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1. INTRODUCTION

Over the past 30 years considerable attention has been given to the development of

corstitutive laws for engineering materials (Hill, 1950; Prager, 1955; Mroz, 1967, Dafalias

and Popov, 1976; Drucker and Palgen, 1981). Among other formulations, the existing

models are based on the theories of elasticity, hypoelasticity, plasticity, and viscoplasticity.

Despite the large number of models there has been no consensus within the research

community on the best approach. However, the models based on the theory of plasticity or

viscoplasticity appear to be the most promising.

Some of the most popular and widely used models for sand have been based on the

"cap model" of DiMaggio and Sandler (1971). As versatile as "cap models" may be, they

have not been successful in accurately modelling monotonic and cyclic loading conditions.

Similar limitations apply to other models (Baladi and Rohani, 1979), and it can be

argued that the existing plasticity models of the "cap" type are only adequate for

monotonic loading of isotropic soil. In an effort to overcome this, a variety of constitutive

laws have been proposed which incorporate a combination of isotropic and kinematic

hardening (Mroz, 1967), either in a two (Dafalias and Popov, 1976), or multiple yield

surface context (Mroz, 1967; Lade, 1977). Although these more recent theories represent a

considerable advancement over the "cap" models, they too have drawbacks. These include

the use of "a priori" hardening rules, and the inability to take into account either the

prestraining effect after load reversals or the inherent, elastic anisotropy of the soil. This

elastic (inherent) anisotropy which is most significant for anisotropically consolidated sand

has been measured in sand by Stokoe and his coworkers (Knox, et al., 1982; Koppermann,

et al., 1982), while Dafalias (1979) has discussed its modeling implications. Finally, all of

the above existing plasticity models for soils are phenomenological; their formulations

depend on the inter [etation of the macroscopic results by the researcher and not on

micromechanical principles. As such, they are in need of constant refinement when needed

for cases very different from the one the model was originally developed and calibrated for.
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The current situation in metal plasticity is quite different. Although it is true that

modelling of the nonlinear behavior of metals started on a similar phenomenological basis,

there has been a later shift toward formulating the metal response with due consideration

to basic micromechanical principles. Recently, this has been enhanced by specific

experiments and micromechanical (electron microscopy) measurements (Stout, et al., 1985;

Helling, et al., 1986). The situation is analogous in the modelling of more complex

composite materials, where experiments and micromechanical analytical simulations are

combined to create the corresponding constitutive law (Dvorak, 1987; Dvorak, et al., 1988).

Although metal properties are not pressure dependent and their symmetry does not

change as much with loading as in soils, the stress-strain behavior of metals and soils is in

many respects similar. As a result, most current soil plasticity models are modified

versions of popular phenomenological metal models. Notable examples include the Mroz

(1967) model for metals and the Prevost (1978) model for undrained loading of clay, as well

as the bounding surface model used by Dafalias and Popov (1976) for metals and

subsequently adapted to soils by Dafalias and Herrmann (1982). Unfortunately, no

plasticity model exists for soil resulting from the combination of specific laboratory

experiments and micromechanical principles including numerical simulations of granular

arrays.

Recently, the geotechnical groups at the University of Colorado (Klisinski, et al.,

1988), US Army WES (Peters, 1988), and University College of London (Arthur, et al.,

1988), working together in a concentrated effort, developed a constituutive law which is

based on a series of innovative 3-D laboratory experiments performed for this purpose

(Alawi, et al., 1988). This was probably the first time that a thorough experimental

investigation is performed in Soil Mechanics which attempts to verify widely accepted

rules, such as the hardening law, the yield surface shape during loading, the normaility

rule, etc. The resulting model (Klisinski, et al., 1988) is based on the bounding surface

model of Dafalias and Popov (1976) and on the theory of "fuzzy" sets.
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A large number of models have been proposed for granular soils, including those just

mentioned and others (Petrakis and Dobry, 1986; 1987). Most of the models for sands are

included in the Proceedings of the International Workshop on Constitutive Equations for

Granular Non-Cohesive Soils (Saada and Bianchini, 1989). However, as pointed out in

that workshop by Scott (1989), this growing modelling effort often includes a,. increasing

mathematical complexity unrelated to additional physical insight, including models

containing a large number of parameters (as many as 40) without clear physical meaning.

The authors have taken a different approach to the formulation of a constitutive law

for dry granular soil. They use as a starting point the micromechanical force-deformation

contact law between two spheres representing two grains. There is a clear physical

justification for this. A number of key features of the stress-strain behavior of cohesionless

soils and other granular materials are dearly related to the internal structure of the

medium, typically composed of individual particles that interact only at their contact

points. In turn, some of these features are traceable to the force-displacement response at

the contact between two grains, while others require consideration of the whole geometrical

arrangement of the mass of particles. To this last category belong the phenomena of

volumetric change under shear (dilation), the inelastic volumetric changes during isotropic

consolidation, the effect of overconsolidation, the tendency to densification under cyclic

shear, and the structural anisotropy, typically encountered in granular materials.

Aspects of stress-strain behavior for which a clear counterpart is present in the

contact force-displacement response are listed in Table 1.

Seridi and Dobry (1984) and Dobry, et al. (1991) have proposed an incremental

elastic-plastic model for the contact force-displacement response, which constitutes a

general solution to the problem originally studied by Hertz (1882), Cattaneo (1938), and

Mindlin and Deresiewicz (1953). This report proposes a stress-strain relation for granular

media based on this contact model.
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As discussed in the text, in its present form the model is completely defined by a

small number of parameters (as few as 5) having very clear physical meaning and related to

failure and small strain soil properties of common use in soil mechanics. In addition, it is

in principle possible to relate these macroscopic parameters, through averaging techniques,

to basic micromechanical properties of the soil at the contact and particle level (Petrakis

and Dobry, 1987). On the other hand, the model as proposed here is clearly incomplete

and needs further development, as it does not yet reflect all important phenomena observed

in granular soil.

After a description of the contact model, the proposed stress-strain relation is

presented for the general case. Then, the model is specialized to the particular case of

compression, extension, and/or torsional loading of hollow-cylindrical granular specimens

as used in the tests discussed in Volume II of this report. A computer program is

developed which implements the model for any stress path corresponding to this testing

technique. The predictions of the model are then compared with results of the tests of

glass beads specimens included in Volume II. This is closed by a discussion of the results

and some conclusions.
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2. CONTACT MODEL

Figures 1 through 7 summarize some of the main features of the elastic-plastic

contact force-displacement model developed by Seridi and Dobry (1984) and Dobry, et al.

(1991). Figure la sketches the two identical spheres in contact, of radius R, elastic

properties Gs (shear modulus) and vs (Poisson's Ratio), and friction coefficient f. The

spheres can be compressed and can slide with respect to each other but cannot rotate.

Figures lb and 1c show the 3-D force space

F=Ni +TJ j+Tyk

and the corresponding 3-D relative displacement space
•-4

D = ai + 6xj + 6y k

N, Tx, and Ty are, respectively, the normal and two tangential contact force

components, while a, bx, by are the normal and two tangential components of the relative

displacements between the spheres' centers. The unit vectors i, j, and k are parallel to

the normal to the contact and to the two tangential directions, respectively.

The yield surfaces of the model in force space are sketched in Fig. 2 for two different

load histories. There are always infinite yield surfaces, with all being nested cones parallel

to each other. All cones have their axes parallel to N, and they have an inclination f.

Except for the failure cone of equation

T 2 + T2  2 I
x y

the cones do not pass by the origin. The apex of cone i has an equation:

(Tx - Ti)2 + (Ty - Tyi) 2 -f 2 (N - Ni) 2 .

This cone is associated with a value of N = Ni , which is unique and does not vary during

loading. On the other hand, the other two coordinates of the apex, Txi and Tyi, do

depend on the history of loading.
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The model hardens in a purely kinematic way, as illustrated in Fig. 2a for a history which

consists of increasing N to a constant value followed by a monotonic increase of T = Tx

(force path OAB). Only elastic displacements occur along OA, but both elastic and

plastic displacements occur along force path AB. Figure 2b shows the formation of cones

for a case of proportional loading from the origin, which also induces only elastic

displacements between the two spheres.

Figure 3 shows the force-displacement curve predicted by the model when only the

normal force is increased (that is, Tx = Ty = 0, path OA in Fig. 2a). The behavior is

nonlinear elastic, with the normal stiffness increasing as N increases (locking behavior).

The force-displacement curve follows a power law,

a =C 1 N2/3  (1)

where C1 = constant. One consequence of this that the normal stiffness dN/da increases

with N:

dN 1.5 N113  (2)

Figure 4 plots the stress-strain relation for tangential path AB in Fig. 2a. The

behavior is now of yielding type, with failure (sliding of contact) occurring when T = fN,

and the force-displacement curve is given by the equation:

6= C2 N21 3 [1 - (1 - .)213] (3)

where C2 = constant. An important consequence of Eq. 3 is that the tangential stiffness

at point A of Fig. 2a, (dT/d6)T=O is an increasing function of the value of N:

fT 1.5T=0 2f N113

Figures 5 and 6 present the force-displacement response predicted by the model for several

simple force paths, and compares these predictions with those obtained originally by
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Mindlin and Deresiewicz (1953). In all cases for which particular solutions are available,

including those of Figs. 5 and 6, there has been complete agreement between the model and

Mindlin-Deresiewicz results. The hysteresis loop PRSUT predicted for cyclic tangential

loading in Fig. 5b, in conjunction with the backbone curve OP, satisfies the criterion

proposed by Masing (1926). Figure 7b shows the positions of the yield cones after the more

complex force path OABCD in Fig. 7a.

The flow rule of the model follows a modified normality rule and is defined by

Eq. 5:

dNk f dN dTn -fdNt dTtdD= -a + 79-- n+ H - n + - tp t (5)
S 0 p

where:

n: unit vector normal to the yield circle at the current force point (yield circles

are defined by the intersection of the yield cones with i-plane, see Fig. 2a)

At: unit vector tangent to the yield circle at the current force point

dTn = d T. n

dTt = d T. t = (dT 2 - dT2) 1/ 2

-4

dT = dTn n + dTt t

-4 -4

= d T1 + d Tt

f: coefficient of friction of the material of the spheres

1/3 3 (1 -vs
a (BNR) with B = - - -- and a = radius of area of contacta fi wth = 8 G s  '

R = radius of the two spheres

Gsv = elastic properties of the material of the spheres

H0  = I is the elastic stiffness
HO 2 - u
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1/3
HH 0 [1 - K elastoplastic stiffness corresponding to the yield

circle of radius K
8Gsa K rI r - 2/3

= 8 -a -K K 2 is the tangential elastic stiffness

Equations 1 through 4 are contained in the more general Eq. 5, with the

corresponding expressions for the constants C1 and C2 being functions of the physical

parameters of the spheres, R, Gs, vs , and f.

Three of the terms in Eq. 5 are purely elastic, and one contains a plastic component.

The first term is da = dN/[2Gsa/(1 - vs)] and corresponds to the nonlinear elastic Hertz

law. The second elastic term includes part of the elastic-plastic tangential displacement to

the yield circle, and is controlled by the elastic stiffness H0 = 4G8a/(2 - vs). The third

term includes both an elastic and a plastic tangential displacement, both normal to the

yield circle, and is controlled by the elasto-plastic stiffness H = H0 [1 - K/(fN)]1 / 3.

Finally, the fourth term gives the elastic displacement tangent to the yield circle, and is

controlled by the stiffness Hp = 2 - v / [1 - (1 - -r,4"J, derived by Seridi and

Dobry (1984).

Of particular interest is the elasto-plastic third term in Eq. 5. It is clear that a

modified version of the usual normality rule valid for many pressure-independent materials
-.4

(e.g., see Christian and Desai, 1977) is applicable here: the plastic component of dD is

parallel to n, the normal to the j circle, rather than to the normal to the A al conical

surfac. This is consistent with the fact that at the contact between the two spheres, only

the tangential displacement de = d6 i + d6 j can contain a plastic component, with the
a dy

normal displacement da = dak being purely elastic from the Hertz solution.
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It is interesting to summarize the parameters of the contact model described by Eqs.

1 through 5 in a way useful to its adaptation to a stress-strain model as discussed in the

following sections.

There are four physical parameters corresponding to the properties of the spheres,

which characterize the contact model completely: R, Gs, Vs and f.

From another viewpoint of more interest here, these four parameters can be replaced

by:

i) The law giving the elastic relation between a and N, or between dN/da and N,

Eqs. 1-2 and first term of Eq. 5:

dN Im
SM(6)

where M = 1.5/C 1 and m = 1/3 in Eq. 2.

ii) The law giving the elastic-plastic relation between T and 6 in Eq. 3, or the

tangential stiffness (dT/dOT=o in Eq. 4, or the elastic second term and the

elastic-plastic third term in Eq. 5:

T= Q =Q( (7)

where Q = 1.5 f/C 2 and q = 1/3 in Eq. 4. If the formulation of Eq. 7 is adapted,

Eq. 3 can be rewritten as follows :

6- = tj3 Nl-q [1 -(1 _ T)1-q] (8)

iii) The law giving the elastic tangential stiffness (Hp) - 1 in the fourth term of Eq. 5,

where

H = 8 G 8a K / (9)]

where all the terms in the expression are known parameters (K is the radius of the

current yield circle, and for the simplest monotonic loading case it corresponds to

the current value of the tangential force, K = T).
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Therefore, in addition to Hp in Eq. 9, which will be discussed separately in the

next section, the model can be completely characterized by the values of five parameters:

M, m, Q, q, and f. Note that the monotonic tangential stress-strain curve at constant N

described by Eq. 8 and corresponding to Fig. 4, is completely defined once f, Q and q are

known. This is given by the fact that the value of the elastic-plastic tangential shear

moduli:

dT/d6 = Q • Nq (1 - T/fN) = (dT/do)T= 0 (I - T/iN)

corresponding to monotonic loading at point B in Fig. 2a, is the same at all points in the

corresponding cone's surface. That is, dT/dN at point B in Fig. 2a is identical to

(dT/dN)T= = Q N , where N. is the value of N corresponding to the apex of the

cone passing by point B.



Page 11

3. STRESS-STRAIN CONSTITUTIVE RELATION FOR GRANULAR MATERIAL

3.1 General Case

The force-displacement contact model described in the previous chapter can be

transformed into a stress-strain relation for granular material using modified deviatoric

stress and strain spaces. The modified 6-D deviatoric stress space used has one isotropic

stress axis SO and five deviatoric axes, S1 to S, defined as follows:

So = (axx + ryy + azz)/3 = om
s, = (oxx- oyy)13
s2 = [(oyy_ - ) 2 + (0'z_ -x) 2 1O.5 /3 (10)

s 3 = 34 ) rxy

S4 = (f- / 3) Ty,

s5 = ( /) T

where o ,  oyy, ozz, xy,  yz, zx are the customary normal and shear stresses

corresponding to three fixed cartesian axes x, y and z. In this space, a ir-plane is defined

by SO = constant, and it is easy to verify that the magnitude of the octahedral shear stress

is the projection of the stress vector on this ir-plane: roct = (S + S2+ S2 + S2+S2)0.

Similar to the infinite yield cones in 3-D force space (N, Tx, T y) in Fig. 2, there is an

infinite number of yield cones in this 6-D space, with equations of the form:

5111 (S Sfi) 2 (S,2i (10a)

j=l

where f = tan * describes the failure envelope of the soil, and Si' Sli, ..., S5i are the

coordinates of the apex of the 6-D cone. For the special case in which the loading does not
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involve rotation of the principal stress directions, it is possible to come back to a 3-D

space, which most conveniently can be defined by the principal stresses (0'1 02, U3 );

Fig. 8 sketches a couple of the yield cones for this case. Either in 6-D or 3-D space, and

the same as in the contact model, the cones move as rigid bodies (purely kinematic strain

hardening), with the apex of cone i always contained in the same 7r-plane, independently

of the history of loading. That is, in 6-D space S0i is constant and unaffected by the

loading history. Also, the same as in the contact model, the yield circles, defined by the

intersection of the yield cones with any deviatoric plane (ir-plane) are always circles and

are never distorted whatever the loading history.

Parallel to the 6-D modified deviatoric stress space there is a modified deviatoric

strain space, defined by a volumetric strain axis E0 and five deviatoric strain axes:

E0 = exx + yy + zz = Ev

EI= 2(cxx- Cyy)/ 3

E2  2[(eyy - Ezz)2 + (fzz - exx)2) 0 .5/3 (11)

E=3 (,r" / 3) 7xy
E4 -(4 /3) 7 yz

E5 = (" / 3) 7 zx

where cxx eyy, ez, are normal strains and -'xy' 'yz' 'zx are engineering shear

strains. The magnitude of the (engineering) octahedral shear strain is

t't= (SI + S2 + + S4+S5)

Similar to the contact model, E0 is computed from So through a nonlinear elastic

relation, and thus E0 is purely elastic. On the other hand, for any stress increment, the

five deviatoric strain components E1 to E5 include plastic strains, calculated by means

of a flow rule where normality is only observed on the deviatoric plane (7r-plane). That is,
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the plastic strain increments are normal to the yield circles and not to the yield cones.

Flow rules such as this, associative only on the 7r-plane, have also been allowed for in other

constitutive models (e.g., Prevost, 1985).

Once E0 through E5 are determined from the model, the three shear strains,

Xy' fyz' y zx are obtained directly from Eq. 11, and the normal strains, C Eyy , ezz

are calculated from E0 , El, and E2 by inverting a 34 system of equations (first three

lines of Eq. 11).

3.2 Case of oXX = oy and rXY = r = 0
"-yz -

A great simplification of the model and a return to 3-D space is obtained for

loading histories where axx = ryy and Txy = ryz = 0. These include all possible

laboratory tests that can be done with the triaxial/torsional apparatus on hollow-cylinder

granular specimens, such as described in Volume II, provided that the inside and outside

pressures are kept the same. In these tests, azz = vertical axial stress, oXX = oyy = cell

pressure, and rzx = torsional shear stress. Furthermore, in what follows it will be

assumed that a similar behavior is valid for the strains, with normal strains, fXX = Cyyl

and engineering shear strains, 7 xy = "'yz = 0.

Therefore, in Eq. 10, S1 = S3 = S4 = 0, and only three stress components are

required: So = am- (2 oxx +  zz), $2 =VI/3(zz - a) and S 5 = /3 x "

These stresses are the counterpart of the three contact forces in Figures 1 and 2 as

follows:

ContactFora eStress

N S0= 0m = 1/3 (2 0XX + az )

TX  S2 = 4/ 3 (zz - oxx)

Ty S5 = V9 /3 zx
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and the yield cones in this 3-D stress space look identical to and follow the same rules as

those of Fig. 2.

The corresponding stress space and yield cones are depicted in Fig. 9. The

deviatoric, octahedral or 7r-plane is defined by the deviatoric coordinates

VS / 3 (a'z - axx) and v9 / 3 rx, and a vector from the origin 0 of the Tr-plane has

the magnitude of the octahedral shear stress Iroct I = roct:

-4 2

lToctl Toct =  6(rzx)2 + 2 - 2 (12)

That is, the position of any stress point in the stress space of Fig. 9 is defined by the
-4

position vector ar from the origin of the whole stress space:

~~~~' k,~ i +*rJ o roct+ omk (13)

From the viewpoint of constant mean stress laboratory tests on isotropically consolidated

hollow cylindrical specimens of granular material, all stress paths in Fig. 9 are contained in

the corresponding ir-plane. For example, all monotonic constant mean stress tests

correspond to radial stress lines in the r-plane starting from point 0 in the figure and

extending to the failure cone:

[4 / 3 (a. - axx)]2 + (vg / 3 rzx)_2=p 2 (14)

In the figure, the direction OA corresponds to a compression-extension test in which the

axial stress azz is increased and the cell pressure xux  is decreased to maintain

om = 1/3 (2 uxx + rzz) = constant (compression test in soil mechanics parlance). The

direction OB corresponds to an extension-compression test (rzz is decreased and oxx

increased; extension test in soil mechanics parlance). Finally, directions OC and OD

correspond to purely torsional shear monotonic loading. Oblique directions would

correspond to combined axial-torsional tests. The corresponding parallel 3-D strain
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space, under the assumption that =xx yy and 7,xy = ,yz = 0, is given by the

following three strain coordinates, obtained from Eq. 11 with E1 = E3 = E4 = 0:

Strain Corresponding Stress

E0 = fv = (2 xx + ezz )  s o = am = 1/3 (2 axx + orzz)

E 2 = 2 VS/ 3 ( ezz - fxx) $ 2= VS 3 ( a zz - axx )

E5 = vff / 3 tzx 55 = vfll 3 rzx

v = (2 ezz + ezz) is the volumetric strain, while 2 vS / 3 (zz - xx) and vS / 3 yzx

are deviatoric strains. This 3-D strain space is the counterpart of the 3-D displacement

space for the contact in Fig. 1c. The deviatoric or octahedral plane in strain space is

defined by the deviatoric coordinates 2 V / 3 (czz - (xx ) and v4 / 3 yzx, and a position
-4

vector from the origin of this octahedral plane has the magnitude I 'Yoct = 'Yoct:

2 12 2 2 + 3/2 2 (14),yoct = I ('zz - xx zx

That is, the location of any strain point in this strain space is defined by a position vector

-4

f from the origin of the whole strain space:

c =2 S /3 (c,. - e)i + v / 3 zxj + (vk = toct + evk (15)

The flow rule for the stress-strain model, equivalent to Eq. 5, is:

- d . fdo dTn - f dam d r tdc = dB m  + dU n + Gn + 7t (16)

t 0 nt tt

where the unit vectors k, n and t have the same meaning as in Eq. 5, drn droct  n,
-4

and drt =drt t.

It is interesting to discuss the parameters of the model, contained in Eq. 16,

following the logic used at the end of Chapter 2. The parameters are defined as follows:
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i) The first term of Eq. 16 contains Bt = bulk modulus = da'm/dcv , which can be

expressed as a power of am, similar to Eq. 6:

Bt =M. m (17)

t Om

ii) The law giving the elastic shear modulus GO = (dr/d?)r=O and the elastoplastic

shear modulus Gnt = dr/d7 for the second and third terms of Eq. 16, respectively.

Go can be expressed as a power of orm, similar to Eq. 7:

G 0 = Q. Oq (18)

and
roc t)q

Gnt = Go (1 - Oct (19)
n m

As will be seen later in this volume, the exact expressions of Go and Gnt -

and especially the value of the power q - at low values of the confining pressure

orm, determine the shape of the shear stress-strain curve near failure predicted by

the model. There is some evidence in both arrays of spheres (Duffy and Mindlin,

1957) and sands (Seed and Silver, 1972), that at very low pressures the value of q

is larger than at higher pressures. In that case, Eq. 18 is replaced by:

G =Q 1 1rn for rm< mt

G = for m (18a)
0 2Om Om OuM1

where q2 < ql and Q2 = Q1 (rm) l 2 . If Eqs. 18a are used, Eq. 19 is replaced

by Eq.. 19a and 19b:

If O oct qlu
nt=I
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If aI > ami
q 2(1 - r oe t q2

Gnt = Q2 am -a -- m) for roc t  roct,

Gl ( for roct roct (19b)Gnt = Q1 a'm T-amj  o o t >rc

where 7oct, = f(a - am,).

iii) If a strict parallel stress-strain counterpart behavior is accepted with respect to the

force-displacement contact model of Eq. 5, the "tangential" elastic shear modulus

Gtt in the fourth term of Eq. 16, is given by the rest of the parameters of the

stress-strain model, as follows :

G = Q( - q) Oct (20)Gtt= f 1- GO  (_ '0Ct\

m 1 - U (1- tam)

In that case, only five parameters are needed to completely define the

proposed stress-strain constitutive relation: M, m, Q, q and f, or eight parametis

if Q1 Q2, q1, q2 , and oIml are specified. The two numbers (M, m) define the

volumetric stress-strain behavior and can be obtained from isotropic consolidation

tests; the two numbers (Q, q) define the variation of G with am  and can be

obtained from axial or torsional shear loading of soil specimens consolidated to

various am; and f = tan * can be obtained from monotonic axial or torsional

shear tests to failure. The expression for Gtt in Eq. 20, however, needs to be

verified experimentally. If the verification disproves Eq. 20, the model is flexible

enough to allow a different specification of Gtt consistent with the experimental

results. In this case, however, more parameters will be needed in addition to the

five (or eight) model parameters just listed.
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3.3 Simple Stress Paths

It is useful to examine some main aspects of the stress-strain behavior predicted by

the model for a couple of simple monotonic stress paths. This is done in this section for

isotropic compression and purely deviatoric (constant means stress) loading.

3.3.1 Isotropic Compression

In this case, oxx = oyy = ozz = m and all r's are zero. The stress path is

located along the am axis in Fig. 9 and all yield cones have their apexes located along this

axis. Equation 16 reduces to d' = (dam/Bt)k or de v = dcrm/Bt = dom/(M o ). The

integration of this expression gives the relation between confining pressure 0 m and

volumetric strain cv:

1-M
Mn (21)

This is a nonlinear elastic relation valid for any history of isotropic loading or

unloading. That is, the model predicts only elastic volumetric strains during isotropic

compression. For typical values of m < 1, the shape of the corresponding v VS. am

curve is similar to that of the a vs. N curve in Fig. 3.

3.3.2 Deviatoric Monotonic Loading

In this case, the material is first compressed isotropically to am, and then is

loaded monotonically to failure by increasing roct in a proportional manner while keeping

Um constant. These are the constant mean stress tests conducted in Volume II. By

considering the definition of roct in Eq. 12, this can be accomplished by either increasing

Tzx (torsion test), increasing ozz while decreasing axx (compression test), by increasing

o#xx while decreasing azz (extension test), or by other combinations of
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compression-torsion or extension-torsion. For a given am' the model predicts the same

stress-strain relation, roct versus yoct' for either of these tests. This is a consequence of

the basic assumption of the model that the material is initially isotropic under isotropic

loading, reflected in the symmetric disposition of the yield cones around the Um axis

before deviatoric loading starts (Fig. 9). If Eq. 18 with one value of q is valid for all am,

the stress-strain relation is obtained by integrating Eq. 19,
Gnt-= droct/doct - G0 (1 - roct/f om )q = constant, and the result is Eq. 22:

f am 1i 'l1oc t q(2

In general, for granular media q < 1, and thus the shape of the Toct vs. "Yoct

curve is similar to the T vs. 6 curve in Fig. 4. The value of the failure shear strain is

obtained directly from Eq. 22 by setting 'oct = f am, and it is

('octfailure = f am/[G0(1 - q)] = f Ul-m/[Q(1 - q)]. Therefore, this predicted failure

strain increases as am increases. Equation 22 describes a very mildly nonlinear

stress-strain curve up to failure. This is made apparent if the ratio G/G 0 is obtained,

where G = ("oct/loct)failure is the secant shear modulus at failure. From Eq. 22,

G/G 0 = 1 - q, which for a typical q = 0.5 is G/G 0 z 0.5.

A more nonlinear -"oct vs. 1'oct curve is obtained if the faster rate of increase of

G with am at low a is incorporated into the formulation, and Eq. 19b is integrated

for the typical cae of am > amt In that case, the following expression, similar to Eq. 22:

S-q2 (23
'f'oct -- Q2 ( 1 - q2) 11 ] ,I (23)
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is valid up to a point in the stress-strain curve defined by rOct, = f(am - ami) and

7 oct 0f'm[1 - (m/am) q2  2 (1 - q2)]. The expression for the curve above

this point is much more complicated than Eq. 23. Of special interest is the following

expression for the strain at failure:

1 -q 2 1-qlf amorm 1 q2] + f O m J( 4
(7oct)failure =Q21 -q 2  (24)

Whether Eq. 22 or the formulation contained in Eqs. 23-24 is used, different

'oct vs. 7oct curves are obtained for different confining pressures am, with the curves

becoming stiffer (higher GO) and stronger (increased f am) as oIn goes up. However,

there are a couple of ways in which the stress and the strain can be normalized in the

model to achieve unique normalized stress-strain curves independent of am.

In the first way, applicable to the case of Eq. 22, a new normalized stress,

Toct = roct/(f om) and normalized strain yoct = (G0/f am)7oct = (Q/f -a)moct are

defined. A simple inspection of Eq. 22 reveals that the normalized curve 'oct vs. 7oct is

independent of am. A similar normalization is valid for the case of Eq. 23 up to rocte

but now using Q2 and q2 "

The second way is even simpler, and can be applied to either case contained in

Eqs. 22 and 23. It is illustrated by the sketch in Fig. 10. If ra vs. 7a is the octahedral

stress-strain curve corresponding to the confining pressure om = aa, and rb vs. 7 b the

corresponding curve for om = ab, with ab > oa, then the portion DE of one of the

curves must be identical to the whole other curve AB. This is a direct consequence of the

fact that the tangent modulus Gnt is identical for any pair of corresponding points in the

two curves (e.g., points F and G in Fig. 10). Therefore, the normalization procedure

consists in first finding in curve CE point D of octahedral stress rbD = f(Gb - aa),
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thus defining also the corresponding octahedral strain 7YbD Then, for curve CE, the

normalized octahedral stress and strain are, respectively, - - rbD and

7b = 7b - 7bD For curve AB, no modification is necessary. The two curves thus

modified are plotted together and should coincide.

As will be seen in Chapter 4, these normalization procedures are very useful to

integrate the experimental results and use them to verify the model. In particular, the

procedure sketched in Fig. 10 constitutes a direct verification of the model's assumption

that all yield cones are parallel to the failure surface.

3.4 Program GRANULAW

As part of this research, the authors developed computer program GRANULAW

(NU (new) stress-strain constitutive LAW for GRAnular media), which implements the

model for any arbitrary stress path complying with the conditions =xx = oyy and

=xy = yz = 0. This is the case discussed in Section 3.2 and used in the experiments in

Volume II.

In GRANULAW, the applied stress components rxx = o yy, azz and zx are

specified incrementally by the user and are transformed by the program into the deviatoric

stress coordinates discussed in Section 3.2. The program computes the corresponding

deviatoric strains which are finally converted to the predicted strains exx = eyy, czz and

"Yzx"

Program GRANULAW is used in Section 4.3 to generate model predicted curves

corresponding to several stress paths of interest, including those used for the experiments in

Volume II.
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4. APPLICATION TO A GRANULAR MATERIAL COMPOSED OF GLASS BEADS

In this chapter, the constitutive model described in Section 3 is applied to the glass

bead experiments presented in Volume II. First, the parameters of the model are extracted

from the appropriate test results, then the model is verified by normalizing some of the test

results in the ways suggested in Section 3.3.2, and finally specific test results are simulated

using program GRANULAW and the simulations compared with the actual measurements.

4.1 Experimental Results and Model Parameters

Figures 11 to 21 present experimental results from the tests on dry pluviated glass

beads reported in Volume II, in a form suitable to the extraction of parameters M, m, Q, q,

and f of the constitutive model for this material.

Figure 11 reproduces the pressure vs. volumetric strain data measured in the

isotropic compression test on a solid cylinder specimen, taken from Fig. 20 of Volume II.

The volumetric strains have already been corrected for membrane compliance (see Vol. II

for details.) The figure also shows the reasonable agreement between the fv values and

the 3fzz values measured in the same test. A further verification of this corrected

pressure vs. volumetric strain curve in Fig. 11 is provided in the same figure by comparison

with isotropic compression data from tests on hollow-cylinder specimens.

As no accurate measure of cv was possible below orm = 35 Kpa, the corrected

plot in Fig. 11 corresponds to (am - 35) vs. (v - fv35)I rather than to the desired ,rm

vs. fv curve. Therefore, the fitting of an equation to the data was conducted as part of an

overall optimization scheme which also provided a "best estimate" value of the volumetric

strain at om = 35 Kpa, ev35. Finally, the following expression was obtained and is

plotted in Fig. 12:

fv(%) = 4.203. 10.3 0O '777 (om in Kpa) (25)
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By comparing this expression with Eq. 21 (where cv is not in %), the following

values of the model parameters M and m are obtained for the glass beads specimens:

M = 3.062. 104

m = 0.223

for a in KPa.

Figures 13 to 16 reproduce deviatoric monotonic test results at am = 138 KPa and

180 Kpa which could be used to obtain values of G at those pressures, and which thus

are useful to produce the model parameters Q and q. The figures are also useful in

showing the overall consistency of the test results for octahedral strains up to 0.25%, the

degree of isotropy of the material during deviatoric loading (perfect isotropy is assumed by

the model), and the volumetric strains (dilation) induced by the deviatoric loading (the

model assumes no dilation).

Figures 17 to 19 show the technique used to extract the value of the initial tangent

modulus Go from these tests. The initial, clearly linear part of the rOct vs. 'foct curve,

up to Yoct = 0.01% or 0.02% depending on the test, was used, with the slope of the

fitted least squares straight line giving G . No effort was made to make the straight line

go through the origin, as small voltage offsets may be present in the stress and strain

measurements. Therefore, the values of G obtained from Figs. 19 to 21 are, respectively,

5.84 • 104, 5.42 * 104 and 6.55 * 104 KPa. In addition, in test GB33, during the

isotropic consolidation part of the test, small nondestructive deviatoric excursions up to

foct = 0.01% were performed and Go  was obtained using the same least squares

technique. All these results for G are summarized in Table 2.

The least squares expression fitted to the data in Table 2 is:

G = 3,802 0.557 (26)

where both G 0 and am are in KPa. Therefore, the model parameters Q and q are:
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Q = 3,802

q = 0.557.

This value of q is close to the power 0.5 which has been obtained by many

authors for sands using resonant column devices and other measurement techniques (e.g.,

Hardin and Richart, 1963). On the other hand, there is evidence that this power is greater

than 0.5 at very small pressures below about 25 KPa (- 500 psf). Seed and Silver (1972)

obtained a value of about 0.7 from low-pressure tests on a sand, while Duffy and Mindlin

(1957) measured as much as 0.8 on arrays of stainless steel spheres at about 10 KPa.

The q = 0.557 just obtained in Table 2 was fitted to measurements performed at

pressures 35 KPa (% 700 psf) or greater. As mentioned previously in Section 3.3.2, this

variation in the value of q between small and large pressures affects significantly the

model predictions near failure during deviatoric loading. Therefore, two other sets of

model parameters Q and q were assumed consistent with all available evidence, as

shown in Table 3.

Figures 20 and 21 present results of two monotonic deviatoric tests to failure,

corresponding to aIm = 138 KPa. The parameter f of the model is simply

(Toct)failure/ am. A value of f = 0.39 was selected, which gives

(Troct)failure = (0.39) (138) a 54 KPa, located within the experimental range of Fig. 20.

4.2 Model Verification

A number of monotonic deviatoric tests (constant am) were conducted at

am = 138 KPa and one test was done at am = 180 KPa (Figs. 13 and 15, respectively).

A comparison of Figs. 13 and 15 reveals that the stress-strain curves at the two confining

pressures are different, as expected, with the curve in Fig. 15 plotting 20-30% higher.

In Figs. 22 and 23, the normalization procedures suggested by the model and

discussed in Section 3.3.2 are applied to all compression tests corresponding to these two
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different am* It is expected that the normalization should make the plots unique and

independent of am .

Figure 22 plots roct = roct/(f am) versus -7oct = (G0/f am) yoct for all

compression tests at am = 138 and 180 KPa. The results are excellent, with all curves

defining a narrow band independent of am.

Figure 23 plots the corrected rOc t , r c , versus the corrected yoct' .yc, for all tests

at 138 KPa, 7c = roct and 7 c = ")oct" For test GB19 corresponding to 180 KPa,

rc = roct - (0.39) (180 - 138) = 'Oct - 16.38 KPa, and 7c is obtained by moving the

origin of the curve as indicated in Fig. 10. Again, the agreement in Fig. 23 is excellent,

providing experimental support to the model assumption of parallel yield cones.

Another assumption of the model is the circular shape of the yield cones (Fig. 9),

which implies that the material is isotropic after isotropic consolidation (i.e., no material or

structural anisotropy). This is dearly a reasonable assumption for the glass beads

material, as shown by the more or less unique roct  vs. "roct curves obtained

experimentally in compression, extension, torsion and combined compression-torsion tests

(Figs. 13 and 20). Further evidence of this isotropy at small strains is provided by Fig. 24,

reproduced from Vol. I, which plots the locus of points of equal 7oct = 0.03% in the

7r-plane for various monotonic deviatoric tests. As discussed in Volume H, Figs. 13, 20,

and 24 cannot be used as a sufficient proof of the circular shape of the yield surfaces, as

these figures constitute plots of equal total strain -oct rather than of equal tangent

modulus Grt - droct/dyoct. However, the evidence of Figs. 13, 20, and 24 is certainly

consistent with the assumptions of circular yield cones and of initial anisotropy of the

material, and a different behavior of these figures would have thrown doubt on the validity

of the model for this material. Furthermore, Fig. 24 provides somewhat stronger evidence,

as the circle plotted from the experiments could be interpreted as the first yield surface if

the assumption was made that the material is elastic and no plastic strains develop for
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"foct < 0.03%. Arguments in favor of the existence of this "elastic zone," at least as a good

first approximation, are: the fact that yoct = 0.03% is of the same order of magnitude as

the threshold strain - 0.01% at which granular materials start to slide and to develop a

new geometric arrangement of particles; and the linear stress-strain behavior up to

^oct = 0.01% or 0.02% exhibited by Figs. 17 to 19.

If the circular locus of 7 oct = 0.03% is interpreted as the first yield surface, then

the corresponding probes for Ayoct = 0.03% obtained experimentally in Volume I after

monotonic prestraining, can also be interpreted as yield surfaces, and their translation and

changes in size and shape can be used to prove or disprove the model assumption of pure

kinematic strain hardening. Figure 25, reproduced from Volume II, includes plots for these

probes before and after monotonic prestraining in compression, extension, and torsion,

respectively. The model predicts that the four probes shown in the figure must be circles of

the same size. Although this is not entirely true, and both changes in size and distortions

can be observed due to prestraining, the assumption of displaced equal size circles can be

defended as a first approximation to the real situation. Further development of the model

to incorporate these size and shape changes require further research and are outside the

scope of this report.

4.3 Model Predictions and Comvarisons

In this section, model predictions using the parameters for the glass beads material

developed in Section 4.1 are compared with experimental results of specific tests. Unless

otherwise stated, the model parameters used are: M = 3.062 • 10- 4 ; m = 0.223;

Q = 3,802; q = 0.557; and f = 0.39 (Bt and G, in KPa). Program GRANULAW and

closed form solutions were used for the model simulations.

Figures 26 and 28 show the comparisons for deviatoric monotonic loading at

constant mean stress a0 = 138 KPa. In Fig. 27, the agreement between model and the
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experimental band is good at small strains, but it deteriorates at larger stresses and strains,

with the model stress-strain curve being significantly more linear than that measured in

the tests. The model fails at a value of -toct = 0.205%, which is clearly too small. This

excessive linearity of the stress-strain response in the model was discussed in Section 3.3.2,

and a possible explanation mentioned there was the constant value assumed for the

parameter q. If larger values of q are assumed at low pressures below 25 KPa, as

suggested in Table 3, the (',octfailure increases as shown in Table 4, from 0.205% to

0.322%. This would improve considerably the agreement with the experimental results in

Fig. 27.

Figure 28 presents the corresponding comparison for volumetric straining (or

dilation) for these monotonic deviatoric tests. For the range of ?oct shown in the figure,

the dilation is very small or nonexistant, versus zero dilation predicted by the model.

Figures 29 and 30 include the predicted and measured response during compression

triaxial test GB20, where the stresses oxx = oyy were kept constant at 138 KPa while

Ozz was increased to failure. Again, the predicted stress-strain curve in Fig. 29 agrees

well with the test at small strains, but the agreement deteriorates at larger strains, with

the model curve being too linear and failing too early. Again, use of either Model 2 or

Model 3 with variable q in Table 4 would improve the agreement.

The agreement between predicted and measured volumetric strains is quite good for

Test GB20 in Fig. 30 for the range in which the specimen was contractive

(?oct < 0.25%).

Figures 31 and 32 present the results of deviatoric loading experiment GB32,

conducted at a constant am = 138 KPa. This test started in compression; that is, rzz

was increased and xx was decreased; when y Oct = 0.25% was reached, ozz and oxx

were kept constant while the torsional shear stress rzx was increased to failure. The

purpose of this test was to verify the prediction of the model for the "tangential" elastic

shear modulus Gtt at the point in the stress path where the increase in rzx started (see
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Section 3.2 and Eq. 20 for definition of Gtt). A decrease in modulus when the test

switches from compression to torsional is apparent in Fig. 31, and the corresponding values

are listed in Table 5. A model simulation was conducted with GRANULAW where a

similar constant Gm test started in compression and then switched to torsion. However,

the exact conditions of the test could not be replicated, as the model fails before 7oct =

0.25%. Therefore, the switch in the model was arbitrarily implemented at 7oct = 35 KPa.

The change in modulus calculated by the model before and after the switch was very small

.ee Table 5).

Another deviatoric stress path of interest which can be simulated with
GRANULAW is a circular path in the ir-plane, with the vector oc rotating in a circle

'Octginacrl
while keeping T'oct - I ct = constant. For this case, the model predicts that ,o does

oc pricYoct
not change and the behavior is elastic, with ezz and e xx varying sinusoidally and coming

back to their initial values at the end of a cycle. Although no circular path experiment was

conducted herein on glass bead specimens, Lanier and Zitouni (1989) and Bianchini, et al.

(1989) have reported results of similar deviatoric circular stress path experiments on two

sands, which essentially confirm the trends just described, thus qualitatively validating the

model proposed in this report.
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5. DISCUSSION AND CONCLUSIONS

The development of the proposed constitutive model and its application to the glass

beads experiments, presented respectively in Chapters 3 and 4, have provided considerable

insight on the potential of the model to represent the response of a granular soil.

In the first place, it must be recognized that the use of glass bead specimens

prepared by dry pluviation is ideal to calibrate the proposed model, or for that matter any

model involving yield cones. The high degree of isotropy exhibited by such material when

isotropically consolidated (Figs. 11, 13, and 24) after correcting the measured volumetric

strains for the effect of membrane compliance, was consistent with the model's prediction

of circular cones with vertices along the am axis during isotropic consolidation. The

inherent (structural) anisotropy often present in actual soils composed of nonspherical

particles and deposited in a gravitational environment will require replacement by

noncircular cones (e.g., elliptical ones), which will also require somewhat more complicated

flow and hardening rules than those now present in the formulation.

On the other hand, that isotropy made the glass beads an ideal material to use for

trying to resolve some main issues before complicating the model further. Those issues and

some tentative conclusions are listed below:

1. Validity of the assumption of yield cones parallel to each other and to the failure

surface, which comes about from two facts: 1) f = tan * is constant and

independent of oIm for a wide range of pressures, and 2) the value of the

elastoplastic tangent modulus G nt associated with a given yield cone must

correspond to the G at a certain orn # 0, which means that the apex of the cone

cannot be at the origin of the stress space where on = 0. Ths is a main

contribution of the proposed model, as other models typically assume that the

apexes of all yield cones are located at the origin of the stress space. For the

relatively narrow range of pressures tested (am = 138 and 180 KPa) the
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hypothesis of yield cones parallel to the failure surface was confirmed (Figs. 22 and

23). On the other hand, the use of a constant value of q Z 0.5 in Eq. 18

(Go  Q. omq ) clearly predicted deviatoric stress-strain curves that were too

linear compared to the measurements (Fig. 27). This demonstrated the sensitivity

of the predicted deviatoric stress-strain behavior to the rate of variation of G at

very small am < 25 KPa, where no measurements were made and where the state

of knowledge for all granular materials including soils is very poor. Higher values of

q at these small am produce increasingly nonlinear deviatoric stress-strain curves

which approach the measured ones (Table 4). It is clearly possible to postulate a

law Go = G0 (am) at low am  which will predict precisely the measured

stress-strain curves to failure.

2. Validity of a flow rule associative only on the or-plane, with the corresponding

assumption that no dilation is present during pure deviatoric loading. This

assumption proved to be quite good for a wide range of deviatoric strains and

stresses, once the measured volumetric changes had been corrected for membrane

compliance, and dilation for this material was found to become significant only near

failure (Figs. 14, 21, 23, and 32; see also Fig. 45 .n Vol. II). As a result, it is clear

that the initial volume reduction in the compression triaxial test GB20, up to a

large shear stress and a shear strain of about 0.3%, is purely elastic and is the

result of the increase in arm during the test, as predicted by the model (Figs. 29

and 30). On the other hand, dilation effects do become important at large shear

stresa and strains in the material tested (Fig. 21) as well as in granular soils, and

the capability to predict this dilation should be a first priority in the further

development of the model. This can be handled, in principle, by modifying the flow

rule and/or the hardening rule, as done by Prevost (1985). The modification of the

hardening rule would involve rotating the yield cones after a strain level has been



Page 31

reached, thus allowing for dilation to take place. The more desirable alternative

would be to modify the flow rule as done by Prevost in this 1985 publication.

3. Validity of assumed elastic stress-strain behavior during circular stress paths in the

ir-plane (Eq. 16) and ,f Eq. 20 to predict the corresponding elastic modulus Gtt.

Although no circular paths were implemented in the tests presented in Vol. II,

similar circular stress paths on two sands reported by Lanier and Zitouni (1989) and

Bianchini, et al. (1989) confirm that the deviatoric stress-strain response is

essentially elastic as predicted. On the other hand, the results of test GB32 (Fig.

31 and Table 5) suggest that the change in modulus when a deviatoric stress path

changes from radial to circular is much greater than suggested by Eq. 20. The

incorporation of an alternative expression for Gtt into the model is trivial and can

be done easily once the corresponding experimental evidence becomes available.

4. Validity of the assumption of purely elastic volumetric strains during isotropic

consolidation (Eqs. 16-17). Although this hypothesis was not tested experimentally

in this research, it is certainly an oversimplification, as it ignores the effect of

overconsolidation on the volumetric strain behavior of soils. This current deficiency

of the model can be readily corrected with the help of a "cap," as done in other

models (Roscoe, et al., 1958; DiMaggio and Sandler, 1971; Baladi and Rohani,

1979).

5. Validity of purely kinematic strain hardening rule assumed by the model, and

possibility of appearance of distortions in t1 ! yield loci/yield cones during deviatoric

loading, as predicted on the basis of micromechanical considerations and

measurements on metals (see Vol. II). Results such as shown in Fig. 25 indicate

that the model's assumption of pure translation of the yield circles without change

in size or shape, while good as a first approximation, is not completely correct and

may require further refinement. A possible avenue to incorporate these distortions
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is the viscoplasticity mathematical formulation presented by Yen (1979) and Yen

and Eisenberg (1987), but without the time rate effect and adapted to allow for the

influence of am and to incorporate the modified deviatoric stress space of Eqs. 10.

In such a model, a distortion correction term R. is introduced into Eq. 10a defining

the cones. That is, Sj - SJi in Eq. 10a is replaced by S. - SJi + R.. Another way

is the two-parameter model proposed by Voyiadjis and Foroozesh (1990), where the
Hill (1950) anisotropy tensor Mijkl is used as follows:

F = Mijkl (Ski - akl) (Sij - ,ij) - (am - ami)2. This formulation is shown to

have distinct advantages over previous models and can be implemented numerically

in the specialized 3-D version of the model used in this volume.

6. Plastic volumetric straining induced by repeated deviatoric loading (densification

associated with cyclic loads). Although this subject was not investigated

experimentally to any significant extent in Vol. II, it is known to be important in

granular soils, it is not included in the current version of the model, and its further

development should include rules to allow for this effect.

7. And, finally, the problem of inherent or structural anisotropy, already mentioned,

which was not present in the glass beads results analyzed but which is important in

sands and other granular soils. This is an important and complicated problem,

which is being currently addressed in Plasticity Theory. "Inherent anisotropy"

means that the material is anisotropic in its reference state. After plastic flow has

occurred, in general, the material ceases to have the anisotropy of the reference

state. A very good example of this is the case of rolled steel; in its stress free state,

before rolling, the material is isotropic and its behavior could be described by

isotropic functions. After the sheet of steel has been subjected to rolling, it may

exhibit orthotropic symmetry, and if this is to be the reference state, the material

behavior should be described by orthotropic functions with respect to the new
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reference state. The case of soil anisotropy is very similar: if the behavior of an

anisotropically consolidated sand is to be described, this has to be done with

orthotropic functions. In general, simple solutions applied only to the elastic part of

the strain, such as proposed by Hardin (1980), are not appropriate. For example, if

the tests of Stokoe and his co-workers, already mentioned, are to be taken into

account, orthotropic functions are needed for the description of the phenomenon. It

is reported by Hill (1950) and Dafalias (1979) that the yield condition must take

into account the material symmetries present in the initial (reference) state. The

direction of flow is dependent upon those, and the yield surface mu-t i.ake them into

account. This not only complicates the expressions of the yield surface

considerably, but the implementation of the law as well. For example, according to

Dafalias (1979) and Voyiadjis and Foroozesh (1990), the expression for the yield

condition of an orthotropic material becomes F = Hijk S ij Sk1, where H ijk is a

fourth rank tensor which depends on the material symmetry and the plastic strain.

Despite its obvious complexity, the plasticity of initially anisotropic materials can

be taken into account in a number of ways for the cases of transverse isotropy and

orthotropy. The case of transverse isotropy is very common in the mechanics of

composite materials (Dvorak and Bahei-El Din, 1982), and is handled with the aid

of four stress "pseudo-invariants" which take into account the symmetries of the

material. In the case of soils, Dafalias (1986), Dafalias and Herrmann (1986), and

Anandarajah and Dafalias (1986) have proposed a general plasticity model which

has been applied to model isotropic and anisotropic clay in undrained condition.

The case of drained loading of sand is more complex, since its behavior is pressure

dependent and its material symmetry gets affected by variations in the mean stress
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In summary, since the model proposed for granular media is founded on the contact

law between two spheres, it captures a number of key aspects of the stress-strain behavior

of granular soils (see Table 1). Furthermore, it contains a small number of parameters

with dear physical meaning which can be readily determined in the laboratory. It also

contains some novel aspects (parallel yield cones, and relations between elastoplastic

behavior and the elastic small strain constants of the medium) which provide significant

new physical insight. In addition, the fact that these elastic small strain constants

determining the rate at which plastic flow takes place, can in principle be determined from

micromechanical considerations or measured in situ by geophysical techniques, may be

potentially significant in both conceptual and practical terms. On the other hand, the

model requires further development in the areas 1 through 7 listed above. The

implementation of some of these changes is very easy, while others will require a longer

analytical and experimental research effort.
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TABLE 2

Fitting of Eqjaticr~ Go 7 q~ to Measured Results on

Glass Bead Specimens

_____ ____G __ _ _ _ _ _ 0  (10 4 KPa)

m (KPa) Test GB33 Test GB19 Other Tests Equation 26*

35 2.55 - --- - - - -- 2.75

70 4.55 - --- - - - -- 4.05

105 5.35 - --- - - - -- 5.08

138 5.65 --- 5.42 to 5.84 5.91

180 ---- 6.55 ------- 6.86

Equation 26: G = 3,802 Ca0.5 (KPa).0 m



TABLE 3

Model Parameters Used for Equation

G Q aq, Glass Bead Specimens

(G0  and am in KPa)

Below amE Above amy

GmX QI ql Q2  q2

Constant Q and q 3,802 0.557 3,802 0.557

25 KPa 2,400 0.70 3,802 0.557

25 KPa 1,740 0.80 3,802 0.557



TABLE 4

Failure Strains Predicted by Model for Various Values of ql:

Monotonic Deviatoric Loading with am = 138 KPa

ql q2

Model (for am < 25 KPa) (for am > 25 KPa) (Yoctlfailure

1 0.557 0.557 0.205%

2 0.70 0.557 0.251%

3 0.80 0.557 0.322%

(yoct)failure calculated with Eq. 24.



TABLE 5

Predicted and Measured Changes from Gnt to Gtt During Deviatoric Loading:

Compression and Torsion Test GB32 at am = 138 KPa

Place of Switch
Compression to Torsion Gnt Gtt

Model Toct = 35 KPa 3.41 • 104 KPa 3.15 • 104 KPa

Experiment Yoct - 0.25%

T Oct = 50 KPa 0.99 • 104 0.23 • 104
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Figure 13. Devlatoric monotonic loading results on hollow cylinder
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and compression-torsion (CT). All tests are at constant
mean pressure, am = 138 KPa.
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Fiqure 17. Calculation of G at beqinning of deviatoric test GB27,
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and yc = oct"
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Figure 24. Initial yield locus determined from all deviatoric monotonic
loading tests with constant am = 138 KPa.
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Figure 26. Deviatoric stress-strain curve predicted by model for

constant mean stress loading, am = 138 KPa.
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Figure 27. Comparison between model prediction and experimental

results, am = 138 KPa.
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Figure 28. Comparison between model prediction and experimental Psults,
arm = 138 V~a.
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Figure 29. Comparison between model prediction and experimental results,

triaxial compression test GB20 (cell pressure = 138 KPa).
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Figure 30. Comparison between model prediction and experimental results,
triaxial compression test GB20 (cell pressure = 138 KPa).
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Figure 31. Comparison between model qualitative simulation and
compression and torsion test GB32, am = 138 KPa.
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Figure 32. Measured volumetric strains in compression and torsion test
GB32, am = 138 KPa.


