Technical Report ‘
AD-A237 810 cwuseisirn o
Wiy e :

Software Engmeenng institule

Tool Integration
and
Environment Architectures

Kurt C. Walinau

é Peter H. Feiler

May 1991

¢ ¢ DTIC

ELECTE
0 0 SJULQQ 199‘.39
,,, B

4 ¢

" DISTRIBUTION STATEMENT A

Approved for public release;
_MMUnﬁmtnd

i
| itk
€ 4

11
3184221

The tollowing statement of assurance 18 more than a statement required to comply with the federal law Th.s .5 a sncere staterment by the unwver.ty 10 assure 1ot all
people are ncluded in the diversity which makes Carnegie Melion an exciting place Carnegie Mellon wishes (o include people wihcut regard 1o race. color ~ utonal
orgin, sex, handicap, religron, Creed, ancestry, behet, age. veteran status or sexual onentation

Carnegre Mellon Urwversity does not dischminate and Carnegie Metlon Urvversity s requited not 1o discrimunate in admissions and employment on the bas.s of tace
color, national ongin, sex or handicap .n violation of Titte Vi of the Civdl Rughts Act of 1964, Tle IX of the Educational Amendments of 1972 and Secton 504 of It
Rehabdnation Act of 1973 or other federal, state, of local laws or executive orders. In addtion, Carnegie Mellon does not disCriminate in agMissinns and empia, ™ment o
the basis of religion, creed, ancestry, bebel, age. veteran status or sexual onentation in violation of any federal, stale, of 1ocal laws or execulive orders Inquines concern
ing application of this policy should be direcied 10 the Provost, Carnegre Melion Uruversity, 5000 Forbes Avenue, Pittsburgh, PA 15213, lefephore (412) 268 6.4 or Y ¢
Vice President for Enroliment, Carnegie Mellon University. 5000 Forbes Avenue, Pitsburgh. PA 15213, telephone (412) 268-2056

l||l|{|[|l||i

Technical Report

CMU/SEI-91-TR-11
ESD-91-TR-11
May 1991

Tool Integration
and

Environment Architectures

Kurt C. Wallnau
Peter H. Feiler

Software Environments Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEl Joint Program Oftice
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

John S. Herman, Capt, USAF
SEl Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright € 1991 by Carnegie Mellon University.

This document 1s available through the Defense Technical Information Center. C7.C piuvicos ac~ees to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S Government
agency personnel and therr contractors. To obtain a copy. please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this documeRt ..o nlen meaiianin sheg ok tha Kinyean! To 0 0 0] fnsation Service Forf informavon on ordering.
piease contact NTIS drrectly National Technical Information Serwce u. S Depanmem of Commerce, Springtield, VA 22161

Use of any trademarks In this report i1s not intended in any way to infringe on the rights of the trademark holder

————eee,

Table of Contents

1. Introduction

2. Evolution of Integration Framework Architectures

2.1. First Generation IPSE
2.1.1. Hub Object Management and Large-Grained Tools
2.1.2. Data-Oriented Tool Integration Medium
2.1.3. Centralized, Explicit Large-Grained Process Support
2.1.4. IPSE Summary

2.2. CASE Coalition Environment
2.2.1. Multiple, Private OMS and Tool Function-Level Access
2.2.2. Control-Oriented Tool Integration Medium
2.2.3. Localized, Implicit Fine-Grained Process Support
2.2.4. Summary of Coalition Environments

2.3. CASE Federation Environment
2.3.1. Cooperating Service Domains
2.3.2. Flexible Control and Data Integration
2.3.3. Abstract Process Definition and Enaction
2.3.4. Summary of CASE Federation Environments

3. Types of Tool Integration
3.1. Framework Integration
3.1.1. Variants of the Framework Concept
3.1.2. Tool and Framework Integration Services: Migration to Framework
3.2. Process Integration
3.2.1. Lifecycle Process
3.2.2. Development Process
3.2.3. Enaction Mechanisms
3.3. Intertool Integration: Control, Data and Presentation
3.3.1. Control Integration
3.3.2. Data Integration
3.3.3. Presentation Integration

4. Conclusions

References

—-h

OO Ww

11
11
13
14
15
15
16
17
18
18

21
22
22
24
25
26
28
28
29
29
30
32

35

37

CMU/SEI-91-TR-11

CMU/SE)-91-TR-11

List of Figures

Figure 2-1
Figure 2-1a
Figure 2-1b
Figure 2-1c
Figure 3-1
Figure 3-2
Figure 3-C

Framework Evolution to Federation 3
Integrated Project Support Environments (IPSE) 3
Coalition CASE Environments 4
Federated CASE Environment 5
Types of Integration 22
Lifecycle Context Integration 26
ST User Interface Reference Model 32
‘Accession PFor e T
NI cRml @ s |
CDTIS TAR '
, Unanneouneced ()

E Jaoantfieation ot

B, -

Platridution/
. ’ —‘-——-—-———1v
Availsbilinw Ccodes

{ Avorl wnd/or
i
Speelsl

CMU/SEI-91-TR-11

CMU/SEI91-TR-11

List of Tables

Table 2-i Three Aspects of Environment Evolution

N

CMU/SEI-91-TR-11

vi

CMU/SEI-91-TR-11

—“

Tool Integration and Environment Architectures

Abstract: The expanding CASE market is having substantial impact on soft-
ware development environment technology in the area of environment support
for too! integration. Sharpened awareness of CASE integration regquirements,
particularly in the context of the large number of fully developed CASE tools,
has resulted in a technology shift away from monolithic integrated project sup-
port environments (IPSE) derived from the Stoneman model! in favor of highly
distributed environments based upon a federation of environment services.
Sederated environments promise environment framework support tor the reuse
of a large number of existing CASE tools and the development of highly inter-
active, tightly-integrated CASE environments. The evolution of environment
framework technology to support CASE federation is predicated on an im-
proved understanding of the techniques and issues of tool integration. One re-
flection of this improved understanding is recognition of the need to address in-
tegration mechanisms, tool semantic integration, and tool process integration
as separate but related issues.

This paper describes the evolution of environment architectures to support fed-
erated CASE integration and ou‘.nes the implications of this evolution on the
technical issues of CASE tool integration.

1. Introduction

The burgeoning computer aided software engineering (CASE) tool market has had substantial
commercial impact on the development of software development environment (SDE) technol-
ogy in the 1980's. To some extent, this development was envisioned as early as the late
1970's, and the need for software environment framework technology tc support tool integra-
tion was discussed in the seminal Stoneman [1] report, which described the requirements and
architecture of an Ada Program Support Environment (APSE). Since Stoneman, several SDE
frameworks following the Stoneman model have been developed, most notably the Portable
Common Tools Environment (PCTE) [8] and the Common Ada APSE Interface Set (CAIS) [2].
To date, however, no Stoneman-style framework has found substantial commercial success.

In the meantime, the CASE tooi explosion has coincided with the rapid proliferation of bit-
mapped workstation technology. This proliferation has resulted in a CASE tool platform market
consisting of multiple hardware systems, operating systems, window systems, etc., with con-
sequent impact on the way CASE vendors design their tools. Most substantially, vendors at-
tempt to integrate with systems that provide the greatest deqree of platform indepe~dence. In
practice, this means adopting a “least common denominator” approach to platform service in-
tegration. As a result, vendors tend to shy away from complex frameworks such as PCTE in
favor of more primitive “standards” such as UNIX and the X Window System.

While vendors have been arguably successful in achieving tool portability to a wide variety of
platforms, the emphasis on portability and low-level integration has had an adverse impact on

CMU/SEI-91-TR-11

the degree to which tools cooperate with each other. Rather than behaving like an integrated
whole, CASE tools today more commonly behave like isolated “islands of automat.on” [9].
Worse than islards, the insularity of vendors brought on by market competition as wel! as the
natural tendency to broaden CASE tool support to encompass a wider variety of development
functiors has resulted in tools which offer considerable overlapping and competing services.
Further, each CASE tocl may support or enforce different software development process mod-
els. As a result, existing CASE environments are difficult to manage, and they present concep-
tually muddy tangles of tool services.

As the CASE market stabilizes and fewer new CASE entries estatlish themselves in vertical
or horizontal tool niches, CASE customers are increasingly demanding a resolution tc the in-
tegration dilemma [37], and are searching for ways to achieve the ideals of too! integration en-
visioned by £ uneman in this e-a of widespread availacility of sophisticated tools that have
been developed on .ninimal platform services. This demand hus lea to increased xploration
of strategies and technigues for CASE integration. Zarrella [32] discusses the results of these
explorations from the perspective of the CASE tool and CASE vendors.

This report discusses the results of CASE integration explorations from the perspective of soft-
ware development environment technology. The most notaktle results concern the evolution of
software environment architectures away from the centralized IPSE characterized by Stone-
man in favor of a decentralized services-based enviroriment, described in this report as a fed-
erated CASE environment. This evolution is supported by a growing awareness of the com-
piexities of tool integration issues. In particular, mcdels of integration based upon the control,
data and presentation integration classificatior. schemes have been found to be wanting, es-
pecially whe,~ ool integration interacts with software development process models.

Structure of this Report

Section 2 discusses tne trend in software environment technology away from the monolithic
repository-based IPSE framework towards a more federated services-based framework. Sec-
tion 3 describes an evolving understanding of different classes of integration issues that need
to be addressed. This discussion can be seen as a starting point for identifying the kinds of
services that tools and tool frameworks need to provide, and as a way for tool integiators to
focus their efforts on important aspects of tool integration. Finally, Section 4 conciudes with
predictions for future CASE integration environment trends.

CMU/SEI-S1-TR-11

2. Evolution of Integration Framework Architectures

The fast developing CASE market has forced a re-evaluation of long-standing assumptions
concerning architectures for integrated software development environments. The most signif-
icant development has been a trend away from monolithic, centralized environments in favor
of more loosely coupled, tool-centered environments. Figure 2-1 depicts this trend in three dis-

tinct phases.

IPSE

CASE Coalition CASE Federation

e

time...

Figure 2-1 Framework Evolution to Federation

The first phase, highlighted in Figure 2-1a, is characterized by the centralized integrated
project support environment (IPSE) and reflects the vision ot integrated environment that
tormed in the early 1980's. The IPSE is depicted as evolving upward through object manage-

evolves...

A

Tool Tool

IPSE Process Support
Shared
Data
Model(s)

JS So\b No o

Shared “Hub” OMS

IPSEs are characterized by centralized (“hub”) object management services and cen-
tralized support for software process management. IPSEs evolve vertically through
OMS development, data modal specification and, lastly, integration of tools.Software
process supporn can be in the form of dynamic process control, such as found in
ISTAR contracts [15], or static process control, such as found in the SLSCE data

model [34).

Figure 2-1a Integrated Project Support Environments (IPSE)

ment and into tools. This reflects the concept that the OMS provides central services with
which tools are later integrated. Although the term “IPSE" is often used synonymously with

CMU/SEI-91-TR-11

terms such as project support environment, software development environment, software en-
gineering environment. et~ for the purposes of this report IPSE will denote environment ar-
chitectures characterized by integral, centralized software process support, and a centralized
data repository that serves as the principle tool integration medium.

The second phase is highlighted in Figure 2-1b and is denoted as Coalition CASE environ-

ments. CASE Coalition environments reflect the reality of existing tool and integration technol-

ogy and are characterized by tool-based environments created by CASE vendor alliances fea-

turing ad hoc integration of CASE tools using whatever means are available. The coalition en-
evolves...

—-——_*

ad hoc, control-oriented
integration

PR R

|

programmatic
interfaces

file

HOST Platform Services

Coalition environments are characterized by specialized “point-to-point” integration of
tool services oftered by coalition participants. Coalition environments evoive laterally
through poirt integration of new tools. Difficulties in achieving data interoperability
among multiple private OMSs has resulted in a proliferation of integraiion techniques,
with emphasis on control-oriented programmatic tool interfaces. Process models sup-
poried by CASE coalitions are implicit and embedded in the hard-wired integration of
tool services.

Figure 2-1b Coalition CASE Environments
vironments are depicted in Figure 2-1b as evolving laterally. This refiects the point-to-point

integration of coalition tool services with each other, rather than with underlying framework
services.

4 CMU'SEI-91-TR-11

The third phase is highlighted in Figure 2-1c and is denoted as Federated CASE environ-
ments. Federated CASE Environments are characterized by decentralized, tool and frame-
work services-based environments. CASE federation environments represent a forward-look-

Vertical (Engineering) Service Domains

flexible, services-oriented integration

/

design services

testing services

Testing
Tool

||

evolves... other user Interface data Integration| message server

services. | services services services

Horizontal (Framework) Service Domains

Federation environments are characterized by flexible, services-oriented integration.
Federation environments evolve both horizontally through the introduction of new
common services and vertically through the addition of new, specialized engineering
services.Abstract service domains make the distinction between too! and intrinsic en-
vironment service moot. Service domains encapsulate semantically related sets of

servicas and form a virtual macihine basis for describing exacutable sofiware process-
es.

Figure 2-1c Federated CASE Environment

ing vision of environment architectures, a vision which supports a merging and generalization
of the best characteristics of IPSE and coalition environments. The federation environment is
depicted as evolving both vertically and horizontally. This reflects environment evolution
through the addition of new engineering services and new common framework services.

CMU/SEI-91-TR-11

A more detailed view of the nature of the evolution of IPSE to Federated CASE Environments

is provided in table 2-1.

IPSE

CASE Coalition

CASE Federation

Environment
Architecture

central OMS
large-grained tools

multiple private OMS
tool-function access

cooperating service
domains

Integration Model

data-oriented

control-oriented

flexible control and data

integration integration integration
centralized, explicit | localized, implicit service domains as
Process Support large-grained tine-grained process enaction

process support process support vinual machines

Table 2-1 Three Aspects of Environment Evolution

The following sections elaborate on each of the aspects shown in Table 2-1, describing where
possible tie-ins to existing research and commercial technology and implications on tool inte-
gration.

2.1. First Generation IPSE

The environment taxonomy provided in Dar, et. al., [36) provides some insight into the histor-
ical and conceptual basis of the IPSE concept. The IPSE can be seen as an attempt to syn-
thesize key aspects of language-centered, methods-based and toolkit environments into an
organic whole. The key aspect of language-centered environments [13]{14] incorporated by
IPSE was the central repository, as this was seen as a means to construct a tightly integrated,
semantically rich developer's toolkit. This, in concert with a desire for language and project ge-
nericity, i.e., a desire to “scale-up” the environments to include lifecycle and project-specific
semantics, led to the hypothesis that a central, generalized environment database would be a
key IPSE feature. Support for methods became associated with process and project manage-
ment support, which also became an integral part of IPSE'’s. This architectural vision, in com-

bination with the desire to “plug-in” a variety of tools led to IPSE framework efforts such as
PCTE.

The IPSE concept is best characterized by environment architectures such as the Stoneman
[1] "wheel" (a depiction of environment services as concentric rings). Although Figure 2-1
shows only one layer between the host and tool (the Object Manager), other layers of services
can, and usually are, provided by the environment framework; object management is highlight-
ed because it is the most important framework service provided in most IPSE architectures.

The generalized IPSE has three essential characteristics:

* Environment functions are viewed as a collection of large-grained tools and
common underlying “hub” object management.

CMU/SEI-91-TR11

e Tool integration is data-oriented, and achieved primarily through shared ob-
ject management.

e Process support is explicit, centralized, and part of the IPSE architecture.

One example of a fully-realized generalized IPSE is ISTAR [15]. More recent examples of
IPSE frameworks are PACT [3] and its conceptual successor, EAST [16]. While each of these
systems has a different emphasis, all share the above characteristics. The following sections
elaborate these characteristics with emphasis on implications to CASE integration.

2.1.1. Hub Object Management and Large-Grained Tools

Tha functionality of an IPSE is largely defined in terms of the collections of tools present in the
environment. For example, Stoneman described the minimal APSE (MAPSE) in terms of a
“minimal set of tools": compiler, editor, linker/loader, debugger, command line interpreter and
configuration manager. It was expected that projects would add to the minimal tool set to ex-
tend environment capabilities.

In practice, the most important class of common services offered by generalized IPSE includes
those related to object management. The assumption is that tool interoperability can be best
achieved through use of common data models and data management services [30]. Examples
of common object management specifications include the object management services of
CAIS and PCTE. Such object management systems (OMSs) are considered by many to be a
necessary technology for data management in software environment applications, since nei-
ther relational database technology [4] nor raw file systems are well suited to the data man-
agement requirements of software engineering.

However, OMS technology is still in the process of maturing, and more widespread experimen-
tation will be necessary to resolve important open issues [26]. One large-scale issue that typ-
ifies environment OMS technology immaturity is contention between entity-relationship-at-
tribute (ERA) and object-oriented data models. At present there is little consensus on whether
object-oriented databases (OODB) represent the next evolutionary progression of current-
generation ERA-based OMS, whether OODB can be constructed as a layer on top of ERA
OMS, or whether ERA OMS can be constructed on top of OODB. OODB technology is further
complicated by a lack of consensus regarding the formal semantics of OODB data models, as
well as differences in the perspectives among object-oriented programming language design-
ers who are adding persistence to their languages versus database designers who are devel-
oping next-generation DBMS technology.

Besides this uncertainty over future-generation OMS technology, current-generation ERA

OMS technology immaturity is found in two key areas: OMS performance and OMS object-
granularity.

CMU/SEI-91-TR-11

OMS Performance Issues

In practice, the performance of OMS implementations is disappointing both in terms of system
throughput and in consumption of system resources. Stringent data security requirements and
the complex semantics introduced by extending object management services into the realm
of virtual operating systems services has produced OMS specifications that are difficult to im-
plement and difficult to understand. OMS performance is a crucial concern for CASE vendors,
since the interactive nature of most such tools is a vital part of tool functionality [40][41].

Recognition of the fact that for performance reasons CASE tools often require highly special-
ized data models and data management services has led some to the conclusion that a single
OMS for all tools may not be practical. Recommendations such as the use of nested object
management systems {26] reflect this recognition and attempt to model both the need for het-
erogeneous OMSs and the desire for a common data mode! at some leve! of granularity. Such
proposals offer a partial sotution to the OMS performance problem since OMS overhead can
be isolated to tool start-up and shutdown times. However, from the vendor’s perspective, nest-
ed OMSs ofter little value-added to their tools at a potentially significant cost of re-targeting the
tool to a different set of platform/framework services.

OMS Granularity Issues

While OMS performance may be an inhibitor to widespread integration of commercial CASE
tools to IPSE frameworks, there are more fundamental issues concerning the suitability of a
hub OMS as a primary means of achieving tool integration. One well known issue concerns
object granularity. For performance reasons, most OMSs manage course-grained objects,
usually corresponding in size to files managed by the file system. This may be a by-product of
the historical view of the IPSE OMS as a replacement for conventional file systems. However,
data management requirements for software engineering include management of objects
spanning at least seven orders of magnitude in size; no existing OMS satisfies this require-
ment. As a result, OMSs tend to focus on lifecycle-process size artifacts, while leaving tools
the responsibility for fine-grained object management, e.g., for nodes in a parse tree. Thus,
even in a hub OMS-based IPSE, there is strong pressure for tools to provide private, tool-spe-
cific object management services. This contradicts the IPSE assumptions concerning tool in-
teroperability and generates disincentives to the use of OMS services that introduce perfor-
mance and system resource constraints.

Large-Grained Tools

The primary consequence of OMS granularity and performance issues is that IPSE tools tend
to present monolithic architectures, i.e., offer a large-grained package of tool services that are
only accessible from within the context of a running tool. For example, editors modify text files,
and compilers translate text to binary, etc., but by and large, there are few opportunities for
finer-grained interaction among such tools using first-generation IPSE OMS. There may well
have been additional technological constraints on the development of less monolithic tools,
e.g., the immaturity of low-level remote procedure execution standards. Regardless of the un-

8 CMU/SEIST TR

derlying reasons, [PSE environment services tend to be viewed by environment users as be-
ing clumped into targe, monolithic tools.

2.1.2. Data-Oriented Tool Integtation Medium

The prominence of the IPSE OMS, when combined with the technological immaturity of re-
mote execution concepts, resulted in a natural tendency to stress the data interoperability as-
pects of tool integration. However, the underlying IPSE assumption that a common underlying
data model will erible tool data integration is not quite sufficient. Rather, in tha IPSE mode! a
common data mc Jel is a necessary, not sufficient, criteria for too! interoperability.

Even though tools may share the common base data model provided by the common data
modeling services (e.g., an entity-relationship model), in practice tools require their own do-
main-specific data model, specified using base data model primitives. Tool integration re-
quires integration of the domain-specific data model leve!l as well as the base data model level.
For example, the PCTE data mode! provides a fixed set of link categories in the base data
model; however, this information is insufficient for version management tools to know in gen-
eral wiich links need to be duplicaled and which links must not be duplicated for new versions
of arbitrary configurations of tool-defined objects [17].

Thus, even where CASE tools agree to share the same object management services, true in-
teroperability can be attained only among tools that have entered into some bilateral under-
standing concerning the semantics of the shared data. This has an adverse impact on the abil-
ity to migrate new tools into an environment that have not been developed a priori for a specific
OMS schema.

2.1.3. Centralized, Explicit Large-Grained Process Support

Sottware process support has long been a part of IPSE framework implementations. For ex-
ample, ISTAR provides software support via a contract mechanism. PACT, on the other hand,
embeds software process concepts in its environment schema. In both cases, the support for
software process becomes an explicit part of the environment's concept of operation. Also, in
both cases, the supported processes tend to be large-grained, usually corresponding to some
kind of process artifact, e.g., a change request. Because of the large-grained nature of tools,
finer-grained process support was not characteristic of IPSEs.

These ISTAR and PACT efforts point to two distinct views of IPSE process management: sup-
port through enaction mechanisms such as the ISTAR contract model, and support through
data modeling. Both views have provided valuable insight into the nature of framework support
tor software process, and a number of issues have surfaced that are pertinent to tool integra-

tion.
2.1.3.1. IPSE Process Enaction Mechanisms

One concern with IPSE process enaction is the degree to which enaction mechanisms will ad-
equately support the dynamism of processes, and to what degree the mechanisms support

CMU/SEIL-91-TR-114

—

process tailorability. For example, the ISTAR implementation raises questions about dynamic
changes to the underlying process model [19). There is also ongoing research into the sepa-
ration of process planning from process enaction [45), as well as research into questions about
what constitutes a process task, what level such tasks should be automated, and how such
tasks should be specified [46].

These concerns reflect the fact that systematic process enaction is still very much a research
problem. Commercial CASE vendors are not be inclined to expend resources integrating with
unstable, ill-understood enaction mechanisms developed in research laboratories and univer-
sities.

2.1.3.2. IPSE Process Data Modeling

Environment schemas that model software processes, either at the lifecycle level [34] [4] or at
the development mode! level [17] (see Section 3.3 for a discussion of lifecycle and develop-
ment processes) are better understood and thus less controversial than enaction mecha-
nisms. However, one complication arises because process data models span at least two lev-
els of data models: those at a lifecycle level, involving lifecycle level artifacts such as require-
ments documents, and those at the tool level, i.e., individual steps within a lifecycle model.
Tool-level models involve finer-grained objects such as individual requirements within an en-
closing requirements document. The global level might be used to describe product structures,
while the tool level might be used to describe tracability relations.

Both lifecycle and tool-level data model integration are necessary to support data modeling of
software processes. Unfortunately, as already mentioned, current-generation OMS do not
support fine-grained object models. Lacking this, CASE vendors are liable to see only limited
value-added by integration with I[PSE process data models, especially since IPSE lifecycle
models are far removed from interactive tool services that might benefit from finer-grained data
model integration.

2.1.4. IPSE Summary

IPSE frameworks characterized by hub OMS services for data and process integration did not
address many of the requirements for CASE integration. OMS performance problems derived
from complex requirements and overly broad virtual operating system specifications are built-
in disincentives to CASE integration. The hub OMS concept suffers from more intrinsic con-
ceptual problems, including the mismatch of framework and tool object granularity require-
ments and the realization that even common OMS data models are insufficient to achieve data
model level interoperability. Finally, IPSE process support mechanisms addressed only large-
grained processes. Since CASE vendors were more immediately concerned with fine-grained

too! process issues it appeared that IPSE process support did not provide much value-added
to tool functionality.

10 CMU/SEI-91-TR-11

2.2. CASE Coalition Environment

Given the failings of the IPSE model described above, it is not surprising that the CASE market
evolved in the absence of a widely accepted high-leve!l integration standard (i.e., “framework”).
As markets stabilized within various lifecycle niches, demonstrable integration with other
CASE offerings became a competitive selling point for tool vendors. While integration stan-
dards are debated and environment research continues, in the near-term vendor coalitions
provide a pragmatic bridge between customer demands and the ideal integrated CASE solu-
tions. Some examples of vendor coalitions include the Interactive Development Environment
(IDE) Software Through Pictures (STP), Sabre-C and FrameMaker coalition, and the Verdix
Ada Development System (VADS) APSE, which includes the VADS compiler and choices of
CADRE Teamwork or STP and FrameMaker or Interleaf.

The key characteristic of coalition environments is the degree to which the coalition member
tools continue to behave in an egocentric manner. That is, tools developed in isolation have
evolved idiosyncratic concepts that have impact on software development processes, e.g.,
multi-user support and version control. In coalition environments, the tools do not surrender
such concepts in favor of common integration paradigms, but instead continue to project their
own process models. Running counter to coalition egomania is the gradual “opening-up” of
tool interfaces, particularly interfaces to tool functions, that are needed to support coalitions.
Coalition integrations are therefore introducing interesting questions rcgaraing the interplay of
vendor concepts of proprietary services, open interiaces, and integration-support for software
processes.

CASE coalition architectures are essentially the inverse of IPSE architectures. Where IPSEs
provide a central database and large-grained tools, coalition tools provide their own databas-
es, and tool services are becoming separately accessible; where IPSE support data-oriented
integration via OMS services, coalition tools define their own integration models and services,
frequently relying on remote execution and other forms of control-oriented integration; and
where IPSEs provide explicit support for software process, especially large-grained processes
such as litecycle process, coalition tools support finer-grained processes in an implicit, locai-
ized fashion. The following sections discuss the ramifications of these inversions.

2.2.1. Multiple, Private OMS and Tool Function-Level Access

CASE tools providing complex services, such as those services offered by design and pro-
gramming tools, are likely to rely on tool-specific object management services. As a result, co-
alition environments introduce muiltiple repositories, each potentially (and usually) providing
proprietary, unique, tool-specific data models and data management concepts. This situation
introduces issues of repository access and consistency maintenance, duplicated data man-
agement services, and management of relationships spanning different repositories in order
to support lifecycle process management.

CMU/SEI-91-TR-11 T

Repository Access and Consistency Maintenance

CASE OMS are frequently highly specialized for tool-specific data processing requirements.
For example, the relational model may be well suited to front-end design tools but not suitable
for programming language tools, where finer-grained in-memory linked structures may be
more appropriate. The multiple OMS found in coalition environments is complicated by tool re-
positories that are opaque to the outside world. Opaqueness can refer to any or all of:

* repository data model
* repository data management and structure

* repository access functions

Repository opaqueness exacerbates the impedance mismatch among the various tool-specif-
ic data models found in coalition environments. That is, multiple OMSs supporting different
data models will introduce difficult integration problems, even if these OMSs provided “open”
interfaces, e.g., a uniform model for object identification or object versioning.

Some vendors attempt to provide repository openness by publishing database schemas and
generalized schema-independent database access routines. At present, though, not all tools
are so open-minded about their repositories. One reason for this reluctance is that tool data
management services frequently are insufficiently generalized to support a broad class of cli-
ents. In addition to concerns over publishing proprietary, highly specialized schemas, the pub-
lished-schema approach introduces problems of guaranteeing the consistency of repository
data. That is, the responsibility for maintaining semantic constraints is distributed across all
tools accessing data through a published schema.

An alternative way vendors can provide an external view of their repository is to provide pro-
grammatic service interfaces, such as proposed in [50][51]. This kind of external repository
view mechanism parallels data abstraction and information hiding and solves the data consis-
tency problem by allowing the provider of the repository to enforce semantic constraints. The
programmatic repository interface approach heralds the provision of more generalized service
interfaces by tools. However, it is not always obvious at what level of detail such data should
be made available[52). In [51), for example, access is provided to individual attributes of a se-
mantically evaluated Ada parse tree, while in TeleSoft's proposed interface, the Ada Static Se-
mantic Interface Specification (ASSIS) [52] access is provided only to objects at a much cours-
er granularity (e.g., compilation units). In these cases, the design decision over access gran-

ularity will be determined by process issues, i.e., the intended use to which the published
services will be put.

Overlapping Data Management Services

One consequence of distributed heterogeneous OMSs is that tool users and organizations
must rely on tool vendors to provide certain critical data management services. One especially
important set of services concerns version and configuration management (CM). CM services
and models are themselves highly evolved [38](39], and tools frequently do not support the
same models of CM, provide the same CM services, or provide similar services in a similar

12 CMU/SEI-91-TR-11

way. This class of overlapping tool services is particularly troublesome because of the impact
CM has on defining and supporting software processes.

Difficulties In Achieving Lifecycle Integration

Another consequence of distributed heterogeneous OMSs concerns the integration of tool ar-
tifacts into a larger-scale data model than provided by individual tools, i.e., lifecycle process
models. A lifecycle model incorporates tool artifacts spanning several toois and lifecycle stag-
es. Lifecycle integration includes not just large-grained artifacts such as entire design docu-
ments, but finer-grained integration as well, for example, tracability of individual requirements
through to code artifacts. While some tools have provided support for certain lifecycle models
through specialized data export services, e.g., DOD-STD-2167A documentation generation,
more generalized and flexible mechanisms are wanting. In particular, the one-way information
flow from tool to repository implied by export filters is very infiexible and turns a repository into
a depository. Further, fine-grained object integration continues to be difficult.

2.2.2. Control-Oriented Tool Integration Medium

The lack of standard integration services has encouraged vendors to be more active, and cre-
ative, in the definition of integration models. While in some cases such models will be very tra-
diticnal, such as published database schemas, in other cases vendors are providing innova-
tive and complex integration services. The multiplicity of integration services and models is on
the one hand providing a good basis for vendor experimentation with tool integration in a more
autonomous tool context than in IPSE, but on the other hand it makes tool integration esoteric
and expensive, and usually makes it impossible for third-party tool integration solutions.

While vendor coalitions are apt to make use of all possible avenues for tool integration, includ-
ing data sharing, the most significant difference between coalition and IPSE integration is the
degree to which coalitions exploit remote execution and other forms of interprocess commu-
nication. That is, the difficulties in achieving data integration is resulting in a technology push
on control integration techniques.The significant result of this technology push is to entice
CASE vendors to provide interfaces for the remote execution of tool services. Thus, while
IPSE data integration encourages the development of black-box tools, coalition control inte-
gration encourages the development of tools with open interfaces.

The Frame Technology Live Links [28] mechanism is an example of an innovative integration
service which addresses data integration among multiple OMS. Live Links combines data in-
terchange standards with remote procedure execution to achieve a simulation of a homoge-
neous repository (i.e., a simulation that the data in a FrameMaker document resides in one
place). In order to support Live Links, integrating tools are encouraged to provide programmat-
ic access to tool functions, e.g., for displaying and editing “linked" objects in FrameMaker doc-
uments. Similarly, FrameMaker provides programmatic access to several of its services to fa-
cilitate the integration of FrameMaker into tool coalitions.

However, while the demands of coalition integration are resulting in publication of too! sche-
mas and services (so-called “open systems”), not all vendors interpret the concept of open-

CMU/SEI-91-TR-11 13

ness in the same way. One distinction is the degree to which vendors consider their tools the
necessary centerpiece of an integration solution (the “me centered” approach) as opposed to
just one piece of a composable integration solution (the "me, too" approach). While compos-
able “me, too" solutions argue for loose coupling between tools, “me centered” tools tend to
require a significant buy-in to their services on the part of other tools.

For example, me-centered tools tend to provide services that require them to act as master in
master slave interactions with other tools, while me-too tools support a broader class of peer-
level intertool communication. The basic distinction between master/slave and peer-level com-
munication is the degree to which tools make their services available for remote execution by
other tools. Tools that only behave as masters tend to view themselves as being the environ-
ment driver application, or as a central integrating agent (i.e., playing the role of IPSE OMS).
On the other hand, tools that provide remote execution facilities offer a more tiexible interface
for development process integration and intertool cooperation.

2.2.3. Localized, Implicit Fine-Grained Process Support

As already discussed, multiple private OMSs makes it difficult to achieve the large-grained,
explicitly modeled lifecycle process integration envisioned by IPSE OMS. However, the dis-
cussion above about master/slave and peer-level tool interactions is derived from an emerging
trend for tools to provide programmatic interfaces to tool services, and this in turn points to an
evolving support for finer-grained, more interactive software processes. That is, traditionally
interactive tools such as FrameMaker are now providing interfaces for the non-interactive ex-
ecution of interactive services. As a result, CASE architectures are becoming more amenable
to a finer-grained, discrete-function level integration. One visible consequence of this is that
vendors are able to demonstrate coalition integrations that are dramatically interactive. A more
subtie consequence is that this fine-grained tool-function level integration leads to a number
of issues concerning support for fine-grained software processes.

The term *fine-grained process” refers (vaguely) to those aspects of the software development
process which are related to small-scale tasks as opposed to discrete transitions in lifecycle
phases. For example, creating a new version of an object can be considered a fine-grained
process activity. Such small-grained tasks can correspond to the execution of a small number
of services in a set of integrated tools. For integrators, knowing which services to integrate of-
ten reduces to the question of knowing which fine-grained processes the integrated toolset is
intended to support. Viewed from the other direction, the set of function-level integrated ser-
vices in a coalition environment is a specification of a fine-grained process model. In this
sense, the specification is implicit since it is embedded in the tool services; one consequence
of this is that the specification becomes fixed, i.e., non-extensible, non-tailorable.

Besides being implicit and fine-grained, process support in a coalition environment is localized
in each of the tools. The significance of this lies in the degree to which tools mode! their own
concept of various fine-grained processes. That is, as user requests for tool services cascade
to other tools, it is possible that the user's focus will move among several tools automatically.
This is the case with FrameMaker's Live Links, where an editing operation may result in the

14 CMU/SEI-91-TR-11

—M

launching of an interactive CASE tool. Such a seamless migration of user focus through vari-
ous trols has the potential for creating a conceptually cohesive environment, but it can also
result in cognitive dissonance if each tool provides a completelv different set of process-relat-
ed services. For example, if each tool provides difterent models of multi-user, versioning and
configuration management services the result of rapid, automatic context switches among
tools can be disorienting.

2.2.4. Summary of Coalition Environments

Coalitions among CASE vandors provide a pragmatic bridge between the near-term demand
for integrated CASE solutions and the long-term idea! of generalized plug-compatible integrat-
ed CASE environments. One result of the press for coalitions is that vendors are increasingly
sensitive to the need to provide access to their tool services, and this is resulting in a trend for
more “open” tool architectures. One important class of tool services being provided by vendors
allows for remote execution of tool services. Remote execution supports mare highly interac-
tive integrations, and supports fine-grained tool support for the software development process.

On the negative side, the software processes supported are ad hoc, are implicitin the integrat-
ed tools, and are not tailorable. The multiplicity of integration services provided on a per-ven-
dor basis leads to integrations that are esoteric, expensive and possibly beyond the reach of
third party integrators. Also, distributed heterogeneous OMS makes data modeling of software
processes, such as lifecycle processes, difficult to achieve without the active support of the
CASE tools.

2.3. CASE Federation Environment

While CASE coalitions represent the m~st mature technology on the integration produ~t scale,
the search for more generalized support for CASE integration is being pursued by computer
manutacturers, sofiware environment researchers, CASE vendors and entrepreneurs. The
most prominent approaches fall into two categories:

* repository standards, such as IBM's AD/Cycle [11}, DEC's CDD/Plus [48],
and the National Institute for Standards and Techno'ngy (NIST) Information
Resources Dictionary Standard (IRDS) [7] and IRDS extensions [5].

* service broadcast models, such as in FIELD[18] and Hewlett-Packard's Soft-
Bench Broaacast Message Server (B*MS) [10].

While neither approach is sufficient for achieving CASE federation, both approaches are
evolving towards each other and in unison could provide the foundations for CASE federat - 1.

Federation environments are not yet a reality, and much of what follows is speculative. How-
ever, there are visible trends that support the conclusion that IPSE scHware development en-
vironment concepts are merging with CASE coalition technology. The federated environment
ofters to generalize the coalition view of partial access to too! functions and heterogeneous
repositories into a generalized model of distribute. service domains. Federated environments

CMU/SEI-91-TR-11

will also uffer a more balanced view of data and control integration, allowing tcol integrators
fiexibility in making trade-oft decisions concerning the cost/benetits of cr.nosing one form over
anotner. Finally, federation framework mechanisms offer the opportunity of making the implic-
it, hard-coded, fine-grained process support of coalition environments more explicit, abstract
and tailorable. These ideas are discussed in the follo'ving sections.

2.3.1. Cooperating Service Domains

in both the repository and message broudcast models services are accessible only after they
have been defined via some abstract interface (method irterfaces or protocol specifications).
This requirement encourages the definition of families of service interfaces whose semantics
are explicitly described — in short, the process of abstraction.

Both the message broadcast model ard repository model encourage the abstraction of tool
services into definitions of abstract service domains. tn {10] and [18] protocols are defined in
terms of discrete areas of tool functionality, such as editors and debuggers. The CASE Inter-
tace Standard (CIS) specification [6] defines service domains in terms o object types and op-
erations (“methods”) associated with these types. Both models represent abstractions of tool
functions into tool services, i.e., the separation of the impiementation of a function from its ab-
stract specification.

Designing a protocol for a class (or domain) of services requires maintaining a delicate bal-
ance between the desire to exploit the unique capabilities of a particular tool in a class against
the desire to be able to reuse the protocol for other tools within the same class. A similar trade-
off is made in the ECMA environment framework reierence moael [27], where service domains
are partitioned into common integration services rather than tool services.

The process of services abstraction in both approaches has several beneficial implications:

¢ modularization of tool services into more cohesive, complete service packag-
es

® counters tool egocentrism by emphasizing what services are provided, not
who provides them

* separation of service interface from the servi.e itself supports alternative ser-
vice implementations, perhaps coexisting, within an environment

* tacilitates recognition of commonly provided services and 1eorganization of
these services into common framework services

The cumulative result of these implications is the evolution towards environmente providing
cooperating sets of services. That is, common (or “horizontal”) services such as CM ana doc-
umentation can be shared by many tools, while specialized (or “vertical") services can be pro-
vided by domain-specific tools, such as design tools. The assiduous adherence to a service
design philosophy that balances service functionality against generality can ensure that these

vertical and horizental service sets are independent of particular iools, and instead represent
abstract domains of services.

16 CMU/SEI-91-TR-11

2.3.2. Flexible Contro! and Data Integration

CASE repository standards emphasize data integration while broadcast models emphasize
control integration. Both models are evolving towards each other, and the resutting frame-
works promise tool integrators fiexibility in choosing among integration mechanisms.

CASE repository standards represent an architectural approach to tool integration very similar
to that of the Stoneman (and hence IPSE) models. One variation is that these models make
an attempt to separate an enterprise’s data model from the repository data storage model,
thus providing more systematic support for distributed OMS than provided in earlier IPSE. An-
other, more significant variation from past realizations of Stoneman is that the data models are
object-oriented. The significance of object-orientation is the association of functicnal behavior
with OMS object types. This, in turn, provides a data model basis for too! integration at the level
of remotely-executable tool services, where tool services are accessed through references to
repository objects. Note that object-orientation does not itself support remote service execu-
tion, nor does it imply a particular implementation. Instead, the data mode! provides uniform
interfaces that can support a variety of remote execution implementations.

The service broadcast models represent a fundamentally different approach to tool federation.
Rather than envisioning a centrally shared data modeling service, broadcast models envision
a centrally shared message broadcast network and tool communication protocols. The con-
ceptual model supported by this form of tool federation is one where tools are thought of as
nodes in a distributed network of CASE service nodes, with tool services accessed by re-
Quests broadcast in a well-defined protocol. The message broadcast model is particularly strik-
ing in the way it encourages the view of services as distributed functions. While object-oriented
repository models associate tool services with data objects that appear to be centrally located,
ihe message broadcast model separates the service from the data and treats all tool services
as requests to a network of distributed services. This explicit view of distribution makes the
broadcast mode! more flexible in support of providing redundant sources of services as well
as in the selective broadcast of certain service requests to a limited service audience.

Itis noteworthy that while efforts derivative of ATIS, such as CATIS and CIS, are expanding
their specifications to include support for a wider variety of control integration strategies [32),
Hewlett-Packard is also engaging in an effort to re-implement the SoftBench BMS, which is
the heart of the SoftBench coricept, using the PCTE framework in order to support a wider va-
riety of data integration strategies. In this latter example, even though the PCTE repository will
still sutfer from the earlier-discussed IPSE OMS shortcomings, the combination of message
broadcast and data sharing mechanisms will provide a tool integrator with a basis for making

trade-off decisions regarding whether to employ data integration, message-based coupling, or
some combination of the two.

Such trade-off flexibility is useful when considering the integration of tools within tool families
versus the integration of tools in different families. “Tool tamily” is meant to denote a class of
tools that share significant functionality. For example, coding/debugging/testing tools can be
considered members of a tool family, as can requirements/structured design tools. In the case

CMU/SEI-91-TR-11 17

—

of coding/debugging/testing tools, it is quite likely that the tools will benefit from tight data shar-
ing of @ common intermediate language as well as control integration to aliow a rapid, seam-
less migration of user focus among the tools (i.e., an enhanced code/test/debug cycle). A sim-
ilarly “tight” integration may be cost-justifiable among the design tool family. However, it may
not be necessary, or cost-effective, to require such extensive integration among tools that be-
long to different families.

Another way a tool integrator can use such flexibility is to decide whether a service should be
pertormed by moving contro! to where the data resides (i.e., control integration) or moving the
data to where the control resides (i.e., data integration). Such a decision can be based upon
performance constraints as well as on software process issues. For example, data integration
may require too much data transfer while extensive control integration may result in significant
operating system process initiation overhead.

2.3.3. Abstract Process Definition and Enaction

Abstract service domains can represent virtual interfaces to process abstractions in the same
way that the implicit integration of tool services in coalition environments represents a kind of
process encoding. For example, within a horizontal service domain such as contfiguration man-
agement, services can be provided that support various abstract models [38]. Such services
can be viewed as a virtual machine basis for encoding those software process elements that
depend upon configuration management and multi-user coordination. Similar examples can
be drawn from various vertical service domains, e.g., the design domain can be partitioned into
various design methods, with services associated with each method, and design processes
derived from or specified using design method primitive services.

Also, while it is true that process enaction mechanisms are not well understood and there are
many research approaches still being explored, it is also true that the contro! integration mech-
anisms and fine-grained service access inherent in federated environments provide a fertile
substrate for developing process enaction mechanisms, particularly with respect to fine-
grained process enaction. The broadcast mode! is noteworthy in this regard because it pro-
vides an obvious mechanism for migrating process-flow aspects of control integration into the

framework. That is, it is easy to envision process enaction mechanisms that use the broadcast
model.

2.3.4. Summary of CASE Federation Environments

While federation environments are not yet a commercial realily, several research and devel-
opment efforts, as well as activity in the formal and de facto standards/consortium arena,
promise advances in software development environment technology that will build upon, and
generalize, the successes of vendor coalition environments as well as IPSE efforts.

The significant advances include a changing perception of environment functionality from a
tool-based view to a service-based view. Thia changed perception is a result of the need *o
describe the interfaces among tools that are coordinating on a much finer grain of services

'8 CMU/SE|-91-TR-11

than is the case even in coalition environments. These interface descriptions raise the level of
abstraction in tool interface descriptions and provide a mechanism for identitying discrete hor-
izontal and vertical service domains. Such well-defined domains offer promise of greater sup-
port for plug-compatible tool integration and the possibility of third party tool integrations. Fur-
ther, the well-defined domains offer an abstract encoding of environment services that can be
used as a virtual machine for specifying enactable process models.

Finally, generalizations of successful data and control integration techniques found in IPSE
and coalition environments support flexible tool integration. The combination of integration
flexibility and abstract service specifications provides a context in which technology can evolve
in different domains (tool and environment) without adversely affecting the validity of the un-
derlying integration framework.

CMU/SEI-91-TR-11 5

20

CMU/SEI-81-TR-11

3. Types of Tool Integration

The trend towards CASE federation is both pushing anu being pushed by an evolving under-
standing of the technical issues of tool integration. As already discussed, new integration mod-
els are being provided by CASE vendors that address the inherently decentralized character
of CASE-based environments. These models build upon existing integration mechanisms
(e.g., remote procedure call, object management systems, exchange standards such as Post-
Scrint, etc.) ana are generating a wige variety ot approaches o achieving CASE iniegauon.
Each of these new approaches, as well as traditional approaches, has consequences on the
quality of integration when perceived from many different perspectives. Examples of such per-
spectives include the environment builder, who is looking for generality of integration tech-
niques, the CASE vendor, who is looking for platform availability of integration mechanisms,
and the CASE user, who is looking for coherent support for software development processes.

In order to discuss tool integration in a coherent way, the complexities of the problem space
need to be partitioned in some way. Several problem decompositions have been proposed.
For example, Nejmeh describes the characteristics of tools that are related to integrability [20].
More commonly discussion has focused on three classes of integration: presentation, data,
and control integration. By and large the discussions of these classes of integration focused
on integration mechanisms. Further, such mechanisms were considered extrinsic to the tools
themselves. However, as CASE vendors and environment integrators gained more experi-
ence with CASE integration, it became apparent that the focus on presentation, control and
data integration needed to be refined.

Wasserman broadened the focus to include two additional classes of integration: process and
platform integration [21]. In Wasserman'’s paper, process integration addresses the integration
of software development tools with process management tools, while platform integration ad-
dresses tool integration with a virtual computing service layer for network and operating sys-
tem transparency. lan Thomas (Hewlett-Packard) and Brian Nejmeh (INSTEP) in a soon to be
published paper took this view further by recognizing that integration occurs between pairs of
entities, and that the relationships between these entities has a number of properties that can
be used to characterize the integration. Further, in Thomas and Nejmah’s model, 1) process
integration generalizes Wasserman'’s definition of process to address conceptual integration
with an organization’s software development process model, and 2) framework integration
generalizes Wasserman's platform integration to include use of any common substrate servic-
es. Finally, Martin Cagen (Interactive Development Environments) proposed a further decom-
position of process integration into three distinct kinds: enaction models (which addresses
Wasserman's concern), lifecycle models and development models.

Our refinement of this model is twofold. First, we argue that framework and process integration
are orthogonal to control, data and presentation integration (and to each other). Process inte-
gration defines the design constraints on tool integration solutions imposed by an organization
(or user community), while framewaork integration defines implementation constraints imposed

CMU/SEI-91-TR-11 oY

by integration mechanisms. Put another way, process integration defines “what” gets integrat-
ed while framework integration defines “how" integration works.

Second, we argue that intertool integration is still characterizable via the now classical control/
data/presentation partition. However, the control/data/presentation relationships between tool
entities does not describe integration mechanisms (mechanisms are described in tool/frame-
work relations), but rather describes the conceptual models of integration occurring between
integrated tools. That is, while the framework provides integration mechanisms, the tools de-
fine the semantics of the integration. The significance of this distinctior lies in the degree to
which intertool semantic integration is migrating into framework services. This paper argues
that the trend towards environment federation is reflected, and in some sense gauged, by the
migration of integration concepts provided by tools in support of coalition integration into gen-
eralized framework services.

The unified view of integration depicted in Figure 3-1shows the three classes of entities in-
volved in integration: framework, process and tools. The services illustrated as belonging to
the framework are taken from the ECMA software development environment reference mode!
[27] and illustrates the relationship of control, data and presentation mechanisms with intertool
control, data and presentation relationships.

The following discussion will focus in turn on each of the kinds of integration illusirated in Fig-
ure 3-1. Each kind of integration will be described and, where possible, the relationships
among the kinds of integration to commercial or experimental integration techniques or frame-
works will be discussed.

3.1. Framework Integraticn

Wasserman describes platform integration in terms of a “set of services tha* provide network
and operating systems transparency” to CASE tools. This focus is too narrow when taken in
the context of current integration practice. Rather, tools may be integrated with sets of services
that provide something less than network and operating system transparency; conversely,
some CASE integration services go far beyond mere host systems transparency. The current
trend is to consider integration in the context of something more general than too! portability
services; this “something” is frequently referred to as a “framework.”

3.1.1. Variants of the Framework Concept

The term “framework” is ambiguous, having different meanings depending upon the context
of a particular discussion. A framework can refer to sets of standards, a conceptual model! or
schema, the generic or common part of a family of application specific environments, a system
of programmatically accessible services, or generalizations and extensions to native operating
systems. This ambiguity stems from the confusion of several distinct concepts: host services,

22 CMU/SEI-91-TR-11

T A T process interface
lifecycle enaction development
model model model

L |

tool-process

;] tool-tool control
TOOL <] tool-tool data

-] tool-tool presentation

tool-framework

framework interface
User Message| | Task Data Data
Interface Server Mgt. Integration Repository
Services Services Services Services Services
presentation control data
integration integration integration
services services services

Figure 3-1 Types of Integration

plattorm se.vices, framework services, and environment services. The following relationship
describes the way these concepts are related:

hostc platform ¢ framework c environment

For example, a host represents the native operating system services available on a machine,
e.g., UNIX; the platform represents portability/transparency services, e.g., POSIX; the frame-
work represents services that provide a high-level conceptual model for tool integration, e.g.,
CIS, and the environment represents a framework that is populated with cooperating CASE
tools.

Of course, all of these levels (host, platform, etc.) can be coalesced or re-interpreted; a typical
example is the denotation of UNIX as a software environment. Alternatively, one can view a
system as spanning several levels; for example PCTE can be thought of as combining plat-
form and framework services. What is significant, however, is that it is possible to evaluate in-

CMU/SEI-91-TR-11 23

tegration as occurring at any of these levels, and in each case a different set of integratiop is-
sues may surface. For example, environment-level integration may require integration with a
process model or with other tools, while framework integration may require integration of a tool
with a common data model.

It is not surprising to find that framework integration has been the focus of continuous research
and development since the time of Stoneman because it is so fundamental to tool integration.
In practice, frameworks tend to focus on some combination of these objectives:

1. to provide specialized services for application development
2. to support construction of portable integrated tools

3. to support the incorporation and integration of tools developed for different
frameworks

4. to provide a maximum degree of platform independence

Of course frameworks need not focus on one objective to the exclusion of the others; never-
theless, there is tension among these objectives. For example, environments that are intended
to maximize 1and 2 will probably ignore 4; examples include InterLISP [14] and FSD [22]. En-
vironments that are intended to focus primarily on 1 will produce frameworks such as Sun's
NSE[23] and Apollo’s DSEE [24]. Environments that focus on 2 and 4 result in frameworks
such as CAIS and PCTE, while a focus on 4 alone produces a minimal framework based upon
standards such as POSIX and X. Support for 3 results in frameworks such as SoftBench and
specifications such as ATIS/CIS.

3.1.2. Tool and Framework Integration Services: Migration to Framework

in an effort to characterize and relate framework products an ECMA environment framework
reference model task has been undertaken to identify and define environment framework ser-
vices [27]. The results of this effort are directly applicable to understanding issues of tool-
framework integration. One particularly important ECMA reference mode! technique is the
three schema approach of defining framework services in terms of conceptual, internal and
external levels. The conceptual level describes what a service is, the internal level describes
how a service is implemented, and the external level defines how the service is made avail-
able.

Several points of interest need to be made about the 3-schema definition of services. First, the
separation of interface from implementation seems to imply that tools sharing the same frame-
work interfaces but different implementations can nonetheless be integrated. In practice, i.e.,
in residual IPSE and current-generation coalition environments, this is not the case (although
federated environments may provide a cleaner separation of service interface from impiemen-
tation), and instead the conceptual model, interface and implementation details are more tight-
ly coupled than strictly necessary. As a result, tools frequently need to integrate with all three
schema levels of a framework service.

24 CMU/SEI-91-TR-11

Second, the conceptual level provides a description of the semantics of a service which is nec-
essary but not sufficient for tool integration. in practice, tools need to augment the conceptual
level with tool or domain-specific semantics. To illustrate this and the three schema approach,
consider data integration in the PCTE framework. In PCTE, two tools share data by sharing
the same schema definition set (SDS). internally, the SDS is a PCTE framework mechanism.
Externally, the SDS is accessed via programmatic interfaces and shell commands. Conceptu-
aiy, the SCSic a viewinto an entity-relationship-attribute (ERA) database. Tools integrate with
all three levels of PCTE SDS's; in addition, tools need to agree on an interpretation, or mean-
ing, of the data model described by the SDS view. This fourth level of integration is beyond the
scope of the framework services, and instead represents a bilateral semantic interface be-
tween the integrated tools.

Finally, in the above PCTE example, all three service levels (conceptual, interface and imple-
mentation) are provided by the framework (PCTE). In some cases, however, it is possible that
tools themselves provide integration services constructed upon other, lower-level, framework
services. In these cases, the tool can provide the conceptual leve! for a service while the
framework provides the mechanisms and interfaces. Where such tool-provided conceptual-
level services become widely accepted, it is possible to find migration of these concepts into
the framework. For example, analogues to Frame Technology's Live Links services and Inter-
leaf's Active Document services [31] are beginning to be found in commercial integration
frameworks [35).

3.2. Process Integration

Although environment support for software process has been a significant component of past
environment efforts [15] [33], the recognition that process plays a role in the integration of tools
is @ more recent realization [21] [32]. Given the variety of tools, tool services, and integration
mechanisms available for integration, an increasingly important question that needs to be
asked by the tool integrator is how the tools (or tool services) are intended to be used. Some
integration strategies that make sense under one software development process may not be
reasonable under alternative process models. Deciding which tool services to integrate, and
how to integrate them, is dependent upon the organization's software processes that are being
automated or supported. Conversely, tools themselves may support or impose process mod-
els that may have an impact on the organization’s processes.

Process models at two levels of granularity are discussed, below. Lifecycle models address
the course-grained processes derived from a macro-level view of the product development cy-
cle over the lifetime of a product. Development models address the finer-grained processes
involved in the day-to-day activities and interactions of managers, developers, testers, etc., in
the development of a product. Note that the distinction between lifecycle and development pro-
cesses is not always clear since the development process is ultimately concerned with the pro-
duction of lifecycle artifacts described in the lifecycle model. Finally, several recent research
projects are exploring innovative techniques for specifying and controlling software processes

CMU/SEI-91-TR-11 >

within an environment. These techniques are combined into a generic software process enac-
tion category, which in the future may become significant in tool integration.

3.2.1. Lifecycle Process .
Lifecycle process refers to the artifacts, the relationships among artifacts, the processes that
generate artifacts, and the sequencing of these processes during the entire lifecycle of a prod-
uct. There are two aspects of lifecycle process integration of interest to tool integrators: inte-
gration with the model as a whole, and integration with tools that manage other, related lifecy-

cle artifacts. In the former case, the integration issues typically concern the interaction of a tool
with a repository data model that reflects the lifecycle model; in the latter case the issues typ-
ically concern tracability relations. Both are discussed, below.

3.2.1.1. Repository Structure Integration

One obvious way of modeling the lifecycle process is in terms of the products produced at var-
ious stages of the process. The Software Life Cycle Support Environment (SLCSE) [34] pro-
vides an example of this concept. in SLCSE, a data model representing the DOD-STD-2167A
lifecycle model provides the structure for tools to integrate their by-products. Figure 3-2 depicts
a trivial lifecycle model that will be used to illustrate some of the points raised below.

test tools

code tools

requirements ——p» design ——p»- specifications —p» code — - tests

design tools

analysis tools

Figure 3-2 Lifecycle Context Integration

At its simplest, this form of integration may require that tools generate artifacts to conform to
various internal format and external structuring requirements. For example, design tools may
be required to produce documentation formats that satisfy a standard such as DOD-STD-
2167A or generate objects that may notbe a part of the logical processing requirements of a
tool but fit the structural requirements of the litecycle mode!. In addition to these product-ori-
ented lifecycle artifacts, there may be additional process-oriented artifacts, such as change re-
quest objects, that may require some integration efforts.)

More complicated issues arise where lifecycle model! details address various states and tran-
sitions between states of artifacts in the model. For example, individual artifacts may pass
through several intermediate states ranging from “preliminary” to “final” versions with different

26 CMU/SEI-91-TR-11

M

semantics associated with each state, e.g., visibility and access control. Lifecycle artifacts may
also exist within a family of related artifacts, for example, platform variants or variants reflect-
ing maturity states, such as “experimental,” “development” and “released,” or sequential ver-
sions within states, such as “release 1.5.” In these more complex scenarios, issues of access
control, object sharing, data compression, consistency, etc., all need to be addressed by the
tool integrator. Further, because CM systems are frequently used to support this class of life-
cycle model issues, tool integration with the lifecycle model may require close coordination of
the integrated tool with a set of CM services.

3.2.1.2. Fine-Grained Lifecycle Integration: Lifecycle Consistency

While the kinds of lifecycle relationships described above can be thought of as course grained
since they deal with artifacts at the granularity of, say, a requirements document, another class
of relationships concerned with much finer grained objects is also present in lifecycle integra-
tion. The need for fine-grained lifecycle relations arises from two requirements: tracability and
dependency management. Tracability reflects the desire to preserve design rationale in the
form of relations (e.g., these modules are derived from this data flow bubble which satisfies
these requirements). Dependency management reflects the need not only to manage the
manufacturing process of a system but also to maintain consistency among tools which share
logical artitacts.

Fine-grained relationship integration becomes complex in CASE environments where tools
make use of private, tool-specific repositories because different data models and manage-
ment schemes make object-level coordination difficult. In addition to issues of forming and
maintaining relationships between objects in heterogeneous repositories, dependency man-
agement also introduces issues of cooperation of tool services for update notifications and re-
derivation of logically shared objects.

To illustrate the last point, consider the following example. CASE tools with specialized repos-
itories are likely to maintain private, tool-specific forms of logically shared artifacts. Thus, a de-
sign tool will have an internal representation of the system interface specifications that will
eventually be imported into a coding tool's specialized repository. These tools share a logical
object type, but have redundant copies of the object represented in separate repositories. If
changes are made to the system interface specifications within a coding tool, these changes
should be reflected backwards to the design tool, which may in turn need to interact with the
analysis tool. It is conceivable that changes would need to be propagated in the other direction
as well. Each such propagation may require execution of tool services to import, process, and
possibly notify other tools of the need for further propagation.

Continuing with the example, it is also clear that litecycle integration may call for varying de-
grees of consistency maintenance. That is, at various development stages it may be important
for various parts of the lifecycle model to be inconsistent. For example, exploratory changes
to a design within the context of a programming tool may be reasonable. In such circumstanc-
es, automatic change propagation may not be desired, and instead a less intrusive notification

CMU/SEL-91-TR-11 27

mechanism such as electronic mail to concerned parties may be more appropriate. Mecha-
nisms that support inconsistency are discussed briefly in [42).

This example illustrates how closely related lifecycle and development processes can be, how
tool architectures can impact the integration strategies required to satisfy a process require-
ment, and how tightly coupled these strategies are to the availability of integration mecha-
nisms and tool services to support these strategies.

3.2.2. Development Process

Development process refers to the model employed by an organization to support the day-to-
day activities of environment users, particularly those activities that imply coordination among
multiple environment users and distinction of various user roles. While the concept of devel-
opment process is closely related to ongoing research in the area of support for collaborative
work, all multi-person software development efforts enforce, through management stricture
and/or automated mechanisms, some notion of control on the development process.

The difficult issues that are raised by development model integration concern the alignment of
tool-defined development models with those of the customer organization. Consider again the
lifecycle model described in Figure 3-2. Imagine a development model thai stipulates different
user roles for designer and developer. Further, in this hypothetical development model, only
the designer is permitted to modify system specifications. In this scenario, it might be important
that the coding tool honor this access control constraint. While this would be straightforward
in an environment where tools share a common repository (and hence common access con-
trol), in an environment in which each CASE tool imposes its own development models and is
ignorant of external models such an integration would be far more difficult.

One widely used vehicle for expressing a model of, or constraints on, the software develop-
ment process is a CM system. Modern CM systems can be used not only to enforce role-based
access control, as in the previous example, but also to support developers in a variety of ways.
Organizations are increasingly adopting the use of CM systems in their environments, and,
similarly, CASE tools with significant data management requirements are likewise implement-
ing embedded CM services. Thus, an important aspect of development mode! integration is
the coordination and cooperation of CM services that may be distributed across various tools

and within the environment framework, and that may support different underlying CM models
[38].

3.2.3. Enaction Mechanisms

Enaction mechanisms refer to services that automate the execution of process models. Al-
though forms of process enaction have been found in earlier environments, e.g., ISTAR and
DSEE, on the whole, this form of integration is less well explored, at least in terms of the ulti-
mate form such enaction mechanisms might take. While research efforts such as Arcadia [12]
are exploring executable process specifications, other efforts are aimed at a more fundamen-

28 CMU/SEI-91-TR-11

tal understanding of what units of task activity are and at what level they are reasonably auto-
mated [43].

Despite this uncertainty, the trend towards federated CASE environments is generating tool
architectures and tool integration framework technology whicn can support a much finer-
grained process enaction model than is the case with environments populated by large, mono-
lithic, predominately interactive CASE tools. As part of the trend to CASE federation process,
enaction mechanisms will gradually migrate from the tools to the framework.

3.3. Intertool Integration: Control, Data and Presentation

Various aspects of control and data integration were discussed earlier in this report when de-
scribing the IPSE, Coalition and Federation environment concepts. This section reprises the
significant implicati >ns on control and data integration posed by the evoiution of decentralized,
federated environments. Then a more detailed discussion of presentation integration is pro-
vided because presentation integration c..arly demonstrates the migration of tool-originated
conceptual models of presentation semantics into framework mechanisms.

3.3.1. Contro! Integration

This form of integration refers to the ability of one tool to exezute functions provided by another
tool or, more generally, to support remote execution of tool services. The recent rise in the
prominence of control integration mechanisms is partly a result of the seemingly intractable
problems vith genera'ized data integration, and the favorat'~ oalance of perceived value-add-
ed to two or more tools loosely coupled via some control integration strategy versus the ccst
of implementing this form of integration. Whereas data integration aims at moving data to
where control resides, contro! integration can be use to invert this and instead move control to
where the data resides. This is the way Live Links achieves data integration by use of control
integration mechanisms.

Although control integration may seem like a recent technology, environment and tool builders
have in the past provided control integration mechanisms in the form of data-driven and event-
driven triggers. Data-driven triggers cause actions as 1 result of a change in the state of a da-
tabase (OMS or repository). The CAIS-A attribute monitor mechanisi.. is an example ot sup-
port for data driven triggers. Event-driven triggers cause actions as a result of some activity
that occurs in an environment. The NSE notification mechanism is a limited example of event-
driven triggers; more recent and general even: triggers can be found in FIELD and SoftBench.

What is significant about the recent uses of control integration techniques is the affiliation of
control integration with finer-grained access to too! functions than was found in IPSE environ-
ments. This trend is being amplified by the market prewscres for CASE coalition integration,
and it is becoming increasingly common to find CASE architectures that support the program-
matic, non-interactive execution of otherwise interactive tools. The combination of contro! in-
tegration standards such as RPC and open CASE architectures (with respect to programmatic

CMU/SEI-91-TR-11

29

interfaces) is a major driving force in the development of environments based upon federation
of tool services.

Programmatic access to separately selectable tool services is having a positive impact on sup-
port of fine-grained processes in CASE environments. The combination of fir.e-grained service
support and advai:c. 5 in event- and data-driven trigger support sets the stage for the devel-
opment of mAre reactive and proactive anvironments. Greater reactiveness and proactive-
ness, when coupled with a trend away from epocentric tool architectures, sets the stage for a
greater degree of seamlessness between tool boundaries, as control is passed implicitly
among tc Is as a result of user activities rather than as a result of explicit user-level too! invo-
cations. Framework support fcr this kind of seamlessness is fast becoming a commercial re-
ality [35), thou " commercial tools may lag 'n thzir use of such services.

3.3.2. Data I'itegration

Data integratior: has long been the centerpiece in the research and develcpment of tool inte-
gration frameworks. Since the time of Stoneman, environment architectures featuring central
repositories have been co:nmoinplace. This becic architecture is still found in general purpose
environments [3] as well as language-centerea eavironments [22] [25]. The underlying as-
sumption of these architectures is that tool integration is test achieved through common data
representation and models [30]{34][4]; the central repository provides a mechanism fo- tools
to access the artitacts preduced by other tools, and for expressing the relatonsnips between
these artifacts.

For reasons that were discussed in Section 2 of this report, the central repository research ide-
al has yet to become ccmmonplace in industry. Instead, data integration is commonly
achieved, if at all, tirough an eclectic assortment of mechanisms, including:

* format .nechanisms: data interchange through use of non-proprietary exter
nal formats, such as PostScript, and proprietary ext.rnal formats, such as
Frame Technology's Maker interchange Format (MIF)

* storage mechanisms: data interchange and data sharing through external
files, clipboards, cut-butfers, CASE-specific data ‘epository services, com-
mon databases, and an assortment of intertoo! conventions

* carrier mechanisms: data inte. _hange through interproc.2ss communication,
such as UNIX pipes and sockets, ind Sun Microsystems' Remote Procedure
Call (RPC) and External Data Representation (XDR)

Tool vendors in coalition environments have achieved ratner dramatic successes in tool inte-
gration oy making use of any and all of these mechanisms. These successes, coupled with
the rise in prominence of control integration techniques, have caused a reappraisal of old as-
sumptions concerning the primacy of data integratior..

30 CMU/SEI-91-TR-11

Yet some set of common repository services will be required by an environment in order to
support generic activity controlling processes, such as configuration management and project
management [26]. General recognition of this requirement continues to drive efforts to define
a repository concept to support data integration in CASE environments. The requirement for
ccmmon repository services, when coupled with trends toward greater tool autonomy and the
desire to support tool migration into frameworks as an alternative to a priori tool/framework in-
tegration, has resulted in interesting advances in repository and data integration concepts.

One concept is the separation of the repository data model from the underlying data manage-
ment services. In this way the repository, or services making use of the repository, can access
objects through the data model, while other environment tools can bypass the data model and
use the data management services directly. This concept supports tool migration by allowing
different levels of data integration. For example, data management services can be provided
by the native file system; in this model, native host tools can still achieve some degree of in-
tegration with tools using a more sophisticated data model than provided by the file system.
Separation of data model and data management can be found in the ECMA framework refer-
ence model, the CIS specification and in Sun Microsystems’ NSE.

Another related concept is the separation of relationship management services from data
management services, or the provision of alternative relationship (or “link”) management ser-
vices. This concept is derived from the need to provide tracability and configuration manage-
ment relations among tools that manage their own data, as is frequently the situation with high-
ly complex CASE tools. The ECMA software environment framework reference model reflects
this recent concept by noting that relationship services need not be an intrinsic part of an un-
derlying data model. A proposal to the CIS committee [29] and, less ethereally, the NSE link
services are examples of attempts to provide generalized relationship services in the context
ot distributed, heterogenous repositories. SofTool's CCC [44] is an example of CASE too! (as
opposed to framework) provision of relationship management services. Frame Technology's
Live Links and FrameMaker's Active Documents [31] are examples of specialized link services
combined with control integration to provide a degree of transparency to relationships among
heterogeneous repositories.

At this time it is not clear where the ultimate responsibility for some of these services will lie,
i.e., with the framework or with tools. However, one clear trend is to have certain data integra-
tion services, such as data management, reside in the framework while other services are pro-
vided by tools or are specialized from framework services to the semantics of the data models
implemented in tool repositories, e.g., link services. Ultimately, though, the data integration
services — whether residing in the framework or in the tools — will be more tightly coupled

with control integration services in order to support a broader class of process-oriented data
models.

CMU/SEI-91-TR-11 3

3.3.3. Presentation Integration

The relative maturity of both hardware and software graphical display technology has resuited
in a gradual separation of user interface concepts from underlying mechanisms. Thus, the
common *“look and feel” among tools that is the goal of presentation integration is largely in-

dependent of particuiar presentation mechanisms.! Thus, it is possible to write X applications
that present the same look and feel as Macintosh applications.

One indication of this separation of concepts from mechanisms is illustrated by the NIST user
interface reference model [53], shown in Figure 3-3. Thus, a common look and fec! is achieved
among applications that share the same realizations of the presentation (“look™) and dialogue
(“feel”) layers. In an ideal world, different tools could implement different layers of the NIST
stack and still achieve a common look and feel. In practice, however, the separation of con-
ceptual models from implementation mechanisms has not been followed by a separation of
interfaces from mechanisms. Thus, window systems, toolkits, etc., tend not to be easily inter-
changeable. As a consequence, practical achievement of common look and feel requires
agreement among tools to use the same presentation mechanisms, such as OSF's Motif tool-
kit.

Application
Dialogue
\L/J\/'ihr?c?o%v ' Motif Style Guide
Managers Presentation
OoenLook Toolkit
penLoo Motif Toolkit
Toolkit Subroutine !
Foundation
Protocol
interface
Byte Stream
Encoding

Figure 3-3 NIST User Interface Reference Model

Another approach to presentation integration that offers some promise of removing the inte-
gration dependencies on low-level implementation mechanisms (or rather, replacing depen-
dencies on low-level mechanisms with dependencies on window system-independent mech-
anisms) is through the use of user interface management systems (UIMS). An example of

1. For the purpose of this report, presentation integration will refer to integration issues dealing with the

bitmapped, window-oriented display technologies, since these are the most important technologies relat-
ed o CASE integration.

32 CMU/SEI-91-TR-11

such a UIMS is Serpent [47]. Serpent illustrates an attempt to separate dialoguc from presen-
tation, and separate presentation from specific presentation interfaces.

Despite their conceptual appeal, UIMS’s probably will not have substantial impact on tool in-
tegration in the near future. The reasons for this appear to mirror many of the reasons why
IPSE framownrks have nnt been widely 2dopted (see IPSE aiscussion in Section 2.1). Fore-
most among these reasons are a lack of UIMS maturity, which is reflected in several ways:
UIMS’s are not yet widely available in customer environments, where they will be needed to
offer run-time services, and application developers have concerns over UIMS-imposed con-
straints on user interface functionality as well as application performance.

As in data and control integration, some degree of bilateral semantic integration is necessary
to achieve integration objectives. For example, it might be desirable for tools that share logical
repository object types to display these types in a similar way, or for tools to share an agreed-
upon convention for the meaning of certain sequences of mouse button or key sequences.
This latter concept is referred to by the IEEE P1201 user interface standardization committee
as “drivability,” and is based on the analogy of automobiles, i.e., what factors are involved that
make it possibie for people to drive many different models of cars.

One interesting aspect of presentation integration is the degree to which some of these se-
mantic integration issues have become widely accepted by tool vendors, and the degree to
which such de facto standardization is refiected in presentation mechanisms. For example, it
is generally recognized that the OpenLook toolkit encodes more presentation and dialogue
policy than the Motif toolkit, which relies more on tool adherence to a well-specified style guide
[42]. While this does not imply that OpenLook is more mature than Motif, it does point out that
continued experience with tool integration will result in a gradual migration of implicit semantic
or policy issues of integration into common framework mechanisms.

/SEI-91-TR-
CMU/SEI-91-TR-11 e

CMU/SEI-91-TR-11

4. Conclusions

IPSEs represent an early vision of software environment architectures to support large-scale
software development efforts. The key aspects of IPSE, centralized object management and
process management, make sense architecturally. However, the continued technological im-
maturity of OMSs as well as the concepiual immaturity of process modeling and enaction
mechanisms has resulted in the development of IPSE frameworks that are not widely accept-
ed by tool vendors. Instead, the CASE tool industry has developed in isolation of IPSE re-
search and development efforts. This isolation has resulted in the development of sophisticat-
ed, highly functional tools that are, unfortunately, unintegrated with each other. The resulting
environments, populated with unintegrated CASE tools, raise troublesome questions with re-
spect to environment scalability and evolvability.

Market pressure for integrated CASE environments is resulting in the development of new
models of tool integration. The current generation of integrated CASE environments are being
created by CASE vendor coalitions. These coalitions are demonstrating integrated CASE so-
lutions that satisfy the near-term demand for too! integration, and point the way toward more
generalized solutions. In particular, coalition CASE technologies provide a basis for creating
more interactive, cohesive and coherent environments based upon well-defined domains of
environment services, some of which are provided by tools. However, tool architectures have
not kept pace with the development of integration mechanisms that support coalition environ-
ments. In particular, CASE tools exhibit a large degree of egocentrism that makes generalized,
tailorable integrations difficult to achieve.

The development of CASE architectures that are more “open” with respect to tool functions is
resulting in less egocentric tools. This, in combination with advances in abstract framework
mechanisms that support exploitation of open CASE interfaces, such as object-oriented re-
positories and message broadcast mechanisms, points to a trend for a more generalized fed-
eration of tool services than found in coalition environments. Federated environments are still
more of a vision than a reality, however. At present, tool vendors still do not know which inte-
gration models and mechanisms work best, or how to combine these mechanisms into inte-
gration solutions that will be widely acceptable among customer organizations.

A key aspect in gaining vendor and customer acceptance is found in an evolving understand-
ing of the technical issues of tool integration. Of interest to vendors are the technical aspects
of framework integration, i.e., the availability of generalized, flexible integration mechanisms.
Of interest to customers is process integration, i.e., the degree to which integrated tools sup-
port chosen software processes. Process and framework integration define the what and how,
respectively, for achieving intertool control, data and presentation integration.

CMU/SEI-91-TR-11 : 35

% CMU/SEI-91-TR-11

References

[1] Requirements for the Ada Programming Support Environment: Stoneman, Department of
Defense, February 1980.

[2]) DOD-STD-1838A, Common Ada Programming Support Environment (APSE) Interface Set
(CAIS), Revision A, Department of Defense.

[3] Thomas, lan, “Tool Integration in the PACT Environment,” in Proceedings 11th Internation-
al IEEE Conference on Software Engineering, pages 13-22, May 1989.

[4] Penedo, M. H., Stuckle, E.D., “PMBD - A Project Master Database for Software Engineer-
ing Environments,” in Proceedings of the 8th International IEEE Conference on Software En-
gineering, pages 150-157, London, England, Aug. 1985.

[5] Beyer, Hugh R., Proposal For Extending Dictionary Standards to Support CASE, Proposed
ANSI| X3H4 “ATIS" Extensions, ANSI X3H4 Committee, March 14, 1990.

[6) CASE Interface Services Base Document, Digital Equipment Corp., Nashua, NH., Septem-
ber 1990.

[7) ANSI X3H4, Draft Proposal American National Standard, IRDS, American National Stan-
dards Institute, New York, * 524

[8] Boudier, G., Gallo, T., Minot, R., Thomas, ., “An Overview of PCTE and PCTE+," in Pro-
ceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Engineering Environments, Boston, MA., 1988, pages 248-257.

(9] Fleming, R., Wybolt, N., Frameworks for CASE Tool Integration, CADRE technical report
CADRE Technologies, Inc.

[10] Cagen, M.R., “The H.P. SoftBench Environment: An Architecture for a New Generation of
Software Tools,” Hewlett-Packard Journal, 41, 3, June 1990, pages 36-47.

[11] Mercurio, V.J., Meyers, B.F., Nisbet, A.M., Radin, G., “AD/Cycle strategy and architecture
[sic],” IBM Systems Journal, Vol. 29, No. 2, 1990, pages 170-188.p

(12] Taylor, N., Belz, F., Clarke, L., Osterweil, L., Selby, R., Wileden, J., Wolf. A., Young, M.,
“Foundations of the Arcadia Environment Architecture,” in Proceedings of the ACM SIGSOT/

SIGPLAN Software Engineering Symposium on Practical Software Development Environ-
ments, Boston, MA., 1988, pages 1-13.

CMU/SEI-91-TR-11 37

[13] Feiler, P., Dart, S., Downey, G., Evaluation of the Rational Environment, Technical Re-
port, CMU/SEI-88-TR-15, ADA198934, Software Engineering Institute, Pittsburgh, Pa., July
1988.

[14] Teitelman, W., Masinter, M., “The Interlisp Programming Environment,” IEEE Computer,
Vol. 14, No. 4, 1981.

[15] Dowson, M., “ISTAR - An Integrated Project Support Environment,” in Proceedings of the
2nd SIGSOFT/SIGPLAN Symposium on FPractical Software Development Environments, pag-
es 27-33, December 1986.

[16] Bourguignon, J.P., “Structuring for Managing Complexity,” in Managing Complexity in
Software Engineering, ed. Mitchell, R. J., Peter Peregrinus Ltd., 1990.

[17] Version Management Common Services, in PACT documentation, G.I.E. Emeraude, 38
Bd Henri Selier, 92154 Suresnes, France.

[18] Reiss, S., “Interacting with the FIELD Environment,” Software Practice and Experience,
Volume 20, June 1990.

[19] Graham, M., Miller, D., ISTAR Evaluation, SE! Technical Report, CMU/SEI|-88-TR-3,
ADA201345, Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, Pa.,
1988

[20] Nejmeh, B., Characteristics of Integrable Software Tools, INTEG_S/W_TOOLS-89036-N
Version 1.0, Technical Report, Software Productivity Consortium, May 19889.

[21] Wasserman, A., “Tool Integration in Software Engineering Environments,” in Lecture
Notes in Computer Science, #467, Springer-Verlag, Fred Long, ed., ISBN 3-540-53452-0.

[22] Balzer, R., "Experiencing the Next Generation Computing Environment,” in Lecture Notes
in Computer Science, #467, Springer-Verlag, Fred Long, ed., ISBN 3-540-53452-0.

[23] The Network Software Environment, Sun Technical Report, Sun Microsystems, 1989.

[24] Leblang, D., Chase, R., “Computer-Aided Software Engineering in a Distributed Worksta-
tion Environment,” In Proceedings of SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, Pittsburgh, PA., April 1984, pp. 104-112.

[25] Clement, D., “A Distributed Architecture for Programming Environments,” In Proceedings

of the Fourth ACM SIGSOFT Symposium on Software Development Environments, Irvine, De-
cember 1990.

(26] Clow, G., Ploedereder, E., “Issues in Designing Object Management Systems,” in Lecture
Notes in Computer Science, #467, Springer-Verlag, Fred Long, ed.,ISBN 3-540-53452-0.

38 CMU/SEI-91-TR-11

[27) Earl, A., A Reference Model for Computer Assisted Software Engineering Environment
Frameworks, Technical Memo, May 25, 1990, Version 3.0 ECMA/TC33/TGRM/80/011.

[28] Integrating Applications with FrameMaker, Technical Manual, Frame Technology Corpo-
ration, December 1989, Part Number 41-00327-00.

[29] Leblang, D., Hare, D., CIS 89-008 Draft Proposal Tool Integration Environment Interface,
Working Draft, Rev. 1.3, June 6, 1989.

[30] Buxton, J., Druffel, L., “Requirements for an Ada Programming Support Environment: Ra-
tionale for Stoneman,” In Proceedings of the IEEE Conference on Computer Software and Ap-
plications (COMPSACS80), Chicago, lllinois, October 1980.

[31] Hayes, F., “The Joy of Automatic Data Updates,” UNIXWorld, November 1990, pp. 80-82.

[32] Zarrella, P., CASE Tool integration and Standardization, SEl Technical Report, CMU/SEI-
90-TR-14, December 1990, Software Engineering Institute, Carnegie-Mellon University, Pitts-
burgh, Pa.

[33] Hitchcock, P., "The Process Modet of the Aspect IPSE,” Position Paper, In Proceedings
of the IEEE/ACM 4ith International Software Process Workshop, 1988, pp. 76-78.

[34] Strelich, T., “The Software Life Cycle Support Environment (SLSCE) A Computer Based
Framework for Developing Software Systems,” in Proceedings of the ACM SIGSOFT/SIGP-
LAN Software Engineering Symposium on Practical Software Development Environments,
Boston, Massachusetts, Nov, 28-30, 1988.

[35] Swaine, M., “Applications are Talking Too,” MacUser, May 1991, pp. 239-242.

[36] Dart, S., Ellison, R., Feiler, P., Habermann, N., “Software Development Environments,” in
IEEE Computer Magazine, November 1987, pp. 18-28.

[37] Chappell, C., Downes, V., Tully, C., Real-time CASE: the Integration Battle, Ovum Ltd.,
1989, ISBN 0 903969 48 3.

[38] Feiler, P., Configuration Management Models in Commercial Environments, SE| Techni-
cal Report, CMU/SEI-91-TR-7, March 1991, Software Engineering Institute, Carnegie-Mellon
University, Pittsburgh, Pa.

(39] Dant, S., Spectrum of Functionality in Configuration Management Systems, SEI Technical
Report, CMU/SEI-90-TR-11, December 1990, Software Engineering Institute, Carnegie-Mel-
lon University, Pittsburgh, Pa.

[40] Kilter, U., “Performance of PCTE/OMS," in PCTE Newsletter, Number 6, April 1991.

[41] Jetty, J., “Emeraude PCTE Benchmarks,” in PCTE Newsletter, Number 6, April 1991.

CMU/SEI-91-TR-11 —5

[42] Balzer, R., “Tolerating Inconsistency,” Position Paper, In Proceedings of the 5th interna-
tional Software Process Workshop, |EEE Computer Society Press, Kennebunkport, Maine,
Oct. 10-13, 1989.

[43] Kaiser, G., "Mechanisms,” Session Summary, in Proceedings of the 5th International Soft-
ware Process Workshop, IEEE Computer Society Press, Kennebunkport, Maine, Oct. 10-13,
1989.

[44] CCC: Change and Configuration Control Environment. A Functional Overview, SoftTool
Product Description, 1987.

[45] Huff, K., Plan-Based Intelligent Assistance: An Approach to Supporting the Software De-
velopment Process, Ph.D. Thesis, Computer and Information Science Department, University
of Massachusetts, COINS Technical Report 89-97, September 1989.

[48] Proceedings of the 5th International Software Process Workshop, IEEE Computer Society
Press, Kennebunkport, Maine, Oct. 10-13, 1989.

[47) Bass, L., Clapper, B., Hardy, E., Kazman, R., Seacord, R., “Serpent: A User Interface En-
vironment,” In Proceedings Winter 1990 USENIX Technical Conference, Washington, D.C.,
January, 1990.

[48] Yourdon, E., “DEC's CASE Environment,” American Programmer, Vol. 3, No. 1, J3anuary,
1990.

[49] OSF/Motif Style Guide Revision 1.1, Open Software Foundation, 11 Cambridge Center,
Cambridge, MA. 02142.

[50] Reference Manual for Iris, Incremental Systems Corporation Technical Report, Incremen-
tal Systems, Pittsburgh, PA. 1990.

[51]Evans, A., Butler, K., Goos. G., DIANA Reference Manual, SE|-DIANA-REF-MAN-83/SH,
Tartan Laboratories Incorporated, Pittsburgh, PA., Feb. 28, 1983.

(52] STARS intermediate Language Assessment, IRIS/DIAIA Analysis, Defence Technical In-
formation Center (DTIC), STARS-RC-01430/001/00 Publication Number GR-7670-1158 Con-
tract Number F19628-88-D-0031.

(53] The User Interface Component of the Applications Portability Profile, National Institute of
Standards and Technology (NIST) Federal Information Processing Standards (FIPS) Publica-
tion 158, May 29, 1990, NIST, Tech-B64, Gaithersburg, MD., 20899.

40 CMU/SEI-91-TR-11

UNLIMITED, UNCLASSIFIED

e s

e
gECURITY CLASSIFICATION OF Tri5 PAGE

[— REPORT DOCUMENTATION PAGE

RKIN
Te RCPORT SECURITY CLASSIFICATION 10 RESTRICTIVE MARKINGS

Y NONE
slijhcéifsciiiss?chfloN AUTHORITY _ 3 D'S’RleUTION/AVAluB'LIYV QF REPQORT
” N;: APPROVED FOR PUBLIC RELEASE
75, DECLASSIFICATION/OOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED
N/A

¢ o it md s A, e

ORMING ORGANIZATION REPORT NUMBERIS) 5 MONITORING ORGANIZATION ARCLPORT NUMBERI(S)
a4 PERF

CMU/SEI-91-TR-11 ESD-91-TR-11
Ge NAME OF PERFORMING ORGANI2ZATION o OFFICE SYMBOL |76 NAME OF MONITORING ORGANIZATION
(If opplicadle)
SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

75. ADORESS (City, State and ZIP Code)

ESD/AVS
HANSCOM AIR FORCE BASE, MA 01731

6¢c. ADORESS (City. State and 71P Coaa)

CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

8n. OFFICE SYMBOL 9. PROCURCMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003

8e. NAME OF FUNDING/SPONSORING :
QRGANIZATION (I1f applicabla!

SEI JOINT PROGRAM OFFICE ESD/ AVS

10 SOURCE OFf FUNDING NOS.

i

B8c. ADDRESS (City. State ond Z21P Code)

ELEMENT NO. NO. NO. NO.

63752F N/A N/A N/A

PITTSBURGH, PA 15213

11. TITLE tInclude Security Classification)
Tool Integration and Environment Architectures

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

12. PERSONAL AUTHORIS)
Kurt C. Wallnau and Peter H. Feiler

1da TYPE OF REPORT 136 TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 18. PAGE COUNT
CFINAL EROM Yo May 1991 40 pp.

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Confinue on reurrse if necessary end tdentify by block Aumber)
FIELD GROUP sus GAR. CASE integration software environments
environments frameworks tool integration

19. ABSTRACT (Conlinue on reverse if necessary ond identify by block number)
The expanding CASE market is having substantial impact on software development environ-
ment technology in the area of environment support for tool integration. Sharpened
awareness of CASE integration requiremeats, particularly in the context of the large
number of fully developed CASE tools, has resulted in a technology shift away from
monolithic¢._integrated project support environments (IPSE) derived from the Stoneman
model in favor of highly distributed environments based upon a federation of environment
services. Federated environments promise environment framework support for the reuse
of a large number of existing CASE tools and the development of highly interactive,
tightly-integrated CASE environments. The evolution of environment framework technology
to support CASE federation is predicated on an improved understanding of the techniques
and issues of tool integration. One reflection of this improved understanding is
recognition of the need to address integration mechanisms, tool semantic integration,
and tool process integration as separate but related issues.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACY 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEO/UNLIMITED §J same as aer. (O oTic usens B UNCLASSIFIED, UNLIMITED DISTRIBUTION
22a NAME OF RESPQONSIBLE INDIVIDUAL 226 TELEPHONE NUMBER 22¢ CFFICESYMBOL
JOEN S. HERMAN, Capt, USAT tInclude Area Code) ESD/AVS
L 12 268-7630 (SET_JPO)
DD FORM 1473, 83 APR EOITION OF Y JAN 7215 O3SQOLETE ™1 IMITEY, ™y acerTIen

TN ———————

This paper describes the evolution of environment architectures to support federated
CASE integration and outlines the implications of this evolution on the technical

issues of CASE tool integration.

30VYSIHL 4O NOILVYIILISSYTID ALIMND3S

