XTRAN: AN ATMOSPHERIC TRANSMITTANCE CODE
BASED ON XS SCALE

April 1991

Ricardo Peña
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Destruction Notice

When this document is no longer needed, destroy it by any method that will prevent disclosure of its contents or reconstruction of the document.
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 124, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (Leave blank)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>April 1991</td>
<td>Final</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5. FUNDING NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTRAN: AN ATMOSPHERIC TRANSMITTANCE CODE BASED ON XSCALE</td>
<td>TA 62784AH71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricardo Peña</td>
<td>U.S. Army Atmospheric Sciences Laboratory</td>
</tr>
<tr>
<td></td>
<td>White Sands Missile Range, NM 88002-5501</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASL-TR-0294</td>
<td>U.S. Army Laboratory Command</td>
</tr>
<tr>
<td></td>
<td>Adelphi, MD 20783-1145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSORING/MONITORING AGENCY REPORT NUMBER</th>
<th>11. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12a. DISTRIBUTION / AVAILABILITY STATEMENT</th>
<th>12b. DISTRIBUTION CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. ABSTRACT (Maximum 200 words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Several Electro-Optical Systems Atmospheric Effects Library modules require the use of XSCALE for calculation of the natural atmospheric transmittance value. XSCALE is a large (over 1600 lines of code) algorithm, which, in some cases, requires other external modules or data files for execution.</td>
</tr>
</tbody>
</table>

XTRAN, a comparatively smaller (less than 240 lines) computer code, was developed for use with the KWIK (crosswind integrated concentration) munition expenditure stand-alone versions (SKWIK and IKWIK). XTRAN computes horizontal extinction and transmittance values based on the XSCALE module for visible, near-, mid-, and far-infrared wavelengths by using estimated values of visibility and polynomial regression equations for aerosol extinction as a function of relative humidity. This report shows the usefulness and practicality of the XTRAN code as a horizontal transmittance model.

<table>
<thead>
<tr>
<th>14. SUBJECT TERMS</th>
<th>15. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>atmospheric transmittance, visibility, relative humidity, extinction coefficients, contrast threshold, aerosol</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. PRICE CODE</th>
<th>17. SECURITY CLASSIFICATION OF REPORT</th>
<th>18. SECURITY CLASSIFICATION OF THIS PAGE</th>
<th>19. SECURITY CLASSIFICATION OF ABSTRACT</th>
<th>20. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>SAR</td>
</tr>
</tbody>
</table>

NSN 7540-01-280-5500

Standard form 298 (Rev 2-89) 12/31/88

Prepared by JHU APL, JHU APL 11/10/02
ACKNOWLEDGMENT

The author acknowledges Dr. Robert Fiegel's assistance in producing XSCALE data for comparison with XTRAN results.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>6</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>2. VISIBILITY AND CONTRAST THRESHOLD VALUES</td>
<td>7</td>
</tr>
<tr>
<td>3. EXTINCTION COEFFICIENTS</td>
<td>5</td>
</tr>
<tr>
<td>4. TRANSMITTANCE COMPARATIVE CALCULATIONS: XSCALE VERSUS XTRAN</td>
<td>9</td>
</tr>
<tr>
<td>5. MUNITION EXPENDITURES CALCULATIONS: SKWIK VERSUS EOSAEL KWIK</td>
<td>11</td>
</tr>
<tr>
<td>6. CONCLUSION</td>
<td>14</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>15</td>
</tr>
<tr>
<td>APPENDIX A. EXTINCTION DATA FOR MARITIME, URBAN, AND RURAL AEROSOLS</td>
<td>17</td>
</tr>
<tr>
<td>APPENDIX B. EXTINCTION DATA FOR FOG ONE (HEAVY ADVECTION) AND FOG TWO (MODERATE ADVECTION) AEROSOL</td>
<td>21</td>
</tr>
<tr>
<td>APPENDIX C. EXTINCTION CALCULATIONS FOR RAIN, FALLING AND BLOWING SNOW</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX D. XTRAN COMPUTER SOURCE CODE IN FORTRAN 77</td>
<td>25</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1. Comparative Transmittance Values Between XSCALE and XTRAN 10

2. Actual and Percent Differences in Munition Expenditures Between SKWIK and KWIK Calculations for Maritime Aerosol 12

3. Actual and Percent Difference in Munition Expenditures Between SKWIK and KWIK Calculations for Urban Aerosol 13

4. Actual and Percent Difference in Munition Expenditures Between SKWIK and KWIK Calculations for Rural Aerosol 14
1. INTRODUCTION

The KWIK (crosswind integrated concentration) smoke munition expenditures algorithm (Peña, 1987) and other models, such as LOWTRAN (Pierluissi et al., 1987) and TARGAC (Davis, 1987), use the natural aerosol transmittance data from the EOSAEL (Electro-Optical Systems Atmospheric Effects Library) module XSCALE (Duncan et al., 1987) for wavelengths of 0.2 to 12.5 μm.

The XTRAN algorithm has been developed in an effort to minimize the amount of computer code that is required to calculate horizontal atmospheric transmittance values. XTRAN contains about 240 lines of FORTRAN 77 code (about one-eighth the size of XSCALE) and computes horizontal extinction and transmittance values for the following adverse weather conditions.

- Haze/fog maritime (arctic and polar) air mass
- Haze/fog urban air mass
- Haze/fog rural (continental polar) air mass
- Fog one (heavy advection)
- Fog two (moderate advection)
- Rain (drizzle)
- Rain (widespread)
- Rain (thunderstorm)
- Snow (falling or blowing) for relative humidity (RH) less than 95 percent only

XTRAN uses estimated values of visibility coupled with polynomial regression analysis for natural aerosol extinction as a function of RH to calculate the horizontal atmospheric transmission through a smoke cloud. The polynomial regression equations are obtained by using aerosol extinction coefficients from the RHDATA file from XSCALE. The code for fog one, fog two, rain (drizzle, widespread, and thunderstorm), and snow is taken from XSCALE. XTRAN's only limitation is its exclusion of snow at greater than 95 percent RH and ice fog condition.

XTRAN is used in SKWIK (a short version of the EOSAEL KWIK model) and IKWIK (inverse KWIK tactical decision aid). Peña (1991) describes the latest personal computer (PC) versions of EOSAEL KWIK, SKWIK, and IKWIK. This report presents the results of a comparative study of the effects of using XTRAN versus XSCALE transmittance data with the KWIK model.

2. VISIBILITY AND CONTRAST THRESHOLD VALUES

Two terms that are widely used together with "visibility" are visual range and meteorological range. All three terms are often used interchangeably; but according to McCartney (1976), visual range is the more useful quantity because it allows for a target/background contrast of less than unity and/or a threshold contrast of more than 2 percent.

Visual range* is defined as

$$ R_v = \frac{1}{K_e} \ln \frac{C}{\epsilon} $$

*In this report, the term "visibility" will be used interchangeably with visual range.
where K_e is the extinction coefficient in the visual wavelength band, C is the inherent target contrast against a background (considered to be unity where a black target is against the background), and ϵ is the constant threshold value.

During the Smoke Week VII trials, where live-fired smoke munitions were used, LOVIR (low visibility infrared) transmissometry data were compared with corresponding results from the PRESTO (personal evaluation system for target obscuration) system. Peña (1986) showed that these results indicate that the threshold contrast value was approximately 0.10 for visible and near-infrared wavelengths and 0.05 for mid- and far-infrared wavelengths.

Restating equation (1) for visible and near-infrared wavelengths,

$$R_v = \frac{1}{K_e} \ln \frac{1}{0.10} \tag{2}$$

or

$$K_e = \frac{2.303}{R_v} \tag{3}$$

For mid- and far-infrared wavelengths the extinction coefficient becomes

$$K_e = \frac{3.00}{R_v} \tag{4}$$

3. EXTINCTION COEFFICIENTS

Lower atmospheric aerosol particle sizes are a function of air mass as well as RH. These particles, however, grow with increasing RH. The XSCALE module (Duncan et al., 1987) uses Mie theory to calculate atmospheric absorption and extinction coefficients. The results, found in the RHDATA file, are tabulated for eight RH levels (0, 50, 70, 80, 90, 95, 98, and 99 percent) and 31 wavelengths, ranging from 0.2 to 12.5 μm, for each RH level.

Equations (3) and (4) were modified as follows for visible (0.55 μm) and near-infrared (1.06 μm) and for mid-(3.75 μm) and far-infrared (10.6 μm) wavelengths, respectively.

$$K_e = \frac{2.3}{R_v} K_t \tag{5}$$

$$K_e = \frac{3.00}{R_v} K_t \tag{6}$$

K_t is the corresponding extinction value from the RHDATA file (see appendix A) for the particular aerosol, wavelength, and RH value.

Regression analysis techniques were applied to the K_e extinction values (see appendix A tables A-1 through A-9) for near-, mid-, and far-infrared wavelengths, six RH values (0, 50, 70, 80, 90, and 95 percent) and four values
of visibility (2.3, 10, 20, and 30 km). This technique produced a series of four equations per wavelength band and aerosol type (see appendix C, subroutine XTRAN) of the form

\[K_{\text{ext}} = A + B(RH) + C(RH)^2 + D(RH)^3 \ldots \]

(7)

Appendix B shows the procedure used to obtain the extinction coefficients for fog one and fog two for 2.3, 10, 20, and 30 km visibility.

Appendix C presents the rain and snow extinction coefficients. Note that the calculations for falling and blowing snow are valid only for RH less than 95 percent.

Appendix D shows the FORTRAN 77 source code for the XTRAN algorithm containing all regression equations and calculations for transmittance.

4. TRANSMITTANCE COMPARATIVE CALCULATIONS: XSCALE VERSUS XTRAN

Comparative calculations of transmittance values using XSCALE and XTRAN were performed on identical meteorological data (line-of-sight visibility, RH, windspeed, temperature, and horizontal slant range) for maritime, urban, and rural aerosol. The visibility values used with XSCALE were 1.5, 10, 15, 20, and 25 km. XTRAN used visibilities of 2.3, 10, 20, and 30 km (see table 1). The XTRAN values of 2.3, 20, and 30 km were used instead of 1.5, 15, and 25 km, in order to determine the sensitivity of visibility estimates used in calculating transmittance values.

Table 1 shows the comparative calculations of maritime, urban, and rural aerosol transmittance values for visible, near-, mid-, and far-infrared wavelengths. Horizontal slant ranges of 1.0 and 2.0 km were used in all three aerosol calculations. The numbers in parentheses for visibility represent the values used by the XTRAN algorithm. In the same manner, the transmittance values calculated by XTRAN are also shown in parentheses. The visible transmittance column in table 1 shows only one set of numbers because there was no difference between the XSCALE and XTRAN calculations for this wavelength.

Since XSCALE uses the threshold contrast value of 0.02 for all wavelengths and XTRAN (and also KWIK) uses 0.10 for visible and near-infrared and 0.05 for mid- and far-infrared wavelengths (as explained above), it was necessary to apply an adjustment factor to the XSCALE transmittance values to make them comparable to the XTRAN calculated values. The following relationships were used.

For visible and near-infrared wavelengths

\[T_{\text{vn}} = (T_{\text{xscale}})^{0.5887} \]

(8)

and for mid- and far-infrared wavelengths

\[T_{\text{mf}} = (T_{\text{xscale}})^{0.76577} \]

(9)
where T_{Xscale} is the transmittance value calculated by YSCALE for a particular wavelength. The transmittance values calculated by XTRAN for all wavelengths and air masses were derived from the following general expression

$$T = \exp \left(-\left(S_{\text{Slant Range}} \cdot K_e\right)\right)$$ \hspace{1cm} (10)

where S_{Slant} is the horizontal slant range in kilometers.

TABLE 1. COMPARATIVE TRANSMITTANCE VALUES BETWEEN XSCALE AND XTRAN

<table>
<thead>
<tr>
<th>Visibility (km)</th>
<th>SRNG (km)</th>
<th>Visible</th>
<th>Near IR</th>
<th>Mid IR</th>
<th>Far IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maritime Aerosol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 (2.3)</td>
<td>1.0</td>
<td>.215</td>
<td>.330</td>
<td>.538</td>
<td>.842</td>
</tr>
<tr>
<td>10. (10.)</td>
<td>1.0</td>
<td>.794</td>
<td>.846</td>
<td>.911</td>
<td>.974</td>
</tr>
<tr>
<td>15. (20.)</td>
<td>2.0</td>
<td>.736</td>
<td>.764</td>
<td>.789</td>
<td>.940</td>
</tr>
<tr>
<td>20. (20.)</td>
<td>2.0</td>
<td>.794</td>
<td>.817</td>
<td>.837</td>
<td>.955</td>
</tr>
<tr>
<td>25. (30.)</td>
<td>2.0</td>
<td>.832</td>
<td>.850</td>
<td>.857</td>
<td>.958</td>
</tr>
<tr>
<td>Urban Aerosol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 (2.3)</td>
<td>1.0</td>
<td>.215</td>
<td>.486</td>
<td>.756</td>
<td>.835</td>
</tr>
<tr>
<td>10. (10.)</td>
<td>1.0</td>
<td>.794</td>
<td>.897</td>
<td>.959</td>
<td>.973</td>
</tr>
<tr>
<td>15. (20.)</td>
<td>2.0</td>
<td>.736</td>
<td>.868</td>
<td>.947</td>
<td>.968</td>
</tr>
<tr>
<td>20. (20.)</td>
<td>2.0</td>
<td>.794</td>
<td>.899</td>
<td>.960</td>
<td>.976</td>
</tr>
<tr>
<td>25. (30.)</td>
<td>2.0</td>
<td>.832</td>
<td>.917</td>
<td>.968</td>
<td>.982</td>
</tr>
<tr>
<td>Rural Aerosol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 (2.3)</td>
<td>1.0</td>
<td>.215</td>
<td>.524</td>
<td>.819</td>
<td>.852</td>
</tr>
<tr>
<td>10. (10.)</td>
<td>1.0</td>
<td>.794</td>
<td>.908</td>
<td>.970</td>
<td>.976</td>
</tr>
<tr>
<td>15. (20.)</td>
<td>2.0</td>
<td>.736</td>
<td>.876</td>
<td>.955</td>
<td>.970</td>
</tr>
<tr>
<td>20. (20.)</td>
<td>2.0</td>
<td>.794</td>
<td>.905</td>
<td>.966</td>
<td>.977</td>
</tr>
<tr>
<td>25. (30.)</td>
<td>2.0</td>
<td>.823</td>
<td>.922</td>
<td>.937</td>
<td>.983</td>
</tr>
</tbody>
</table>

NOTE: XTRAN visibility and transmittance values are shown in parenthesis.
5. MUNITION EXPENDITURES COMPARATIVE CALCULATIONS: SKWIK VERSUS EOSAEL KWIK

A second comparison test that was run is shown in tables 2, 3, and 4. These tables show the actual and percent difference in munition expenditures of a series of calculations using identical input data for SKWIK and EOSAEL KWIK for maritime, urban, and rural aerosols. The XTRAN subroutine in SKWIK used 2.3, 10, 20, and 30 km approximations for actual visibility, as shown in these tables. The tables also show positive digits to indicate cases where the number of rounds calculated by SKWIK were in excess (overprediction) of the EOSAEL KWIK calculations and negative digits to indicate the cases where SKWIK underpredicted EOSAEL KWIK. A zero was used to indicate no difference between the computed values. The results are also presented, respectively, as plus, minus, or zero percent difference.

The "worst" case produced by these comparative calculations occurred with maritime aerosol (see table 2), where the SKWIK overprediction was between two and seven rounds (5.0 and 5.3 percent). However, 19 cases out of 24 (79 percent) showed no difference. Table 3 (urban aerosol) showed four cases of two-round overprediction and a total average difference of 1.2 percent (83 percent of the cases showed no difference). Table 4 (rural aerosol) indicated a total average difference (overprediction) of 1.1 percent. However, the maximum overprediction is only two rounds (4.5 percent to 16.6 percent), and 88 percent of the cases were in perfect agreement.

Note that the best agreement in tables 2, 3, and 4 lies in the visible region (perfect agreement) and in the near-infrared wavelengths, where the KWIK model has demonstrated its best munition prediction capabilities. Also, note that most of the differences occur with the lower visibility estimates (1.5 and 6.0 km) but visibilities over 14 km (for urban aerosol) or 24 km (for maritime and rural aerosols) show less sensitivity to visibility estimates. Overall, XTRAN does a very good job, as verified by the data in tables 1, 2, 3, and 4, of estimating the transmittance values used in SKWIK to determine munition expenditures.
TABLE 2. ACTUAL AND PERCENT DIFFERENCE IN MUNITION EXPENDITURES BETWEEN SKWIK AND KWIK CALCULATIONS FOR MARITIME AEROSOL

<table>
<thead>
<tr>
<th>Visibility</th>
<th>Visible</th>
<th>Near IR</th>
<th>Mid IR</th>
<th>Far IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility = 1.5 km (estimated as 2.3 km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounds Diff. :</td>
<td>0</td>
<td>0</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>Percent Diff. :</td>
<td>0</td>
<td>0</td>
<td>5.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Visibility = 6 km (estimated as 10 km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounds Diff. :</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+2</td>
</tr>
<tr>
<td>Percent Diff. :</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.3</td>
</tr>
<tr>
<td>Visibility = 14 km (estimated as 10 km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounds Diff. :</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>Percent Diff. :</td>
<td>0</td>
<td>0</td>
<td>-3.6</td>
<td>0</td>
</tr>
<tr>
<td>Visibility = 15 km (estimated as 20 km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounds Diff. :</td>
<td>0</td>
<td>0</td>
<td>+7</td>
<td>0</td>
</tr>
<tr>
<td>Percent Diff. :</td>
<td>0</td>
<td>0</td>
<td>5.1</td>
<td>0</td>
</tr>
<tr>
<td>Visibility = 24 km (estimated as 20 km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounds Diff. :</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent Diff. :</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Visibility = 25 km (estimated as 30 km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounds Diff. :</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent Diff. :</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL AVERAGE DIFFERENCE = 0.67%
TABLE 3. ACTUAL AND PERCENT DIFFERENCE IN MUNITION EXPENDITURES BETWEEN SKWIK AND KWIK CALCULATIONS FOR URBAN AEROSOL

<table>
<thead>
<tr>
<th>Visibility</th>
<th>Visible</th>
<th>Near IR</th>
<th>Mid IR</th>
<th>Far IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility = 1.5 km</td>
<td>0</td>
<td>+2</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>Percent Diff.</td>
<td>0</td>
<td>14.3</td>
<td>4.3</td>
<td>5.0</td>
</tr>
<tr>
<td>Visibility = 6 km</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+2</td>
</tr>
<tr>
<td>Percent Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.2</td>
</tr>
<tr>
<td>Visibility = 14 km</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Visibility = 15 km</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Visibility = 24 km</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Visibility = 25 km</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL AVERAGE DIFFERENCE = 1.2%
<table>
<thead>
<tr>
<th>Visibility</th>
<th>Near IR</th>
<th>Mid IR</th>
<th>Far IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 km (estimated as 2.3 km)</td>
<td>+2</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>Rounds Diff.</td>
<td>0</td>
<td>16.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Percent Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visibility</th>
<th>Near IR</th>
<th>Mid IR</th>
<th>Far IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 km (estimated as 10 km)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rounds Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visibility</th>
<th>Near IR</th>
<th>Mid IR</th>
<th>Far IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 km (estimated as 10 km)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rounds Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visibility</th>
<th>Near IR</th>
<th>Mid IR</th>
<th>Far IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 km (estimated as 20 km)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rounds Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visibility</th>
<th>Near IR</th>
<th>Mid IR</th>
<th>Far IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 km (estimated as 20 km)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rounds Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visibility</th>
<th>Near IR</th>
<th>Mid IR</th>
<th>Far IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 km (estimated as 30 km)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rounds Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent Diff.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL AVERAGE DIFFERENCE = 1.1%

6. CONCLUSION

The data presented here show that the XTRAN algorithm can be used with very good accuracy to compute extinction and transmittance values for maritime, urban, and rural aerosols, as well as rain and some snow conditions. The main advantage of XTRAN lies in its practical usefulness because of its size (one-eighth the size of XSCALE) and rapid execution.
LITERATURE CITED

Peña, R., 1991, PC Versions of the KWIK Munition Expenditures Model, ASL-TMR-0006, U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM.

APPENDIX A. EXTINCTION DATA FOR MARITIME, URBAN, AND RURAL AEROSOLS

1. VISIBLE WAVELENGTH DATA FOR ALL AEROSOL

Visible (0.55 μm) extinction data for all air masses for a threshold contrast of 0.10 and visibilities of 2.3, 10, 20, and 30 km is given by equation (5) in the text, and may be restated as

\[K_v = \frac{2.3}{\text{Vis}} K_t \]

(A-1)

where \(K_v \) is the extinction coefficient for a particular wavelength and visual range \(\text{Vis} \), and \(K_t \) is the factor for scaling extinction at 0.55 μm to extinction at a particular wavelength. \(K_t \) values are taken from the RHDATA file and normalized to 1.0000 for visible wavelengths.

Therefore, the extinction coefficients for all aerosols at visible wavelengths (\(K_t = 1.0000 \)) and for 2.3, 10, 20, and 30 km visibility (\(\text{Vis} \)), respectively, is

\[K_{2.3} = 1.0000 \]
\[K_{10} = 0.2300 \]
\[K_{20} = 0.1150 \]
\[K_{30} = 0.0766 \]

(A-2)
(A-3)
(A-4)
(A-5)

2. MARITIME AEROSOL

The following \(K_v \) extinction relationships are given for maritime aerosol at near- (1.06 μm), mid- (3.75 μm), and far-infrared (10.6 μm) wavelengths, respectively.

For near-infrared wavelengths and 0.10 threshold contrast value the \(K_v \) relationship for maritime aerosol is given by equation (A-1).

For mid- and far-infrared wavelengths and 0.05 threshold contrast value:

\[K_v = \frac{3.00}{\text{Vis}} K_t \]

(A-6)

Equations (A-1) and (A-6) were used with the \(K_t \) values from the RHDATA file to produce the extinction coefficients for \(\text{Vis} \) (visibility) values of 2.3, 10, 20, and 30 km. Tables A-1, A-2, and A-3 show maritime aerosol extinction coefficients for the above visibilities at an RH range of 0 to 95 percent for near-, mid-, and far-infrared wavelengths, respectively. Tables A-4, A-5, and A-6 (for urban aerosol) and tables A-7, A-8, and A-9 (for rural aerosol) contain the same type of extinction data as tables A-1, A-2, and A-3.
TABLE A-1. **MARITIME AEROSOL EXTINCTION DATA FOR NEAR-INFRARED WAVELENGTHS AT 2.3, 10, 20, AND 30 KM VISIBILITY FOR 0 TO 95% RH RANGE**

<table>
<thead>
<tr>
<th>RH</th>
<th>K2.3</th>
<th>K10</th>
<th>K20</th>
<th>K30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.70297</td>
<td>0.16168</td>
<td>0.08084</td>
<td>0.05385</td>
</tr>
<tr>
<td>50</td>
<td>0.72355</td>
<td>0.16642</td>
<td>0.08321</td>
<td>0.05542</td>
</tr>
<tr>
<td>70</td>
<td>0.77089</td>
<td>0.17730</td>
<td>0.08865</td>
<td>0.05905</td>
</tr>
<tr>
<td>80</td>
<td>0.87538</td>
<td>0.20134</td>
<td>0.10069</td>
<td>0.06705</td>
</tr>
<tr>
<td>90</td>
<td>0.88017</td>
<td>0.20244</td>
<td>0.10122</td>
<td>0.06742</td>
</tr>
<tr>
<td>95</td>
<td>0.90693</td>
<td>0.20859</td>
<td>0.10430</td>
<td>0.06947</td>
</tr>
</tbody>
</table>

TABLE A-2. **MARITIME AEROSOL EXTINCTION DATA FOR MID-INFRARED WAVELENGTHS AT 2.3, 10, 20, AND 30 KM VISIBILITY FOR 0 TO 95% RH RANGE**

<table>
<thead>
<tr>
<th>RH</th>
<th>K2.3</th>
<th>K10</th>
<th>K20</th>
<th>K30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.37450</td>
<td>0.08643</td>
<td>0.04321</td>
<td>0.02881</td>
</tr>
<tr>
<td>50</td>
<td>0.40370</td>
<td>0.09316</td>
<td>0.04658</td>
<td>0.03105</td>
</tr>
<tr>
<td>70</td>
<td>0.49499</td>
<td>0.11423</td>
<td>0.05711</td>
<td>0.03808</td>
</tr>
<tr>
<td>80</td>
<td>0.77029</td>
<td>0.17780</td>
<td>0.08888</td>
<td>0.05925</td>
</tr>
<tr>
<td>90</td>
<td>0.84009</td>
<td>0.19387</td>
<td>0.09693</td>
<td>0.06462</td>
</tr>
<tr>
<td>95</td>
<td>0.95605</td>
<td>0.22063</td>
<td>0.11031</td>
<td>0.07354</td>
</tr>
</tbody>
</table>

TABLE A-3. **MARITIME AEROSOL EXTINCTION DATA FOR FAR-INFRARED WAVELENGTHS AT 2.3, 10, 20, AND 30 KM VISIBILITY FOR 0 TO 95% RH RANGE**

<table>
<thead>
<tr>
<th>RH</th>
<th>K2.3</th>
<th>K10</th>
<th>K20</th>
<th>K30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10877</td>
<td>0.02510</td>
<td>0.01255</td>
<td>0.00837</td>
</tr>
<tr>
<td>50</td>
<td>0.11214</td>
<td>0.02588</td>
<td>0.01294</td>
<td>0.00863</td>
</tr>
<tr>
<td>70</td>
<td>0.12687</td>
<td>0.02928</td>
<td>0.01464</td>
<td>0.00976</td>
</tr>
<tr>
<td>80</td>
<td>0.19911</td>
<td>0.04595</td>
<td>0.02297</td>
<td>0.01532</td>
</tr>
<tr>
<td>90</td>
<td>0.23153</td>
<td>0.05343</td>
<td>0.02672</td>
<td>0.01781</td>
</tr>
<tr>
<td>95</td>
<td>0.28782</td>
<td>0.06642</td>
<td>0.03362</td>
<td>0.02214</td>
</tr>
</tbody>
</table>
TABLE A-4. URBAN AEROSOL EXTINCTION DATA FOR NEAR-INFRARED WAVELENGTHS AT 2.3, 10, 20, AND 30 KM VISIBILITY FOR 0 TO 95% RH RANGE

<table>
<thead>
<tr>
<th>RH</th>
<th>K2.3</th>
<th>K10</th>
<th>K20</th>
<th>K30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.47095</td>
<td>0.10832</td>
<td>0.05416</td>
<td>0.03607</td>
</tr>
<tr>
<td>50</td>
<td>0.47013</td>
<td>0.10813</td>
<td>0.05406</td>
<td>0.03601</td>
</tr>
<tr>
<td>70</td>
<td>0.46639</td>
<td>0.10727</td>
<td>0.05363</td>
<td>0.03573</td>
</tr>
<tr>
<td>80</td>
<td>0.46253</td>
<td>0.10638</td>
<td>0.05319</td>
<td>0.03543</td>
</tr>
<tr>
<td>90</td>
<td>0.46809</td>
<td>0.10766</td>
<td>0.05383</td>
<td>0.03586</td>
</tr>
<tr>
<td>95</td>
<td>0.48350</td>
<td>0.11121</td>
<td>0.05560</td>
<td>0.03704</td>
</tr>
</tbody>
</table>

TABLE A-5. URBAN AEROSOL EXTINCTION DATA FOR MID-INFRARED WAVELENGTHS AT 2.3, 10, 20, AND 30 KM VISIBILITY FOR 0 TO 95% RH RANGE

<table>
<thead>
<tr>
<th>RH</th>
<th>K2.3</th>
<th>K10</th>
<th>K20</th>
<th>K30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.18200</td>
<td>0.04200</td>
<td>0.02000</td>
<td>0.01400</td>
</tr>
<tr>
<td>50</td>
<td>0.18199</td>
<td>0.04199</td>
<td>0.02100</td>
<td>0.01399</td>
</tr>
<tr>
<td>70</td>
<td>0.18266</td>
<td>0.04215</td>
<td>0.02108</td>
<td>0.01405</td>
</tr>
<tr>
<td>80</td>
<td>0.17632</td>
<td>0.04069</td>
<td>0.02034</td>
<td>0.01356</td>
</tr>
<tr>
<td>90</td>
<td>0.17286</td>
<td>0.03989</td>
<td>0.01995</td>
<td>0.01330</td>
</tr>
<tr>
<td>95</td>
<td>0.17585</td>
<td>0.04058</td>
<td>0.02029</td>
<td>0.01353</td>
</tr>
</tbody>
</table>

TABLE A-6. URBAN AEROSOL EXTINCTION DATA FOR FAR-INFRARED WAVELENGTHS AT 2.3, 10, 20, AND 30 KM VISIBILITY FOR 0 TO 95% RH RANGE

<table>
<thead>
<tr>
<th>RH</th>
<th>K2.3</th>
<th>K10</th>
<th>K20</th>
<th>K30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.11774</td>
<td>0.02717</td>
<td>0.01359</td>
<td>0.00906</td>
</tr>
<tr>
<td>50</td>
<td>0.11769</td>
<td>0.02716</td>
<td>0.01358</td>
<td>0.00905</td>
</tr>
<tr>
<td>70</td>
<td>0.11495</td>
<td>0.02653</td>
<td>0.01326</td>
<td>0.00884</td>
</tr>
<tr>
<td>80</td>
<td>0.10433</td>
<td>0.02408</td>
<td>0.01204</td>
<td>0.00803</td>
</tr>
<tr>
<td>90</td>
<td>0.09604</td>
<td>0.02216</td>
<td>0.01108</td>
<td>0.00739</td>
</tr>
<tr>
<td>95</td>
<td>0.09387</td>
<td>0.02166</td>
<td>0.01083</td>
<td>0.00722</td>
</tr>
</tbody>
</table>
Table A-7. Rural Aerosol Extinction Data for Near-Infrared Wavelengths at 2.3, 10, 20, and 30 km Visibility for 0 to 95% RH Range

<table>
<thead>
<tr>
<th>RH</th>
<th>K2.3</th>
<th>K10</th>
<th>K20</th>
<th>K30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.41943</td>
<td>0.09647</td>
<td>0.04823</td>
<td>0.03213</td>
</tr>
<tr>
<td>50</td>
<td>0.42015</td>
<td>0.09663</td>
<td>0.04832</td>
<td>0.03218</td>
</tr>
<tr>
<td>70</td>
<td>0.42171</td>
<td>0.09699</td>
<td>0.04850</td>
<td>0.03230</td>
</tr>
<tr>
<td>80</td>
<td>0.43228</td>
<td>0.09942</td>
<td>0.04971</td>
<td>0.03311</td>
</tr>
<tr>
<td>90</td>
<td>0.44207</td>
<td>0.10168</td>
<td>0.05084</td>
<td>0.03386</td>
</tr>
<tr>
<td>95</td>
<td>0.45025</td>
<td>0.10356</td>
<td>0.05178</td>
<td>0.03449</td>
</tr>
</tbody>
</table>

Table A-8. Rural Aerosol Extinction Data for Mid-Infrared Wavelengths at 2.3, 10, 20, and 30 km Visibility for 0 to 95% RH Range

<table>
<thead>
<tr>
<th>RH</th>
<th>K2.3</th>
<th>K10</th>
<th>K20</th>
<th>K30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.12943</td>
<td>0.02987</td>
<td>0.01493</td>
<td>0.00956</td>
</tr>
<tr>
<td>50</td>
<td>0.13052</td>
<td>0.03012</td>
<td>0.01506</td>
<td>0.01004</td>
</tr>
<tr>
<td>70</td>
<td>0.13420</td>
<td>0.03097</td>
<td>0.01548</td>
<td>0.01032</td>
</tr>
<tr>
<td>80</td>
<td>0.14958</td>
<td>0.03652</td>
<td>0.01796</td>
<td>0.01151</td>
</tr>
<tr>
<td>90</td>
<td>0.14983</td>
<td>0.03457</td>
<td>0.01729</td>
<td>0.01153</td>
</tr>
<tr>
<td>95</td>
<td>0.15072</td>
<td>0.03478</td>
<td>0.01739</td>
<td>0.01159</td>
</tr>
</tbody>
</table>

Table A-9. Rural Aerosol Extinction Data for Far-Infrared Wavelengths at 2.3, 10, 20, and 30 km Visibility for 0 to 95% RH Ranges

<table>
<thead>
<tr>
<th>RH</th>
<th>K2.3</th>
<th>K10</th>
<th>K20</th>
<th>K30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10499</td>
<td>0.02423</td>
<td>0.01211</td>
<td>0.00808</td>
</tr>
<tr>
<td>50</td>
<td>0.10433</td>
<td>0.02408</td>
<td>0.01204</td>
<td>0.00803</td>
</tr>
<tr>
<td>70</td>
<td>0.10351</td>
<td>0.02389</td>
<td>0.01194</td>
<td>0.00796</td>
</tr>
<tr>
<td>80</td>
<td>0.10014</td>
<td>0.02311</td>
<td>0.01155</td>
<td>0.00770</td>
</tr>
<tr>
<td>90</td>
<td>0.09069</td>
<td>0.02093</td>
<td>0.01046</td>
<td>0.00698</td>
</tr>
<tr>
<td>95</td>
<td>0.08732</td>
<td>0.02015</td>
<td>0.01008</td>
<td>0.00672</td>
</tr>
</tbody>
</table>
APPENDIX B. EXTINCTION DATA FOR FOG ONE (HEAVY ADVECTION)
AND FOG TWO (MODERATE ADVECTION) AEROSOL

Equations (A-1) and (A-6) in appendix A can also be applied to aerosol fog
one and fog two for visible, near-, mid-, and far-infrared wavelengths. Since RH is 100 percent for both of these aerosols, the extinction coefficient from the RHDATA file (K_t) will be the same for all visibility ranges
within the same wavelength.

1. VISIBLE WAVELENGTHS

Equations (A-2), (A-3), (A-4) and (A-5) in appendix A also apply for fog one
and fog two visible (0.55 μm) coefficients for 2.3, 10, 20, and 30 km visibilities.

2. FOG ONE EXTINCTION COEFFICIENTS

The following extinction coefficients for near- (1.06 μm), mid- (3.75 μm),
and far-infrared (10.6 μm) wavelengths are for visibilities of 2.3 (K2.3),
10 (K10), 20 (K20), and 30 (K30) km.

2.1 Near-Infrared Wavelengths
The following equations are extinction coefficients for near-infrared wave-
lengths. Equation (A-1) in appendix A was used to produce the extinction
values, with $K_t = 1.01750$.

\[
\begin{align*}
K_{2.3} &= 1.01750 \quad \text{(B-1)} \\
K_{10} &= 0.23402 \quad \text{(B-2)} \\
K_{20} &= 0.11701 \quad \text{(B-3)} \\
K_{30} &= 0.07801 \quad \text{(B-4)}
\end{align*}
\]

2.2 Mid-Infrared Wavelengths
The extinction coefficients for these wavelengths were derived from equation
(A-6) in appendix A, with $K_t = 1.0780$.

\[
\begin{align*}
K_{2.3} &= 1.40609 \quad \text{(B-5)} \\
K_{10} &= 0.32340 \quad \text{(B-6)} \\
K_{20} &= 0.16170 \quad \text{(B-7)} \\
K_{30} &= 0.10780 \quad \text{(B-8)}
\end{align*}
\]
2.3 Far-Infrared Wavelengths

Equation (A-6) in appendix A was used to determine the following extinction coefficients, where $K_t = 1.1559$.

\[
\begin{align*}
K_{2.3} &= 1.50770 \\
K_{10} &= 0.34677 \\
K_{20} &= 0.17338 \\
K_{30} &= 0.11559
\end{align*}
\] (B-9)

3. Fog Two Extinction Coefficients

3.1 Near-Infrared Wavelengths

Using equation (A-1) and $K_t = 1.0518$,

\[
\begin{align*}
K_{2.3} &= 1.0518 \\
K_{10} &= 0.03155 \\
K_{20} &= 0.12096 \\
K_{30} &= 0.08064
\end{align*}
\] (B-13)

3.2 Mid-Infrared Wavelengths

Using equation (A-6) and $K_t = 1.4527$

\[
\begin{align*}
K_{2.3} &= 1.89483 \\
K_{10} &= 0.43581 \\
K_{20} &= 0.21791 \\
K_{30} &= 0.14527
\end{align*}
\] (B-17)

3.3 Far-Infrared Wavelengths

Using equation (A-6) and $K_t = 2.1601$,

\[
\begin{align*}
K_{2.3} &= 2.81752 \\
K_{10} &= 0.64803 \\
K_{20} &= 0.32402 \\
K_{30} &= 0.21601
\end{align*}
\] (B-21)
APPENDIX C. EXTINCTION CALCULATIONS FOR RAIN, FALLING AND BLOWING SNOW

1. RAIN EXTINCTION CALCULATIONS

The average rain rate (RNRT) for the three rain categories is given below.

Drizzle: RNRT = 0.5 mm/h \hspace{1cm} (C-1)
Widespread: RNRT = 5.0 mm/h \hspace{1cm} (C-2)
Thunderstorm: RNRT = 25.0 mm/h \hspace{1cm} (C-3)

Rain extinction coefficients for drizzle (Kdr), widespread (Kwd), and thunderstorm (Kth) are derived as

\[K_{dr} = 0.5089 (RNRT)^{0.63} \] \hspace{1cm} (C-4)
\[K_{wd} = 0.3201 (RNRT)^{0.63} \] \hspace{1cm} (C-5)
\[K_{th} = 0.1635 (RNRT)^{0.63} \] \hspace{1cm} (C-6)

2. FALLING AND BLOWING SNOW EXTINCTION (FOR RH < 95 PERCENT)

2.1 Falling Snow (windspeed < 5 m/s)

The snow particle radius (RBAR) is dependent on temperature (TEMP), degrees Celsius, as follows.

\[\text{If TEMP} \leq -15, \quad \text{RBAR} = 100. \] \hspace{1cm} (C-7)
\[\text{If} \quad -15 < \text{TEMP} < 0, \quad \text{RBAR} = (250. + 10.(\text{TEMP})) \] \hspace{1cm} (C-8)
\[\text{If} \quad 0 \leq \text{TEMP} < 2, \quad \text{RBAR} = (250. + 25.(\text{TEMP})) \] \hspace{1cm} (C-9)
\[\text{If} \quad \text{TEMP} \geq 2, \quad \text{RBAR} = 300. \] \hspace{1cm} (C-10)

2.2 Blowing Snow (Windspeed \geq 5 m/s)

For blowing snow RBAR is set to 100 cm.

The extinction coefficient for falling or blowing snow (RH < 95 percent) is derived from the following expression.

\[K_{sn} = (\exp(-0.88C) + 1)1.96/\text{Vis} \] \hspace{1cm} (C-11)

where

\[C = 1E - 5(2\pi \text{RBAR})\text{RD} / \text{WAVE/Vis} \] \hspace{1cm} (C-12)

WAVE is the midband wavelength in micrometers (0.55 \mu m for visible, 1.06 \mu m for near-, 3.75 \mu m for mid-, and 10.6 \mu m for far-infrared) and Vis is the visibility in kilometers. RD, the detector radius, is set to 10 cm.
APPENDIX D. XTRAN COMPUTER SOURCE CODE IN FORTRAN 77

C MAIN PROGRAM XTRAN.FOR
C * Designed and developed by Ricardo Pena (Penya) 06/06/90.
C *** XTRAN is a program designed to calculate the atmospheric transmittance
due to natural aerosols using the subroutine XTRAN, which is an abbre-
viated code based on XSCALE. XTRAN determines the atmospheric extinction
coefficient EXT. The elevation angle of target from observer with respect
to the horizontal is assumed to be zero.
C
C ** INPUTS (ALL REAL VALUES) FORMAT (10X,6F10.3)
C KEYWORD COLS. VARIABLE DESCRIPTION:
C---
C DATA 1-4 REQUIRED INPUT DATA
C 11-20 FOG ADVERSE WEATHER SELECTION:
C 1. = CORRECT FOR HAZ/FOG MARITIME
C (ARCTIC & POLAR) AIR MASS.
C 2. = CORRECT FOR HAZ/FOG URBAN
C AIR MASS.
C 3. = CORRECT FOR HAZ/FOG RURAL
C (CONTINENTAL POLAR) AIR MASS.
C 4. = CORRECT FOR FOG ONE (HEAVY
C ADVECTION).
C 5. = CORRECT FOR FOG TWO (MODERATE
C RADIATION).
C 6. = CORRECT FOR RAIN (DRIZZLE).
C 7. = CORRECT FOR RAIN (WIDESPREAD)
C 8. = CORRECT FOR RAIN (THUNDERSTORM).
C 9. = CORRECT FOR SNOW (FALLING OR
C BLOWING SNOW) (R. HUM.<95%).
C 21-30 VS LOS VISIBILITY (KM).
C 31-40 RO AMBIENT RELATIVE HUMIDITY (%).
C 41-50 S3 WINDSPEED (METERS/SEC).
C 51-60 TEMP AMBIENT TEMPERATURE (DEG. C).
C 61-70 SRNG SLANT RANGE OF OBSERVER TO TARGET (KM).
C NEXT 1-4 BEGINNING OF EXECUTION FOR MULTIPLE
C DATA SETS.
C DONE 1-4 SIGNIFIES THE LAST OR ONLY DATA SET
C READ. MUST BE THE LAST RECORD READ.

CHARACTER*4 ID(3),NAME
DIMENSION WAVE(4),RV(6)
DATA TWPPI/6.283185307/
DATA WAVE/0.55, 1.06, 2.59, 10.591/
DATA ID/'DATA', 'NEXT', 'DONE' /
C
C READ DATA INPUT:
20 CONTINUE
 READ(9,900) NAME,(RV(K), K=1,6)
 IF (NAME .EQ. ID(1)) GO TO 30
 IF (NAME .EQ. ID(2)) GO TO 50
 IF (NAME .EQ. ID(3)) GO TO 40
30 CONTINUE
 FOG=RV(1)
 VS=RV(2)
 RO=RV(3)
 S3=RV(4)
 TEMP=RV(5)
 SRNG=RV(6)
 GO TO 20
C
C LIST INPUTS:
40 CONTINUE
 IDONE =1
50 CONTINUE
 WRITE(6,300)
 WRITE(6,200)
 WRITE(6,350)
 WRITE(6,500)
 WRITE(6,370)
 WRITE(6,600)
 IF(IFG .EQ. 1) WRITE(6,601)
 IF(IFG .EQ. 2) WRITE(6,602)
 IF(IFG .EQ. 3) WRITE(6,603)
 IF(IFG .EQ. 4) WRITE(6,604)
 IF(IFG .EQ. 5) WRITE(6,605)
 IF(IFG .EQ. 6) WRITE(6,606)
 IF(IFG .EQ. 7) WRITE(6,607)
 IF(IFG .EQ. 8) WRITE(6,608)
 IF(IFG .EQ. 9) WRITE(6,609)
 WRITE(6,370)
 WRITE(6,710) VS
 WRITE(6,720) RO
 WRITE(6,730) S3
 WRITE(6,740) TEMP
 WRITE(6,750) SRNG
 WRITE(6,300)
C * VISIBILITY ADJUSTMENT:
 IF(VS .GE. 25.) VIS=30.
 IF(VS .LT. 25.) VIS=20.
 IF(VS .LT. 15.) VIS=10.
 IF(VS .LT. 6.) VIS=2.3
 IF(VS .LT. 1.) VIS=1.0
C
C * CALCULATE ATMOSPHERIC EXTINCTION (EXT):
C

100 I=1,4
CALL XTRAN(IFOG, EXT, VS, VIS, RO, WAVE, I, S3, TEMP, TWOPI)
IF(SRNG .GE. VS) THEN
 TRANS=0.0
 GO TO 100
ENDIF
TAU=SRNG*EXT
IF(TAU .LT. 85.) THEN
 TRANS=EXP(-TAU)
ELSE
 TRANS=0.0
ENDIF
TRANS=AMAX1(TRANS,0.00001)
TRANS=AMIN1(TRANS,1.0)
WRITE(6,820) WAVE(I)
WRITE(6,760) EXT
WRITE(6,800) TRANS
WRITE(6,350)
100 CONTINUE
WRITE(6,390)
IF(IĐONE .EQ. 1) GO TO 999
GO TO 20
C
C * FORMAT STATEMENTS:
200 FORMAT(10X, 'ATMOSPHERIC TRANSMITTANCE CALCULATION: ')
300 FORMAT(///)
350 FORMAT(///)
370 FORMAT(1H)
390 FORMAT(1HL)
500 FORMAT(10X, 'INPUT PARAMETERS:')
600 FORMAT(10X, 'ADVERSE WEATHER CONDITION:')
601 FORMAT(10X, 'HAZ/FOG, MARITIME AIR MASS')
602 FORMAT(10X, 'HAZ/FOG, URBAN AIR MASS')
603 FORMAT(10X, 'HAZ/FOG, RURAL AIR MASS')
604 FORMAT(10X, 'FOG ONE, HEAVY ADECTION')
605 FORMAT(10X, 'FOG TWO, MODERATE RADIATION')
606 FORMAT(10X, 'RAIN, DRIZZLE')
607 FORMAT(10X, 'RAIN, WIDESPREAD')
608 FORMAT(10X, 'RAIN, THUNDERSTORM')
609 FORMAT(10X, 'SNOW (REL. HUM. < 95%)')
710 FORMAT(10X, 'VISIBILITY, KM: ',F5.1)
720 FORMAT(10X, 'RELATIVE HUMIDITY, %: ',F5.1)
730 FORMAT(10X, 'WINDSPEED, M/S: ',F5.1)
740 FORMAT(10X, 'AMBIENT TEMPERATURE, DEG. C: ',F5.1)
750 FORMAT(10X, 'SLANT RANGE, KM: ',F5.1)
760 FORMAT(10X, 'EXTINCTION COEFFICIENT: ',F8.5)
800 FORMAT(12X, 'ATMOSPHERIC TRANSMITTANCE: ',F6.5)
820 FORMAT(10X, 'WAVELENGTH, MICROMETERS: ',F6.3)
SUBROUTINE XTRAN (IFOG, EXT, VS, VIS, R0, WAVE, I, S3, TEMP, TWOP1)

SUBROUTINE TO CALCULATE EXTINCTION COEFFICIENTS DUE TO NATURAL AEROSOLS FOR VISIBLE, NEAR IR, MID IR, & FAR IR. (5/8/90)

DIMENSION WAVE(4)

* I=1 TO 4 is the index for wavelengths: 0.55, 1.06, 3.75, & 10.591

* VIS=1.0 MEANS THAT THE ACTUAL VISIBILITY (VS) IS LESS THAN ONE KM. THE EXTINCTION VALUE IS NOT CALCULATED FOR THE VIS=1 CASE.

IF(VIS .EQ. 1.0) THEN
 EXT=999.
 GO TO 1000
ENDIF
GO TO (100, 200, 300, 400, 500, 600, 600, 600, 700) IFOG

* CORRECTION FOR MARITIME AEROSOL (IFOG=1): XTRAN 10

100 CONTINUE
IF(I .EQ. 1) THEN
 EXT=2.303/VS
 GO TO 1000
C * NEAR IR Extinction (10% Threshold Contrast):
 ELSE IF(I .EQ. 2) THEN
 IF(VIS .EQ. 2.3) THEN
 EXT=0.702969+0.434713*R0-0.241279E-01*R0**2+0.489425E-03*R0**3
 ELSE IF(VIS .EQ. 10.) THEN
 EXT=0.16188842-0.47434827E-03*R0+0.10792305E-04*R0**2
 ELSE IF(VIS .EQ. 20.) THEN
 EXT=0.80943118-0.23695936E-03*R0+0.53943016E-05*R0**2
 ELSE IF(VIS .EQ. 30.) THEN
 EXT=0.53934697-0.16439958E-03*R0+0.36818869E-05*R0**2
 ENDIF
 ELSE IF(I .EQ. 3) THEN
 IF(VIS .EQ. 2.3) THEN
 EXT=0.37449492+0.127212723E+01*R0-0.70787653E-01*R0**2+
 1 0.14406625E-02*R0**3-0.12751449E-04*R0**4+0.41612448E-07*R0**5
 ELSE IF(VIS .EQ. 10.) THEN
 EXT=0.86084715E-01+0.24372478E-02*R0-0.84868095E-04*R0**2+
 1 +0.80744837E-06*R0**3
 ELSE IF(VIS .EQ. 20.) THEN
 EXT=0.4303717E-01+0.12203131E-02*R0-0.42477688E-04*R0**2+
 2 +0.40400577E-06*R0**3
 ELSE IF(VIS .EQ. 30.) THEN
EXT = 0.30121460E-01 - 0.86086670E-03 * R0 + 0.14852113E-04 * R0**2
ENDIF
C ** FAR IR Extinction (5% Threshold Contrast):
ELSE IF (I .EQ. 4) THEN
IF (VIS .EQ. 2.3) THEN
 EXT = 0.10877143 - 0.36226721E+02 * R0 + 0.24637063E+01 * R0**2
1 - 0.65918926E-01 * R0**3 + 0.86910543E-03 * R0**4 - 0.56553248
2 + 0.14548426E-02 * R0**5
ELSE IF (VIS .EQ. 10.) THEN
 EXT = 0.25261024E-01 - 0.64383085E-01 * R0 + 0.28208802E-02 * R0**2
1 - 0.39837549E-04 * R0**3 + 0.18263068E-06 * R0**4
ELSE IF (VIS .EQ. 20.) THEN
 EXT = 0.12631020E-01 - 0.32088588E-01 * R0 + 0.14060241E-02 * R0**2
2 - 0.19858198E-04 * R0**3 + 0.91048408E-07 * R0**4
ELSE IF (VIS .EQ. 30.) THEN
 EXT = 0.84236782E-01 - 0.21460595E-01 * R0 + 0.94027692E-03 * R0**2
1 - 0.13278993E-04 * R0**3 + 0.60876197E-07 * R0**4
END IF
ENDIF
ENDIF
GO TO 1000
C ** CORRECTION FOR URBAN AEROSOLS (IPOG=2):
200 CONTINUE
IF (I .EQ. 1) THEN
 EXT = 2.303 / VIS
GO TO 1000
C ** NEAR IR (10% Threshold Contrast):
ELSE IF (I .EQ. 2) THEN
IF (VIS .EQ. 2.3) THEN
 EXT = 0.470469 + 0.458491E-02 * R0 - 0.138345E-03 * R0**2 +
1 0.987225E-06 * R0**3
ELSE IF (VIS .EQ. 10.) THEN
 EXT = 0.10456311 + 0.99970964E-04 * R0
ELSE IF (VIS .EQ. 20.) THEN
 EXT = 0.52280321E-01 + 0.49978415E-04 * R0
ELSE IF (VIS .EQ. 30.) THEN
 EXT = 0.34820473E-01 + 0.33340304E-04 * R0
ENDIF
C ** MID IR Extinction (5% Threshold Contrast):
ELSE IF (I .EQ. 3) THEN
IF (VIS .EQ. 2.3) THEN
 EXT = 0.181672 + 0.223595E-02 * R0 - 0.649097E-04 * R0**2 +
1 0.445258E-06 * R0**3
ELSE IF (VIS .EQ. 10.) THEN
 EXT = 0.409405E-01 + 0.246151E-04 * R0
ELSE IF (VIS .EQ. 20.) THEN
 EXT = 0.196819E-01 + 0.214857E-04 * R0
ELSE IF (VIS .EQ. 30.) THEN
 EXT = 0.13642567E-01 + 0.82808624E-05 * R0
ENDIF
C ** FAR IR Extinction (5% Threshold Contrast):
29
ELSE IF(I .EQ. 4) THEN
 IF(VIS .EQ. 2.3) THEN
 EXT=0.12040912-0.16526281E-03*RO
 ELSE IF(VIS .EQ. 10.) THEN
 EXT=0.27787235E-01-0.38140694E-04*RO
 ELSE IF(VIS .EQ. 20.) THEN
 EXT=0.13896850E-01-0.19114772E-04*RO
 ELSE IF(VIS .EQ. 30.) THEN
 EXT=0.92638688E-02-0.12733592E-04*RO
 ENDIF
ENDIF
GO TO 1000
C ** CORRECTION FOR RURAL AEROSOLS (IFOG=3): XTRAN 30
300 CONTINUE
 IF(I .EQ. 1) THEN
 EXT=2.303/VIS
 GO TO 1000
C ** NEAR IR Extinction (10% Threshold Contrast):
 ELSE IF(I .EQ. 2) THEN
 IF(VIS .EQ. 2.3) THEN
 EXT=0.419134+0.297229E-02*RO-0.910602E-04*RO**2+
 0.693381E-06*RO**3
 ELSE IF(VIS .EQ. 10.) THEN
 EXT=0.92234926E-01+0.14522439E-03*RO
 ELSE IF(VIS .EQ. 20.) THEN
 EXT=0.46116508E-01+0.72625335E-04*RO
 ELSE IF(VIS .EQ. 30.) THEN
 EXT=0.30718057E-01+0.48360044E-04*RO
 ENDIF
GO TO 1000
C ** MID IR EXTINCTION (5% Threshold Contrast):
 ELSE IF(I .EQ. 3) THEN
 IF(VIS .EQ. 2.3) THEN
 EXT=0.12900+0.316817E-02*RO-0.970693E-04*RO**2+
 0.73279779E-06*RO**3
 ELSE IF(VIS .EQ. 10.) THEN
 EXT=0.25575225E-01+0.15271168E-03*RO
 ELSE IF(VIS .EQ. 20.) THEN
 EXT=0.12783289E-01+0.76398985E-04*RO
 ELSE IF(VIS .EQ. 30.) THEN
 EXT=0.82117356E-02+0.54546589E-04*RO
 ENDIF
GO TO 1000
C ** FAR IR EXTINCTION (5% Threshold Contrast)
 ELSE IF(I .EQ. 4) THEN
 IF(VIS .EQ. 2.3) THEN
 EXT=0.104671+0.200045E-02*RO-0.575152E-04*RO**2+
 0.385649E-06*RO**3
 ELSE IF(VIS .EQ. 10.) THEN
 EXT=0.23642112E-01+0.55895247E-05*RO
 ELSE IF(VIS .EQ. 20.) THEN

EXT=0.11815846E-01+0.28406062E-05*RO
ELSE IF(VIS .EQ. 30.) THEN
 EXT=0.78841036E-02+0.18164473E-05*RO
ENDIF
ENDIF
GO TO 1000
400 CONTINUE
C ** EXTINCTION COEFFICIENT FOR FOG ONE (HEAVY ADEVCCTION): XTRAN 40
C ** RELATIVE HUMIDITY MUST BE 100% FOR FOG ONE. (IFOG=4)
C IF(IFOG .EQ. 4 .AND. RO .EQ. 100.) THEN
 IF(I .EQ. 1) EXT=2.303/VS*1.0000
 IF(I .EQ. 2) EXT=2.303/VS*1.0175
 IF(I .EQ. 3) EXT=2.996/VS*1.0780
 IF(I .EQ. 4) EXT=2.996/VS*1.1559
 GO TO 1000
ELSE
 EXT=999.
 GO TO 1000
ENDIF
500 CONTINUE
C ** EXTINCTION COEFFICIENT FOR FOG TWO (MODERATE RADIATION): XTRAN 50
C ** RELATIVE HUMIDITY MUST BE 100% FOR FOG TWO. (IFOG=5)
C IF(IFOG .EQ. 5 .AND. RO .EQ. 100.) THEN
 IF(I .EQ. 1) EXT=2.303/VS*1.0000
 IF(I .EQ. 2) EXT=2.303/VS*1.0518
 IF(I .EQ. 3) EXT=2.996/VS*1.4527
 IF(I .EQ. 4) EXT=2.996/VS*0.21601
 GO TO 1000
ELSE
 EXT=999.
 GO TO 1000
ENDIF
600 CONTINUE
C ** EXTINCTION COEFFICIENT (EXT) DUE TO RAIN XTRAN 60
C IFOG=6 FOR DRIZZLE; IFOG=7 FOR WIDESPREAD; IFOG=8 FOR THUNDERSTORM.
C ** SET RAIN RATE (RNRT) IN MM/HR:
 RNRT=0.
 IF(IFOG .EQ. 6) THEN
 RNRT=0.5
 EXT=0.5089*RNRT**0.63
 GO TO 1000
 ENDIF
 IF(IFOG .EQ. 7) THEN
 RNRT=5.0
 EXT=1.0000
 ENDIF

EXT=0.3201*RNRT**0.63
GO TO 1000
ENDIF
IF(IFOG .EQ. 8) THEN
RNRT=25.
EXT=0.1635*RNRT**0.63
GO TO 1000
ENDIF
700 CONTINUE
C
C ** EXTINCTION COEFFICIENT FOR SNOW (FOR REL. HUM. <95% ONLY) XTRAN 70
C
C ** IF WINDSPEED < 5 M/S, USE "FALLING SNOW" VALUE FOR SNOW PARTICLE
C SIZE RBAR. (IFOG=9)
IF(R0 .GT. 95.) THEN
EXT=-999.
GO TO 1000
ENDIF
IF(S3 .LT. 5.) THEN
IF(TEMP .LE. -15.) RBAR=100.
IF(TEMP .GT. -15. .AND. TEMP .LT. 0.) RBAR=(250.+10.*TEMP)
IF(TEMP .GE. 0. .AND. TEMP .LT. 2.) RBAR=(250.+25.*TEMP)
IF(TEMP .GE. 2.) RBAR=300.
C ** IF WINDSPEED > 5 M/S, USE "BLOWING SNOW" VALUE FOR RBAR.
ELSE
RBAR=100.
ENDIF
RD=10.
C ** VS IS THE ACTUAL LOS VISIBILITY.
C=1.E-5*TWOPI*RBAR*RD/WAVE(I)/VS
EXT=-(EXP(-0.88*C)+1.)*1.96/VS
1000 CONTINUE
RETURN
END
DISTRIBUTION LIST FOR PUBLIC RELEASE

Commandant
U.S. Army Chemical School
ATTN: ATZN-CM-CC (T. Collins)
Fort McClellan, AL 36205

Commander
U.S. Army Aviation Center
ATTN: ATZQ-D-MA (Mr. Oliver N. Heath)
Fort Rucker, AL 36362

Commander
U.S. Army Aviation Center
ATTN: ATZQ-D-MS (Mr. Donald Wagner)
Fort Rucker, AL 36362

NASA/Marshall Space Flight Center
ATTN: ED-43 (Otha H. Vaughan, Jr.)
Huntsville, AL 35812

NASA/Marshall Space Flight Center
Atmospheric Sciences Division
ATTN: Code ED-41 (Dr. George Fichtl)
Huntsville, AL 35812

NASA/Marshall Space Flight Center
Atmospheric Sciences Division
ATTN: Code ED-41
Huntsville, AL 35812

Deputy Commander
U.S. Army Strategic Defense Command
ATTN: (Dr. Julius Q. Lilly)
P.O. Box 1500
Huntsville, AL 35758

Commander
U.S. Army Missile Command
ATTN: AMSMI-RD-AC-AD (Donald R. Peterson)
Redstone Arsenal, AL 35898-5242

Commander
U.S. Army Missile Command
ATTN: AMSMI-RD-AS-SS (Huey F. Anderson)
Redstone Arsenal, AL 35898-5253

Commander
U.S. Army Missile Command
ATTN: AMSMI-RD-AS-SS (B. Williams)
Redstone Arsenal, AL 35898-5253

Commander
U.S. Army Missile Command
ATTN: AMSMI-RD-DE-SE
(Gordon Lill, Jr.)
Redstone Arsenal, AL 35898-5245

Commander
U.S. Army Missile Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R/Documents
Redstone Arsenal, AL 35898-5253

Commander
U.S. Army Missile Command
ATTN: AMSMI-RD-TE-F (ASL MET TEAM)
Redstone Arsenal, AL 35898-5253

Commander
U.S. Army Intelligence Center & School
ATTN: ATSI-CD-CB (Mr. Colanto)
Fort Huachuca, AZ 85613-7000

Northrop Corporation
Electro-Mechanical Division
ATTN: Dr. Richard D. Tooley, m/s 7270/Y34
500 East Orangethorpe Avenue
Anaheim, CA 92801-1099

Commander - Code 3331
Naval Weapons Center
ATTN: Dr. Alexis Shlanta
China Lake, CA 93555

Pacific Missile Test Center
Geophysics Division
ATTN: Code 3250-3 (R. de Violini)
Point Mugu, CA 93042-5000

Pacific Missile Test Center
Geophysics Division
ATTN: Code 3253 (Terry E. Battalino)
Point Mugu, CA 93042-5000
Office of the Test Director
Joint Services WO GW CM Test Program
ATTN: DRXDE-TD (Mr. Weldon Findley)
White Sands Missile Range, NM 88002

Director
U.S. Army TRADOC Analysis Command
ATTN: ATRC-WSR (D. Anguiano)
White Sands Missile Range, NM 88002-5502

Director
U.S. Army TRADOC Analysis Command
ATTN: ATRC-WCC (Mr. Louie Dominguez)
White Sands Missile Range, NM 88002-5502

Commander
U.S. Army TRADOC Analysis Command
ATTN: ATRC-W (Dr. D. W. Collier)
White Sands Missile Range, NM 88002-5501

Rome Air Development Center
ATTN: Technical Library (DOL)
Griffiss AFB, NY 13441-5700

Department of the Air Force
7th Squadron
APO, NY 09403

AF Wright Aeronautical Laboratories
Avionics Laboratory
ATTN: AFWAL/AARI (Dr. V. Chimelis)
Wright-Patterson AFB, OH 45433

Commander
U.S. Army Field Artillery School
ATTN: ATSF-F-FD (Mr. Cullion)
Fort Sill, OK 73503-5600

Commandant
U.S. Army Field Artillery School
ATTN: ATSF-TSM-TA-SS (Mr. Charles Taylor)
Fort Sill, OK 73503-5600

Commander
Naval Air Development Center
ATTN: Code 301 (Dr. A. K. Witt 301)
Warminster, PA 18974

Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-MT-DA-M (Mr. Paul Carlson)
Dugway, UT 84022

Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-MT-DA-L
Dugway, UT 84022

Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-MT-DA-T (Dr. W. A. Peterson)
Dugway, UT 84022

Defense Technical Information Center
ATTN: DTIC-FDAC
Cameron Station, Bldg 5
Alexandria, VA 22314

Commanding Officer
U.S. Army Foreign Sci & Tech Center
ATTN: CM
220 7th Street, NE
Charlottesville, VA 22901-5396

Naval Surface Weapons Center
Code G63
Dahlgren, VA 22448-5000

Commander
U.S. Army Operational Test & Evaluation Agency
ATTN: CSTE-ED (Floyd I. Hill)
5600 Columbia Pike
Falls Church, VA 22041

Commander and Director
U.S. Army Engineer Topographies Lab
ATTN: ETL-GS-LB
Fort Belvoir, VA 22060

Department of the Army
U.S. Army Center for Night Vision & Electro-Optics Laboratory
ATTN: AMSEL-RD-NV-D (Dr. Rudolf G. Buser)
Fort Belvoir, VA 22060-5677
Director
U.S. Army Center for Vision &
Electro-Optics Laboratory
ATTN: AMSSEL-RD-NV-L (Dr. Robert S. Rhode)
Fort Belvoir, VA 22060-5677

Director
U.S. Army Center for Night Vision &
Electro-Optics Laboratory
ATTN: DELNV-VI
Fort Belvoir, VA 22060-5677

Director
U.S. Army Center of Night Vision &
Electro-Optics Laboratory
ASL Fort Belvoir Met Team
ATTN: Mr. Robert Smith
Fort Belvoir, VA 22060-5677

Department of the Air Force
HQ 5 Weather Wing (MAC)
ATTN: 5 WW/DN
Langley Air Force Base, VA 23665-5000

Commander and Director
U.S. Army Engineer Topographics Lab
ATTN: ETLZD (Dr. Gomez)
Fort Belvoir, VA 22060-5546

Commander
Logistics Center
ATTN: ATCL-E
Fort Lee, VA 23801-6000

Commander
USATRADOCS
ATTN: ATCD-FA
Fort Monroe, VA 23651-5170

Science and Technology
101 Research Drive
Hampton, VA 23666-1340

Commander
U.S. Army Nuclear & Cwl Agency
ATTN: MONA-ZB Bldg 2073
Springfield, VA 22150-3198