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1. INTRODUCTION

Over the past 30 years considerable attention has been given to the development of
corstitutive laws for engineering materials (Hill, 1950; Prager, 1955; Mroz, 1967, Dafalias
and Popov, 1976; Drucker and Palgen, 1981). Among other formulations, the existing
models are based on the theories of elasticity, hypoelasticity, plasticity, and viscoplasticity.
Despite the large number of models there has been no consensus within the research
community on the best approach. However, the models based on the theory of plasticity or
viscoplasticity appear to be the most promising.

Some of the most popular and widely used models for sand have been based on the
"cap model" of DiMaggio and Sandler (1971). As versatile as "cap models" may be, they
have not been successful in accurately modelling monotonic and cyclic loading conditions.

Similar limitations apply to other models (Baladi and Rohani, 1979), and it can be
argued that the existing plasticity models of the "cap" type are only adequate for
monotonic loading of isotropic soil. In an effort to overcome this, a variety of constitutive
laws have been proposed which incorporate a combination of isotropic and kinematic
hardening (Mroz, 1967), either in a two (Dafalias and Popov, 1976), or multiple yield
surface context (Mroz, 1967; Lade, 1977). Although these more recent theories represent a
considerable advancement over the "cap" models, they too have drawbacks. These include
the use of "a priori" hardening rules, and the inability to take into account either the
prestraining effect after load reversals or the inherent, elastic anisotropy of the soil. This
elastic (inherent) anisotropy which is most significant for anisotropically consolidated sand
has been measured in sand by Stokoe and his coworkers (Knox, et al., 1982; Koppermann,
et al, 1982), while Dafalias (1979) has discussed its modeling implications. Finally, all of
the above existing plasticity models for soils are phenomenological; their formulations
depend on the interpretation of the macroscopic results by the researcher and not on
micromechanical principles. As such, they are in need of constant refinement when needed

for cases very different from the one the model was originally developed and calibrated for.
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The current situation in metal plasticity is quite different. Although it is true that
modelling of the nonlinear behavior of metals started on a similar phenomenological basis,
there has been a later shift toward formulating the metal response with due consideration
to basic micromechanical principles. Recently, this has been enhanced by specific
experiments and micromechanical (electron microscopy) measurements (Stout, et al., 1985;
Helling, et al., 1986). The situation is analogous in the modelling of more complex
composite materials, where experiments and micromechanical analytical simulations are
combined to create the corresponding constitutive law (Dvorak, 1987; Dvorak, et al., 1988).

Although metal properties are not pressure dependent and their symmetry does not
change as much with loading as in soils, the stress-strain behavior of metals and soils is in
many respects similar. As a result, most current soil plasticity models are modified
versions of popular phenomenological metal models. Notable examples include the Mroz
(1967) model for metals and the Prevost (1978) model for undrained loading of clay, as well
as the bounding surface model used by Dafalias and Popov (1976) for metals and
subsequently adapted to soils by Dafalias and Herrmann (1982). Unfortunately, no
plasticity model exists for soil resulting from the combination of specific laboratory
experiments and micromechanical principles including numerical simulations of granular
arrays.

Recently, the geotechnical groups at the University of Colorado (Klisinski, et al.,
1988), US Army WES (Peters, 1988), and University College of London (Arthur, et al.,
1988), working together in a concentrated effort, developed a constituutive law which is
based on a series of innovative 3-D laboratory experiments performed for this purpose
(Alawi, et al., 1988). This was probably the first time that a thorough experimental
investigation is performed in Soil Mechanics which attempts to verify widely accepted
rules, such as the hardening law, the yield surface shape during loading, the normaility
rule, etc. The resulting model (Klisinski, et al., 1988) is based on the bounding surface
model of Dafalias and Popov (1976) and on the theory of "fuzzy" sets.
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A large number of models have been proposed for granular soils, including those just
mentioned and others (Petrakis and Dobry, 1986; 1987). Most of the models for sands are
included in the Proceedings of the International Workshop on Constitutive Equations for
Granular Non-Cohesive Soils (Saada and Bianchini, 1989). However, as pointed out in
that workshop by Scott (1989), this growing modelling effort often includes a.. increasing
mathematical complexity unrelated to additional physical insight, including models
containing a large number of parameters (as many as 40) without clear physical meaning.

The authors have taken a different approach to the formulation of a constitutive law
for dry granular soil. They use as a starting point the micromechanical force-deformation
contact law between two spheres representing two grains. There is a clear physical
justification for this. A number of key features of the stress-strain behavior of cohesionless
soils and other granular materials are clearly related to the internal structure of the
medium, typically composed of individual particles that interact only at their contact
points. In turn, some of these features are traceable to the force-displacement response at
the contact between two grains, while others require consideration of the whole geometrical
arrangement of the mass of particles. To this last category belong the phenomena of
volumetric change under shear (dilation), the inelastic volumetric changes during isotropic
consolidation, the effect of overconsolidation, the tendency to densification under cyclic
shear, and the structural anisotropy, typically encountered in granular materials.

Aspects of stress-strain behavior for which a clear counterpart is present in the
contact force-displacement response are listed in Table 1.

Seridi and Dobry (1984) and Dobry, et al. (1991) have proposed an incremental
elastic-plastic model for the contact force-displacement resvonse, which constitutes a
general solution to the problem originally studied by Hertz (1882), Cattaneo (1938), and
Mindlin and Deresiewicz (1953). This report proposes a stress-strain relation for granular

media based on this contact model.




Page 4

As discussed in the text, in its present form the model is completely defined by a
small number of parameters (as few as 5) having very clear physical meaning and related to
failure and small strain soil properties of common use in soil mechanics. In addition, it is
in principle possible to relate these macroscopic parameters, through averaging techniques,
to basic micromechanical properties of the soil at the contact and particle level (Petrakis
and Dobry, 1987). On the other hand, the model as proposed here is clearly incomplete
and needs further development, as it does not yet reflect all important phenomena observed
in granular soil.

After a description of the contact model, the proposed stress-strain relation is
presented for the general case. Then, the model is specialized to the particular case of
compression, extension, and/or torsional loading of hollow-cylindrical granular specimens
as used in the tests discussed in Volume II of this report. A computer program is
developed which implements the model for any stress path corresponding to this testing
technique. The predictions of the model are then compared with results of the tests of
glass beads specimens included in Volume II. This is closed by a discussion of the results

and some conclusions.
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2. CONTACT MODEL

Figures 1 through 7 summarize some of the main features of the elastic-plastic
contact force-displacement model developed by Seridi and Dobry (1984) and Dobry, et al.
(1991). Figure la sketches the two identical spheres in contact, of radius R, elastic
properties G (shear modulus) and v, (Poisson’s Ratio), and friction coefficient f. The
spheres can be compressed and can slide with respect to each other but cannot rotate.

Figures 1b and 1c show the 3-D force space

§=N§+Tx3+Ty1}
and the corresponding 3-D relative displacement space
B:a;+6x:i+6yl;
N, Tx, and Ty are, respectively, the normal and two tangential contact force
components, while a, 6x, 6y are the normal and two tangential components of the relative
displacements between the spheres’ centers. The unit vectors i, j, and k are parallel to
the normal to the contact and to the two tangential directions, respectively.

The yield surfaces of the model in force space are sketched in Fig. 2 for two different
load histories. There are always infinite yield surfaces, with all being nested cones parallel
to each other. All cones have their axes parallel to N, and they have an inclination f.

Except for the failure cone of equation
2 2 _ 2
T2+ T = 2 N2
the cones do not pass by the origin. The apex of cone i has an equation:
2 2 _ 2
(T - T + (T, - Tp) =2 (N-N,)%.
This cone is associated with a value of N = N, which is unique and does not vary during

loading. On the other hand, the other two coordinates of the apex, T4 and T ., do

yi’
depend on the history of loading.
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The model hardens in a purely kinematic way, as illustrated in Fig. 2a for a history which
consists of increasing N to a constant value followed by a monotonic increase of T = T,
(force path OAB). Only elastic displacements occur along OA, but both elastic and
plastic displacements occur along force path AB. Figure 2b shows the formation of cones
for a case of proportionai loading from the origin, which also induces only elastic
displacements between the two spheres.

Figure 3 shows the force-displacement curve predicted by the model when only the
normal force is increased (that is, T = Ty =0, path OA in Fig. 2a). The behavior is

nonlinear elastic, with the normal stiffness increasing as N increases (locking behavior).

The force-displacement curve follows a power law,
2/3
a=C N (1)

where C1 = constant. One consequence of this that the normal stiffness dN/da increases
with N:

fa= o N )

Figure 4 plots the stress-strain relation for tangential path AB in Fig. 2a. The
behavior is now of yielding type, with failure (sliding of contact) occurring when T = iN,

and the force-displacement curve is given by the equation:
2/3 T 2/3
§=Cy N3 [1- (1 - T} 3)

where 02 = constant. An important consequence of Eq. 3 is that the tangential stiffness

at point A of Fig. 23, (dT/dé)q_,, is an increasing function of the value of N:

(8], = L (4

Figures 5 and 6 present the force-displacement response predicted by the model for several

simple force paths, and compares these predictions with those obtained originally by
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Mindlin and Deresiewicz (1953). In all cases for which particular solutions are available,
including those of Figs. 5 and 6, there has been complete agreement between the model and
Mindlin-Deresiewicz results. The hysteresis loop PRSUT predicted for cyclic tangential
loading in Fig. 5b, in conjunction with the backbone curve OP, satisfies the criterion
proposed by Masing (1926). Figure 7b shows the positions of the yield cones after the more
complex force path OABCD in Fig. 7a.

The flow rule of the model follows a modified normality rule and is defined by
Eq. 5:

- dT_ - f dN . d T, -
_dN f dN n t
I - ys
where:
;1: unit vector normal to the yield circle at the current force point (yield circles
are defined by the intersection of the yield cones with -plane, see Fig. 2a)
;;: unit vector tangent to the yield circle at the current force point
- .
dT n = dT.n
-+ .
dT, = dT.t=(d1?-d13)/?
- a a
dT = dT n + th t
-+ -
= d T, +d T,
f: coefficient of friction of the material of the spheres
a = (BNR) with B = _S_G_ and a = radius of area of contact
R = radius of the two spheres
Gs’"s = elastic properties of the material of the spheres
4 G gd
Ho = 2— is the elastic stiffness
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1/3
H = H, [1 - '%N] , elastoplastic stiffness corresponding to the yield
circle of radius K
8Gsa K K 2/3
Hp = 2—_-V—s STN/ [1 - [1 - TN] ] is the tangential elastic stiffness

Equations 1 through 4 are contained in the more general Eq. 5, with the
corresponding expressions for the constants C1 and C2 being functions of the physical
parameters of the spheres, R, Gs’ Vgr and f.

Three of the terms in Eq. 5 are purely elastic, and one contains a plastic component.
The first term is da = dN/[2Gsa/(1 - v,)] and corresponds to the nonlinear elastic Hertz
law. The second elastic term includes part of the elastic-plastic tangential displacement to
the yield circle, and is controlled by the elastic stiffness Hy =4Gga/(2 - v,). The third
term includes both an elastic and a plastic tangential displacement, both normal to the
yield circle, and is controlled by the elasto-plastic stiffness H = Ho[l - K/(fN)]l/ 3,

Finally, the fourth term gives the elastic displacement tangent to the yield circle, and is

lled by the stiffness H._ = oot K13, derived by Seridi and
controlled by the stiffness p—2——T/[1-(1--1-W) ], derived by Seridi an

Dobry (1984).
Of particular interest is the elasto-plastic third term in Eq. 5. It is clear that a

modified version of the usual normality rule valid for many pressure-independent materials

-t
(e.g., see Christian and Desai, 1977) is applicable here: the plastic component of dD is
parallel to ;1, the normal to the yield circle, rather than to the normal to the yield conical
surface. This is consistent with the fact that at the contact between the two spheres, only

- P N
the tangential displacement dé = d6xi + dﬁyj can contain a plastic component, with the

normal displacement da = dal; being purely elastic from the Hertz solution.
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It is interesting to summarize the parameters of the contact model described by Eqs.

1 through 5 in a way useful to its adaptation to a stress-strain model as discussed in the

following sections.

There are four physical parameters corresponding to the properties of the spheres,

which characterize the contact model completely: R, Gs’ Vg and f.

iii)

From another viewpoint of more interest here, these four parameters can be replaced

The law giving the elastic relation between a and N, or between dN/da and N,

Eqs. 1-2 and first term of Eq. 5:
dN m

where M =1.5/C; and m =1/3 in Eq. 2.
The law giving the elastic-plastic relation between T and & in Eq. 3, or the
tangential stiffness (dT/déi)T=0 in Eq. 4, or the elastic second term and the
elastic-plastic third term in Eq. 5:

[g%:] T=0 Q- N (7)
where Q=15 f/C2 and q=1/3 in' Eq. 4. If the formulation of Eq. 7 is adapted,

Eq. 3 can be rewritten as follows :

=91 - a) NI [1 -(1- -’fw)l‘q] (8)

The law giving the elastic tangential stiffness (Hp)'1 in the fourth term of Eq. 5,

where

8 G
B, = =5 5 / [1-0-$p] ©)

where all the terms in the expression are known parameters (K is the radius of the
current yield circle, and for the simplest monotonic loading case it corresponds to

the current value of the tangential force, K = T).
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Therefore, in addition to H_ in Eq. 9, which will be discussed separately in the

next section, the model can be com:letely characterized by the values of five parameters:
M, m, Q, q, and f. Note that the monotonic tangential stress-strain curve at constant N
described by Eq. 8 and corresponding to Fig. 4, is completely defined once f, Q and q are
known. This is given by the fact that the value of the elastic-plastic tangential shear

moduli:
dT/dé=Q - Ni(1 - T/iN) = (dT/dé)p_, (1 - T/IN) ,

corresponding to monotonic loading at point B in Fig. 2a, is the same at all points in the
corresponding cone’s surface. That is, dT/dN at point B in Fig. 2a is identical to
(dT/dN)T=O =Q- N?, where N, is the value of N corresponding to the apex of the

cone passing by point B.
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3. STRESS-STRAIN CONSTITUTIVE RELATION FOR GRANULAR MATERIAL

31 General Case

The force-displacement contact model described in the previous chapter can be
transformed into a stress-strain relation for granular material using modified deviatoric
stress and strain spaces. The modified 6-D deviatoric stress space used has one isotropic

stress axis S0 and five deviatoric axes, S1 to SS’ defined as follows:

Sy = (0 + 0oyt 0, )3 =0a,

§, = (O - ayy)/3

Sy = [0y - 0,5)° + (0,5 - 0, )21%/3 (10)
S3=(V8/3) 7y,

S4 =(y/6/3) Tyz
SS = ("/_6/ 3) Tax

T T_. are the customary normal and shear stresses

where o__, o T, v2' Tax

xx yy’' xy’
corresponding to three fixed cartesian axes x, y and z. In this space, a r-plane is defined

Uzz’

by S0 = constant, and it is easy to verify that the magnitude of the octahedral shear stress
_(c2 ., 02,2, 2, c2\05

Toct = (8] + 53 + 83 + 55 + §¢) ™.

Similar to the infinite yield cones in 3-D force space (N, T,, Ty) in Fig. 2, there is an

is the projection of the stress vector on this »-plane:

infinite number of yield cones in this 6-D space, with equations of the form:

5
2, (8- 8y)" = (5, - Sy (100)
j=1

where f = tan ¢ describes the failure envelope of the soil, and sOi’ sli’ ey S5i are the

coordinates of the apex of the 6-D cone. For the special case in which the loading does not
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involve rotation of the principal stress directions, it is possible to come back to a 3-D
space, which most conveniently can be defined by the principal stresses (al, O, 03);
Fig. 8 sketches a couple of the yield cones for this case. Either in 6-D or 3-D space, and
the same as in the contact model, the cones move as rigid bodies (purely kinematic strain
hardening), with the apex of cone i always contained in the same r-plane, independently
of the history of loading. That is, in 6-D space sOi is constant and unaffected by the
loading history. Also, the same as in the contact model, the yield circles, defined by the
intersection of the yield cones with any deviatoric plane (7-plane) are always circles and
are never distorted whatever the loading history.

Parallel to the 6-D modified deviatoric stress space there is a modified deviatoric
strain space, defined by a volumetric strain axis E0 and five deviatoric strain axes:

E0=exx+e +ezz=e

yy v
E, = 2(exx - eyy)/3
By =2(eyy - €,)° + (6~ 6 /3 (11)

Eg=(V8/3) 7,
Ey=(VEB/3) 1,
Ey = (V/3) 1,
are engineering shear

where €egr € ¢ _ are normal strains and eyt 7V

yy' ‘zz yz' Tex
strains. The magnitude of the (engineering) octahedral shear strain is

Yoot = (53 + 52 + 52 4+ 53 + 5205,

Similar to the contact model, E, is computed from S0 through a nonlinear elastic
relation, and thus EO is purely elastic. On the other hand, for any stress increment, the
five deviatoric strain components E1 to E5 include plastic strains, calculated by means

of a flow rule where normality is only observed on the deviatoric plane (»-plane). That is,
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the plastic strain increments are normal to the yield circles and not to the yield cones.
Flow rules such as this, associative only on the »-plane, have also been allowed for in other
constitutive models (e.g., Prevost, 1985).

Once E, through E, are determined from the model, the three shear strains,
7xy, 7yz’ T,x 3T€ obtained directly from Eq. 11, and the normal strains, €y’ vy 2z
are calculated from Eo, El’ and E, by inverting a 3x3 system of equations (first three
lines of Eq. 11).

‘ase ol Gy =gy 20d T, =17y, =10

A great simplification of the model and a return to 3-D space is obtained for

loading histories where Oxx = Oyy and Ty = Ty

laboratory tests that can be done with the triaxial/torsional apparatus on hollow-cylinder

.= 0. These include all possible

granular specimens, such as described in Volume II, provided that the inside and outside

pressures are kept the same. In these tests, Opp = vertical axial stress, Oex = ayy = cell
pressure, and Tox = torsional shear stress. Furthermore, in what follows it will be
assumed that a similar behavior is valid for the strains, with normal strains, €ex = ‘yy’
and engineering shear strains, 7xy = 7yz =0.

Therefore, in Eq. 10, Sl = S3 =S 4 =0 and only three stress components are
required: S) = o, =é (20, + 0,,), Sg=v2/3(0,,-0,,), and Sy =6/371, .

These stresses are the counterpart of the three contact forces in Figures 1 and 2 as

follows:
Contact Force Stress
N So=0n=1/3(20,+0,,)
T, Sg=v2/3 (0, - 04y)
Ty Se=v8/37,
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and the yield cones in this 3-D stress space look identical to and follow the same rules as
those of Fig. 2.

The corresponding stress space and yield cones are depicted in Fig. 9. The
deviatoric, octahedral or 7-plane is defined by the deviatoric coordinates

v2/3 (o, -0,,) and v6 /3 7,,, and a vector from the origin O of the r-plane has

—

the magnitude of the octahedral shear stress IToctl = Toet!
> 1
|7 =7 .= 2 _ 2 (12)
oct oct — 3 /6(rzx) + 2 (0, - 0..)

That is, the position of any stress point in the stress space of Fig. 9 is defined by the

-

position vector o from the origin of the whole stress space:

o=l (o -0 )i+B 1 T4 k=7  +ok (13)
From the viewpoint of constant mean stress laboratory tests on isotropically consolidated
hollow cylindrical specimens of granular material, all stress paths in Fig. 9 are contained in
the corresponding =-plane. For example, all monotonic constant mean stress tests
correspond to radial stress lines in the x-plane starting from point 0 in the figure and

extending to the failure cone:
V2/3 (0, - o ) + (837, = 0 (14)

In the figure, the direction OA corresponds to a compression-extension test in which the
axial stress L is increased and the cell pressure T is decreased to maintain
On = 1/3 (20, + azz) = constant (compression test in soil mechanics parlance). The
direction OB corresponds to an extension-compression test (azz is decreased and o x
increased; extension test in soil mechanics parlance). Finally, directions OC and OD
correspond to purely torsional shear monotonic loading. Oblique directions would

correspond to combined axial-torsional tests. The corresponding parallel 3-D strain
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space, under the assumption that ¢ = ¢ vy and Yoy = Ty

following three strain coordinates, obtained from Eq. 11 with E, = E3 =E; =0

7 = 0, is given by the

Strain Corresponding Stress
E0= v—(2exx+ezz) So=am=1/3(2axx+azz)
Eo=2v2/3(e,, - ¢,) So=v2/3(a,,-0.)
E5=’£/37zx S5="2-/37-zx

¢, = (2 ¢, + ¢, ) is the volumetric strain, while 22 /3 (¢,, - ¢ ) and B/3 7,
are deviatoric strains. This 3-D strain space is the counterpart of the 3-D displacement
space for the contact in Fig. 1c. The deviatoric or octahedral plane in strain space is

defined by the deviatoric coordinates 2 vZ /3 (¢,, - ¢, ,) and 6 /3 T, 2nd a position

-
vector from the origin of this octahedral plane has the magnitude | To ct| = Yoct :

Toct =3 V 2 (6 = 6)° + 3/2 7y (14)

That is, the location of any strain point in this strain space is defined by a position vector

Y

¢ from the origin of the whole strain space :
- -~ - - -+ a
‘=2ﬂ/3(‘zz"xx)i+’ﬁ/37zxj+‘vk=7oct+‘vk (15)

The flow rule for the stress-strain model, equivalent to Eq. 5, is:

- do_ . f do ~ dr. - fdo_ . drT, -
de=—B-k+— 2 n+—2 D)+ bt (16)
B, Gy Gt Gyt

-+ S

where the unit vectors k,n and t have the same meaning as in Eq. 5, d'rn = d-roct - n,

-)
and d*rt = droct . t.
It is interesting to discuss the parameters of the model, contained in Eq. 16,

following the logic used at the end of Chapter 2. The parameters are defined as follows:
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The first term of Eq. 16 contains B, = bulk modulus = do_ /de,, which can be

expressed as a power of o, similarto Eq. 6 :

B,=M: o (17)

The law giving the elastic shear modulus G, = (dr/d7),_, and the elastoplastic
shear modulus G = dr/dy for the second and third terms of Eq. 16, respectively.
G can be expressed as a power of ¢ m’ similar to Eq. 7 :

Gy=Q- o] (18)
and

G, =Gy (1- Toc t) (19)

As will be seen later in this volume, the exact expressions of G0 and G at
and especially the value of the power q - at low values of the confining pressure
T determine the shape of the shear stress-strain curve near failure predicted by
the model. There is some evidence in both arrays of spheres (Duffy and Mindlin,
1957) and sands (Seed and Silver, 1972), that at very low pressures the value of q

is larger than at higher pressures. In that case, Eq. 18 is replaced by:

q
G0 =Q aml for O S Ty
ql
=Qy 0, for T2 %y (18a)

-q
where 9y < qq and Q2 Ql( t) 4 2 i Eqs. 18a are used, Eq. 19 is replaced
by Eqs. 19a and 19b:

B op$ome

q
Gy =Q onl(1- 12 t) (19a)
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If Tm 2 LA
Q (1- 0“)(12 for . ¢
~ %2 "m Toct * Tocts
G =Q ol - °°t) f 19b)
nt = *1%m T Toct 2 Toct (
where 7 .., =f(o - op ).

iii)  If a strict parallel stress-strain counterpart behavior is accepted with respect to the
force-displacement contact model of Eq. 5, the "tangential" elastic shear modulus

G,, in the fourth term of Eq. 16, is given by the rest of the parameters of the

tt
stress-strain model, as follows :

_ Q1 - Toct
Gtt - -q G T (20)
Gnt I m

In that case, only five parameters are needed to completely define the
proposed stress-strain constitutive relation: M, m, Q, q and f, or eight parametcis
if Ql’ Q2, qy, A and Ome € specified. The two numbers (M, m) define the
volumetric stress-strain behavior and can be obtained from isotropic consolidation
tests; the two numbers (Q, q) define the variation of G0 with on and can be
obtained from axial or torsional shear loading of soil specimens consolidated to
various o ; and f = tan ¢ can be obtained from monotonic axial or torsional
shear tests to failure. The expression for G“ in Eq. 20, however, needs to be
verified experimentally. If the verification disproves Eq. 20, the model is flexible
enough to allow a different specification of Gtt consistent with the experimental
results. In this case, however, more parameters will be needed in addition to the

five (or eight) model parameters just listed.
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33 Simple Stress Paths

It is useful to examine some main aspects of the stress-strain behavior predicted by
the model for a couple of simple monotonic stress paths. This is done in this section for

isotropic compression and purely deviatoric (constant means stress) loading.

3.3.1 Isotropic Compression

. _ _ _ . :
In this case, Tex = ayy =0, =0y and all 7’s are zero. The stress path is

located along the o, axis in Fig. 9 and all yield cones have their apexes located along this
axis. Equation 16 reduces to d¢ = (dam/Bt)k or de = dam/Bt = dam/(M 02). The
integration of this expression gives the relation between confining pressure o, and

volumetric strain €,

=M @) (21)

This is a nonlinear elastic relation valid for any history of isotropic loading or
unloading. That is, the model predicts only elastic volumetric strains during isotropic

compression. For typical values of m < 1, the shape of the corresponding €, VS. 0

curve is similar to that of the a vs. N curve in Fig. 3.

3.3.2 Deviatoric Monotonic Loading

In this case, the material is first compressed isotropically to 0 and then is

loaded monotonically to failure by increasing Toct

g, constant. These are the constant mean stress tests conducted in Volume II. By

considering the definition of Toct in Eq. 12, this can be accomplished by either increasing

in a proportional manner while keeping

T,x (torsion test), increasing o, while decreasing o, (compression test), by increasing

0yx  While decreasing o,  (extension test), or by other combinations of
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compression-torsion or extension-torsion. For a given g, the model predicts the same

stress-strain relation, 7 for either of these tests. This is a consequence of

oct ct’
the basic assumption of the model that the material is initially isotropic under isotropic

versus 7,

loading, reflected in the symmetric disposition of the yield cones around the o, 8xis

before deviatoric loading starts (Fig. 9). If Eq. 18 with one value of q is valid for all T
the stress-strain relation is obtained by integrating Eq. 19,

G = dToct/d7oct = Go(l - Toct/f am)q = constant, and the result is Eq. 22:

o2 [ L) o

In general, for granular media q < 1, and thus the shape of the 7

VS.
oct 'S

Toct,
curve is similar to the T vs. § curve in Fig. 4. The value of the failure shear strain is

obtained directly from Eq. 22 by setting Toct = f O and it is

(Yoct failure = f om/[Go(1 - O} = £ a&l'q/[Q(l - q)]. Therefore, this predicted failure

strain increases as % increases. Equation 22 describes a very mildly nonlinear

stress-strain curve up to failure. This is made apparent if the ratio G/G0 is obtained,

where G = (7, is the secant shear modulus at failure. From Eq. 22,

t/ 7oct)failure
G/G0 =1 - q, which for a typical q = 0.5 is G/G0 % 0.5.

A more nonlinear Toct V8 Yoct CUIve is obtained if the faster rate of increase of
G0 with o, 8t low Om is incorporated into the formulation, and Eq. 19b is integrated

for the typical case of om > me In that case, the following expression, similar to Eq. 22:

1-q
- f"m 2 1 [1 Toct 11792 23)
=gy (] ‘
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is valid up to a point in the stress-strain curve defined by Toct! = f(am - ”mt) and

Tocte =10 mll - (o mt °m ) ]/[Q2 m2 (1- qy)]. The expression for the curve above

this point is much more complicated than Eq. 23. Of special interest is the following

expression for the strain at failure:

1'Q2 1- “q
fo 1-q fo
[CTU P —— [1 - [ﬂ] . I (24)
Toct/failure Q2 (T - q2i on Ql 1T - qli

Whether Eq. 22 or the formulation contained in Eqs. 23-24 is used, different

Toct V5 Yoot CUTVES are obtained for different confining pressures 0,y With the curves

becoming stiffer (higher G) and stronger (increased fo,) as g goes up. However,
there are a couple of ways in which the stress and the strain can be normalized in the
model to achieve unique normalized stress-strain curves independent of T’
In the first way, applicable to the case of Eq. 22, a new normalized stress,

! 1-
Toct = Toct/(f o) and normalized strain 7oct (Go/f 03) 15t = (Q/f 0y q)7oct are
defined. A simple inspection of Eq. 22 reveals that the normalized curve Toct vs. 7oct is

independent of o _. A similar normalization is valid for the case of Eq. 23 up to 7

m’ octl

but now using Q2 and q,.

The second way is even simpler, and can be applied to either case contained in
Egs. 22 and 23. It is illustrated by the sketch in Fig. 10. If T, V8. 7, i8 the octahedral
stress-strain curve corresponding to the confining pressure Om = T
corresponding curve for Im = % with T > O, then the portion DE of one of the

and Ty V8- % the

curves must be identical to the whole other curve AB. This is a direct consequence of the
fact that the tangent modulus Gnt is identical for any pair of corresponding points in the
two curves (e.g., points F and G in Fig. 10). Therefore, the normalization procedure

consists in first finding in curve CE point D of octahedral stress 7 = f(oy - a,);
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thus defining also the corresponding octahedral strain ToD- Then, for curve CE, the
normalized octahedral stress and strain are, respectively, rg =Ty - D and
7§ =T - %D For curve AB, no modification is necessary. The two curves thus
modified are plotted together and should coincide.

As will be seen in Chapter 4, these normalization procedures are very useful to
integrate the experimental results and use them to verify the model. In particular, the
procedure sketched in Fig. 10 constitutes a direct verification of the model’s assumption

that all yield cones are parallel to the failure surface.

3.4 Program GRANULAW

As part of this research, the authors developed computer program GRANULAW
(NU (new) stress-strain constitutive LAW for GRAnular media), which implements the

model for any arbitrary stress path complying with the conditions Opx = C and

Yy
rxy = ryz = 0. This is the case discussed in Section 3.2 and used in the experiments in
Volume II.
In GRANULAW, the applied stress components I%x = Oy gz and T,x are

specified incrementally by the user and are transformed by the program into the deviatoric
stress coordinates discussed in Section 3.2. The program computes the corresponding

deviatoric strains which are finally converted to the predicted strains ¢

_— eyy’ €5z and

Tox
Program GRANULAW is used in Section 4.3 to generate model predicted curves
corresponding to several stress paths of interest, including those used for the experiments in

Volume II.




Page 22

4. APPLICATION TO A GRANULAR MATERIAL COMPOSED OF GLASS BEADS

In this chapter, the constitutive model described in Section 3 is applied to the glass
bead experiments presented in Volume II. First, the parameters of the model are extracted
from the appropriate test results, then the model is verified by normalizing some of the test
results in the ways suggested in Section 3.3.2, and finally specific test results are simulated

using program GRANULAW and the simulations compared with the actual measurements.

4.1 Experimental Results and Model Parameters

Figures 11 to 21 present experimental results from the tests on dry pluviated glass
beads reported in Volume II, in a form suitable to the extraction of parameters M, m, Q, q,
and f of the constitutive model for this material.

Figure 11 reproduces the pressure vs. volumetric strain data measured in the
isotropic compression test on a solid cylinder specimen, taken from Fig. 20 of Volume II.
The volumetric strains have already been corrected for membrane compliance (see Vol. II
for details.) The figure also shows the reasonable agreement between the €y values and
the 3¢ values measured in the same test. A further verification of this corrected
pressure vs. volumetric strain curve in Fig. 11 is provided in the same figure by comparison
with isotropic compression data from tests on hollow-cylinder specimens.

As no accurate measure of €, Was possible below om = 35 Kpa, the corrected
plot in Fig. 11 corresponds to (o, - 35) vs. (€, - € 5c), rather than to the desired o
vs. € curve. Therefore, the fitting of an equation to the data was conducted as part of an
overall optimization scheme which also provided a "best estimate" value of the volumetric

strain at O = 35 Kpa, €35 Finally, the following expression was obtained and is

plotted in Fig. 12:

e, (%) =4.203 - 1073 60T (5 in Kpa) (25)
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By comparing this expression with Eq. 21 (where ¢, is not in %), the following
values of the model parameters M and m are obtained for the glass beads specimens:

M = 3.062 - 104

m = 0.223
for o in KPa.

Figures 13 to 16 reproduce deviatoric monotonic test results at 0 = 138 KPa and
180 Kpa which could be used to obtain values of G0 at those pressures, and which thus
are useful to produce the model parameters Q and q. The figures are also useful in
showing the overall consistency of the test results for octahedral strains up to 0.25%, the
degree of isotropy of the material during deviatoric loading (perfect isotropy is assumed by
the model), and the volumetric strains (dilation) induced by the deviatoric loading (the
model assumes no dilation).

Figures 17 to 19 show the technique used to extract the value of the initial tangent
modulus G0 from these tests. The initial, clearly linear part of the 7

oct
up 80 Yy = 0.01% or 0.02% depending on the test, was used, with the slope of the

V8. Yoot CUIVE,

fitted least squares straight line giving GO’ No effort was made to make the straight line
go through the origin, as small voltage offsets may be present in the stress and strain
measurements. Therefore, the values of G0 obtained from Figs. 19 to 21 are, respectively,
584 - 104, 542 . 10* and 6.5 .- 10* KPa. In addition, in test GB33, during the
isotropic consolidation part of the test, small nondestructive deviatoric excursions up to
Toct = 0.01% were performed and G0 was obtained using the same least squares
technique. All these results for G0 are summarized in Table 2.

The least squares expression fitted to the data in Table 2 is:

0.5
G = 3,802 00557 (26)

where both G0 and o, arein KPa. Therefore, the model parameters Q and q are:
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Q = 3,802
q = 0.557.

This value of q is close to the power 0.5 which has been obtained by many
authors for sands using resonant column devices and other measurement techniques (e.g.,
Hardin and Richart, 1963). On the other hand, there is evidence that this power is greater
than 0.5 at very small pressures below about 25 KPa (% 500 psf). Seed and Silver (1972)
obtained a value of about 0.7 from low-pressure tests on a sand, while Duffy and Mindlin
(1957) measured as much as 0.8 on arrays of stainless steel spheres at about 10 KPa.
The q = 0.557 just obtained in Table 2 was fitted to measurements performed at
pressures 35 KPa (= 700 psf) or greater. As mentioned previously in Section 3.3.2, this
variation in the value of q between small and large pressures affects significantly the
model predictions near failure during deviatoric loading. Therefore, two other sets of
model parameters Q and q were assumed consistent with all available evidence, as
shown in Table 3.

Figures 20 and 21 present results of two monotonic deviatoric tests to failure,
corresponding to o = 138 KPa. The parameter f of the model is simply
A value of f = 039 was selected, which gives

(Toct)fa.ilure/ m’
T . = (0.39) (138) » 54 KPa, located within the experimental range of Fig. 20.
oct/failure 8

4.2 Model Verification

A number of monotonic deviatoric tests (constant o) were conducted at
g, = 138 KPa and one test was done at o, = 180 KPa (Figs. 13 and 15, respectively).
A comparison of Figs. 13 and 15 reveals that the stress-strain curves at the two confining
pressures are different, as expected, with the curve in Fig. 15 plotting 20-30% higher.

In Figs. 22 and 23, the normalization procedures suggested by the model and

discussed in Section 3.3.2 are applied to all compression tests corresponding to these two
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different o . It is expected that the normalization should make the plots unique and
independent of O

Figure 22 plots 7 .. = Toct! am) versus .., = (Gy/f o) Toct for all
compression tests at Om = 138 and 180 KPa. The results are excellent, with all curves

defining a narrow band independent of T

Figure 23 plots the corrected Toct? rc, versus the corrected Toct 7C, for all tests
at 138 KPa, = Toct and 7c = Yoct- For test GBI19 corresponding to 180 KPa,

=7 . - (0.39) (180 - 138) = 7_, - 16.38 KPa, and 7° is obtained by moving the
origin of the curve as indicated in Fig. 10. Again, the agreement in Fig. 23 is excellent,
providing experimental support to the model assumption of parallel yield cones.

Another assumption of the model is the circular shape of the yield cones (Fig. 9),
which implies that the material is isotropic after isotropic consolidation (i.e., no material or
structural anisotropy). This is clearly a reasonable assumption for the glass beads
curves obtained

material, as shown by the more or less unique 7 vs.

oct Toct
experimentally in compression, extension, torsion and combined compression-torsion tests
(Figs. 13 and 20). Further evidence of this isotropy at small strains is provided by Fig. 24,
reproduced from Vol. II, which plots the locus of points of equal Toct = 0.03% in the
7-plane for various monotonic deviatoric tests. As discussed in Volume II, Figs. 13, 20,
and 24 cannot be used as a sufficient proof of the circular shape of the yield surfaces, as
these figures constitute plots of equal total strain Toct rather than of equal tangent
modulus Gnt = dToct/d7oct' However, the evidence of Figs. 13, 20, and 24 is certainly
consistent with the assumptions of circular yield cones and of initial anisotropy of the
material, and a different behavior of these figures would have thrown doubt on the validity
of the model for this material. Furthermore, Fig. 24 provides somewhat stronger evidence,

as the circle plotted from the experiments could be interpreted as the first yield surface if

the assumption was made that the material is elastic and no plastic strains develop for
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Toct < 0.03%. Arguments in favor of the existence of this "elastic zone," at least as a good
first approximation, are: the fact that Toct = 0.03% is of the same order of magnitude as
the threshold strain = 0.01% at which granular materials start to slide and to develop a
new geometric arrangement of particles; and the linear stress-strain behavior up to
Yoot = 0:01% or 0.02% exhibited by Figs. 17 to 19.

If the circular locus of Toct = 0.03% is interpreted as the first yield surface, then
the corresponding probes for A7oct = 0.03% obtained experimentally in Volume I after
monotonic prestraining, can also be interpreted as yield surfaces, and their translation and
changes in size and shape can be used to prove or disprove the model assumption of pure
kinematic strain hardening. Figure 25, reproduced from Volume II, includes plots for these
probes before and after monotonic prestraining in compression, extension, and torsion,
respectively. The model predicts that the four probes shown in the figure must be circles of
the same size. Although this is not entirely true, and both changes in size and distortions
can be observed due to prestraining, the assumption of displaced equal size circles can be
defended as a first approximation to the real situation. Further development of the model

to incorporate these size and shape changes require further research and are outside the

scope of this report.

4.3 Model Predictions andg Comparisons

In this section, model predictions using the parameters for the glass beads material
developed in Section 4.1 are compared with experimental results of specific tests. Unless
otherwise stated, the model parameters used are: M = 3.062 - 10'4; m = 0.223;
Q =3,802; q =0.557; and f=0.39 (Bt and G0 in KPa). Program GRANULAW and
closed form solutions were used for the model simulations.

Figures 26 and 28 show the comparisons for deviatoric monotonic loading at

constant mean stress o, = 138 KPa. In Fig. 27, the agreement between model and the
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experimental band is good at small strains, but it deteriorates at larger stresses and strains,
with the model stress-strain curve being significantly more linear than that measured in
the tests. The model fails at a value of Toct = 0.205%, which is clearly too small. This
excessive linearity of the stress-strain response in the model was discussed in Section 3.3.2,
and a possible explanation mentioned there was the constant value assumed for the
parameter q. If larger values of q are assumed at low pressures below 25 KPa, as

suggested in Table 3, the ( increases as shown in Table 4, from 0.205% to

7oct)failure
0.322%. This would improve considerably the agreement with the experimental results in
Fig. 27.

Figure 28 presents the corresponding comparison for volumetric straining (or

dilation) for these monotonic deviatoric tests. For the range of shown in the figure,

Toct
the dilation is very small or nonexistant, versus zero dilation predicted by the model.
Figures 29 and 30 include the predicted and measured response during compression
triaxial test GB20, where the stresses Opy = ayy were kept constant at 138 KPa while
o, was increased to failure. Again, the predicted stress-strain curve in Fig. 29 agrees

zz
well with the test at small strains, but the agreement deteriorates at larger strains, with
the model curve being too linear and failing too early. Again, use of either Model 2 or
Model 3 with variable q in Table 4 would improve the agreement.
The agreement between predicted and measured volumetric strains is quite good for
Test GB20 in Fig. 30 for the range in which the specimen was contractive
(Yot < 0-25%).

Figures 31 and 32 present the results of deviatoric loading experiment GB32,

conducted at a constant O = 138 KPa. This test started in compression; that is, L.
was increased and o, was decreased; when 7 ., = 0.25% was reached, 0,, 30d o

were kept constant while the torsional shear stress T,x Was increased to failure. The
purpose of this test was to verify the prediction of the model for the "tangential" elastic

shear modulus Gtt at the point in the stress path where the increase in 7, started (see
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Section 3.2 and Eq. 20 for definition of Gtt)' A decrease in modulus when the test
switches from compression to torsional is apparent in Fig. 31, and the corresponding values
are listed in Table 5. A model simulation was conducted with GRANULAW where a
similar constant o, test started in compression and then switched to torsion. However,
the exact conditions of the test could not be replicated, as the model fails before Toct =
0.25%. Therefore, the switch in the model was arbitrarily implemented at Toct = 39 KPa.
The change in modulus calculated by the model before and after the switch was very small
":ee Table 5).

Another deviatoric stress path of interest which can be simulated with
GRANULAW is a circular path in the r-plane, with the vector 7

oct
I?octl = constant. For this case, the model predicts that Toct does

rotating in a circle
while keeping Toct =
not change and the behavior is elastic, with ¢, and ¢ varying sinusoidally and coming
back to their initial values at the end of a cycle. Although no circular path experiment was
conducted herein on glass bead specimens, Lanier and Zitouni (1989) and Bianchini, et al.
(1989) have reported results of similar deviatoric circular stress path experiments on two
sands, which essentially confirm the trends just described, thus qualitatively validating the

model proposed in this report.
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5. DISCUSSION AND CONCLUSIONS

The development of the proposed constitutive model and its application to the glass
beads experiments, presented respectively in Chapters 3 and 4, have provided considerable
insight on the potential of the model to represent the response of a granular soil.

In the first place, it must be recognized that the use of glass bead specimens
prepared by dry pluviation is ideal to calibrate the proposed model, or for that matter any
model involving yield cones. The high degree of isotropy exhibited by such material when
isotropically consolidated (Figs. 11, 13, and 24) after correcting the measured volumetric
strains for the effect of membrane compliance, was consistent with the model’s prediction

of circular cones with vertices along the o

;m 2xs during isotropic consolidation. The

inherent (structural) anisotropy often present in actual soils composed of nonspherical
particles and deposited in a gravitational environment will require replacement by
noncircular cones (e.g., elliptical ones), which will also require somewhat more complicated
flow and hardening rules than those now present in the formulation.

On the other hand, that isotropy made the glass beads an ideal material to use for
trying to resolve some main issues before complicating the model further. Those issues and
some tentative conclusions are listed below:

L. Validity of the assumption of yield cones parallel to each other and to the failure
surface, which comes about from two facts: 1) f = tan ¢ is constant and

independent of o _ for a wide range of pressures, and 2) the value of the

m

elastoplastic tangent modulus G associated with a given yield cone must

nt
correspond to the G0 at a certain m # 0, which means that the apex of the cone
cannot be at the origin of the stress space where Om = 0. Tius is a main
contribution of the proposed model, as other models typically assume that the
apexes of all yield cones are located at the origin of the stress space. For the

relatively narrow range of pressures tested (crm = 138 and 180 KPa) the
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hypothesis of yield cones parallel to the failure surface was confirmed (Figs. 22 and
23). On the other hand, the use of a constant value of q % 0.5 in Eq. 18
(GO =Q- ag) clearly predicted deviatoric stress-strain curves that were too
linear compared to the measurements (Fig. 27). This demonstrated the sensitivity
of the predicted deviatoric stress-strain behavior to the rate of variation of G0 at
very small 0 < 25 KPa, where no measurements were made and where the state
of knowledge for all granular materials including soils is very poor. Higher values of

q at these small ¢

m produce increasingly nonlinear deviatoric stress-strain curves

which approach the measured ones (Table 4). It is clearly possible to postulate a
law G, = Go(am) at low o which will predict precisely the measured

stress-strain curves to failure.

Validity of a flow rule associative only on the =-plane, with the corresponding
assumption that no dilation is present during pure deviatoric loading. This
assumption proved to be quite good for a wide range of deviatoric strains and
stresses, once the measured volumetric changes had been corrected for membrane
compliance, and dilation for this material was found to become significant only near
failure (Figs. 14, 21, 23, and 32; see also Fig. 45 .n Vol. II). As a result, it is clear
that the initial volume reduction in the compression triaxial test GB20, up to a
large shear stress and a shear strain of about 0.3%, is purely elastic and is the
result of the increase in m during the test, as predicted by the model (Figs. 29
and 30). On the other hand, dilation effects do become important at large shear
stresses and strains in the material tested (Fig. 21) as well as in granular soils, and
the capability to predict this dilation should be a first priority in the further
development of the model. This can be handled, in principle, by modifying the flow
rule and/or the hardening rule, as done by Prevost (1985). The modification of the

hardening rule would involve rotating the yield cones after a strain level has been
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reached, thus allowing for dilation to take place. The more desirable alternative

would be to modify the flow rule as done by Prevost in this 1985 publication.

Validity of assumed elastic stress-strain behavior during circular stress paths in the
7-plane (Eq. 16) and ~f Eq. 20 to predict the corresponding elastic modulus Gtt'
Although no circular paths were implemented in the tests presented in Vol. II,
similar circular stress paths on two sands reported by Lanier and Zitouni (1989) and
Bianchini, et al. (1989) confirm that the deviatoric stress-strain response is
essentially elastic as predicted. On the other hand, the results of test GB32 (Fig.
31 and Table 5) suggest that the change in modulus when a deviatoric stress path
changes from radial to circular is much greater than suggested by Eq. 20. The
incorporation of an alternative expression for Gtt into the model is trivial and can

be done easily once the corresponding experimental evidence becomes available.

Validity of the assumption of purely elastic volumetric strains during isotropic
consolidation (Eqgs. 16-17). Although this hypothesis was not tested experimentally
in this research, it is certainly an oversimplification, as it ignores the effect of
overconsolidation on the volumetric strain behavior of soils. This current deficiency
of the model can be readily corrected with the help of a "cap," as done in other
models (Roscoe, et al., 1958; DiMaggio and Sandler, 1971; Baladi and Rohani,
1979).

Validity of purely kinematic strain hardening rule assumed by the model, and
possibility of appearance of distortions in tl 2 yield loci/yield cones during deviatoric
loading, as predicted on the basis of micromechanical considerations and
measurements on metals (see Vol. II). Results such as shown in Fig. 25 indicate
that the model’s assumption of pure translation of the yield circles without change
in size or shape, while good as a first approximation, is not completely correct and

may require further refinement. A possible avenue to incorporate these distortions
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is the viscoplasticity mathematical formulation presented by Yen (1979) and Yen
and Eisenberg (1987), but without the time rate effect and adapted to allow for the
influence of L and to incorporate the modified deviatoric stress space of Eqs. 10.
In such a model, a distortion correction term R i is introduced into Eq. 10a defining
the cones. That is, S i S..

ji
is the two-parameter model proposed by Voyiadjis and Foroozesh (1990), where the

in Eq. 10a is replaced by S j - Sji + Rj' Another way

Hill  (1950) anisotropy tensor Mijkl is used as follows:
F= Mijkl (S - ) (Sij - aij) - fz(am - amj)2. This formulation is shown to
have distinct advantages over previous models and can be implemented numerically

in the specialized 3-D version of the model used in this volume.

Plastic volumetric straining induced by repeated deviatoric loading (densification
associated with cyclic loads).  Although this subject was not investigated
experimentally to any significant extent in Vol. II, it is known to be important in
granular soils, it is not included in the current version of the model, and its further

development should include rules to allow for this effect.

And, finally, the problem of inherent or structural anisotropy, already mentioned,
which was not present in the glass beads results analyzed but which is important in
sands and other granular soils. This is an important and complicated problem,
which is being currently addressed in Plasticity Theory. "Inherent anisotropy"
means that the material is anisotropic in its reference state. After plastic flow has
occurred, in general, the material ceases to have the anisotropy of the reference
state. A very good example of this is the case of rolled steel; in its stress free state,
before rolling, the material is isotropic and its behavior could be described by
isotropic functions. After the sheet of steel has been subjected to rolling, it may
exhibit orthotropic symmetry, and if this is to be the reference state, the material

behavior should be described by orthotropic functions with respect to the new
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reference state. The case of soil anisotropy is very similar: if the behavior of an
anisotropically consolidated sand is to be described, this has to be done with
orthotropic functions. In general, simple solutions applied only to the elastic part of
the strain, such as proposed by Hardin (1980), are not appropriate. For example, if
the tests of Stokoe and his co-workers, already mentioned, are to be taken into
account, orthotropic functions are needed for the description of the phenomenon. It
is reported by Hill (1950) and Dafalias (1979) that the yield condition must take
into account the material symmetries present in the initial (reference) state. The
direction of flow is dependent upon those, and the yield surface mu -t 1ake them into
account. This not only complicates the expressions of the yield surface
considerably, but the implementation of the law as well. For example, according to
Dafalias (1979) and Voyiadjis and Foroozesh (1990), the expression for the yield
condition of an orthotropic material becomes F = Hi ikl Si j skl , where Ei ikl is a
fourth rank tensor which depends on the material symmetry and the plastic strain.
Despite its obvious complexity, the plasticity of initially anisotropic materials can
be taken into account in a number of ways for the cases of transverse isotropy and
orthotropy. The case of transverse isotropy is very common in the mechanics of
composite materials (Dvorak and Bahei-El Din, 1982), and is handled with the aid
of four stress "pseudo-invariants" which take into account the symmetries of the
material. In the case of soils, Dafalias (1986), Dafalias and Herrmann (1986), and
Anandarajah and Dafalias (1986) have proposed a general plasticity model which
has been applied to model isotropic and anisotropic clay in undrained condition.
The case of drained loading of sand is more complex, since its behavior is pressure
dependent and its material symmetry gets affected by variations in the mean stress

O’m.
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In summary, since the model proposed for granular media is founded on the contact
law between two spheres, it captures a number of key aspects of the stress-strain behavior
of granular soils (see Table 1). Furthermore, it contains a small number of parameters
with clear physical meaning which can be readily determined in the laboratory. It also
contains some novel aspects (parallel yield cones, and relations between elastoplastic
behavior and the elastic small strain constants of the medium) which provide significant
new physical insight. In addition, the fact that these elastic small strain constants
determining the rate at which plastic flow takes place, can in principle be determined from
micromechanical considerations or measured in situ by geophysical techniques, may be
potentially significant in both conceptual and practical terms. On the other hand, the
model requires further development in the areas 1 through 7 listed above. The
implementation of some of these changes is very easy, while others will require a longer

analytical and experimental research effort.
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TABLE 2

Fitting of Equaticr GO =0 - :g to Measured Results on

Glass Bead Specimens

6y (10° KPa)
o, (KPa) Test GB33 Test GB19 Other Tests Equation 26"
35 2.55 e IR 2.75
70 4,55 R 4.05
105 5,35 T 5.08
138 5.65 —--- 5.42 to 5.84 5.91
180 .- 6.55 | mmeecmmmeee- 6.86

*Equation 26: G, = 3,802 02'557 (KPa).

0




TABLE 3

Model Parameters Used for Equation

G0 = Q oJ, Glass Bead Specimens

m
(G0 and O in KPa)
Below Ome Above T,
Fmyg Q1 9 Q2 9
No Omg *
Constant Q and gq 3,802 0.557 3,802 0.557
25 KPa 2,400 0.70 3,802 0.557
25 KPa 1,740 0.80 3,802 0.557




TABLE 4

Failure Strains Predicted by Model for Various Values of q:

Monotonic Deviatoric Loading with O = 138 KPa

9 92
(*)
Mode1 (for oy < 25 KPa) (for op > 25 KPa) (Yoctfaiture
1 0.557 0.557 0.205%
2 0.70 0.557 0.251%
3 0.80 0.557 0.322%

*
(Yoct)failure C3lculated with Eq. 24.




TABLE 5

Predicted and Measured Changes from Gnt to G

During Deviatoric Loading:

tt
Compression and Torsion Test GB32 at O = 138 KPa
Place of Switch
Compression to Torsion Gnt Gtt
Mode] tocr = 35 KPa 3.41 - 107 kpa | 3.15 - 10 Kpa
Experiment Yoct - 0.25%
4 4
Toct = 50 KPa 0.99 - 10 0.23 - 10
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Figure 1. (a) Identical elastic rough spheres in contact under normal
and tangential forces; (b) contact force space; (c) relative
displacement space.




Figure 2. (a) Elastic-plastic contact model, yield cones, w-planes, and

yield circles; (b) creation of yield cones for increasing N
and elastic force path (dT/dN < f).
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Figure 3. Normal force-displacement nonlinear elastic response in the absence

of tangential forces.
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Figure 4. Tangential force-displacement curve for N constant, T =T

increasing, and Ty = 0.
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Figure 7. Generation of two groups of yield cones of the first kind and
two groups of the second kind in contact model by load path
0ABCD.




Figure 8.

Yield cones, r-planes les of proposed stress-strain
model in principal stress space.

and yield cire
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Figure 9. Three-dimensional stress space, yield cones, mw-planes, and yield

circles, for case O yx" vy and Txy = Ty2 = 0.




a
(a) T p
E 1
ot
S
G o
B _ﬁJf
D
F 'rbD
A C
o, A o=0,
B
(b) T, A
F
fo
a
A Y
a
E
1 A
b [~
tT=1T -1
© b b bD
A G
f O'b
b, . c_
D A 7% % Yy
c 1b5 f(cb— c.)

Figure 10. Normalized procedure to compare deviatoric monotonic Toct
Versus v .4 curves at two different pressures % > Oq-

Curve DGE 1is predicted to be identical to curve AFB.




400

solid cylinder E
Solid cyl.; 3*Axial Strain |
hollow cyl. GB21
hollow cyl. GB20
hollow cylinder GB19

Re O«

Eff. Conf. Press (KPa)

o I l 1 l I I 1
0.00 0.10 0.20 0.30 0.40

Volumetric Strain (%)

Figure 11. Comparison between volumetric strain obtained under isotropic
compression in solid and hollow cylindrical specimens. Data
have been corrected for membrane compliance.
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and compression-torsion (CT). A1l tests are at constant
mean pressure, o = 138 KPa.
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Figure 15. Deviatoric monotonic compression loading test GB19, on
hollow cylinder specimen, constant mean pressure,
Op = 180 KPa.
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cylinder specimen, constant mean pressure, On = 180 KPa.
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Figure 18. Calculation of G0 at beginning of deviatoric test
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Compression Test GB19 (180 KPa)
Beginning of Loading
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Figure 19. Calculation of G0 at beginning of deviatoric test GB19,
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Figure 20. Deviatoric monotonic compression and extension loading to
failure, hollow cylinder specimens, constant mean pressure,
O = 138 KPa.
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Figure 21. Volumetric strains measured in same tests of Fig. 20,
Om = 138 KPa.
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Figure 22. T;ct = roct/(f om) versus y;ct 2 (Go/f om) Yoct

for compression tests on hollow cylinder specimens at
different values of O Test GB19 is at ¢ m 180 KPa;

all other tests correspond to om = 138 KPa.
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¢ versus YC for compression tests on hollow cylinder
specimens at different values of LA For test GB19

(om = 180 KPa), < and y° were obtained as shown in
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Figure 26. Deviatoric stress-strain curve predicted by model for
constant mean stress loading, o, = 138 KPa.
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Figure 27. Comparison between model prediction and experimental

results, Op = 138 KPa.
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Figure 28. Comparison between model prediction and experimental (esults,
O = 138 KPa.
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Figure 29. Comparison between model prediction and experimental results,
triaxial compression test GB20 (cell pressure = 138 KPa).
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Figure 30. Comparison between model prediction and experimental results,

triaxial compression test GB20 (cell pressure = 138 KPa).
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Figure 31. Comparison between model qualitative simulation and
compression and torsion test GB32, Op = 138 KPa.
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Figure 32. Measured volumetric strains in compression and torsion test
GB32, Om = 138 KPa.
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