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Abstract

This paper discusses modeling of a 3-D flexible the robot which presents a substantial
flexibility on the links, and significant mass on the tip and joints. The method is based
on Lagrangian dynamics and coordinates transform under the assumption of mass less
link and lumped mass on the joints and end-effector. This method is feasible for a large
class of 3-D flexible robots, and is simple so that it can be implemented in a model-
based real-time control. The developed model is of sufficient precision required for
most tasks of the light-weight manipulators. The experimental result has verified the
model.



Modeling of a 3-D Light-Weight Space
Manipulator

1. Introduction

Considerable attention has been directed to the use of light-weight manipulators which
provide an energy-efficient motion. Light-weight manipulators are especially feasible for
applications in space, such as in orbit or on other planets, because the cost for launching is
proportional to the weight of the object to be launched.

Many researchers have been investigating the problems of the light-weight manipulators
with a substantial flexibility. Flexible mechanical chains have been treated as distributed
mass system which results in a complex model and is difficult to control based on such a
model. Most papers are limited to report on planar models with two or less degrees of free-
dom (DOF)[1,2]. On the other hand, most light-weight manipulators with a substantial
flexibility can be modeled so that most of the mass is considered to be concentrated at
joints or end-effectors, neglecting link weight[3]. In this way, modeling and control can be
much simplified, and motion analysis of a 3-D flexible robot is possible.

In this paper, modeling of a multiple joints light-weight manipulator with a serial mechan-
ical chain is discussed. This method is based on a lumped model from which linearized
dynamics equations are derived. The 3-D manipulator that we have developed in the
Robotics Institute of Carnegie Mellon University is composed of two light-weight links
from the base to the end-effector[4,5]. By using the proposed method, the flexible space
manipulator is modeled as an example. The method proposed can be used for modeling
any multiple joint 3-D light-weight manipulator as long as the configuration is serial chain
and link mass is negligible.

2. Modeling Strategy

The purpose of modeling is to obtain dynamics motion equations for the 3-D flexible
manipulator. Since the tasks for the flexible manipulator in space require a large motion
within its workspace, which presents a significant effect on the dynamics of the system,
we would like to have a model in which considers a large 3-D motion is allowed. The
degree of complexity of the model depends upon the required precision of the system in
operation. The model derived in this report is feasible in terms of compromising between
the necessary precision and the resultant complexity. This model is useful in the design of
the mechanical configuration of a flexible robot, as well as the design of the manipulator
controllers.

The manipulator considered consists of multiple rigid joints with actuators and high gear
ratio drive trains, multiple light-weight links and an end-effector at the end. These compo-



nents are connected from the base ground to the end-effector in a serial configuration.
Most flexible robots can be described in this way.

The following assumptions are made to obtain a linear model of the flexible robot. First,
the mass of the light-weight links is neglected, compared to the mass of the joints. Second,
we only consider the light-weight link shaped as a tubular or cylindrical slender beam
which has the high tensile and shear stiffness. Therefore, the compliance of the link is con-
sidered in the bending and torsional directions, while the compliance in the other direc-
tions is neglected. Third, the deflections of the light-weight link is small with respect to
the length of the link so as to obtain a linear model. Fourth, light-weight link is assumed to
be connected to the center of the motor shaft so that the size of the joints is negligible.
Fifth, the end-effector is assumed to be rigid. Sixth, gravity is not taken into account for
space applications. We may include the gravity term in the model if needed.

We define joint mass, link stiffness in and around each axis of the Coordinates frame, and
consider the joint positions and deflections as state-space variables. The kinematics of the
manipulators is based upon the Coordinates transform between the two flexible links. The
dynamics equation is derived using the Lagrangian method and linearization. When the
variables are not independent, we propose to introduce new variables and modify the cor-
responding dynamics equations so that the system motion equation is not degraded by
using a set of new variables. The eigenvalue analysis is performed based on the model.
The method presents an effective way to compute a large class of 3-D flexible robots.

We use the following robot that has been developed in our lab as an example to illustrate
the derivation procedure. This method can be applied to any manipulator for which the
previous assumptions are valid.

The robot has a 2-DOF rigid rotary joint at the base and the tip respectively, a I -DOF
rotary rigid joint at the elbow, an end-effector at the tip, two light-weight links connecting
the base to the elbow and the elbow to the tip as shown in figure 1. The lumped mass is
concentrated at the elbow joint. The tip is assumed to be a lumped mass, although actually
it stands for the two rigid joints and an end-effector of the robot developed in our labora-
tory.

3. Kinematics

The kinematics of the robot is derived in the following way. Physical properties, such as
the mass and the length of the link are selected as the parameters. The variables to describe
the state of the system are also defined. Two types of the Coordinates frames are then
introduced; one is the rigid link coordinates frame located at the end of each link without
the link deflection and the other is the flexible link coordinates frame located at the end
with the deflection[6]. The coordinates transform between the rigid frame and the flexible
frame are derived. The absolute tip position with respect to the base is formulated by using
the coordinates transform.
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Figure 1. Configuration of a Flexible Manipulator

Flexible Link

End Effector

First, we consider the following parameters to describe the model of flexible robots. We
denote the length of each links by Ii (1 < i < 3), the mass of each joint by mi , (1 < i < 3), the
inertia of each joint with the high gear ratio drive train by Ji (1 < i < 3). The first link is
rigid and for the second and third links, the bending stiffness, Kbi, and the torsional stiff-
ness, Kti, are considered. The inertia of the middle and the tip are neglected.

Second, we define the variables to describe the state of the motion as follows. The angle of
each joint is denoted by Oi (1 < i < 3), the bending deflection in two axes at each link end
is denoted by vyi , vzi (i = 2, 3), and the rotational deflection at each link end as Oxi,, ii
(i = 2, 3) are considered as the variables. It is noted that the variable for the torsional angu-
lar deflection of the third link, ox3, may be neglected, since no torsional torque is applied
at the tip. However, it is still considered as one of the variables for the general description.
The torque at each joint is denoted by i (1 < i < 3) is treated as a variable.

The position variables are referred to the generalized displacement, i.e., translational dis-
placement and angular displacement. The force variables are referred to the generalized
forces, i.e., torque and force. There are thirteen positions variables, three variables for the
joint positions, ten for the deflection of the two links (five for each link). There are three
force variables to describe joint torques. Other ten generalized forces are considered to be
equal to zero. Figure 2 shows the parameters and the variables of the 3-joint flexible robot.

The Coordinates frame is defined at each link as shown in figure 3. The ith rigid coordi-
nates frame is located at the end of the link i without deflection of the link i, while the ith
flexible link coordinates frame is located at the end of the link i with deformation of the
link i. To define the rigid coordinates frame, any of the available methods representing
rigid robot kinematics, such as the D-H notation, can be used. To simplify the Coordinates
transform, one of the axes must be parallel to the link i with no deflection. The ith flexible
frame matches the ith rigid frame when the link i has no deflection.To distinguish the rigid
coordinates frame from the flexible coordinates frame, prime i, i', is used for the ith rigid
coordinates frame. The base coordinates frame is located at the base of the robot
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Figure 2. Parameters and Variables of the Manipulator

2, J3 ..

i=1- 3 legiolik

02 K

T2 
J

,T I

Parameters
i i =1 - 3 length of link i

mi i = 2, 3 mass of joint i

Ji i= 1 3 joint inertia i with high gear ratio, (J=ni2Jmi)
~i : * gear rallo

Ju : moto r inerlia  
E 'bi

Kbi i= 2.3 bending stiffness of link i, (Kbi= )
Ej: Young's modulus *

I": moment o crms section area Inerta Gi Ili
Kti i = 2 3 torsional stiffness on link i, (Ki=

Gi : Shear modulus i
ia: polar moment of are Inertia

Variables
Oi i =1 -3 angular displacement of joint i
Vyi , Vzi = 2.3 bending deflection at the end of link i

401d i = 2,3 torsional deflection of link i

Oyi, OZi i = 2.3 angular bending deflection of link i

i  i = 1- 3 torque on joint i

Figure 3. Coordinates Frame

oxi

\Link i
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Figure 4. The Coordinates Frames of the Model

X2 Z2

YJ

zs X3

as the fixed reference. Figure 4 shows the coordinates frames of the model of the flexible
robot discussed previously.

There are two types of Coordinates transform, the rigid coordinates transform and the flex-
ible coordinates transform. The ith rigid coordinates transform changes the (i-1)th flexible
coordinates frame into the ith rigid coordinates frame, while the ith flexible coordinates
transform changes the ith rigid frame into the ith flexible frame. The ith rigid transform
consists of the parameters and the variables related to the ith rigid link. The ith flexible
transform consists of the variables related to the ith flexible link. The rigid transforms of
the model shown in figure 4 can be defined as follows.

COS9 1 -sine 1 00]R_- I 1~o (1),
0 0

Sr- coso sioo (1)s

L0 0 01]

Fsin02 0 -cosO 2 - 2sinO2

0 1 0 0 1
CS30 sine3 13CoO3

3' csn 3 0 CS63 18n3 i(3)e 3

-L5~ 0 0 0 (3)

The ith flexible transforms are defined as follows. The first flexible transform, F i',
becomes unity, while Fi' , is defined as follows;
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P 0iI -4i y
1 - , , I (4)-4'= *., 1 - i, 4

0 0 01_

The configuration of the robot with respect to the base coordinates frame is obtained by
multiplication of these Coordinates transform matrices. The elbow position, X2B, and ori-
entation, P 2B, with respect to the base are,

X2= [ 2 y2 z2  "R' FR.F2[o 0 0 1 T (5)

1000 1 00

= 01 ooIR,,F"R' ,  (6)o oj jooj

The tip position, X2B, and orientation, P 2B, with respect to the base frame, are,
i=2,3

X= yx 3 z3 1i] = a [-1002"]-(7

10 V 0 1 2' 2 3[01 (8)
[X3 Y3 Z30 RIF, R2F2 RF3 00 ] 7

ooJ [00

These analytical formulations of the robot kinematics are needed in order to obtain the
robot dynamics which is discussed in the next section.

4. Dynamics

In this section, we will derive the linearized relationship between the generalized displace-
ment and the generalized force by using the parameters and the variables defined in the
previous section. The dynamics of the model is obtained in the following manner. First,
using the Lagrangian method, we derive the dynamics of the model. Second, the dynamics
equations are linearized in terms of the variables by neglecting the centrifugal and Coriolis
terms. The coefficient of each variable in the equations is assumed to be constant so that a
time-invariant linear system is ensured. Third, the properties of the linearized dynamics
system is discussed.

The Lagrangian principle is used to describe the system dynamics. In order to obtain the
kinetic energy, we consider the joint inertia with the high gear ratio drive train as well as
the mass at the elbow and the tip as follows:

i1 3 2
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The potential energy consists of the torsional strain energy and bending strain energy.

3 1
3  

\

U 'K"41.f"K, (3v 2 .- 317 1 + 1 4i) + K,'K (3U2 - 31ji5 8 *,+A Ijyj
YS 22/O) Z,~ i' ziY' (10)

ir,2 i=2

Based on the kinetic energy and potential energy, the Lagrangian equations are repre-
sented in the following form.

d aT aT auTt a(4) - --+j + qj = / (fi

The generalized displacement qj and the generalized forcef1 are defined as follows:

q = [q, qj q,] = [01 02 ')Y U .2 x. y2,. 03 A). A), 3 O, 0 .1] (12)

f =[A U1f3] = [1 2 OOO00 '3OOOOO ] (13)

The Lagrangian equation Eq(l 1) is nonlinear due to the second part of the kinetic energy,
Eq(9). It is necessary to linearize the model so that we can obtain the natural frequencies
of the model. The first term of Eq(ll) can be divided into two parts; the first part can be
linearized by the second derivative of the generalized displacement, "/j, and the second
part which consists of the product of the first derivative of the generalized displacement,
4i, is neglected. The second term of Eq(ll) is negligible, since this term also consists of
the product of the first derivative of the generalized displacement, 4j. The product of the
first derivative of the displacement forms the nonlinear centrifugal and Coriolis forces
which are negligible under the assumption of not too rapid motion. The third term of
Eq(11) is linearized by the generalized displacement, qi" In this way, we get the linearized
dynamic equation which only consists of the inertia and stiffness term as follows;

Mq+Kq =f (14)

7
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M 19 0 M39 0 M 5 9 0 M79 0 M99 0 000
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0 0 0 0 0 0 0 0 0 0 000
0 0 0 0 0 0 0 0 0 0 000

0 0 0 0 0 0 0 0 0 0 000

MI= J++l212z + M31 3 . M13  M i 2 12 .+n 3 123 - M15 - m 312 3 1 3z

M 17 = m3123Pd3z M 19 =M 3 123

M 2 2 = J2 +i 212 + , ( t2 + 12 + 212 13 cos0 3) M24 = M 2 12 + M3 (12 + 13 cos6 3 )

M26 = m3 (13+1 2 13 cosO 3 ) M28 = M3 (+1213COS03 )  2. = m3 (13 +1 2coso 3 )

M 3 3 = m2 + m 3  M 35 = m3/ 3 , M37 = M313.

M39 = m3

M44 = m2 +m 3  M46 = rn3/3 coOS 3  M 4 8 = m3 13 cosO 3

M4.= m3cos 3

M55 = M31 57 = m313 z/ 3z  M59 = m3 3x

2 = = rn3R  M6a = M3 13
Pd66in 313  26 Pd3

2M77 =m3132  M79 = 'n313 .

M 88 = 3+ m3 12 Mga = m3 3

Mbb M m3

Pda8 = mn3

12x = I2 sinO 2

123x 12 sin8 2 + 13 s in (0 2 + 03)
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00 0 0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 0
00K 33 0 0 0 K0 0 0 0 0 0
00 0 K4 0 K 4 0 0 0 0 0 0 0

00 0 0 K55 0 0 0 0 0 0 0 0
00 0 K46 0 K 0 0 0 0 0 0 0

K 0= 0K 37 0 0 0 K0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0K99 0 0 0 K9,d

00 0 0 0 0 0 0 0 Ks 0 Ka 0

00 0 0 0 0 0 0 0 0 Kbb 0 0

00 0 0 0 0 0 0 0 K. 0 K,, 0
O0 0 0 0 0 0 0K9d 0 0 0 KddJ

(16)

K 33 = 12 Kb, K37 = -61 2Kb2

K44 =12Kb 2 K46 = -612K42

Kb= K,,

2 2
K9 2Kb= 62

= 
2K K~d 63 Kb

K.= 12Kb K. = -613K3b,

Kbb = K,3
K , =41 2 K b

Since the deflection is small, the inertia matrix, M, is not a function of the deflection vari-
ables. The dynamics equation obtained in the previous way has the following properties:

1. The inertia matrix, M, is symmetric.

2. The rigid arm inertia matrix can be extracted from the inertia matrix, M. The coeffi-
cients of M for the second derivative of the joint variables forms the rigid arm inertia
matrix as follows:

[M1 M12 Mix

MR M 2 M22 M (17)

[M1, Mn M&S

3. The stiffness matrix, K, comprises the two link stiffness matrices. The link stiffness
matrix is a five by five symmetrical matrix, because of the reciprocal theorem under
the assumption of small deflection. Moreover, the torsional stiffness on the x-axis is
scalar decoupled. The bending stiffness along the y-axis and the z-axis is coupled to
the angular bending stiffness on the z-axis and the y-axis, respectively. This property is
the result of single cantilever.

9



4. The stiffness matrix, K, can be directly obtained from the link parameters. The follow-
ing procedure can be used to derive the stiffness matrix, K. First, the coefficient of the
stiffness matrix, K, for each joint variable is set to zero. Second, the known stiffness
matrix for the single cantilever is substituted into each link stiffness matrix. Since each
joint and stiffness matrix is decoupled from the others, the rest of the elements are set
to zero.

5. The generalized force, r, applies on the joint. No external force is considered in this
case, and thus any deflection on the corresponding direction is zero.

6. The dynamics equation can be divided into two parts, one is for the tangential direc-
tion motion represented by 0i , vy23, vx2,3, z.3, while the other is for the radial direc-
tion motion which consists of 02, 03, vz23 , Oy23. This is understandable, since the axis
of the first joint is perpendicular to the axes of the second and third joints regardless of
the manipulator configuration.

7. Each variable may not be independent. This will be is discussed in the next section.

5. Variables Constraints

In the previous section, we obtained a linearized dynamics motion equation based on the
Lagrangian method. In this section, we will obtain the natural frequencies of the model at
the free mode where the generalized forces are zero. In order to derive the eigenvalues of
the model we would like to obtain the generalized eigen-matrix, M- 1 K, which is products
of the inverse inertia matrix and the stiffness matrix. However, the inverse of M may not
exist, since each generalized displacement may not be independent. The following is a
procedure to obtain the natural frequencies of the model in the case of the existence of the
variable dependency. This dependency can be observed physically as discussed below.

First of all, the angular torsional deflection of the third linkOx3 (q11), may not occur,
since a point mass is assumed at the tip. This implies that 0x3 may not be considered as a
variable, since it is always zero. Therefore, the coefficient related to this variable should
be simply deleted from the both inertia matrix, M, and the stiffness matrix, K. To be spe-
cific, the 11 th row and column of both matrices are deleted.

Second, the angular deflection of the third link in the y-axis, 4Oy3 (q12), and the z-axis,

Oz3 (q 13 ), are dependent on the deflection at the end of the third link in the z-axis,
vz 3 (q10 ), and the y-axis, vy3 (qg), respectively, because no moment of inertia exists at
the center of the mass at the tip. This implies that the angular deflection of the third link
can be replaced by the deflection on the third link. The 12th and 13th rows and columns
are deleted in both inertia matrix and the stiffness matrix. The 9th and 10th diagonal ele-
ments are modified as follows:

K"'= (KK,-,~d
K" 2 (18)

(K..K,, - K.')

10



Third, the angular deflection of the second link in the y-axis, y2, is dependent on the
deflection of the third link in the z-axis, vz3 (qo) . 2 (q6) is caused by the acceleration
of the tip in z-axis, z3. v, 3 is also produced by z3. "Therefore the 6th variable and 10th
variable are dependent.

(K46u, 2 (q4) + K660y, (q6)) 13 = K.'o (q 0 ) (19)

To be specific, a new variable, Vz3' (qlo'), is defined as the 10th variable and the 6th row
and column are deleted in both M and K so that the two variables are combined into a new
variable.

US,3" (qj0'j a(u 23(qo) + t30,z (q6)) (20)

The new variable is defined in such a way that the 10th row and column elements of the
inertia matrix, M, are the same as before. Using the new variable, we modify the 10th row
and column of the stiffness matrix, K, as follows:

(K44K6 - K46) + KOK..'K44'" = K6+ K .. '

K46Ko, ' 1(21)
a3

K4. = K66 + Ka'

13

Forth, the angular deflection in the z-axis, Oz2 (q7 ) , and the torsional deflection, 0x2 (q5 ),
of the second link and the deflection for the y-axis of the third link, y3 (q), are depen-
dent. 0,2 is caused by the acceleration of the tip in y-axis, y, so are x2 and uy2' There-
fore, the 5th, 7th and 9th variables are dependent;

1 1

K5 5 0. 2 (q 5 ) - (K 3 7Uy2 (q3 ) + K77022 (q 7)) 3 - K 99",)y 3 (q9 ) (22)

A new variable, u 1 '(q,,'), is defined as 9th variable, and the 5th and the 7th row and col-
umn are deleted in both M and K so that the three variables are combined into the new
variable.

) y3 ' (q9 ') a Uy,3 (q9) + 13 sin 03 0 2 (q 5 ) + 13 cOs030, 2 (q 7 ) (23)

The new variable is defined in such a way that the 9th row and column elements of the
inertia matrix, M, are kept the same. Using the new variable, we modify the 9th row and
column of and the stiffness matrix, K, as follows:

!1



K = K55 KK 99' 3cos 3
K55K' + 12sin2

3K7K"' + 12CosOK 5~K39' =

2+K, (K 7 27 12. Si,2CO%

K55 (K33K77 - K37) + KK3 (:K7 - 3,) 4sin 3 + K33K55K" ' 2O3
K33 =K 5 5K, + 12 Sin 20 3~~ + j 2 83K55K99'

Based on the four modifications above, a new inertia matrix is invertible. Moreover, we
normalize the new inertia and stiffness matrices in order to facilitate the following proce-
dures. The modified dynamic motion equations are as follows:

Mq+ Kq = •(25)

j, + m/ 2sin 2 
+ 1 2  0 m/sinO2 +1 0 0 I. 0

0 j 2 +m12 +12 +1+21cosO3  0 mt+I+cose 3 l+IcosO 3 0 1 +/cosO 3

msinO 2 0 m+1 0 0 1 0
0 ml+l+cosO 3  0 m+l CosO3  0 cosO 3

0 1 + IcosO3  0 cose 3  1 +j 2  0 1 (26)

1z 0 1 0 0 1 0

0 1 +IcosO3  0 cosO 3  1 0 1

00 0 0 0 0 0

00 0 0 0 0 0

00K 33 0 0k6 0

k= 00 0 K40 0 K47  (27)

00 0 0 0 0 0

00k 3 6 0 0k6 0

00 0 k47 0 0 k77

12



(cos 2O3 sin 3

k 33 = * (28)

6cose 3

419 36 = 4 1'V

k66 = --

S=12k(kI+ 3)
A 2

- -18wlK47-- A2

k- 12kl2

cos2O3 sin283 1

41d2  k, 3

22

U12 + 12 1+

A 2=U1 2+3

4 [ T I T2 v v ie 3 v Va2  0 2 Lel 12 - Y'2 3 "Y' 1

00~o~o~- 0 0 "21 3 3 13]

003 b,00 (29)

3I- +sO3 +sin(0 2+O 3) = IsinO2 + sin 3
;;A3 M3 _T3 13 +

k= K b2  K,

,3 3 (30)

Eq(25) is the time-invariant linearized dynamic equation in terms of the robot configura-
tion. We can obtain the natural frequencies of the model at each robot configuration in the
following manner.

First, the configuration of the robot is determined by the joint. The inverse matrix of the
new inertia is numerically obtained. Second, the inverse inertia matrix is multiplied by the
stiffness matrix to obtain the eigen-matrix. Third, the eigenvalues of the eigen-matrix are
computed and the natural frequencies of the system are square roots of the eigenvalues.

The natural frequencies can be used in the design of the robot controller and mechanical
structure of the robot in order to consider the dynamics of the robot system.

6. Simulation and Experiment

The numerical simulation has been performed based on the model discussed above. The
natural frequencies are obtained from the linearized dynamics equations. The inertia and
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stiffness matrices in the dynamics equations are changed with the configuration of the
flexible robot. In order to make the dynamics equation time-invariant, the small change in
the configuration is assumed. The eigenvalues are analyzed at each configuration.

The parameters in Table I are used to formulate the dynamics equations. These parameters
are calculated from components and parts of our experimental light-weight manipulator.

Table 1. Simulation Parameters

jl : normalized joint I inertia (gear ratio 60:1) 0.01342
2 : normalized joint 2 inertia (gear ratio 100:1) 0.03728

j3 : normalized joint 3 inertia (gear ratio 60:1) 0.01342
m : normalized mass 2 0.3846
t : normalized length of link 2 1.000

: normalized torsional stiffness on link 2 0.750
k : normalized bending stiffness on link2 1.000
wo : normalized time 7.631

Table 2 shows the simulation results of the natural frequencies. The configuration of the
flexible robot is selected so that the tip moves along the plane ZB = 0. The robot motion
can be viewed as two types of motions, the tangential and radial motions. There are seven
modes of vibrations at each configuration. The first three modes (f = 0) corresponds to the
rigid mode. The lowest non-zero mode occurs in the tangential motion. For this mode, the
frequency decreases as the angle of the third join increases. The second lowest non-zero
mode is in the radial motion. In this mode, The frequency decreases slightly as the angle
of the third joint increases.

Table 2. Simulated Natural Frequencies

02 [deg] 90 60 45 30 15

03 [deg) 0 60 90 120 150

mode 1 [rad/rad] 0.00(t) 0.00(t) 0.00(t) 0.00(t) 0.00(t)

mode 2 Crad/radl 0.00(r) 0.00(r) 0.00(r) 0.00(r) 0.00(r)

mode 3 [rad/rad] 0.00(r) 0.00(r) 0.00(r) 0.00(r) 0.00(r)

mode 4 [rad/rad] 3.98(t) 2.79(t) 2.36(t) 2.14(t) 2.02(t)

mode 5 [rad/rad] 8.25(r) 8.25(r) 8.26(r) 8.30(r) 8.38(r)

mode 6 [rad/rad] 13.7(r) 12.7(r) 11.08(r) 10.0(r) 7.14(r)

mode 7 [rad/radl 16.6(t) 13.3(t) i2.6(t) 12.5(t) 12.5(t)

t: tagential motion r: radial motion

The experiment has been performed to obtain the natural frequencies at certain configura-
tions. The experimental robot has five DOF with a gripper as the end-effector as described
in figure 1. The last two rigid joint and the griper can be considered to be concentrated at
the tip as a lumped mass.
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By sweeping the sinusoid torque from low to high frequency, the natural frequencies as
the local peek of the sensors readings are measured. In order to verify the experimental
natural frequencies of the tangential motion, we apply the torque to the first joint and mea-
sure the elbow and tip accelerations in the tangential direction, while locking the rest of
joints. The comparison between the simulation and the experimental results are listed in
Table 3. For the tangential motion, the analytical eigenvalue is slightly larger than that got
from the experiments, because the parameters errors. However the ratio of the error is
mostly the consistent to the others. Because of unmodel errors, such as the error in the tip
inertia, the experiment has shown four modes of the vibration, while the simulation result
has only three modes. The experiment the radial motion has not been performed.

Table 3. Experiment and Simulation of Natural Frequencies in Tangential Motion

02 [deg) 56.27 111.82 77.64 90.0

03 (deg] 62.20 36.23 25.95 0.00

Z Experiment Simulation Experiment Simulation Experiment Simulation Experiment Simulation

mode I [rad/rad] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

mode 2[rad/radJ 2.22(79.0%) 2.81 1.98(78.6%) 2.52 2.96(82.5%) 3.59 3.29(82.7%) 3.98

mode 3[rad/rad] 10.3(80.5%) 12.8 9.06(58.8%) 15.4 8.31(53.6%) 15.5 14.4(86.7%) 16.6

mode 4(rad/rad] 13.6 - 15.4 14.3

We have numerically obtained the transfer function of the linearized dynamic system. The
transfer functions are defined as the seven generalized displacements with respect to the
three generalized forces at each configuration. Because the tangential and radial motions
can be decoupled to each other, we derive the transfer functions of each motion. Figure 5
and figure 6,7 show the transfer functions of the joint torques to the tangential and radial
motions in Body-plot at a certain configuration, respectively. On the low frequency
ranges, the gain of the joint variables has the second order slope, while the gain of the
deflection variables has constants. This shows that the flexible model can be treated as the
rigid model on the lower frequency range.

The experimental Body-plot in the tangential motion has been obtained at a certain config-
uration. The sinusoid torque on the first joint of the robot is applies as the input, while the
elbow acceleration in the tangential directions are measured as the output. The elbow
acceleration is selected so that the first mode of the vibration is visible. By measuring the
magnitudes of the input and output at each frequency, the Body-plot of the elbow acceler-
ation with respect to the first joint torque. is obtained as shown in figure 8. A sufficient
large magnitude of the input torque is selected so that the stiction in the joint is not signif-
icant. The experimental results are similar to the simulation results.
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Figure 5. Body Plot of Tangendal Motion, Ol/i?, vyjr 1 , vylr (02 =60 [degJoe3 =60 [deg])
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Figure 6. Body Plot of Radial Motion, 02/,2, I93/?2, vz2/T2, vza/2 (e2~ 60 [degJ,0 3 -60 IdegD
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Figure 7. Body Plot of Radial Motion, 8jt3, 03/k3, vu~tj, ,,jj (02m 60 (deql,0 3 -60 [deg))
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Figure 8. Body Plots of the elbow acceleration to the first joint, Experiment and Simulation
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7. Conclusion

In this paper, a 3-D light-weight space manipulator is modeled. By concentrating the mass
at the joint and neglecting the light-weight link mass, the model of the flexible robot can
be linearized. The proposed method can also be used to model any arbitrary serial config-
uration flexible robot when the link mass is negligible. The method is simple and can be
efficiency used in the real-time control, while it is of sufficient precision required for most
of the light-weight manipulator for various cases are performed. The experimental result
has verified the derived model.
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