—h _ _
(1.4) ch=clp= tz_;(zt — Z)(Te4n — T), h=0,1,...,n—1,

if p is unknown; here £ = Y_7_, z;/n. The sample correlation sequence is defined
as rpn = cafco or as rp = ctfcy, h = 0,£1,...,£(n — 1), in the two cases. If
the process is Gaussian, the sample mean and covariance sequence or alternatively
the sample mean, variance, and correlation sequence constitute a sufficient set of
statistics. In any case the sample correlations may be used for making inferences
about the pattern of dependence in the process.

Under general conditions on the process, any finite set of correlations is asymp-

totically normally distributed as n — oco. More precisely, the limiting distribution
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of /n(ry — p1),...,v/n(rg — pu) for arbitrary H is normal with mean 0 and a

covariance matrix, say, W. If z; is a linear process

o0
(1.5) Z¢ =y+z'y,-v,_,-, t=0,%1,...,

=0

with Y2 7? < oo,

=0

(1.6) Z lvi] < 00

=0
and {v;} a sequence of independently identically distributed random variables with

Eve = 0 and Ev? = 02, the elements of W are

0o
(1.7) wen = Z(Pr+g + pr—g —2prpg)(Pr+h + Pr—h — 2prpn),

r=1

g,h=1,...,H.

The covariance and correlation sequences of {z.} defined by (1.5) are

)
(18) O’(h) = U(—h) =o? Z7i7i+h7 h=0,1,... ’
=0
bad .. -
(1.9) o ViYith h=0,1,....

Ph=p-p=
Z?:o ’7:'2 ’

If {z.} is second-order stationary and purely nondeterministic, it can be repre-
sented as (1.5) with the v;’s having mean 0 and variance 0% and being uncorrelated.
In this situation the v,’s are the innovations and the errors in prediction one step
ahead.

A type of process that has been particularly useful is the autoregressive process

which satisfies the stochastic difference equation

p
(1.10) Y Bi-j—p)=vy, t=...,-10,1,...,
=0




where 8o = 1. If the v’s are independently identically distributed and the roots of

(1.11) Ep:ﬂ,-z"" =0

i=0
are less than 1 in absolute value, (1.10) defines a stationary process. If v, = 0
and £v? = 02 < oo, {z:} has a representation (1.5), £z = u, and the covariance
and correlation sequences are given by (1.8) and (1.9), respectively. In the case of
p=1p; = —pB; and r; or r] is an estimator of —f;.

A serial correlation coefficient (of order one) is r; or r} or a close approximation
to ry or r}. It is of particular interest as providing a test of the null hypothesis that
a sequence of observations is independently distributed. The alternative hypothesis
is (often unstated) that the observations come from an autoregressive process of
order 1. The doctoral dissertation of Geoffrey Watson (1952) dealt with serial
correlations; hence this present paper is related to the early work of Watson.

In the early ’40’s at least four people nearly simultaneously and essentially
independently derived the distribution of some form of serial correlation when the
z,’s were independently normally distributed with mean 0 and variance o2 (u =
0 and B; = 0). John von Neumann (1941) treated

Yopeo(Te — 241 )?
E?:l(zt - 5)2
Ytea(Tt = E)Te-1 — ) + (21 — 2)% + 3 (20 — 5)2.

Er=l (‘tt - 2_")2

The fraction on the right-hand side of (1.12) is a serial correlation coefficient.

(1.12)

=2-2

Tjalling Koopmans (1942) studied the distribution of r; and approximations to
the distribution. R. L. Anderson (1942) found the distribution of the circular form
(suggested by Harold Hotelling)

where zo = z,. Wilfrid J. Dixon had independently obtained many of the results.

(They were to be included in his doctoral dissertation, but because of the publica-

tions of the others he changed his dissertation topic.) A number of new results were
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published subsequently [Dixon (1944)]. These authors also derived some asymptotic
distributions of the serial correlations, which are asymptotically equivalent to r;.

R. L. Anderson and T. W. Anderson (1950) observed that the distribution of
the circular serial correlation of residuals from a fitted Fourier series has the same
form as the circular serial correlation from the mean. T. W. Anderson (1948) gen-
eralized this result to any serial correlation of residuals from independent variables
constituting characteristic vectors of the matrix of the quadratic form in the numer-
ator of the coefficient. R. L. Anderson suggested “to one of the authors” of Durbin
and Watson (1950), (1951) the investigation of more general residuals. The disser-
tation of Watson (1952), a more extensive study of serial correlation of residuaac,
was under the supervision of R. L. Anderson.

Mann and Wald (1943) derived the asymptotic normality of the sample auto-
covariances in an autoregressive process under the assumption of existence of all
moments of the innovations. The asymptotic covariances (1.7) of the sar .ple cor-
relations for the linear process were given by Bartlett (1946) under the (implicit)
assumption that Ev§ < co. Hoeffding and Robbins (1948) proved the asymptotic
normality under the assumption £v¢ < oo for (1.5) being a finite sum; this condi-
tion was weakened by Diananda (1953) and Walker (1954) to v} < oco. The fact
that the asymptotic covariances depend only on the prccess correlation function
suggests that the condition v} < oo is not necessary. T. W. Anderson (1959)
obtained the limit distribution of /n(r; — p1) for an autoregressive process of order
one when only £v? < oo is assumed. T. W. Anderson and Walker (1964) found
the asymptotic distribution of a finite number of correlations when (1.5) is satisfied
with 357292 < oo.

The assumption that the process {z,} is stationary can be relaxed; in thc model
(1.5) the v¢’s do not have to be identically distributed. In that case the process
correlations can still be defined by (1.9). Moreover, the innovations do not need
to be independently distributed. Instead we assume that the v,’s are martingale
differences. Let ... C -1 C Fo C JF; C ... be an increasing sequence of o-fields

such that v, is F;-measurable. We assume that

(1.14) €(v¢|f}_1) =08..S., t= ...,—1,0,1,... .
Instead of £v? = o2 as for identically distributed random variables, we assume
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(1.15) E(v}|Fe-1) = o as,, t=-1,0,1,...,

(1.16) 1 Zaf He?>0,
n t=1
and
(1.17) sup E[vZI(v? > a)|Fi-1] DO

t=1,2,...

as a — oo; here I(-) is the indicator function. [I(A4) = 1 if the event A occurs, and
I(A) = 0 if the event A does not occur.] Condition (1.17) is a kind of conditional

uniform integrability. For convenience we assume that for some K

(1.18) EvI<K, t=...,-1,0,-1,....

(1.19) Eviv < K2, t#s.

Finally, to define the asymptotic second-order moments of r;, we need more

information on the mixed fourth-order moments of the v,’s. We assume

1 n
(1.20) ; Zatzvt—rvt—‘ 'g) r504 T,s = 1, 2, cey
t=1

where 6,, = 1 and é,, = 0, r # s. In addition there is the technical condition

(1.21) i Viy? < oo.

=0

Note that autoregressive moving average processes satisfy (1.21). Hannan and

Heyde (1972) derived the asymptotic distribution of the r;’s when the v¢’s are

5
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martingale differences. Their conditions are much stronger than ours. In particular,
they assume 0? = ¢? a.s. and bounded fourth-order moments. A more detailed
comparison of their conditions and ours will be made later in this paper.

The purpose of this paper is to give the very weak conditions for the asymptotic
normal distribution of the sample correlations. A general theorem of Anderson and
Kunitomo (1989) is used. That theorem is based on a martingale central limit
theorem of Dvoretzky (1972). More details are given in this paper than in Hannan
and Heyde (1972).

The organization of this paper follows that of Anderson and Walker (1964).
The case of one sample correlation when g is known is proved first. Then the
theorem is proved for an arbitrary number of correlations. Finally the result is

proved for unknown pu.

Theorem. Let {z:} be defined by (1.5), where {7} satisfies (1.6) and (1.21).
Suppose that {v.} satisfies (1.14), (1.15), (1.16), (1.17), (1.18), (1.19), and (1.20).
Then

r—p
(1.22) VRl 1 | SNOW),

TH — PH

where W = (wgp) and wgy is given by (1.7).

Corollary. Under the conditions of the theorem

E ]
rhn —p1

(1.23) val 1 [ SN@ow),
TH = PH

where W = (wgyn) and wyy is given by (1.7).

2. Proof of Theorem. The proof follows the pattern of Anderson and

Walker (1964). [See also Hannan and Heyde (1972).] First we prove that

N U p,)ng (0,wy); then we take up the case of an arbitrary number of corre-
lations. Let y; = z; — u. Define




n-l
(2.1) 20 = (Z YY1 — pi Z Yi )

k
(2.2) Yk = Z’rivt-i,
=0
-1
(2.3) Ef:o YiVi+l

Pk = —=n —7
Z?=O 712

n—1 n
L0 1 2
(24) z,;,=—4 ( YtkYt+1,k — Pik Zytk)
\/T—l t=1 t=1
1 n-l &k n k
= 7—‘ Z Z ViViVt—iVt+i—j = Pk Z Z YiVjVt—iVi—j
t=114,5=0 t=1 ¢,5=0
1 n—=Il k k-1 n k
=7 DD ATRe—iveh — P Y D, WYjvemive-; |
t=1 =0 h=-I t=14,5=0
-1 k k-l
CONEIR |55 3 DRI 5 SR
. nk — n YiYh+1Vt—iVt—h — Plk ViV Ve—iVe—j
t=] i=0 Am-1 t=1 i,jm0
hs#s t#)

Note that terms in the summation in (2.5) witht—i=¢t—handt—-:=1¢t— j are

omitted.

(1)

Lemma 1. The limiting distribution of z,’; as n — oo is N(0,0*Vix) where

k+1

(2.6) Vie = Z [5"’]

{
(2.7) 65 = Z[‘/ Vit YV iviee — (Y i + 7' i2)]
=0




and 7'; = 4; for 0 < i < k and 7'; = 0 otherwise (that is, for i < 0 and ¢ > k).

Proof of Lemma 1. By changing indices of summation we can write

n—-l k k+1
D=
28 =X [zz (z NI - )

t=1 i=0
n k

= Pik z Z (E 7g7g+rvt—tvt—|—r + Z 7.7,_rvt—tvt—t+r>]

t=1 =0

Another change of indices and the addition and subtraction of a finite number of

terms (the number not depending on n) changes (2.8) to

n k4!

(29) \/_ Z Z 6rk VtVt—r = ——= Z zsi)vg,

t=1 r=1

where z“) = Ek“ 5&) v¢—r. We show that (2.9) has the limiting distribution
N(0,0%Vix) by means of Theorem 1 of Anderson and Kunitomo (1989). Condi-
tion (1.17) implies

v;" p
(2.10) sup — —0.
t=—k+1,..,n T

[See the proof of Theorem 2.23 of Hall and Heyde (1980).] Therefore
I (')lz
(2.11) sup L

t=1,...n T

Furthermore (1.16) and (1.17) imply

1 n
(2.12) ; tz_;vtz_’. _p’ 62.

[See Anderson and Kunitomo (1989), Theorem 2, for example.] Then
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(2.13) ’—t- Zv,_,v;_, LA 0, r#s.
t=1
[Application of Theorem 1 of Anderson and Kunitomo (1989), for example, with

vi—, replaced by v, and v;_, replaced by z; for s < r shows that \/n times the
left-hand side of (2.13) has a limiting normal distribution.] Thus

n k+1

1 2 .12
(2.14) 7__2 [zgg] Y [aﬁQ = Vi
n t=1 r=1
The conditions of Theorem 1 of Anderson and Kunitomo (1989) are satisfied with
2t = z&?. This completes the proof of Lemma 1. [ ]
Let

~l oo n oo
e_ 1 ¥
(2.15) (0 = -ﬁ Z Z ViYjVt—iVegl—j — PI Z Z YiVjVt—iVe—;

t=1 i,j=0 t=1 i,j=0

i#Fj—1 1#)

Lemma 2. The limiting distribution of z\”* as n — oo is N(0,0*V}), where

o 2
(2.16) Vi= (Zﬁ) wa.

=0

Proof of Lemma 2. The limit of N(0,04Vj;) is N(0,0%V;) as k — oo since

2
1 — = LW *_® L W . _® AY
(217) V- 2 Z {Z[?.‘ Yiwtrr Y Yigi—r — PO Yigr + 7 ‘7i-r}]} =W,

r=1 =0

where 47 = v, for 0 < i and 4 = 0 for ¢ < 0. To complete the proof of Lemma 2

we shall show that z{"* — z,(g' 2 0 as k — oo uniformly in T. Let

9




(= <]
(2.18) Utk = Yt — Ytk = Z Vive—i-
t=k+1

Then

n—l

(2.19) 20— = \/- Z [(yex + wer)(Yert b + Yeti,k) — Yek Vet k)

-3 Z [—pi(yer + uek)? + prry’]

-1
1 []
= % Z [UerYett,k + Yo kUest,k + UekUrsi k)
t=

n
1 [}
+ 75 ; [(pix — P)y% — 2p1ytkuek — prudy),

where the prime on Z' denotes that terms v,v, with t = s are omitted. Let

n—{ n
! !
(2.20) T, = E UkYe+l,ky -+, L6 = —pI E ugy-
t=1 t=1

Then (2.19) is (1/v/n) S5—; Th-

Consider, for example,

Ts !
(2.21) ==Y "ul
Pl —1
n e o]
= 22 Z YiY;VemiVe—j-
t=1 i,jmk41
I<J

(If pp =0, Ty = Ts = Ts = 0.) The expected value of the square of (2.21) divided
by 2 is

2
1 N —
(2.22) el =3 ¥ vvjve-ivi,
\/ﬁ t=1 .‘.j_-h:H

<J

1 00

; E Z 7i7i7i'7j’vt—ivt-jv¢'_,-:vu_j,,
'=1¢,5,i,j' =41

1<,/ <y

10




By the Cauchy-Schwarz inequality

(2.23) E|vemiVe—jop_irvp—jr| < \/ﬁ'v,_,v,_JSv,._,,vf, -

< K2

Then (2.22) is

1 o0 n
(2.24) - z Y E Evp—jVi—i—(—inE(VI_{| Femiz1),
6,5,80 5 =k41 t=1
i<iir<y

where the sum on t is vacuous unless 1 < ¢t —i + ¢’ < n. Use of (2.23) shows that

(2.24) is not greater than

(2.25) ( 3> |7i|) K?

i=k+1

This quantity is made arbitrarily small by taking k sufficiently large. Hence Ts 5 0
uniformly in n as k — oo.

For Ty we consider

1 ' 2
9 ——e = ———
(2.26) = E =

1 n k—i
= 2 ‘Y:—n (Z ‘Yi+hvt—i-h) Ve—s.

For each ¢ the term in (2.26) that is multiplied by +4; has a limiting normal distribu-
tion [by Theorem 1 of Anderson and Kunitomo (1989) with z; = Ei;'l Yi+hVt—i-h],

and hence the sum on ¢ has a limiting distribution. Since pjx — pi, the term T} L)

11




It follows from the Cauchy-Schwarz inequality and the behavior of 3_' y2, /v/n
and Y’ u2, /\/n that Ts B 0. That the first three terms converge stochastically to

0 follows similarly. |
Lemma 3. The limiting distribution of 2% is N(0,0*V}).

Proof of Lemma 3. We have

. 1 [n—{ oo
(2.27) Z2(0 — (0% = T 30D vivirwi PIZZ‘Y. v ]
" =1 =0 t=1 i=0
1 [ oo n—-l{—i o) n—i
- LSS a3 ¥
L i=0 a=1—1i =0 a=1—t
1 [ B . 2(0)
0
= 7i7i+lT i plZ7s2Tnt ]
\/5 .; " =0
where
' n—Il—i n
(2.28) TV = 3 o232
s=1—1 s=1
0 n
= zvf— E v2, i<n-—I
s=1—% s=n—-l—i+1
n—l n
(2.29) T = Y v2-Y o?
s=1—-1 s=1
0 n
= E v? - E v2, t<n.
s=1-—i s=n—i+1

The second term on the right-hand side of (2.27) is p; times

(2.30) Z PTQ = = (27. 3o i+ fj y? Z-j vf)
1—0 =0 a=1-—i i=n+1 s=1-1
-— (Z_;'r. _X_:va + .zlv?glvf) :

12




The expected value of the first pair of terms on the right-hand side of (2.30) is not
greater than

(2.31) % (g iv? + .gl n'y?) K= (2:% \/%\/;‘7.2 + ;gl \/?‘/;7?) K
< (f: \/gfi'rﬂ i \/57.-2) K

=0 t=m+1
<(VESvais 3% vint)x
=0 i=m+1

for m < n. The second term on the right-hand side of (2.31) is made arbitrarily small
by taking m large enough. The first term is made arbitrarily small by taking n large
enough, given m. The second pair of terms on the right-hand side of (2.30) is treated
similarly. Then Markov’s inequality implies that (2.30) converges stochastically to
0.

The absolute value of the first term on the right-hand side of (2.27) has expected
value not greater than

1 & 0]
(2-32)-ﬁ ; il - [vial - EIT, |
1 [n—1{ oo
< x|l henl@ 4D+ 30l el 2n ~ t)] K
| i=0 i=n—I+1
1 [ n-—-l oo oo
< 7 23 il - [igali +2 Yol Ml + ) il - I7i+1|’] K
L =0 t=n—-I{+1 =0
2 [Stien 3 Ly
<—= i+n 7-’]K+— 7K.
\/1_1 L =0 i=n—-Il+1 ' ﬁ =0

The argument used for (2.31) shows that the right-hand side of (2.32) can be made

arbitrarily small uniformly in n. |

Lemma 4. Under the assumptions of the theorem

o0
(2.33) wba?) 1

13




Proof of Lemma 4. We can write ¢y as

1 & 1< 2 1 —
2. -2:2=_§:2 _E: _Z 2
( 34) nt=1yt n¢=1y‘k+nt:lyu‘utk+n:=1utk

The last term in (2.34), which is nonnegative, has expected value

(2.35) £= Zu,k-s Z }: FYjVe—iVe-;

t— ll,]——k+1

n

Z Z hillv;E ve-ive-;
t=11i,j=k+1

< (i;k;l I'rsl) K

This can be made arbitrarily small by taking k sufficiently large.
The first term of (2.34) is

(2.36) ; Z = - Z z YiYiVt—iVt—j

t—l 1,j=0
= Zv Zv:—n +1y > wstecins
1=0 t—l i,j=0
i#j

The first term on the right-hand side of (2.36) converges in probability to o2 Zf:o ¥2,
the limit of which is 02 Y ;2 7? as k — oo0. The second term in (2.36) is 2//n

times

n k-1 &k n k-1k—j
(2.37) Z Z E ViViVt=iV—5 = Jn E Z Z YiVi+nVt—j Vt—j—h.
t—l Jj=0 i=j+1 t=1 j=0 h=1

Addition and subtraction of k(k — 1) terms changes (2.37) into

1 n k-1k=j
(2.38) 7 > (Z > ‘7J"Yj+hvt-h) v
t=1

Jj=0 h=1

14




Theorem 1 of Anderson and Kunitomo (1989) with 2z, = Z o Zh_l Yi%Yi+hVi—h
shows that the limiting distribution of (2.38) is normal with finite variance. Hence
the second term in (2.36) converges stochastically to 0.

The second term in (2.34) is in absolute value

(2.39)

1 | 1
21— Zytkutk <2 - Zy?k - Zufp
n =1 t=1 t=1

which converges stochastically to 0 by the preceding results. The lemma follows. i
Lemma 5. Under the conditions of the theorem /n(r; — p;) 4N (0, wn).

Proof of Lemma 5. We have

(2.40) va(ri—pi) = f g.t_—_l_y_*ﬂﬂ p1
21_1 H
I [Zod vs - n Ti, o]
N '
Lemma 5 follows from Lemmas 1 to 4. [ |

The theorem is proved by showing that

H —h
Y oh=1Qh [Z;;x YeYerh — Ph Lpey ytz] [V

H
(241) VR an(ra —pa) =

h=1 Z?:l yt2 / n
Eh—l anz”
Co
has a limiting normal distribution for any constants ay,...,ay. The generalization

of Lemma 1 pertains to E h=1 a;.z(h) , which is modified by addition and subtraction

of a finite number of terms (the number not depending on n) to

n k+H

(242) E E 6'*‘0(0:_'-,

t-l r=1

15




where

(2.43) §H = Za,.a(’"

Lemmas 2 and 3 show that

(2.44) Za;.z(") Ea 2B R g

h=1

uniformly in n as k — 0o. Then the theorem follows.
3. Proof of Corollary.

Lemma 6. Under the conditions of the theorem

(3.1) zhu.

Proof of Lemma 6. We have

(3.2) né(z — p)* = .-_(_..-1) (1 - I’n‘) E(ze — p)(Ze4s — 1)
n—l I oo
= 1——
a=—(n-1) ( n ) I,JZ=0
n—l [
|s
= l1——
a_—(u—l) ( n ) Z;
< Z Z il i o} K

==-00 =0

(Em) =

< 00.

16

YiV;EVe=iVeq|a)—5

7t7|+|a|£vt-;




Then (3.1) follows by Tchebycheff’s inequality. |
Proof of Corollary. We have

(3.3)

n—h

Vil - o) = —= [z(m, ~ 2)(ertn ~ ) — no(h)
n—h
= % {;[(z: =)= (@ = ll(ze4n — p) = (Z — p)] - na(h)}

n—h
= Valer = o(W)] = (E = W) 7= 3 (a0~ )

n—h

- = e Y (an = W)+
t=1

= Valen — o(B)] + op(1).
Since the set /nc} — o(1)),...,+/n[c}; — o(H)] has the same limiting distribution
as the set v/n[c; —o(1)),...,v/nlcn — o(H)] and c§50(0), the limiting distribution
of the set \/n(r} — p1),...,/n(r}; — pu) is the same as the limiting distribution of
the set /n(ry — p1),...,v/n(ry — pn). (]

4. Discussion

4.1. Assumptions on Moments of Innovations. Although the asymp-
totic distribution of autocovariances may depend on finiteness or boundedness of
fourth-order moments, the asymptotic distribution of the autocorrelations has been
demonstrated here on the basis of boundedness of second-order moments and of
mixed fourth-order moments; these conditions are weaker than the condition of
boundedness of the pure fourth-order moments. In fact the boundedness of second-
order moments is used in Lemmas 3,4, and 6, and the boundedness of mixed fourth-
order moments is applied in Lemma 2; these conditions may be slightly unnecessarily
strong. However, (1.20), which involves mixed fourth-order products, is essential
to obtain the covariances of the limiting distributions. It should be noted that the
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conditions do permit heterogeneity of variances. In the case that the innovations
are independently identically distributed only the second- order moment is assumed
finite, but that implies that the mixed fourth-order moments are finite and are de-
termined by the second-order moments (and the fact that the first-order moment is
0).

4.2. Comparison with Autoregression. In the case of the process defined
by (1.10) the boundedness of second-order moments and mixed fourth-order mo-
ments is not needed. Conditions (1.14), (1.15), (1.16), (1.17), and (1.20) suffice. In

fact, it is not assumed that £v? < co. See Anderson and Kunitomo (1989).

4.3. A More General Mixed Fourth-Order Moment Limit. Instead of

(1.20) we can assume

n
1
2 P 4
- E OfVt—rVt—ys — Trs0 rs=12,...,
t=1

(4.1)

where {7,,} is arbitrary. Then in the theorem and corollary wy; given by (1.17) is

replaced by

o0
(4.2) E Tra(Prag + Pr—g = 20rpg)(Pr+h + Pr—h — 2prpn).
r,s=1
The major change in the derivation is that a generalization of Theorem 1 of Ander-

son and Kunitomo (1989) is applied to obtain a variance in Lemma 1 of

k41 D ()
(4.3) Trabip 6L
1

o=

4.4. Comparison with a Theorem of Hannan and HeyZe¢. As noted in
the introduction, Hannan and Heyde (1972) generalized the theorem of Anderson
and Walker (1964) to innovations being martingale differences. The conditions in
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the present paper [ as in Anderson and Kunitomo (1989)] are weaker than those of
Hannan and Heyde. In both papers (1.6), (1.14), and (1.21) are assumed. Instead
of (1.17), (1.18), and (1.19), Hannan and Heyde assume that there exists a constant

c and a random variable X such that

(4.4) Pr{lve| > u} < ¢ Pr{|X| > u}, Vu >0,
and
(4.5) EX* < 0.

This condition implies that the pure fourth-order moments of the innovations are
bounded. Instead of (1.16) they assume

(4.6) 1 Z ol = o* a.s.
n t=1

and

(4.7) £? = o,

In addition to (4.1) they assume

(4.8) Evivy_rvi—, = o7y, r,s=12,....

The conditions of Hannan and Heyde are considerably stronger than those of this
paper in that they assume that variances and mixed fourth-order moments of the

innovations are homogeneous.
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