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ABSTRACT 

A wide variety of complex repair systems can be modeled as continuous time 

Markov chains. These systems are closed networks of queues with a total of n jobs 

circulating in the network. The process of interest is the number of jobs, Xn(t), at the 

various repair centers at time t. After appropriate translation and scaling, we show that 

the processes {Xn(t) : t > 0} converge weakly to a limiting multi-variate Ornstein- 

Uhlenbeck process. This limit process is then used to obtain computable approximations 

for Xn(t). Numerical results are presented for three specific repairman models and the 

approximations are compared with exact results obtained through product form 

formulae. In most cases the approximation is quite accurate. 

Keywords:    birth/death processes, diffusion approximations, logistics, Markov chains, 

Ornstein-Uhlenbeck processes, repairman models, weak convergence. 
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DIFFUSION APPROXIMATIONS FOR COMPLEX REPAIR SYSTEMS 

by 

Donald L Igtehart 

Stanford University 

and 

Atam P. Lalchandani 

1.   Introduction. 

For many stochastic models in applied probability complicated Markov chains 

arise which are impossible to analyze directly. A classical approach to this problem, 

dating back to BACHELIER (1900), is to show that a sequence of Markov chains with 

appropriate time and state scales converges at a given time point (or weakly) to a 

limiting diffusion process. In these instances the limiting diffusion process may hold out 

the only hope for providing useful approximations to practical problems. 

When the Markov chains are one-dimensional birth-death processes in either 

discrete or continuous time, STONE (1961), (1963) has developed a complete theory for 

the weak convergence of these Markov chains, to a limiting diffusion. Roughly speaking, 

Stone's results require convergence of the infinitesimal mean and variance to those of 

the limiting diffusion plus convergence of boundary conditions when appropriate. 

In this paper we shall apply a comparable development in higher dimensions for 

a restricted class of limiting diffusions: multivariate Ornstein-Uhlenbeck (m.O.U.) 

processes. These results will then be applied to three generalized repairman models. A 

special case of a m.O.U. was introduced in IGLEHART (1968) and the general case in 

SCHACH (1971). Problems involving the convergence of Markov chains to a m.O.U. 

process arise frequently in practice; see, for example, KARLIN and McGREGOR (1964), 

(1965), IGLEHART (1968), SCHACH (1971), and McNEIL and SCHACH (1973). 

The original research was supported by the Office of Naval Research under contract 

N00014-72-C-0266 (NR-347-022). The revision was supported by the Army Research 

Office under contract DAAL03-88-K-0063. 



We shall treat sequences of Markov chains in continuous time whose state spaces 

are subsets of Zd, the integer lattice points of d-dimensional Euclidean space, Rd. We 

view elements x e Rd as column vectors. From a given point in the state space we shall 

only allow jumps in one step to a finite number of states. Thus multivariate birth-death 
processes in which transitions are only allowed to neighboring states are special cases. 

The typical situation for a sequence of continuous time chains, say, {Xn(t):t>0}. 

n = 1,2,... , is to form a sequence of processes 

y„(f) = (*n(')-nc)/n"2,t>0, 

where c6fid is a fixed vector. With this setup we would like to conclude under 

appropriate conditions that Yn(t) => Y(t), where ^ denotes weak convergence and Y is 

a m.O.U. process. Also of interest is the convergence of the m.O.U. process as 

t —► oo:Y(t) =» y(+oo), when this is appropriate. In applications we would approximate 

the random vector Xn(t) by nl/2 Y(t) + nc for large n. 

A m.O.U. process is a ^-dimensional (d > 2) diffusion, that is a strong Markov 

process with continuous paths. Furthermore, if the initial state is either a constant or 

Gaussian, then the process is Gaussian. It is characterized by two real d x d matrices A 

and £, where A is symmetric and positive definite. 

The stationary transition probability density of a m.O.U. process is given by 

(1.1) P(t,*,y) = (27r)-d/2|£(')r1/2 exp{4/(r,*,s,)}, 

where x,j/€ Rd, t> 0, 

/(t,x,y) = (y-/i(t))'E-l(t)(j/-/x(t)), 

M(t) = e"Brx, and 

£(*) = ffBTAt"B'rdr. 
o 

Here B' is the transpose of B. As A is symmetric, positive definite and e"Br non- 

singular, it is easy to show that £(*) is symmetric, positive definite. 

The convergence of a sequence of Markov processes has a long history. We 

mention next some of the relevant literature. KHINCHINE (1933), Chapter 3, 

approaches the problem through the Kolmogorov backward partial differential equation. 

Semi-group treatments of these problems have been given by SKOROHOD (195S), 



TROTTER (1958), and BURMAiN (1979). The stochastic integral approach is discussed 

in SKOROHOD (1965), GIKHMANN and SKOROHOD (1965), and GIKHMAN'N 

(1969). An approach using martingales is developed in STROOCK and VARADHAX 

(1979). Still another approach can be found in BOROVKOV (1979). In the special case 

of birth-death processes see, in addition to the work of Stone mentioned above, the 

paper by LIGGETT (1979). Surveys of diffusion approximations arising in applied 

probability and queueing theory can be found in GLYNN (1990), and IGLEHART 

(1968), (1973), and (1974). For a comprehensive discussion of convergence of a sequence 

of Markov chains see ETHIER and KURTZ (1986). 

As an example of the repairmen models that we propose to approximate by a 

m.O.U. process consider the following. The model consists of n operating units which 

are subject to stochastic failure according to an exponential failure time distribution. 

The operating units are backed up by mn spare units. Failures can be of two types. 

With probability p(q) a failure is a type 1(2) and is sent to repair facility 1(2). Repair 

facility 1(2) operates as a sj^s2,)-server queue with exponential repair times having 

parameter /ii(/i2)- The number of units waiting for or undergoing repair at facility 1(2) is 

Xn(t)(Xn(t)). The vector Xn(t) = (X\(t), Xn(t)) is a two-dimensional birth-death process 

with finite state space. We propose to approximate Xn(t) by n1'2 Y(t) + nc, where c is a 

specific vector and Y(t) is a m.O.U. process. 

This paper is organized as follows. A description and properties of a m.O.l'. 

process are given in Section 2. Convergence of continuous time Markov chains is treated 

in Section 3. Finally, the application of these results to three repairmen models is given 

in Sections 4, 5, and 6. A numerical comparison of diffusion approximations and product 

form solutions is given in Section 7 for several of the repairman models. 

2.  MuKivariate Ornstein-Uhlenbeck Processes. 

A <f-dimensional m.O.U. process is characterized by a dxd symmetric, positive 

definite matrix A, a dxd matrix B, and an initial vector Y(0). Let {W(T):T > 0} be a 

(f-dimensional Brownian motion which is independent of Y(0) and A1'2 the square root 

of A; i.e., A = A1/2(Al/2)'. Then the basic definition is the following. 

Definition 2.1. A multivariate Ornstein-Uhlenbeck process {Y(t):t > 0} is defined by the 

expression 

(2.1) Y(t) = e-Bt r(0) + |Vö('-rUl/2 W(dr)} 
o 

where the second term is the ltd stochastic integral. 



Note that for d = lyY(t) = e'Br K(0) + e"6'<7 /' c6rH^(dr) which is the ordinary 

Ornstein-Uhlenbeck process; cf. BREIMAN (1968), p° 347, COX and MILLER (1965). 

p. 225. In IGLEHART (1968) the special case of B = I was treated, while for B = 0 we 

obtain Brownian motion with covariance at time t equal to At. From the definition of 

{Y(t):t > 0} it is easy to show the following result. 

Proposition   2.1.    The   process   {Y(t):t>0}   is   a   continuous   Markov   process   with 

stationary transition probability density given by (1.1). Furthermore, 

p(t) = EY(t) = e-BtEY(0), 

£(*) ■ E[Y(t) - ix(t)) [Y(t) - M(t)]' = /' t-B'At-B'rdr 
0 

R(s, t + s) = E[Y(s) - M] [Y(t + s) - /i(t + jtf = W) e-*' 

and 

If Y(0) is a constant or Gaussian, then the joint distributions of {{Y(t):t>0} are 

Gaussian. 

Also the process given by (2.1) is a solution of the stochastic integral equation 

(2.2) Y(t) = Y(Q)-B f Y(r)dr + Al/2W(t) 
o 

with corresponding stochastic differential equation 

dY{t) = -BY(t) -r Al/2W(dt). 

We add in passing that one could allow the matrices A and B to depend on r and define 

a m.O.U. process with a non-homogeneous transition function; see ARNOLD (1974). 

Chapter 8, for a discussion of the non-homogeneous case as well as other background 

material. Here, however, we prefer to keep things simple and stick with the expression 

(2.1). 

For applications we shall be interested in the limiting behavior of p(t) and £(M 

as <->oo. Since p(t) = e~B*EY(Q) and e~Bt is non-singular, /*(*)-► 0 if and only if 

€-Bt _^ Q ßut c-st —► o if and only if the real part of the eigenvalues of B are strictly 

positive; ct., BROCKETT (1970), p. 54. Under the stated condition, the matrix 

equation 



BC + CB' = A 

has a unique solution C given by 

C = /°VSrA e-B'rdr = lim £(*)? 
J t—oo 

0 

cf. BROCKETT (1970), p. 61. It is easy to show that C is symmetric and positive 

definite. Also, for this case we can write £(t) as follows: 

Z(t) = C-e-BtCe-B,t. 

For further discussion of these problems see BELLMAN (1970), p. 239, and 

GANTMACHER (1959), p. 225. Summarizing, we see that if the real part of the 

eigenvalues of B are positive, then 

Y(t) => iV(0,C) 

as t —► oo, where iV(0,C) represents a normal random vector with mean vector 0 and 

covariance matrix C. 

3.  Convergence of Continuous-Time Markov Chains. 
Let {Xn(t):t > 0} (n = 1,2,... ) be a sequence of continuous-time Markov chains 

with the state space of the nth chain En C Zd- Denote the transition probability function 

of the nth process by P{n)(t) = {pjn)(^):z,j € En; t > 0} and the associated <?-matrix by 

Q(n) = {qij(n):i, j € En}. Recall that gtJ(n) = p^ (0). We form the sequence of processes 

(3.1) yB(t) = (Xn(t)-nc)/n1/3, t>0 

where the vector c 6 Rd is selected so that the infinitesmal mean and covariance of 

Yn(t) converge to those of a m.O.U. process. The vector c is called a quasi-equilibrium 

point and is the point to which the process Xn{t)/n is attracted for large n. To find c a 

heuristic "mass balance" argument can be used. For d = 1 this amounts to balancing 

the upward force from the birth parameters with the downward force from the death 

parameters. For d > 1 the corresponding forces must be balanced in all d coordinate 

directions. Let Sn = {(i - nc)/^fl:i € En] be the state space of {Yn(t):t > 0}. 



Next define the infinitesimal mean vector per unit time for y € Sn as 

m„(V) = nE{[Yn(t +k)- Yn(t)\\Yn(t) = y} 

= nx"E{[Xn(k) ~ XJfiWM = y) 

^"'Kj-tnc + n'V   ,„(i) 
;€£„ nc+" ' V   ' 

Similarly, the infinitesimal covariance matrix per unit time is given by 

An(y) = nE{[Yn(t +k)~ Y«{t)) [Yn(t +k)~ K„(t)]'|y„(t) = y] 

With these relations for mn(y) and An(y) we shall assume that the following conditions 
hold for specified matrices A (symmetric, positive definite) and B, and some c € Rd: 

(3.2) the sets Sn become dense in Rd as n —► oo; 

(3.3) for fixed x e Rd, XJfi) = [nc + n1/2 xj a.s.; 

(3.4) there exists J < oo such that for all n > 1 

sup {|j-i|:«l-i(n)>0}<J, 

where |i — j| is the Euclidean distance between i and j\ 

(3.5) for all K > 0, 

iia SUP lmn(y) * Bjfl = 0; and 
v€Sn 
IvKK- 

(3.6) for all K > 0, 

Jim sup I An(y)-A || = 0 
v€S„ 
IvK* 

where for a d x (f matrix D the matrix norm ||D|| = max \Dx\. 



Note that (3.2 and (3.3) are natural conditions only involving the state space and initial 

configuration of {Yn(t):t > 0}. Condition (3.4) limits the size of a single jump. The most 

important conditions are (3.5) and (3.6) which require that the infinitesimal mean 

vector and covariance matrix converge uniformly in bounded subsets of Sn to the mean 

vector B ard covariance matrix A of the limiting m.O.U. process {Y{t):t > 0}. 

Proposition 3.1. // {Xn(t):t > 0} is a sequence of Markov chains satisfying (3.2) - (3.6). 

then for every t>0 

yn(t) => v(t) 

as n —► co, where {Y(t):t > 0} is the multivariate Ornstein-Uhlenbeck process defined in 

(2.1) with Y(0) = x and matrices A and B. 

The arguments in STROOCK and VARADHAN (1979), Section 11.2, can be 

adapted to prove this result; see PRISGROVE (1987), Theorem 2.1, for details. Also 

application of Rebolledo's Theorem can be used; see ETHIER and KURTZ (19S6), 

Theorem 4.1. 

4.  Two Items, One Service Facility Repairman Model. 

Our first model consists of two types of operating units, nx units of type 1 and n2 

units of type 2, where nl-rn2 — n. There are mnl and mn2 spares for the two types of 

items, respectively. Both types of units are subject to failure according to independent 

exponential failure distributions with parameters A1,A2>0, respectively. Both types of 

failed units require service from a single service facility which operates like an ^„-server 

queue. The service times for repair at this facility are exponential with parameters 

pl,fi2>0> for the two types of units, respectively. Type 1 units have preemptive 

priority over type 2 units for service; i.e., if on arriving, a failed unit of type 1 finds all 

servers busy, it preempts a type 2 unit, if any are being served. Service on type 2 units 

is resumed. Due to the exponential service times, the analysis is identical for the case 

where service is repeated. One reasonable interpretation of this model is that type 1 

units are more critical than type 2 units, and the former have to be repaired as soon as 

possible. The flow of units is shown in Figure 1. 

Let Xn(t) denote the number of type i units waiting or undergoing repair at the 

service facility at time t, i = 1,2. The assumption of exponential failure and repair 

distributions means that the process Xn(t) = (X\(t), X2
n(t)) is a positive recurrent 

Markov chain with a finite state space, En - {(i, j)|0 < i < nt + mnl, 0 < j < n2 4- mn2}, 

as depicted in Figure 2. We shall have occasion to distinguish three regions in the state 



space. These are denoted by An, Bn and Cn in Figure 2. For ail the models we shall 

discuss, the elements of the 

Type 1 Operating Units 
—^- 

Type 1 Spares 

V A 

Repair Facility 
> 
^ > 

A Type 2 Operating Units 
n2> A2 —<r- 

Type 2 Spares 
mn2 

V 

Figure 1. Two Items, One Service Facility Model 

n2+mn2 

*2n(0 

Bn <?» 

\ 
K 

\ 

nl + mnl 

A'MO 

Figure 2. State Space for -Yn(t) 



matrix Q(n) = faj(n): i, j € En} will be denoted as follows: for i = (j,ti2) 

QiAn) = < 

*<">(•), j = ' 

AiB)(i), j = i- ek 

^B)(0. j =»- e* 

7^(0, > = t - et + e 

0, other j, 

where M = 1,2, it # £, s(n)(i) = ~£ [AJfcn,(i) + /4n)(*)] + f  7$(i), and e* is the vector 
it, l=i )fc,£=i 

fc^b£ 
with   1   in   the  kth  position   and   0  elsewhere.   Table   1   outlines   the   infinitesimal 

parameters in the three regions for the process {Xn(t)}. The parameters of the system 

are assumed to have the following asymptotic behavior as n —► 00: 

and 

sn ** ns, 

n, ~ npiy 

mni ~ n-m,, 

0 <s < 1; 

i = l,2;        Pi,p2>°;       P1 + P2-1' 

i = l,2;        mt>0. 

'K      Region 

Parameters*^ 
^n *n cn 

Af'OJ) A1{n1A(n1+mnl-t)} Al{n1A(n1+rnnl-i)} Al{nlA(n1+mnl«i)} 

4n)(M) A2{T4 A (n2+mn2->)} A2{n2A(n2H-mn2-;)} A2{n2A(n2+mn2-;)} 

M1
B)

(U) »>i »>1 sn**l 

4n,('.i) iH (5n-0^2 0 

▼J3*C<.» 0 0 0 

Äi) 0 0 0 

Table 1. Infinitesimal Parameters for the Two Item Model 



This model is characterized by eight independent parameters in addition ro n 

the total number of operating units namely, Aj, A2, px% /i2, s, m^ m2 ana px. In terms 

of these parameters we would like to be able to approximate the behavior of various 

processes characterizing the system, when n is large. This model satisfies the 

conditions spelled out in Section 3 for a sequence of continuous-time Markov processes. 

Thus we shall approximate Xn(t) by an appropriate m.O.U. process. The 

approximation will depend on certain relationships among the independent parameters 

mentioned above. Here we shall illustrate one such case. The traffic intensity of the ith 

item is ptpj$, where px = \JfjLt, for 1 = 1,2. Set a, = A(/(At + ^J, kt = 
aiPi(l + (Pi A mj), £, = 1 if Pt>rnt and 0 if pt < m„ where 1: = 1,2 for all of the 

constants. Suppose kl+k2< s. Then to solve for the vector c we find the sta^e (i.j) in 

which both the left/right forces and the up/down forces are balanced. To balance the 

left/right forces we set 

Mni A K + mm - 0} ~ «>i = 0. 

Divide through by n, set i/n = ct, and let n —► 00 to obtain 

Pi{PiA(Pi + Pi™i-ci)} = ci> 

and solve for cx to find that cx = kv The same argument shows that c2 = k2. Next we 

solve for the elements of the B matrix. Select y £ Ä2, then for n large 

|_nc + n1/2yj € i4n, hence 

™n(y) = 
^l/2[AiK A fo + mnl - [nq + n1/2

yiJ)} - /i^q + n1/2
yiJ 

rT1/2[A2{n2 A (n2 + mn2 - [nc2 + nl/2y2J)} - ^2Lnc2 + nl/2y2J 

Mi+/*i 0 

0 A2£2 + /i2 

\ 

+ o(l), 

where the vector o(l) is uniform in y for y in a compact set of R2. The matrix A is 

calculated in a similar manner. Note in this case that the eigenvalues of B are real and 

positive, so the £(f) —* C. 

With this relationship among the parameters the vector nc lies in the region An 

for large n. If we set -Yn(0) = [nc + nl/2xj for some x € R2 in accordance with (3.3), 

10 



then for n large Xn(0) will also lie in An. As the process Xn(t) has fluctuations about 

nc of the order n1/2 and the distance from the boundaries of the region An to the point 

nc is of order n, the process Xn{t) never leaves the region An with any appreciable 

probability. Thus we need only be concerned with the infinitesimal mean and 

covariance for the process Yn(t)t when Xn(t) lies in An. Similar remarks hold for the 

other cases. Having obtained approximations for X'n(t), the number of units down of 

type i at time t, it is easy to obtain approximations for the number of operating units 

of type i at time t, Zx
n{t) = nl-[Xt

n(t)-mni]
+, See Table 2 for the parameters of the 

m.O.U. processes. 

|\Conditions| 

|Parameters\| 

kl+ k2< s *1 + ^2 > 5' *1 < * 

c (*,.*»> (fcllP2(l + m2)™(5-^)^) 

p2( 1 + m?)) 

A 
0    2p2&2 

2fixk^               0 

0           2/i3(*-Ä1) 0       0 

B 
(Vl+/*i)          ° 

0          (A2£2 + jiA 

(Mt-Mi)        ° A,      0 

Ü      \2 

C 

r *i ) 

2 

r   ** Hk\ 

0       Ü 

\p\ 

o          * 
{Pxh + Wh+H + hk) 

/)2«2 + 1J |_(Pi*i + l)(^ + /Ji + Vi)    ^       (p1«l + l)(^ + /*1+A1£1)J 
1 

Table 2. Parameters for Limiting Process - Two Item Model 

Next we make a number of qualitative remarks about the behavior of this 

system when n is large. 

11 J 



1. If the sum of the traffic intensities of the two types of items is less than 1 (light" 

traffic)» then kl + k2<s. The number of down units is roughly n{c{+c2) = 

**(&! + k2) < *n so no queues form. Note also that the components of Y(+oc) are 

independent: c12 = 0. The two item model in this case behaves exactly like two 

independent one item models. The fraction of type i operating units at time t, 

Z*n(t)/nn is roughly 1 - [X5,(t)/nt- - m,]+ s> 1 - [(cjpt) - m,]+. Thus to insure n, units 

up with high probability we only need cjp{ < mx. But this will be guaranteed if 

KlPi ^ mr So to have a full complement of operating units of type i we need only 

provide XjiJ^ spares. Any more are wasted: they just create further congestion at the 

repair facility. 

2. If the traffic intensity of type 1 item is greater than 1 (heavy traffic), then kx > o». 

All but 3n/x1/A1 items of type 1 and all items of type 2 are at the service facility with 

high probability. All the servers are busy with type 1 units and all type 2 units simply 

wait in queue and are never served. In this case, it does not help to have spares of 

either kind in the system. Notice also that the limit process is degenerate in the second 

component. This case departs from our general theory in that the matrices A and C 

are only positive semi-definite. 

3. If neither of the above two cases hold, then there is possible interaction between 

the two types of items. As it should be, spares of the type 2 item have no effect on the 

behavior of type 1 items, whereas there is a very strong dependence in the reverse case. 

4. Given the independent parameters of the system, one can calculate a threshold 

level beyond which it does not help to add any more spares. This threshold level for 

the spares of item i is n^J^ (is 1,2) for the first case mentioned above and 0 

(is 1,2) for the second case. An intuitive explanation for the above result is the 

following: once the spares reach this threshold level, one of two cases occur—in one 

case, the level of units operating are at their maximum and adding more spares just 

adds to the pool of spares; in the other case, the service facility is congested to the 

point of capacity and adding more spares just adds to the congestion with no increase 

in the level of operating units. 

5. Ona Item, Two Repair Facility Modal. 

This model consists of n units, mn spares, and two repair facilities. The 

operating units are subject to failures according to an exponential failure distribution 

with parameter A > 0. Two types of failures are possible. With probability p(q) a 

12 



failure of type one (two) occurs and the failed unit requires service from repair facility 

1(2) which operates like an sln(si)-server queue with exponential service time 

distribution having parameter ^1(^2)- When repairs are completed on a unit, it returns 

to the spare pool and is once again available to be used as an operating unit. The flow 

of units in the system is shown in Figure 3. This is the same model considered by 

IGLEHART and LEMOINE (1973, 1974). Let X'n(t) denote the number of units 

waiting and undergoing repair at facility 1 = 1,2. The assumption of exponential failure 

and repair distributions means that the process Xn(t) = (Xj,(t), Xl(t)) is a positive 

recurrent Markov chain with a finite state space, En = {(i, j):i,j' > 0, 1 + j< n + mn}. 

depicted in Figure 4. We shall have occasion to distinguish four regions in the state 

space. These are labeled An, £n, Cn and Dn in Figure 4. Table 3 outlines the 

infinitesimal parameters in the four regions for the process Xn{t). As n —► oc, the 

parameters of the system are assumed to behave as follows: 

5„ - nst, 0<s,<l,      t = 1,2, 

mn ** mn, m >0 . 

Operating Units Spares 
n ~ ">. 

mn 

> f / \ 

P Repair Facility 1 
"^ 

> t / »V 

9 
v 

Repair Facility 2 

,2   „ 
*n***2 

Figure 3. One Item, Two Service Facilities Model 
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n + tn. 

Xl(t) 

>l 

B„ 

Dn        \ 

K C"                >v 

A n + ni. 

*i(0 

Figure 4. State Space for Xn(t) 

^N.        Region 

Parameter's^ 
K *« cn Dn 

4n)(iJ) Ap((n+mn-i-j) A n) Ap((n + mn-t-» A n) Ap((n+mn-t-;) A n Ap((n + mn-i- 

i 

i 

-j)/\n)\ 
i 

A*n)M Aq((n+mn-.-.;)An) A*((n + mn-t-j) A n A?((n + mn-i-j)An Afl((n + mn-i- -;) A Mil 

o[%J) «Ml «>l *n"l *n"l ; 
1 

^n)(ij) ->>* *2nM, J^ 
c2 

y[l}(iJ) 0 0 0 0 

7&(ij) 0 0 0 0 

Table 3. Infinitesimal Parameters for the Two Facilities Model 

The parameters ct A, B and C of the limiting m.O.U. process have been calculate 
and are displayed in Table 4. The constants kv kv and I are defined as follows: 
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and 

«2- /i, 

[* + <*A(j£+j|))l 

K2 ~ ß2 

|"l+(mA(^ + ^|))"| 

L            ^1      ^2        J 

i,      m<jf + g 

0,          m>% + % 

.Conditions! 

Parameters^ 

^1 **    1' ^2 ^*    2 
*1 J. 51 > T- 52' s2 ^ *2 

, K2 

(*1.*2) (^ * 1 + m, - ^2*2 fAp e?+o) (»+-¥6 -¥(£+1>^> 

0 2/J2A:2 

2/i2
32P 

0 2/i2s 2a2 

2/i151      0 

0     2^*1$ 

B 
(^x + Xpt)    Xpt 

Xpt    (/i2 + Ap«) 

0*1+*P) 

Ag 

A? 

A* 

Ap Ap 

Aq    (/J2 + A(?) 

■ Ap£*2 

*i("i+T+15> Mae 
Aij+ApÄ 1+m 

1 + m A* 2 + A<?£ 
s2^2P 

S2^2P 
/*!? 

«2^ 

Xq 

Ap 

W2P 

Table 4. Parameters for Limiting Process - Two Facilities Model 
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Note that the traffic intensities at the two facilities are Ap/s^ and Ag/s^. Based on 

these results, the following remarks can be made regarding the behavior of the system 

when n is large. 

1. If the traffic intensities at the two facilities are individually less than 1 (light 

traffic), no queues form. It does not help to increase the spares beyond 

n(Ap//ij + A<?//x2). At this critical level, n units are operating with high probability. 

Adding more spares only adds to the congestion at the facilities. Note that the 

components of y(+oo) are independent, whenever I = 0. 

2. If the traffic intensity at facility 1 is less than that at facility 2 and the latter is 

greater that 1 + \pjpi + Ag//i2, the following holds true: having spares does not change 

the number of items at facility 1. Also, spares only increase the congestion at facility 2. 

So, in this case, there is no advantage in having any spares. The number of units 

operating is inversely proportional to the traffic intensity at facility 2. A similar 

statement can be made by reversing the roles of facility   1 and 2. 

6.  One Item, Series Facility Model. 
This model consists of n units, mn spares, and two repair facilities in series. The 

operating units are subject to failure according to an exponential failure distribution 

with parameter A > 0. All failed units receive service at repair facility one, which 

operates like an s^-server queue with exponential service time having parameter pv 

With probability p, each item serviced at facility one also requires servicing at facility 

two, which operates like an sj-server queue with exponential service time distribution 

having parameter pv When a unit has been serviced either only at one facility or at 

both facilities, it returns to the spare pool and is once again available to be used as an 

operating unit. The flow of units in the system is shown in Figure 5. 
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Operating Units Spares 
n v» 

mn 

V A 
Repair Facility 1 

</ 

\fp 

R .epair Facility 2 

sn^2 
*> 

Figure 5. One Item, Series Facilities Model 

Let Xl
n(t) denote the number of units waiting and undergoing repair at facility 

z = l,2. The assumption of exponential failure and repair distributions means that the 

process Xn(t) = (A"J,(*), Xn(t)) is a positive recurrent Markov chain with a finite state 

space En = {(hj)'ij > 0, i + ; < n + ron}, depicted in Figure 6. We shall have occasion 

to distinguish four regions in the state space. These are labeled Any Bni Cn, and Dn in 

Figure 6. Table 5 outlines the infinitesimal parameters in the four regions for the 

process Xn(t). As n -+ oo, the parameters of the system are assumed to behave as 

follows: 

s'n ~ n$i, 0<st< 1, i = 1,2, 

mn ~ mn, m>0 . 
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n + m. 

Xl(t) Bn 

On           \ 

K c„       \. 

'« n + m. 

Xln(t) 

Figure 6. State Space for Xn(t) 

N.      Region 

ParamctcraV^ 
K *n c„ *>n 

Ain,(.\;) \(n A (n 4- mn—t—j) A(n A(n + m-i - j)) A(n A (n+m — t - -i» A(n A(n + m- ii - ;)) 

4n)(>'.i) 0 0 0 0 

4n,(«w; *«h »««1 •i«"l 
1 

/4B)(«'.i) m 5n^2 1H s\»-i 

7{3'(«-.;) ip/H «P/*l SnP"l 

i 

fiftu) 0 0 0 0 
I 

Table 5. Infinitesimal Parameters for the, Series Model 
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Again the parameters c,  .4,  5, and C of the limiting m.O.U.  process  have been 

calculated and are given in Table 6. The constants kv A:2, and I are defined as follows: 

k  -A 
i+(»A(A+ai 

*2 ~ p2 

i^M^I» 

« = ■ 

I, 

0, 

Here the traffic intensities at the two facilities are X/s1fi1 and Ap/s2/i2- The following 

remarks can be made about the system for large n. 

1. If the traffic intensities at the two facilities are individually less than 1 (light 

traffic), no queues form. It does not help to increase the spares beyond 
n(^//ii + ^P/th)' At this critical level, n units are operating with high probability. 

Adding more spares only adds to the congestion at the facilities. Note that Yl(+oc) 

and y2(+oo) are negatively correlated. 

2. If the traffic intensity at facility 1 is less than that at facility 2 and the latter is 

greater that 1 + A//^ + Ap//i2, then having spares does not change the number of items 

at facility 1. Also, spares only increase the congestion at facility 2. So, in this case. 

there is no advantage in having any spares. The number of units operating is inversely 

proportional to the traffic intensity at facility 2. A similar statement can be made by 

reversing the roles of facility  1 and 2. 
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0 

A 

Hk\ 
^+A£ 1 + AV 

/il^2+A(/i1p+/i2)f 
A^i*iP* 

/i1^2+A(/j1p+p2)« ^1^2 + A(/ilP+/i2)g 

^2S2 „ ^lf2 

PIP 

^2+Ap) 

^2 

Table 6. Parameters for Limiting Process - Series Model 

/<2 

We note that the models described in Sections 4, 5, and 6 can be viewed as 

closed Jackson networks of queues. The two item, one service facility model of Section 

4 requires the added complexity of different customer classes to be treated as a closed 

Jackson network. For that reason we do not discuss a numerical example of that 

model. In this section we present numerical examples of the models from Sections 5 

and 6 to compare the diffusion approximation with the product form solution which is 

available for closed Jackson networks. 



Example 1. Two Facilities Models of Section 5, 

Three cases are treated here. For all cases /zt — 2, /i2 = 3, A = 1, m — O.G. 

p = 0.143, and q = 0.857. The only parameters that vary are sTand s2. The three cases 

coincide with the three columns of Table 4. Table 7 contains the numerical values of 

the parameters for the limiting process for all three cases. Next we compare the 

approximation for the expected number of jobs at repair facility 1 and at repair facility 

2 with the same values as computed using the product form solution. These 

comparisons were made for n = 10, 25, 50, and 100. For the product form calculation 

we used $$ = [H3,J. The comparisons can be found in Tables 8, 9, and 10. In general 

the diffusion approximation is very close to the exact product form solution even when 

n = 10. The one exception occurs in Table 10 for n = 10, but this is a consequence of 

<j<n)=[.04xlOJ-:0. 

\Conditions 

Parameters\ 

$t = 0.48     s2 = 0.64 Sl-0.50     $2~0.20 

St ]> T-$2'        ^2        2 
K2 

1 

sx =5 0.04     s2 - Ü.60 

*i "^ ^2'          2      77~^1           I 

c (0.07143, 0.28571) (0.05006, 0.84983) (0.88075, 0.15999) 

A 
0.28600       0 

0       1.71400 
_ 

0.20023            0 

0                1.2 

0.16000            0 

0            0.95888 

B 
2.0         0 

0          3.0 

2.14300        0.14300 

0.85700       0.85700 

0.14300        0.14300 

0.85700        3.85700 i 

C 
0.07143      0 

0      0.28571 

0.05006      -0.05006 

»0.05006      0.75018 

0.71925      -0.15981 

-0.15981       0.15981 

Table 7. Parameters for Two Facilities Models 
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X 
10 

Expected Number at Facility 1 
Approximation                Product Form 

Expected Number at Facility 2 
Approximation             Product Form 

0.715 0.707 2.857 2.870 

25 1.787 1.785 7.142 7.133 

50 3.575 3.575 14.280 14.280 

100 7.150 7.150 28.570 28.570 

Table 8. Comparison for Case s1 = 0.48, s2 = 0.64 

X 
10 

Expected Number at Facility 1 
Approximation                Product Form 

Expected Number at Facility 2 
Approximation             Product Form 

0.501 0.494 8.498 8.284 

25 1.251 1.251 21.250 21.120 

50 2.503 2.503 42.490 42.370 

100 5.006 5.006 84.980 84.710 

Table 9. Comparison for Case sl = 0.50, s2 = 0.20 

\ 10 

Expected Number at Facility 1 
Approximation               Product Form 

Expected Number at Facility 2 
Approximation             Product Form 

8.807 0.000* 1.598 0.943 

25 22.020 22.010 3.995 3.995 

50 44.040 44.040 7.991 7.991 

100 88.070 88.070 15.980 15.980 

Table 10. Comparison for Case sx = 0.04, s2 = 0.60 

•These results are a consequence of taking s[n) = [.04 x 10J — 0 

Example 2. One Item, Series Facility Model of Section 6. 
Again we treat three cases corresponding to the three columns of Table 6. For 

all cases /*x = 2, /i2 « 3, A = 1, m =s 0.6, p = 0.143, and q = 0.857. Table 11 contains the 
numerical values of the parameters for the limiting process in all three cases. In Tables 
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12-14 we again compare the approximation and product form solution for the expected 

number of jobs at the two repair facilities for the case n = 50 and 100, The diffusion 

approximation is again quite close to the exact product form solution in all cases 

expect those in Table 13 where the error can be as large as 19%. 

[\Conditions 

|Parameters\ 

Sl =0.75   s2 = 0.52381 

S| ,> Ar j 1         Sn y> K2 

s1 = 0.625 s2 = 0.02381 

s\ > T~s2*         S2 ^    2 K2 

sx =0.25   s2 = CUlt!l 
*, 

M 

c (0.5,0.047619) (0.25,0.85) (1.07669,0.02381) 

A 
2.0     =0.143 

=0.143   0 .286 

0.99900      -0.07143 

-0.07143      0.14286 

L0             -0.715 

-0.715          0.143 

B 
2.0          0 

-0.286      3.0 

3.0               1.0 

-0.286            0.0 

1.0               1.1) 

0                 3.0 

C 
0,5          0 

0      0.04770 

0.24976       -0.24976 

-0.21976      0.74927 

0.52383      -0.tt$töä 

-0.02383      tiM'm 

Table 11. Parameters for One Item. Series Facilities Models 

n\ 
Expected Number at Facility 1 

Approximation                Product Form 
Expected Number at Facility 2 

Approximation             Product Form 

50 

jioo 
25.0 

50.0 . 

24.61 

49.59 

2.383 

4.767 

2.346 

4,728 

Table 12. Comparison for Case s, = 0.75, s2 = 0.52381 

23 
/ 



\ 

Expected Number at Facility 1 
Approximation                Product Form 

Expected Number at Facility 2 
Approximation              Product Form 

50 

100 

12.49 

24.98 

10.49 

20.9!- 

42.54 

85.08 

48.53 

97.06 

Table 13. Comparison for Case sx = 0.625, s2 = 0.02381 

\ 

Expected Number at Facility 1 
Approximation                Product Form 

Expected Number at Facility 2 
Approximation              Product Form 

50 

100 

53.81 

107.60 

54.86 

107.60 

1.192 

2.383 

1.144 

2.383 

Table 14. Comparison for Case sx = 0.25, s2 = 0.5119 

While the limit theorem stated in Proposition 3.1 guarantees convergence of the 

sequence of approximating processes to a m.O.U. process, nothing is said about the 

goodness of the approximation for finite n. A method for judging how good the 

approximation may be was developed in PRISGROVE (1987). A numerical algorithm 

was constructed which computes the largest ellipsoid in Rd with center at nc within 

which the form of the birth and death parameters remain unchanged. The 

approximation to the steady-state vector has distribution which in N(nc,nC). Finally, 

the probability that this N(ncynC) vector falls within the above ellipsoid is computed 

in terms of a \d random variable. If this probability is high, we would expect a good 

approximation and if not we are warned to be careful about any claims made for the 

approximation. Numerical examples given in PRISGROVE (1987) show the usefulness 

of this approach. 

Acknowledgement. Thanks are due to a referee who made constructive suggestions for 

improving the paper, Professor Tom Kurtz for providing references to the proof of 

Proposition 3.1, and Dr. Lindsay Prisgrove for correcting some errors in the values of 

the matrices A, B and C in the examples. Dr. Prisgrove also provided the numerical 

examples comparing the diffusion approximations and product form solution^ 

contained in Section 7. 
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