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Abstract 9\\

This report describes the derivation of a set of ordinary differential equations to
model radical chain polymerisation. These equations have the mathematical
property of stiffness and are difficult to solve numerically. We show how these
equations can be solved efficiently using either the Gear or Kaps-Rentrop method.
We also show how the kinetic scheme can be expanded to allow for the presence of
contaminant scavenger molecules, an: we apply these schemes to model
experimental results for the polymeri- - sion of N-vinyl-2-pyrrolidone obtained from
dilatometry measurements,
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Numerical Solution of Stiff
Ordinary Differential Equations
for Polymerisation Kinetics

1. Introduction

Materials Research Laboratory is currently engaged on a program of research and
development on a number of cast-cured polymer bonded explosives (PBXs) as part
of the the development of an Australian Insensitive Munitions capability. These
fillings are formulated by dispersing solid explosive filler in a liquid pre-polymer,
adding curing agent, mixing, then casting into the munition and curing in situ.
Among the PBX formulations being studied is one which consists of RDX in an
acrylic binder which is formed in situ by the copolymerisation of 2-¢thylhexyi-
acrylate (EHA), dioctylmaleate (DOM), and N-vinyl-2-pyrrolidone (NVP).

As part of a study of the curing of the binder in this PBX formulation an
investigation of the mathematical modeling of the polymerisation reactions has also
started. The aim is to use the modeling as an aid to understanding the curing
process and to have some predictive capability for cure rate as a function of various
parameters such as temperature, inhibitors, initiators and monomer ratios. We have
begun by considering the polymerisation of NVP in isolation from other binder
monomers and RDX. The polymerisation is initiated using 2,2 -azobis
(2-methylpropionitrile) (AIBN) and the rate of the reaction is followed by
dilatometry.

The mathematical model of this process is described by a set of coupled ordinary
differential equations (ODEs) which have the mathematical property of stiffness,
which means that the dependent variables can change on two or more very different
scales of the independent variable. This seriously complicates the numerical
solution of the coupled equations when simple explicit numerical schemes are
employed because the stability analysis shows that very small time steps must be




used even in regions where the solution is only slowly varying. For the NVP
system this implies up to one million iterations of the solution procedure ‘o follow
the system for just one second.

Fortunately practical algorithms for the numerical solution of stiff ODEs have
been devised and implemented in various software packages. A typical example is
the method due to Gear [1], which is implemented in the NAG routine DO2EBF and
is available at MRL [2]. The solution of these equations is so error prone, however,
that it is both comforting and advisable to have a completely independent check on
their accuracy. To provide such a practical and independent method of checking
the solutions of our kinetic schemes we have implemented an efficient and
relatively simple algorithm for the numerical solution of stiff sets of ODEs. Itis
based on the Kaps-Rentrop method [3] as described by Press and Teukolsky [4] and
uses an implicit Runge-Kutta method. The algorithm requires no more than a few
hundred lines of FORTRAN coding and could easily be converted to BASIC and
run on a PC if so desired.

The purpose of this report is firstly to derive the equations which model the
radical chain polymerisation process, and then to describe several numerical
techniques for the efficient solution of those equations. In the next section we
describe the standard kinetic scheme for radical chain polymerisation of monomers
such as NVP and then briefly discuss some approximate solutions of these
equations. In Section 3 we then describe several numerical methods for their
solution. We have obtained solutions using an explicit 4th order Runge-Kutta
routine, the NAG routine DO2ZEBF based on the Gear method, and solutions using
the Kaps-Rentrop method. Using the Kaps-Rentrop method we found excellent
agreement with previous results, but with far less computational effort. To follow
the model out to 8 000 seconds for example requires only 100 solution steps,
whereas to check the results using the explicit Runge-Kutta code would have
required approximately one billion steps. In Section 4 we extend the kinetic
scheme described in Section 2 to include the presence of radical scavenger
molecules and illustrate the process of cure inhibition/retardation. We also
compare the numerical solutions with experimental data on the polymerisation of
NVP contaminated with an as yet unidentified impurity.

2. Kinetic Scheme for NVP Polymerisation
and Approximate Solutions

The polymerisation of NVP occurs by the radical chain mechanism. This scheme is
described in detail in standard texts [S, 6], and is briefly summarised here. Radical
polymerisation is a chain reaction which requires the steps of initiation,

propagation, and termination. The initiation step involves two reactions; first an
initiator 1 dissociates to form a pair of radicals R*®, and then in the second step a
radical combines with a monomer molecule M to produce a chain initiating species
M,*. These reactions are written as




[—— 2R’ ¢))

R* +M—— M,* @

and occur with rate constants k; and k; mspectivelyl. In the propagation step the
chain radical formed in the initiation step (M, * ) grows by the addition of very large
numbers of monomer molecules according to the general scheme

. , 0 successive .
M’ +M M, M., QA3)
steps

The rate constant for propagation is denoted by k_ and its numerical value is
independent of the size of the growing radical after the first few additions. The final
step is the termination of polymer growth and this can occur in one of two ways,
either combination or disproportionation. Both processes involve a bimolecular
reaction of the radical sites at the ends of growing polymer molecules. A
combination reaction results in a single molecule, i.e. two ends have been joined by
a chemical bond producing a larger chain. Disproportionation involves one radical
centre gaining a proton resulting in one chain with a saturated chain termination and
the other with a double bond termination. Termination can also occur by a
combination of coupling and disproportionation. The termination step is generally
represented by

M+M ) —— M @

where the particular mode of termination is not specified, and the rate constant k, is
the sum of the rate constants for each individual termination process.

Equations (1) through (4) can be described by the following set of coupled rate
equations for the concentrations of initiator [I}, radicals [R* ], monomers [M], and
growing polymer molecules [M* ].

|
— = -k, ®)
dt

1 The scheme depicted in equation (1) is true only for 8 symmetrical initiator I. A more typical scheme is as follows
I— R1®+R2°,

with only one of the decomposition products being the reactive species.




— = ZM-KRIM ©®
M)

— = -K[R°IM] -k, [M*1M] ™
dt

. k [R*)M] - 2 [M* @®
dt

Equation (S) indicates a simple exponential decay for the initiator concentration [I],
and so the set of equations (5) through (8) can be replaced by the more convenient
set

dR.

— = 2k, 1 exp (-kyt) - K,R*M )
dM

= = -k R*M-k MM* (10
m‘

. = kKR°M-2k (M*) an

where we have introduced the initiator efficiency f, which is defined as the fraction
of the radicals produced in the decomposition reaction which initiate polymer
chains. The value of f is usually less than one and we have uscd a value of 0.47,
which was determined by Braun and Quella [7] for the initiation system being used.
We have also dropped the bracket notation and simply let R*, M and M* denote the
concentrations of radical, monomer, and growing polymer molecules respectively.
The rate constants k ;, k., kP and k, will determine the degree of stiffness of the
set of equations (9) through (11). The rate of decomposition of the initiator ky
(equation 1) can to a large degree be selected by choosing the appropriate chemical
system, and the rate of the overall polymerisation process can also be adjusted
substantially by adjusting the concentration of the initiator and conditions to suit the
purpose of the polymer production process. For example, in a compilation of
decomposition rate constants edited by Brundip and Immergut([8], k, varies over a
range from 100 5! to 10"! 5! for various initiators under various conditions. In
the case of the PBX the situation is complicated by the use of two peroxide initiators
as well as cobalt (II) bisacetylacetonoate (CoAA). The CoAA allows the PBX to
cure at room temperature because it facilitates the peroxide dissociation, i.e. k, is
increased by the presence of COAA. We have not yet measured k, for the
peroxides used in the PBX in the presence of CoOAA, and for this study of the NVP
polymerisation a simpler initiation system using AIBN was chosen so that
comparisons could be made with literature data. Braun and Quella[7] have
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measured k, and found a value of 1.62 x 105! at 60°C for AIBN. Our
experiments have not yet yielded a value for k.

The rate constants for the propagation step l:p (equation 3) and the termination
step k, (equation 4) have been extensively studied for large numbers of monomers.
Some of the data relevant to monomers in the PBX binder have been found in the
literature, but the relevant data is very limited. However it is known that for most
systems the values of k_and k, lie in the range 107 to 10* I mole! 5! and 10° 1o
10® 1 mole™! s™! respectively [6).

The rate constant k, for the initiation step (equation 2) is not known and rate
constants for reactions of this type have not been found in the literature. However
the rates of reactions involving the so called "primary radicals" and the monomer
should be of similar magnitude to the propagation rate constant k_ (equation 3).
This lack of knowledge regarding the value of k; is not critical as we will shortly
demonstrate that it has little effect on the overall rate of polymerisation.

With the above considerations in mind we have chosen to use the fullowing set
of values for the four rate constants for our preliminary investigation of the system:

k; = 1.6x107 5!

k. = 1.0x 10° 1 mole’! 5!

1

k 1.0 x 10% I mole 57!

P

k = 10x 107 t mole™ 57!

The range of values for the rate constants noted above means that the set of
equations (9) through (11) will have the mathematical property of stiffness.
Technical definitions of stiffness can be given in terms of the eigenvalues of the
Jacobian matrix formed from the equations [1], but here it simply suffices to note
that any set of equations in which the dependent variables can change on two or
more very different scales of the independent variable are called stiff. Stiff sets of
equations are notoriously difficult to solve numerically using explicit schemes
because the stability of the scheme is governed by the size of the time step needed
to resolve details of changes occurring on the fastest time scale. This means that
very small time steps are required to follow changes over very much longer periods
of time, even though the solutions may not be varying rapidly on this time scale.
Before describing a practical method for overcoming this problem in the next
section, we first briefly describe an approximate solution of the equations (9)
through (11) to get a feel for their behaviour.

The analysis of radical chain polymerisation in most textbooks begins by
assuming the steady state condition, i.e. the assumption is made that the rate of
initiation is equal to the rate of termination, so that the concentration of free radicals
becomes essentially constant very early in the reaction. We use this assumption
ourselves in a moment, but first note that the decrease in monomer concentration
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during a typical polymerisation of the type involved in our PBX binder studies is
very slow, decreasing by approximately 10% over a time of several hours. This
means that we can replace the variable M in equation (9) by its initial value M0 att
equals zeto. Also, the value of k; is such that the exponential in equation (9) may
be replaced by unity for times shorter than one hour. Equation (9) then becomes

dr* .
— = 2k -KMR (12)
dt
with solution
26kl
R°(M) = (1-exp (-, MD) 13)
.M

[+]

indicating a rise to a steady state value of 2fk Iolk M _ina nme of order (k. Mo) -1
Appropriate experimental values for M and I are 9.08 moles 1! and 1.52 x 10
moles I'! respectively and these lead to a steady state value of R® =2.5x 1012
moles 1'! in a time of about 10, A

We now set dM* /dt equal to zero in equation (11) and assume that the radical
concentration has reached its equilibriumn value R®* . We then obtain the following
expression for the equilibrium value of M*

k, 12
M'eq = [ ’—ReqMo ] (14)

2%,

Using the values for the constants given above this leads to a value of

M' =3.4 x 10 mole I''. We could solve equation (11) exactly to obtain an
estimate of the time taken for M® to reach this equilibrium value by substituting the
solution for R* given by equation (13) into equation (11). The resulting equation
is a Riccati equation, which is not easy to solve, but solutions can be expressed in
terms of the solutions of two auxiliary equations (9]. We have not pursued this
approach however as we know from prior experience that this time scale is on the
order of seconds or less.

We now consider the decrease in monomer concentration on the slower time
scale. Assuming that both R® and M* do not vary greatly from their equilibrium
values as M begins to decrease, we can treat equation (10) as a simple equation in
the single variable M. The solution is then

M@ = M_exp (- ki) (15)
where
k=KR" +k M (16)
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With the values fork,, k , R® and M* used above k can be approximated very
closely by k,M® _and the expbnential cdn be expanded to first order to give

M(®) = M (1- Kk, [kyk) £1172 1), (17

indicating that a plot of monomer concentration versus time for the early stage of
monomer consumption should lie on a straight line and have a negative gradient of
Mk, (k) flo}lﬂ. That this is indeed the case can be seen in Figure 1, which
shows a relationship between monomer concentration and time, derived from
experimental data obtained with a dilatometer during an NVP polymerisation
reaction. The monomer concentration versus time data was obtained from the
volume change versus time data by using a conversion factor which incorporates the
densities of NVP and the polymer at the temperature of the reaction. This
conversion factor is only known at 20°C at present and this value was used even
though the data was obtained at 60°C. The data cannot therefore yet be used to
obtain accurate values of kinetic parameters, but it can be used to provide a
comparison for the model output and approximate values of parameters.

9.0 ¢ *o,,

85 %o,

8.0 %o

Monomer concentration, mol/L
L
o

7.5 L._ 1 ] 1 — e —_—
-500 0 500 1000 1500 2000 2500

Time. s

Figure 1: Experimental data for monomer concentration versus time for NVP.

Given that k,, f, I and M are known, a value for the ratio k %/k, can be obtained
from the straight line fit to the experimental data in Figure 1. In practise, a more
accurate method ot doing this #s to obtain the gradient dM/dt for several values of
the initial initiator concentration I o From equation (17) we easily have

- dM/dt = M(fk)'? G k) 21 112 (18)
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and so a plot of gradient versus I_!/2 again leads to a value of k 2/kt Measurements
ofk 2/lg as a function of temperature lead to useful information about the
t.hermochemlstry of polymerisation, but it is importan: to note that values for kp and
k, separately can only be obtained by non steady-state methods [S]. We ar.
currently reviewing the need 10 use a non-steady-state method such as the rotating
sector method [6] to obtain the additional experimental data required to separate kp
and

E:luation (17) also indicates that, with the range of values for the rate constants
we are using, the initial rate of polymerisation is effectively independent of the rate
constant k; and justifies our assertion that knowledge of an exact value for k; is not
required for the polymerisation experiments we are planning.

3. Numerical Solution of Kinetic Equations

The initial rapid rise of R* to its equilibrium value R® on a time scale of the
order of milliseconds is easily demonstrated using a simE)qle 4th order Runge-Kutta
integration routine. Figures 2 and 3 show solutions of equations (9) through (11)
obtained using the program RKUTTA. (The source code for the programs

referred to in this report arc available from the authors). The rate constants k ;, k;,
k , k, and the initial constants M  and Io were set to the values used in the previous
secuon Figure 2 was calculated using a time step At of 1 ps and shows that R*
reaches an equilibrium value of 2.5 x 102 mole I'! in a time of approximately

0.5 ms, which is in good agreement with the approximate calculation in the previous
section. On this time scale M remains constant while M* increases linearly with
time, as can be seen in Figure 3, which shows both R®* and M* betweent = 0 and
5.0 ms calculated using a time step of 5.0 ps.

To use the program RKUTTA to follow the time variation of either M* or M
would be completely impractical. A time step of the order of 10 s would be
needed to establish the equilibrium value of R*® accurately, and then many millions
of steps would be needed to track either M* or M. The sensible procedure to
follow for the solution of stiff sets of equations such as (9) through (11) is to use
one of the software packages specifically designed for the solution of these
equations. These are usually based on implicit schemes with variable step length
and automatic local error control, A particularly well known procedure for the
solution of stiff sets of equations is the Gear method [1], which is available at MRL
as subroutine DO2EBF of the NAG group of software packages. We have used the
Gear method to follow the full time dependence of the variables in equations (9)
through (11).

14
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Figure 2: Radical concentration versus time calculated from program RKUTTA
with At = ] ys.
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Figure 3: Concentrations of radicals and growing polymer molecules calculated
from program RKUTTA with At = 5.0 ps.
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Figure 4 shows the time dependence of M*® on a time scale of seconds. We see that
M?® approaches a steady state value of 3.4 x 108 moles 1!, which is again in good
agreement with the approximate solution in the previous section. Figure 5 shows
R*,M* and M over a longer time scale. We see that both R® and M* vary little
from their equilibrium values, justifying the assumption made in the previous
section, and that over this time scale M decreases linearly with time, again in
agreement with the analysis in the previous section. To display the exponential time
dependence of M requires following the solution over a much longer time scale.

We have done this and show the solutions in Figure 6. The exponential decay of M
is now clearly evident.

concentration, x 10 mol/L

N

Figure 4: Concentration of growing polymer molecules versus time calculated
using the Gear method.

We have used the subroutine DO2EBF to check some of the assumptions and
conclusions of the previous section. In particular, our analysis predicts that over a
time scale of just a few hours M should decrease linearly with time, and that the
gradient of this time should be independent of k;, and depend on k and k only in
the ratio k 2/k We have checked these results by varying k; over ihe range 1 x 102
tolx 104 and found that it has had no effect on the time dependence of M over the
time scale of interest. We have also varied the values of k  and k, and again found
that the time dependence of M is unaltered if the value of the ratio kpzlkl remains
constant.
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Figure 5: Concentration of radicals, monomer, and growing polymer chains
versus time calculated using the Gear method.
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Figure 6: Concentration of radicals, monomer, and growing polymer chains
versus time calculated using the Gear method.
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The Gear method, as implemented in DO2EBF,, is both simple and efficient to use,
and capable of providing solutions to any desired degree of accuracy by setting an
appropriate value of the parameter TOL in the calling sequence. It is however a
“black box", and on the few occasions when the method has failed it has not been
easy to trace the underlying cause of this failure. To overcome this problem, and
also to provide a completely independent means of checking the accuracy of the
solutions produced by DO2EBF, we have recently implemented a new method for
the solution of stiff sets of equations. The method is due to Kaps and Rentrop [3],
and the implementation described here was devised by Press and Teukolsky [4].

A set of non-linear ODEs can be written in the form

y =1y (19)

where y is the vector (y,, y,, -.... ¥y) of N dependent variables, and the prime
denotes differentiation with respect to time. The Kaps-Rentrop method seeks a
solution of the form

s
Yy = yo+ ICK (20)

i=1

where the corrections k; are found by solving s linear equations of the form

i-1
A-1hf) ek = hf(yo+f=;lo,ljkj)

i-1
+hf' I yk,is=l .. @1
)

Here the coefficients ¥, C,, o, and Y; are fixed constants independent of the
problem. Automatic step size adjustment is provided using the
Runge-Kutta-Fehiberg method [4); two estimates having the form of equation (20)
are computed, one of higher order than the other; the difference between the two
then leads to an estimate of the local truncation error, which can then be used for
step size control. Control of the local step size error can be maintained by a
suitable choice of the parameter EPS in the calling prograin.

Tables 1 through 3 illustrate the degree of accuracy obtainable using both the
Gear and Kaps-Rentrop methods. It should be noted that the Gear method is
implemented in double precision, while the Kaps-Rentrop method uses only single
precision. The KAPS program is marginally faster than the GEAR program, but
both take no more than a few seconds of CPU time,

18




Table 1: Gear Method : TOL = 10*

t(s) R*® x 1012 M M* x 108
500 2.5364 8.9412 3.3680
1000 2.5587 8.7939 3.3540
2000 2.6032 8.5048 3.3789
3000 2.6484 8.2274 3.3007
4000 2.6935 7.9612 3.2744

Table2: Gear Method : TOL = 10°19

t(s) R*® x 1012 M M* x 108
500 2.5401 8.9284 3.3674
1000 2.5625 8.7796 3.3540
2000 2.6075 8.4911 3.3272
3000 2.6526 8.2143 3.3007
4000 2.6978 7.9487 3.2744

Table 3: Kaps-Rentrop Method : EPS = 108

t(s) R® x 102 M M* x 108
500 2.5432 8.9284 3.3689
1000 2.5676 8.7796 3.3568
2000 26113 8.4911 5.3291
3000 2.6578 8.2143 3.3035
4000 2.7021 7.9457 3.2766
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4. Extended Kinetic Scheme and Numerical Solution

The analysis presented in Section 2 for radical chain polymerisation using typical
values for the rate constants k,, k;, k., k, and the initial constants I ) and M, clearly
shows that the monomer concentration will decay linearly with time for times less
than one or two hours. Slight variations in some of the values of these constants
will not change this general picture, the slope of the line may change, but the
decrease will still be linear with time. Figure 7 shows some experimental points for
NVP monomer concentration versus time which were obtained dilatometrically in
the same manner as described in Section 2. The only significant difference in the
experimental procedure was that a different batch of NVP was used. The
pronounced downward concavity of these points indicates that some mechanism
other than simple radical chain polymerisation must be operating.

To explain these results we have assumed the existence of a contaminant
scavenger molecule which removes both radicals and activated monomer. We can
include the presence of such a contaminant by slightly expanding the kinetic scheme
outlined in section 2. We define a scavenger concentration [S°® ] which acts on both
[R*]and [M*] as follows

R* +8* —— RS (22)

M* +8° —— MS (23)

Formation of the molecular species RS and MS removes both R* and M* from
active participation in the radical chain growth process. We assume rate constants
k, and k, for equations (22) and (23) respectively. Equations (22) and (23) can
now be included in an expanded kinetic scheme which has the following form

di]

— = -k e2))
dt

dR°]

o T -G RUIM) -k RS*) (25)
d[M]

— = KR IM] -k, [M*)M] (26)
dt

dM*)

— = K [R*)(M] - 2K [M® 2 -k, (M* 1(S*] @7
d[s*]

= = kRS- MSY) 8)




. m e—— ———————p - - ——— e

We again simplify this set of equations by incorporating the exponential solution of
equation (24) and dropping the bracket notation. The equations then become

dRO

T = lpepl O -KR°M-k R°S® (29)
dM L ] [

- - -k R°M-k M*M (0
m.

— = k;R°M-2k M*)?-k,M*S* (€3))
ds*

— - -k R*S°® -k, (M*S°) (32

We have solved the set of equations (29) through (32) using both the NAG routine
DO2EBF and the Kaps-Rentrop method and found the results to be identical within
the error tolerances of both schemes. We have no knowledge of the values of k,
and k, so we have simply setk; =k, =k, and used k as a parameter to be varied
until agreement can be found with the experimental results. The curve shown in
Figure 7 was calculated using k = 5.0 x 10°, with the other constants having their
previous values. The good agreement with experiment indicates that our
assumption of the presence of a contaminant scavenger molecule appears to be
correct,

5. Conclusion and Discussion

This report has described our analysis of the kinetics of the polymerisation of NVP.
We have discussed the kinetic scheme appropriate to radical chain polymerisation
and derived appropriate equations to model this system. We have shown how to
obtain approximate solutions to these equations, and also discussed appropriate
numerical algorithms for the efficient solution of these equations. Our analysis has
shown that by following the polymerisation rate using dilatometry methods we can
obtain a value for the ratio kpzlk‘, but that further experimental information is
required to obtain values for kp and k, separately. We are currently evaluating the
feasibility of several experimental techniques to provide this information.

We have applied the mathematical model to some preliminary experiments on
NVP polymerisation and found good agreement between the model and the
experimental results. We plan to expand the experimental part of this program
considerably, the objective being to determine the kinetic parameters necessary to
model a terpolymerisation involving the three monomers NVP, EHA and DOM. In
addition we wish to study the effects of inhibitors (radical scavanger molecules).
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Figure 7: Comparison of experimental values of monomer concentration versus
time with theoretical prediction from extended polymerization scheme.

We anticipate that the model we have derived for NVP polymerisation will be
applicable, with slight modifications, to the additional chemical systems we plan to
investigate, and expect that both the Gear and Kaps-Rentrop algorithms will provide
efficient and accurate solution procedures for the analysis of future experimental
results.
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