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1 Introduction and Summary

The proportional hazards model of Cox (1972) specifies that the hazard rate for an
individual with covariate vector z is

Atlz) = A(t) exp(F57) (1.1)

where Jp is a vector of unknown regression coefficients and A, the underlying baseline
hazard rate, i1s an unknown and unspecified nonnegative function. In most cases
where this model is used, interest centers on the estimation of 3,. However, it is
often also very useful to investigate the effect of the covariates on the median (or
some other fixed quantile) of the survival time. Let £,(z) be the pth quantile of the
distribution of the lifelength of an individual with covariate vector z.

A first attempt 10 estimate £,(z) proceeds as follows. Let A(t|z) and 5(t|z) be the
cumuiative hazard tuuction and the survival function, respectively, associated with
A(tlz). and let A(t) be the cumulative hazard function associated with A. We then
Lave

Atlz) = A(t) exp(Fyz). (1.2)
Using the continuity implied by (1.1) we may write
S(tlz) = exp(—A(t) exp(352)), (1.3)
and solving the equation S(t|z) = 1 — p we obtain
&p(z) = A7} ([~ log(1 ~ p)] exp(~5pz))- (1.4)

The natural estimate for the right side of (1.4) is

&(z) = A77([~ log(1 — p)]exp(~5'z)). (1.3

where 3 is Cox’s (1972) maximum partial likelihood estimate of 3, and A is the
usual “Nelson-Aalen” type estimator of A (see equation (2.4) of Section 2). (In (1.4).
(1.5). and throughout the paper, for an arbitrary increasing function f. /! denotes
the right continuous inverse of f defined by f~!(t) = sup{s : f(s) < t}}. See Cox
and Oakes (1984, pp. 108), Miller and Halpern (1983), and Dabrowska and Doksum
(1987). See also Tsiatis (19S1) for the related problem of estimating S(t|z).

A second approach is to note that for an arbitrary cumulative hazard function

H. the survival function co-responding to H is the product integral

Sty = [1(1 - H(ds)), (1.6)
<t
(see Gill and Johansen (1989) or Kalbfleisch and Prentice (1980. sec. 1.2.3)) and that

the prh quantile of 1 = 5 is {1 — S)~'(p). For the case of the hazard function A(t]z)
given by {1.2), this gives

(L) = sup{s 11— J](1 = Adulexp(3pz)) < p}, (1.7)

u<s




Substituting A for A and 3 for B,, we obtain

£ (z) = sup{s :1— H(l — A{du) exp(F'z)) < p}. (1.8)

u<s

The estimate (1.8) has sounder theoretical basis than does (1.5). Let H be the space
of all cumulative hazard functions and R be the real line. The funciion mapping an
arbitrary point (A, 8) € H X R into £,(z) is (1.7) not (1.4), since (1.4) is valid only
if A is continuous.

Before settling on £,(z) there is a slightly subtle point that needs to be raised.
The estimator £,(z) was obtained under the assumption that the Cox model is given
by (1.2). However, there is another way to specify the model, namely

S(t)z) = S(8)*P1%), (1.9)

where S(t) is a baseline survival function. In general, the models (1.2) and (1.9)
are different, although they agree if S (or A) is continuous. Because the estimates
of A and of B, give rise to discrete distributions, it is important to decide on the
appropriate specification of the Cox model in general. We note that if continuous
survival times T3, ..., T, arising from the Cox model are recorded in a discrete way
(e.g. the survival times are recorded in days), then the resultant survival times do
not follow (1.2) but do follow (1.9) (see Kalbfleisch and Prentice (198G, sec. 4.6)).
So we take (1.9) as the specification of the Cox model in general. An elementary
calculation yields that in this setup, the cumulative hazard for an individual with
covariate r satisfies

1 — A(dt|z) = (1 — A(d))Pe?) (1.10)

where A corresponds to the S of (1.9) via (1.6), or equivalently
dS(s) ,
Aty ==/ . 1.11
®) o4] S(s—) (1-11)

The estimate .
£(z) = sup{s :1- [ - A(du))*PF'=) < p} (1.12)
u<ls

is obtained by substituting A for A and 8 for B, (other estimates of A can be used;
see for example INalbfleisch and Prentice (1980, sec. 4.3). Our Monte Carlo studies
reported in Section 4 show that in terms of mean squared error, f,,(z) 1s slightly
better than £,{z) and that each of these noticeably outperforms £,(z). The three
estimates £,(z), £,(z), and Ep(x) all have the same first order asymptotics.

Dabrowska and Doksum (19S87) considered estimation of £,(z). They studied the
estimator £,(z) (more precisely, the estimate (1.5) with Breslow’s (1972, 1974) esti-
mate of A instead of A) and ahisined the asymntatic dictribulicn of /7 {5, {7) — S{1))
as a process in p, from which they constructed asymptotic confidence intervals for
£,(z). They also provide information on the efiiciency of the semiparametric estima-
tor £,(z) vs. the optimal estimator in certain parametric models.

(]




In this paper we expand on the work of Dabrowska and Doksum. and develop con-
fidence bands for the function £,(z) as z varies. We propose two types of confidence
bands (more properly, confidence scts). One type we refer to as “simulated-process
hands™; the other is based on the bootstrap. The development of the simulated-
process bands is based on weak convergence results of the following type. Let p be
fixed and let z vary over a set K. Then, as n — oc,

V(€,(z) — €,(z)) — V,(z) in distribution (1.13)

where V,, is a Gaussian process defined on K. Since z is multidimensional, this result
involves weak convergence of multiparameter stochastic processes. (A more precise
version of this result appears as Part (i) of Corollary 2.1 below). To use a result such
as (1.13) to construct confidence bands for £,(z), we need to obtain the distribution
of sup,¢p |Vp(z)|. This is in general quite impossible, as is explained in Section 2.

One strategy is to give the process V, a representation that makes possible a
simple way to simulate the distribution of sup,¢x |V3(z)| on a computer. (In fact,
the covariance structure of V, depends on unknown parameters. The representation
makes it possible to simulate the distribution of sup ¢ i¥,(z)|, where the covariance
structure of V}, is a consistent estimate of the covariance structure of V}.) We simulate
many copies of sup,¢x |V,(z)| and use them to obtain the required critical constants.

The construction of the bootstrap bands follows Hjort (1985a) and is straightfor-
ward. Below we give a sketch of it in the case of no censoring; a detailed description
is given in Section 2.3. The Cox model (1.9) has two unknown parameters, S and So.
We estimate those by § and J, where S is defined by $(¢) = [T,((1 — A(ds)). For
individual ¢, we generate an artificial lifelength from the estimated model (1.9), i.e.
generate a lifelength from the survival function (5(1))”“’(3""). From these artificial
lifelengths we calculate the function E;(:c), z € K and form ﬁ(é;(z) - Ep(x)), re kK.
The bootstrap principle is that if (S,B) is close to (S, Bo), then the distribution of
SUPe g \/ﬁ|£;(x) — &,(z)| is close to that of sup..x v7léy(z) — &(z)]. Thus, the re-
quired critical constants are obtained from the large number of copies of
sup,ex VAIEL(E) - £(2)].

Actually, we discuss several kinds of simulated-process bands and compare these
and the bootstrap bands in terms of width and coverage probability in Monte Carlo
studies. We provide theorems which state that both the simulated-process type bands
and the bootstrap bands have asymptotically correct coverage probabilities.

This paper is organized as follows. Section 2 gives staiements of the main theo-
retical results of the paper, and describes in detail our approach to constructing the
simulated-process and the bootstrap bands, and “equal-precision” versions thereof
analogous to the equal-precision bands developed by Nair (1984) and Hjort (1985b)
in different contexts. Section 3 gives technical details on how the bands were formed
and alen detyiis on how the computatans were caunica out. Sectivn 4 icposts Monte
Carlo studies that compare all the bands. Pcrhaps surprisingly, these studies indi-
cate that the simulated-process bands perform very well both in terms of width of the
bands and in terms of coverage probability, even for moderate sample sizes. Section 4




also reports Monte Carlo studies that compare the three estimators £,(z). ¢,(z) and
£,(z). Section 3 illustrates the various bands on the Stanford Heart Transplant Data.
The Appendix provides proofs of the results stated in Section 2

There are numerous examples of situations where one can establish weak conver-
gence to a process whose distribution is intractable, and also depends on unknown
parameters. In many cases one can, by a suitable transformation. reformulate the
weak convergence result in such a way that the distribution of the limiting process is
more tractable, and does not depend on unknown parameters. For example Efron’s
(1967) and Hall and Wellner’s (1980) transformation of the Kaplan-Meier curve yield
weak convergence to a Brownian Motion and a Brownian Bridge, respectively, and
Nair's (1984) and Hjort’s (1985b) rescaling transformations of the Kaplan-Meier curve
and the Nelson-Aalen estimator, respectively, result in a weak convergence to a time
transformed Ornstein-Uhlenbeck process. In more complicated situations (e.g. the
Kaplan-Meier quantile process or the process $(-) in the Cox model) such transfor-
mations are not available. We hope that the technique of using the simulated process
will prove useful in these situations.

2 Notation and Theoretical Results

2.1 Notation and Basic Results

We consider a study involving n individuals where for individual z, X is a ¢g-dimensional
vector of covariates, 1 is a lifetime, and C; is a censoring time. We observe (T;, é;, Xi),
where T; = min(}7, C;) and & = I(Y; < Ci), I(A) being the indicator function of the

set 4. Define the counting processes
N@)=IT.<t:6;=1) t>0 (2.1)

and the processes
J.(t) =I(T; 2 t) t > 0. (2.2)

In this notation, conditional on X; = z,, ¢ = 1,....n. the partial iikelihood of 55 at
time T is

n N ed A dN; (u)
Li3,7y= 1[I H( nJ'(;)ekp(_’?“? ) . (2.3)
ug(0,7} 1=1 i=1 5(u)exp(B'z:)

The maximum partial likelihood estimator of 3, at time 7 is the value 3 = 3(7) of 3
that maximizes L(3,7). In practice, of course, one uses the value of 7 that maximizes
the paruial likelthood at time oc: see the discussion in Section 4 of Andersen and Gill
{1982) (henceforth AG). The “Nelson-Aalen” estimator of .\ is

t)—/ (ZJ(s)exp( 3'r J)) (Z’::’\,(s)) (2.4)

The estimator A(¢) increases only by jumps, which occur at the uncensored deaths.
If we linearly interpolate A(t) we obtain A°(t). Breslow’s (1972.1974} estimator of \A.




We remark that if 3, is known to be 0, i.e. it is known that there is no covariate
effect, and if there is no censorng, then the distribution corresponding to A(t) is the
usual empirical distribution function. This is not the case for Ac(2).

The notation below follows closely that of AG, on whose results we rely heav ily.
For a g-vector w = (W, ..., Wq), w®? denotes the ¢ x ¢ matrix whose (z,7)" entry
is wyw;. Define

SO(8,6) = =3 J(t)exp(8a1),
=1

SW(8,t) = lix,,],(t)exp(ﬁ':rl),

s®(3,t) = —Z:r, Jl(t Yexp(fF'z;), (2.5)
“’(.B,t)
E(ﬁ,t) = m’
and s,
t
V(8.0 = S - (B0
We assume that the vector (Ni,...,N,) forms a counting process with respect to

some filtration (F, t > 0). (This is the case for example if the Y;’s are independent,
and at time t it can be determined whether or not censoring has taken place, i.e.
censoring is predictable; this does not require the C;’s to be independent). A good
heuristic treatment of the concepts involved here is Gill (1984).

Fix p) € (0,1) and let K be a bounded rectangle in R?. Define

r = sup{&,(2);p € [0,z € K }. (2.6)

Assume that for some € > 0, A is continuous and positive on {3, 7 + €] and =ssume
Conditions A-D of AG(1982) with the interval [0, 7 +¢] in place of [0.1]. Condition B
states that there exist scalar, vector, and matrix functions s sM_ and s(®, respec-
tively, of 3 and t, to which S, S and S converge uniformly over a neighborhood
of 3 and over [0,7 + €]. Let

sW(3,1) s(8,1)
<°>(ﬂ t) s(O(B,t)

Then ¢ is a g-vector and v is a matrix. Define T = Z(7) by

e(B,t) = and v(B,t) = ~ (e(B.1)®2. (2.7)

v(B0, )5 (50, t)dA(2) (2.8)
0
and assume that T is positive definite. Also define

t
alt) /(s“” )dA(w) and (1) = | e(douldA(u) (2.9}
4}




Note that U(t) is a g-vector. For R a bounded closea rectangle in R™. Cp(R) will
denote the space of real valued continuous functions defined onn R with the sup norm
1opology.

Theorems 1, 2, and 3 below concern, essentially, the li{rliting distributions of the
processes /n(€y(z) — &p(2)), ﬁ(ép(z) - &p(2)). and /n(&(z) ~ &(z)) and of some
of their relatives as (p, z) ranges over [0,p()] x . These involve the space C,y, =
Cp+1([0,pM] x R'). Corollary 2.1 concerns the limiting distribution of these processes
when p is fixed and z is scalar and involves the familiar space C = C(K). For
technical reasons, we find it necessary to work with C,,(R) instead of the “Skorohod
space” D, (R) (see the Appendix).

Let (S’(|x))l be the function obtained by linearly interpolating S$(-|z), and let
E;(z) be obtained by solving for ¢ in the equation (g(tlz))l = 1-—p. This é;(z)
Is continuous. Details on the exact definition of f;‘,(x) appear in Section 4. Here,
we simply note that all the estimators are asymptotically equivalent uniformly in
p € {0,pV],z € K; this is made clear in the proof of Theorem 1. We shalil use &,(z)
to refer to either £,(z) or E;(x) except in the exact statements of the theorems and
in the proofs in the Appendix.

In the results below, W(.) denotes a standard Brownian Motion on {0,00) and
Z a ¢-dimensional random vector that is normally distributed with mean 0 and
identity as covariance matrix, and is independent of W{(-). We use the notation
= = log(l — p); also, %, denotes convergence in distribution, and 2, denotes
convergence in probability.

Theorem 1 Under the assumptions stated above, as n — oo
Va(€(z) - &(2) = V(p,2)
in C,iq ([O,p(”] X K), where

W(a(&p(2)) |/ (6(€(2)) = mzexp(~pz)) =12
g

NE2)) 1 Z.

Vip, z) =
(p,z) 62 )

Theorem 1 indicates that the variance of V(p,z) is

e aly(z) | ME(2) + mzexp(=pz)yiey b)) = 7 exp(= )
07 = gy T A& (@) )= (=) )
(2.10)

From (2.10) we see that to estimate o{p. z) we need to estimate the functions a(-), b(-)

and the matrix I: in addition. we shall need to estimate A(-). For ai-).b(-) and T.

we introduce the natural estimates
t N -
alt) = / (SO(3. 1)) dA(u).
[¢]

b(t) = /0‘ E(3.w)dA(w). (2.11)




and

€= /0 V(3,1)S©(3, t)dA(t).

The estimation of A is comewhat more cifficult. Possibilities include methods based
on splines (Whittemore and Keller, 1986) and those based on kernel smoothers. Ixer-
nel smoothers are computationally convenient, and in addition their asymptotic prop-
erties in the present context have already been studied by Ramlau-Hansen (1983).
To describe them, let R be a function of bounded variation with support on [—1, 1],
and whose integral is 1, and let {b,} be a sequence of positive constants such that as
n — oo, we have b, — 0 and nb? — co. Define the kernel estimate of A(-) by

t—s

At) = bl /o°° R(2)dA(s). (2.12)

The specific choices of R and {b,} are discussed, in the context of ordinary density
estimation, in Silverman (1986, pp. 40-72). See our discussion in Section 4. Having
specified a choice of R and {b,} we may define an estimate 6(p,z) of o(p,z) by
substituting in (2.10) a(-), (-), £, &,(z), 3, and A() for a(-),b(-), . &,(2), 3, and A(-),
respectively. The following lemma gives uniform consistency of this estimator.

Lemma 2.1 'nder the conditions stated above, ¢ n — oo

(1) suPogicrye a(t) — a(t)] =5 0
(12) SUPo<t<T+e lf)(t) — b(t)| =50
(i) T Zu e
(ev) SUPpef0,p(1)],zeK 1€:(2) = &p(2)] =0
(v) for anyn >0,
SUPp<i<r [A(t) = A(t)] =50
(vi) for any p® > 0,
- pr.
SUPpep(® pi1)).zeK IU(PJ) - U(Pv-’r)i ~—0
(vii)  Let & and b be given by (2.11), ezcept t! -+ A is replaced by the version of
\ obtained by linearly interpolating A. Then iic conclusion of Part (vi) is still
true for the version 6°(p,z) of 6(p.z) obtained by using a°. b and £5{(z) instead

of @, b and €,(z).
Suppose that we were able to obtain c,, the (1 — a)' quantile of the distribution of
SUP,etp0) p1).zen |V (Py 2)]. We would then have

Co

.?Lfr;op{ép(x) - E LG <)+ foral pelp® e K} —1-a.

fe.al—a)x 100% asvmptotic confidence band for &,(z) is £,(z) = co//n. This
Nolmogorov-Smirnov type of confidence band suffers the defect that it has constant




width. One would want the band to be narrower at those values of (p.z) where the
variance of £,(z) is small. In the context of forming confidence bands for a survival
function in the random censorship model of survival analysis. Nair (1984) proposed
a confidence band with the property that the width of the band at a given point js
proportional to the estimated standard deviation at that point. He called the band
“equal-precision band”. A similar idea was proposed by Hjort (1985b) for estimation
of cumulative hazard rates. We proceed along a similar route.

Theorem 2 Under the reqularity conditions stated above, as n —
&°(p, 7) o(p,z)
tn Coqiy <{p(°),p(1)} X ]{).

2.2 The Simulated Process Bands

Our procedure for using Theorem 2 to construct confidence bands amounts tc esti-
mating the parameters of the process

Vip, z
L(p,z) = ;%m-)l

and then generating a process L(p, z) with those estimated parameters. To describe
it In more detail, note that we may write

[
—d
[@V]
—

L(p,z) = c(p, 2)W (a(&:(z))) + d(p,z)Z (2.

(e, = [al6(e) + (6(@) + rrexp(=52) = (e (e)) + mrexni—542)]

(b(&(x)) + rzexp(=3pz)) =72 (2.14)

{a(fp(ﬂ) + (b(fp(-‘c)) + 7z exp(‘.’%z))’g-l (b(fp(:c)) + e e‘\:p(”j(’).’f)>] -1/2

fa,
2
i
B2
Il

Let ¢'p,z) and d(p,z) be the estimates of ¢(p,z) and d(p, z) obtained by replacing
all the unknowns by their continuous estimates. We generate the process

~

L(p,z) = e(p,2)W (a°(E(2))) + d(p. 2)Z (2.15)

where 1¥(.) is a standard Brownian motion, Z is an independent g-variate standard
normal variable and (117(-). Z) is independent of all parameter estimates. and cal-
culate M = sup,epo) pi)jcek |L(p,z)]. To estimate s{™, the (1 — a)™ quantile of
the cistribution of 3. we repeat the above step independently ng times, for some




large number ng. obtaining iid copies My, Afy. ... .. M., of M. and take the empirical
(1 - a)** quantile of 1,,....Al,, as an approximation to s{". T:.s produces the

band
&(z) = s08(p, z)/Vn. (2.16)

Theorem 3 Under the =sgularity conditions stated above, as n — oo

P{\/ﬂ(é”(z}(;ig( ))l < s for allp € P9, pM).z € K} —1l-a

Thus the band (2.16) has asymptotic coverage probability 1 — a.

2.3 The Bootstrap Bands

Suppose that the censoring variables can be thought of as being iid from some survival
function R¢, and also independ- at of the survival umes. If we view the X;’s as fixed
at z;. the Cox model is then specified by the triple (S, 8, Rc). Let Re be the Kaplan-
Meier estimate of Rc. A natural way to resample (see Hjort (1983a)) is to generate
artificial data as follows.

Foreachi: =1,..., n

1 Generate Y" ~ (5(-))=®@'=)
2 Generate C; ~ Re (all observations independent)
3 Form T = min(Y;",C7) and 6" = I(¥;" < C-')

1

Th:s gives one artificial data set (77,67,z;), 1 = 1..... n from which we calculate
and 27, and we use those to construct the functxoq { (z) (and also ﬁ'c( ). for the
techmcal statement of Theorem 4). This is repeated mdepenaentl} a large number
of times.

Efron and Tibshirani (1986) also discuss the scheme of bootstrapping by resam-
pling from the trples (7,.6,X;), 1t =1,...,n.

Suppose that we wish to estimate the variability of some estimate. in our case

fy(z). The first method mentioned is appropriate for estimating the conditional
variance of {,(z) given the X's. The second method is appropriate for estimating
the unconditional variance of £,(z). i.e. averaging over the marginal distribution of
the covariates and of the censoring variables. If the distribution of the X,’s does not
depend on the unknown parameters S and 3, then the usual ancillarity arguments
point to the conditional variance as the “right” quantity to estimate. This is our
point of view, and the results below pertain to the first method of resampling.

This situation is closely connected to bootstrapping in linear regression models.
where one can bootstrap by resampling from the pairs (responses. covariates). or one
can bootstrap by resampling from the residuals: see Freedman (1981). Many of the
comiments in the discussion paper Wu (1986) are relevant here.




To show that the bands are asymptotically valid we need to show that for large n.
the distribution of \/ﬁ(ﬁp(r) — &,(z)) is close to that of \/7(£,(z) — £,(z)). The tech-
nical statement of this fact invoives the notion of “weak convergence in probability”,
and is given as Theorem A.l in the Appendix.

To construct the bands based on the bootstrap, let
W = SUPp¢(o.p)].cek \/FIE;(I) — £,(z)|/5(p,z). Obtain a large number of copies of
w", say wy,...,wp and let b} be the (1 — @) quantile of the empirical distzibution
of wi,...,wg.

Theorem 4 Assume the conditions of Theorem 1. If sampling is carried out via
steps 1,2, and 3, then the band

€x(z) £ bo(p, )/ VA
has asymptotic coverage probability 1 — a.

Remark: In our simulation studies, we have used the bootstrap estirmate of stan-
dard error instead of &(p,z). That is, before bootstrapping to get the critical con-
stants as described above, the standard error function of the process is estimated
using a separate set of bootstrap samples. This does not require the estimation of
the hazard rate, but is much more computationally intensive.

2.4 Extensions and Special Cases

There are several corollaries and extensions to Theorems 1-4 that could be stated.

Examples include the following.

a The case of p fixed at py, and z,,....z; fixed while z;,4,..., z, vary freeiy. Weak
convergence then takes place in the space C,_,.

b The case of p fixed at py, and z varving freely through a smooth subset S of the
rectangie A'. An example of this arises if the model is a polynomial regression i1
the scalar v, i.e.

Atlu) = M) exp(Bu + Fu® = ...+ Bu?).

and then § is simply a line through K. Weak cravergence takes piace in the space
of continuous functions defined on S. An example of this is the Stanford Heart
Transplant Data (see Section ) in which we used a secord degree poivnomial.

For the sake ¢! reference we state (Coroilary 2.1 below) our results for the simpie but
mportant case of p fixed at po and of scalar z varying over the set ¥ = (K}, K.
The usual assumptions are in force (in particular we assume that A is continuous and
positive on [0, supy, ¢ <k, &o{T) + €]). We denote V(pg,z) and o{pg, z) by 15 (1)
and c,,(z), respectively; s{"(po) is the (1 - a)* quantile of the distribution of
SUP K, << /s \L(po.z.i. and Y™ (po) is the corresponding quantity for the bootstrap
process.




Corollary 2.1 Fiz p at py and let the scalar z vary over [I{;,13]. Then es n — o

(1) \/’T_l-(é;o(z) - €PO(I))/&P0(I) = Vm(x)/apo('r) n C[I{lvj\:2]

(17) The bands )
Epo(z) £ s (po)o(po, z) /v
and

€no(z) £ 8 (P0)é (po, 2)/ /7

each have asymptotic coverage probability 1 — a.

3 On Computation of the Bands

In this section we begin by discussing two topics pertaining to the simulated-process
bands—estimating the hazard rate, and forming another type of simulated-process
band by using the asymptotic distribution of log Ep(:c). Then we remark on papers of
Hall on how many bootstrap replicaticns are needed in forming confidence intervals.
Finally we give information on the computers and programs which were used in
carrving out the studies.

The simulated-process equal-precision band is given in (2.16), (2.13), and (2.14),
with formulas for estimates of the parameters of the limiting process given by (2.11)
and (2.12). The kernel estimate of the hazard rate, however, is not fully defined by
(2.12); the kernel function and the bin width must be specified. It is well known
that, whereas the choice of kernel function is not critical, the choice of bin width
is. Silverman (1986) emphasizes in particular that the fixed-width kernel estimator
is defective when applied to long-tailed distributions: “Because the window width
1s fixed across the entire sample, there is a tendency for spurious noise to appear
‘n the tails of the estimates; if the estimates are smoothed sufficiently to deal with
this. then essential detail in the main part of the distribution is masked” {Silverman.
1986. p. 18). In Chapter 5 of his book, he discusses the adaptive kernel method.
which “is based on the common-sense notion that a natural way to deal with long-
tailed densities is to use a broader kernel in regions of low density™ (ibid., p. 100).
Silverman deals only with density estimates based on iid samples. and in our problem
we need an estimate of the hazard rate from non-iid data; however, his remarks are
pertinent here since in survival analysis, densities very often are long-tailed. and
in addition. as time goes on, there is less accurate information on the hazard rate
available from the data due to censoring as well as earlier deaths. In a paper primanily
on asymptotics for the kernel estimator of the hazard rate in the random censorship
mode! of survival analvsic, Ramlau-Hansen (1983) illustrates the kernel method on a
data set for which he chooses in an ad hoc manner three intervals of the time axis and
different bin widths for each interval, such that the bin width increases with time.
In this paper we use the biweight kernel

15
R(t) = %’1 - <1 (3.1)
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We have followec Ramiau-Hansen in allowing bin widths to increase as time increases.
but we need an automatic choice of bin widths for the simulation studies. Noting
Ramiau-Hansen's criteria for uniform consistency of the kernel estimator of the haz-
ard rate, that b, — 0 and nbd? — oo as n — oo, the bin widths were taken to be
inversely proportional to n!/3. Then with the data from one simulation. a subjective
choic= of time intervals and bin widths was made. This choice was used for all the
simulations. This particular procedure by no means leads to an optimal choice of bin
width. but optimality is not our goal here—we want to see how well the simulated-
process band performs with a merely reasonable choice of bin width. Another method
to obtain an automatic choice of bin width would be to modify the algorithm given
by Tanner (1984), which is for estimation of the hazard rate function in the random
censorship model with no covariates. This algorithm applies cross-validation to the
log-likelihood function to select three smoothing parameters.

Preliminarv studies indicated that a log transformation greatly improved the cov-
erage probability of the simulated-process band in many cases. For the problem of
forming a confidence band for the cumulative hazard function A(t) in the random
censorship mode] without covariates. Bie. Borgan, and Liestol {1984) found that
bands based on transformations of the Nelson-Aalen estimator A(t) had much closer
to nominal coverage probability than bands based on the untransformed A(t), in sev-
eral Monte Carlo studies with exponential and Weibull survival times and exponential
and uniform censoring times. Isalbfleisch and Prentice (1980, p. 15) mentioned that
parameter transformations do not seem to have been considered for survival analysis
inference problems, although parameter transformations can improve the adequacy
of normal approximations and avoid the problem of impossible values occurring in a
confidence interval or band.

In the present situation, an argument for the log transformation is that 1t is a
variance-stabilizing transformation in a special case. When the variance of a univari-
ate observation .\’ is some function of its mean. a variance-stabilizing transiormation
is a function ¢ such that the variance of g{") does not depend on the mean. The jog
transformation is variance-stabilizing when the standard deviation is proportional to
the mean. In the presznt situation. consider a single. fixed vaiue of the covanate z.
Call the function ¢ variance-stabilizing at z if the limiting varance of g(¢,{z)) does
net depend on €,(z). For fixed z, this limiting variance depends on the covariate.
lifetime. and censoring distributions. as well as on the Cox model regression param-
eter J;. To simplify matters. consider the following particular situation: a single
covariate distributed uniformiy on (0.1), and exponential distributions for both the
lifetime and censoring variables. A formula for the limiting vanance of fp(:z:) can
be written down. This formuia did not turn out to have a nice form: it involves
integrals which must be evaiuated numericaily. Following through to the end of this
argument, the calculations were done for several specific choices of the parameters of
the exponential distributions of the lifetime and censoring variables. in order to plot
the limiting variance of £,(z) as a function of & {z. In each case. the resuiting curve
appeared very close to quadratic. suggesting the choice of the log transiormation.
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This argument is by no means decisive: \What we actually want is a normalizing
transiormation, which is not necessarily the same as a variance-stabilizing transfor-
mation. but it 1s not known if such a transformation exists for this problem. (Efron
1982) discusses the problem of fincing normalizing transformations in the case of a
one-parameter family of distributions.) Our argument merely serves to suggest that
we Investigate the periormance of the log-transformed bands through Monte Carlo
studies.

A standard delta-method argument is used, via Theorem 2 in Section 2, to
form the log-transformed equal-precision band. Let g be a differentiable. monotone
function on [£,(21),p(22)]. Then va(9(&(2)) ~ 9(6(2))) —= ¢'(&(2))V(p,z) on
Cl&p(z1),€,{z2)], and so the standard deviation function of
\/ﬁg(f,,(x)) is ¢'(¢,(z))o(p, ). To get the equal-precision band for ¢g{£,(z)), write

Va(9é(@) ~9(6(2)) ; Vipz)
9'(€x(2))3(p. z) (p,z)

on Cléy(mr), £5(22)]. - _

So the 100(1~a)% confidence band for g(€,(z)) is g(&,(z))2g'(&,(z))6(p, x)sa/ VT,
where s, is the critical constant for the equal-precision band. For a2 given monotone
function. this band may be converted into a 100(1 — a)% band for £,(z). For the log
transformation the band is

1 O'(p:x) }
E(z) VA

The bootstrap resampling scheme and equal-precision band are described in Sec-
tion 2.3. In determining number of bootstrap replications. we noted two papers by
Hall (1986a.b). In the situation of iid vector observations in which the parameter of
:nterest is a function of the mean vector. he gives expansions for the probability of
coverage of one-sided bootstrap percentile-t intervals. He then uses these resuits to

sp(z) ekp{:t

show that in the situation he considers, a very smail number of bootstrap replications
is adequate to get very close to the true bootstrap coverage probability, that is. the
coverage probability with an infinite number of bootstirap replications. He actually
shows that for any fixed finite number of bootstrap sampies. the worst departure of
actual coverage probability from nominal coverage probability, over coverage proba-
bilities for @ € (0.1]. is iess than or equal to the worst departure for an infinite number
of bootstrap replications. He cautions that his resuit does not mean that one should
use a small number oI replications in practice. for such bootstrap intervals will be
wider than those derived from a large number ol bootstrap repiications. Hall's theory
is quite specialized: His situation does not inciude estimation oi the parameters in
*he Cox model. and he does not consider confidence bands. {onte Carlo studies
indicated. however. :Zat the coverage probability of our bootstrap bands when oniv
20 bootstrap replications were used was usuaily surprisingly close to the coverage
nrobability when 1000 bootstrap repiications were used. Except for these papers.
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would not have occurred to us that coverage probability could be so little affected
by taking a very small number of bootstrap replications. Bootstrapping in the Cox
model requires a large amount of CPU time, and using a small number of bootstrap
replications in the debugging stage was an easy way to save time. We mention this in
the hope that using only a small number of bootstrap samples will prove useful in the
early stages of other empirical studies of the bootstrap, even when Hall's conditions
are not met.

No transformation of the bootstrap bands is considered here. Since the simulated-
process bands require fairly substantial computational effort, a natural question was,
“Why not just bootstrap?” A chief virtue of the bootstrap is that it is automatic,
that is, it requires no asymptotic theory to derive, nor any special tricks to make
1t work, and here we just want to see how well this automatic, or untransformed.
bootstrap does compared with the simulated-process method.

Computations were carried out using FORTRAN programs compiled with the {77
Unix compiler on the Florida State University Statistics Department network of Sun
computers. The computation of the bootstrap band on a sample of size 80 required
almost 2 minutes of CPU time on a Sparcstation 1; computation of the simulated-
process band required 7 seconds. A study of bootstrap bands for n=80 with 5,000
simulations, split between two Sparcstations, required about 3.5 days to complete.
Programs and subroutines for Cox model fitting were adapted Ior simulation pur-
poses from the programs given in Kalbfleisch and Prentice (1980, Appendix 3). The
algorithm uses the usual Peto approximation for ties. For the simulation studies,
pseudo-random uniformly distributed variables were obtained with a FORTRAN im-
plementation of the “universal random number generator” of Marsaglia and Zaman
(1987). This random number generator combines a lagged-Fibonacci sequence with
a simple arithmetic sequence. It has a period of about 2'* and satisfies stringent
tests of randomness. It was designed so that in all CPU’s with at least 16-bit integer
arithmetic, given the same four starting seeds, the same sequence of uniform vari-
ables is produced. Normal and exponential variables are generated by the ziggurat
method of Marsaglia and Tsang (1984).

Fortran programs to calculate all the bands are available from the authors on
request.

4 Simulation Studies

Here we report results of a Monte Carlo study comparing the three methods of
forming bands, and of Monte Carlo studies comparing the three estimators of £,(z)
which were introduced in Section 1.

Table 1 gives a summary of results of a Monte Carlo study of simulated-process
bands with 10,000 simulations, and of another Monte Carlo study of bootstrap bands
with 5,000 simulations. Results for a single simulation situation are given here. Re-
sults for other situations were similar to these. In the situation reported on here.
there is one covariate z which is evenly spaced on the interval [0.1]. The lifetime dis-
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tribution is Exponential(1), and the Cox regression parameter Jg i1s i. The censoring
distribution is also exponential, with mean set to give the desired degree of censoring,.
In these studies, n = 80 and the mean of the censoring variable is 2.49. which gives
20% censoring. The number of bootstrap samples to estimate the standard deviation
function of the process is 200; the number of bootstrap samples to obtain the critical
constants is 599.

In this situation, the bootstrap bands have somewhat higher coverage proba-
bility but are much wider than the simulated-process bands. The log-transformed
simulated-process bands have slightly lower coverage probability and are slightly
wider than the standard simulated-process bands. As can be seen from the table,
the simulated-process equal-precision bands did very well. The mean widths appear
large for all the methods, compared to the mean survival time, which ranges from 1.0
to 2.7 for z € [0,1]. However, these means include the widths at the left and right
extremes of the covariate values, where the bands can be very wide, and therefore
it is helpful to look at the mean critical constants, which for equal-precision bands.
show how much precision is lost by going from confidence interval to confidence band.
For the simulated-process band, the mean critical constants of 2.60 and 2.32 compare
favorably to 1.96 and 1.65 for 95% and 90% confidence intervals.

To better understand the relative merits of the two methods, we felt that it would
be useful to see how they do on the more basic problem of forming confidence intervals
for £,(z). The simulated-process 95% confidence interval for £,(z) is just £,(z) =
c02s6(p, z)/+/n where co;s is the .975 quantile of the standard normal distribution.
Two types of bootstrap confidence intervals for £,(z) were formed. The first kind was
suggested by the bootstrap confidence band procedure, and we studied it partly as
further investigation into performance of the bootstrap band procedure. First form
many bootstrap samples, and get values f;(:r) - ép(z) from each bootstrap sample.
Take the .025 and .973 quantiles of this bootstrap distribution of f;(:c) - fp(:r),
cy and ¢y. The 95% confidence interval for £,(z) is then (ép(x) — ch.fp(.‘z) - cL).
(Remark: In forming the bootstrap confidence bands, the standard error function
of the process, o(p,z), is estimated before carrying out the bootstrap procedure
for getting critical constants, and so the standard error at a single r is constant
throughout this second stage of bootstrapping. Thus consideration of the bootstrap
distribution of (E;(;r) - EP(I))/&(p,x) vields the same intervals as just described.)
The second kind of bootstrap interval was just the most basic type, the standard
percentile interval. For eleven values of the covariate z, evenly spaced on the interval
[0,1]. the simulated-process intervals and bootstrap percentile intervals had coverage
probabilities very close to 95%. However, the coverage probabilities of the first kind
of bootstrap interval ranged from 85% to 87% over the 11 z-values. Computation
of average critical constants ¢; and cy for this type of bootstrap interval showed
that the bootstrap distribution f;(x) — £,(z) was skewed right. Somehow, in spite
of the low coverage probability of the bootstrap individual confidence intervals, the
features of the skewed bootstrap distribution and the taking the sup over a range of
r’s combine to give conservative bootstrap bands.
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The main conclusion of these studies i1s that the simulated-process equal-precision
bands perform surprisingly well, especially considering the moderate sample size used
here. It was not clear to us before the Monte Carlo studies that simulation of the
estimated process would be a feasible approach to obtaining critical constants for
confidence bands in general; in addition, the Cox model is quite complicated, and we
didn’t know how estimation of the hazard rate would affect the performance of the
bands.

In other Monte Carlo studies not reported here, in which the bin widths for
the kernel estimator of hazard rate were deliberately chosen to be not good, the
simulated-process method often had low coverage probability. The log transformed
bands were then a noticeable improvement, and of course, the bootstrap bands were
not affected. They have been conservative in all our studies.

Table 2 gives the results of several Monte Carlo studies comparing the three
estimators of median survival time. Continuous versions of the estimators are used,
and for these studies the aim is to eliminate the choice of smoothing method as a
factor in the comparative performance of the estimators. Breslow’s piecewise linear
smooth of the cumulative hazard function is used for the first estimator, f—;(r), and to
correspond to it, piecewise exponential smoothing of the product integral estimator
of the survival function is used for the second and third estimators, g;(x) and é;(::)
The product integral estimator of the survival function can be negative. When this
occurred in these studies, the estimator of the median of the survival distribution
was found by linear interpolation between the largest death time for which § > .3
and 0.

The six factors determining the simulation situation are the survival distribution,
type of censoring distribution, percent censoring, covariate distribution, sample size,
and value of the Cox regression parameter 5. In these studies, the censoring distri-
bution is always exponential. and the parameter 3; is 1. There are two levels of each
of the other four factors. The two choices of survival distribution are Exponential(1)
and Weibull with shape parameter 2.0 and scale parameter 1.35. The two choices of
percent censoring are 10% and 20%. The z’s are fixed in the studies. For one level of
the covariate factor, the covariate is taken evenly spaced on the interval (0,1): for the
other level, the interval is (-1.1). The sample sizes are 20 and 50. The table reports
the mean integrated squared error. By “integrated squared error™ is meant average
squared error over the grid of z values considered. The number of simulations in
these studies 1s 10,000.

The overall conclusions are that the two product integral estimators f;(x) and

f;(:c) outperform the original estimator £5(z) in terms of mean integrated squared
error. and that there is not much difference between 5;(1:) and f;(x), although on the
whole, 5;(:[:) does somewhat better. In some rows of Table 2, E:;(::) has much smaller
mean integrated squared error than either f_f,(:r) or 5;(3:), see especially rows 3. 7. and
15. In each of these simulations, the covariate r ranges from —1 to 1; there is less
information on median survival time for the small covariate values. since they tend
to produce large survival times. Also. these simulations had a small sample size of
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20. In this situation, there 1s a nonnegligible probability that for some small values
of z, the estimator will have to be defined by extrapolation beyond the last observed
death time, with potential for large outliers. Therefore, for these three rows, the 3%
trimmed means of the integrated squared errors are also reported in the table. The
product integral estimator é;(x) still shows substantial improvement over the other
two estimators. This apparent improvement of f;(:z) over the other two estimators
here may be due merely to the particular choice of smoothing algorithm which was
used; thereiore, we do not claim that it provides as large an improvement as the
tabled numbers indicate. The empirical evidence from these studies gives support for
the product integral method beyond the theoretical arguments for it.

5 Illustration of the Bands on Real Data

The Stanford Heart Transplant Data have appeared frequently in the statistics lit-
erature. For a thorough analysis and discussion, see the discussion paper of Aitkin,
Laird, and Francis (1983). Here we do not attempt to add any insights on this data
set, but only to illustrate the methods of forming bands on a well-known case. We
use the 1980 version of the data, as given in Miller and Halpern (1982). We also
follow the Miller and Halpern Cox model analysis of the data, in which the final
model was a quadratic regression of log;, survival time on the covariate age for the
152 patients with complete records who had survived at least 10 days. Figure 1 shows
the three confidence bands for the median log survival time. The kernel estimate of
the hazard rate, needed by the two types of simulated-process bands, used constant
bin width of .27, and is pictured in Figure 2. The bootstrap bands are almost always
wider than the simulated-process bands over the entire range of the covariate age,
except at the far left, where both types of bands are so wide that the clear message
is that there is no information on survival time distribution for these verv voung
ages. The bootstrap band is wider than the simulated-process bands in the right
half of the graph, but it is more appealing than the other two bands here because
it is smoother. Its wideness goes along with its performance in the Monte Carlo
studies. The unevenness of the simulated-process bands in the right end of the graph
corresponds to bumps in the hazard rate estimator. The log-transformed bands are
noticeably different from the untransformed equal-precision bands at the left end of
the range of the covariate; otherwise these two bands are similar. To give an idea of
the width of the bands, upper and lower endpoints of the 93% bands and individual
confidence intervals are given in Table 3 at two values of age, 38.5 and 48.7 years.
Considering the simulated-process equal-precision results only, we see that although
the individual intervals barely overlap, the bands at the two points overlap consid-
erably, so that one can't infer from the band a definite difference in median survival
time for the two ages. Finally, we note that since the band has probability .95 of
containing the true median survival time simultaneously for all z, it allows one to
“snoop™ through all the z values looking for interesting significant differences.
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Appendix: Proofs

Theorems 1, 2, 3, and A.1 involve the space C,41(R). We would like to prove that
weak convergence takes place in the space D,4,([0,pV)] x K') of functions defined on
[0,pV] x K which are “continuous from above, with limits from below” with the
“Skorohod topology”; see e.g. Neuhaus (1971). However, none of the processes £.(-),
£.(-), and £.(-) need be in this space. To see this, let’s look at the case of p fixed and
of scalar z. Consider for example £.(-). Recall that

£(z) = $71((1 = p)#9)).

This is the composition of §-! (which is right continuous with left limits by construc-
tion) with a decreasing function of z. The result is a left continuous function with
right limits, and is not in D(K).

So we are forced to redefine our processes to make them continuous; we may then
just as well work with the simpler spaces Cy4q and C.

Proof of Theorem 1

Our proof is based on a general result concerning weak Bahadur representations for
quantile processes (Proposition A.1 below) and on AG’s weak convergence result for
VA(A() = A(), B = Bo). We first deal with £,(z) and toward the end of the proof we
switch to f;(:r) Let

P(tlz) = 1= JT(1 = A(dw))*®¥=),  F(t|z) = 1 - [](1 — A(du))=>E)

and - - (A1)
F(t)=1-T]( - A(dw)), Fit) =1-TJQ — Alduw))

In this notation, we have
VR(G(2) ~ 6(2)) = VA(E7 (1= (1 = p) 89 - 7 (1 - (1~ p)oel=9)).
Write the identity
V(€y(2) = &(2)) = Un(p, 2) + Tulp, z), (A.2)
where

Un(p,z) = \/7_1-<F" (1 —(1- p)exp(—é'r)) _ p-l (1 —(1- p)em(_fi':))>
and ‘ (A.3)
Tn(p,;z:) = ﬁ(F-—l(l _ (1 _ p)cw(—é’x)) _ F! (1 —(1- p)cxp(—[,’c"x)>>.
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Throughout this proof. (p, z) ranges over {0,p'"’] x K. Theorems 3.2 and 3.4 of AG
state that in D[0, 7 + €] x RY, asn — oo

Va(R(t) = A1), B — Bo) = (IV(a(t)) - b(t)s V27, :*1/22). (A.4)

where a(-), b(-), and T are defired by (2.9) and (2.8), and D[0, 7 + €] is the standard
Skorohod space.
Consider first Un(p,z). By (A.4) we have (via (A.1))

VA(E() = F(t), 8 - Bo) - (S(i)(W’(a(t)) — b(t)'s™?Z), :-1/22)> (A.3)
This follows from the easy fact that

sup |V ($(8) = (1)) ~ v (exp(—A(t)) — exp(=A(t)))| 2 0 (A.6)

0<t<7+e

(S and S are the survival functions corresponding to A and A. respectively), or
somewhat more elegantly, by the compact differentiability of the product integral
(Gill and Johansen (1987)): (A.3) follows from (A.4) by the delta method. To deal
with U,(p, z) we will combine (A.53) with the following result.

Proposition A.1 (Doss and Gill, 1989) Let ¢ be a function defined on [0, 1] that
has a derivative (' which is positive and continuvous. Let (,,n = 1,2,... be nonde-

creasing right continuous processes on [0,1] satisfying (,(0) = ¢((0) a.s. and

V(e = ¢) 2 K in D[0,1)], where the process K has a.s. continuous sample paths.
Then, for every e >0

su i1 ! = Cn(c_l(t))‘—t o -
eV = (t))+\/-< ¢(¢) )! o (A7)

In particular,

ﬁg;mmwmm—¢

We now combine (A.7) of the proposition and (A.5), and obtain that

VGt - ¢

Al (2) = £5(3)) = OnlPZ) L R0(pz) = Tu(pr) (AS)
F’(F“ (1- (1 = pymi-22)))

Qulp,z) = —ﬁ(F(F“ (1-(- p)“"“'é"’)) -(1-(1- p)"“’“j'”)) (A.9)

sup R(p.z) 2= 0 (A.10)
p.T
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Let
Q.(p,z) = —ﬁ(ﬁ(F“ (1-q —p)"‘P(-ﬁé”)) ~(1-(- p)“?(-ﬁéf))). (A.11)

We now apply the mean value theorem to the term T,(p,z) in (A.S) and obtain

VAl () - 6(z) = Qnp. ) + RO (p.z) + (A.12)

P(F-1(1 - (1 - pymiia) )

Qn(pam) - Qn(pax)
F (F—l (1-(1- p)exm-arz)))

Tw exp(-—,Béx))' 5 @)
(e ) VAR 80+ R.a) +

where
sup R¥(p,z) 2 0. (A.13)
p.T

Next, we proceed to show that

Qn(p» I) - Qn(p,l') pT-
20 (A.14)
F’(F-l (1-0- p)exp(-a'z)))

Using the Skorohod construction we may assume without loss of generality that in
(A.5) the convergence is almost sure in sup norm (since W is continuous). The
continuity of W{a(-)) implies that if {n,} is a sequence such that 7, — 0 a.s., then
SUPgcicrse WV (a(t + 1,)) — W(a(t))| = 0 a.s., and this gives the convergence in prob-
ability in (A.14).

Combining (A.12) with (A.10), (A.13), and (A.14) we obtain

_ Qupo) <nexp<—ﬁgz>
F(g(z)) A(&s(2))

Ve (z) = &(2)) ) VA3 = do)+ RIp.2) (A.15)

where
sup R®(p,z) 2= 0. (A.186)
P.T

(In the denominator of the first term on the right side ¢f (A.12), the change resulting
from substituting 8, for 3 is absorbed into R (p, z)).

This shows that the finite dimensional distributions of \/n(£,(z) —£,(z)) converge
to those of

_(W’(a(fp(x))) - <b(§p(x)))l_‘:—1/22) N (7.‘1: exp(—ﬁéz))l
A(p(2)) A(&p(2))

and since —1W = W, this means that

~-1/2
c-irz

the finite dimensional distributions of /n(&,(z) — &,(z))
converge to those of 17(p, z). (A7)
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We now consider tightness. Let w,(-) denote the continuity modulus of the funec-
tion v. The weak convergence in D to a continuous process of /n(S — S) implied by
(A.5) gives the following.

R > = 0.
For every € >0 11_1‘%111:153;)}3 {wﬁ(S-S)(‘S) > e}
Therefore, if .(-) denotes the continuity modulus of a function defined on the
(¢ + 1)-dimensional cube, (A.15) and (A.16) give

for every €> 0 hmhmsupP {w\/—«p(I 5,(:))(6) } = 0. (A.18)

n—00

We now switch to Ep(x) which is what the theorem actually refers to. Note that
SUP, » \/ﬁ(é;(x) ~ &,(z)) £ 0 (by (A.7) of Proposition A.1 for example), and so
(A.17) 1s still true if we replace §p(x) by §p(z). Moreover, (A.18) implies that

for every € >0 hmhf‘n_’s:ipP {w\/-(fp J=£,(2) () = e} = 0. (A.19)
Now, convergence of finite-dimensional distributions together with (A.19) are enough
to give the desired weak convergence.

Note: We have made use of the fact that the characterization of weak convergence in
Cq+41 1s the same as the characterization of weak convergence in C given in Billingsley
(1968, pp. 534-53). This is because the characterization of the compact sets given by
the Arzela-Ascoli theorem is the same for the two spaces C and C,;,.

Proof of Lemma 2.1

Parts (i1) and (iii) are Corollaries 3.5 and 3.3, respectively, of AG. The proof of Part
(1) 1s very similar (cf. the second part of the proof of Theorem 3.2 of AG). Part (iv)
follows directly from Theorem 1. Part (v) follows from the results of Ramlau-Hansen
(1983); see in particular his Theorem 4.1.2 and also lines 8-5 from the bottom on
page 460. (Actually, Ramlau-Hansen obtains uniform consistency of kerne] estimates
for Aalen’s multiplicative intensity model. However, the extension to the Cox model
does not present a serious difficulty.) Part (vi) follows from Parts (1)-(v). The proof
of Part (vii) is straightforward.

Proof of Theorem 2

Theorem 2 follows directly from Theorem 1 and Part (vii) of Lemma 2.1.

Proof of Theorem 3

Let pl® be fixed. We will irst show that as n — oo

L(p.z) == L(p.z) in C({p.pM] x K). (A.20)
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For f € C([p\?, p!V'] x ') we shall denote SUP,epp o) pirek 1S (P T) by [[fil. To obtain
(A.20) assume without loss of generality that L and L are defined on a common
probability space. More precisely, let (2, F., P) be the probability space on which the
random vectors (17, X,,C;) ¢ = 1,...,n are defined, let (V. 7', P’} be a probability
space on which W(.) and Z are defined, and consider the product space
(AxQ,FxF'",Px P On this probability space we may define (versions of ) L and
L by (2.13) and (2.13), respectively. (The same W(-) and Z are used in the definition
of L and L.) Note that ||L — L|| 2= 0. This follows from the continuity of W(.) and
Lemma 2.1. This gives (A.20) and therefore that

LI = J1L)] (A.21)
Letting L,(p, z) = /n(é,(z) — £,(2))/6(p, =), Theorem 2 implies that
L.l = (1L (A.22)

By Theorem 1 of Tsirel'son (1973) the distribution of ||L|| (and also that of ||L}]) is
continuous. Therefore, by (A.21) and (A.22

sup |P{||L.)| <t} = P{IL]| < t}] — 0 (A.23)
—-00t<0
Recalling that s(*) is a (1 — a)* quantile of ||Z]], we see that (A.23) implies that
P{{|L.}| € s{M} — 1 — @, and this proves the theorem.
Note: s{") is approximated through a simulation. However, it is easy to see that this
does not cause any problem in the theory.

Proof of Theorem 4

To prove Theorem 4 we shall first prove Theorem A.1, which states that as n — o¢.
the distribution of \/77(5;(3:) - ép(z)) converges to the limiting distribution of
\/ﬁ(f,,(x) — £,(z)). We express this notion of “weak convergence in probability” in
terms of the Prohorov metric d on the space of all probability measures on Cypy;.
This metric is defined in Billingsley (1968. pp. 236-238). The feature of it that we
will use is that it metrizes weak convergence: If u, and u are probability measures
on C..y, then d(u,,u) = 0 < ,u,,—d»;z.

We will use the following notation. If {(p, z) is a process in C,.;, then L({(p, 1))
and L(((p, z)|data) denote the distribution of {(p, z) and the conditional distribution
of {(p,z) given the data, respectively. Here, of course, the data is (7.6, X,), 7 =

Theorem A.1 Assume the conditions of Theorem 1. Then
d(ﬁ(\/ﬁ(fp"(r) - é;(::))]data),C(V(p.x))) I (A.24)

where V(p,z) 1s the process defined in Theorem 1.
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The proof of Theorem A.1 is similar to that of Theorem 1. The main clLanges are
the following.
1 We use Hjort's (1985a) result on the consistency of the bootstrap in the Cox model.
instead of AG's weak convergence result (A.4).
We use a version of Proposition A.1 appropriate for the bootstrap
We use elementary bounds on the size of the largest jump of the bootstrap version
of S.
Instead of indicating where changes need to be made. we give the entire proof for the
sake of completeness.

Recall that A" and 3 are the same as A and 3 except that they are calculated
crom the bootstrap sample. Define

[

Frtlzy =1 J[(1 = A7(dup)™"? and Fr(t) =1~ [[(1 = A(du)) [(A.25)
u<t u<t
We have
\/'r—ztfp(;r)— H(z)) = /n(f}'”(l—(l - p)oF -5 “)) -F']<1—(1—Pi‘"pi“‘é’:))).
As in the proof of Theorem 1. we will use the decomposition
ValG () = &l2) = Ulp.2) + Tip. 7). (4.26)
where
Ciip) = VA(E (1= (1= ppeo8 ) B (1 (1 ) )
and PA2T)

I{pz)= \/77(15"1 (1 —(1- p)"p("éﬂr)) — F <1 -1 - p)"m("‘a,:‘}\;.

/
J

The proposition of Section 3 of Hjort (1985a) states that under the assumption that
*he toples (7,. 6. X)), 1 = 1.2.... are 1id.

Z ) a.s. CA2

(ﬂ

(i - N,)ldata:l = [(:S'

hat the quantty to the 'eft of the arrow in {A.28) 1s a function of the data.
<
[

'
O
=y
0
)

and the expression “a.s.” refers to the sequence (7,.¢6,. X,). 1 = 1.2..... Define 117
and 77
W) = Malt)) — Wt)YSTH2Z and Zt=<-127, (A.29)
A careful look at Hjort's proof reveals the following.
i Statement (A.28) can be strengthened to
- " 5 d / - e
clvmids - 1.3 = )jdata) 4= £(117°.27) as,

i lnes 10-12 from the bottom on page 5 of Hjort. 1985a). which s equivaient to
/ - - *
di 5(\54.\' — A, 0" =5 data) £(H uZ’)) — 0 as. 1A.30)

viiere o 1s the Prohorov metric on the space of all probability measures en
C'i-C'. Tl ox R

T Rm———




2 If the 11d assumption is removed. *hen {A.30) i1s weakened (o

d(ﬁ(ﬁ(.‘\' ~ 357 = 3)ldasa). £ {18, zf)) I, (A31)
which is obtained by working with subsequences.

Let {n:} be any subsequence of {n}. To show (A.24) it suffices to show that {n;}

has a further subsequence along which the convergence statement /A.24) holds a.s.

By AG's weak convergence result (A.4) and by Hjort’s result (A.31), there exists a

subsequence of {n;} along which, with probability one,

HA—All—0  3—3 (A.32)

and
d(ﬁ(\fn'(f\' - A.3" = 3)|data). £ {1, ZT)> —0 (A.22
L fl = sup|fl. where the set over which the sup is taken is obtained from context).

In order to obtain the bootstrap analogue of (A.3), we need the following lemma.
We use the notation Af(t) = f(t)— f(¢—) for any right-continuous function with left
iimits.

Lemma A.1 Under the acssumptions of Theorem 4

1 in*AAA — 0 in bootstrap probability, a.s.

2 I AST |l — 0 in bootstrar probability, a.s.

Lemma A.1 follows easily from Lemma A.2 below.

Lemma A.2 Let X}, X, ... be 1id from a continuous distribution F, and let F, be
the empirical distribution functicn of X),....X,. Let X7,.... X7 be an :id sample
jrom F.. end lct F be the empirical distribution function of X7... ... X Then

AT 0 in bootstrap probability. c.s.

no

Prool. Let € > 0. We have

P{bAHAF > e} SnP{naFi(Xy) > n'/e} < 2nexp(~—nt'fe/3).

;

the last inequality being a consequence of Bernstein’s inequality (see, e.¢. page 95 of
Serflirng, 1080).

Consider now S* — exp(—A”). We have

\.,77‘(5'(1!) - e:(p(—-j\'(i‘))) = vn H(l — d.‘\'(u)) ~ e_\:p(—Sustd:\'(ﬂ?}
u<t
<V (Suge dAT(u))?), (A.31)




the inequality in (A.34) following from LeCam (1960). By Part 2 of Lemma A.1. the
last expression in (A.34) converges to 0 in bootstrap probability. Combining, we see
that there exists a set € of probability one, and a subsequence {nx,} such that

)A '—A” —_ 0,

d(C(\/H(F' — F.3 = 3)ldata). £(sW, zf)) 0
and 3 — 3 along {nk,} for all data points in §. (A.33)

Theorem 2 of Doss and Gill (1989) gives a version of Proposition A.l that is
approoriate for the bootstrap. Applied to our situation, it implies that there exists
a subset ) of §, also of probability one, and a subsequence {n, } (which we will
denote {m}), such that along {m}, for each data point in £,

F"(F-W—F(F—l))H 0

| feml _ P

; - - A.36)
Ve ) = VA(——FF (A.36
:n bootstrap probability. Therefore, along {m}, for each data point in ;. analogous

10 (A.8) we have

Vg (z) = &(2)) = Qu(p,z) + Ri(p. 2) + T3 (p, 7) (A37)

where

Qip.z)= —\/?<F' <F“(1 -1 —p)°xp(—é'z)>> _ (1 ~ (1 __p)exp(-s"':)>>.

sup [R;(p.z)| — 0 in bootstrap probability.
p.z

To deal with the term T;(p.z) we need the following fact. If ¢, is an arbitrary
sequence of positive constants tending to 0 then

sup iﬁ(F“(t) — F7Yu)) = VA(FY(¢) - F'l(u))| LIANY (A.38)

lt—ul<en

wiich is proved through a standard Skorohod comnstruction argument using the conti-
nuity of the process to which \/FL(F“ — F~1) converges. Therefore. there exists a set
of probability one and a subsequence (which we shall also call {m} and Q,, respec-
tively) such that (A.3S) holds along {m}, for all data points in ;. This shows that
T can pe handled in the same way that T, was handled, and we conclude that along
{m}. 7or all data points in Q, the finite dimensional distributions of /n( E; :)—fp(:r))
converge to those of V(p, ).

For the rest of the proof we continue to work with the subsequence {m} and
S:ed cata point in Q,. The remaining arguments are essentially identical to those
of Tr.eorem 1. the only difference being in proving that \/7—7'(5;‘(1) - f;(r)) — 0 in
hootstirap probability along {m} for all data pointsin ©,. This fact is a consequence
nf (A.30) and of Part 2 of Lemma A.l.
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Proof of Theorem 4

Theorem 1 of Tsirel'son (1973) implies that the distribution of [{V(-,-)/a(-. )] is
continuous. Therefore,

£0) =&
P{IAGES s — 2

uniformly in t. Working with uniformly convergent subsequences, we obtain a similar
statement for the bootstrap analogue of (A.39). This proves the theorem.

{V("ﬂ)!] < t} (A.39)
U(’, )
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Table 3. 95% bands and intervals in SHT
data, for median survival time in years.

Age (Years) Band Interval
385  SPL (1.6,9.7) (2.4, 6.7)
SP2 (1.7,10.2) (2.4, 6.9)

B (18,9.1) (2.3, 5.6)

487  SP1 (.5, 4.8) (.8,2.8)
SP2  (.5,5.3) (.8,2.9)
B (3,6.4) (.6.2.2)
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