REPORT DOCIIMENTATION PAGE EomApprond
EX e e e et S S e
m AD_A238 264 on Davis Highway, Sule 1204, Arington, VA 222024302, and to the Offics of information and Reguiatory Affairs, Offios of
e R Fina: 15 Aug 19900 01 Mar 1980
(4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SD-Scicon UK Limted, SX Ada MIL-STD-1750A, version 1.12, Local Area VAX
Cluster (Host) to MIL-STD-1750A (Target), 901214N1.11080

6. AUTHOR(S)
National Computing Centre Limited]

Manchester, UNITED KINGDOM

R AMI ANIZAT]
National Computing Centre Limited REPORT NUMBER
Oxford Road c 2 AVF-VSR-90502/72-910412
Manchester Mi 7ED
UNITED KINGDOM
9. SPONSORING/MONITORING AGENCY N'AM_E(S) AND ADDRESS(ES) 10, SPONSORING/MONITORING AGENCY]
Ada Joint Program Office REPORT NUMBER
United States Department of Defense
Washington. D.C. 20301-3081
"'_TT'E'__E1 SUPPLEMENTARY NOTES
[12a. DISTRIBUTION/AVAILABILITY STATEMENT 120, DISTRIBUTION CODE |

Approved for public release; distribution unlimited.

13, ABSTRACT (Maximum 200 words) ’
SD-Scicon UK Limited, XD Ada MIL-STD-1750A, Version 1.2, Manchester, England, Local Area VAX Cluster (comprising a
VAXserver 3600, 2 MicroVAX 2000's and 1 MicroVAX ll)(under VMS 5.3) (Host) to Fairchild F9450 on a SBC-50 board
(MIL-STD-1750A)(bare machine)(Target), ACVC1.11.

91~-03
Hlll!lIllllﬂl!lllllllﬂl llllll'llllllllﬂ

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION] 20. LIMITATION OF ABSTRACT |
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prascribed by ANS| Std. 239-128

P L . 7 AN
9% v 6k (38

AVF Control Number: AVF_VSR_90502/72-910412

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #901214N1.11080
SD-Scicon UK Limited
XD Ada MIL-STD-1750A Version 1.2
Local Arca VAX Cluster Host and MIL-STD-1750A Target

Prepared by
Testing Services
The National Computing Centre Limited

Oxford Road
Manchester
M1 7ED
England L
_ Aceassion Vor S{

NTIY GRAMX
PTIC ik O
Unanno-anved o :
Justificativo .}
By
Distrsy bu&_i_o_q(

VSR Version 90-08-15 Avallabiiity Codes

Avail and/or
Dist Spueial

| i %‘* R\

Vahdation Summary Report AVF_VSR_90502/72

S1)-Scicon UK Limited

Page i of iii XD Ada MIL-STD-1750A V12

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11. Testing was
completed on 901214.

Compiler Name and Version: XD Ada MIL-STD-1750A Version 1.2

Host Computer System: Local Area VAX Cluster (comprising a VAXserver 3600, 2
MicroVAX 2000’s and 1 MicroVAX II) (under VMS 5.3)

Target Computer System: Fairchild F9450 on a SBC-50 board (MIL-STD-1750A) (bare
machine)

A more detailed description of this Ada implementation is found in section 3.1 of this report.
As a result of this validation effort, Validation Certificate #901214N1.11080 is awarded to SD-Scicon
UK Ltd. This certificate expires on 01 JUNE 1992.

This report has been reviewed and is approved.

AES2unie

June Pink ' Ada VilidiuopOrganization
Testing Services Manager & Director, Computer & Software
The National Computing Centre Limited Engineering Division
Oxford Road Institute for Defense Analyses
Manchester Alexandria
M1 7ED VA 22311
England

Ada Joint Program Office

Dr. John Solomond

Director

Department of Defense

Washington

DC 20301
Vulidation Summary Report AVF_VSR_90502/72

$1)-Scicon UK Limited Page ii of iii XD Ada MIL-STD-1750A V12

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.
DECLARATION OF CONFORMANCE
Customer: SD-Scicon UK Limited
Ada Validation Facility: The National Computing Centre Limited
Oxford Road
Manchester

M1 7ED
United Kingdom

ACVC Version: i1

Ada Implementation:

Ada Compiler Name: XD Ada MIL-STD-1750A
Version: o
Host Computer System: Local Avea VAX Cluster (comprising a VAXserver 3600, 2

MicroVAX 20%’s and 1 MicroVAX II) (under VMS 5.3)

Target Computer System: Fairchild F9450 on s SBC-50 board (MIL-STD-1750A) (bare
machine)

Customer’s Declaration

I, the undersigned, representing SD-Scicon UK Limited, declare that SD-Scicon UK Limited has
no knowledge of deliberate deviations from the Ada Language Standard ANS/MIL-STD-1815A in
the implementation(s) listed in this declaration.

o o

Date

Validation Summary Repoct AVF_VSR_90502/72

SD-Scicon UK Limited Page iii of iii XD Ada MIL-STD-1750A V1.2

TABLE OF CONTENTS

TABLE OF CONTENTS
CHAPTER 1
11 USE OF THIS VALIDATION SUMMARY REPORTc00vun 1
1?2 REFERENCES ittt nesas 1
1.3 ACVC TEST CLASSES ... ittt iiiiiiininnnsnnnnnacannns 2
14 DEFINITIONOF TERMS i iiiiiinneerinnonnnonsanens 2
CHAPTER 2
2.1 WITHDRAWN TESTS ittt innnantseronnanennns 1
2.2 INAPPLICABLE TESTS v iinieritieearsosoesosansenns 1
23 TESTMODIFICATIONSt iiiiitiierinnreiornanannas 3
CHAPTER 3
31 TESTING ENVIRONMENT iiiiiitesnnnnnrrannnsens 1
32 SUMMARY OF TESTRESULTSiiiiiiiiininnnsannnnnss 1
33 TEST EXECUTION ... ittt etetarsoessosasansss 2
APPENDIX A
APPENDIX B
APPENDIX C
Validation Summary Report AVF_VSR_90502/72

SD-Scicon UK Limited Table of Contents - Page i of i XD Ada MIL-STD-1750A V12

INTRODUCTION

CHAPTER 1

INTRODUCTION

The Adz implementation described above was tested according to the Ada Validation Procedures
[Pro%0] against the Ada Standard {Ada83] using the current Ada Compiler Validation Capability
(ACVC). This Validation Summary Report (VSR) gives an account of the testing of this Ada
implementation. For any technical terms used in this report, the reader is referred to [Pro90]. A
detailed description of the ACVC may be found in the current ACVC User’s Guide [UG89).

11 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may make
full and free public disclosure of this report. In the United States, this is provided in accordance with
the "Freedom of Information Act” (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant that
all statements set forth in this report are accurate and complete, or that the subject implementation
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

Springfield

VA 22161

Questions regarding this report or the validation test results should be directed to the AVF which
performed this validation or to:

Ada Validation Organization
Institute for Dcfense Analyses
1801 North Becaurcgard Street
Alexandria

VA 22311

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSIMIL-STD-1815A, February 1983 and ISO 8652-1987

AVF_VSR_90502/72
Chapter 1 - Page 1 of 4 XD Ada MIL-STD-1750A V1.2

INTRODUCTION

[Pro90] Ada Compiler Validation Procedutes,
Version 2.1, Ada Joint Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User’s Guide,
21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains a
collection of test programs structured into six test classes: A, B, C, D, E, and L. The first letter of
a test name identifies the class to which it belongs. Class A, C, D, and E tests are executable. Class
B and class L tests are expected to produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when they are executed. Three Ada library units,
the packages REPORT and SPPRT13, and the procedure CHECK_FILE are used for this purpose.
The package REPORT also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test objective. The package
SPPRT13 is used by many tests for Chapter 13 of the Ada Standard. The procedure CHECK_FILE
is used to check the contents of text files written by some of the Class C tests for Chapter 14 of the
Ada Standard. The operation of REPORT and CHECK_FILE is checked by a set of executable tests.
If these units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that all
violations of the Ada Standard are detected. Some of the class B tests contain legal Ada code which
must not be flagged illegal by the compiler. This behaviour is also verified.

Class L tests check that an Ada implementation correctly detects violation of the Ada Standard
involving multiple, separately compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be replaced by implementation-specific
values -- for example, the largest integer. A list of the values used for this implementation is
provided in Appendix A. In addition to these anticipated test modifications, additional changes may
be required to remove unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced by the AVF. This customization
consists of making the modifications described in the preceding paragraph, removing withdrawn tests
(sec sceiion 2.1) and, possibly some inapplicable tests (see Section 3.2 and [UG89)).

In order to pass an ACVC an Ada implementation must process each test of the customized test suite
according to the Ada Standard.

14 DEFINITION OF TERMS

Validation Summary Report AVE_VSR_90502/72
8D-Scicon UK Limited Chapter 1 - Page 2of 4 XD Ada MIL-STD-1750A V12

INTRODUCTION

Ada Compiler

Ada Compiler
Validation
Capability (ACVC)

Ada Implementation

Ada “/alidation Facility
(AVF)

Ada Validation
Organization (AVO)

Compliance of an Ada
Implementation

Computer System

Conformity

Customer

Dcclaration of
Conformance

Host Computer System

Inapplicable test

The software and any needed hardware that have to be added to a
given host and target computer system to allow transformation of
Ada programs into executable form and execution thereof.

The means for testing compliance of Ada implementations, consisting
of the test suite, the support programs, the ACVC user’s guide and
the template for the validation summary report.

An Ada compiler with its host computer system and its target
computer system

The part of the certification body which carries out the procedures
required to establish the compliance of an Ada implementation.

The part of the certification body that provides technical guidance for
operations of the Ada Certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or part of a
program and also for all or part of the data necessary for the
execution of the program; executes user-written or user-designated
prograras; performs user-designated data manipulation, including
arithmetic operations and logic operations; and that can execute
programs that modify themselves during execution. A computer
system may be a stand-alone unit or may consist of several inter-
connected units.

Fulfilment by a product, process or service of all requirements
specified,

An individual or corporate entity who enters into an agreement with
an AVF which specifies the terms and conditions for AVF services
(of any kind) to be performed.

A formal statement from a customer assuring that conformity is
realized or attainable on the Ada implementation for which
validation status is realized.

A computer system where Ada source programs are transformed into
executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

Validatioa Summary Report

SD-Scicon UK Limited

AVF_VSR_90502/72

Chapter 1 - Page 3 of 4 XD Ads MIL-STD-1750A Vi2

INTRODUCTION

Operating System

Target Computer
System

Validated Ada Compiler

Validated Ada
Implementation

Validation

Withdrawn test

Software that controls the execution of programs and that provides
services such as resource allocation, scheduling, input/outpu: ~ontrol,
and data management. Usually, operating systems are predominantly
software, but partial or complete hardware implementations are
possible.

A computer system where the executable form of Ada programs are
executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully either
by AVF testing or by registration [Pro90}.

The process of checking the conformity of an Ada compiler to the
Ada programming language and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in conformity testing. A
test may be incorrect because it has an invalid test objective, fails to
meet its test objective, or contains erroneous or illegal use of the
Ada programming language.

Validation Summary Report

$D-Scicon UK Limited

AVF_VSR_90502/72,
Chapter 1 - Page 4 of 4 XD Ada MIL-STD-1750A V12

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

IMPLEMENTATION DEPENDENCIES
2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for this list of withdrawn tests is

90-10-12.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A AT4006A
C74308A B83022B B83022H B83025B B83025D B83026B
B85CO1L C83026A C83041A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1B06A AD1B08A BD2A0A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CDs5111A CD7004C ED7005D
CD700sSE AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA201E CE21071
CE2117A CE2117B CE2119B CE2205B CE246SA CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

22 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for a given Ada
implementation. The inapplicability criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the format Al-dddd. For this
implementation, the following tests were inapplicable for the reasons indicated; references to Ada
Issues are included as appropriate.

The following 285 tests have floating-point type declarations requiring more digits than
SYSTEM.MAX_DIGITS:

C24113F..Y (20 tests)
C35706F..Y (20 tests)
C35708F..Y (20 tests)
C45241F..Y (20 tests)
C45421F..Y (20 tests)
CA45524F..Z (21 tests)
C45641F..Y (20 tests)

C35705F..Y (20 tests)
C35707F..Y (20 tests’
C35802F..Z (21 tests)
C45321F..Y (20 tests)
CA5521F..Z (21 tests)
C45621F..Z (21 tests)
C46012F..Z (21 tests)

Chapter 2 -Page 1 0of 4

AVF_VSR_90502/72

XD Ada MIL-STD-1750A V12

IMPLEMENTATION DEPENDENCIES

The following 21 tests check for the predefined type SHORT_INTEGER:

35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
BS2004E C55B07B BS5B0SD B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined integer type with a
nume other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORT_FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a name other thai FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

C45423A, C45523A and C45622A check that if MACHINE_OVERFLOWS is TRUE and the resuits
ol various floating-point operations lie outside the range of the base type, then the proper exception
is raised; for this implementation, MACHINE_OVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for types that require a

SYSTEM.MAX MANTISSA of 47 or greater; for this implementation, MAX_MANTISSA is less
than 47.

CS86001F recompiles package SYSTEM, making package TEXT_IO, and hence package REPORT,
vbsolete. For this implementation, the package TEXT IO is dependent upon package SYSTEM.

BS6001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION’BASE that are outside the range of DURATION.
There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-defauit size for a floating-point type.

CD2AB4A, CD2A84E, CD2A84L.J (2 tests), and CD2A840 use representation clauses specifying
non-default sizes for access types.

The following 263 tests check for sequential, text, and direct access files:

CE2102A..C (3)
CE2103C..D (2)
CE2107A.H (8)
CE2110A..D (4)

CE2102G.H (2)
CE2104A..D (4)
CE2107L
CE2111A..1 (9)

CE2102K

CE2105A..B (2)
CE2108A..H (8)
CE2115A..B (2)

CE2102N..Y (12)
CE2106A..B (2)
CE2109A..C (3)
CE2120A.B (2)

CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
Validation Summary Keport AVF_VSR_90502/72
S1)-Scicon UK Limited Chapter 2 -Page 2 of 4 XD Ada MIL-STD-1750A V1.2

DAPLEMENTATION DEPENDENCIES

CE2401H..L (5)
CE2406A
CE2410A.B (2)
CE31021.K (2)
CE3107B
CE3111A.B (2)
CE3115A
EE3204A
EE3301B
CE3401A
CE3403A..C (3)
EE3405B
CE3408A..C (3)
CE3410A
CE3411C
CE3413C
CE3604A..B (2)
CE3704M..0 (3)
CE3804A..P (16)
CE3806H
CE3906A..C (3)

CE2403A
CE2407A.B (2)
CE2411A
CE3103A
CE3108A.B (2)
CE3111D.E (2)
CE3116A
CE3207A
CE3302A
CE3402A
CE3403E.F (2)
CE3405C..D (2)
CE3409A
CE3410C.E (3)
CE3412A
CE3414A
CE3605A..E (5)
CE3705A..E (5)
CE3805A..B (2)
CE3904A..B (2)
CE3906E..F (2)

CE2404A.B (2)
CE2408A..B (2)
CE3102A..C (3)
CE3104A..C (3)
CE3109A
CE3112A.D (4)
CE3119A .
CE3208A
CE3304A
EE3402B
CE3404B..D (3)
CE3406A..D (4)
CE3409C..E (3)
EE3410F
EE3412C
CE3602A..D (4)
CE3606A.B (2)
CE3706D
CE3806A..B (2)
CE3905A..C (3)

CE2405B
CE2409A.B (2)
CE3102F.H (3)
CE3106A..B (2)
CE3110A
CE3114A.B (2)
EE3203A
CE3301A
CE3305A

CE3402C..D (2).

CE3405A
CE3407A..C (3)
EE3400F
CE3411A
CE3413A
CE3603A
CE3704A.F (6)
CE3706F..G (2)
CE3806D..E (2)
CE3905L

CE3413B checks operations on text files; this implementation does not support external files. (See
section 2.3).

CE3806G assumes that implementations not supporting text files wi. raise USE_ERROR if

TEXT_IO.CREATE is called; for this implementation NAME_ERROR is raised if a non-null file
name is specified. (See section 2.3).

23 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 14 tests.

The following test was split because syntax errors at one point resulted in the compiler not detecting
other errors in the test:

BY7301E

C45524A..E (5 tests) were graded passed by Test Modification as dirccted by the AVO. These tests
expect that a repeated division will result in zero; but the Ada standard only requires that the result
fiv in the smallest safe interval. Thus, the tests were modified to check that the result was within the
smallest safe interval by adding the following code after line 138; the modified tests were passed:

ELSIF VAL <= F'SAFE_SMALL THEN COMMENT ("UNDERFLOW IS GRADUAL"),

C64103A and C95084A were graded passed by Evaluaticn Modification as directed by the AVO.
Because this implementation’s actual values for LONG_FLOAT'SAFE_LARGE and

Validation Summary Report AVE_VSR_90502/72

$1)-Scicon UK Limited

Chapter 2 - Page 3 of 4

XD Ada MIL-STD-1750A V1.2

IMPLEMENTATION DEPENDENCIES

SHORT_FLOAT’LAST lie within one (SHORT _FLOAT) model interval of each other, the tests’
{loating-point applicability check may evaluate to TRUE and yet the subsequent expected exception
need not be raised. The AVO ruled that the iraplementation’s tehaviour should be graded passed
because the implementation passed the integer and fixed-point checks. The following
REPORT.FAILED messages were produced after the type conversions at line 198 in C64103A and
lines 101 and 250 in C:95034A failed to raise exceptions:

C64103A: "EXCEPTION NOT RAISED AFTER CALL -P2 (B)"

C95084A "EXCEPTION NOT RAISED BEFORE CALL - T2 (A)"
"EXCEPTION NOT RAISED AFTER CALL - TS (B)"

C64201C, C99005A and A98002A were graded passed by Test Modification as directed by the AVO.
These tests respectively contain 12, 12 and 17 tasks; given the implementation’s defauit amount of
storage allocated to a task, this number of tasks causes STORAGE_ERROR to be raised. These
tests were modified to include length clauses that specified 1K bytes for the task storage size (for tests
C99005A and A98002A, this required that the single tasks be re-written as task types); the modified
1ests were passed.

CE3413B was graded inapplicable by Evaluation Modification as directed by the AVO. This test
includes the expression "COUNT’LAST > 150000", which raises CONSTRAINT_ERROR on the
implicit conversion of the integer literal to type COUNT since COUNT’LAST = 32,767; there is no
handler for this exception, so test execution is terminated. The AVO ruled that this behaviour was
acceptable; the AVO ruled that the test be graded inapplicable because it checks certain file
operations and this implementation does not support external files.

CE3806G was graded inapplicable by Evaluation Modification as directed by the AVO. This test is
inapplicable to implementations that do not support external files. However, the test incorrectly
continues execution after handling NAME_ERROR at line 42 (and calling
REPORT.NOT_APPLICABLE), and the subsequent attempt to create a file results in the test
aborting with an unhandled NAME_ERROR exception.

CE3901A was graded passed by Test Modification as directed by the AVO. This test expects that
implementations that do not support external files will raise USE_ERROR on the attempt to create
a file at line 52; this implementation raises NAME_ERROR, as allowed by AI-00332. The test was
modified by inserting’| NAME_ERROR'’ into the exception choice at line 52, and the modified test
was passed.

Validation Summary Report AVF _VSR_90502/72
SD-Scicon UK Limited Chapter 2 -Page 4 of 4 XD Ads MIL-STD-1750A V12

PROCESSING INFORMATION

CHAPTER 3
PROCESSING INFORMATION
i1 TESTING ENVIRONMENT

The host and target computers systems were connected via a standard RS232 link. Other details
concerning the Ada implementation tested in this validation effort is described adequately by the
information given in the initial pages of this report.

For a point of contact for technical informatic.. about this Ada implementation system, see:

Tim Magness
SD-Scicon UK Ltd
Pembroke House
Pembroke Broadway
Camberley

Surrey

GU1s5 3XD

For a point of contact for sales information about this Ada implementation system, see:

Colin Foster
SD-Scicon UK Ltd
Pembroke House
Pembroke Broadway
Camberley

Surrey

GU15 3XD

Testing of this Ada implementation was conducted at the customer’s site by a validation team from
the AVF.

32 SUMMARY OF TEST RESULTS
An Ada Implementation passes a given ACVC version if it processes each test of the customized test
suite in accordance with the Ada Programming Language Standard, whether the test is applicable or

inapplicable; otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was obtained that conforms to the Ada
Programming Language Standard.

a) Total Number of Applicable Tests 3486

Validation Summary Report AVF_VSR_90502/72
SD-Scicon UK Limited Chapter 3 - Page 1 of 2 XD Ada MIL-STD-1750A V12

PROCESSING INFORMATION

b) Total Number of Withdrawn Tests 81
<) Processed Inapplicable Tests 603
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point Precision Tests 0
f) Total Numnber of Inapplicable Tests 603 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

When this compiler was tested, the tests listed in section 2.1 had been withdrawn because of test
errors.

33 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was tested, the tests listed in
section 2.1 had been withdrawn because of test errors. The AVF determined that 603 tests were
inapplicable to this implementation. All inapplicable tests were processed during validation testing.
In addition, th= modified tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was taken on-site by the
validation team for processing. The contents of the magnetic tape were loaded onto a VAX 8600 and
were transferred via DECnet to the host computer system.

After the test files were loaded onto the host computer, the full set of tests was processed by the Ada
implementation.

The tests were compiled and linked on the host computer system, as appropriate. The executable
images were transferred to the target computer system by the communications link described above,
and run. The results were captured on the host computer system.

Tcsting was performed using command scripts provided by the cusiomer and reviewed by the
validation team. See Appendix B for a complete listing of the processing options for this
implementation. It also indicates the default options. The o} ions invoked explicitly for validation
testing during this test were:

/LIST used for tests requiring compilation listings
/DEV=DAY_0 in-house compiler option to remove extraneous listing information eg Jates
and headers.

Test output, compiler and linker listings, and job logs were captured on magnetic tape and archived
at the AVF. The listings examined on-sitc by the validation team were also archived.

Validation Summary Report AVF_VSR_90502/72
SD-Scicon UK Limited Chapter 3 - Page 2of 2 XD Ada MIL-STD-1750A V12

MACRO PARAMETERS

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. The meaning and
purpose of these parameters are explained in [UG89]. The parameter values are presented in two
tables. The first table lists the valued that are defined in terms of the maximum input-line length,
which is the value for SMAX_IN-LEN--also listed here. These values are expressed here as Ada
string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX_IN_LEN 255

$BIG_ID1 ' (1.V-1 => A, V => 1)

$BIG_ID2 (1.V-1 => AV => 7))

$BIG_ID3 1. VR => A" & '3 & (1.V-1.V2 =>'A’)
$BIG_ID4 1L.V2 =>A) & '4 & (1.V-1-V2 => 'A))
$BIG_INT_LIT (1.V-3 =>0’) & "298"

$BIG_REAL_LIT (1.V-5 =>0") & "690.0"

$BIG_STRING1 " & (1.VR => "A) &™

$BIG_STRING2 ™ & (AV1IVR2 => A &1 &
$BLANKS (1.V-20 => ")
$MAX_LEN_INT_BASED_LITERAL "2 & (1.V-5 =>°0") & "11:"

$SMAX_LEN_REAL_BASED LITERAL "16" & (1..V-7 => '0°) & "F.E:"

$MAX_STRING_LITERAL " & (LV-2=>"A)&™

Validation Summary Report AVF_VSR_90502/72

SD-Scicon UK Limited Appendix A - Page 1 of 4 XD Ada MIL-STD-1750A V12

MACRO PARAMETERS

MACRO PARAMETERS

The following table lists all of the other macro parameters and their respective values.

Macro Parameter Macro Value
$ACC_SIZE 16
$ALIGNMENT 1
$COUNT_LAST 32767
$DEFAULT_MEM_SIZE 131072

$DEFAULT_STOR_UNIT
$DEFAULT_SYS_NAME
$DELTA_DOC
$ENTRY_ADDRESS
$ENTRY_ADDRESS1
$ENTRY_ADDRESS2
$FIELD_LAST
$FILE_TERMINATOR
$FIXED_NAME
$FLOAT_NAME
$FORM_STRING
$FORM_STRING2

$GREATER_THAN_DURATION

16

MIL_STD_1750A

2.0**(-31)
SYSTEM.TO_ADDRESS(32765)
SYSTEM.TO_ADDRESS(32760)
SYSTEM.TO_ADDRESS(32755)
255

’ 3

NO_SUCH_TYPE

NO_SI’JCH_TYPE

Ll

"CANNOT_RESTRICT_FILE_CAPACITY"

75000.0

$GREATER_THAN_DURATION_BASE_LAST

131073.0

$GREATER_THAN _FLOAT BASE _LAST 3.40283E+38

$GREATER_THAN_FLOAT_SAFE_LARGE 1.8E+38
Validation Summary Report AVF_VSR_90502/72
$D-Scicon UK Limited Appendix A - Page 2of 4 XD Ada MIL-STD-1750A V12

MACRO PARAMETERS

$GREATER_THAN_SHORT _FLOAT SAFE_LARGE

$HIGH_PRIORITY
$ILLEGAL_EXTERNAL_FILE_NAMEI1
$ILLEGAL_EXTERNAL_FILE_NAME2
$INAPPROPRIATE_LINE_LENGTH
$INAPPROPRIATE_PAGE_LENGTH
$INCLUDE_PRAGMAI
$INCLUDE_PRAGMA2
$INTEGER_FIRST

SINTEGER_LAST
$INTEGER_LAST_PLUS_1
SINTERFACE_LANGUAGE
$LESS_THAN_DURATION
$LESS_THAN_DURATION_BASE_FIRST
$LINE_TERMINATOR
$LOW_PRIORITY
$MACHINE_CODE_STATEMENT
$MACHINE_CODE_TYPE
$MANTISSA_DOC

$MAX_DIGITS

$MAX_INT

$MAX_INT_PLUS_1

$MIN_INT

"NO_SUCH_TYPE"

15
ILLEGAL_EXTERNAL_FILE_NAMEI1
ILLEGAL_EXTERNAL_FILE_NAME2
-1

-1

PRAGMA INCLUDE ("A28006D1.TST")
PRAGMA INCLUDE ("B28006D1.TST")
-32768

32767

32768

ASSEMBLER

-75000.0

-131073.0

0
OPERANDLESS_INST'(OPCOPE=>NOP);
OPERANDLESS_INST

31

9

2147483647

2147483648

-2147483648

AVF_VSR_90502/72

XD Ada MIL-STD-1750A V1.2

MACRO PARAMETERS

$NAME

$NAME_LIST
$NAME_SPECIFICATION1
$NAME_SPECIFICATION2
$NAME_SPECIFICATION3
$NEG_BASED_INT
$NEW_MEM_SIZE
$NEW_STOR_UNIT
$NEW_SYS_NAME
$PAGE_TERMINATOR

$RECORD_DEFINITION

$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE_SIZE
$TICK
$VARIABLE_ADDRESS
$VARIABLE_ADDRESSI
$VARIABLE_ADDRESS2

$YOUR_PRAGMA

NO_SUCH_TYPE_AVAILABLE
MIL_STD_1750A
NO_SUCH_NAME
NO_SUCH_NAME
NO_SUCH_NAME
16#FFFFFFFE#

131072

16

MIL_STD_1750A

Y

RECORD OPCODE:OPERANDLESS_OP; END
RECORD;

OPERANDLESS_INST

16

4096

0.0001

SYSTEM.TO_ADDRESS (30000)
SYSTEM.TO_ADDRESS (20000)
SYSTEM.TO_ADDRESS (10000)

EXPORT_OBIJECT

Validation Summary Report

SD-Scicon UK Limited

AVF_VSR_90502/72

Appendix A - Page 4 of 4 XD Ada MIL-STD-1750A V1.2

COMPILATION SYSTEM OPTIONS

APPENDIX B
COMPILATION SYSTEM OPTIONS
The compiler options of this Ada implementation, as described in this Appendix, are provided by the

customer. Unless specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report.

Validation Summary Report AVF_VSR_90502/72
§5-Scicon UK Limited Appendix B - Page 1 of 2 XD Ads MIL-STD-1750A V1.2

X4

XDADA

XDADA

Invokes the XD Ada compiler to compile one or more source files.

Format XDADA file-spec],...]
Command Qualitiers Defaults
/LIBRARY « directory-spec ILIBRARY = XDADASLIB
Positional Qualitiers Defauits
/[NOJANALYSIS_DATA[= file-spac] INOANALYSIS_DATA
/INOJCHECK See text.
/{NO]JCOPY_SOURCE ICOPY_SOURCE
/[INOJDEBUG] = (option|,...]D] IDEBUG=ALL
/INOJDIAGNOSTICS| = file-spec] INODIAGNOSTICS
/INQJERROR_LIMIT[=n] IERROR_LIMIT =30
/[NOJLIST(= file-spec] INOLIST
/[NOJLOAD| = option] /LOAD = REPLACE
/[INOJMACHINE_CODE][= option] INOMACHINE_CODE
/[NO]JNQTE_SOURCE INOTE_SOURCE
/{INOJOPTIMIZE[= option} See text.
/INOJPREDEFINED_UNIT INOPREDEFINED_UNIT
/[NOJSHOW][= option] /ISHOW = PORTABILITY
/(NOJSYNTAX_ONLY INOSYNTAX_ONLY
/INOJWARNINGS] = (optionf,...D] See text.

Prompt

_File:

Command Parameters

12

flle-spec

Specifies one or more XD Ada source files to be compiled. If you do

not specify a file type, the compiler uses the default file type of .ADA.
No wildcard characters are allowed in the file specifications.

XDADA

If you specify more than one input file, you must separate adjacent file

specifications with a comma (,).” You cannot use a plus sign (+) to
separate file specifications.

Description

The XDADA command is one of four commands used to compile com-

pilation units. The other three are the XDACS COMPILE, RECOMPILE
and LOAD commands.

The XDADA command can be used at any time to compile one or
more source files ((ADA). Source files are compiled in the order they
appear on the command line. If a source file contains more than one

compilation unit, they are compiled in the order they appear in the
source file.

The XDADA command compiles units in the context of the current
program library. Whenever a compilation unit is compiled without

error, the current program library is updated with the object module
and other products of the compilation.

Command Qualifiers

/LIBRARY = directory-spec

Specifies the program library that is tc be the current program library
for the duration of the compilation. The directory specified must be an

already existing XD Ada program library. No wildcard characters are
allowed in the directory specification.

By default, the current program library is the program library last
specified in an XDACS SET LIBRARY command. The logical name

DADASLIB is assigned to the program library specified in an XDACS
SET LIBRARY command.

Positional Qualifiers
IANALYSIS_DATA[=flle-spec]

/MOANALYSIS_DATA D)

Controls whether a data analysis file containing source code cross-
reference and static analysis information is created. The data analysis

file is supported only for use with DIGITAL layered products, such as
the VAX Source Code Analyzer.

13

XDADA

14

One data analysis file is created for each source file compiled. The
default directory for data analysis files is the current default directory.
The default file name is the name of the source file being compiled.

The default file type is . ANA. No wildcard characters are allowed in the
file specification.

By defauit, no data analysis file is created.

ICHECK
INOCHECK

Controls whether all run-time checks are suppressed. The INOCHECK

qualifier is equivalent to having all possible SUPPRESS pragmas in the
source code.

Explicit use of the /CHECK qualifier overrides any occurrences of the
pragmas SUPPRESS and SUPPRESS_ALL in the source code, without
the need to edit the source code.

By default, run-time checks are suppressed only in cases where a
pragma SUPPRESS or SUPPRESS_ALL appears in the source.

See the Reference Manual for the Ada Programming Language for more
information on the pragmas SUPPRESS and SUPPRESS_ALL.

/COPY_SOURCE (D)
INOCOPY_SOURCE

Controls whether a copied source file (ADC) is created in the current
program library when a compilation unit is compiled without error. The
RECOMPILE command (and thus the COMPILE command) requires

that a copied source file exist in the current program library for any unit
that is to be recompiled.

By default, a copied source file is created in the current program library
when a unit is compiled without error.

/DEBUG[= (option,...])] (D)
INODEBUG

Controls which compiler debugging options are provided. You can

debug XD Ada programs with the XD Ada Debugger. You can request
the following options:

(X2

XDADA

ALL Provides both SYMBOLS and TRACEBACK.

NONE Provides neither SYMBOLS nor TRACEBACK.

INOJSYMBOLS Controls whether debugger symbol records are in-
ciuded in the object file.

(NOITRACEBACK Controls whether traceback information (a subset of

the debugger symbol information) is included in the
object file.

By defult, both debugger symbol records and traceback information are
included in the object file (DEBUG = ALL, or equivalently: /DEBUG).

IDIAGNOSTICS(= file-spec]
INODIAGNOSTICS (D)

Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only

for use with DIGITAL layered products, such as the VAX Language-
Sensitive Editor.

One diagnostics file is created for each source file compiled. The
default directory for diagnostics files is the current default directory.
The default file name is the name of the source file being compiled.

The default file type is .DIA. No wildcard characters are allowed in the
file specification.

By default, no diagnostics file is created.

JERROR_LIMIT[= n)
INOERROR_LIMIT

Controls whether execution of the XDADA command for a given

compilation unit is terminated upon the occurrence of the nth E-level
error within that unit.

Error counts are not accumulated across a sequence of compilation
units. If the [ERROR_LIMIT =n option is specified, each compilation
unit may have up to n-1 errors without terminating the compilation.
When the error limit is reached within a compilation unit, compilation of
that unit is terminated, but compilation of subsequent units continues.

The /ERROR_LIMIT =0 option is equivalent to ERROR_LIMIT=1.

By default, execution of the XDADA command is terminated for a given
compilation unit upon the occurrence of the 30th E-level error within
that unit (equivalent to JERROR_LIMIT = 30).

15

XDADA

18

of

ILIST[= file-spec]
INOLIST (D)

Controls whether a listing file is created. One listing file is created
for each source file compiled. The default directory for listing files is
the current default directory. The default file name is the name of the

source file being compiled. The default file type is .LIS. No wildcard
characters are allowed in the file specification.

By default, the XDADA command does not create a listing file.

ILOAD(= option] (D)
INOLOAD

Controis whether the current program library is updated with the
successfully processed units contained in the specified source files.
Depending on other qualifiers specified (or not specified) with the
XDADA command, processing can involve full compilation, syntax
checking only, and so on. The INOLOAD qualifier causes the units

in the specified source files to be processed, but prevents the current
program library from being updated.

You can specify the following option:

(NOJREPLACE Controls whether & unit added to the current
program library replaces an existing unit with the

same name, If you specify the NOREPLACE option,
the unit is added to the current program library only

if no existing unit has the same name, except if the
new unit is the corresponding body of an existing
specification or vice versa.

By default, the current program library is updated with the success-
fully processed units, and a unit added to the current program library
replaces an existing unit with the same name.

IMACHINE_CODE(= option]
INOMACHINE_CODE (D)

Controls whether generated machine code (approximating assembly
language notation) is included in the listing file.

You can specify one of the following options:

¢

XDADA

SYMBOLIC:NONE I'rovides machine code listing with no annotation.

SYMBOLIC:NORMAL Provides machine code in the listing file; where
poscible, instructions are annotated with simple
Ada names.

SYMBOLIC:MAXIMAL Provides machine code in the listing file; where

possible, instructions are annotated with Ada
names, in expanded form if necessary.

The /MACHINE_CODE qualifier without options is equivalent to
IMACHINE_CODE = SYMBOLIC:NORMAL.

By default, generated machine code is not included in the listing file.

INOTE_SOURCE (D)
INONOTE_SOURCE

Controls whether the file specification of the source file is noted in the

program library when a unit is compiled without error. The COMPILE
command uses this information to locate revised source files.

By default, the file specification of the source file is noted in the pro-
gram library when a unit is compiled without error.

IOPTIMIZE[=(option], .. .)
INOOPTIMIZE

Controls the level of optimization that is ap}alied in producing the
compiled code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(SPACE) in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(TIME) in the source code.

DEVELOPMENT Suggested when active development of a program
is in progress. Provides some optimization, but
development considerations and ease of debugging
take preference over optimization. This option
overrides pragmas that establish a dependence on a
subprogram (the pragma INLINE), and thus reduces

the need for recompilations when such bodies are
modified.

17

XDADA

18

NONE Provides no optimization. Suppresses expansions in

line of subprograms, including those specified by the
pragma INLINE.

The INOOPTIMIZE qualifier is equivalent to /OPTIMIZE = NONE.

By default, the XDADA command applies full optimization with space
as the primary optimization criterion (like /OPTIMIZE = SPACE, but
observing uses of the pragma OPTIMIZE).

The /OPTIMIZE qualifier also has a set of secondary options that you

can use separately or together with the primary options to override the
default behavior for inline expansion and code motion.

The INLINE secondary option can have the following values:
INLINE:NONE Disables subprogram expansion in line. This option
overrides any occurrences of the pragma INLINE

in the source code, without having to edit the
source file. It also disables implicit expansion in
line of subprograms. (Implicit expansion in line means
that the compiler assumes a pragma INLINE for
certain subprograms as an optimization.) A call to a
subprogram in another unit is not expanded in line,
regardless of the JOPTIMIZE options in effect when
that unit was compiled.

Provides normal subprogram expansion in line,
Subprograms to which an explicit pragma INLINE
applies are expanded in line under certain condi-
tions. In addition, some subprograms are implicitly
expanded in line. The compiler assumes a pragma
INLINE for cails to some smail local subprograms
(subprograms that are declared in the same unit as
the unit in which the call occurs).

INLINE:SUBPROGRAMS Provides maximal subprogram expansion in line. In
addition to the normal subprogram expansion in
line that occurs when INLINE:NORMAL is specified,
this option results in implicit expansion in line of
some small subprograms declared in other units.
The compiler assumes a pragma INLINE for any
subprogram if it improves execution speed and
reduces code size. This option may establish a
dependence on the body of another unit, as would be

the case if a pragma INLINE were specified explicitly
in the source code.

INLINE:NORMAL

XDADA

INLINE:MAXIMAL Provides maximal subprogram expansion in line,
Marimal subprogram expansion in line occurs as for
INLINE:SUBPROGRAMS.

INLINE:GENERICS Provides normal subprogram inline expansion and

maximal generic inline expansion. With this option,
subprogram inline expansion occurs in the same
manner as for INLINE:NORMAL. The compiler
assumes a pragma INLINE GENERIC for every
instantiation in the unit being compiled unless

a generic body is not available. This option may
establish a dependence on the body of another unit,
as wouid be the case if a pragma INLINE, GENERIC
were specified explicitly in the source code.

The MOTION secondary option can have the following values:
MOTION:NONE Disables code motion optimizations.

MOTION:LOOPS Permits code motion optimization of loops. Where
the compiler detects that a loop body contains
invariant processing, it may generate code in which
this processing is performed before entry to the loop
instead of within the loop.

MOTION:MAXIMAL Permits all code motion optimizations. In addition
to- the optimization of loops that occurs when
MOTION:LOOPS is specified, this option permits
analogous optimization of if and case statements:
where the compiler detects that the branches of an if
or case statement contain common processing, it may
generate code in which this processing is performed
before evaluation of the corresponding condition or
case expression instead of within the branches.

By default, the /OPTIMIZE qualifier primary options have the following
secondary-option values:

IOPTIMIZE = TIME = (INLINE:NORMAL,MOTION:LOOPS)
IOPTIMIZE = SPACE =(INLINE:NORMAL,MOTION:MAXIMAL)
JOPTIMIZE = DEVELOPMENT =(INLINE:NONE,MOTION:NONE)
IOPTIMIZE » NONE =(INLINE:NONE,MOTION:NONE)

IPREDEFINED_UNIT
INOPREDEFINED_UNIT (D)

Controls the compilation of package SRUN_TIME_SYSTEM, package
STASKING_SYS‘II%M, and package MACHINE_CODE. You must spec-
ify this qualifier in order to be able to compile these packages. The

19

XDADA

20

If you :‘pecify the /ISYNTAX_ONLY qualifier,
' (v

qualifier is not required for the com
See the XD Ada MIL-STD-1750A Ru
information.

pilation of any other source files.
1-Time Reference Manual for more

By defauit, /PREDEFINED_UNIT is omitted.

ISHOW[= option] (D)
INOSHOW

Controls the listing file options included when a listing file is provided.
You can specify one of the following options:

ALL Provides all listing file options.

[NOJPORTABILITY Controls whether a program portability summary
is included in the listing file. By default, the
XDADA command provides a portability sum-
mary (/SHOW=PORTABILITY). See Appendix E
for details of what can be included in a porta-
bility summary. See Chapter 5 of Version 2,0 of
Developing Ada Programs or VMS Systems for more
information on program portability,

NONE Provides none of **.c listing file options (same as
INOSHOW),

By default, the XDADA command provides a portability summary
(/SHOW = PORTABILITY).

ISYNTAX_ONLY
INOSYNTAX_ONLY (D)

Controls whether the source file is to be checked only for correct syntax.

other compiler checks are

not pertormed (for example, semantic analysis, type checking, and so

on).

In the presence of the /LOAD =REPLACE qualifier (the default), the
ISYNTAX_ONLY qualifier t_lg\dates the current cFroglram library with

syntax-checked-only units. The units are considered to be obsolete and
must be subsequently recompiled.

In the presence of the NOLOAD qualifier, the ISYNTAX_ONLY qual-
ifier checks the syntax of the specitied units but does not update the
library.

By default, the compiler performs all checks.

o6

XDADA

IWARNINGS[= (message-option,...])]
INOWARNINGS

Controls which categories of informational (I-level) and warning (W-
level) messages are displayed and where those messages are displayed.
You can specify any combination of the following message options:

WARNINGS: (destination{,...}])
NOWARNINGS

WEAK_WARNINGS: (destination(,...])
NOWEAK_WARNINGS

SUPPLEMENTAL.: (destination],...])
NOSUPPLEMENTAL

COMPILATION_NOTES: (destination,...])
NOCOMPILATION_NOTES

STATUS: (destination],...])
NOSTATUS

The possible values of destination are ALL, NONE, or any combination
of TERMINAL (terminal device), LISTING (listing file), DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows:
WARNINGS W-level: Indicates a definite problem in a legal
program, for example, an unknown pragma.

[-level: Indicates a potential problem in

a legal program; for example, a possible
CUNSTRAINT_ERROR at run time. These
are the only kind of I-level messages that are

counted in the summary statistics at the end of
a compilation.

WEAK_WARNINGS

SUPPLEMENTAL I-level: Additional information associated with

preceding E-level or W-level diagnostics.
COMPILATION_NOTES I-level: Information about how the compiler
transiated a program, such as record layout,
parameter-passing mechanisms, or decisions
made for the pragmas INLINE, INTERFACE, or
the import-subprogram pragmas.

{-level: End of compilation statistics and other
messages.

STATUS

21

o f

XDADA

The defaults are as follows.
/WARNINGS=(WARN:ALL, WEAK:ALL, SUPP1ALL, COMP: NONE, STAT: L1ST)
Note that abbreviations are valid.

If you specify only some of the message categories with the
IWARNINGS qualifier, the default values for other categories are used.

Exampies

22

1. § XDADA MODEL_INTERFACE_,MODEL_INTERFACE,CONTROL_LOOP

The XDADA command compiles the compilation units con-
tained in the three files MODEL_INTERFACE_.ADA, MODEL_
INTERFACE.ADA, and CONTROL_LOOP.ADA, in the order given.

2. $ XDADA/LIST/SHOW=ALL SCREEN_IO_,SCREEN_I0

The XDADA command compiles the compilation units contained
in the two files SCREEN_IO_.ADA and SCREEN_IO.ADA, in the
order given. The /LIST qualifier creates the listing files SCREEN_
I0_.LIS and SCREEN_IO.LIS in the current default directory. The

ISHOW = ALL qualifier causes all listing file options to be provided
in the listing files.

. COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this appendix are to linker
documentation and not to this report.

Validation Summary Report AVF_VSR_90502/72
SD-Scicon UK Limited Appeadix B - Page 2 of 2 XD Ada MIL-STD-1750A V12

LINK

Creates an executable image file for the specified units, At Version
1.2, a new qualifier, /SELECTIVE, is 'supplied. The complete command
specification is given for convenience,

Format

LINK unit-namef,...] [file-spec],...]]
LINK/NOMAIN unit-namey,...] file-spec,...]
LINK/NOMAIN only permissible with a single address state program,

Command Qualitiers
AFTER =time
/BATCH_LOG = file-spec
/BRIEF

ICOMMAND] = file-spec)
/[(NOJDEBUG
/ELABORATION = file-spec
IFULL

/INOJIMAGE]| = file-spec)
/INOJKEEP

/INOJLOG

/INOIMAIN

/[NOJMAP| = file-spec]
/NAME = job-name
/INOINOTIFY

IOUTPUT = file-spec
/INOJPRINTER[= queue-name)
/QUEUE = queue-name
/INOJSELECTIVE
ISUBMIT

WAIT

Parameter Qualifiers
/LIBRARY

/MAPPING

TARGET

Defaults

IAFTER = TODAY
See text.

See text.

See text.
INODEBUG

See text.

See text.

/IMAGE

IKEEP

INOLOG

/MAIN

INOMAP

See text.
/NOTIFY
JOUTPUT = SYSSOUTPUT
INOPRINTER
/IQUEUE = SYS$BATCH
/SELECTIVE
IWAIT

IWAIT

Defauits
See text.
See text.
See text.

LINK

Prompts

_Unit:
_File:

Command Parameters

unit-name
By default (or if you specify the /MAIN qualifier):

* You can specify up to 16 units (one per address state), the source
code of which must be wriiten in XD Ada.

The parameter unit-name specifies an XD Ada main program, which
must be a procedure with no parameters.

The INOMAIN qualifier can only be used with a single address state
program. If you specify the NOMAIN qualifier:

* You can specify one or more foreign units that are to be included

in the executable image. The unit names may include percent signs
(%) and asterisks (*) as wildcard characters. (See the VMS DCL
Concepts Manual for detailed information on wildcard characters.)

e The im?e transfer address comes from one of the foreign files
specified.

file-spec

Specifies a list of object files, object libraries, mapping definition files,
and target definition files, that are to be used in linking the program.,
The de%ault directory is the current default directory. The default file
type is .XOB, unless the /LIBRARY, /IMAPPING, or ITARGET qualifier is
used. No wildcard characters are allowed in a file specification.

If the file is an object library, you must use the /LIBRARY qualifier. The
default file type is .XLB.

If the file is a mapping definition file, you must use the IMAPPING
qualifier. The defauit file type is . MPD.

If the file is a target definition file you must use the /TARGET qualifier.
The default file type is .TGD.

If you specify the INOMAIN qualifier, the image transfer address comes
from one of the files (not units) specified.

o

LINK

For a multiple program build, the list of foreign file specifications will
be included in the build for each program in each address state.

Description
The LINK command performs the following steps:

1. Runs the prebuild phase to generate an elaboration list.

2. Checks if a pragma LINK_OPTION is specified for the main pro-
gram, and if specified, verifies that the desifnated link option name
is available in the current program library. If available, the copied
link option files in the library corresponding to the link option are
used, unless overridden by the TTARGET or /IMAPPING qualifiers.

Note that, unlike the CHECK command, the pragma LINK_

OPTION association for units other than the main program unit
is nct checked.

If no target link o?tion is given for the main program unit or the
designated target link option is not found in the library, and the
logical name XDADASTARGET_DEF is not defined, and a TARGET
qualifier is not specified on the LINK command line, an error is
issued. If no mapping link option is given for the main program unit
or the designated mapping link option is not found in the library,
and the logical name XDADASMAPPING_DEF is not defined, and a
IMAPPING qualifier is not specified on the XDACS LINK command
line, the default mapping in the target definition file is used.

3. If LINK/INOMAIN is not specified, checks that only one unit is
specified and that it is an XD Ada main program.

4. Forms the closure of the main program (LINK/MAIN) or of the
specified units (LINK/NOMAIN) and verifies that all units in the
closure are present, current and complete. If XDACS detects an
error, the operation is terminated at the end of the prebuild phase.

5. Creates a DCL command file for the builder. The command file is
deleted after the LINK operation is completed or terminated, unless
LINK/COMMAND is specified. If LINK/COMMAND is specified,

the command file is retained for future use, and the build phase is
not carried out.

6. Unless the COMMAND qualifier is specifizd, performs the build
phase as follows:

a. By default (LINK/WAIT), the command file generated in step
5 is executed in a subprocess. You must wait for the build
operation to terminate before issuing another command. Note

LINK

that when you specify the /IWAIT qualifier (the default), process

logical names are propagated to the subprocess generated to
execute the command file.

b. If you specify the /ISUBMIT qualifier, the builder command file
is submitted as a batch job.

If the IDEBUG qualifier is included in the command line the debug
symbol table informaticn is placed in the .XXE file.

8. Creates a loadable output file with a default file type of .XXE.

7.

XDACS output originating before the builder is invoked is reported
to your terminal by default, or to a file specified with the /QUTPUT
qualifier. Diagnostics are reported to your terminal, by default, or to

a log file if the LINK command is executed in batch mode (XDACS
LINK/SUBMIT).

See Chapter 7, Chapter 8, and Chapter 9 for more information on the
XD Ada target-specific builder commands.

Command Qualifiers

IAFTER =ntime

Requests that the batch job be held until after a specific time, when
the LINK command is executed in batch mode (LINK/SUBMIT). If the

specified time has already passed, the job is queued for immediate
processing.

You can specify either an absolute time or a combination of absolute
and delta time. See the VMS DCL Concepts Manual (or type HELP

Specify Date-Time at the DCL prompt) for complete information on
specifying time values.

IBATCH_LOG nfile-spec

Provides a file specification for the batch log file when the LINK com-
mand is executed in batch mode (LINK/SUBMIT).

If you do not give a directory specification with the file-spec option, the
batch log file is created by default in the current default directory. If
you do not give a file specification, the defauit file name is the job name
specified with the NAME = job-name qualifier. If no job name has been
specified, the program library manager creates a file name comprising
up to the first 39 characters of the first unit name specified. If you
specified LINK/NOMAIN and no job name and there is a wildcard

LINK

character in the first unit specified, the program library manager uses
the default file name XDACS_LINK. The default file type is .LOG.

/BRIEF

Directs the builder to produce a brief image map file. The /BRIEF

qualifier is valid only if you also specify the IMAP qualifier with the

LINK command. The /BRIEF qualifier is incompatible with the /FULL
qualifier.

A brief image map file contains only the following sections:
¢ Object module information

¢ Segment mapping information
¢ Link run statistics

See also the description of the /FULL qualifier.

/ICOMMAND(= flle-spec]

Controls whether the builder is invoked as a result of the LINK com-
mand, and determines whether the command file generated to invoke
the builder is saved. If you specify the /COMMAND qualifier, XDACS
does not invoke the builder, and the generated command file is saved
for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the gen-
erated command file. The default directory for the command file is the
current default directory. By default, XDACS provides a file name com-
prising up to the first 39 characters of the first unit name specified. If
you specified LINK/NOMAIN and you used a wildcard character in the

. first unit name specified, the program library manager uses the default

file name XDACS_LINK. The default file type is .COM. No wildcard
characters are allowed in the file specification.

By default, if the /COMMAND qualifier is not specified, XDACS deletes

the generated command file when the LINK command completes
normally or is terminated.

/DEBUG
INODEBUG (D)

Controls whether a debugger symbol table is generated in the loadable
image file.

By default, no debugger symbol table is created.

LINK

[ELABORATION = flle-spec

Provides a file specification for the text file generated by the LINK
command. The file is retained by XDACS only when the /COMMAND
qualifier is used: that is, when the result of the LINK operation is to

produce a builder command file for future use, rather than to invoke the
builder immediately.

The generated text file contains the table that directs the elaboration of
library packages in the closure of the units specified. Unless you also

specify the INOMAIN qualifier, the text file also contains the image
transfer address.

The default directory for the generated text file is the current default

directory. The default file type is .ELB. No wildcard characters are
allowed in the file specification.

By default, if you do not specify the IELABORATION qualifier, XDACS

provides a file name comprising up to the first 39 characters of the first
unit name specified.

" By default, if you do not specify the (COMMAND qualifier, XDACS '

deletes the generated text file when the LINK command completes
normally or is terminated.

IFULL

Directs the builder to produce a full image map file, which is the most
complete image map. The /(FULL qualifier is valid only if you also
specify the IMAP qualifier with the LINK command. Also, the /FULL
qualifier is incompatible with the /BRIEF qualifier.

A full image map file contains the following sections:

¢ Object module information

¢ Segment mapping information
¢ Symbol address information

e Exception numbers

¢ Link run statistics

/IMAGE[= file-spec] (D)

INOIMAGE

Controls whether the LINK command creates a loadable image file and
optionally provides a file specification for the file. The default file type
is .XXE. No wildcard characters are allowed in the file specification.

X 3

LINK

éy default, an executable image file is created with a file name compris-
ing up to the first 39 characters of the first unit name specified.

/KEEP (D)
INOKEEP

Controls whether the batch log iile generated is deleted after it

is i}'inted when the LINK command is executed in batch mode
(LINK/SUBMIT).

By default, the log file is not deleted.

ILOG
INOLOG (D)

Controls whether a list of all the units included in the executable image

is displayed. The display shows the units according to the order of
elaboration for the program.

By default, a list of all the units included in the executable image is not
displayed.

IMAIN (D)
INOMAIN

Controls where the image transfer address is to be found.

The IMAIN qualifier indicates that the XD Ada unit specified deter-
mines the image transfer address, and hence is to be a main program.

The INOMAIN qualifier indicates that the image transfer address comes

from one of the files specified, and not from one of the XD Ada units
speciiied.

By default ({MAIN), only one XD Ada unit can be specified, and that
unit must be an XD Ada main program.

IMAP[=file-spec]
INOMAP (D)

Controls whether the builder creates an image map file and optionally
provides a file specification for the file. The default directory for
the image map file is the current directory. The default file name
comprises uzlto the first 39 characters of the first unit name specified.

The default file type is .MAP. No wildcard characters are allowed in the
file specification.

If neither the /BRIEF nor the [FULL qualifier is specified with the /MAP
qualifier, /BRIEF is assumed.

LINK

By default, no image map file is created.

INAME = Job-name

Specifies a string to be used as the job name and as the file name for
the batch log file when the LINK command is executed in batch mode
(LINK/SUBMIT). The job name can have from 1 to 39 characters.

By default, if you do not specify the INAME qualifier, XDACS creates
a job name comprising up to the first 39 characters of the first unit
name Epecified. If you specify LINK/NOMAIN but do not specify the
INAME qualifier, and you use a wildcard character in the first unit
name specified, the program library manager uses the default file name

XDACS_LINK. In these cases, the job name is also the file name of the
batch log file.

INOTIFY (D)
INONOTIFY

Controls whether a message is broadcast when the LINK command is
executed in batch mode (LINK/SUBMIT). The message is broadcast to

any terminal at which you are logged in, notifying you that your job has
been completed or terminated

By default, a message is broadcast.

SYTPUT nfile-spec

Requests that any output generated before the builder is invoked be
written to the file specified rather than to SYSSOUTPUT. Any diagnostic
messages are written to both SYSSOUTPUT and the file.

The default directory is the current default directory. If you specify a
file type but omit the file name, the default file name is XDACS. The

default file type is .LIS. No wildcard characters are allowed in the file
specification.

By default, the LINK command output is written to SYSSOUTPUT.
/PRINTER[= queue-name]

INOPRINTER (D)

Controls whether the log file is queued for printing when the LINK

command is executed in batch mode (LINK/SUBMIT) and the batch job
is completed.

The /PRINTER qualifier allows you to specify a particular print queue.
The default print queue for the log file is SYSSPRINT.

of

LINK

By default, the log file is not queued for printing. If you specify
INOPRINTER, /KEEP is assumed.

/QUEUE = queue-name

Specifies the batcl. job queue in which the job is entered when the
LINK command is executed in batch mode (LINK/SUBMIT).

By default, if the JQUEUE qualifier is not specified, the job is placed in
the default system batch job queue, *YS$BATCH.

ISELECTIVE (D)
INOSELECTIVE

Specifies whether selective linking is performed.

Performing selective linking ensures that only subprograms that are
called will be linked into the pregram image. Subprograms within the
closure of the main program that are not actually called will be omitted

from the image file. Selective linking produces a program image that
has been optimized according to size.

Non-selective linking ensures that all defined subprograms are linked
into the image.

By default, selective linking is performed.

ISUBMIT

Directs XDACS to submit the command file generated for the builder
to a batcn queue. You can continue to issue commands in your current

process without waiting for the buch job to complete. The builder
output is written to a batch log file.

By default, the generated command file is executed in a subprocess
(LINK/WAIT).

IWAIT

Directs XDACS to execute the command file generated for the builder
in a subprocess. Execution of your current process is suspended until
the subprocess completes. The builder output is written directly to
your terminal. Note that process logical names are propagated to the
subprocess generated to execute the command file.

By default, XDACS executes the command file generated for the builder

in a subprocess: you must wait for the subprocess to terminate before
you can issue another command.

32

LINK

Parameter Qualifiers

/LIBRARY

Indicates that the associated input file is an object module library to be

searched for modules to r2solve any undefined symbols in the input
files. The default file type is .XLB.

By default, if you do not specify the /LIBRARY qualifier, the file is
assumed to be an object file with a default file type of .XOB.

IMAPPING

Indicates that the associated input file is a mapping definition file.
Mapping definition files control the location of the program on the
target system. The default file type is .MPD.

By default, if you do not specify the IMAPPING qualifier, the file is
assumed to be an object file with a default file type of .XOB,

ITARGET

Indicates that the associated input file is a target definition file. Target

definition files describe the target system’s memory. The default file
type is .TGD.

By default, if you do not specify the TTARGET qualifier, the file is
assumed to be an object file with a default file type of .XOB.

Examples

10

1. XDACS> LINK CONTROL_LOOP

SACS-I1-CL_LINKING, Invoking the XD Ada Builder

The LINK command forms the closure of the unit CONTROL
LOOP, which is an XD Ada main program, creates a builder com-

mand file and package elaboration file, then invokes the command
file in a spawned subprocess.

2. XDACS> LINK/SUBMIT CONTROL_LOOP LOOP_FUNCTIONS/LIBRARY

NACS~I-CL_SUBMITTED, Job CONTROL_LOOP (queue ALL_BATCH, entry 134)
started on FAST_BATCH

The LINK command instructs the builder to link the closure of the
XD Ada main program CONTROL_LOOP against the library LOOP_
FUNCTIONS.XLB. The /SUBMIT qualifier causes XDACS to submit
the builder command file as a batch job.

LINK

XDACS> LINK/NOMAIN FLUID_VOLUME,COUNTER MONITOR. %08
\ACS-I-CL_LINKING, Invoking the XD Ada Buil.der
The LINK command builds the XD Ada units FLUID_VOLUME

and COUNTER with the foreign object file MONIT OR.XOB. The

INOMAIN qualifier tells the builder that the image transfer address
is in the foreign file.

11

APPENDIX F OF THE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The implementation-dependent characteristics
of this Ada implementation, as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to compiler documentation and not to
this report. Implementation-specific portions of the package STANDARD, which are not a part of
Appendix F, are:

package STANDARD is

type INTEGER s range -2**15 .. (2**15)-1;
type LONG_INTEGER is range -2**31 .. (2**31)-1;

type FLOAT is digits 6 range -(2**128 - 2**106) .. (2**128 - 2**106);
type LONG_FLOAT is digits 9 range -(2**128 - 2**96) .. (2**128 - 2**96);

type DURATION is delta 1.0E-4 range -131072.0000 .. 131071.9999;

end STANDARD;

Validation Summary Report AVF_VSR_90502/72
SD-Scicon UK Limited Appendix C - Page 1 XD Ada MIL-STD-1750A V12

Appendix F
Implementation-Dependent

Characteristics

NOTE

This appendix is not part of the standard definition of the
Ada programming language.

This appendix summarizes the following implementation-dependent
characteristics of XD Ada:

Listing the XD Ada pragmas and attributes.
Giving the specification of the package SYSTEM.

Presenting the restrictions on representation clauses and unchecked
type conversions.

Giving the conventions for names denoting implementation-
dependent components in record representation clauses.

Giving the interpretation of expressions in address clauses.

Presenting the implementation-dependent characteristics of the
input-output packages.

Presenting other implementation-dependent characteristics.

implamaentation-Dapendent Characteristics F-1

F.1 Implementation-Dependent Pragmas

XD Ada provides the following pragmas, which are defined elsewhere
in the text. In addition, XD Ada restricts the predefined language
pragmas INLINE and INTERFACE, provides pragma VOLA in

addition to pragma SHARED, and provides pragma SUPPRESS_ALL in

addition to pragma SUPPRESS. See Annex B for a descriptive pragma
summary.

e CALL_SEQUENCE_FUNCTION (see Annex B)
e CALL_SEQUENCE_PROCEDURE (see Annex B)
¢ EXPORT_EXCEPTION (see Section 13.9a.3.2)

¢ EXPORT_FUNCTION (see Section 13.9a.1.2)

o EXPORT_OBJECT (see Section 13.9a.2.2)

o EXPORT_PROCEDURE (see Section 13.9a.1.2)
¢ IMPORT_EXCEPTION (see Section 13.9a.3.1)

¢ IMPORT_FUNCTION (see Section 13.9a.1.1)

* IMPORT_OBJECT (see Section 13.9a.2.1)

o IMPORT_PROCEDURE (see Section 13.9a.1.1)
¢ LEVEL (see Section 13.5.1)

¢ LINK_OPTION (see Annex B)

¢ SUPPRESS_ALL (see Section 11.7)

¢ TITLE (see Annex B)

s VOLATILE (see Section 9.11)

F.2 Iimplementation-Dependent Attributes

XD Ada provides the foliowing attributes, which are defined elsewhere
in the text. See Appendix A for a descriptive attribute summary.

e BIT (see Section 13.7.2)
o MACHINE _SIZE (see Section 13.7.2)
o TYPE_CLASS (see Section 13.7a.2)

F-2 Implementation-Dependent Charactenstics

F.3 Specification of the Package System

The package SYSTEM for the MIL-STD-1750A is as follows:

F.3.1 Package System for the MIL-STD-1750A Target

package SYSTEM is

type NAME is (MIL_STD_1750A);

SYSTEM_NAME constant NAME := MIL_STD_1750A;
STORAGE_UNIT constaat 1= 16;
MEMORY_SIZE constant := 2**17;

t
:
:
MIN_INT : constant 1= -(2**31);
t
:
:
¢

MAX_INT constant ‘t1= 2+**31_1;
MAX_DIGITS constant := 9;
MAX_MANTISSA coastant := 31;
FINE_DELTA constant := 2,0**(-31);

TICK :+ coastant :s 100,.0B-6;
subtype PRIORITY is INTEGER range 0 .. 15;
subtype LEVEL is INTEGER range 0 .. 7;

-~ Address type

type ADDRESS is private;

ADDRESS_ZERO : constamt ADDRESS;

type ADDRESS_INT is ramge -32768 .. 32767;

functioa TO_ADDRESS (X ¢t ADDRESS_INT) retura ADDRESS;
function TO_ADDRESS (X 3 {universal_integer}) return ADDRESS;
fusction TO_ADDRESS_INT (X t ADDRESS) retura ADDRESS_INT;

fumction "+ (LEFT : ADDRESS; RIGHT 1 ADDRESS_INT) return ADDRESS;
function "+* (LEFT : ADDRESS_INT; RIGHT : ADDRESS) return ADDRESS:
functioa "-" (LEFT : ADDRESS; RIGHT : ADDRESS) return ADDRESS_INT;
tfunction "-" (LEFT : ADDRESS; RIGHT : ADDRESS_INT) retura ADDRESS;

-~ ¢function "=" (LEFT, RIGHT : ADDRESS) returm EOOLEAN;
-~ functiom */=" (LEFT, RIGHT : ADDRESS) returm BOOLEAN;
function "<” (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "<=" (LEFT, RIGHT : ADDRESS) return BOOLEAN:
function ">" (LBFT, RIGHT : ADDRESS) returm BOOLEAN;
function ">=" (LEFT, RIGHT : ADDRESS) retura BOOLEAN;

-~ Note that because ADDRESS is a private type
-- the functions "=" and "/=" are already available

Implementation-Dependent Charactenstics F-3

-~ Generic functions used to a~cess memory

generic

type TARGET {s private;
function FETCH_FROM_ADDRESS (A : ADDRESS) return TARGET;

generic

type TARGET is private;
procedurs ASSIGN_TO_ADDRESS (A : ADDRESS; T : TARGET):

type TYPE_CLASS is (TYPE_CLASS_ENUMBRATION,

TYPE_CLASS_INTEGER,

TYPE_CLASS_FIXED_POINT,

-

TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPR_CLASS_ADDRESS);

~= XD Ada hardware-oriented types and functions

type BIT_ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK{BIT_ARRAY);
subtype BIT_ARRAY_16 is BIT_ARRAY (0 .. 15);
subtype BIT_ARRAY_32 ims BIT_ARRAY (0 .. 31);

type UNSIGNED_WORD
for UNSIGNED_WORD'SIZE

function
fuaction
function
function

function
function

“not” (LEFT :
and (LBPFT, RIGHT :
"or" (LEFT, RIGHT :
»xor® (LEFT, RIGHT @

TO_UNSIGNED_WORD (X
TO_BIT_ARRAY_16 (X

is range 0 .. 65535;
use 1§6;

UNSIGNED_WORD) retura UNSIGNED_WORD:
UNSIGNED_WORD) returm UNSIGNRD_WORD;
UNSIGNED_WORD) returm UNSIGNED_WORD;
UNSIGNED_WORD) return UNSIGNED_WORD;

t BIT_ARRAY_16) return UNSIGNED_WORD;
t UNSIGNED_WORD) return BIT_ARRAY_16;

type UNSIGNED_WORD_ARRAY is array (INTEGER range <>) of UNSIGNED_WORD;
type UNSIGNED_LONGWORD is

for UNSIGNED_WORD'SIZE

function
function
function
function

functioa
function

*not” (LEPT H
"and" (LEFT, RIGHT :
"or® (LBEPFT, RIGHT :
*xor" (LEFT, RIGHT :

TO_UNSIGNED_LONGWORD
TO_BIT_ARRAY_32

range MIN_INT .. MAX_INT;

use 32;

UNSIGNED_LONGWORD) returm UNSIGNED_LONGWORD;
UNSIGNED_LONGWORD) returm UNSIGNED_LONGWORD;
UNSIGNED_LONGWORD) returs UNSIGNED_LONGWORD;
UNSIGNED_LONGWORD) retuzm UNSIGNED_LONGWORD;

(X 1 BIT_ARRAY_32) returs UNSIGNED_LONGWORD;
(X t UNSIGNED_WORD) returs BIT_ARRAY_32;

type UNSIGNED_LONGWORD_ARRAY is array (INTEGER ramge <>) of UNSIGNED_LONGWORD;

F-4 Implementation-Dependent Characteristics

subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

private

UNSIGNED_1

UNSIGNED_2

UNSIGNED_3

UNSIGNED_4

UNSIGNED_5

UNSIGNED_6

UNSIGNED_7

UNSIGNED_8

UNSIGNED_S

UNSIGNED_10
UNSIGNED_11
UNSIGNED_12
UNSIGNED_13
UNSIGNED_14
UNSIGNED_15
UNSIGNED_16
UNSIGNED_17
UNSIGNED_18
UNSIGNED_19
UNSIGNED_20
UNSIGNED_21
UNSIGNED_22
UNSIGNED_23
UNSIGNED_24
UNSIGNED_25
UNSIGNED_26
UNSIGNED_ 27
UNSIGNED_28
UNSIGNED_29
UNSIGNED_30
UNSIGNED_31

~= Not shown

ond SYSTEM;

Conventional names for

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
i
in
is
is

static subtypes of type

UNSIGNED_LONGWORD
UNSIGNED_ LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_ LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNS1GNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD

range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
cange
range
range
range
range
range
range
range
range
range
range
range
range
range
range

UNSIGNED_LONGWORD

2nn
2]
2w
2ew
2%w
2%
2

l-1;
2-1;
3-1;
4-1;
5-1:
6-1;
7-1;
2*% 8-1;
2** 9-1;
2**10-1;
2**]11-1;
2%*12-1;
2*%13-1;
2**14-1;
2**15.1;
2%%16-1;
2**17-1;
2**18-1;
2*%19-1;
2**20-1;
2%*#21-1;
2*%22-1;
2%%23-1;
2%%24-1;
2**25-1;
2Av®26-1;
2**27-1;
2**28-1;
2%%29-1;
2**30-1;
2**31-1;

0000000000000 QCDOO0OO000O0O0TCO0OO0O0COO0

€« s o 8 ® @ ® o » % e e o & & ® & o & o o & o 2 e » 2 & o o+ =
e » o a2 @ ® ® ® o e & ® o @ o 5 s s & o & ° * s e e s o s * o

F.4 Restrictions on Representation Clauses

The representation clauses allowed in XD Ada are length, enumeration,

record representation, and address clauses.

implementation-Dependent Characteristics F-§

F.5 Conventions fo;' Iimplementation-Generated Names

Denoting implementation-Dependent Components in
Record Representation Clauses

XD Ada does not allocate implementation-dependent components in
records.

F.6 Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type ADDRESS
defined in package SYSTEM (see Section 13.7a.1 and Section F.3).

XD Ada allows address clauses for variables (see Section 13.5). For

address clauses on variables, the address expression is interpreted as a
MIL-STD-1750A 16-bit logical address.

XD Ada supports address clauses on task entries to allow interrupts to
cause a reschedule directly. For address clauses on task entries, the

address expression is interpreted as a MIL-STD-1750A interrupt number
in the range 0 .. 15.

In XD Ada for MIL-STD-1750A, values of type SYSTEM.ADDRESS are
interpreted as integers in the range -2!° .. 215 1. As SYSTEM.ADDRESS

is a private type, the only operations allowed on objects of this type are
those given in package SYS?F.M.

F.7 Restrictions on Unchecked Type Conversions

XD Ada supports the generic function UNCHECKED_CONVERSION
with the restrictions given in Section 13.10.2.

F-8 Implementation-Dependent Characteristics

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The packages SEQUENTIAL_IO and DIRECT_IO are implemented as
. null packages that conform to the specification given in the Reference
Manual for the Ada Programming Language. The packages raise the ex-
ceptions specified in Chapter 14 of the Reference Manual for the Ada
Programming Language. The three possible exceptions that are raised by
these packages are given here, in the order in which they are raised.

Exception When Raised
STATUS_ERROR

Raised by an attempt tu operate upon or close a file
that is not open (no files can be opened).

NAME_ERROR Raised if a file name is giver: with a call of CREATE
or OPEN.
USE_ERROR Raised if exception STATUS_ERROR is not raised.

MODE_ERROR cannot be raised since no file can be opened (therefore
it cannot have a current mode).

The predefined package LOW_LEVEL _IO is provided.

F.8.1 The Package TEXT_IO

The package TEXT_IO conforms to the specification given in the
Reference Manual for the Ada Programming Language. String input-
output is implemented as defined. File input-output is supported to
STANDARD_INPUT and STANDARD_OUTPUT only. The possible
exceptions that are raised by package TEXT_IO are as follows:

implementation-Dependent Characteristics F-7

Exception

When Raised

STATUS_ERROR
NAME_ERROR

MODE _ERROR

END_ERROR

USE_ERROR

Raised by an attempt to operate upon or close a file
that is not open (no files can be opened).

Raised if & file name is given with a call of CREATE
or OPEN.

Raised by an attempt to read from, or test for
the end of, STANDARD CUTPUT, or to write to
STANDARD_INPUT.

Raised by an ““T.l?' to read past the end of
STANDARD_INPUT,

Raised when an unsupported operation is attempted,
that would otherwise be legal.

The type COUNT is defined as foliuws:

type COUNT is range O ..

INTRGRR’LAST;

The subtype FIELD is defined as follows:
type FIELD is INTEGER ramge O .. 132;

F.8.2 The Package IO_EXCEPTIONS

The specification of the package IO_EXCEPTIONS is the same as that
given in the Reference Manual for the Ada Programming Language.

F.9 Other impiementation Characteristics

Implementation characteristics associated with the definition of a main

program, various numeric ranges, and implementation limits are sum-
marized in the following sections.

F.9.1 Definition of a Main Program

Any library procedure can be used as a main program provided that it
has no formal parameters.

F-8 Implementation-Dependent Charactenstics

F.9.2 Values of integer Attributes

The ranges of values for integer types declared in package STANDARD
are as follows:

INTEGER 2B, 28 g

(-32768 .. 32767)
LONG_INTEGER 22224

(-2147483648 .. 2147483647)

For the package TEXT_IO, the range of values for types COUNT and
FIELD are as foliows:

COUNT 0. 2%

©.. 32767)
FIELD 0. 132

F.9.3 Values of Floating-Point Attributes

Floating-point types are described in Section 3.5.7, The representation
attributes of floating-point types are summarized in the following table:

Implementation-Dependent Characteristics F-9

F-10

FLOAT LONG_FLOAT
DIGITS 6 9
SIZE 32 48
MANTISSA 21 3
EMAX 84 124
EPSILON 270 2-%
SMALL 2-% 27135
LARGE ™28 2149
SAFE_EMAX 127 127
SAFE_SMALL 2-1% 2126
SAFE_LARGE 2127 2106 2177 2%
FIRST _(2!2!_2!06) _(zm_zoo)
LAST 2126_2106 2!28_296
MACHINE_RADIX 2 2
MACHINE_MANTISSA 23 39
MACHINE_EMAX 127 127
MACHINE_EMIN -128 128
MACHINE_ROUNDS FALSE FALSE
MACHINE_OVERFLOWS FALSE FALSE

impiementation-Dependent Characteristics

F.9.4 Attributes of Type DURATION

The values of the significant attributes of type DURATION are as

follows:

DURATION 'DELTA 1.E-4 (1074
DURATION 'SMALL 2#1.0#E-14 (2~
DURATION 'FIRST -131072.0000 (-2'7)
DURATIONLAST 131071.9999 (2 -'DELTA)

F.9.5 Implementation Limits '

Limit

Descripti »

255
255
2!0

212
21 1

pLL |
2% x 16
2! 1

Maximunr. identifier length (number of characters)
Maximum number of characters in a source line

Maximum number of library units and subunits in a compilation
closure'

Maximum number of library units and subunits in an execution
closure?

Maximum number of enumeration literals in an enumeration
type definition

Maximum number of lines in a source file
Maximum number of bits in any object
Maximum number ¢} exceptions

"The compilation closure of a given unit is the total set of units that the given unit
depends on, directly and indirectly.

2The execution closure of a given unit is the compilation closure plus all associated
secondary units.

'mplementation-Dependent Charactenstics F-11

Appendix F

Implementation-Dependent
Characteristics

This appendix describes Version 1.2 additions to the range of

implementation-dependent pragmas.

F.1

Implemenitation-Dependent Pragmas

XD Ada MIL-STD-1750A Version 1.2 supplies three new pragmas,
DIRECT_INTERRUPT_ENTRY, IDENT and TIME_SLICE. In the follow-
ing full list of supported pragmas, references refer to sections in the
XD Ada MIL-STD-1750A Supplement to the Ada Language Reference Manual,

uniess updated by sections supplied in this manual.

e CALL_SEQUENCE_FUNCTION (see Annex B)
¢ CALL_SEQUENCE_PROCEDURE (see Annex B)
e DIRECT_INTERRUPT_ENTRY (see Section 13.5.1)
e EXPORT_EXCEPTION (see Section 13.9a.3.2)

¢ EXPORT_FUNCTION (see Section 13.9a.1.2)

o EXPORT_OBJECT (see Section 13.9a.2.2)

e EXPORT_PROCEDURE (see Section 13.9a.1.2)

o IDENT (see Annex B)

e IMPORT_EXCEPTION (see Section 13.9a.3.1)

o IMPORT_FUNCTION (see Section 13.9a.1.1)

¢ IMPORT_OBJECT (see Section 13.9a.2.1)

e IMPORT_PROCEDURE (see Section 13.9a.1.1)

Implementation-Dependent Characteristics F-1

F-2

¢ LEVEL (see Section 13.5.1)

¢ LINK_OPTION (see Annex B)

¢ SUPPRESS_ALL (see Section 11.7)
¢ TITLE (see Annex B)

* TIME_SLICE (see Section 9.8a)

¢ VOLATILE (see Section 9.11)

implementation-Dependent Charactenstics

Chapter 13

Representation Clauses and
Implementation-Dependent
Features

Supplementary XD Ada information is provided for Sections 13.1, 13.2,
13.3, 134, 13.5, 13.5.1, 13.7, 13.7.1, 13.7.2, 13.7.3, 13.8, 13,9, 13.10.1
and 13.10.2. Two additional sections, Section 13.7a and Section 13.9a,
provide XD Ada information on the package SYSTEM and on the XD
Ada import and export pragmas.

13.1 Representation Clauses

The following information supplements paragraphs 4 and 8:

In XD Ada, an address clause can only apply to a variable or a single
entry; an address clause cannot apply to a constant, subprogram,
package, or task unit. See Section 13.5 for further explanation.

The following information supplements paragraph 13:

Pra PACK is implemented in XD Ada. As the behavior of pragma
PACK is implementation dependent, users are advised to use represen-
tation clauses to ensure a particular representation across targets.

In XD Ada, all array and record components are aligned on word
boundaries by default; the effect of ﬁ:agma PACK on a record or

array is to cause those components that are packable to be allocated in
adjacent bits without regard to word boundaries. Whether any particular
component is Xackable depends on the rules for its type; the XD Ada
MIL-STD-1750A Run-Time Reference Manual gives information on which

13.1 Representation Clauses 13-1

types can be packed as components of composite types, as well as
information on how these types are packed.

A record component that begins a variant is always allocated at the next
word boundary; a variant that begins on other than a word boundary
can be obtained only with a record representation clause.

XD Ada provides no additional representation pragmas.

The following information supplements paragraph 14:

XD Ada does not allow a representation clause for a type that depends
on a generic formal type. A type depends on a generic formai type

if it has a subcomponent of a generic formal type or a subcomponent
that depends on a generic formal type, or if it is derived from a generic
formal type or a type that depends on a generic formal type.

13.2 Length Clauses

13-2

The following information supplements paragraph 6:

In XD Ada, for a discrete type, the given size must not exceed 32
(bits). The given size becomes the default allocation for all objects and
components (in arrays and records) of that type. However, sizes of
objects may be increased by the compiler for optimization purposes.

For integer and enumeration types, the given size affects the internal
representation as follows: for integer types, high order bits are sign-
extended; for enumeration types, the high order bits may be either
zero- or sign-extended depending upon the base representation that
is selected. For all other types, the given size must equal the size that
would apply in the absence of a size specification.

The following information supplements paragraph 8:

The specification of a collection size is interpreted as follows. If the
value of the expression is greater than or equal to zero, the specified
size is then used as the initial size of the collection; the collection is not
extended should that initial allocation be exhausted. In the absence of
a T'STORAGE_SIZE, no storage is initially allocated for the collection;
storage is allocated from the heap as needed, until all heap memory is

exhausted. If the value is less than zero, the exception CONSTRAINT.
ERROR is raised.

The following information supplements paragraph 10:

A task storage specification overrides the default task storage size. The
specification is interpreted as follows. If the value of the expression is

Length Clauses 13.2

greater than zero, the specifieci size determines the number of storage
units (words) to be allocated for an activation of the task of the given
type. In the absence of a T'STORAGE_SIZE, a default allocation is

used. If the value is less than zero, the exception CONSTRAINT_
ERROR is raised.

The following information supplements paragraphs 8 and 10:

NOTE

The XD Ada MIL-STD-1750A Run-Time Reference Manual dis-

cusses task and access type storage and storage allocation in
more detail.

The following information supplements paragraph 12:
Arbitrary values of small are not accepted.

13.3 Enumeration Representation Clauses

The following information supplements paragraph 4:

In XD Ada, the only specific restriction on enumeration representation

clauses is that each expression for an integer code must have a value in
the range MIN_INT .. MAX_INT.

13.4 Record Representation Clauses

The following information supplements paragraph 4:

For statically allocated objects and for objects allocated from a collection
in XD Ada, the simple expression in an alignment clause must be a
power of two. The upper limit is 216, The alignment then occurs at

a location that is a number of words times the value 5f the simple
expression: a value of 1 causes word alignment, a value of 2 causes
longword alignment, and so on.

Further restrictions apply for objects declared within a subprogram,
where XD Ada restricts the alignment to mod 1. In other words, stack-
allocated objects can only be word aligned.

Bit-alignable representation clauses are provided for discrete types,
arrays of discrete types, and record types.

See the XD Ada MIL-STD-1750A Run-Time Reference Manual for informa-
tion on how objects are allocated.

13.4 Record Representation Clauses 13-3

13-4

The following information supplements paragraph 5:

A component clause specifies the storage place of a component relative to
the start of the record. In XD Ada for MIL-STD-1750A targets, the size
of a storage unit (SYSTEM.STORAGE_UNIT) is 16 bits (one word). If
the number of bits specified by the range is sufficient for the component
subtype, the requested size and placement of the field is observed (and
overlaps storage boundaries if necessary); otherwise, the specification is
illegal. For a component of a discrete type, the number of bits must not
exceed 32; for a component of any other type, the size must not exceed
the actual size of the component. See the XD Ada MIL-STD-1750A Run-
Time Reference Manual for information about determining the number of
bits that are sufficient for any given subtype.

Component values in XD Ada are biased when a component clause
requires a very smail component storage space; each value stored
is the unsigned quantity formed by subtracting COMPONENT_
SUBTYPEFIRST from the original value. See the XD Ada MIL-STD-
1750A Run-Time Reference Manual for more detailed information.

Component clauses in XD Ada are restricted as follows. Any com-
ponent that is not packable must be allocated on a word boundary.
Components that are packable can be allocated withour restriction. See
the XD Ada MIL-STD-1750A Run-Time Reference Manual for a definition
and description of packable components.

The following information supplements paragraph 6:

Components named in a component clause are allocated first; then,
unnamed components are allocated in the order in which they are
written in the record type declaration. Variants can be overlapped. If
pragma PACK is specified, packed allocation rules (see Section 13.1)
are used; otherwise, unpacked allocation is used.

The following information supplements paragraph 8:

XD Ada generates no implementation-dependent components or
names.

The following information supplements the Notes section:

The example of record representation and address clauses in the
Reference Manual for the Ada Progzamming Language is not relevant for
XD Ada as it assumes that type ADDRESS is represented in 24 bits,
whereas in XD Ada type ADDRESS is represented in 16 bits. The
following example is appropriate to XD Ada:

Record Representation Clauses 13.4

Example:
type CONDITION_CODE is (C,P,Z,N);

types CONDITION_CODES is array (CONDITION_CODE) of BOOLZAN;
pragaa PACK (CONDITION_CODES):

type PROGRAM_STATUS_WORD is

record
cs t CONDITION_CQDES
RESERVED t INTEGER range O .. 15}
PS t INTEGER range O .. 15;
AS t INTRGER range 0 .. 15;

end record;

for PROGRAM_STATUS_WORD use
record at mod 1;

cs at O range O .. 33
RESERVED at O range 4 .. 7;
PS at O range 8 .. 1l1;
AS at O vange 12 .. 15;

end record;
for PROGRAM_STATUS_WORD'SIZE use 1 * SYSTEM.STORAGE_UNIT;

Note on the example:

The record representation clause defines the record layout. The length
clause guarantees that exactly one storage unit is used.

Component Specification Example:
subtype S is INTEGER range 10 .. 133

type REC is
record
X1 5;
Y &t S;
eud recorxd;

for REC use
record
X at O range O ,. 3; -~ legal because 4 bits
-~ are sufficient
Y at O range 4 .. 4; -~ illegal because 1 bit is
-- not enough to represent
-- an integer of subtype S
ond recerd;

13.4 Record Representation Clauses 13-8

Notes on the example:

The subtype declaration in this example implies an integer with a min-
imum size of four bits. However, the components X and Y of subtype
S are biased and can be stored in only two bits. The component clause
for X is legal because it requires at least the minimum number of bits
required for the integer subtype; the component clause for Y is illegal
because it does not allow enough bits to represent the integer subtype.

13.5 Address Clauses

13-8

The following information supplements paragraph 7:
Like VAX Ada, XD Ada supports address clauses.

In XD Ada, the simple name must be the name of a variable. XD Ada
does not allow address clauses that name constants; or subprogram,
package, or task units.

An intermediate pointer is created only if the resulting address is not a
compile-time constant.

The placement of an address clause in XD Ada must follow the rules
given in Section 13.1. In other words, the clause and the variable
declaration must both occur immediately within the same declarative
part or package specification, and the declaration must occur before
the clause. The restrictions for forcing occurrences also apply; with
respect to address clauses, any occurrence of the variable name after its
declaration is a forcing occurrence.

Address clauses are not allowed in combination with any of the XD Ada

pragmas for importing or exporting objects. If used in such cases, the
pragma involved is ignored.

The following information supplements the Notes section:

Also, if an address clause is specified for an object of a type that has
been declared with an alignment clause, the alignment required for the
address is checked against the alignment given for the record type. If
the two are incompatible, the exception PROGRAM_ERROR is raised.

The same check applies to a type that contains a component of a type
that has been declared with an alignment clause (the alignment of the
component forces the alignment o’ the containing type).

Address Clauses 13.5

13.5.1 interrupts

The following information supplements all of this section:

Unlike VAX Ada, XD Ada supports interrupts. The address in the use
clause is the 1750A interrupt number.

XD Ada provides the additional pragma LEVEL. This pragma is given

for a task type, or single task of anonymous type, and gives the level for
its interrupts.

There are two ways an interrupt entry can be handled, according to
whether or not the task has a pragma LEVEL. The XD Ada MIL-5TD-
1750A Run-Time Reference Manual gives examples of interrupt handlers.

Tasks with interrupt entries but no pragma run at interrupt level whilst
acceptinf an interrupt in a rendezvous. Other interrupts of the same
level or lower levels are inhibited. It is possible to lose interrupts with
this method.

Tasks with interrupt entries and a pragma LEVEL always run at interrupt
level, whether inside or outside a rendezvous. This enables the user to
avoid losing interrupts.

An interrupt entry to a task with the iragma behaves like an ordinary
entry call. An interrupt entry to a task with no pragma behaves like a
conditional entry call. If there is an accept statement waiting for the
interrupt, the body of the accept statement is executed immediately.
When the body is complete, the task is inserted in the ready queue
and the interrupt completed by a return-from-interrupt instruction. The
accept statement can make excursions into other routines, and can even
make entry calls, but must not suspend the task before the interrupt

is dismissed, ctherwise the program repeatedly services the interrupt
unsuccessfully.

Writing interrupt handlers in XD Ada requires detailed knowledge of
the behavior of the target computer’s interrupt system. It is not possible
simply to place a use clause on an entry to achieve the desired effect.

13.5.1 Interrupts 13-7

13.7 The Package System

The following information supplements paragraph 1:

XD Ada additions to the package SYSTEM are described in Section
13.7a.

The following information supplements paragraph 3:

Addresses are treated as 16-bit logical addresses as represented on
the target in a register or memory location. The physical address is
determined by the page registers and the address state.

The following information supplements paragraph 5:

In XD Ada, the enumeration literal for SYSTEM_NAME is MIL-STD-
1750A.

The following information supplements paragraph 7:
In XD Ada, the value given for STORAGE_UNIT must be 16 (bits).

The following information supplements paragraph 9:

In XD Ada, the number given for MEMORY_SIZE must be 131072, Like
VAX Ada, XD Ada does not provide support for checking or ensuring
that the given size is not exceeded.

The following information supplements paragraph 11:

As with VAX Ada, XD Ada imposes no further limitations on these
pragmas. To reduce the amount of recompilation required, XD Ada
identifies those units that have a real dependence on the values affected
by these pragmas; only such units must be recompiled. In particular,
predefined XD Ada packages do not depend on the values affected by

these pragmas, and none require recompilation if these pragmas are
used.

13.7a XD Ada Additions to the Package SYSTEM

In addition to the language-required declarations in package SYSTEM,
XD Ada declares the operations, constants, types, and subtypes de-
scribed in the following sections.

13-8 XD Ada Additions to \.ie Package SYSTEM 13.7a

13.7a.1 Properties of the Tvpe ADDRESS

1

In XD Ada, ADDRESS is a private type for which the following opera-
tions are declared:

Address type

type ADDRESS is private;
ADDRBSS_ZERO t comstaat ADDRESS;
type ADDRESS_INT is range -32768 .. 32767;

funetion
funetion
functioen

functien
funetien
function
function

funstion
funotion
funetioen
funetion
function
function

TO_ADDRESS (X & ADDRESS_INT) return ADDRESS;
TO_ADDRESS {X t {universal_integer)) retura ADDRESS;
TO_ADDRESS_INT (X t: ADDRESS) retura ADDRESS_INT;
"+" (LEFT : ADDRESS; RIGHT : ADDRESS_INT) returm ADDRESS;

"+" (LEFT : ADDRESS_INT; RIGHT t ADDRESS) return ADDRESS;

"«" (LEFT t ADDRESS; RIGHT t ADDRESS) return ADDRESS_INT;
"=" (LERPFT t ADDRESS; RIGHT : ADDRESS_INT) returam ADDRESS;

"w* (LEFT, RIGHT ADURRSS) returs BOOLEAN;

t
“/=" (LRBFT, RIGHT : ADDRESS) retura BOOLRAN;
"<" {LBFT, RIGHT : ADDRESS) returm BOOLEAN;
"<=" (LEFT, RIGHT : ADDRESS) retura BOOLREAN;
">* (LEPFT, RIGHT : ADDRESS) retura BOOLEAN;
">=" (LEFT, RIGHT t ADDRESS) retura BOOLEAN;

Note that because ADDRESS is a private type
the functions "=" and "/=" are already available

Generic functions used to access memory

generic
type

function

generic
type

TARGET is private;
FETCH_FROM_ADDRESS (A t ADDRESS) returm TARGRET;

TARGET is private;

procedure ASSIGN_TO_ADDRESS (A : ADDRESS; T : TARGET):

The addition, subtraction, and relational functions provide arithmetic
and comparative operations for addresses. The generic subprograms
FETCH_FROM_ADDRESS and ASSIGN_TO_ADDRESS provide op-
erations for reading from or writing to a given address interpreted as
having any desired type. ADDRESS_ZERO is a deferred constant whose
value corresponds to the first (machine) address.

Properties of the Type ADDRESS 13.7a.1 13-9

In an instantiation of FETCH_FROM_ADDRESS or ASSIGN_TO._
ADDRESS, the actual subtype corresponding to the formal type T
must not be an unconstrained array type or an unconstrained type with
discriminants. If the actual subtype is a type with discriminants, the
value fetched by a call of a function resulting from an instantiation of
FETCH_FROM_ADDRESS is checked to ensure that the discriminants
satisfy the constraints of the actual subtype. In any other case, no check
is made.

X ¢ INTRGER: .
A 1 SYSTEM.ADDRESS 1= X'ADDRESS; -= legal

funetien FETCH 4is mew FETCH_FROM_ADDRESS(INTBGER)}
presedure ASSIGN is mnew ASSIGN_TO_ADDRESS(INTIGER)}

X 3= FRICH(A): -= like "X 1= A.all;"
ASSIGN(A,X); -- like "A.all 1= X;*

13.7a.2 Type Class Enumeration Type

13~10

XD Ada declares the following enumeration type for identifying the
various Ada type classes:

type TYPE_CLASS is (TYPE_CLASS_ENUMERATION,
TYPE_CLASS_ INTEGER,
TYPE_CLASS_FIXED_POINT,
TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,

TYPE_CLASS_TASK,

TYPB_CLASS_ADDRBSS) ;

In addition to the usual operations for discrete types (see Section 3.5.9),
XD Ada provides the attribute TYPE_CLASS.

For every type or subtype T:

T'TYPE_CLASS Yields the value of the tyre cla ' for the full type of
T. If T is a generic formal type, then the value is that
for the corresponding actual subtype. The value of
this attribute is of the type TYPE_CLASS.

This attribute is only allowed if its unit names the predefined package
SYSTEM in a with clause.

13.7a.2 Type Class Enumeration Type

Examples:
Given

type MY_INT is range 1..10:
type NEW_INT is new STRING;
peckage PACK is

type PRIV is privats;
private

type PRIV ias new FLOAT;
ond PACK;

then
-~ MY_INT'TYPE_CLASS equals

«« NEW_INT'TYPE_CLASS equals
-= PRIV’'TYPE_CLASS equals

TYPE_CLASS_INTEGER
TYPR_CLASS_ARRAY
TYPE_CLASS_FLOATING_POINT

13.7a.3 Hardware-Oriented Types and Functions

-« XD Ada hardware-oriented types and functions

XD Ada declares the following types, subtypes, and functions for con-
venience in working with MIL-STD-1750A hardware-oriented storage:

type BIT_ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK(BIT_ARRAY)}

subtype BIT_ARRAY_16 is BIT_ARRAY (0 .. 15);
subtype BIT_ARRAY_32 is BIT_ARRAY (0 .. 31);
types UNSIGNED_WORD 4is range 0 .. 65535;

for UNSIGNED_WORD’SIZE use 16;

functien
function
functien
functien

functien
function

"not" (LEFT t UNSIGNED_WORD)
*and® (LEFT, RIGHT : UNSIGNED_WORD)
"or" (LBFT, RIGHT : UNSIGNED_WORD)
*xor”® (LEFT, RIGHT 1 UNSIGNED_WORD)

TO_UNSIGNED_WORD (X : BIT_ARRAY_16)
TO_BIT_ARRAY_16 {X : UNSIGNED_WORD)

return UNSIGNED_WORD;
returns UNSIGNED_WORD;
returas UNSIGNED_WORD;
return UNSIGNED_WORD;

returs UNSIGNED_WORD;
return BIT_ARRAY_16;

type UNSIGNED_WORD_ARRAY is array (INTEGER range <>) of UNSIGNED_WORD;

type UNSIGNED_LONGWORD is range MIN_INT .. MAX_INT;
for UNSIGNED_LONGWORD’SIZE use 32;

function
function
function
function

*not® (LEFT

"or" (LBFT, RIGHT

UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;

UNSIGNED_LONGWORD) retuxrm UNSIGNED_LONGWORD;

!

*and" (LBFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD}
H
!

"xor" (LEFT, RIGHT

Hardware-Oriented Types and Functions 13.7a.3

UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD}

13-11

function TO_UNSIGNED_LONGWORD (X : BIT_ARRAY_32) return UNSIGNED_LONGWORD:
fumetion TO_BIT_ARRAY_32 {X : uNSIGNED_WORD) retuxra BIT_ARRAY_32;

type UNSIGNED_LONGWORD_ARRAY is array (INTEGER range <>) of UNSIGNED_LONGWORD;

13.7a.4 Conventionai Names for Unsigned Longwords

The following XD Ada declarations provide conventional names for
static subtypes of the predefined type UNSIGNED_LONGWORD:

13-12

subtype UNSIGNRD_1 4is UNSIGNED_LONGWORD renge 0 .. 2** 1-1;
subtype UNSIGNED_2 4is UNSIGNED_LONGWORD raage 0 .. 2** 2-1;
subtype UNSIGNED_3 4is UNSIGNED_LONGWORD range O .. 2** 3-1;
subtype UNSIGNED 4 4is UNSIGNED_LONGWORD range 0 .. 2** 4-1;
subtype UNSIGNED S 4is UNSIGNED_LONGWORD range O .. 2+* S-1;
subtype UNSIGNED_6 4is UNSIGNED_LONGWORD range 0 .. 2%* 6-1;
subtype UNSIGNRD_7 4s UNSIGNED_LONGWORD vange 0 .. 2%* 7-1;
subtype UNSIGNED_8 s UNSIGNED_LONGWORD ramge 0 .. 2#* 8-1;
subtype UNSIGNED_ 9 is UNSIGNED_LONGWORD range 0 .. 2*® 9-1;
subtype UNSIGNED_10 is UNSIGNED_LONGWORD ramge O .. 27*10-1;
subtype UNSIGNED_11 is UNSIGNED_LONGWORD range 0 .. 2#*11-1;
subtype UNSIGNED_12 is UNSIGNED_LONGWORD ramge 0 .. 2**12-1;
subtype UNSIGNED_13 is UNSIGNED_LONGWORD range 0 .. 2%®13-1;
subtype UNSIGNED_14 is UNSIGNED_LONGWORD ramge O .. 2**14-1;
subtype UNSIGNED_15 is UNSIGNED_LONGWORD range O .. 2**15-1;
subtype UNSIGNED_16 is UNSIGNED_LONGWORD ramge 0 .. 2**16~1;
subtype UNSIGNED_17 is UNSIGNED_LONGWORD range 0 .. 2**17-1;
subtype UNSIGNED_18 is UNSIGNED_LONGWORD ramge 0 .. 2**18-1;
subtype UNSIGNED_19 is UNSIGNED_LONGWORD ramsge 0 .. 2**19-1;
subtype UNSIGNED_20 is UNSIGNE" _ .ONGWORD ramge O .. 2%*20-1;
subtype UNSIGNED_21 is UNSIGNEL_L,ONGWNORD range O .. 2**2]1.1;
subtype UNSIGNED_22 is UNSIGNED_LONGWORD range 0 .. 2#*22-1;
subtype UNSIGNED_23 is UNSIGNED_LONGWORD range O .. 2*%23-1;
subtype UNSIGNED_ 24 is UNSIGNED_LONGWORD ramge 0 .. 2+%24-1;
subtype UNSIGNED_2S is UNSIGNED_LONGWORD range O .. 2+%25-1;
subtype UNSIGNED_ 26 is UNSIGNED_LONGWORD ramge O .. 2%%26~1;
subtype UNSIGNED_27 is UNSIGNED_LONGWORD range O .. 2%*27-1;
subtype UNSIGNED_28 is UNSIGNED_LONGWORD range 0 .. 2*+*28-1;
subtype UNSIGNED_29 is UNSIGNED_LONGWORD range 0 .. 2*%29-1;
subtype UNSIGNED_30 is UNSIGNED_LONGWORD range 0 .. 2**30-1;
subtype UNSIGNED_31 is UNSIGNED_LONGWORD ramge 0 .. 2%%31-1;

13.7a.4 Conventional Names for Unsigned Longwords

13.7.1 System-Dependent Named Numbers

In XD Ada, the values for system-dependent named numbers are as
shown in the following table. '

Attribute MIL-STD-1750A
MIN_INT 2%
MAX_INT 2
MAX_DIGITS 9
MAX_MANTISSA 3
FINE_DELTA 2.0~

TICK 100.0 x 10~¢

13.7.2 Representation Attributes

The following information supplements all of this section:

For any object, program unit, label, or entry X:

X+ADDRESS

13.7.2 Representation Attributes

Yields the address of the first of the storage ele-
ments allocated to X. For a subprogram, package,
task unit or label, this value refers to the machine
code associated with the corresponding body or
statement. For an entry for which an address
clause has been given, the value refers to the offset
of the interrupt vector from the vector base register.
The value of this attribute is of the type ADDRESS
defined in the package SYSTEM.

For an object that is a variable, the value is the ac-
tual arldress of the variable (which may be statically
or dynamically allocated). This attribute forces a
variable to be allocated in memory rather than in
a register, and causes the variable to be marked as
volatile for the duration of the block statement or
body containing use of the attribute. If the location
of the variable is not word-aligned, the value is
the address of the lowest word that contains the
variable. For an object that is a constant, the value
is the address of the constant 1alue in memory;
however, two occurrences of C'ADDRESS, where

13-13

C denotes a constant, may or may not yield the
same address value. For an object that is a named
number, the value is zero (ADDRESS_ZERO).

NOTE

In the context of these representation
attributes, ADDRESS_ZERO means only
that no useful interpretation of a nonzero
value is currently supported. That is, its
use as a result of C'ADDRESS is subject
to change.

For an access object, X.all'’ADDRESS is the address

of the desi%nated object; X.all’ADDRESS is subject :
to an ACCESS_CHECK for the designated object.

For a record component, X.C’'ADDRESS is subject

to a DISCRIMINANT_CHECK for an object in

a variant part. For an array component or slice,
X(M)’'ADDRESS or X(I1...12) ADDRESS is subject to

an INDEX_CHECK for the denoted component or

slice.

For program units that are task units or package
units, the value is zero (ADDRESS_ZEROQ). For
program units that are subprograms, the vaiue is
the same as the address that would be exported.
(See Section 13.9a.1.4 (LRM) for information on
pragmas EXPORT_FUNCTION and EXPORT_
PROCEDURE).

For entries, the value is zero (ADDRESS_ZERO).

For labels, the value is the address of the machine
code which follows the label.

For any type or subtype X, or for any object X:

X SIZE

13-14

For a type or a subtype, the value is limited to ‘
val 1es in the range 0 .. MAX_INT; the exception
NUMERIC_ERR(%R (see Section 11.1) is raised for

values outside this range. For an object that is a

variable or a constant in XD Ada, the value is its

size in bits. For an object that is a named num-

ber, the value is zero. For a record component,

X.C'SIZE is subject to a DISCRIMINANT_CHECK

Representation Attributes 13.7.2

for an obje'ct in a variant part. For an array compo-

- nent or slice, X(I)’SIZE or X(I1..12)*SIZE is subject

to an INDEX_CHECK for the denoted component
or slice.

For any type or subtype X:
X*MACHINE_SIZE Yields the number of machine bits to be allo-

For any object X:
X'BIT

13.7.2 Representation Attributes

cated for variables of the type or subtype. This
value takes into account any paddinf bits used

by XD Ada when allocating a variable on a word
boundary. The value of this attribute is of the type
universal_integer.

The value is always a multiple of 16 (bits). In
particular, for discrete types it is 16, or 32, The
value is limited to the range 0. MAX_INT; the
exception NUMERIC_ERROR is raiseu for values
outside this range.

Yields the bit offset within the storage unit (word)
that contains the first bit of the storage allocated for
the object. The value of this attribute is of the type
universal_integer, and is always in the range 0..15

For an object that is a variable or a constant al-
located in a register, the value is zero. (The use
of this attribute does not force the allocation of
a variable to memory.) For an object that is a
formal parameter, this attribute applies either
to the matching actual parameter or to a copy
of the matching actual parameter. For an ac-
cess object, the value is zero (in the absence of
CONSTRAINT_ERROR); X.all’BIT is subject to
an ACCESS_CHECK for the designated object.
For a record component, X.C/BIT is ‘ubject to
a DISCRIMINANT_CHECK for a co.nponent in
a variant part. For an array component or slice,
X(I)’BIT or X(I1..12)/BIT is subject to an INDEX_
CHECK for the denoted component or slice.

13-18

The following information supplements the Notes section:

The attribute X*MACHINE_SIZE gives the size that would be used for

a variable of the type or subtype; it does not give the size that may be
used for a component of that type or subtype.

The machine size of a type or subtype can be influenced by representa-
tion clauses, unlike the size of a type or subtype, which is independent
of representation clauses. The machine size of a base type can be less
than, equal to, or greater than the size of that same base type. See the
XD Ada MIL-STD-1750A Run-Time Reference Manual for examples and
additional discussion.

13.7.3 Representation Attributes of Real Types

The following information supplements paragraphs 3 and 4:
For both fixed- and floating-point types:

T+'MACHINE_ROUNDS In XD Ada this value is FALSE
TMACHINE_OVEREFLOWS In XD Ada this value is FALSE

The XD Ada values of the other representation attributes for floating-

point types are dependent on the floating-point type and are listed in
Appendix F.

13.8 Machine Code insertions

13-16

The following information supplements paragraph 4:
XD Ada provides the package MACHINE_CODE, Machine code inser-
tions can be expanded in line.

This predefined package and not a user-defined package must be
named in a with clause that applies to the compilation unit in which the
code statement occurs.

The following is an example of MACHINE_CODE and the with clause
inuse:

Machine Code Insertions 13.8

with MACHINE_CODE;
procedure INC (N: in out INTEGER);

pragma CALL_SEQUENCE_PROCEDURE (
INC,
MECHANISM => (VALUE (R4)),
PRESERVED_REGISTERS => (RO, Rl, R2, R3, RS, R,
R7, R8, R, R12, R13, R4));

procedure INC (N: in out INTEGER) is

begin
AISP_INST’ (OPCODE => AISP,
RA => R4,
N => Nl);
end INC:;

XD Ada provides the pragma CALL_SEQUENCE_PROCEDURE which
specifies parameter-passing mechanisms for machine code procedures.
The pragma is defined in Appendix B. Examples of machine code in-
sertion are given in Section 6.1 of the XD Ada MIL-STD-1750A Run-Time
Reference Manual. For the specification of the package MACHINE_
CODE, see Appendix D of the XD Ada MIL-STD-1750A Run-Time
Reference Manual.

13.9 Interface to Other Languages

13.9

The following information supplements paragraph 4:

As with VAX Ada, use of pragma INTERFACE in XD Ada is interpreted
as being equivalent to supplying the body of the named subprogram or
subprograms. Therefore, the following rules apply:

e If a subprogram body is given later for a subprogram named with
pragma lN‘f‘ERFACB, the body is illegal.

o If pragma INTERFACE names a subprogram body, the pragma is
illegal.

e If a duplicate pragma INTERFACE is given, the latter pragma is
illegal.

In XD Ada, pragma INTERFACE applies to a renaming only if the
renaming occurs in the same declarative part or package specification
as the pragma. The renamed subprogram must also occur in that same
declarative part or package specification; renamed subprograms that
occur outside the declarative part or package specification are ignored
(without a warning diagnostic).

Interface to Other Languages 13-17

13-18

In addition, XD Ada interprets the effect of pragma INTERFACE in such
a way that it accepts and ignores implicit ' ‘clarations of subprograms
(such as predefined operators, derived s. _programs, attribute functions,
and so on).

Dependent upon its use in an XD Ada program, pragma INTERFACE is
interpreted in combination with one of two XD Ada import subprogram
pragmas: IMPORT_FUNCTION or IMPORT_PROCEDURE. These
pragmas are described in Section 13.9a.1.

The language name is ignored, and so may be any identifier that
suggests the language, source, or nature of the imported subprogram.

If pragma INTERFACE is used without one of these import pragmas, a
default interpretation is used, as follows:

¢ If the subprogram name applies to a single subprogram, then a
default import pragma is assumed as follows:

For a function, the default is as follows:

pragma IMPORT_FUNCTION (function_designator):;

For a procedure, the default is as follows:

pragme IMPORT PROCEDURE (procedure_identifier);

e If the subprogram name applies to two or more subprograms, the
pragma applies to all of them. However, a warning is given if the
appropriate XD Ada import pragmas are not given for all of the
subprograms.

Whether or not pragma INTERFACE is used with an import pracfma, the
subprogram name must be an identifier, or a string literal that denotes
an operator symbol. In the following example, pragma INTERFACE
specifies that the indicated routines SQRT and EXP are to be imported
and used as bodies for the XD Ada functions SQRT and EXP in package
FORT_LIB:

package FORT_LIB is
function SQRT(X : FLOAT) return FLOAT;
function EXP(X : FLOAT) returam FLOAT;
private
pragma INTERFACE(FORTRAN, SQRT);
pragma INTERFACE(FORTRAN, BXP);
end FORT_LIB;

Interface to Other Languages 13.9

13.9

The following information supplements paragraph 5:

In XD Ada, the example package FORT_LIB is interpreted as follows:
E;(algma INTERFACE specifies that the indicated routines SQRT and

are to be imported and used as bodies for the Ada functions SQRT
and EXP in package FORT_LIB.

package CHOOSE_R is
procedure P(X t INTEGER);
procedure P(X t FLOAT);
private
procedurs R(X t FLOAT) renames P;
pragma INTERFACE(ASSEMBLER, R);
end CHOOSE_R:

In this example, pragma INTERFACE indicates that the body for the
second procedure P is to be imported as routine R.

The following information supplements the Notes section:

The meaning of the subprogram name i¢ letermined as for any name
{see Section 8.3 (LRM)), except that the name can denote more than one
subprogram. Thus, in the following declaration the pragma INTERFACE
applies to the first two procedures; it does not apply to the third
because the declaration is not visible at the place of the pragma.

procedure P (B: BOOLEAN);
procedure P (I: INTEGER);
pragma INTERFACE (ASSEMBLER, P);
procedure P (F: FLOAT):

This same interpretation is made for pragmas used to import and export
subprograms (see Section 13.9a.1).

If pragma INTERFACE and pragma INLINE are used together, the
pragma INLINE is ignored regardless of the order in which the two
pragmas appear.

Refer to Chapter 3 of the XD Adn MIL-STD-1750A Run-Time Reference
Manual for subprogram calling conventions and run-time organisation,
while Chapter 6 of the same manual describes low-level interfaces and
assembly language modules.

Interface to Other lLanguages 13-19

13.9a XD Ada Import and Export Pragmas

13-20

XD Ada provides import and export pragmas designed specifi-

cally for constructing programs composed of both Ada and non-

Ada entities. The import pragmas aﬁow an Ada program to refer

to entities written in another language; the export pragmas make

Ada entities available to programs written in other languages.

The names of the pragmas indicate the kind of entity involved:
IMPORT_FUNCTION and EXPORT_FUNCTION apply to nongeneric
functions; IMPORT_PROCEDURE and EXPORT_PROCEDURE apply to
nongeneric procedures; IMPORT_OBJECT and EXPORT_OBJECT apply
to objects; and IMPORT_EXCEPTION and EXPORT_EXCEPTION apply
to exceptions. These Eragmas are described in this section, summarized
in Annex B, and listed in Appendix F. ‘

All the XD Ada import and export pragmas have the following form:

pragms import_export_pragma_name
{internal_name (, external_designator)]
[, pragma_specific_options]);

import_export_pragma_name ::=

EXPORT_EXCEPTION | EXPORT_FUNCTION

| EXPORT_OBJECT | EXPORT_PROCEDURE
| IMPORT_EXCEPTION | IMPORT_FUNCTION
| IMPORT_OBJECT | IMPORT_PROCEDURE

internal_name ::= [INTERNAL =>] simple_name
{ [INTERNAL =>) operator_symbol ~- Can be used only for
== IMPORT_FUNCTION

external_designator :i= [EXTERNAL =>] external symbol
external_symbol 1= identifier | string_literal

The internal name can be an Ada simple name, or, if the declared entity
is a function, the internal name can be a string literal that denotes an
otrerator symbol. A subprogram to be imported or exported must be
identified by its internal name and parameter types; and, in the case of
a function, by the result type (see Section 13.9a.1.1).

The external designator determines a symbol that is referenced or
declared in the linker object module. If an identifier is given, the
identifier is used. If a string literal is given, the value of the string is
used. The value of a string literal must be a symbol that is acceptable
to the XD Ada Builder; it need not be valid as an Ada identifier. (For
example, the dollar character ($) can be used.) If no external designator
is given, the internal name is used as the external designator. If the

XD Ada import and Export Pragmas 13.9a

external designator (explicit or default) is longer than 12 characters, the
import or export pragma is ignored.

Pragma-specific options are described in the individual pragma sections
that follow.

The XD Ada import and export pragmas are only allowed at the place
of a declarative item, and must apply to an entity declared by an earlier
declarative item of the same declarative part or package specification.
At most one import or export pragma is allowed for any given entity; in
the case of multiple overloaded subprograms, this rule applies to each
subprogram independently.

Additional placement and usage rules apply for particular pragmas as
described in the following sections.

Note:

Argument associations for XD Ada import and export pragmas can be
either positional or named. With positionai association, the arguments
are interpreted in the order in which they appear in the syntax defini-
tion. The rules for the mixing of positional and named association are
the same as those that apply to subprograms (see Section 6.4 (LRM)).

A pragma for an entity declared in a package specification must not be
given in the package body. (A pragma for an entity given in the visible
part of a package specification can, however, be given in either the
visible or private part of the specification.)

No checking is provided to ensure that exported symbols do not con-
flict with each other or with other global symbols; such checking is
performed by the XD Ada Builder.

13.9a.1 Importing and Exporting Subprograms

XD Ada provides a series of pragmas that make it possible to call
nongeneric subpro;rams ina mixed-language rogrammin environ-
ment. The IMPORT_FUNCTION and IMPORT_PROCEDURE pragmas
specify that the body of the subprogram associated with an Ada sub-

rogram sﬁeciﬁcation is to be provided from assembly language.

ragma ACE must precede one of these import pragmas (see
Section 13.9). The EXPORT_FUNCTION and EXPORT_PROCEDURE

ragmas allow an Ada procedure or function to be called from assem-
gly language. The pragmas support parameter passing by means of
registers.

Importing and Exporting Subprograms 13.9a.1 13-21

13.9a.1.1 Importing Subprograms

XD Ada provides two pragmas for importing subprograms:
IMPORT_FUNCTION and IMPORT_PROCEDURE. These pragmas
allow the import of the kind of subprograms indicaied.

The pragmas for importing subprograms have the following form:

pragms IMPORT FUNCTION | IMPORT_PROCEDURE

({ INTERNAL =>) internal_name

[+ [BXTERNAL =>] external_designator |

(. [PARAMETER_TYPES =>] (parameter_types) |

[+ [RESULT_TYPE =>] type_mark] -~ FUNCTION only
{, [MECHANISM =>] mechanism)

{+ {RESULT_MECHANISM =>) mechanism_spec | -~- FUNCTION only
{, (FIRST_OPTIONAL_PARAMETER =>] FORMAL_NAME)

{, (PRESERVED_REGISTERS =>]| (registers)]

parameter_types itw

null T type_mark {, type_mark}
mechanism s3=

mechanism_spec | (mechanism_spec (, mechanism_spec))
mechanism_spec :t=

mechanism_name (({REGISTER => | register_name) |}
mechanism_name si=

VALUE

|
REFERENCE | BIT_REFERENCE |
DOPE_VECTOR | BIT_DOPE_VECTOR

registers s;:=
null | register_name {, register_name }

Functions must be identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same ceclarative part or
package specification. Otherwise, both the parameter and resuit types
must be specified.

Procedures must be identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly
one procedure of that name in the same declarative part or package
specification. Otherwise, the parameter types must be specified.

The external designator denotes an XD Ada Builder global symbol that
is associated with the external subprogram. If no external designator is
given, the internal name is used as the global symbol.

13-22 Importing Subprograms 13.9a.1.1

13.9a.1.1

The parameter tyges option specifies a series of one or more type
marks (type or subtype names), not parameter names. Each type mark
is positionally associated with a formal parameter in the subprogram’s
declaration. The absence of parameters must be indicated by the
reserved word null. '

The result type option is used only for functions; it specifies the type or
subtype of the function result.

The mechanism option specifies how the imported subprogram expects
its parameters to be passed (for example, by value, by reference or

by descriptor). The calling program (namely the XD Ada program)

is responsible for ensuring that parameters are passed in the form
required by the external routine.

Mechanism names are described as follows. Within these definitions,
the term bit string means any one-dimensional array of a discrete type
whose components occupy successive single bits. The term simple
record type means a record type that does not have a variant part and in
which any constraint for each component and subcomponent is static.
A simple record subtype is a simple record type or a static constrained
subtype of a record type (with discriminants) in which any constraint for
each component and subcomponent of the record type is static.

VALUE Specifies that the immediate value of the actual

parameter is passed. Values of scalars, access
es, address types and private types whose

full type is either a scalar, an access type or an
address type can be passed by VALUE. If the
value is a private type, the pragma must occur
after the full declaration of the private type. Bit
strings can also be passed by VALUE.

REFERENCE Specifies that the address of the value of the
actual parameter is passed. This mechanism can
be used for parameters of any type.

DOPE_VECTOR Specifies that the address of the DOPE_VECTOR
is passed, a 32-bit pointer to an object, takin
the form described in Section 2.1.4 of the
Ada MIL-STD-1750A Run-Time Reference Manual.

BIT_DOPE_VECTOR Specifies that the address of the BIT_DOPE_
VECTOR is passed, a 32-bit pointer to an object,
taking the form described in Section 2.1.4 of
the XD Ada MIL-STD-1750A Run-Time Reference
Manual,

Importing Subprograms 13-23

If the first form of the mechanism option is given (a single mechanism
name without parentheses), all parameters are passed using that mech-
anism. If the second form is given (a series of mechanism names in
parentheses and separated by commas), each mechanism name de-
termines how the parameter in the same position in the subprogram
specification will be passed. With the second form, each parameter
name must have an associated mechanism name.

The result mechanism option is used only for functions; it specifies
the parameter-passing mechanism for passing the result type, and
optionally, a specific register used to pass the resuit.

The preserved registers option gives a list of hardware registers which
are not altered by the procedure or function. If this option is omitted it
implies that no registers are preserved.

In addition to the rules given in Section 13.9a, the rules for importing
subprograms are as follows:

¢ [f an import pragma is given for a subprogram specification, pragma
INTERFACE (see Section 13.9) must also be given for the subpro-
%ram earlier in the same declarative rart or package specification.
he use of pragma INTERFACE implies that a corresponding body
is not given,

e If a subprogram has been declared as a compilation unit, the
pragma is only allowed after the subprogram declaration and before
any subsequent compilation unit.

* These pragmas can be used for subprograms declared with a re-
naming declaration. The internal name must be a simple name, and
the renaming declaration must occur in the same declarative part
or package specification as the pragma. The renamed subprogram
must also occur in that same declarative part or package specifica-
tion. Renamed subprograms that occur outside the declarative part
or package specification are ignored (without a warning diagnostic).

* None of these pragmas can be used for a generic subprogram or
a generic subprogram instantiation. In particular, they cannot be
used for a subprogram that is declared by a generic instantiation of
a predefined subprogram (such as UNCHECKED_CONVERSION).

13-24 Importing Subprograms 13.9a.1.1

Examples:

In this example, the pragma INTERFACE identifies SQRT as an external
subprogram; the language name argument ASSEMBLER has no effect.
The pragma IMPORT_FUNCTION uses positional notation to specify
arguments for importing the declared function SQRT. The pragma form
indicates that the internal name is SQRT, and the external designator is
"MTHS$SQRT". The parameter is of type FLOAT, and is passed in R4;
the result is of type FLOAT, and it is returned in R6.

funection SQRT (X : FLOAT) retura FLOAT;

pragus INTERFACE (ASSEMBLER, SQRT):

pragmas IMPORT_FUNCTION
{SQRT, "MTHSSQRT", (FLOAT),
FLOAT, (VALUE(R4)), VALUE(RS) ,
)i

The next exampie shows an alternative way of importing the declared
function SQRT using named notation. In this case, the parameter is
passed in R7, and the result is returned in R4; the registers which are
preserved by the called function are also specified.

function SQRT (X : LONG_FLOAT) rxetura LONG_FLOAT;
pragma INTERFACE (ASSEMBLER, SQRT):

pragma IMPORT_FUNCTION (INTERNAL => SQRT,
PARAMETER_TYPES => (LONG_FLOAT),
RESULT_TYPER => LONG_FLOAT,
MECHANISM »> (VALUE(R7)),
RESULT_MECHANISM => VALUE(R4),
EXTERNAL > "MTHSDSQRT",

PRESERVED_REGISTERS =>
(RO, R1l, R2, R3, R12, R13, R14;);

If the previous example is combined with the code in the first example
(that is, with only one occurrence of pragma INTERFACE), the result is
an overloading of SQRT:

importing Subprograms 13-28

funetion SQRT (X ! LONG_FLOAT) returm LONG_FLOAT;
function SQRT (X t FLOAT) return FLOAT;

pragms INTERFACE (ASSEMBLER, SQRT):

pragas IMPORT_FUNCTION (SQRT,

"MTH$SQRT*,
(FLOAT),
FLOAT,
(VALUE(R4)),
VALUE(R6));

pragma IMPORT_FUNCTION ({INTERNAL => SQRT,

PARAMETER_TYPES => (LONG_FLOAT),
RESULT_TYPE => LONG_FLOAT,
MECHANISM => (VALUE(R?)),
RESULT_MBCHANISM => VALUE(R4),
EXTERNAL »> "MTHSDSQRT",

PRESERVED_REGISTERS =>
(RO, R1l, R2, R3, R12, "13, R14)):

The next example shows the use of renaming with an imported pro-
cedure (it is assumed that these declarations occur in a declarative

part or package specification). Note that the renaming causes the im-
ported ASSEMBLER procedure to be used in calls to both procedures
CHANGE and EXCHANGE. Also note that because no external desig-
nator is specified, the builder global symbol associated with the external
subprogram is EXCHANGE, and because no parameter mechunisms
are specified, the compiler’s defaults will apply in calls to CHANGE or
EXCHANGE.

procedure CHANGE (X,Y : INTEGER);

procedure EXCHANGE (X,Y : INTEGER) renames CHANGE;

pragme INTERFACE (ASSEMBLER, EXCHANGE);

pragma IMPORT_PROCEDURE (INTERNAL => BEXCHANGE,
PARAMETER_TYPES => (INTEGER, INTEGER));

13.9a.1.2 Exporting Subprograms

13-26

XD Ada provides two pragmas for exporting subprograms:
EXPORT_FUNCTION and EXPORT_PROCEDURE. Both export prag-
mas establish an external name for a subprogram and make the name
available to the XD Ada Builder as a global symbol, o that the subpro-
gram can be called by 1n assembly language module.

The EXPORT_FUNCTION and EXPORT_PROCEDURE pragmas allow
the export of the kind of subprograms indicated.

Exporting Subprograms 13.9a.1.2

The pragmas for exporting subprograms have the following form:

pragsa EXPORT_FUNCTION | EXPORT_PROCEDURE

([INTERNAL =>] internal_name
[, {EXTERNAL =>] external_designator]
{+ [PARAMETER_TYPES =>} (parameter_types) |

[+ (RESULT_TYPE =>) type_mark | ~~ FUNCTION only
[, [MECHANISM =>]} mechanism }
{, [RESULT_MBCHANISM =>| mechanism_spec] -~ FUNCTION only

):
parameter_types i1i=

aull | type_mark {, type mark}
mechanism t:=

mechanism_spec | (mechanism_spec {, mechanism_spec))
mechanism_spec i1t=

mechanism_name { ([REGISTER =>) register_name) }
mechanism_name t:=

VALU®

REFERENCE | BIT_REFERENCE |

DOPE_VECTOR | BIT_DOPE_VECTOR
registers =

null | register_name (, register_name }

paramneter_types i:=
null | type_mark {, type_mark}

Functions must be identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same declarative part or
package specification. Otherwise, both the parameter and rasult types
must be specified.

Procedures must be identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly
one procedure of that name in the same declarative part or package
specification. Otherwise, the parameter types must be specified.

The external designator denotes an XD Ada Builder global symbol
that is associated with the external subprogam. If no external name is
given, the internal name is used as the global symbol.

The parameter tyges option specifies a series of one or more type
marks (type or subtype names), not parameter names. Each type mark
is positionally associated with a formal parameter in the subprogram’s
declaration. The absence of parameters must be indicated by the
reserved word null.

13.92.1.2 Exporting Subprograms 13-27

13-28

The result type option is used only for functions; it specifies the type or
subtype of the function resuit.

The mechanism option specifies how the imported subprogram expects
its parameters to be passed (for example, by value, by reference or

by descriptor). The calling program (namely the XD Ada program)

is responsible for ensuring that parameters are passed in the form
required by the external routine. Mechanism options and possible
v;lues for mechanism names and class names are described in Section
13.9a.1.1.

If the first form of the mechanism option is given (a single mechanism
name without parentheses), all parameters are passed using that mech-
anism. If the second form is given (a series of mechanism names in
parentheses and separated by commas), each mechanism name de-
termines how the parameter in the same position in the subprogram
specification will be passed. With the second form, each parameter
name must have an associated mechanism name.

The result mechanism option is used only for functions; it specifies
the parameter-passing mechanism for passing the result type, and
optionally, a specific register used to pass the resuit.

In addition to the rules given in Section 13.9a, the rules for exporting
subprograms are as follows:

* An exported subprogram must be a library unit or be declared in
the outermost declarative part of a library package. Thus, pragmas
for exporting subprograms are allowed only in the following cases:

— For a subprogram specification or a subprogram body that is a
library unit

— For a subprogram specification that is declared in the outermost
declarations of a package specification or a package body that is
a library unit

— For a subprogram body that is declared in the outermost decla-
rations of a package body that is a library unit

Consequently, an export pragma for a subprogram body is allowed
only if either the body does not have a corresponding specification,
or the specification and body occur in the same declarative part.

This set of rules implies that an EXPORT_FUNCTION or
EXPORT_PROCEDURE pragma cannot be given for a generic li-
brary subprogram, nor can one be given for a subprogram declared
in a generic library package. However, either of these pragmas
can be given for a subprogram resulting from the instantiation of

Exporting Subprograms 13.9a.1.2

a generic subprogram, provided that the instantiation otherwise
satisfies this set of rules.

* In the case of a subprogram declared as a compilation unit, the
pragma is only allowed after the subprogram declaration and before
any subsequent compilation unit.

* Neither of these pragmas can be used for a subprogram that is
declared with a renaming declaration.

* Neither of these pragmas can be used for a subprogram that is
declared by a generic instantiation of a built-in library subprogram
(such as UNCHECKED_CONVERSION).

Examples:

The following example shows an export pragma that causes the Ada
procedure PROC to be exported for use in an assembly language
module. The name PROC is declared as an XD Ada Builder global
symbol.

procedure PROC (Y : INTEGER):;
pragma EXPORT_PROCEDURE (PROC);

The next example shows an Ada function being called from an assembiy
language moduie:

function MULTIPLY (Y : inm INTEGER) return INTEGER is
begin
return Y * 10;
end;
pragmsa EXPORT_FUNCTION (INTERNAL => MULTIPLY,
PARAMETER_TYPES => (INTEGER),

RESULT_TYPE => INTEGER);
pragma CALL_SEQUENCE_FUNCTION (

UNIT => MULTIPLY,

PARAMETER _TYPES => (INTEGER),

MECHANISM => (VALUE(DO)},

RESULT_MECHANISM => VALUE(DO)):;

TITLE "1750A Calling Ada"
MODULE “CALL_ADA"

XDEF CALL_ADA
XREF MULTIPLY

DSEG

At BLKW 1
PSEG

CALL_ADA

13.9a.1.2 Exporting Subprograms 13-29

! entry sequence

L R4,A ! 1n parameter
Js R10,MULTIPLY ! call
ST R4,A ! out parameter

t return from subroutine

13.9a.2

13-30

Importing and Exporting Objects

XD Ada provides two pragmas for importing and exporting objects:
IMPORT_OBJECT and EXPORT_OBJECT. The IMPORT_OBJECT

ragma references storage declared in an assembly language module.
T 2 EXPORT_OBJECT pragma allows an assembly language module to
refer to the storage allocated for an Ada object.

In addition to the rules given in Section 13.9a, the rules for importing
and exporting objects are as follows:

e The object to be imported or exported must be a variable declared
by an object declaration at the outermost level of a library package
specification or body.

* The subtype indication of an object to be imported or exported must
denote one of the following:

— A scalar type or subtype.

~— An array subtype with static index constraints whose component
size is static.

— A record type or subtype that does not have a variant part and
in which any constraint for each component and subcomponent
is static (a simple record type or subtype).

e Import and export pragmas are not allowed for objects declared
with a renaming declaration.

¢ Import and export pragmas for objects are not allowed in a generic
unit.

Notes:

Objects of private or limited private types cannot be imported or
exported outside the package that declares the (limited) private type.
They can be imported or exported inside the body of the package where
the type is declared (that is, where the full type is known).

The XD Ada pra%'nas for importing or exporting objects can precede or
follow a pragma VOLATILE for the same objects (see Section 9.11).

13.9a.2 Importing and Exporting Objects

Address clauses are not allowed in combination with any of the XD Ada
pragmas for importing or exporting objects. If used in such cases, the
pragma involved is ignored (see Section 13.5).

13.9a.2.1

13.9a.2.1

Importing Objects

The XD Ada IMPORT_OBJECT pragma specifies that the storage allo-
cated for the object (when the assembly ianguage module is compiled)

be made known to the calling Ada program by an externally-defined XD
Ada Builder global symbol.

Pragma IMPORT_OBJECT has the following form:

pragma Ii¥ ORT_OBJECT
(internal_name ([, external designator])

The internal name is the 2bject identifier. The external designator
denotes an XD Ada Builder global symbol that is associaied with the
external object. If no external designator is given, the internal name is
used as the global symbol.

Because it is not created by an Ada elaboration, an imported object
cannot have an initial value. Specifically, this restriction means that the
object to be imported:

¢ Cannot be a constant (have an explicit initial value).

e Cannot be an access type (which has a default initial value of null),

e Cannot be a record type that has discriminants (which are always
initialized) or components with default initial expressions.

¢ Cannot be an object of a task type.

Example:

PIDt INTEGER;
pragmns IMPORT_OBJECT (PID, "PROCESSSID");

In this example, the variable PID refers to the externaily-defined symbol
PROCESSSID.

Alternatively, this example can be written in named notation as follows:

PID 3+ INTEGER;
pragms IMPORT_OBJECT (INTERNAL => PID,
EXTERNAL => "PROCBSSS$ID");

Importing Objects 13-31

13.92.2.2 Exporting Objects

The XD Ada pragma EXPORT_OBJECT specifies that the storage al-
located for the object (when the Ada program is compiled) be made

known to assembly language modules by an XD Ada Builder global
symbol.

Pragma EXPORT_OBJECT has the following form:

pragma EXPORT_OBJECT
(internal_name [, external_designator])

The internal name is the object identifier. The external designator
denotes an XD Ada Builder global symbol that is associated with the
external object. If no external designator is given, the internal name is
used as the global symbol.

Example:

PID: INTEGER;
pragma EXPORT_OBJECT (PID, "PROCESSSID");

Alternatively, this example can be written in named notation:

PID: INTEGER:
pragma EXPORT_OBJECT (INTERNAL => PID,
EXTERNAL => "PROCESSSID");

13.9a.3

13-32

Importing and Exporting Exceptions

XD Ada provides the IMPORT_EXCEPTION and EXPORT_EXCEPTION
g(a%as for importing and exporting exceptions. The pragma IMPORT._

ON allows non-Ada exceptions to be used in Ada programs;
the pragma EXPORT_EXCEPTION allows Ada exceptions to be used by
foreign units.

The rules for importing and exporting exceptions are given in Section
13.9a,

Note:

A pragma for an exception that is declared in a package specification is
not allowed in the package body.

Importing and Exporting Exceptions 13.9a.3

13.9a.3.1 Importing Exceptions

The XD Ada IMPORT_EXCEPTION pragma is provided for compatibil-
ity with VAX Ada. This pragma specifies that the exception associated

with an exception declaration in an Ada program be defined externally
in non-Ada code.

In XD Ada pragma IMPORT_EXCEPTION has the following form:

pragma IMPORT_EXCEPTION
(internal_name [, external_designator)
[+ [FORM =>} ADA]);

The internal name must be an Ada identifier that denotes a declared
exception. The external designator denotes an XD Ada Builder global
symbol to be used to refer to the exception. If no external name is
given, the internal name is used as the global symbol.

For compatibility with VAX Ada, the form option indicates that an Ada
exception is being imported. If omitted, this defaults to ADA.

The external designator refers to an address that identifies the excep-
tion.

The VAX Ada version of this pragma supports an alternative form
(VMS), and a code option in addition to the XD Ada arguments. If
either of these unsupported arguments is specified, the compiler ignores
the pragma and issues a warning message.

13.9a.3.2 Exporting Exceptions

The XD Ada EXPORT_EXCEPTION pragma allows Ada exceptions to
be visible outside the XD Ada program, so that they can be raised and
handled by programs written in XD Ada MIL-STD-1750A assembly
language. This pragma establishes an external name for an Ada excep-
tion and makes the name available to the XD Ada Builder as a globa
symbol. Refer to the XD Ada MIL-STD-1750A Run-Time Reference Manual
for further information on exporting exceptions.

Pragma EXPORT_EXCEPTION has the following form:

pragma EXPORT BXCEPTION
(internal_name {, external_designator)
[+ [FORM =>] ADA]);

The internal name must be an Ada identifier that denotes a declared
exception. The external designator denotes an XD Ada Builder global
symbol to be used to refer to the exception.

Exporting Exceptions 13.9a.3.2 13-33

The form option specifies that an Ada exception is being exported.

Example:

UNDERFLOW : exception
pragmna EXPORT_EXCEPTION (UNDERFLOW, MTH_UNDERFLOW, ADA):

In this example, an Ada exception is exported as a global symbol.

13.10

Unchecked Programming

13.10.1 Unchecked Storage Deallocation

The following information supplements the Notes section:

Because UNCHECKED_DEALLOCATION is a predefined generic pro-
cedure, XD Ada does not allow the use of the IMPORT_PROCEDURE
pragma to substitute an alternative procedure body.

13.10.2 Unchecked Type Conversions

13-34

The following information supplements paragraph 2:

XD Ada supports the generic function UNCHECKED_CONVERSION
with the following restrictions on the class of types involved:

¢ The actual subtype corresponding to the formal type TARGET must
not be an unconstrained array type.

¢ The actual subtype corresponding to the formal type TARGET must
not be an unconstrained type with discriminants.

Further, when the target type is a type with discriminants, the value
resulting from a call of the conversion function resulting from an instan-
tiation of UNCHECKED_CONVERSION is checked to ensure that the
discriminants satisfy the constraints of the actual subtype.

The effect with XD Ada is as if the source value is copied one word

in ascending order of address, into the destination, also in ascending
order of address. If the destination has fewer words than the source
value, the high order words of the source value are ignored (truncated).
If the source value has fewer words than the destination, the high order
words of the destination are set to zero.

Unc: . _ked Type Conversions 13.10.2

Chapter 13

Representation Clauses and
Implementation-Dependent

Featu res

This chapter describes XD Ada MIL-STD-1750A Version 1.2 interrupt
handling. In particular, it describes the handling of direct interrupt
entries, and use of pragma DIRECT_INTERRUPT_ENTRY.

Interrupts

The following information supplements all of this section:

Unlike VAX Ada, XD Ada supports interrupts. The address in the use
clause is the MIL-STD-1750A interrupt number.

In addition to s:xifport for normal Ada interrupt entries, XD Ada
grovides the additional pragmas LEVEL and DIRECT _INTERRUPT_
Y. Pragma LEVEL is given for a task type, or single task of anony-
mous L'Kte' and gives the level for its interrupts. Pragma DIRECT_
PT. Y is used to connect an interrupt entry directly to the
required interrupt vector, and is described below.

There are two ways an interrupt entry can be handled, according to
whether or not the task has a pragma LEVEL. The XD Ada MIL-S5TD-
1750A Run-Time Reference Manual gives examples of interrupt handlers.

interrupts 13-~1

13-2

Tasks with interrupt entries but no pragma LEVEL run at interrupt level
0 only while accepting an interrupt in a rendezvous. Other interrupts of
the same level are inhibited while in the handier. When not accepting
an interrupt, the task runs with all interrupts enabled. It is, however,
possible to lose interrupts with this method.

Tasks with interrupt entries and a pragma LEVEL always run at interrupt
level, whether inside or outside a rendezvous. This enables the user to
avoid losing interrupts.

An interrupt entry to a task with the pragma LEVEL behaves like an
ordinary entry call. An interrupt entry to a task with no pragma LEVEL
behaves like a conditional entry call. If there is an accept statement
waitinglfor the interrupt, the body of the accept statement is executed
immediately. When the body is complete, the task is inserted in the
ready queue and the interrupt completed by a return-from-interrupt
instruction. The accept statement can call subprograms and make entry
calls, but must not suspend the task before the interrupt is dismissed,
otherwise the program repeatedly services the interrupt unsuccessfully.

Writing interrupt handlers in XD Ada requires detailed knowledge of
the behavior of the target computer’s interrupt system. It is not possible
simply to place a use clause on an entry to achieve the desired effect.

Normal Ada interrupt entries cause a tasking reschedule each time an
interrupt occurs. This inevitably incurs a performance overhead, and
may mean that interrupts are not serviced quickly enough. In order to
avoid this problem, XD Ada supplies pragma DIRECT_INTERRUPT_
ENTRY, which causes the interrupt entry to be connected directly to
the required interrupt vector. This run-time efficiency greatly improves
response times. The form of this pragma is as follows:

pragas DIRECT_INTERRUPT_ENTRY(interrupt_entry);

Pragma DIRECT_INTERRUPT_ENTRY may be used where the pro-
gram adheres to one of two supported code models. In fact, most
applications will naturally adhere to one or other of the models, so

the practical restrictions from this requirement are minimal, The use

of pragma DIRECT_INTERRUPT_ENTRY must meet certain semantic
conditions. These, along with the checks carried out by the compiler
and run-time system, are described in full in the XD Ada MIL-STD-1750A
Run-Time Reference Manual part of this manual.

Note that it is essential that the lowest level direct interrupt (or interrupt
procedure) is always higher than the highest level normal interrupt, in
order that the direct interrupt context is not left as a resuit of interruptive
preemption,

Interrupts 13.5.1

The models and the related conditions are described in full, and ex-
amples of the models in use are given, in the XD Ada MIL-STD-1750A
Run-Time Reference Manual part of this manual.

Interrupt procedures and Package INTERRUPT_SUPPORT are also
described in the XD Ada MIL-STD-1750A Run-Time Reference Manual part
of this manual.

13.5.1 Interrupts 13-3

Annex B

Predefined Language Pragmas

In addition to the standard predefined pragmas, described in Annex B
of the Reference Manual for the Ada Programming Language, XD Ada sup-
ports pragmas CALL_SEQUENCE_FUNCTION, CALL_SEQUENCE_
PROCEDURE, LINK_OPTION, and TITLE, which are defined here.
This annex also summarizes the definitions given elsewhere of the
remaining implementation-defined pragmas.

Definitions

CALL_SENUENCE_FUNCTION
CALL_SEQUENCE_PROCEDURE

The pragma CALL_SEQUENCE_PROCEDURE is used for describing
machine code insertions or exported subprograms. It specifies how

parameters are maﬁped onto registers, and which registers must be
preserved, for mac

ine code insertions (see Section 13.8). The pragma
CALL_SEQUENCE_FUNCTION is also provided. These pragmas have
the form:

pragea CALL_SBQUENCE_FUNCTION

([[UNIT =>) internal_name
[, [RESULT_TYPE »>] type_mark |
(, (PARAMETER_TYPES =>] (parameter_types)]
[, [MECHANISM =>] mechanism]
{» [(RESULT_MECHANISM =>] mechanism_spec)
{» [PRESERVED_REGISTERS =>]} (registers))
)i

pragma CALL_SEQUENCE_PROCEDURE
({ [UNIT =>) internal_name
[, [PARAMETER_TYPES =>] (parameter_types)]
[, (MBCHANISM =>] mechanism]
{, [PRESERVED_REGISTERS => | (registers)]
)i

Predefined Language Pragmas B-1

parameter_types tit=
null | type_mark (, type_mark}
mechanism si=
mechanism_spec | (mechauism_spec (, mechanism_spec))

mechanism_spec tt=

mechanism_name { ({REGISTER => | register_name) |
mechanism_name ti=

VALUE

REFERENCE | BIT_REFERENCE |

DOPE_VECTOR | BIT_DOPE_VECTOR
registers =

null | register_name (, rsgister_name)

Functions must be identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same declarative part or

package specification. Otherwise, both the parameter and result types
must be specified.

Procedures must be identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly
one procedure of that name in the same declarative part or package
specification. Otherwise, the parameter types must be specified.

The parameter types option specifies a series of one or more type
marks (type or subtype names), not parameter names. Each type mark
is positionally associated with a formal parameter in the subprogram's
declaration. The absence of parameters must be indicated by the
reserved word null.

The result type option is used only for functions; it specifies the type or
subtype of the function result.

The mechanism option speifies how the imported subprogram expects
its parameters to be passed (for example, by value, by reference or

by descriptor). The calling program (namely the XD Ada program)

is responsible for ensuring that parameters are passed in the form
required by the external routine.

If the first form of the mechanism option is given (a single mechanism
name without parentheses), all parameters are passed using that mech-
anism. If the second form is given (a series of mechanism names in
parentheses and separated by commas), each mechanism name de-
termines how the parameter in the same position in the subprogram
specification will be passed. With the second form, each parameter
name must have an associated mechanism name.

B-2 Predefined Language Pragmas

The result mechanism option is'used only for functions; it specifies the
parameter-passing mechanism for passing the result type.

Mechanism names are described in Section 13.9a.1.1.

The preserved registers option gives a list of hardware renisters which
are not altered by the procedure or function. If this option is omitted it

implies that no registers are preserved; in this case the effect is one of
the following:

¢ If the body of the subprogram is written in Ada, the compiler
calculates which registers are preserved

o If the body of the subprogram is a machine code insertion, the
pragma has the same effect as pragma IMPORT_PROCEDURE

LINK_OPTION

This pragma is used to associate link option file names with a program.
Link option files are used to specify the target and mapping definitions
to be used when building the program. In this way, they dgo not have
to be explicitly defined on the XDACS LINK command line. The
appropriate external target and mapping definitions (in the form of link
option files) are entered into the pro%m library by use of the XDACS
command COPY LINK_OPTION/FOREIGN, as described in Developing
XD Ada Programs o - ’MS Systems for the MIL-STD-1750A. If a suitable
link option file exists in another program library, it can be copied to
the current program library with the XDACS command COPY LINK_
OPTION. The advantage of using link option files is that the program
definition is separate from the program itself, and so can be altered
without making the last compile obsolete. The LINK_OPTION pragma
therefore removes the need to recompile the whole program. More
detail on this topic can be found in Sections 7.9 and 8.10 of Developing
XD Ada Programs on VMS Systems for the MIL-STD-1750A.

Pragma LINK_OPTION has the form:

pragme LINK OPTION (link-option-file-name
{»1ink-option-file-name));

link-option~file-name =
{ TARGET=>] target-option
| [MAPPING=>] mapping-option

This pragma is only allowed in the outermost declarative part of a
subprogram that is a library unit; at most one such pragma is allowed

Predefined Language Pragmas 8-3

in a subprogram. If it occurs in a subprogram other than the main
program, this pragma has no effect (see Sections 9.8 and 9.9 (LRM)).

TITLE

Takes a title or a subtitle string, or both, in either order, as arguments.
Pragma TITLE has the form:

pragaa TITLE (titling-option
(,titling-option));

titling-option t=
{TITLE =>) string_literal
| {SUBTITLE =>] string_literal

This pragma is allowed anywhere a pragma is allowed; the given strings
supersede the default title or subtitle portions of a compilation listing.

Summary

Pragma Meaning

EXPORT_EXCEPTION Takes an internal name denoting an
exception, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), and a form
(ADA) as arguments, This pragma is
only allowed at the place ot a declarative
item, and must apply to an exception
declared by an earlier declarative item
of the same declarative part or pack-
age specification. The pragma permits
an Ada exception to be handled by
programs written in XD Ada MIL-STD-
1750A assembly language (see Section
13.9a.3.2).

EXPORT_FUNCTION Takes an internal name denoting a
function, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), parameter
types, and result type as arguments.
This pragma is only allowed at the place
of a declarative item, and must apply
to a function declared by an earlier
declarative item of the same declara-
tive part or package specification. In

®-4 Predefined Language Pragmas

EXPORT_OBJECT

EXPORT_PROCEDURE

the case of a function declared as a
compilation unit, the pragma is only
allowed after the function declaration
and before any subsequent compilation
unit. This pragma is not allowed for a
function declared with a renaming dec-
laration, and is not allowed for a generic
function (it can be given for a generic
instantiation). This pragma permits an
Ada function to be called from a pro-
gram written in assembly language (see
Section 13.9a.1.2).

Takes an internal name denoting an
ob]ect, and optionally takes an exter-

nal designator (the name of an XD Ada
Builder global symbol), and size des-
ignator as arguments. This pragma is
only allowed at the place of a declarative
item at the outermost level of a library
package specification or body, and must
apply to a variable declared by an earlier
declarative item of the same package
specification or body; the variable must
be of a type or subtype that has a con-
stant size at compile time. This pra,

is not allowed for objects declared with a
renaming declaration, and is not allowed
in a generic unit. This pragma permits
an Ada object to be referred to by a
routine written in assembly language (see
Section 13.9a.2.2).

Takes an internal name denoting a pro-
cedure, and optionally takes an external
designator (the name of an XD Ada
Builder global symbol), and parameter
es as arguments. This pragma is only
allowed at the place of a declarative item,
and must apply to a procedure declared
by an earlier declarative item of the same
declarative part or package specification.
In the case of a procedure declared as
a compilation unit, the pragma is only
allowed after the procedure declaration
and before any subsequent compilation

Predefined Language Pragmas B-6

IMPORT_EXCEPTION

IMPORT_FUNCTION

B-8 Predefined Language Pragmas

unit. This pragma is not atlowed for

a procedure declared with a renaming
declaration, and is not allowed for a
generic procecure (it may be given for

a generic instantiation). This pragma
permits at Ada routine to be called from
a program written in assembly language
(see Secticn 13.9a.1.2).

Takes an internal narne deroting an
exception, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), and a form
(ADA) as arguments. This pragma is
only allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative item
of the same declarative part or package
specification. The pragma is included for
compatibility with VAX Ada (see Section
13.9a.3.1).

Takes an internal name denoting a func-
tion, and optionally takes an external
designator (the name of an XD Ada
Builder global symbol), parameter types,
and resuit type as arguments. Pragma
INTERFACE rrust be used with this
pragma (see Se:tion 13.9). This prain;a
is only allowed at the place of a declar-
ative item, and must apply to a function
declared by an earlier declarative item
of the same declarative part or package
specification. In the ca«e ¢ ¢ fune-

tion declared as a compilation unit, the
pra, is only allowed after the function
declaration and before any subszquent
compilation unit. This pragma is allowea
for a function declared with a renaming
declaration; it is not allowed for a generic
function or a generic function instantia-
tion. This pragma permits an assembly
language routine to be used as an Ada
function (see Section 13.9a.1.1).

IMPORT_OBJECT

IMPORT_PROCEDURE

Takes an internal name denoting ar:
object, and optionally takes an ex:ernal
designator (the name of an XD Ada
Builder global symbol), as arguments.
This pragma is only allowed at the piace
of a declarative item at the outermost
level of a library package specification

or body, and must apply to a variable
declared by an earlier declarative item of
the same package specification or body;
th.: variable must be of a type or subtype
that has a constant size at compile time.
This pragma is not allowed for objects
deciared with a renaming declaration,
and is not allowed in a generic unit. This
pragma permits storage declared in an
assembly language routine to be referred
to by an Ada program (ses Section
13.9a.2.1).

Takes an internal name dencting a
procedure, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), and pa-
rameter types as arguments. Pragma
INTERFACE must be used with this
pragma (see Section 13.9). This pra

is only allowed at the place of a declara-
tive item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or pack-
age specification. In the case of a
procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. This
pragma is allowed for a procedure de-
clared with a renaming declaration; it is
not allowed for a generic procedure or
a generic procedure instantiation. This
pragma permits an assembly langua‘fe
routine to be used as an Ada procedure
(see Section 13.9a.1.1).

Predefincd Language Pragmas B-7

B-f

INTERFACE

LEVEL

STORAGE_UNIT

SUPPRESS_ALL

VOLATILE

Predefined Language Pragmas

In XD Ada, pragma INTERFACE is
required in combination with pragmas
IMPORT_FUNCTION and IMPORT_
PROCEDURE (see Section 13.%a.1).

This pragma identifies a task or task type
as running at interrupt level. Pragma
LEVEL has one argument specifying
tl;eslevel for its interrupts (see Section
13.5.1).

In XD Ada, the only argument allowed
for this pragma is 16.

This pragma has no argument and is
only allowed following a compilation
unit. This pragma specifies that all run-
time checks in the unit are suppressed
(see Section 11.7).

Takes the simple name of a variable

as the single argument. This pragma

is only allowed for a variable declared
by an object declaration. The variable
declaration and the pragma must both
occur (in this order) immediately within
the same declarative part or package
specification. The pragma must appear
before any occurrence of the name of
the variable other than in an address
clause or in one of the XD Ada pragmas
IMPORT_OBJECT or EXPORT_OBJECT.
The variable cannot be declared by a
renaming declaration. The VOLATILE
pragma specifies that the variable may be
modified asynchronously. This pragma
instructs the compiler to obtain the value
of a variable from memory each time it
is used (see Section 9.11),

Annex B

Predefined Language Pragmas

This chapter supplies details of three pragmas introduced by XD Ada
MIL-STD-1750A Version 1.2, pra; DIRECT_INTERRUPT_ENTRY,
pragma IDENT and pragma SLICE. XD Ada pragmas in ad-
dition to those defined in Annex B of the Reference Manual for the
AdaProgramming Lan m{le (CALL_SEQUENCE_FUNCTION, CALL_
SEQUENCE_PROCEDURE, LEVEL, LINK_OPTION and TITLE) are
described in the XD Ada MIL-STD-1750A Supplement to the Ada Language
Reference Manual for Version 1.0.

Definitions
IDENT

Takes a string literal of 31 or fewer characters as the single argument.
The pragma IDENT has the following form:

pragma IDENT (string literal);

This pragma is ailowed only in the outermost declarative part of a
compilation unit. The given string is used to identify the object module
associated with the compilation unit in which the pragma IDENT occurs.

Summary

Pragma Meaning

DIRECT_INTERRUPT_ENTRY Takes the simple name of an interrupt
entry, which must have no parameters,
as the single argument. This pragma
signals to the compiler that the interrupt

Predefined Language Pragmas B-1

entry is to be directly connected to the
hardware interrupt (see Section 13.5.1).

TIME_SLICE Takes a static expression of the prede.-
fined fixed point type DURATION (in
Package STANDARD) as the single ar-
gument. This pragma is only allowed
in the outermost declarative part of a
library subprogram, and at most one
such pragma is allowed in a library sub-
program. It has an effect only when
the subprogram to which it applies is
used as a main program. This pragma
specifies the nominal amount cf elapsed
time permitted for the execution of a task
when other tasks of the same priority are
also eligible for execution. A positive,
nonzero value of the static expression
enables scheduling for all tasks in the
subprogram; a negative or zero value
disables it (see Section 9.8a).

8-2 Predefined Language Pragmas

I |

