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SPECTRA AND COVARIANCES FOR "CLASSICAL" NONLINEAR SIGNAL
PROCESSING PROBLEMS INVOLVING CLASS A NON-GAUSSIAN NOISE

PART I. ANALYTIC RESULTS AND NUMERICAL EXAMPLES
1. INTRODUCTION

Non-Gaussian noise fields play a critical rble in modern
signal processing because of the frequently dominant effects of
such noise and interference in a wide variety of applications.
Communication theory generally, and specifically telecommunica-
tions, electromagnetic and acoustic scattering, man-made and
natural ambient noise, optics, and underwater acoustics, are
common areas of interest in this respect. 1In the present rernrt
we are concerned primarily with underwater acoustic noise
phenomena, but the models and results are canonical, that is,
they take forms invariant to the particular physical application
in question.

Specifically, we are concerned with various second-order
statistics of non-Gaussian noise processes and fields after they
have been subjected to different types of nonlinear operations,
such as rectification and modulation. A generic problem here is
the passage of non-Gaussian noise through a zero-memory nonlinear
(ZMNL) device. The desired output statistics are typically the
mean (dc), mean intensity (power), the covariance or correlation
function, and the associated spectra. These last include
wavenumber spectra in the case of noise fields, as well as the
more general frequency-wavenumber spectra obtained by joint
temporal and spatial Fourier transformations. Typical "class-
ical" problems include: (i) rectification, (ii) determination of
output spectra and covariances, (iii) calculation of (output)
signal-to-noise ratios, (iv) modulation, (v) demodulation, and
(vi) special systems, as for example, the spectrum analyzer.
These and other problems involving ZMNL devices are described in
detail in [1; chapters 5 and 12 ~ 17). What is new here is the
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use of the approximate second-order probability density functions

and characteristic functions in the above applications when the
noise processes are non-Gaussian.

A full treatment is given in a current study by Middleton,
(2], which is an expanded version of his recent paper [3], which
employs some of the results of the present report, namely, the
calculated covariances and spectra. Here, we are content to
summarize the pertinent analytic results, the corresponding
examples of calculated covariances and spectra, and the various
computational procedures associated with their evaluation. The
details of the derivations are provided in (2] and [3]. Included
here, also, is a selection of illustrations of the analytic
results.

2. ANALYTICAL RESULTS: A SUMMARY

In the present study, we address three classical problems
where the goals are the calculation of the covariance and
associated intensity spectrum. Specifically, we consider:

Problem I. The half-wave v-th law rectification of Class A
noise fields and processes;

Problem II. Phase modulation of a carrier by a Class A noise

process; and
Problem III. Frequency modulation of a carrier by a Class A

noise process.

Class A noise, as noted in section 3 of [2], [3], is a
canonical form of interference characterized by a coherent
structure vis-a-vis the (linear) front-end stages of a typical
receiver: negligible transients are produced at the output of
these stages. Class B noise, on the other hand, is incoherent
and highly impulsive, such that the front-end stages of the
receiver generate an output which consists solely of (over-
lapping) transients. Here, the Class A models are tractable in
the required second-order distribution and characteristic
functions, whereas the Class B models are not and must
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consequently be appropriately approximated in second-order; see
(4] and [5] for additional information. In the present report,
we shall consider examples of Class A noise only.

2.1 THE SECOND-ORDER CLASS A CHARACTERISTIC FUNCTION

In applications [1] - [3], the second-order characteristic
function, Fz(iil,itz), plays a key rdle: from it, we may obtain
the aforementioned statistics of the outputs of ZMNL devices,
spectra of angle-modulated carriers, and other usually second-
order statistics of various nonlinear operations arising in a
variety of communication and measurement operations.

(See [2]), [3] for further discussion.)

Here, we specifically use the approximate Class A noise
characteristic function, Fy, including an additive Gaussian
component, given by

© m1+m2
Fo(i8;,185)p,c = €Xp[-A(2-p)] Z [M;I?)mLzz
m) ,my=0
@ n
X :0 -(A%!—— exp[— % leliln,mz'.'n(zllzz)] 4 (2-1)
n.

where A (=A,) is the "overlap" index, and where

(2) 2 2 2 2 (n)
2 m+n . 1.m2y o 2.. - 2 .
®m+n T [ A " PA] Q,n7 2,5 ¥ FACB > = ACLT>; Ty = 0o/R,,; (2.2b)
K(n) = [n k /A + k r') Q H (2-2C)
L+G L G A 27’

and kL’ kG are the normalized covariances of the non-Gauss and

Gauss components, respectively. Thus, IkL,GI £ 1.
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Here, p (=pA) is the "overlap" correlation function

1 - Bglr’] for Blt’| <1
p(t’) =

} ’ g = I/Ts ’ (2.3)
0 for Blt’] > 1

in which Ts is the mean duration of a typical noise-signal of

intensity <Bg>/2 = <L2>. The time delay t’ is given by
’ AR '
TV =T -5 or 1 =< (= tz'tl) ' (2.3a)

o)

respectively, for space-time fields and received temporal
processes. The path delay O0R/c, (= |R2 -~ Rll/co) accounts for
the time differential between propagation paths to the points at
which processing occurs, cf. figure 2.1 ff, Case A. The
quantities Q,p and aé are, respectively, the intensity of the
non-Gaussian and Gaussian components which constitute the general
Class A model used here. (However, we note that the present
Class A model belongs either to the strictly canonical Class A
cases, where all interfering sources are equidistant from the
observer, or more generally, to the much broader class of
situations in which the effective source distribution is
concentrated in an annulus whose inner-to-outer radii have a
ratio 0(1/2) or less. The former is exactly represented by (2.1)
to second-order, while the latter is approximately so
represented, albeit a good approximation as long as the
aforementioned source annulus is not too large. See

[5; section V, C], for example. For an exact treatment, see also
[6], in an important class of physical models. Finally,
differentiation of Fy, (2.1), in the usual way, gives us the
(exact) covariance of the composite Class A and Gauss field,

namely,

2

3 =K. + K

K ."'—_F r (2.4)
A+G T, “2fg g A O

which in normalized form is
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k. + T’ k

L G
kA+G(AR,t) =1 +7T - (2.4a)

In practice, A is usually less than unity, say 0(0.1 - 0.3)
m;+m,+n
typically, so that only a comparatively few terms in A are
needed for numerical evaluation of (2.1) and the statistical
quantities derived from it, cf. section 2.2 ff. Note that when

glt] 21, p =0, and I''= 0, we get

AN AR 1,2 2 AT AP 1,2 2
Fo_p = |e }:: o exp[- 5{1°m] e E:: T exp[- 5£2°n]
m=0 n=0

as expected: there is now no correlation between process samples.
With a Gaussian component, these will be correlated, of course,
unless |t| 2 », so that kg » 0, cf. (2.2c).

2.2 PROBLEM 1: HALF-WAVE v-TH LAW RECTIFICATION
(STATIONARY AND HOMOGENEOUS FIELDS)

Here we consider the problem of obtaining the second-order
(second-moment) statistics, MY, of a sampled noise field, a(R,t),
after passage through a ZMNL device, g, when the noise is
generally non-Gaussian. Various processing configurations are
possible. We show two in figure 2.1, below. Analytically, we
have, for stationary and homogeneous inputs [1; section 2.3-2]

M (BR,T) = §Tx;18(%;) = —— [ [ £(i&)) £igy)
2n)” -~ ¢
172
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where AR = R,-Ry, T = ty-t,, and f(if) is the Fourier transform
of the ZMNL device with Yy - y(Rl,tl), etc. In the present

cases, we have specifically
cpyV+1
f(iE) = B T(v+1)/(ik) , V> -1, (2.6)

for these half-wave v-th law rectifiers [1; (2.101a,b)].

SPATIAL SAMPLING -» <«— SIGNAL PROCESSING

v

2-SENSOR ARRAY ZMNL
a. x(R,,t.) y Yy (R t,+t) 7
e e Bl o e e Y IR T TS
A
a(R, t R2
x(R,,t,) Y . 1 Y, Y
22 M e 0 1ae|1¥2
& <>
Y(Ry,t,41) Y(R,,t,) _]
1'Y 2'%2 M, (8R,)
B. fa = x{t,) yit,) y
! a( ) s L1 (R L
a{R,t ﬁ
1 Y,y
" T 9( ) - X TI"dt—li%
il Rl P
x(tz-tl+t) y(t1+t)

Figure 2.1 A. Two-point sensor array (ﬁz) giving sampled field
at two space-time points. °~ B. A general array (ﬁ) (preformed
beam), converting the field a(R,t) into a single (time) process
x(tq)e. Both are followed by ZMNL devices, delays, and averaging,
as indicated schematically.
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For the Class A non-Gaussian noise inputs of section 2.1

above, we find that the (normalized) second-moment My for the

resulting rectified field is now

@ m1+m2 ® n
A A(l- {Bp)
M/ (8R,T) = exp[-A(2-p)] § L‘(;I?)A ! E:: n:
m, ,m,=0 2 n=0
n+m, v/2 n+m, v/2
’ 14
x|+ T ==+ 7T B, my,my,n (2.7)

where we have further postulated the noise field to be isotropic,
AR » |AR|, and where specifically,

2(v+1 1l .2
B | =B (Ylml,mz,n) = T [“ ] ZFI[- 3. 2 173 Y ]

l1-v 1- 2
+ 2y, rz[% +1] zrl[—il,liﬁ;%;ya] , (2.7a)
9 k; + T’ kg
Y, = [ 1+n ]% [ e ]% ; a=(m,m,n), |Y,]<1.
A+t T’ + T (2.7b)

Specifically, also, we have the following normalized forms

A N —_
M, = My/9§A2”/4n ; t =gy, B=1/T , cf. (2.3),

iR = 8R/A; , A4; = correlation distance, 4R = |R2-R1| . (2.8)

For numerical results, we select the following models for the
space-time covariance functions of the isotropic and stationary
non-Gaussian and Gaussian components of the input noise field:

kL exp[-ARz/Ai - %(Ath'/ﬁ)z] = exp[-&iz - %(AGLr')z] 7 (2.9a)

kG = exp[-ARZ/Aé - %(cht'/ﬁ)zl - exp[-lﬁ!z(AL/AG)2 - %(Aﬁcf')zl
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A N
dw, = AwL/ﬁ , Aw

G = AmG/ﬁ . (2.9b)

Here, AG is a correlation distance, and AwL, AwG are angular
frequency spreads associated with the respective non-Gaussian and
Gaussian components of the input field. Note that if we define
the correlation distance AL as that where kL = 1/e (T' = 0),;
then AL = ARL, etc.

For the special cases of v considered here, we also observe
(from (1; (A.1-39)]) that B, may be expressed in clcsed form:

BO(Y) = n + 2 arcsin(Y) , (2.10a)
. 2 % It
B,(Y) = Y arcsin(Y) + (1 - Y ] +35Y, (2.10b)
1, .2)(n . 3 21" 0
BZ(Y) = (5 + Y )(f + arc51n(Y)] + 5Y(1 - Y ] . (2.10c)

2.2-1 GAUSS PROCESSES ALONE (A=0)

When only a Gauss noise field is originally present, that is,
A = 0, for example, 92A = 0, (2.7) reduces to the classical
result [1; page 541, (13.4a)]:

PR . 1 M -
M = “ylAso Bv|a=0 : My I My P Y, 2 Y =Kk (2.11)

’
Y

For comparison with the non-Gaussian cases (A>0), we choose to
have equal input noise intensities. This means that

2
Va=p = 9g * 22 = (1 + T,

so that

A

M

y |A=0 Yo = k

v

= (1 +7T') B\’ a=0 ’ o G ' (2.12)
oY

and ﬁ; is then to be compared with My, A > 0. When I'' is small,

as is usually the case, we can often replace (1 + r)y by unity.
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At this point, following figure 2.1, we distinguish two
classes of operation: (A), where a pair of point sensors is used
to sample the noise field and we wish t- consider both the space
and temporal correlations of the sampled field at the two points
(Ry,ty)s (Ry,ty); and (B), where the space-time field is
converted into a random process, x(t), by the beamforming array
(ﬁ), with an associated directionality embodied in the resultant
beam (vide [7; sections IV B and VI A]).

2.2-2 CASE B, FIGURE 2.1

Let us consider the simpler case (Case B) of the time process
first, cf. (B). For this, we set AR = 0 formally in (2.7) et
seq. above, since x = ﬁ a(R,t) here and t’ =t = t2't1' cf.
(2.3a). See also [3; (3.2) et seq. and (3.11a)]. Then our ad
hoc illustrative models of the process covariances kL, kG’ are,
from (2.9a,b), at once”

kp = k(1) = exp(- %(Awa/B)z] = exp[ %(‘a f)Z] ’ (2.13a)

kG = kg(t) = exp[- %(Amcf/ﬁ)z) = exp(- %(&&Gf)z} . (2.13b)
Accordingly, (2.7) reduces to

Case B: My(O,f) = My(f)B = (2.7), with Y, = (2.7b),

and (2.13a,b) and AR = 0 therein. (2.14)

We note that when |f] 2 1, p = 0, and ﬁy(o,lfl 2 1) reduces to a
simpler relation [vis-a-vis (2.7)], viz.:

* A physically derlved model of k and k may be made from
[3; (3.11a)] with L = R L, R = (2. 9) etc., where L is typically
given by [3; (3.3)], for example.
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& oa o Am1+m2 m, ' v/2 m, ' v/2
y(t)g = € m T m, ! atT 2T Bv|a ’
m, ,m,=0
17772
(2.14a)
where (2.7b) becomes
T’ kG

— ’ — [4

2t r 2+ T
in Bv a

Special cases of interest are:

I. THE INTENSITY E(y2): £ =0, p = 1, m =m, =0, and (2.7),

(2.14) reduce to

2 - u < 3 -A A" (n M
Y |norm = My(0)g = My(0,0) =B |, =¢e E nt [K + P'] ’
n=0
(2.15)
where now Ypun = 1, e.q., kL(O) = 1 etc., and B, is independent
of n, for example, for Ya =1,
2n for v = 0
Bv|a=n = n for v =17 , cf. (2.10) . (2.16a)
3n/2 for v = 2
For general v, Ya = 1, we have (from [1; (A.1-34)])
- oM
B,la=n 2r'r(v+k) , v 2 0 ., (2.16Db)
Thus, (2.15) becomes
= .n A
2 _a _a _ ok -AE L[g ,]
Y lnorm My(o)B My(0,0) 2rR’r(v+k) e ~E +T .
n=0 (2.17)

10
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The unnormalized form is, from (2.8),

y2 = M_(0). = M_(0,0) = 2V~ oY r(v+k) H{V)(a,r’ 2.18
Y y B y ’ _;g— 2A (v ) 1 (I ) (2. )

with

V) ry = —A An n ‘ v
H{ (A,T') = e ZE—!-(K‘FP)

n=0
1 for v =0, (2.18a)
= 1 +71/ for v=1, (2.18b)
1/A + (1477)% for v = 2 . (2.18c)

For other values of v (>0), we must evaluate Hi“) numerically.

II. THE MEAN VALUE, y; |f] 3 =

Now p = 0, n = 0, Y, = 0, and (2.7) reduces directly, upon
use of (2.18), to

® 2
2 A A m v/2
7 |nomm = Hy(=)p = My(0,=) = ?[¥31]{e E ar R+r)
m=0
1 '
- rZ[X%_] Hi“/z)(a,r )2 .
(2.19)

The unnormalized form of (2.19) is, from (2.8),

_2 2" 2, 9(ye1 (v/2) 2
T < My(e)p = M (0,@) = — 2B r?(¥) a2 a,r)? , (2.20)

and for v even, we find, from (2.18a,b,c)

1
A

2

B =1, gV =1+, wP a2+ aa+r? 2.2

11
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— 2
III. THE CONTINUUM INTENSITY: y2 -y

From (2.18) and (2.20) we get at once the general result
for v 2 0,

— 2 N r v+1 y 2
. T = 9V oV JI(v+ (v) _ 2 (v/2)
P,=y’ -y =2" ey —i;;gl ni —1;;§l H , | o(2.22)

which is the generalization of {1; (13.7)], in the classical
purely Gaussian cases, to the present, dominant non-Gaussian
noise component 92A (>> oé). In these classical cases, we can
show at once that

n v
5 lim B E A [n2 og) > oév (= ¢¥) , (2.23)

: (V) oV
lim H Q oan nl )

1 2A
92A-’0 n=0

where QZA 9 o implies A » 0 and Bg + 0, cf. (2.2b), so that

(2.22) becomes, as expected,

p2(v21
= 9V 2V JT(v+k) 2
P.|causs = 2° % —1;;§l i (>0), v20. (2.24)

Figure 13.5 of [1) shows (2.24) as a function of rectifier
law (v), as well as (2.18), (2.20) in these Gaussian cases. In
the present, more general, situation of Class A noise, the
results are more complex, as expected, with now two additional
parameters (A,I'’), descriptive of this much broader class of

interference.

12
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2.2-3: CASE A, FIGURE 2.1

We turn now to the more general problem of the covariance of
the Class A non-Gaussian random field, sampled according to
procedure (A), shown schematically in figure 2.1 earlier. Here,
x = a(R,t), sensed at (Rl'tl)’ (R2't2)’ where L = L, cf. (3.3) in
[3; (3.2)]. Equation (2.7) applies here, with AR #¥ 0 (as well as
for AR = 0), and we use (2.9a,b) for our illustrative examples,
which are discussed in section 3 following. At this point, we
recall from (2.3a) that the proper time delay to use is
T’ =T - AR/co in p = p(t’), and in some of the structural
elements of the noise field covariances, cf. [3; (3.11b,c)].

CASE I: t’' =0
From (2.7), we have p = 1, m, =m, = 1, giving

- -]
n v
N A - oA § A" (n ,] - -r = &R
M_(8R,0) = e : = [A + T Bv|a=n , p=1, ot . ,(2.25)
n-

where (2.7b) is specifically

n ~ A
D k (4R,0) + I’ k (£R,0)
Y = . (2.25a)
as=n n + 1’
A

For calculations, (2.9a,b) are used, with B, given by (2.7a),

”~
where (2.25a) provides Ya' When AR = 0, (2.25) reduces to (2.15)
et seq. for the total intensity of the field observed at R, = R,.

13
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CASE II: AR » =, |t’| > 1

When AR - =, we obtain different results, depending on t'.
Here p = 0, Ya + 0, cf. (2.9a,b) in (2.7b), and therefore n = 0.
Accordingly, (2.7) becomes

N A Y _2
My(m,lr | > 1) = My(m,o) = My(o,w) = (2.19) . (2.26)

ynorm 4

The fact that Kh + = ensures that Ya < 0, a behavior similar to
that for Case (B) above, when we consider the purely Gaussian
noise process, section 2.2-1.

CASE III: AR » =, 0 < |t’| < 1

Here, p > 0 while Ya 2 0, so that Bv’ (2.7b), becomes rz(v+%)
once more. The second moment function (2.7) is now

2 1 ® ] ml+m2
A —
My (ER,t1) = T2 (Y] expr-acz-p)) ) ““ml‘;’}nz!
ml,m2=0
= n (n+m v/2 (n+m v/2
{Ap) 1 ' 2 ,
) E:: n! [ a ‘T ] [ 7+ T ] ' (2.27)
n=0

which is a minor simplification of (2.7).

P
CASE IV: OR » =, |t'| =0

In this special situation, where t = AR/co + » in such a way
that t’ = 0 and therefore p = 1, Y, = 0, we obtain directly from
(2.27) the comparatively simple result,

M (o = p2[¥tl) H(v)
Hy(=,0) =T [ : ] B >0 . (2.28)

14
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2.2-4: REMARKS

At first glance, as AR -» =, we might expect My always to

reduce to ;2, e.g., K =M - ;2 = 0 for the covariance of the

rectified space-time ¥ield¥ This is expectedly the case for the
covariance (and second-moment) function of the input Class A and
Gauss noise field components a(R,t), as we can see directly from
(2.9a,b), or from [3; (3.11b,c)] for example, in the physically
derived cases. However, the process or field y = g(x) here is
the result of a nonlinear operation, cf. (2.5), (2.6), which
severely distorts the input waveform and generates all kinds of
modulation products, associated with the spatial as well as the
temporal variations of the input field. This accounts for the
departures in Cases III, IV of My(w,f') from ?2, while certainly
M (=,T") 2 §2 = 0, (since x = 0 initially here).

From the various limiting results above, we see that

M (0,0) > M (=,0) and M_(0,0) > M (0,=) , (2.29a)
and
M (=,0) %My(o,m) depending on A, I'’, and v , (2.29b)
with
M (0,0) - M (0,®) >0, cf. (2.19) and (2,20) , (2.29¢)
_2
M (=) =M (0,) =y , cf. (2.20) and (2.26) , (2.29d)
whereas
_2
M_(0,0) > M (0,®) =M (=,0) =X =0 . (2.29%e)

Finally, we note that (2.11), (2.12) apply here, also, for
the Gauss-alone cases, where now

-»(1+r')"sv =0 .

2
14
QZA(I +T’) - oG and B a

v]|a=0

15
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2.2-5: SPECTRA

The various intensity spectra associated with the output of
the processor (cf. figure 2.1) are important also, as they show
how the energy in this output is distributed. Here, we consider
two types of spectra, respectively, for the rectified spatial
field (A) and for the process (B), namely the wavenumber and the
frequency spectrum of y(R,0) and y(O,t). In particular,
wavenumber spectra are useful in the analysis of spatially
distributed phenomena, paralleling the analysis of time-dependent
phenomena.

I: WAVENUMBER SPECTRUM
The wavenumber intensity spectrum is defined here by

Wy (k,0), = wz(k't)ylt=0 = Jj M_(BR,0) exp(ik-AR) d(AR) (2.30a)
AR

(-]
= 2n f M/(OR,0) J (KOR) AR d(8R) = Wy(k,0)  , (2.30b)
0
with

k = (kx,ky) , OR = |AR| , k = |Kk]| (2.30c)
for these isotropic fields, where k is an (angular) vector

wavenumber. Using the normalization of (2.8), we get, with
ﬁ = kAL,

W, (k,0),

Vo A F.3 A
W,(k,0) = = 2n M (x,0) J_(kx) x dx (2.31)
2000y = 75 B4 I iy g,

o

for the normalized wavenumber intensity spectrum.

16
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Since ﬁy(w,O) is nonvanishing, cf. (2.28), there is a dc
component, or &-function, in the general wavenumber spectrum.
We will use the relations

@
A

[ x g tke) ax = % s(k - 0 X = [22 + %k )5 = k| , k= (k
X o( x) ﬁ ( ) [4 p'e y ’ ( ’#) ’
0 (2.32)

A
where we must remember that k is two-dimensional. With v a
vector wavenumber defined by

A A
k =2nd [= (V,4)) , k = 2n0 = 2n|9]| , (2.33a)

and using the relation

§(ax - b) = % 5[x - g] for a > 0 , (2.33b)
we also show that
A A 1 A 1 .
8(k -0) &(k -0) = —= 5(k-0) = 3= §(3-0)
Y 2nk (2n) %
1 . . . (.2 . .2)¢
= 5 8(9,-0) 6(vy-0) , V= [9], V= [vx + vy] . (2.34)

(2m)
Applying (2.32) - (2.34), with

A A A A A
Wy(ki4)y = 2n I x J, (kx) [My(x,O) - My(w,O)] dx

0
A < A
+ 2n My(w,O) I x Jo(kx) dx (2.35a)
0

A N 2 A A A
= Wy(k,0)y_cone *+ (2m)° M (=,0) (K -0) 8(k -0)

A A N -
- wz(ﬁ,O)y_cont + M (2,0) §(9,-0) 8(3,-0) , (2.35b)

17
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A A
which defines wz(k'o)y-cont’ the continuous portion of the

- A ~ »
spectrum and shows the dc term in k- or VU-space, as convenient.

A

It is W,_.,., with which we are concerned in the specific

numerical examples of section 3 ff.

II. FREQUENCY SPECTRUM

Here we employ the Wiener-Khintchine theorem [1; (3.42)] to
write for the frequency spectrum of y

wy(f) = 2 I My(O,r) exp(-iwtr) dr = Bo

A
My(o,f) cos(wt) dt,(2.36)

oOt—— 8

where

lal
B, = Q;A 2v/u5; t =8t; w=2mf; &=wp; .~ £f=£/. (2.36a)

Accordingly, we define the normalized frequency intensity
spectrum of y as

A A A - .~ “
W (f) = W (f)/B; = { M (0,%) cos(af) df . (2.37)

2

A -
Again, there is a dc component, since MY(O,w) = y° (> 0),

cf. (2.20). We have

A A . A . - l A - A-
W (f) = £ [My(O,r)—My(O, )] cos(at) at + 3 M (0,=) 8(£-0), (2.38)

since

I cos(wx) dx = n §(w-0) = % §(£-0) .
0

18
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As in the wavenumber cases above (Case I), we are concerned with
the continuous part of the spectrum, viz.

A A . 2 N .
W, (£) cone = [ [My(O,t) -7 | cos(ut) at , (2.39)
0

which is also illustrated numerically in section 3 ff.

III. WAVENUMBER FREQUENCY SPECTRUM

The wavenumber frequency spectrum is defined by

Wy (k,w)y, = jj M/(8R,T) exp(ik-AR-iwr) d(6R) drt , (2.40)

with w = 2nf. The associated wavenumber spectrum W, (k,0) used in
(2.30) is obtained from Wz(k,t)‘tso. In normalized form, we have

for (2.40), in these isotropic cases,

-1
A AL 2
W, (k,a), = [2“ Q;A AL/(4nﬁ)] Wy (k,w)y

A -~ .Ao\.“ ~ -
= II MY(AR,t) exp(ik-AR-iatT) d(AR) dt ;

A
M_(x,T) Jo(ﬁx) exp(-i®t) x dx dt . (2.41)

o AL
Wz(k,w)y = 2R y

Ot—8
oOt—— 8

The various dc components are readily extracted, as in Cases I
and II above. Numerical examples of this joint intensity
spectrum are reserved to a possible subsequent study. The
results of section 3 show the marginal spectra (Cases I, II) of
this more general situation.
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2.2-6: FREQUENCY AND PHASE MODULATION

BY CLASS A AND GAUSSIAN NOISE

This is a Case (B) situation, cf. figure 2.1, where AR = 0
and we are concerned only with the received (non-Gaussian) noise
process which is used to angle-modulate a (high frequency)
carrier fo’ For the analysis, see [3; section II].

The general result for the covariance of the carrier
modulated by Class A and Gauss noise is found to be

1,2 . 2
K (T)aeg = 285 Re[exp[lwor - DLe(T)g - A(2-p)

+ 2A(1-p) exp[-pggo/A]]] , (2.42)

where now, cf. [1; (4.2),(14.14c)),

|<|

2(1)g = [oé or %QZA] I (lel-Xx) k(x) dAr (D, = Dg)
A|FM 0
- 1 1 - cos{wr)
(1 or A] [ W or 1)(E) % df . (2.42a)

Also, cf. (1; (14.2), (14.14c)},

2(t)g
A

- (oé or %QzA) (X(0) - k(t)l(g or ) (P = Dp) (2:42b)

and

«©

2 =

Qo 9 Q°|FM = I WA(f) df/w” or 2,1l pM 28 - (2.42c)
0
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For our numerical examples, we use the RC-spectrum of
[1; section 14.1-3], where now

k (L) = exp(-blL]) , kg(Z) = exp(-[2]) , & =t dwy , (2.43)

and therefore

-

Fi: Dp 2(1); = —5 (ug), texp(-blzh) + blg] - 1]

b o(r)g = ' (2], rexp(-12]) + Izl - 13 ;
lpi)A =2, pZ/8wl ; (2.44a)

2

PM: D) (1), = #(s2)a 11 - exp(-blzh)) ;

Dg 2(t)g = r’(pg]A [1 - exp(-b|L|)] ;

2 2
[pP]A -ne, , (2.44b)

with b (> 0) a dimensionless quantity, as is . The quantity
Bwy is the bandwidth of the modulating (Gauss) noise, cf.
(2.43). Note, also, that

2 2 .2, 2 21 . 2) _ .2.2_ (2
r'("F]A = og Dp/buwy = (”r)c ; r'(“p]A °c Dp (“p]c - (2.45)

The quantities (p% P)() are the respective modulation indexes for
’
FM and PM, cf. [1; chapter 14]).
Finally, we have for p in (2.3), now with AR = 0,

1 - ﬁ%%# for ﬁ%&i £1
p(T) * p(l) = . (2.46)
0 for ﬁ%&# > 1
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Putting the above (2.43), (2.44) in (2.42), we now specialize
our results,
K_(t) 182 k(1) cos(w,T) , with k (0) = 1 (2.47)
y'Ua+w * 2P0 ’ o ’ )
to the normalized covariance ko(r), respectively, for FM and PM,
and their associated spectra. We have for these carriers
modulated by a sum of Gaussian and Class A noise:

I. FREQUENCY MODULATION

ko () gy = exp|-T" (wE], texp(-12]) + 2] - 11 - A(2-p)

+ 2o exp(- —5{up), texp(-vl2l) + bl2l - 11)] (2.48)

with p(t) given by (2.46). Here, 2 9 o in (2.42). Since

olFM

éif ko(Chgy = 0

there is no dc in ko M’ and hence all the original carrier power
(~a, /2) is distributed into the sideband continuum for this
highly nonlinear modulation, as expected [1; section 14.1-2].

The associated intensity spectrum for koIFM is defined by

w~-w

w(‘:’)A'PGIFH = _[ kO(Z')FM cos(&g) dg , o = Am: ’ (2.49)
0

which is determined by a direct cosine transform of ko(c)FM. See
appendix A.6 ff.
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II. PHASE MODULATION

k (L)py = exp[-r’[pglA [1 - exp(-|Z])) +2A(1-p) exp[- %[u%]A]

- A(2-p) + Ap exp(- (1), 11 - exp(-blz]] .

(2.50)
with p(Z) again given by (2.46). We note that

ko(O)PH =1, (2.51a)

as before; that is, the total (normalized) intensity is unity.
Also

ko {®)py = exp[—P’[p%]A - a1 - exp[- %[pg]A]] : | (2.51p)

this is the fraction of the power remaining in the carrier, so
that

ko (0)py - ko(®)py = 1 - (2.51b) , (2.51c)

which is the fraction of the power distributed in the sideband

continuum.
The associated intensity spectrum of the sideband continuum

is determined from

(@) pyc|pu-cont = | [Ko(@lem = Kol=)py] cos(at) at . (2.52)

See seccion 3 ff. for examples and appendix A.5 for the
evaluation methods.
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Finally, in the equivalent Gaussian cases (Gauss noise
modulation of equal intensity and basic spectrum, e.g.,

rl[“i]A 2 r'(ﬂglA =T’ pga (14 T') and kg > ky

we see that (2.48), (2.50) reduce to
Ko(L) py_gauss = B[~ (#2]a T* texp(-blal) + blz] - 116?] ,
(83)a = (1 + P')(pg)A ; (2.53a)
ko (L) py—gauss = @[ (82)a T7 (1 - exe(-blZI] |

[ﬁg)A = (1 + P')(p%]A , (2.53b)

with spectra obtained as before, from (2.49) and (2.52).
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3. NUMERICAL ILLUSTRATIONS AND DISCUSSION

It is convenient to discuss the general results, namely the
effects of (ZMNL) nonlinear rectifiers on, and modulation by, a
mixture of Gaussian and non-Gaussian noise processes and fields,
from the specific numerical calculations presented here in
figures 3.1 - 3.10. These constitute a representative selection
from the universe of possible parameter states [cf. "Summary of
Normalized Parameters" and section 2, preceding]. This is done
here on a per-figure basis, as noted below. In each case, the
dc component is removed: only the covariance or continuous
spectrum is calculated. We recall that there are two cases to
distinguish: Case A, t'=t-AR/co, a 2-element array; and Case 5,
r'=t=t2-t1, a preformed beam. See figure 2.1 and (2.3a).

All spectra shown here are normalized to have area (under the
spectrum level) of unity, i.e., the spectral normalization is
obtained by dividing the spectrum by the value of the associated
covariance at its origin. The normalization of the covariances
themselves is obtained by dividing by the value at t=0 or &R=0.

I. GAUSS NOISE ALONE

FIGURE 3.1

This figure shows the normalized temporal covariance (5§=0)
for both the input and output of a ZMNL half-wave v-th law (v20)
detector, when v = 0,1,2 and when only Gaussian noise (A=0) is
applied to these nonlinear devices. These curves are based on
(2.11) with (2.7a), where Y, = kG' (2.96), with A&G & AwG/B =5
here. The normalization is with respect to the covariance w
maximum; e.g., the normalized covariance shown in figure 3.1 is
obtained from [(2.11)/(2.11)T=0], AR=0. These results apply for
both cases A,B of figure 2.1, where now t’=t, since &h-o, cf.

(2.3a) and remarks.
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As expected (cf. [1l; chapter 13]), the general nonlinearity
(2.6), v20, contracts the covariance, which is equivalent to
spreading the spectrum vis-a-vis the input , cf. figure 3.2,
below. Moreover, the greater the distortion (v=0,2), usually the
greater are these effects. [See appendix A.l.]

FIGURE 3.2

This is the same situation as shown in figure 3.1, except
that the normalized intensity (frequency) spectrum is calculated
now [cf. section 2.2-5, Case II, (2.39)]) with ﬁy(o,f), (2.11),
used in (2.39). Observe the greatly broadened spectra,
particularly at the low spectral levels, where the greater spread
occurs for the "super-clipper", v=0, cf. remarks, figure 3.1;
also, appendix A.3.

FIGURE 3.3

For the same purely Gaussian field above, cf. (2.11) and
(2.96), with ©,fi’=0, the spatial covariance is calculated, with
parameters AL/AG = 58, using (2.11) ai\before. The normalization
is with respect to the covariance at AR=0. Again, one observes
the same kind of contraction in the covariance as noted in figure
3.1. [See appendix A.2.]

FIGURE 3.4

This is the wavenumber analogue of the frequency spectrum of
figure 3.2, now with t’,t=0, and is obtained from (2.35a,b) with
AL/AG = 58. The rectification operation similarly spreads the
wavenumber spectrum, with the greatest distortion (v=0) yielding
the greatest wavenumber spread, as expected from the
corresponding contraction of the associated covariance, cf.
figure 3.3 above. [See appendix A.4.]
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CLASS A PLUS GAUSS NOISE

FIGURE 3.5

The temporal covariance here is given by the general result
(2.7), with the associated relations (2.7), (2.8), (2.9), wherein
&h-o, so that frf'ttz—tl, as before, and where B, a’ (2.7a), is
now given analytically by (2.10) for v = 0,1,2. Here, the
parameter values are A&G E Aw /ﬁ = 55, as before, now with A=0.2,
r'=10 3, AwL/p = AwL = 1 for the Class A non-Gaussian noise
component, typically.

Again, for the super-clipper (v=0), the contraction in the
normalized covariance is greatest, cf. figure 3.1. But the
contribution of the comparatively strong non-Gaussian component
exaggerates this effect. [See appendix A.l.]

FIGURE 3.6

The corresponding intensity (frequency) spectrum (5§=0),
obtained from (2.7) in (2.39), however, shows a fine-structure
not exhibited when Gauss noise alone (A=0) is applied to these
ZMNL devices. The spectral levels for the case v=0, (A=0) and
(A>0), cf. figure 3.2 with figure 3.6, are approximately the
same, whereas the other inputs, cases v=1,2, are much elevated as
f becomes larger, again due to the presence of the structured
Class A noise, when 5Ts £1, cf. (2.3): on the average, the
original Class A "signals" are of comparatively short duration,
or spectrally wide to begin with, so that clipping further
spreads the spectrum. [See appendix A.3.]

FIGURE 3.7
The spatial covariance when Class A noise is added to the

Gaussian input shows analogous behavior, cf. figures 3.3 and 3.5:
the covariance is compressed vis-a-vis the input, but more so
than in the Gauss-alone situations. Again, (2.7) - (2.10) are
employed. [See appendix A.2.])
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FIGURE 3.8
The corresponding wavenumber (intensity) spectrum with Class
A noise and the Gaussian component, obtained from (2.7) - (2.10)

in (2.39), is shown here. Comparison with figure 3.4 indicates a
broader spectral input, due to the non-Gaussian component, but a
relatively narrower output, although the latter is still
noticeably spread vis-a-vis the original input. [See appendix
A.4.]

FIGURE 3.9

Finally, we consider the angle-modulation cases described in
section 2.2-6 above, where weak to strong angle modulations
(u ~ 1 to 50) by Class A noise, with a weak (r'=10‘3) Gaussian
modulation component, is employed.

For phase modulation by non-Gaussian noise, based on (2.50)
with (2.44b), (2.45), (2.46), the resulting normalized intensity
(frequency) spectra are obtained by applying (2.50) to (2.52),
where £ = @/2r; @ = (u-wo)/AwN, cf. (2.49). Note the "spike" at
f ~ 0.1, followed by a variety of sidelobes which rise as the
phase modulation index Hp increases. The spike is now bounded at
f x 0.8, at the -10 dB level, when Hp = 50. As expected, the
larger indexes (pP) produce broader spectra. [See appendix A.5.])

FIGURE 3.10

For frequency modulation by non-Gaussian noise, from (2.48)
with (2.49) and (2.44a), the corresponding intensity (frequency)
spectra again exhibit a continuous spike (f < 0.1). With small
modulation indexes (pF), the spectra are less broad than for the
larger indexes, as expected. The non-Gaussian noise component
dominates the spectrum here. [See appendix A.6.]
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EXTENSIONS

Other situations where the second-order Class A probability
density functions may be applied are noted in [2] and [3]). We
list some of the extensions of the analysis to the following

"classical" problems:

1)

2)

3)

4)

5)

6)

7)

The inclusion of representative signals, with Gauss and
non-Gauss (Class A) noise, in the problems already treated
here (section 2);

The case of the full-wave square-law rectifier, with both
Class A and B noise, as well as Gauss noise;

The extension of 2) to include general broadband and
narrowband signals;

The calculation of signal-to-noise ratios and deflection
criteria, cf. [1; section 5.3-4].

Covariances and spectra for ZMNL system outputs, with
signals as well as non-Gaussian noise inputs;

The rble of the electromagnetic (or acoustic) interference
(EMI or AcI) scenario, cf. [5; section 2B,5];

Evaluation of the large (FM,PM) indexes, or asymptotically
Gaussian cases, cf. [12].

Further opportunities to extend the classical theory [2],([3],
now with non-Gaussian noise inputs, are evident from the examples
and methods described in [1; chapters 5, 12 - 16]), for instance.
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NOISE ONLY; CF. (2.11), (2.7b), AND APPENDIX A.2

32




TR 8887

-10 \ AL /’5“

Wy
\

j ) ~—
|
\

SPECTRAL LEVEL (dB)

~70 \ \ \l’i J

INPUT\ Y\\\\\
y=2

-80

-100 h

0 20 40 60 , 80
NORMALIZED WAVENUMBER k

FIGURE 3.4 WAVENUMBER (INTENSITY) SPECTRUM (FOR t',t=0); GAUSS
NOISE ONLY; CF. (2.35a,b) WITH (2.11), (2.7b), AND APPENDIX A.4

33




TR 8887

1.0
Awg
-G _p5
B
A =.2
I, = .001
0.75 il S
w B
% INPUT
< U
c
<L
§ v =1
0.5
o =\
N
<
S v=0
(2 08
O \
Z
0.25 \
0

0 0.25 0.5 0.75 1.0
NORMALIZED DELAY 7

FIGURE 3.5 TEMPORAL COVARIANCE (FOR 5%-0); CLASS A
AND GAUSS NOISE; CF. (2.7)-(2.9) AND APPENDIX A.1l

34




TR 8887

10
Awg
&5 °
A =2
0 I = .001
Aw
- "
o -10
2
m
>
5
| —20 ll
<
2 N
O
8 I
D _30f— lw" ‘\N\\“-~, 0
! YT
_ao| INPUT | “““““““HHHI1'1’1'1'114,1'4
y =
v=2
-50
0 10 20 30 40, 50

NORMALIZED FREQUENCY f

FIGURE 3.6 FREQUENCY (INTENSITY) SPECTRUM (FOR AR=0); CLASS
A AND GAUSS NOISE; CF. (2.7) IN (2.39) WITH APPENDIX A.3

35




TR 8887
1.0
AL
5 =V
A =2
- INPUT rj = .001
=
0.75 Q p = 2
]
O
Z +
<
u<: v=0
>
3 \
a 0.5
wl
N
=
< J
=
o
%. \
0.25 \\
0 0.5 1.0 1.5 2.0 2.5 3.0

NORMALIZED SEPARATION AR

FIGURE 3.7 SPATIAL COVARIANCE (FOR t’,t=0); CLASS A
AND GAUSS NOISE; CF. (2.7)-(2.10) WITH APPENDIX A.2

36




TR 8887

10
A —
= = |5
i =
0 G
A = .2
10 \ T4 = .001
-20
g \ AN
= N
-30
: LT
T
= _s0|— \\
&3 -50 \\\
o
)

NERUAN
INERNN
\INPUT\

0 10 20 30 40 50 60 70 80
NORMALIZED WAVENUMBER &

FIGURE 3.8 WAVENUMBER SPECTRUM (FOR {‘,t=0); CLASS A AND
GAUSS NOISE; CF. (2.7)-(2.10) IN (2.38a,b) AND APPENDIX A.4

37




SPECTRAL LEVEL (dB)

TR 8887

0
ﬁ A =2
-10 \ b =1
Ex = .001
c = 2n
1
-20 VA,
2
Hp =5
-30 .

e

N\

N

-60
.01 1 1 10 100

NORMALIZED FREQUENCY
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INDEX pp=1,2,5, CLASS A AND GAUSS NOISE; CF. (2.50) WITH
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PART II. MATHEMATICAL AND COMPUTATIONAL PROCEDURES
4. SOME PROPERTIES OF THE COVARIANCE FUNCTION

In this section, we collect some useful relations for the
covariance and auxiliary functions encountered in the numerical
evaluation. These are necessary for rapid computation of the
multiple series involved here and also serve as checks on the
numerical procedures employed.

4.1 SIMPLIFICATION AND EVALUATION OF BV(Y)

The function BV(Y) is defined by the following combination of
hypergeometric functions:
W3 -3 b )

B (Y) = I.2(\) + 1]

+ 2 r2[§ + 1] Y F[l =, 1—-5—2; 3; y2] for Y2 s 1. (4.1)

For the upper F function in (4.1), we have [1l; (A.1.39b)]
v =0, F[o,o;%;y2]=1;

)
v=1, F(— 5, - %; %; Y2] = Y arcsin(Y) + [1 - Y2] ;

v = 2, F[-l, -1; %; Y2] =1 + 2Y2 ; (4.2)

where arcsin is the principal value inverse sine function. On

the other hand, for the latter F function in (4.1), we have
(1; (A.1.39a) and (A.1.39c)]
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v =2, F(- %, - %; %; Yz) = %[1 - Y2] + l_%?ZX_ arcsin(Y). (4.3)

When these quantities are substituted in the above expression
for BV(Y), we find the following relatively simple relations:

BO(Y) =n + 2 arcsin(Y) ,
. 2 % n
BI(Y) = Y arcsin(Y) + [1 -Y ] + EY p
B_(Y) = 1 2)[n . 3 2 %
2( ) = (5 + Y ](5 + arc51n(Y)] + §Y[1 -Y ] . (4.4)

These three quantities can be computed simultaneously by the
following very compact computer coding in BASIC:

Y2=YxY
Sq=SQR(1.-Y2)

T=ASN(Y)+1.5707963267948966

BO=T+T

Bl=Y*T+Sq

B2=(.5+Y2)*T+1.5%Y*Sq (4.5)

Thus, the rather formidable expression, above, for Bv(Y) can be
evaluated by the use of just one square root and one arcsin when
v=20, 1, 2.

The following limiting values, which are obvious, are needed

for various special cases:
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BO(O) =n ,
B,(0) =1,
82(0) =n/4 ,
By(0) =1,
B,(0) = 9xn/16 ,

These are special cases of

B,(0) =T

B,(1) = 2

the latter following from [10;

8887

Bo(l) = 2n ,
By(1) = n ,
82(1) = 3n/2 ,
By(1) = 15n/4 ,
B,(1) = 105r/8 .

(4
n% r[v + %] ’

(15.1.20)]).

4.2 LIMITING VALUES OF THE COVARIANCE FUNCTION

. - . k3 7
The covariance function at normalized separation AR and

delay f is given by (2.7) as

® © m1+m2
A A l -
My(AR,t) = exp([-A(2-p)] 1 mlzp%;z
m1=0 m2=0
- )t m 2 (n+ my V2
’ I
X n! At Ta S | Bot¥)
n=0
where
p = p(f) = max{o, 1 - |¢]} ,
n
= k. + T’ k
Y = Y(m,,m,,n) = - —— !
) [n +m ]% [n + m, ,]5
14 o —————
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Aw. )2
. - 2 1 L -
kL = kL(AR,t) = exp{- AR" - 5[—3—] r2] ' (4.12)

kG = kG(Eh,f) = exp|-~

Aw, )2
—9] f2] . (4.13)

a.12
G

The functions p, kL, kG can be replaced by other functional
dependencies, if desired. The function Bv(Y) has been
considered earlier and considerably simplified for v = 0, 1, 2.

4.3 VALUE AT INFINITY

As AR or © » *=, then

p >0, k, 20, k. >0, Y>0. (4.14)

G
(If |t] remains less than 1 as AR tends to infinity, then p does
not approach zero; this nuance has been discussed elsewhere in
this report.) Then, it follows that

© m 1+, v/2 m v/2
M 2 exp(-2A) E E N N [—% + PA Kz + ri BV(O)
m=0 m,=0 mtmpt
@ 2
= B_(0) [exp(-A) Z A" [E + r']v/Z] (4.15)
v m! (A A ! *

m=0

because the sum on n can be terminated with the n = 0 term.
The sum on m can be effected in closed form, for v = 0, 2, 4,
etc., by using the following results:

m
}: B = exp(n) , (4.16)

m=0

46




There follows

2>

A
m "= § (mf 1) ¢ = A exp(A) , (4.17)
m= m=1
A 2 A
mT M= E T 1y (m 1 +1)
m=0 m=1
m = m
A 2
(m - 2)! + (ml.\ )¢ - (A" + A) exp(A) . (4.18)
m=
n for v = 0)
iz 2
= E[l + I‘l'\] for v =2, . (4.19)

4

2
Inyrl 2
k—gli + [1 + ri] ] for v

L

The case for v = 1 requires a numerical summation, once A and

rA are specified.

When these limiting values are subtracted from

the correlation function, we obtain the covariance function.
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4.4 VALUE AT THE ORIGIN
”
For AR = 0, T = 0, then
p=1, k =1, kg=1, (4.20)
and
= n AV
o A n
B,(0,0) = exp(-a) 5 A (K + ri) B (1) , (4.21)
7=0

because the sums on m, and m, can be terminated with the zero
terms, thereby also leading to Y = 1.

The sum on n can be accomplished in closed form, for
v=20,1, 2, etc., by using results given earlier. There follows

[Zn for v = 0)

ﬁ (0,0) = <n[1 + PA) for v=1; . (4.22)

f
N

‘%n[% + [1 + PA]Z] for v
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PART III. APPENDICES AND PROGRAMS

APPENDIX A.1 — EVALUATION OF COVARIANCE FUNCTION
FOR ZERO SEPARATION (4R = 0)

A program for the numerical evaluation of covariance
ﬁy(ik,f) for AR = 0 is contained in this appendix. Inputs
required of the user are A, PA, (AwL/ﬁ)z, (AuG/ﬁ)z, §(t), N(T),
in lines 20 - 70. Since we are generally interested in values of
A less than 1, the series for ﬂy in (4.9) will not have to be
taken to very large values of m,, m,, N; accordingly, the values
of {Ak/k!} are tabula.ed once in lines 260 - 300 with a tolerance
of 1E-10 set in line 80.

The values of the covariance at infinity, as given by (4.19),
are computed and subtracted in lines 220 - 240 and 400 - 420;
this is in anticipation of taking a Fourier transform of a !
covariance function which decays to zero for large arguments Ei.

The functions B, (Y) and ﬁy(ﬂh,f) are available in the two
subroutines starting at lines 1010 and 1120, respectively. The
latter subroutine actually calculates the covariance at general
nonzero values of both AR and t, although we only employ it for
AR = 0 in this appendix; see lines 10 and 380. Also, for Kh =0,
the parameter Lg2 = (AL/AG)2 is not relevant and, hence, is
entered as zero in line 380.

The exponential Gaussian forms for kL and kG are used in
lines 1200 and 1210, while the triangular form for p is entered
in line 1240. Any of these can be replaced, if desired, by forms
more appropriate to the user.

The program is written in BASIC for the Hewlett Packard 9000
Computer Model 520. The designation DOUBLE denotes integer
variables, not double precision. The output from the program is
stored in data files AOTO, AOT1, AOT2, for v =0, 1, 2,
respectively.
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60 Dtc=.01
ve Ntc=208

INCREMENT IN Tau~
HUMBER OF Tau~ VWRLUES

TR 8887
10 Rc=0. ! DelR~
20 R=.2 ! AdsubR)
30 Gp=.0801 !  GRMMA’ (subf)
40 Hib2=1. I (DelW(sublL)>/Betad>~z
Se Wgb2=25. I (DelllsubG>~sBetad~2
|
]

80 Tolerance=1.E-108

-17) COM Af(O:408)>,C(B:80)>,S5q(0:80)

100 COM DOUBLE J | INTEGER

110 DIM Kag(2e8),Tc(B:200),FO0(0:260),F1(0:260),F2(G:200)
126 DOUBLE Htc,K ! INTEGERS

1306 FOR K=8 TO Ntc

140 Tc=K#Dtc ! Tau~»

156 Rho=MAK(OB,,1.-ABS(Tc)> ! Rho

160 T2=.5%#Tc#*Tc¢

17e K1=EXP(-W1b2*T2)>

180 Kg=EXP(-Wgb2%T2)

190 Kag(K>=(Rho*#K1+Gp*Kg>- (1. +Gp> ! INPUT COVARIAHWCE
2060 MEXT K

2106 At=1.-A ! A>@ REQUIRED

220 FBinf=PI

230 Flinf=FNF1linf(A,Gp>

240 F2inf=,25%PI%(1.+Gpo>*(1.+Gp)
256 Af(BI=1,

260 FOR K=1 TO 40

278 J=K
288 RECKI=T=RF(K-1)*R/K t ArKAKY
2906 IF T<Tolerance THEN 320

300 NEXT K

310 PRINT “"40 TERMS IN Rf(*>"

320 FOR K=8 TO J*2

330 CC(K>=T=K#A1+Gp

340 Sq¢K>=1,/SARCT)

350 NEXT K

360 FOR K=0 TO Ntc

370 TcCK)=Tc=K*Dtc I Tau~

380 CALL Myc(Rc,Tc,R,Gp,W1b2,Hgb2,8.,FBCK),F1CK),F2¢K>>
390 NEXT K

400 MAT FB=F@-(FBinf>

410 MAT F1=F1-C(Flinf)

420 MAT F2=F2-(F2inf)

430 MAT FB=FB/(FB(B)>)

440 MAT F1=F1/(F1(0))

450 MAT F2=F2/(F2(8)>)

460 PRINT "INFINITY:";F@inf;Flinf;F2inf

470 PRINT “MINIMA: “;MINCFOC*)>);MINCF1C*)>);MINCF2¢*))
480 PRINT "AT Mtc: "3FOCMvc)3F1C(Nte)F2(Ntc)
490 CREATE DATR “"AITi",8

500 ASSIGN #1 TO "AIT1"

510 PRINT #1jKag(#)

520 CREATE DATA "AOTB",8

530 ASSIGN #1 TO "ROTO"

540 PRINT #1jFOC*)

550 CREATE DATA "AOT1",8
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568 ASSIGH #1 TO "AOTIL"
570 PRINT #13F1<(%)

580 CRERTE DRTA "RAOT2",8
5906 ASSIGH #1 TO "ROT2"
600 PRINT #1;F2¢*)

610 ASSIGH #1 TO *

€20 Tcmax=Dtc#Ntc

€30 GINIT 200,260

648 PLOTTER IS 58S, "HPGL"

650 PRINTER IS 58S

668 LIMIT PLOTTER 505,0,200,0,260
670 VIEWPORT 22,85,19,122

680 WINDOW 8.,1.,0.,1.

€90 PRINT "vsS*
700 GRID .25,.25

710 PRINT "vsS3é"
720 PLOT Tc(*),Kag(*)
730 PENUP

740 PLOT Tc(#)>,FOC(#*)
750 PENUP

760 PLOT Tc(#),F1(#)
770 PENUP

780 PLOT Tc(#*)>,F2¢(%)

7506 PENUP

800 PAUSE

810 PRINTER IS CRT

820 PLOTTER 585 IS TERMINATED

830 END
840 !
850 DEF FNF1inf(R,Gp> I for v(=nu) = 1

860 Tol=1.E-18

g7e Ag=A*Gp

850 T=1.

890 §=SQR(1.+RAg)
900 FOR M=2 TO 100
910 T=T*A/MN

920 P=T*SQR(M+Ag>
930 S=S+P
940 IF P<S#Tol THEN 970

95e HEXT M

960 PRINT "100 TERMS IN FNF1inf"
9ve T=Gp+A*S*S+2. #*SAR(AQI*S

986 RETURN EXP(-2.%R)>#*T

996 FNEND

1000 !

1010 SUB Bnu(Y,B8,Bt,B2) I BuCY) for u=@,1,2
1820 IF ¥>1. THEH PRINT ®“Y = {1 +";¥y-1,

1036 IF Y>1. THEN Y=1,

1040 Y2=Y#Y

1850 Sq=SAR(1.-Y2)>

1060 T=ASN(Y)>+1.578796326794896¢€
1070 BO=T+T

1080 B1=Y#T+Sq

1090 B2=(.5+Y2)%T+1.5%Y%Sq
1100 SUBEND
1110 !
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1128 SUE Muc(Rc,Tc,R,Gp,H1b2,Hgb2,Lg2,80,51,52>
1136 COM RFfC(#),C(*),Sqi#*)

1140 CoM DOUEBLE J ! IHTEGER

1150 ALLOCATE Ap<¢@:J>,Rpl(B:J)

11560 DQUBLE K,M1,M2,H,K1,K2 ! INTEGERS
1176 Hi=1.~A I A>6 REQUIRED
1186 T2=.5%Tc*Tc

1190 R2=R¢*Rc¢

1200 KI1=EXP(-R2-H1b2*T2)

1210 Kg=EXP(-Lg2#R2-1gb2*T2)

1220 Ak=A1%*K1

1230 Gk=Gp*Kg

1248 Rho=MAX(B.,1.-ABS(TcH> ! Rho

1250 Rhol=1.-Rho

1266 Ap(B8>=Ap1(B>=Pk=Pk1=1,

1278 FOR K=1 70 J

1280 Pk =Pk #Rho

1290 Pk 1=Pk 1%Rhol

1300 T=Af (K>

1310 AP (KI=T*Pk

1320 Apl(K>=T*Pk1
1330 HEXT K

1348 SBm1=S1lmi=S2m1=0.
1358 FOR Mi=8 TO J
1360 SOm2=51m2=82m2=06.

1370 FOR M2=0 TO J
1380 $Bn=51n=52n=0,
1390 FOR N=@ TO J
1400 K1=N+M1

1410 K2=N+M2

1420 T=Ap (N>

1430 P=C(K1)*CC(K2)

1440 Y=¢N*AK+Gk ) *Sq (K1) *Sq(K2)
1450 CALL BrucY,B@,B1,B2)

1460 SBN=SBn+T*EB

1470 S1n=S1n+T*SQAR(P)*B1

1480 S2n=52n+T*P*B2

1490 MEXT N
15006 T2=Api(M2)

15106 SBM2=SOM2+T2#S0n
1520 Sim2=S1m2+T2%S1n
1530 S2m2=S2m2+T2#%#S2Zn
1540 HEXT M2

1550 Ti=Ap1 (M1

15¢€0 SBMI=SOmM1+T1*#SBm2
1570 Sim1i=Siml+T1#S1im2
1580 S2m1=52m1+T1%#S2m2
1590 HEXT M1

1600 T=EXP(-A*(2,-Rho)>
1610 SO=T*S6m1

1620 S1=T*Siml}

1630 $2=T*#S2m1i

1640 SUBEND
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APPENDIX A.2 — EVALUATION OF COVARIANCE FUNCTION
FOR ZERO DELAY (f,f' = 0)

A program for the numerical evaluation of covariance
ﬁy(ﬂi,f) for t,t’ = 0 is contained in this appendix. Inputs
required of the user are A, T/, (AL/AG)Z, 6(&%), N(&ﬁ), in lines
20 - 60. The tolerance for terminating the triple infinite sums
is set at 1E-15 in line 70. The output from the program is
stored in data files AORO, AOR1l, AOR2, for v = 0, 1, 2,
respectively. Other relevant comments are made in appendix A.1l.

The limit of ﬁy at AR = ® (when T = 0) is given by the closed
form results

) for v = 0)
ﬁy(m,O) ={1+r] for v = 1} . (A.2-1)
ril ( ,]2
=< + + =
“[A 1+ 1) ] for v = 2

These values have been subtracted from ﬁy so that we can Bessel
~~

transform a function which tends to zero as AR = =,

18 Tec=6, ' Tau~

20 A=.2 ! ACsubf>

30 Gp=.001 I GAMMA’ (subR>

40 Lg2=5. ! <(DellL-DelG)~2

50 Drc¢=.0805 ! INCREMENT IN DelR~

60 Mrc=9060 ! HNUMBER OF DelR~ VALUES
70 Tolerance=1.E-15S

£21%) COM Af(B:48)>,C(0:80)>,5q(6:80)

90 COM DOUBLE J ! INTEGER

106 DIM Rc<(9:9008),Kag(8:9808)>,F8(08:900),F1(0:900)>,F2C(0: 900>
110 DOUBLE HNrc,K | INTEGERS

1206 Al=1.7A ! A>8 REQUIRED

130 FBinf=PI ! LIMITS FOR

140 Flinf=1.+Gp I Rc=infinity
150 F2inf=.25#PI#((1,4Gp)*(1,.+GpO>+A1> | AHD Tc=06

160 Af(Q =1,
170 FOR K=1 TO 48

180 J=K

190 AfCKY)=T=Af(K-1)*RA/K I A~K/KH
200 IF T<Tolerance THEN 2390

210 HNEXT K

220 PRINT “40 TERMS IH Af(x)>"
230 FOR K=8 TO J#2

240 CCK>=T=K*R14+Gp

250 Sq¢K>=1./SQR(T)

260 NEXT K
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276
280
296
3086
3t0
320
3306
348
350
360
370
388
390
400
410
420
430
440
450
460
470
480
490
See
Stie
S2e
536
S48
550
Séee
576
580
596
€00
610
€20
€30
640
656
660
670
680
690
700
710
720
7’36
740
75e
760
770
780
790
860
810
820
900
910
920
930
1440
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FOR K=0 TO Hrc
Rc (K>»=Rc=K#*Drc 1 DelR~
R2=Rc *Rc
K1=EXP(-R2)>
Kg=EXP(-Lg2#%R2)>
Rho=MAX(B.,1.-ABS(Tc))> ! Rho
Kag(K>=(Rho*#K1+Gp*Kg)/(1,+Gp)> ! INPUT COVYARIAMCE
CALL Mwc(Rc¢,Tc,A,Gp,0.,0,.,L92,FBC(K),F1C(K),F2C(K))>
NEXT K
MAT FO=FB-C(FAinf)>
MAT F1=F1-C(Flinf>
MAT F2=F2-C(F2inf>
MAT FB=FO/(FOCB)>)>
MAT F1=F1/(F1(0)>>
MAT F2=F2/C¢(F2¢B>)
PRINT “INWFINITY:";FBinf;Flinf;F2inf
PRINT "MIHIMA: "IMIHCFOC*) D s MIHNCFEC(ED ) s MINCF2C¢%) )
PRINT "AT Hrc: "3sFO(Nred>;F1(Hred;F2C(Hrcs
CREATE DATA "ARIR1",33
ASSIGH #1 TO “RIRL"
PRINT #1;3Kag(*)>
CRERTE DATAR "AORG",33
ASSIGH #1 TO “AORG"
PRINT #1;FOd(*)
CRERTE DATA "AOR1",33
ASSIGN #1 TO "AORYI"
PRINT #13F1¢(%>
CREATE DATA "ROR2",33
ASSIGN #1 TO "ROR2"
PRINT #1;F2C(*)
ASSIGN #1 TO =
Rcmax=Drc*HNrc
GINIT 200-2686
PLOTTER IS 585, "HPGL"
PRIHMTER IS 5865
LIMIT PLOTTER S565,0,280,0,260
VIEWPORT 22,85,19,122
WINDOW ©.,3.,0.,1.
PRINT "y&sS®
GRID .5,.25
PRINT "V¥S36"
PLOT Rc(%),Kag(*)>
PENUP
PLOT Rc(*)>,FB(%)>
PEHUP
PLOT Rc(#)>,F1(*)
PENUP
PLOT Rc(#)>,F2¢(%>
PENUP
PRAUSE
PRIHTER IS CRT
PLOTTER 505 IS TERMINATED
END
!
SUB Bnu(Y,Bo,B1,EB2> ! BudcY) for v=0,1,2
! SEE APPEHDIX A.1
SUBEMD
'
SUB Myc(Rc,Tc,R,Gp,HI1b2,Ugb2,Lg2,56,81,52)
| SEE APPENDIX A.1
SUBEND
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APPENDIX A.3 — EVALUATION OF TEMPORAL INTENSITY
SPECTRUM FOR ZERO SEPARATION (AR = 0)

A program for the numerical evaluation of the Fourier
transform of covariance ﬁy(o,f) - ﬁy(w) is contained in this
appendix. Inputs required of the user are listed in lines
10 - 30. The data input, AOTO or AOT1 or AOT2, as generated by
means of the program in appendix A.1l, is injected by means of
lines 410, 600, and 790.

In order to keep the FFT (fast Fourier transform) size, N in
lines 30 and 320, at reasonable values, the data sequence is
collapsed, without any loss of accuracy, according to the method
given in [8; pages 7 - 8] and [9; pages 13 - 16]}. The
integration rule documented here is the trapezoidal rule; this
procedure is very accurate and efficient and is recommended for
numerical Fourier transforms.

19 Nt c=208
20 Drc=.01
30 N=1024

NHUMBER OF Tau~ YALUES
IHCREMENT IH Tau~
SIZE OF FFT; i > Htc REQUIRED

49 DOUBLE Htc,M,M4,H2,Ns INTEGERS
Se Nd4=H/4

€0 N2=N-2

70 REDIM Cos(B:N4)>,X(@B:HN-1>,Y(B:N~1)
80 DIM Cos(2565,X(1823)>,Y(1823>,AC200)
90 T=2.%PI/H

100 FOR Ns=0 TO N4

110 Cos(Hs)>=COS(T#Hs> ! QUARTER-COSINE TABLE IH Cosc(%)
126 NEXT Ns

130 GINIT 2080-2680

1406 PLOTTER IS 505, "HPGL"

150 PRINTER IS 5065

160 LIMIT PLOTTER S05,8,200,0, 260

1706 VIEWPORT 22,85,19,122

180 WINDOW @,HN2,~-5,1

190 PRINT "vsS*"

200 GRID N-18B,1

21@ PRINT "vs36"

228 ASSIGH #1 TO "ARIT1"
230 READ #13AC*)
240 MAT X=(08.)

250 MAT ¥=(0.)

260 X(@>=.5%ACB)

270 FOR Ns=1 TO Htc-1
280 KCHsO>=R(Ns)

290 HEXT HNs

380 X(NtcH=,5#ACNtc)
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310 MAT H=K*(Drc*d4,)>

320 CALL Fft14CH,Cos(*¥),K(*),Y(*))
336 FOR Hes=0 TO HZ

3406 Ar=X(Hs)>

350 IF Rr>8. THEN 389

366 PENUP
370 GOTO 398
380 PLOT Ms,LGTCAr)

398 HEXT Ns

400 PENUP

410 ASSIGN #1 TO "AOTG@"
420 READ #1;A(*)

430 MAT X=¢0.>

440 MAT Y=¢@.)

450 X(B>=.5%ACB)

460 FOR Ns=1 TO Ntc~-1
470 %(Ms)>=AC(Ns)

480 MEXT Ns

490 R(Ntc)>=,S*¥ACNtc)
500 MAT X=X#(Dtc*4.)
510 CALL FFe14(H,Cos(*),K(%),Y(*))
520 FOR Ns=@8 TO N2

538 Ar=X(Ns)

540 IF ARr>8. THEN 570

550 PENUP

Sée GOTO S8e

S7e PLOT HMHs,LGTC(Ar)
S8e NEXT Hs

590 PEHUP

€00 ASSIGH #1 TO "AOT1"
€10 READ #1;AC(#*)

620 MAT X=(0.)

630 MAT ¥=(B.)>

640 X(@)>=.5*AC0D)

€59 FOR Ns=1 TO HNtc-1

€60 K(Ns>=R(Ns)>

670 NEXT HNs

€80 K(Ntc)H>=,S5S*A(Nt¢c)
€90 MAT X=X*¥(Dtc#*4.)
700 CALL Fft14(N,Cos(*)>,X(*),Y(*))
710 FOR Hs=@6 TO N2
720 Ar=X(Ns)

730 IF Rr>8., THEN 760
7460 PENUP

750 GOTO 770

760 PLOT HNs,LGTC(Ar>

770 NEXT Ns

780 PENUP

790 ASSIGN #1 TO "ROT2"
800 READ #1;AC%)

g1e MAT A=R/C(ACB))
820 MAT X=(6.)
830 MAT ¥=(0.)
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840 %(B>=,S#ACB)

850 FOR Ns=1 TO Mtc-1

860 X(He)=RCNs)

§70 NEXT Hs

880 XCHtc)=,5#ACNLC)

890 MAT X=X*(Dtc*4.)

388 CALL FFL14(H,CosC*),X(*),Y(*))
918 FOR Ns=8 TO H2

920 Ar=X(Ns)>

938 IF Ar>8. THEN 960

940 PENUP

950 GOTO 976

9¢0 PLOT Ns,LGTC(Ar)
970 NEXT Ns

986 PENUP

990 PAUSE

1000 END

1010 !

1920 SUE Fft14CDOUBLE N,REAL Cos(¥)>,X(#>,YC(*)>) | H<(=2~14=16384; © SUES
1030 DOUBLE Log2n,N1,N2,N3,M4,J,K t INTEGERS < 2~31 = 2,147,483,648
1940 DOUBLE 11,12,13,14,15,16,17,18,19,110,111,112,113,114,L<0:153>
1050 IF N=1 THEN SUBEXIT

1060 IF N>2 THEN 1148

1870 A=XC@)+X (1)

1080 RC1I=KCBI-X(1)

1890 X(@>=A

1100 A=YC(BY+Y (1)

1110 Y1o=y(@ir-y<1»

1120 Y(8>=A

1130 SUBEXIT

1146 A=LOGC(H>/LO0G(2.>

1156 Log2n=A

1160 IF ABS(A-Log2n><1.E-8 THEN 1196
1176 PRIWNT “N ="3N;~IS HOT A POWER OF 2; DISALLOWED."
1180 PAUSE

1190 Ni=H/4

12006 N2=H1+1

1210 N3=H2+1

1220 N4=NH3+H1

1230 FOR 11=1 TO Log2n
1240 12=2~C(Log2n-11>
1250 13=2%12

1260 14=N/13

1270 FOR IS5=1 TO I2

1280 16=C15-1r*14+1

1290 IF 16<=N2 THEN 13306
1300 R1=-Cos(N4-16-1)>
1310 ne=-Cos(l6-N1-1>

1320 GOTO 1350

1330 A1=Cos(l6~1)>

1348 A2=-Cos (N3-16-1)>

135e FOR I7=0 TO H-I3 STEP I3

1360 I8=17+15~1
1370 I19=18+12
1380 T1=XC(I8)
1390 T2=%XCI9)




1400
1410
1420
1436
1440
1458
1460
14706
1480
1490
1560
1510
1520
1530
1546
1550
1568
1578
1588
1590
1660
1610
1620
1630
1640
1656
1660
1678
1680
1698
1ve06
1710
1720
1730
1740
17506
1760
1?70
1780
1790
18006
1818
18290
1830
1840
18586
18606
1870
1888
1890
19606
1916
1926
1930
1940
1958

T3=YC(I8)

T4=Y I

A3=T1-T2

A4=T3-T4
KCIBI=T1+T2
YCI8>=T3+TH
X(I9)>=A1*A3-A2%A4
YCI9)=A1%¥A4+A2%A3
HEXT I7?

HEXT IS

NEXT 11
I11=Log2n+1

FOR I2=1 TO 14
L{IZ2-1)>=1

IF 12>Log2n THEH 15680
LCIZ=-10=2~CI1-1I2>
HEXT 12

K=0

FOR I1=1 TO LC13
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FOR I2=11 TO L(12> STEP L(13)
FOR I3=12 7O L(11> STEP LC12)
FOR I4=I3 7O L(18)> STEP L(11)
FOR 1S=I4 TO L(9)> STEP L(18)>
FOR I6=I5 TO L(8) STEP L(3)
FOR 17=16 TO L(?> STEP L(8)>
FOR 18=17 TO L(5> SVEP L(?>
FOR 19=18 TO L(S> STEP L(6)>
FOR 116=19 TO L(4> STEP L(5>
FOR Il11=11@ TO L(3> STEP L(4)
FOR I12=I11 TO L(2> STEP L(3)
FOR 113=112 TO L<1> STEP L(2)
FOR I14=113 TO L(B> STEP L<(1)

J=114-1
IF K>J THEN 18090
A=K (K)
RCKO>=XCI)
XCJI>=R
A=Y (K)
YCKOY=YCTD
Y(J>=R
K=K+1
HEXT 114
HEXT 113
MEXT 112
NEXT I11
NEXT 110
NEXT .9
NEXT I8
NEXY 17
NEXT 16
HEXT IS
NEXT I4
MEXT 13
HEXT 12
HEXT 11
SUBEMND

58




TR 8887

APPENDIX A.4 — EVALUATION OF WAVENUMBER INTENSITY
SPECTRUM FOR ZERO DELAY (f,f' = 0)

A program for the numerical evaluation of the zeroth-order
Bessel transform of covariance ﬁy(ﬂh,O) - ﬁy(w) is contained in
this appendix. Inputs required of the user are listed in lines
10 - 40 and are coupled to appendix A.2, where the data input,
AORO or AOR1l or AOR2, was generated. The numerical Bessel
transform is accomplished by means of Simpson’s rule with end
correction {11; pages 414 - 418], and is exceedingly accurate for
the small increment, .005, in AR employed in line 30.

10 Dkec=.4 ! IMCREMEMT IH k=~
20 Hkc=2060 ! HUMBER OF k~ VALUES
30 Drc=.08S5 ! IHCREMEHNT IH DelkR~
40 Hrc=900 ! HUMBER OF DelR~ VALUES
7] DOUBLE Hrc,Hke,1,Ms ! IHTEGERS
(1%) REDIM CC@:Hrc)
4" REDIM Mi(BiNkc)>,HBC(B:Mkc), W1 (B:Hke),H2¢B:Hke
80 DIM C(380)>,Hi2606),Ha(200),1H1(280),H2¢200>
96 BSSIGN #1 TO "ARIRL"
1606 READ #1;C(*)>
110 F3IR 1=0 TO Hkc
120 Kc=1%#Dkc ! k~
136 T=Kc*Drc
140 Se=50=0.
1506 FOR Ms=1 TO Hrc-1 STEP 2
160 So=So+Hs*¥FHJo(T*Hs)*C(Hs)
170 HEXT Ns
180 FOR Ng=2 TO0 Nrc-2 STEP 2
190 Se=Se+Ns*FHJo(T*Hs)*C(Nsg)
200 NEXT Ns
210 HiCI>=CCBY>+16.%S0+14, %S¢
220 NEXT 1
2306 MAT Wi=Wi*{Drc*Drc*2.*P1/15.)
240 ASSIGN #1 TO "ARURG"
250 READ #13C(*>
260 FOR I=9 TO Nkc
270 Kc=1%*Dkc
280 T=Kc*Drc
290 Se=S0=0.
300 FOR Ns=1 TO Nrc-1 STEP 2
310 So=So+Hs*FHJIo(T*MHz)*C(He)
320 HEXT Ns
330 FOR Hz=2 TO Hrc-2 STEP 2
340 Se=Se+Hs*FHIO(T*Hs >*C(Hs)>
3506 HEXT HNs
360 HBCID>=C(B>+1€,%#S0+14, ¥Se
370 NEXT 1
360 MAT Wo=WHO*(Drc*Drc*2.*P1/15.)
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390
460
410
420
430
440
458
460
478
480
490
Seo
S10
S2e
530
540
556
1°Y)
570
580
598
€60
€16
620
€30
640
650
6606
€70
680
698
700
710
7ze
730
740
756
766
vre
780
798
8oe
810
820
830
840
85e
860
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ASSIGH #1 TO "AOR1"
RERD #1;C(%>
FOR 1=0 TO Hkc
Ke=1#Dkc
T=Kc*#Drc
Se=S0=0.
FOR Ms=1 TO Nrc-1 STEP 2
So=So+NH=#FHJo(T*%Ms)>*C(Ms)
NEXT Ns
FOR Ns=2 TO Nrc-2 STEP 2
Se=Se+Hs*FHIo(T*He ) *C(Hs)
NEXT HNs
W1CI>=C<(@>+1€.%S0+14. %Se
HEXT 1
MAT Wi=W1*¥(Drc*Drc*2.*%P1-/15.)
ASSIGH #1 TO0 "AOR2"
RERAD #1;C(*>
ASSIGH #1 TO «
FOR I=0 TO HNkc
Ke=1%Dkc
T=Kc#Drc
Se=So0=0.
FOR Hs=1 TO Nrc-1 STEP 2
So=50+Hs*¥FHJo(T*#Ns)>*C(Ms>
NEXT HNs
FOR Ns=2 TO Nrc-2 STEP 2
Se=Se+Ms*FHJo(TxMs)>*C(Hs)
NEXT Ns
W2C(I>=CC(BI+16.%S0+14.,.*Se
HEXT 1
MAT W2=W2%#(Drc*Drc*2.*%*PI1/15.)
GINIT 206,260
PLOTTER IS 56S, "HPGL*"
PRINTER IS 5065
LIMIT PLOTTER 565,6,200,8,2€¢0
VIEWPORT 22,85,19,122
WINDOW B,Hkc,-9,1

PRINT "ygS"
GRID 25,1

PRINT "Vv¥S36"
FOR I=0 TO Nkc
W=Wil>
IF W>8. THEN 84@
PEMNUP
GOTO 859
PLOT I,LGTCHW>
NERT I
PEHUP
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870

88e

898

909

910

928

930

940

950

9¢ce

gve

980

996
1060
1a10
1828
18306
18409
1858
1060
1eve
1880
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1218
1220
1230
1240
12506
1260
1270
1280
1290
13006
1310
13206
1330
1340
1350
1360
13706
1380
1390
1400
1410
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FOR 1=0 TO Nkc
W=Wad(l>

IF K>B. THEM 920
PENUP

GOTO 930

PLOT I,LGTCW)
NEXT 1

PENUP

FOR I=8 TO Mkc
W=W1CD)

IF W>8. THEHW 1000
PENUP

GOTO 1810

PLOT I,LGTCHD
NEXT I

PENUP

FOR 1=0 TO Mkc
N=H2 (1)

IF W>B. THEH 1080
PENUP

GOTO 1090

PLOT I,LGTC(H)
NEXT I

PENUP

PAUSE

PRINTER IS CRT
PLOTTER 565 IS TERMINATED

END

|

DEF FNJo(¥> I Jod(X> FOR ALL X

Y=ABS(X)

IF ¥>8. THEN 1280

T=Y#*Y !  HART, #5845
F=22714968439,5536033-T*#(5513584.5647707522-T*#5292.617136384S574)
FP=2334489171877869.7-T*(47765559442673.588-T«(48621722250831.71803-T*F 2>

P=1859€2317€21897804,-T%(44145829391815982. -T+*P>
(=204251483.52134357+T7%(494630.79491813972+T*(884.72036756175504+T2)
@=2344750013658996.8+T*#(15015462449769.752+T#(64398674535. 133256+T*Q1 )
@=185962317621897733., +T*AQ

Jo=P 0

RETURN Jo

2=8.7Y ! HRART, #6546 & €946

T=2%2
Pn=2264.5010439651804+T*(128,67758574871419+T*,.90047934745028803>
FPn=8554.8225415066617+T*(8894.4375329€06194+T*Pn)
Pd=2214.06488519147104+T*#(130.88490049992388+T)
Pd=8554.8225415066628+T*(89083.8361417095954+T*Fd)>
Gn=13.99097€865960680+T*#(1.8497327982345548+T*.0093525953294831%)
An=-37.510534954957112-T*(46.093826814625175+T*Qr)
d=921.56697552€53090+T%(74.428389741411179+T>
©d=2400.€6742371172675+T%(2971,9837452084320+T*RQd>
T=Y-.78539816339744828
Jo=.23209479177387820%SARCZ)*#(COSCTI*Pn/Pd-SINH(T)*Z+8n 0d>

RETURH Jo

FHEND

\
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APPENDIX A.5 — EVALUATION OF PHASE MODULATION INTENSITY SPECTRUM

The normalized covariance function for phase modulation is
given by (2.50) in the main text, namely

ko(Z) = exp|- T; w3 [1 - exp(-2)] - A[2 - p(3)] +

2
+ 28 11 - p(2)] exp(-u2/a) + A p(2) exp(- £ [1 - exp(-b2)1]]

(A.5-1)

for L 2 0, where  is the time delay and p(l) is the temporal
normalized covariance of the field process. Also ug = u%G.
Since (A.5-1) involves an exponential of an exponential of an
exponential, and because a wide range of parameter values are of
interest, care must be taken in numerical evaluation of this
covariance and its transform.

Observe first that
ko(O) = 1 since p(0) =1 . (A.5-2)
Also, as delay [ » +», then p 2 0, giving

k(=) = exp[-T} p - 2n + 22 exp[-pg/A]] =0 . (A.5-3)

The spectrum of interest is given by

W(w) = 4 f dZ cos(wt) K (Z) forw2 0 ; w=2nf . (A.5-4)
0

The nonzero value of (A.5-3) at = » leads to an impulse in
spectrum wo(w) at w = 0. This limiting value, ko(w), must be
subtracted from covariance (A.5-1) prior to the numerical
Fourier transform indicated by (A.5-4).

63




TR 8887

For ri pg << 1, the term

exp(- T3 42 (1 - exp(-2)1] (A.5-5)

approaches its limiting value at = +» as follows:

exp(- T4 wp (1 - exp(-0)1] - exp[- T3 12 =

= exp(- r, pg) [exp[ré ug exP(-C)] - 1] =

2 , 2
~ exp[- rs pp] ry b2 exp(-2) . (A.5-6)
This is a fairly rapid decay with Z and will not lead to
numerical difficulty when PA yg << 1.
For large byg/A, the term
2
Hp
exp(— = [1 - exp(-bC)]] (A.5-7)

is very sharp near ¥ = 0; in fact, it is given approximately by
Hp
exp[- A bc] for L near 0 . (A.5-8)

Therefore, we define the sharp component of covariance ko(l) as

e
ks(C) = exp[- A+ 2 exp[- -2 bc]] ~ exp(-A) for all T . (A.5-9)
Then
ks(O) = 1 - exp(-A) , ks(w) =0 . (A.5-10)
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Now we let

ko (L) = [k, (L) - k(L)1 + k(L) =
= ke (L) + k(2) , (A.5-11)

where kf(c) is a flat function near Z = 0. Then we can express
the desired difference as

k(L) - k(=) = [ke(Z) =~ k (=)] + k(L) =
E kl(C) + ks(t-) ’ (A.5-12)

where functions kl(C) and ks(L) both decay to 0 at { = . We now
employ two separate FFTs on each of the functions in (A.5-12).
The sharp component, ks(C), must be sampled with a very small

increment, A{,, when bpg/A is large. On the other hand, the flat
component

k1(Z) = ke(Z) - ky(=) (A.5-13)

can be sampled in a coarser fashion. Finally, if bp%/A is
moderate, we work directly with ko(c) - ko(o) without breaking
it into any components.

Two programs are furnished in this appendix, one for moderate
bp%/A, and the other for the flat component (A.5-13) wien bpg/A
is large. For sake of brevity, the Fourier transform of the
sharp component (A.5-9) is straightforward and is not presented.
The particular covariance p(l) adopted is triangular,

p(l) =1 - l%l for |Z]| < Cc , 0 otherwise , (A.5-14)
c

but can easily be replaced. The parameter Cc is the cutoff value
of covariance p(l).
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The number of samples, N, taken of the covariance, in order
to perform the FFT of (A.5-4), is rather large, so as to
guarantee a very small value of truncation error at the upper end
of the integral, despite the small increment A{. In order to
keep the FFT size, Mf, at reasonable values, the data sequence is
collapsed without any loss of accuracy according to the method
given in [8; pages 7 - 8] and [9; pages 13 - 16). The
trapezoidal rule is used to approximate the integral in (A.5-4),

for reasons given in [8; appendix A].

106 ! SPECTRUM FOR PHASE MODULATIOH - MODERATE

20 Mup=1. ! MUsubP

30 Gp=.,081 { Gamma”

40 B==1, ' b

S =,2 L &

66 Zc=2.%P1 I Rho(2> = 0 for |2]|>2¢c; Z=zeta
70 Delz=.865 I Zeta increment

806 H=5BYvBeYy ' Maximum number of samples of kalzetad
96 Mf=16384 ! Size of FFT

1006 DOUBLE H,Mf,Ms,Ms !  THTEGERS

110 DIM X(16384),Y(163284),C0s(4096)

120 REDIM X<a:Mf-1),¥(@:Mf-1>,CozC(BsMf 4)

130 MAT X=(6.>

140 MAT Y=(0,)>

150 T=2.*PI/Nf

160 FOR Ms=8 TO Mf~/4

i70 Cozs(McH>=COSC(T*Ms> ! QUARTER-COSIHNE TAELE
180 NEXT Ms

190 Ta=Gp*Mup*Hup
2060 IF A=6., THEH 220
210 Tb=Mup*Mup-A
226 Te=2.,#A*FHExp(Tb>
2360 Kinf=FHNExp(Ta+2.*%A-Tc> | CORRELATION AT INFIHITY
240 COM A,Bs,2c,Ta,Tb,Tc,Kinf
2506 T=1.-Kinf
2€0 PRINT 0,7
270 HKC@>=T#*.5 ! TRAPEZ0IDAL RULE
280 FOR Ms=1 TO H
296 Corr=FHKo(Ms#*Delz) ! CORRELATIOH koczetad
300 IF Hs<€ THEH PRIHT Hz,Corr
310 IF ABS(Corr»<1.E-30 THEM 356
320 Ms=Hs MODULOD Mf ! COLLAPSING
330 AMsrI=X(Msr+Corr
348 NEXT Ms
3506 PRIHT "Final value of Corr =";Corr;" Hs ="jH:z
360 MAT X=X*(Delz*4.)
370 CALL FFfL1d(Mf,Cos(®d,XC(%),¥Y (%))
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380
390
400
410
420
430
440
450
460
470
480
490
5006
S10
S52e
S3e
540
556
560
S57e
580
5960
Y:1%)
€10
620
€36
€40
€50
€60
670
680
€90

10
20
30
40
Se
606

8o

Se
100
t10
126
130
i40
150
ieo
170
180
190
200
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GINIT

PLOTTER IS "GRRAPHICS"

GRAPHICS ON

WINDOW -2,2,-60,0

LIME TYPE 3

GRID 1,10

LIME TYPE 1

Delf=1./(Mf%Del2)

FOR Ms=1 TO Mf-2

F=MsxDelf ! FREQUEMNCY
PLOT LGT(F)>,18.#LGTC(X(Ms)I>

HEXT Ms

PEHUP

PRUSE

EHD

|

DEF FHExp{(Xminus) I EXP(=-¥X> HITHOUT UNDERFLOMNM
IF Bminus>?88.3 THEH RETURH ©.
RETURN EXP(=-¥minus>

FNEND

'

DEF FNKo(Zeta) | CORRELATION ko(zeta)
COM A,Bs,2c,Ta, Tb,Tc,Kinf
Rho=MAX(B.,1.-2etas2¢)> | TRIAHGULAR RHO

El1=Ta*(1.-FNExp(Zetad3

E2=Tb*(1.-FHExp(Bs*¥2Zetal)>

E3=A*Rho*FMNExp(E2)>

RETURN FHExpC(E1+R*#(2,-Rho)~Tc*(1,.-Rho)-E3)>-Kinf

FHEHD

]

SUB Fft14(DOUBLE MH,REAL Cos(x),M(#)>,Y(*>) | H(=2~14=1€384; & SUES
t{ SEE APPEHDIX A.3

SPECTRUM FOR PHASE MODULATIOH - FLAT COMPOHENT

Mup=1. ! MUsubP

Gp=.0601 ! Gamma’

Bs=1. ! b

A=0. ! A

2c=2.%P1 I Rho(2> = 0 for |2|>2c; 2=zeta
Delz=.005 ! 2eta increment

H=66000 ! Maximum number of samples of kildlzetad
Mf=16384 ! Size of FFT

DOUBLE HN,Mf,Ms,HNs ! INTEGERS
DIM X(16384),Y(1€384),Co0s8(4096)

REDIM X(B:Mf-1)>,Y(0B:Mf-1>,Cos(B:Mf 4)
MAT X=(0,)>

MAT Y=(9,

T=2.%P1/Mf

FOR Ms=0 TO Mf-4

Cos(Ms)>=COS(T#Ms) ! QUARTER-COSINE TAELE
NEXT Ms

Ta=Gp*Mup*Mup

IF A=6. THEH 220
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210
220
230
240
250
2€0
270
280
299
300
310
320
3306
340
350
3¢e0
370
380
399
400
410
420
430
440
450
4¢0
470
480
490
509
Si1e
S5ze
530
540
550
560
570
580
590
%1%
€10
620
636
640
650
660
676
680
690
700
710
720
730
740
750
760
vvo
780
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Te=Mup*Mup-A
Tc=2.*#R#FHExp(Tb)

Tb=5.ESS

Kinf=FNExp{(Ta+2,#A-Tc> ! CORRELATIOH AT IHFIHITY

Ea=FHExp(R>

Tbb=Tb#Bs

coM A,Bs,2c,Ta,Tb,Tc¢,Kinf,Ea, Tbb

T=1.-Kinf-¢1,-Ea> t  SUBTRACT SHARP COMPOHENT
PRIHT ©O,T

R(BX>=T%.5 !  TRAPEZOIDAL RULE

FOR NMNs=t TO N

Corr=FHE1(Hs*Del2) ! CORRELATION k1(zeta)

IF Ns<€&€ THEH PRIHT Hs,Corr
IF ABS(Corr><1.E-36 THEH 380

Ms=Hs MODULO Mf !  COLLAPSIHNG
R(MsI=¥(Ms>+Corr

MEXT HNs

PRIHT "Final value of Corr ="jCorr;" Hz ="jH=

MAT X=X*(Delz*4.)

CALL FFt14(Mf,Cos(¥),%C*),Y (%))
GINIT

PLOTTER IS "GRAPHICS"

GRAPHICS OH

WINDOW -2,2,-60,0

LINE TYPE 3

GRID 1,10

LINE TYPE 1

Delf=1,/C(Mf*Delz)

FOR Ms=1 TO Mf/2

F=Ms*Delf ! FREQUENCY
T=X(Ms)

IF T>8. THEH 558

PENUP

GOTO 568

PLOT LGT(F)>,18.%LGT(T)

MEXT Ms

PENUP

PAUSE

END

{

DEF FHExp(Xminus) 1 EXP(=%X> WITHOUT UHDERFLOM
IF %minus>?88.3 THEN RETURH O.
RETURH EXP(-Xminus)

FHENMD

!

DEF FHK1(Zeta)d ! CORRELATIOH kiczeta)
coM A,Bs,2¢,Ta,Tb,Tc,Kinf,Ea, Tbb
Rho=MAX(OB.,1.-Z2etasZ2c)> | TRIANGULAR RHO

E1=Ta*(1.-FHExp(Zetal)

E2=Tb¥*(1.~-FHExp(Bs*Z2eta)>

E3=A%*Rho*FHExpC(E2)

E4=FHExp(Tbb#*Zeta)d

Sharp=FHExp(A*(1.-E4>>-Ea ! ks(zetad

RETURMH FHExp<E1+A*(2.-Rho)~-Tc#*#(l.-Rho)-E3)-Kinf-Sharp
FNEND

!

SUER Fft14(DOUBLE M,REAL Cos (%) ,X(#)>,Y(#)) | H{(=2~14=16384

! SEE APPENDIX RA.3
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APPENDIX A.6 — EVALUATION OF FREQUENCY MODULATION
INTENSITY SPECTRUM

The normalized covariance function for frequency modulation
is given by (2.48) in the main text, namely

ko(2) = exp[- T} b2 [exp(-2) + T - 1] - A[2 - p(2)] +

2
7

+ A p(2) exp[- £ fexp(-bt) + bL - 1]]] for £ 2 0, (A.6-1)
Ab

where  is the time delay and p(l) is the temporal normalized
covariance of the field process. Also, y% = “%G and

b = AwA/AwN. Since (A.6-1) involves an exponential of an
exponential of an exponential, and because a wide range of
parameter values are of interest, care must be taken in numerical
evaluation of this covariance and its transform.

Observe that

k(0) =1, because p(0) =1 . (A.6-2)
Also, as delay Z - +«, then p > 0, giving
2
k(L) ~ exp[- s ud (L -1) - 2A] = k,(8) for & > 0 .  (A.6-3)

This term, kl(C), decays slowly with ¢ if PA p% << 1 .

The spectrum of interest is given by

Wo(w) = 4 I dt, cos(wt) k,(Z) for w 2 0 ; w = 2rf .  (A.6-4)
0

The spectrum corresponding to the limiting component, kl(c) in
(A.6-3), is directly available in closed form as

69




TR 8887

Wy(w) = 4 [ dZ cos(wZ) ky(Z) =

0
2 4 T; uyp
= exp(r’ o ~ ZA) . (A.6-5)
A HF T 2\2 . 2
Tp Hpf *+w

If P’ y% << 1, this latter quantity is large and very sharply

peaked at w = 0; hence, this term has been subtracted out and
handled separately when I‘A pg << 1. The residual covariance,
ko(C) - k;(%), then decays very rapidly with { and is easily
handled directly by means of an FFT. This breakdown is not
necessary when P’ p% ~ 1 and is avoided, then, by handling

k (L) dlrectly in one FFT.

For uF/A >> 1, the term

exp( Ab [exp(-bL) + bL - 1]] (A.6-6)

inside the exponential in (A.6-1) behaves like

2
u
exp[- —% % C2] near { = 0 , (A.6-7)

where its major sharp contribution arises. For example, if
Hg = 50, A = 1, then increment Al = .005 leads to values for

exp(-0.156 n2) at { = n AL , (A.6-8)

which is adequately sampled in order to track its dominant
contribution; the actual sequence of values is 1, .856, .536,
.247, .083. For smaller pg/A, this sampling interval is more

than adequate.
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Two programs are furnished in this appendix, one each for the

2 The particular covariance p(l)

cases of large and small PA Hp-

adopted is triangular,

p(C) =1 - 1el for |C] < Lc , 0 otherwise , (A.6-9)

but can easily be replaced. The parameter Ce is the cutoff
covariance value and is specified numerically in the examples in
figures 3.9a through 3.10b.

16 ! SPECTRUM FOR FREQUEHCY MODULATIOHN - LARGE Gp*Mus &
20 Muf=58. ! MUszubF

30 Gp=.08061 I Gamma“

40 Bs=1, t b

Se A=,2 ' A

60 2c=2.%F1 I Rho(2) = 0 for |2|>2c; 2=zeta
7o Delz=.085 ! 2eta increment

&8 H=&BBBo ! Maximum number of samplez of kodzetad
90 MF=1€384 ! Size of FFT

19809 DOUBLE MH,Mf,Mz,Hs ! INTEGERS

110 DIM X<(16384)>,Y(16384>,C0s(4696)

126 REDIM X<@:Mf-1>,Y(B:Mf-1),Cas(B:MFf 4>

130 MRT X=<¢@.>

140 MAT Y=<0.)

150 T=2.*%#P1/Nf

160 FOR Ms=B TO Mf-4

170 Cos(Ms>=COSCT*Ms) ! QUARRTER-COSINE THBLE
180 HEXT Ms

190 Ta=Gp*Muf*Huf

200 IF A=0. THEN 220
210 Tb=Muf *Muf - (A*Bs#*Bs)

220 Tec=FHExp(2.#%#A-Ta>*Ta

230 Td=Ta#Ta
240 cOM A,Bs,Z2c,Ta,Tb
250 X(B>=.5 ! TRAPEZOIDAL RULE
260 FOR Ns=1 TO N
270 Corr=FHKo(Ns#*Delz> ! CORRELATION ko(zetad
280 IF Corr<1,E-20 THEH 320

290 Ms=Hs MODULO Mf ! COLLAPSING

300 X(MsI=K(Msr>+Corr

310 NEXT Ns

320 PRINT "Final value of Corr =";Corr;" Hs =";Ns
330 MAT X=X#(Delz)

340 CALL FFt14{Mf,Cos(#) (%), (%))
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350
360
370
380
398
4060
410
420
430
440
450
460
470
480
490
See
S18
520
S3e
S40
556
1Y)
578
588
596
Y5 ]o)
618
620
630
€40
650
6€a
€70
€80
€90
vee
‘10
720
736
740
rse
760
vre
7806
790
800
810
820
830
840
85e
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GIMIT

PLOTTER 1S “GRAPHICS"
GRAPHICS OM

NIHDOW -4,2,~70,30

LINE TYPE 3

GRID 1,10

LINE TYPE 1
Delf=1./C(Hf*Delz)

FOR Ms=1 TO Mf-2

F=Mc*Delf I FREQUEMNCY
T=X(Ms)

IF T>6. THEMW 498

PENUP

GOTO 560

PLOT LGTCF),16.%LGTCT)

MEXT Ms

PENUP

Add=%(8>-Tc-Td i GRIGIH CORFECTIOH
F=1.E-4

FOR Hs={ TO 100

H=2.%PI%F

M1=Tec/ (Td+H*WD

T=W1+Add

IF T>8. THEN 610

PENUP

GOTO 620

PLOT LGTC(F)Y,18.%LGTC(M1+Add)
F=F#1.1 i FREGUENCY
IF F>Delf THEN €50

HEXT Hs

PENUP

PAUSE

END
!

DEF FHExp(¥minus) ! EXP(-X> WITHOUT UNDERFLOM

IF Xminus>798.3 THEN RETURH 6.

RETURH EXP(-Xminus>

FHEND

1

DEF FMKo(Zetad ! CORRELATION ko(zetad
cOM A,Bs,2c,Ta,Tb

E1=FHExp(Zetad>+2eta-1.

T=Bs#*Zeta
E2=FHEXp(TY+T-1.
Rho=MAX(@.,1-2Zetas2c> ! TRIANGULAR RHO

T=Ta*E1+A* (2. -Rho)-A*Rho*¥FNExp(Tb*E2)
RETURN FHExp(T>

FNEND
]

SUB Fft14(DOUBLE H,REAL Cosd(#),X(*¥),¥Y(#)) ! H{=2~

! SEE APPEHNDIX R.3
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16 | SPECTRUM FOR FREGUEHCY MODULATIOH - SMALL Gp#*Muf~2
20 Muf=1, I MUsubF
30 Gp=.001 ! Gamma“
40 Be=1. ! b
1% =,2 ' A
60 2c=2., %P1 ! Rho(2) = 0 for |2|>2c; 2=zeta
78 Delz=.065 I 2eta increment
806 H=18080 ! Maximum number of samples of
96 Mf=8192 ! Size of FFT
1006 DOUBLE N, Mf,Ms,Hs !  INTEGERS
110 DIM X(8192)>,%v(8192),C0s(2048)
120 REDIM X(O:Mf-13,¥C0O:Mf~1),CosC(B:Mf 4)
130 MRT X=(8.)
140 MAT ¥=(B8.)>
150 T=2.*#PI/Mf
160 FOR Ms=6 TO Mf-/4
176 Cos(M=>=COS(T#Ms=)> !  QUARTER-COSINE TABLE
1806 NEXT Ms
196 Ta=Gp*Muf*Muf
2060 IF R=6. THEN 220
210 Tb=Muf*Muf (A*B=z*Bs)
220 T=FHExp(2.,*#A-Ta>
236 Tc=T*Ta
240 Td=Ta*Ta
250 Delf=,1%Tas(2.*PI> ! IHCREMENT IM FREQUENCY
260 COM A,Bs,2c,Ta,Tb
270 X(BY>=.5%(1.~-T> ! TRSPEZOIDAL RULE
280 FOR Hs=1 TO N
29a Corr=FNKol1(Ns#Delz)> !  CORRELATIOH ko(zetad-kld(zeta)
300 IF ABS(Corr)><1.E-38 THEH 348
310 Ms=Ns MOLDULO Mf !  COLLAPSING
320 K(MeI=X(Ms>+Corr
330 HEXT HNs
340 PRINT "Final walue of Corr ="j;Corr;" NHe ="j3Ms
350 MAT X=X*#(Delz>
3€06 CALL Fft1d4C(Mf,Cos(*),¥(*),Y (%))
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410
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430
440
450
460
470
480
498
Seo
510
528
536
5S40
558
S¢€o
Sve
580
S9@
6060
610
620
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640
650
660
€70
€80
€90
rq-1%]
’1e
720
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740
756
7’60
770
7860
790
800
810
820
038
840
5o
860
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GINIT

PLOTTER IS "GRAPHICS®

GRAPHICS UOH

WINDOW -4,2,-70,30

LINE TYPE 3

GRID 1,10

LIHE TYFE 1

FOR Ms=1 TO 2600

F=MsxDelf !  FREQUEHCY

W=2.,%P1*F

WNI=Tc s (Td+H=l)D ! SHRARP SPECTRAL COMFPOMEHNT
T=Mf*Delz*F

Hs=INT(TO

Fr=T-Ns

H2=Fr#xX(Hz+1>+(1.-Fr)*¥(Ns) | BEROAD SPECTRAL COMFIOHENT
PLOT LGT(FY, 10, *LGTCHLI+MEZ"

HEXT HMs

Ns=MAX(Hz,1)

FOR Ms=Ne TO MNf-2

F=Mz/(Mtr+#Delz) !  FREQUEHCY

W=2,%P1*F

WI=Tc  (Td+k*l)

W2=H{(Ms)

T=H1i+K2

IF T>8. THEH €40

PENUP

GOTO €50

PLOT LGTC(F>,18.*LGT(T)

MEXT Ms

PEHUP

PRUSE

EHD

|

TEF FHExp(¥minus) I EXPC(=-X) WITHOUT UNDERFLOW
IF Hmwinus>788,.3 THEH RETURHN 6.

RETURM EXP(-Xminus)

FHEND

DEF FHKol(2eta) ! CORRELATIOHN koCzetad-kldizeta’
coM A,Bs,2¢,Ta,Tb

E1=FNExp(Zetar+leta-1i.

T=Bz=%2eta
EZ=FHExp(T ,»+T~1,
rho=MRX (B, ,1-2etas2c> t TRIANGULAR FHD

T=Ta*E1+A* (2. -Rho)-A*Rho*FHExp (Th*E2)D

RETURH FHExp(Ts-FHNExp(Ta*(2eta-1.>+z.*¥5)

FNEHD

!

SUB Fft14(DOUEBLE N,REAL Cos(%,,X(s),Y (%)) | H{=2~14=1&3C4;
I SEE HPPEMDIX A.3
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