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1. INTRODUCTION

Constitutive models for deformable media are developed by performing material tests, prefera-
bly under environmental conditions which are identical to those in the service environment. The
environmental conditions are implicitly assumed to be measurable and controllable independent
variables such as temperatare, pressure, and relative humidity. Complications arise in the development

of constitutive models if the service environment conditions are harsh, unknown or impossihle to exactly

reproduce in laboratory testing.

The “classical” one-factor-at-a-time' material test program proceeds by testing the material over
the operating range of a particular variable, while the other variables are held constant at a value within
their respective ranges. The test program can become time consuming and costly if the effects of a
number of variables are to be investigated. Furthermore, if nonlinear effects (interaction, curvature) are
present among the variables, one-factor-at-a-time experimentation will not detect them. As an alterna-.
tive, a statistically valid experimental design strategy can be used to minimize the totzl number of tests

performed and to maximize the amount and quality of information that is obtained.

This report describes the implementation of a statisticz;lly based experimental design strategy for
evaluating the relative importance of three independent continuous variables, i.e., temperature, strain
rate, and specimen aspect ratio (L/D), and one independent discrete variable, specimen end lubrication,
in predicting the uniaxial compressive mechanical response of JA2 gun propellant. The design strategy
lends itself to the development of a mechanical response model whose prediction error is comparable to
the standard deviation obtained in replicate testing. Since a hierarchy of importance in the independent
variables will be established, the experiments will essentally fbrm ascreening design. JA2 gun propel-
lant has been shown to be a rate-sensitive and temperature-sensitive material??, and in a variety of
materials, the specimen aspectratio and degree of end lubrication affects the mechanical response by per-
turbing the homogenecus stress state in the specimen during uniaxial compression®, Although other vari-
ables, such as relative humidity and hydrostatic pressure, may affect the mechanical response of the pro-

pellant, these variables are not investigated since they are not directly controllable with the experimen-

tal apparatus.




2. EXPERIMENTAL METHOD

2.1 Apparatus, Data Acquisition and Data Reduction, The High Rate 810 MTS Material Test

System (Figure 1) consists of a conventional two-pole press with a servohydraulically actuated ram that
operates from quasistatic velocities to a maximum velocity of about 12 m/sec; the maximum velocity

imparts a maximum strain rate of 1200 sec’! on a 10 mm long specimen. A Thermotron oven/refrigerator

/—- Actuator

Impact Bell

Specimen
Stage
Impact Cone

Shock Absorbing
Piston & Cylinder

Base

Figure 1. Servohydraulic Test Apparatus wi

environmental chamber surrounds the upper and lower piston which helps to maintain a constant test
temperature. Gun propellant specimens are thermally conditioned within the chamber for at least one
hour prior to testing at a given temperature. A more complete description of the servohydraulic test ap-
paratus can be found in the initial report by Gazonas?. Uniaxial compression tests are performed at con-
stant strain rate by computer control of the piston velocity via feedback from an externally-mounted dis-
placement transducer (LVDT). Force measurements are made with a 60 kN quartz force gage that is
mounted on the upper moving piston. The raw force and displacement data are acquired, stored, and then
analyzed with a Norland 3001 data acquisition system. The raw force and displacement data are reduced

to engineering stress versus strain plots by normalizing to initial specimen area and length respectively,




and corrccﬁng for apparatus distortion as previously reported”. The uniaxial compression testresults for
this material are highly reproducible and are illustrated by plotting the results for five replicate tests at

strain rates of 10?and 200 sec” (Figure 2).
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2.2 Specimen Preparation, Right circular cylinders of JA2 (lot # 81E001S110) propellant are
cut from seven-perforation granular stock using an Isomet double-bladed diamond saw. A double-
bladed saw is used to cut specimen ends parallel to each other and to help maintain coaxial deformation
with the cylinder axis. Specimens with aspectratios, length-to-diameter (L/D), of 0.8 and 1.3 are tested,
with a limit on the upper L/D set by the initial length of the granular stock. The specimen diameters
averaged 8.72 mm and the perforation diameters averaged 0.483 mm. Molvbdenum disulfide , MosS,,

is applied sparingly to the specimen ends in those tests that require end lubrication.

2.3 Experimental Design. A 2¢ (factorial) experimental design is utilized'; the name of the design
arises from having four independent, controllable, variables. We test these variables at two levels (low

and high). The total possible number of low/high combinations is thus 2¢, yielding sixteen cxperiments.




Recall that three of our indepencent variables (strain rate, aspect ratio, and temperaturs) a*z . : -ntinuous
throughout their respective ranges. The fourth variable is discrete, "yes” or "no”, ennie.:, -5~ ding 1o
whether lubrication is present or not present. A desirable feature of th= family of facteric! desizi's is the

ability to accommodate both continuous and discrete variables.

The present design is orthogonal since there is no correlawion (linear assc -iation) betw::2n the in-
dependent variables. The orthogonal design assumes that any estimate of a factcr sect ie..2 speciinen
aspectratio) is independent of the effects of all others, whether they are linearornorlineas. Ir L.omecaces,
variables which were initially assumed to be independent, may in fact be dependent v:z-:u one another.
For example, the coupling of thermodynamic and mechanical fields becomes important in media
subjected to inertial loading®. Thermomechanical coupling is assumed to be negligible in our tests.

An experimenter often encounters a situation where one or more environmental factors are
present which cannot be directly controlled in the experiment. An example might be a drifting ambient
relative humidity in the laboratory. The tests are conducted inrandom order to minimize the confounding
effects of environmental variables. In our case the sixteen experiments are performed in a statistically
random order. Table 1. shows the experimental conditions (A=strain rate, B=temperature, C=aspect
ratio, D=lubricadon), the experimental responses (R1=yield stress, R2=yield strain, R3=absorbed
energy, R4=compressive modulus), and the random order in which our sixteen experiments are
executed. The standard order represents how the variables are permuted beginning at settings
(low,low,low,low) and ending at settings (high,high,high,high). One can visualize the design endpoints
in our 2* experimental design using a cube plot. Each vertex in the cube represents a "low” or "high" test
condition for a particular experiment (Figure 3). Two cubes are needed to represent the sixteen experi-
ments in our 2* design; one cube represents all lubricated experiments, and the second cube represents

all unlubricated experiments.

In contrast, the experimenter would perform 80 tests using a "classical” test approach (Figure
4) to obtain mechanical responses at all sixteen experimental conditions addressed in this research; in
this calculation, it is assumed that five tests are sufficient to ensure reproducibility at each experimental
condition. However, this example (Figure 4) respresents a five-fold replication of the factorial design
(Figure 3). The hidden replication present in factorial designs removes the necessity of performing

multiple tests ateach test condition. The actual number of tests required ateach experimental condition,




Table 1. Experimentul Protocol with Random Run Number and Experimental Responses.
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using the "classical” test approach, is directly proportional to the variance of the measured quantity and

inversely proportional to the required tolerance®.

The sixteen experiments in this phase of investigation serve as a screening function, rather than
a basis for a predictive mathematical model. Specifically, we seek to determine which of the four
independent, controllable variables have significant effects on the measured mechanical responses. In
addition, we wish to determine the effect of the discrete variable, lubrication, on the mechanical response

of the JA2 gun propellant.
3. EXPERIMENTAL RESULTS

The mechanical response of the JA2 propellant is characterized by the compressive modulus,
stress and strain at yield, and absorbed strain energy density at yield (Figure 5). These particular
measures of the mechanical response are chosei so that a comparison can be made with previous one-

factor-at-a-time experiments®’,

50.0¢4¢

40.0¢
- yield do = compressive mod
5 stress de
S 30.0 +
-
:
© 20,0 4=---eemnneer

absorbed energy
10.0 ¢+
nontinear "toe"”
o =LfLiz] ] i } |
0 .08 0.10 0.1% 0.20 0.25
strain (E)

yield strain

Figure 5. Measured Mechanical Responses,




The yield stress is defined as the stress level where the material most rapidly loses its ability to
sustain load. The stress level is determined by finding the minimum in the second derivative of stress
with respect to time?. The mechanical response is measured at the following independent variable
endpoints: strain rate (10 and 500 sec™’.), temperature (0 and 60 degrees Celsius), aspect ratio (0.8 and
1.3),and end lubrication (yes and no) (see Table 1). Cube plots which illustrate the stress at yield response
of the JA2 propellant appear in Figure 6. The encircled numbers at the cube vertices include the yield
stressés (in MPa) determined at the various experimental conditions (Table 1), and the random run
numbers. The plots indicate that the yield stress increases as the strain rate increases, and decreases as
the temperature is increased in both lubricated and unlubricated tests. In addition, there does not appear

to be, by mere visual inspection of the plots, a yield stress dependence on specimen aspect ratio.

Yield Stress (MPs)

Unlubricated Lubricated

,
.
o (imY
13

log 10 Strain Rate

-4

Figure 6.

An inspection of the remaining cube plots (Appendix A, Figures A4, A7, and A10), indicates
that in addition to the yield stress, the absorbed strain energy at the yield stress and the compressive |
modulus increase with an increase in strain rate, yet decrease with an increase in temperature. The strain
at yield is independent of strain rate, temperature, and aspect ratio, yet increases if the specimen ends

are lubricated.



4. DISCUSSION OF RESULTS

A mechanical response surface is generated to determine the relative linear and nonlinear
contributions of the independent variables. In this research, the empirical response surface, Y, is writ-

ten as a second degree polynomial expansion of the four independent variables, X, X, X, and X))

as:
Y=b0+ blxl+b1x2+b3x3+b4x4+bllex1+b13x1x3+b14xlx4
+ b XX, + b, XX, + b, X X,
or, more generally as:
e T q
Y=05b + Zbixi + zbijxixj
i=t =t 21

n

where, b, = z Y/n and q = the number of factors, n = total no. of experiments.
i =

The b, terms quantify the main effects of the independent, controllable variables. The b,
terms describe the pairwise interaction effects of the independent variables. The intercept term, by, is
simply the arithmetic mean of all the recorded responses. The second degree polyromial model is the
fit to the data using standard least squares regression techniques. First, howaver, the actual numerical
values of the independent variables, X, are standardized (nondimensionalized) to range from +1 for
"high" experimental conditions, and -1 for "low" experimental conditions. By nondimensionalizing the
variables, and ranking the magnitudes of the coefficients determined by regression analysis, one can

determine the relative contribution of each variable to the measured mechanical response.

The coefficients, (b, b, and b,), of the linear and nonlinear terms in the second degree polyno-
mial expansion with an alpha significance level of .05 or more are included in Table 2. A complete list
of response cocfficients appears in Appendix A (Figures A2, A5, A8, and A11). A positive coefficient

for a particular variable, e.g., strain rate, indicates that the response;, e.g., yield stress, increases if the

9



controlled variable increases. A negative coefficient for a particular variable indicates thai the response

decreases if the controlled variable increases. In addition, the yield stress, absorbed strain energy, and -

the natural log of the compressive modulus is predicted to a high degree of precision since the adjusted
R-square values are all greater than 0.91. Recall, the R-square statistic is one of several goodness-of-
fit measures'. However, it is more difficult to predict the yield strain and compressive modulus as evi-
denced by the relatively low adjusted R-square values of 0.75, and 0.79 respectively (Table 2). An
adjusted R-square of of 0.91 implies 91% of the total variation in our system is explained by the second
degree polynomial model that was fit to the data. The R-square value is adjusted by normalizing the R-
square statistic by the number of coefficients to be estimated. In addition, the adjusted R-square value
represents contributions from all eleven terms, some of which are not significant at the alpha=.05
confidence level.

Table 2. Least Squares Regression Coefficients (alpha = .05).

. J . . . 9 od  ses
RESPONSHConst) € T LjeT| eA| eL{TA| TL{ AL] R,,{RMS| s
Stress
@ Yield | 13.34 10.1 | -9.58 <736 0.990] 1.625] 1.418
Strain
@ Yield | 3.12 . 436 | -.996 0.752] 0.707] 0.656
Energy
@ Yield | .189 | .146{ -.159 -137 0.916} 0.082] 0.046
Modulus 16982 551.2{-350.9) -239.5 0.799} 367.2{112.74
Ln (Mod) 5.74 120 | -.746 245 J28%-.14 0985/ n/a| n/a
¢ = strain rate
* Adjusted R-square statistic. T = temperature
*# Root-Mean-Square error of data and model in this report. A = aspect ratio

ed Qo iati 2
Standard Deviation from Gazonas L = lubrication

A2
2 2 OG- Y) /(n-p-1)
0 = R =21 - -

-2
Z Y5-Y) /(n-1)
1
where n = no, of tests, p =no. of coefficients

- A
Y = mean response, Yl = estimated response

RMS = -\/ 3 -9 -pe
i
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The variability in our estimates of the mechanical response is also quantified using the root-

méan-squarc, RMS, error which agrees well with the error estimated from replicate tests? on JA2 gun
propellant (Table 2). The RMS error includes contributions from both data-model mismatch and test
variability.

The results of this sixteen-test study are corroborated by previous one-factor-at-a-time experi-
ments?? insofar as the JA2 compressive modulus, yield stress, and absorbed strain energy are found to
increase with an increase in strain rate and decrease with an increase in temperature. The previous work?
also corroborates the observation (Table 2.) that the yield strain is insensitive to strain rate. Some of the
dominant nonlinear effects include a decrease in the yield stress, yield strain, and absorbed strain energy,
and an increase in the compressive modulus, as both strain rate and temperature are simultaneously in-
creased. Tests where the specimen ends are lubricated have less variability than tests where specimen
ends are not lubricated. A comparison of the degree of variability between lubricated and unlubricated
test ‘results is illustrated by blotting the difference (residual) between the model prediction and the
observed data for each measure of mechanical response as a function of whether or not lubrication is
used (Appendix B). A higher degree of variability in the mechanical response is present in the
unlubricated specimens even though they are reiatively insensitive (all except strain at yield) to
lubrication (Table 2). Some of the interesting coupled nonlinear effects include a decrease in the stress
and strain at yield, and absorbed energy at yield, as both strain rate and temperature are simultaneously
increased. The interaction of strain rate and temperature can be visualized with interaction surface plots
(Appendix A, Figures A3, A6, A9, and A12). Additional linear and nonlinear responses are present
(Table 2) but they are not significant at the alpha=.05 confidence level. The effects of aspect ratio and

lubrication are discussed in more detail in the remainder of this section.

4.1 Specimen Aspect Ratio, The screening design indicztes that the specimen aspect ratio does
not significantly affect the mechanical response of JA2. However, we expect that aspect ratio should
affect the mechanical response of materials deformed in uniaxiai compression. Specimens with large
aspect ratios become unstable due to bending under uniaxial compression and therefore have lower
strengths than specimens with small aspect ratios which have higher strengths*. A series of constant strain
rate (100 sec!), uniaxial compression tests performed on JA2 and M30 gun propellants at -30 degrees

Celsius reveal that, for épccimcns that deform by macroscopic fracture, the absorbed strain energy

density per unit volume at maximum stress decreases as the specim=n aspect ratio is increased from 1.5

11




to 3 (Figure 7). The observation that aspect ratio did not affect the mechanical response of JA2 in this
study is a result of the limited range in the aspect ratios of the tested specimens (0.8 to 1.3); the upper
bound on the aspcét ratio is limited due to the length of the initial granular JA2 propellant stock.

Absurbed Energy vs Specimen L/D for JAZ2. Absorbed Energy vs Specimen L/D for M30.
& 10
L ]
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One obtains a much better fit to the polynomial model if the natural log of the compressive
modulus (R? o= 0.985) rather than the compressive modulus (R? = 0.799) is used as a measure of the

mechanical response (Table 2). The logarithmic transformation provides a superior fit to the polynomial

model, yet it is difficult to explain or rationalize why specimen aspect ratio and end lubrication become
significant (Table 2) when the compressive modulus is transformed. Furthermore, itis observed that the
strain rate and aspect ratio interaction is not significant, yet the temperature and aspect ratio interaction
is significant when the transformed compressive modulus is used to characierize the mechanical

response.

4.2 End Lubrication, End lubrication did not significantly affect the mechanical response of the
JA2 gun propellant in uniaxial compression. However, the degree of variability in the mechanical re-
sponse was minimized by using lubrication (Appendix B). Since lubrication alters the boundary
conditions at the specimen-piston interface, the increase in yield strain in lubricated specimens could
be attributed to an increase in the size of the nonlinear "toe” (Figure 5), rather than an intrinsic material

response. 12




5. CONCLUSIONS

1) The use of a well designed testifxg approach maximizes the information obtainable concerning

- the sensitivity of the mechanical response of JA2 gun propellant to the effects of strain rate, temperature,

specimen aspect ratio, and lubrication, while simultaneously minimizing the number of tests required.
The 24 statistical design used in the preseat research is particularly useful for determining a subset of

important variables (screened variables ) from a larger set of potentially important variables.

2) Experimental design methods provide an empirically derived material model for quantifying
factor effects within the test range. The empirical model can then be used to validate micro- or macro-

phenomenological constitutive models for JA2.

3) JA2is sensitive to changes in strain rate and temperature. Therefore, JA2 constitutive models

should incorporate rate and temperature dependent effects.

4) The effect of specimen lubrication is to increase the strain at yield and reduce the variability
in the measured mechanical responses (i.e., stress and strain at yield, absorbed strain energy density at
yield, and compressive modulus). The use of lubrication is recommended for future compression tests
on JA2.

5) The effect of specimen aspect ratio in the limited test range is not detectable with the available
experimental equipment. Replicate compression tests on JA2 and M30 gun propellant at strain rates
of 100 sec, and -30 degrees Celsius indicate that the absorbed energy decreases as specimen aspect ratio
increases from 1.5 to 3.0. Additional testing is required to quantify the effects of aspect ratio on the
mechanical response of the gun propellant.

6) The measured mechanical response of JA2 is well represented by a second degree polynomial

model, since the RMS errors in the mechanical response are only slightly greater than the standard

deviations in the mechanical response derived from prior one-factor-at-a-time replicate tests on JA2,
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6. FUTURE WORK

This report describes a screening design performed on perforated JA2 gun propellant. The next
phase of this research is to use the data collected from an expanded test matrix to determine if effects
arising from the presence of perforations can be detected. This can be done using a face-centered cube
(FCC)design with perforations being considered as adiscrete variable. The otherindependent variables,
(i.e. strain rate, temperature, and specimen aspect ratio), will be identical to those used in this report, with
the exception that lubrication will be used in all tests. The FCC design will serve two purposes: 1) to
provide the ability to measure the effects of perforations, and 2) to provide the ability to detect the

presence of second-order nonlinear effects, curvature and quantification of these effects.
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APPENDIX A:

CUBE PLOTS, LEAST SQUARE COEFFICIENTS, AND
INTERACTION PLOTS FOR THE RESPONSES
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Figure Al. Cube Plots for Stress at Yield
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STRESS_COETT

19R x 5C

Least Squares coefficients, Responss ST, Mode

0 Term 1 Coeft. 2 std. Error 3 T-value 4 Signif.
11 13.342250 . 0.406284 32.84 0.0001
2 ~8 10.084000 0.406284 24.82 0.0001
3 -7 ~9.585250 0.406284 -23.59 0.0001
4 ~A «0.760250 0.406284 -1.87 0.1202
5 1<1df> 0.8104
§ NO -0.102750 0.406284 -0.25 0.8104
7 YES 0.102750 0.406284 0.25 0.8104
8 ~S*T «7.363500 0.406284 -18.12 0.0001
9 ~8*A -0.931000 - 0.406284 -2.29 0.0705

10 -s*L<ldf> 0.3995

11 XO 0.374000 0.406284 0.92 0.3995

12 YIS «0,374000 0.406284 -0.92 0.3995

13 ~T*A 0.512250 0.406284 1.26 0.2630

14 -T*L<ide> 0.7138

1% RO ~0.157750 0.406284 -0.39 0.7138

16 YES 0.157750 0.406284 0.39 0.7138

17 ~A*L<ldf> 0.7536

i8 KO 0.134759 0.406284 0.33 0.7536

19 YES -0.134750 0.406284 ~0.33 0.7536

No. cases = 16 R-sq. = 0.9967 RMS Error = 1.625

Resid. df = R-sq-adj. = 0.9901 Cond. No. = 1

~ indicates factors are transformed.

Figure A2. Least Squares Coefficients for Swress at Yield,
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Figure A4. Cube Plots for Strain at Yield.
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STRAIN _COEFY 12R x 5C

Taast Squares Coefficients, Response STR, Mode!

0 Ternm 1 Coeft. 2 std, Error 3 T-value 4 Signif,
11 3.122500 0.176674 17.67 0.0001
2 -8 -0,240000 0.176674 -1.36 0.2114
3 ~r ‘-0,396250 - 0.176674 -2.24 0.0552
4 ~A . «0,255000 0.176674 -1.44 0.1869
5 1<1df> 0.0388
6 RO -0,436250 0.176674 -2.47 0.0388
7 YES 0.436250 0.176674 2.47 0.0388
§ ~8*7 ~0,996250 0.176674 ~5.64 0.000S
9 ~8rL<ide> 0.1565

10 NO 0.276250 0.176674 1.56 0.1565

11 ES «0.276250 0.176674 ~1.56 0.1565

12 ~TvA 0.311250 - 0.176674 1.76 0.1161

No. cases = 16 R-sg. = 0.8676 RMS Error = 00,7067

Resid. df = 8 R-sg-adj. = 0.7517
~ indicates factors are transformed.

Cond. No, = 1



STRONG STRAIN_RATE*TEMPERATURE INTERACTION

Figure A6. Strain Rate*Temperature Interaction Surface for Strain at Yield,
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1 S —
~ / R
ENERGY_COEFF 19R x 5C

Least Squares Coefficients, Response E, Model
0 Term 1 Coeff. 2 std. Zrror 3 T-valve 4 Signif.
11 0.189375 - 0.020378 9.29 0.0002
2 ~8 0.146625 0.020378 7.20 0.0008
3 ~7 «0.159375 0.020378 -7.82 - 0.0005
4 ~A «~0.041875 - 0.020378 -2.08 0.0950
5 L<1df> 0.3174
6 NoO ¢ =0.022625 0.020378 -1.11 0.3174
7 =S 0.022625 . 0.02037%9 1.11 0.3174
8 ~8»7 ~0.136875% 0.020378 -6.72 0.0011
9 ~S*A -0.041875 0.020378 -2.05 0.0950
10 ~S*I<1df> 0.7495
11 KO «0.006873 0.020378 -0.34 0.7495
12 ¥ES 0.006875 0.020378 0.34 0.7495
13 ~T*A 0.04387% 0.020378 2.15 0.0839
14 ~TrI<1df> . . 0.5191
15 xo 0.014125 0.020378 0.69 0.5191
18 ¥Es -0.014125 0.020378 -0.69 0.5191
17 -Ari<1de> ‘ 0.7847
18 NO -0.005875 0.020378 -0.29 0.7847
19 Yrs 0.005875 0.020378 .29 0.7847

No. cases = 1§ R-sq. = 0.9719 RMS Error = 0.08151

Rasid. df = 5 R.sq-adj. = 0.9158 Cond. No. = 1

~ indicates factors are transformed.

Figure A8. Least Squares Coefficients for Energy.
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,EMODULUS_COEFF 19R x 5C ’ - )
‘ Least Squares cOctficiints, Response EM, Model

0 Term 1 Coeff. 2 std. Ezror 3 T-value 4 Signif.
11 698.218750 91.811305 7.60 0.0006

2 ~3 $51.156250 91.811305 . 6§.00 0.0018

3 -7 -350.906250 91.811305 «-3.82 0.0123

4 ~A 70.131250 91.811305 0.76 0.47%4

5 1<1df> 0.1268

€ No 168.018750 91.811308 1.83 0.1268

7 YES -168.018750 91.811305 -1.83 0.1268

8§ ~3*T -239.468750 91.811305 =-2.61 0.0478

9 =S*A 51.993750 © 91.811305 0.57 0.5957
10 ~S*1<1de> 0.1344
11 ¥No 163.856250 $1.811305 1.78 0.1344

12 Y=Es -163,856250 91.811305 -1.78 0.1344 -
13 ~T*A -150.993750 91.811305 -1.64 0.1610 :
14 ~-TrI<C1de> . 0.2700
15 Ro -113.856250 91.811305 ~1.24 0.2700

16 YES 113.856250 91.811305 1.24 0.2700

17 -Ar1<idf> 0.5824
18 NO 53.931250 91.811305 0.59 0.5824
19 YES «53.931250 91.811305 -~0.59 0.58%4

RMS Exror = 367.2

No. cases = 16 R-sq. = 0.9329
Cond. No. = 1

Regid. df « 5 R-sq-adj. = 0.7986
- indicates factors are transformed.

Figure Al1. Least Squares Coefficients for Modulus,




EMOOULUS_3D1

EMODULUS .
- ASPECT_RATIO =°'1.03, LUBRICANT = YIS

N_RATE

STRONG STRAIN RATE*TEMPERATURE INTERACTION

Figure A12. Strain Rate*Temperature Interaction Surface for Modulus,

28




APPENDIX B:

MODEL RESIDUALS FOR RESPONSES BY END LUBRICATION.
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Figure B3.
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