
AD-A236 796IIlIlilm ! H 1 l l t ll I UI
RL-TR-91-62 ' 'i -
Final Technical Report
May 1991 J j

FIRST-ORDER GRADIENT DESCENT
TRAINING OF ADAPTIVE DISCRETE-TIME
DYNAMIC NETWORKS

Stanford University ; ..

Stephen W. Piche and Bernard Widrow , .. _,._

i A 1 b Ie t d c

, I3 r.1o

APPROVED FORPUBLICRELEASE,, 0STRIBUTI0N UNLIMITED.

91-01817

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

91 0 11 096

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-91-62 has been reviewed and is approved for publication.

APPROVED: /~c6A' fA 6

RICHARD N. SMITH
Project Engineer

APPROVED:

JOHN A. GRANIERO
Technical Director
Directorate of Communications

FOR THE COMMANDER:

SBILLY G. OAKS

/Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the Rome Laborator.
mailing list, or if the addressee is no longer employed by your organization, pleas;'
notify RL(DCCR) Griffiss AFB NY 1344 1-5700. This will assist us in maintaining
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE 0F provo-o,8'

PLak "M b, tiitw it, d 1 fa tias upMworq I as pu r1u., W*, Uo *km r1w tini m mi a.Uw*g I 1g Me ucf,
g~wrg w n dibit3 deuda~ aII fnFdcgouww thcf~ d hfnab Swid wvwftWUp tft*buind or7~ w aW s pe d1 Ow

cdm~lk; b *kft1mnVb mu 1amrtwr te dj*. Ud buds% to Wa * d*V mkmw SVbft1 ftw ub w O W"u a t 1215 Jdf@ a'

1. AGENCY USE ONLY gLave BlankI 2. REPORT DATE j REPORT TYPE AND DATES COVERED

May 1991 Final Apr 89 - Sep 90

4. TIT.E AND SUBTITlE 5 FUNDIM NUMBERS
FIRST-ORDER GRADIENT DESCENT TRAINING OF ADAPTIVE C - F30602-88-D-0025
DISCRETE-TIME DYNAMIC NETWORKS TASK - C-9-2404

AUTHOR(S)
PE - 62702F
PR - 4519

Stephen W. Piche, Bernard Widrow
TA - 2P

WU - P5
7. PERFORMING ORGANIZATlON NAME(S) AND ADDRESS(ES) &. PERFORMING ORGANIZATION

Stanford University REPORT NUMBER
Department of Electrical Engineering
Stanford CA 94305

9. SPONSORINGMIORNG AGENCY NAME(S) AND ADDRESS(ES) I6 SPONSORINGIMONITORING

Rome Laboratory (DCCR) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700 RL-TR-91-62

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Richard N. Smith/DCCR/(315)330-3091

12a. DISTRBUTIOWIAVAILABLJIY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT"d(it" ,~ ,

This paper describes the training of discrete-time dynamic systems with adaptive

parameters (recurrent neural networks) using first-order gradient descent algorithms.

To facilitate the explanation of these algorithms, a standard representation of a

discrete-time dynamic system is defined. Any differentiable discrete dynamic system

may be put in this standard representation and trained using a gradient descent

algorithm. Using the standard representation, we described two general types of

learning algorithms. The first is based upon the discrete-time Euler-Lagrange

equations, and the second is based upon a recursive update of the output gradients.

Both the epochwise and on-line versions of these algorithms are presented. When the

dynamic system is implemented by a neural network, the epochwise algorithm based on the

Euler-Lagrange equations is equivalent to backpropagation-through-time and the on-line

method based on the recursive equation is the same as recursive backpropagation. It is

shown that the epochwise versions of the algorithms are equivalent. The two on-line

versions of the algorithms are shown to be approximately equivalent. 'Because of the

equivalence of the algorithms, selection of an appropriate gradient descent algorithm

is based solely upon computational efficiency and storage requirements. Accordingly,
(continued)

14. SUBJECT TERMS it OF PAGS

Neural Nets Algorithm
,0~COOE

17. SECURITY CLASSFICATKON IS& SECURITY CLASSICATION I9 SECURITY CLTMSFICAllON 20. IMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED U/L
Pibdh Nti~ mi

-F=&102

Block 13 (Continued)

a discussion of these two properties of the algorithms is included.
To illustrate the differences between the algorithms and the useful-
ness of the standard representation, two examples are included.

1 Introduction

The ability of humans to control and interact with a complex environment has motivated our study of
adaptive discrete-time dynamic systems which are fully or at least partially composed of neural networks.
Humans regularly perform certain tasks easily and proficiently which have proven difficult to reproduce with
machines. Examples of such tasks include driving a car, recognizing the differences between a cat and a dog,
and understanding spoken language. Humans learn how to accomplish these tasks in part by interacting with,
manipulating and eventually controlling their environment. In order to build machines which accomplish
these difficult tasks, it may be necessary both to mimic humans learning through environmental interaction
and to model the low level functions of the human nervous system. The algorithms presented in this paper
provide one possible technique for accommodating both of these requirements. These algorithms train
neural networks, which model the low level functions of the human nervous system, by interacting with a
user-specified environment.

An adaptive dynamic system which is composed of a neural network and a set of equations which describe
the environment may be used as an adaptive model of the interaction of a human with its environment. In this
model, the neural network receives the state of the environmental as input. Using the state in combination
with a desired goal, the neural network outputs a control signal which manipulates the environment. Using
the training algorithms presented in this paper, system performance often becomes strongly human-like. The
first example of Section 9 gives a prime example of this phenomenon.

Although the human ability to control its environment motivates us, our primary interest lies in the
development of engineering tools rather than in the modeling of humans. The training of discrete-time
dynamic systems has applications in the engineering fields of pattern recognition, nonlinear control, adaptive
control and adaptive digital filtering. It is in these areas that the material in this paper will be of most
immediate use.

Currently, the theory on first-order gradient descent training of adaptive discrete-time dynamic networks
is described in separate and unrelated terms in several papers by different authors [1,2,3,4,5,6]. Our goal
is both to bring together in a coherent manner and to expand the theory on this subject. A coherent
presentation of the subject is achieved by deriving the learning algorithms using a standard representation of
a dynamic system. The derivation of the generalized forms of the existing algorithms provides for extensions
of current algorithms. Bringing together and generalizing the theory in this manner should facilitate the
selection of appropriate gradient descent algorithms for problems requiring discrete-time recurrent networks.
It should be noted that a forthcoming paper by Williams and Zipser (7] contains a detailed discussion of
adapting dynamic neural networks, whereas, this paper presents the concepts of first-order gradient descent
for systems composed both fully or partially of neural networks.

The paper is composed of ten sections. Section 2 introduces notation and the standard representation for
a discrete-time dynamic system. Section 3 presents the differences between on-line and epochwise training.
An introduction to gradient descent training of static systems is given in Section 4. Section 5 presents the
algorithms used for adapting discrete-time dynamic systems. The equivalence of the algorithms is presented
in Section 6. A comparison of the computational and storage requirement of the algorithms is included in
Section 7. Two techniques of speeding-up the on-line training algorithms are discussed in Section 8. Section 9
presents two applications which illustrate the usefulness of the theory discussed in the paper, and Section 10
provides a conclusion.

2 System Definition

In this section, a standard representation of any discrete-time dynamic system is proposed. This representa-
tion is used in the derivation of the learning algorithms. In addition, the ordered derivative, which simplifies
the calculation of derivatives of complex systems, is introduced.

. m = I

rk

zr.

r k - f (Rk, YkWk(i)) -Yk

Yk-L

Yk..2

Yk-1

Figure 1: Standard Representation.

2.1 The Standard Representation

Let k denote the iteration of a discrete-time dynamic system, with k = 0 representing the first iteration of
the system. A standard representation of discrete-time dynamic system is illustrated in Figure 1. The input
of the system at iteration k is defined by two components. The first component, Rh, is composed of an
external input vector, r&, and the previous J delayed versions of this vector, rk-.,... ,rkj. The external
input vector is a length M column vector, rk E R(MX . Therefore, the external inputs to the system including
delayed inputs is a length (J + I)M column vector of the form Rt = [r',rT _,...r]T

The second component, Yk, is made up of the previous L output vectors. The output vector at iteration
k is a length N column vector, yk E R[N x l] . Therefore, Yk is a length LN column vector of the formYk = [yT T ,. vL]T.

-[l,Yk-2 ,...,yTL

At iteration k, let the adaptive parameter vector, which we shall refer to as the weight vector, be selected
from a set of weight vectors. In general, this set of weight vectors is generated by the training algorithm as
discussed in Section 3. Assuming a weight vector to be a length Q column vector, the weight set W has
the form W = {W(O), W(l),... ,W(i),.. .. The use of the ith weight vector at the kth iteration shall be
denoted Wk(i). Finally, let wky(i) denote any weight of the vector Wk(i). Of course, wk(i) is a scalar.

By denoting any element of a discrete-time dynamic system which is connected to a delay as an output
and including it in yk, any discrete-time system can be written as

Yk = f(Rk, Yk, Wk (i)) (1)

where the function f contains no delay. Thus the schematic representation in Figure 1 can be used to

2

f (RO, Yk, Wk(i))

Neural Controller

rk Uk .Plant Model

fP (U k 9Ykl) Yk

Yk-I

z"

Figure 2: Neural Controller and Plant in the Standard Representation.

describe any discrete-time dynamic system. The first-order gradient descent algorithms to be described in
this paper are defined in terms of the standard representation shown in Figure 1. Because any adaptive
discrete-time dynamic system can be put in the standard representation, such systems can be trained using
the algorithms described in this paper provided that the output vector, yk, is differentiable with respect to
the weight vector, W&(i), and the recurrent input, YA. The need for this requirement will become evident
in Section 5.

2.2 An Example of a System in the Standard Representation

In order to illustrate the use of the standard representation, an adaptive discrete-time dynamic system which
consists of a neural network and an environment model, is shown schematically in Figure 2. In this figure,
we use the traditional term plant model instead of environmental model. We define the dynamic system of
Figure 2 to be a neural network controller-plant system.

Because we often use the controller-plant system to illustrate important points throughout this paper, it
is useful at this point to discuss this system in greater detail. The plant model may take two different forms.
The most general is simply a set of equations which map previous states and current control to the next
state, Yk = fp(uk,Yk), where Yk are the previous states of the plant and uk is the control signal vector.
If the equations of the model are nonlinear, adapting the structure of Figure 2 results in a neural controller
which implements a nonlinear state feedback control law. This technique provides a method of designing a
nonlinear controller for a nonlinear plant.

Using the second form of a plant model, a neural network model, has applications in the field of adaptive
control [3,5,8]. In this case, the plant model takes the form Yk = fp(uk,Yk,WP), where WP is the weight
vector of the neural network model. This model can be updated on-line using plant input-output data.
Because the algorithms presented in this paper use the plant model to update the controller, the neural
network controller can adapt to changes in the plant.

2.3 Ordered Partial Derivatives

Because we are interested in using first-order gradient descent to update the adaptive weights, we are required
to calculate a partial derivative of the associated dynamic system. The ordered partial derivative, which
is a special partial derivative for an ordered set of equations, provides a mathematical technique for easily

3

finding derivatives of complex dynamic systems (6].
In order to discuss the ordered derivative, we must first introduce the concept of an ordered set of

equations. Let {:I,..., ,.. .. Zj ... I:Z,} be a set of n variables whose values are determined by a set of n
equations. This set of equations is defined to be an ordered set of equations if each variable zi is a function
only of the variables {-. zi-}. Thus, the equation for any variable of an ordered set of equations can
be written as

-i = f(z 1,

Because of the ordered nature of this set of equations, the variables {zl,..., z,-.} must be calculated before
zi can be computed.

When calculating the partial derivative of a variable it is necessary to specify which variables are held
constant and which are allowed to vary. Typically, if this is not specified, it is assumed that all variables
are held constant except those terms appearing in the denominator of the partial derivative. This is the
convention we have adopted in this paper.

The ordered partial derivative, which is defined only for variables of an ordered set of equation, is a partial
derivative whose constant and varying terms are determined using the ordered set of equations. The constant
terms of the order partial derivative of zi with respect to zi, which is denoted a+ zj /Ozi in order to distinguish
it from an ordinary partial derivative, are {zl,..., zi-). The varying terms are zi ... , z ... , zn}.

The ordered derivative is usually found using either of two chain rule expansions. The first expansion,
which is expressed in vector form as

O+zj zj a+ Oz Ozk
8 z- - - - = +O-, 0 Z k z , (2)

was shown by Werbos in his thesis [6]. The proof of the second chain rule expansion

Oz 0z3 = Oz j 0+z(

uses arguments similar to those used to prove the first expansion.

Finally, one comment on mathematical notation, throughout this paper it is assumed that a partial
derivative of the form, 8a/ab, where a E R[A.x] and b E RB × I], is a matrix of the form RAXB].

3 Epochwise and On-Line Training

Any adaptive algorithm adjusts the parameters of a system so that the system responds to a set of inputs in
some desired manner. First-order gradient descent algorithms accomplish this goal by minimizing an error
function. The definition of this error function is dependent upon whether the system is operating in an
epochwise or on-line mode. In this section, both epochwise and on-line training are defined. The epochwise
and on-line error functions as well as their associated weight update equations are also presented.

3.1 Epochwise Training Algorithms

An epoch is a forward iteration of the dynamic system from iteration k = 0 to kJ, where k1 is the filial
iteration. An epochwise training algorithm is any algorithm in which training takes place after each epoch
or a series of epochs of the dynamic system.

In order to use the gradient descent epochwise algorithms, an error must be defined. It is common for
this error to be a function only of the outputs of the dynamic system, {Y).Yk,}. and a set of desired

output vectors, {do..... dkl }, with dk E RI x'x . The desired output vectors and the set of inputs vectors
associated with the desired output vectors are given in a training set. This set is composed of P elements
with element p taking the form {Rop,Yop.rip ... rkfp. dip -... dkip}- It should be noted that the desired
response need not be defined for each iteration, only for the final iteration kf. A commonly used epochwise
error function is

p kip

E Z (dkp - ykp)T(dp - ykp) (4)
p=O k=O

which is the sum of the squared error over the entire training set. The error of Equation 4 is calculated
using an ordered set of equations. Because of the ordering of this set, the error is always the last calculation
performed in this set.

Utilizing gradient descent, the epochwise algorithms presented in this paper update the weights using

w~i + 1) = w(i) -j 49 Ewi (5)

where p, the learning rate, is a suitably chosen positive constant. The update rule generates a new weight
vector W(i + 1) from the vector W(i). If the error function defined in Equation 4 is used, the weights are
updated after cycling through the training set. Therefore, if weight vector W(1) is used for the first cycle
through the training set, weight vector W(i) is used for the i1 cycle through the set. Generally, the weight
vector of the first cycle, W(1), is randomly initialized.

Although first-order gradient descent provides the basis for adaptation of the weights, the algorithms
discussed in this paper have come to be known by the method for which they calculate the error gradient of
Equation 5. Hence, it should be remembered, that even though backpropagation-through-time and recursive
backpropagation, two algorithms presented in Section 5, have quite different names, they both perform
first-order gradient descent.

3.2 On-line Training Algorithms

If the weight update of an algorithm at the current iteration k' depends only on the states of the system
at iterations {k', k' - 1, k' - 2 }, then the algorithm is defined to be an on-line training algorithm. The
implied dependence only upon the current and past values of the system allows the weight updates to be
computed in real-time in most cases. The key difference between on-line and epochwise training algorithms
is that an on-line algorithm adapts the weights of the system as it runs while an epochwise training algorithm
only updates the weights after the final iteration. The primary reason for using an on-line algorithm is that
as the number of iterations in an epoch becomes very large, it becomes computationally inefficient to update
the weights only after each epoch. Therefore, on-line algorithms, which adapt the weights as the system
runs, must be used.

In the on-line case, an error is defined for each iteration. At the current forward iteration, k', the error,
EL,, is often a function of the desired response vector, dk,, and the output vector, Yk' It is common to use
the on-line error function

= -(dL, - yk')T(dk, - yL,)- (6)

It is well known that in the on-line case, minimization of Equation 6 using first-order gradient descent at
each iteration results in the minimization of the mean square error (9]; therefore, using the error defined by
Equation 6 minimizes

E(EjE,] = EtI(dk, - y,,)r(d., -
2

5)

r -- up f(r, W(i))

Figure 3: Static System.

where E is the expected value operator.

Often, on-line training algorithms update the weights at each iteration based upon the gradient of the
error function. At iteration k', the on-line update rule is expressed as

w(k' + 1) = w(k') - O+ Ek' (7)= U~w(kl)(7

where p is a suitably chosen constant and Ek, is the appropriate on-line error function. Equation 7 is usually
initialized by a random setting of w(O). The application of Equation 7 generates a new vector of weights
at each iteration. When using an on-line algorithm, it is common for the weights at the iteration k' to be
selected from the vector W(k'), therefore, wk'(k') = w(k').

4 Static System Algorithms

In order to facilitate the discussion of the training algorithms for discrete-time dynamic systems, it is useful
to introduce the first-order gradient descent algorithms for static systems. A static system contains no
feedback, therefore, a static system has the structure shown in Figure 3, where r E R[MX) is the input
vector and y E R[Nx1J is the output vector. A static system can be described by the following equation

y = f(r, W(i)).

4.1 The Backpropagation Algorithm

As in the dynamic system case, the first-order gradient descent techniques for static systems depends upon
minimizing an error. In general, this error is a function of the output, and the output is a function of the
weights. Therefore, using the chain rule of Equation 2, the error gradient may be expressed as

O+ E 49+ E Oy OE Oy
Ow(i) Oy Ow(i) - Oy Ow(i)

Assuming that the appropriate equations for the error and the output are available and differentiable, an
expression for the error gradient with respect to each weight can be found by differentiating the error and
output equations.

If more is known about the structure of the system, it is possible to use this information to decrease the
number of computations needed to find the error gradients. The backpropagation algorithm of Rumelhart
et al [41 does precisely this. Based upon the fact that the static system is composed of a layered feedforward
neural network, the backpropagation algorithm efficiently computes the error gradients for such a static
network. Using the backpropagation algorithm, the error gradient

0+ E I 9y (8)
-(i)- ,9w(i)

6

f(r, W(i))
Neural
Controller Plant Model

Figure 4: Static Neural Network Control System.

where

9E
5y

is calculated by backpropagating the vector, A, through the neural network. It should be noted that any
equation which takes the form of Equation 8, can be calculated using backpropagation, provided the structure
of the system is a neural network.

4.2 Static Controller-Plant System

As we shall next show, the error gradient of a static controller-plant system takes the form of Equation 8.
In static neural control applications, the system is composed of two components, the controller and plant,
as shown in Figure 4. The controller is implemented by a multilayered neural network while the plant may
be modeled by a neural network or a set of equations. When the plant is modeled using a neural network,
the combination of the controller and plant form a static neural network. Therefore, the error gradient with
respect to each weight of the neural controller takes the form of Equation 8 and can be calculated using the
backpropagation algorithm.

If the plant is modeled by a set of equations, a differentiation of the plant equations with respect to the
control vector in combination with a backpropagation can be used to compute the error gradient. The error
of the system of Figure 4 is a function of the plant output, which is a function of the controller output.
The controller output is a function of the weights of the network. Therefore, using the chain rule, the error
gradient can be written as

a+E 49Ua~ A'- (9)
Ow(i) = aw(i)

where

At OE Oy
49y Ou"

Equations 8 and 9 have the same form. Because u is the output of a neural network, the error gradients with
respect to the controller's weights are found by backpropagating A' through the neural network controller.
The backpropagation term, A, is computed by multiplying OE/Oy by the plant Jacobian matrix, Oy/Ou,
which is calculated from the plant equations.

7

4.3 Training Neural Networks Implemented on Chip

It is also possible to train a static feedforward network which is implemented on a VLSI chip using first-order
gradient descent. In this case, it is assumed that the precise mathematical equations of the neural network
system are not known. Therefore, the derivatives cannot be calculated manthematicallv. Instead, they can
computed by introducing small perturbations into the hidden layer nodes. The resulting perturbation at
the output divided by the node perturbation approximates the output gradient with respect to the node.
This method, in conjunction with LMS [91, can be used to calculate the output gradient with respect to the
weights. This technique of calculating the gradient is known as Madaline Rule III (MR III) [10]. A VLSI
chip manufactured by Intel supports this type of training [11].

The first-order gradient techniques discussed above are used not only for adapting static systems, they
are also a key component of the rules used for adapting discrete-time dynamic systems. It is shown in the
next section that these techniques are required for training dynamic systems composed fully or partially of
neural networks.

5 Algorithms

In this section two basic types of algorithms, Euler-Lagrange based algorithms and recursive gradient update
algorithms, both of which are used for training discrete-time dynamic systems, are discussed. The epochwise
and on-line versions of both these types of algorithms are presented. As indicated by their name, the
Euler-Lagrange algorithms are based on the discrete-time Euler-Lagrange equations [121. These equations
are used to calculate the error gradient with respect to the weights. The backpropagation-through-time
algorithm, which is used for epochwise training of dynamic neural networks, is an example of an Euler-
Lagrange based algorithm. The recursive gradient update algorithm is based upon a recursive equation for
the output gradient which is derived from the dynamic system definition, Equation 1. The error gradient
is easily computed using this output gradient. The recursive backpropagation algorithm, which is used for
on-line training of dynamic neural networks, is an example of a recursive gradient update algorithm. The
epochwise and on-line versions of algorithms based upon the Euler-Lagrange equations and the recursive
gradient update equation can be used to train a variety of dynamic systems which contain neural networks
as will be shown periodically in the remainder of this section.

Before deriving the Euler-Lagrange and recursive gradient update algorithm, it is worth mentioning that
the stability of these algorithms cannot be guaranteed. Therefore, when using these algorithms, one must
constantly monitor their performance. If instability becomes a problem when using one of these algorithms,
it is often necessary to change certain parameters of the algorithm, often the learning rate, to overcome the
problem.

For any given discrete-time dynamic system problem, either an Euler-Lagrange based algorithm or a
recursive gradient update algorithm can be used to train the system. In Section 6, it is shown that the
Euler-Lagrange based algorithm and recursive gradient update algorithm compute approximately the same
error gradient for a given problem in both the epochwise and on-line case. Even though the algorithms are
inherently equivalent, the computational and storage requirements of the algorithms are different. Therefore,
the selection of the appropriate algorithm for a specific problem should be based upon the computational
and storage requirements. These requirements are derived in Section 7.

5.1 An Algorithm Based on the Euler-Lagrange Equations

The discrete-time Euler-Lagrange equations in the calculus of variations provide a standard technique for
calculating the first-order gradients of an error function. Using these equations, it is possible to calculate the
epochwise gradient of any discrete-time dynamic system provided that the differentiability requirements on
the system, discussed in Section 2, are met. When the dynamic system is composed fully of a feedforward
neural network, the error gradient can be calculated using a combination of the Euler-Lagrange equations and
the backpropagation algorithm. This combination is the basis of the backpropagation-through-time algorithm
which was first introduced by Verbos [6]. A number of researchers including Nguyen and Widrow [3],

Pearlinutter [2] and Jordan [8] have successfully used the backpropagation-through- time algorithm to train
dynamnic networks.

In this section, the discrete-time Euler-Lagrange equations are first derived. Next, an epochwise training
algorithmn which uses these equations is discussed. Finally, training of dynamic systems composed fully or
partiallN of neural networks using the Euler-Lagrange based algorithm is presented.

5.1.1 Discrete-Timie Euler-Lagrange Equations

In order to use first-order gradient descent, we need to find the error gradient. t9+E/8~w(i), for any given
epoch. This gradient can be derived using the first chain rule expansion, Equation 2, and the following
ordered set of equations, which are generated at each epoch.

lWO(i) = 'W(i)

Yo = f (Ro, Yo, WO)

Wi(i) =W(i)

Y= fAfIAIYi,(i))

V.4(i) = W(i)

Yk f AtR, Yk, Wk(i))

Wk, (i) = W'(i)

Yky = f(Rk,,I Yk, , Wk, ()

E = f (YO, Y1, -. -, Yk Ido, dig.. I dk,)

Using the first chain rule expansion for an ordered system, Equation 2, we can expand the ordered derivative,
49+E/itv(i), to obtain

a+E OE C, (AiO+E Oyk a'E MW(i)(10
O W-(i) -W (,k2o\ -OYk j W (i) + 7W (i() O,4W (1) ,(0

The terms 49E/Ow(i) and Oykl/Ow(i) are equal to zero because E and Yk are not a direct function of w(i) 1.
Thus, we find the expansion of Equation 10 can be written as

O+E k f O+E 49W k f49+E
3W(i) =ZOWk(i) OW(i) k=O wi)()

We need to find an expression for the term 49+E/cOwk(i). This expression can be found by expanding the
ordered derivative using Equation 2.

a+E _ O + f 0+ E ytkj) + kf O+E aWj(i)*
OwkTi (i kjOWk(i) E OWj i) O5wk(i)

In our definition or the partial derivative, all terms are held constant except the terms in the denominator of the partial
derivative. Therefore, if the function which defines the numerator of the partial derivative does not contain the terms of the
denominator directly, then the partial derivative is zero.

9

The terms OE/Owk(i) and 0Wj(i)/Owk(i) are equal to zero. The term oyj/&w(i) is nonzero only when
k = j. Using these results, we find the ordered derivative, O+EIauk(i), to be

O+E O+E Oyk
Owk(i) =Yk Owk(i)(

Substituting Equation 12 into Equation 11, the error gradient is

o9+ E k0
+ E 0yk 0yj

O(- ' O'k} Ak '9yk (13)

Ow~~~i) a- y Wk(i) 09W Z O (i)

where

A = O+E

The term Oyk/Owk(i) of Equation 13 is easy to calculate. The term a+E/8yk must still be expanded.
Once again, using the chain rule expansion, Equation 2, we expand, a+ E/aYk, to find

O+E O E yy a W (i)

aYk tYk Z. J4Yk 9Wj(W 8 Yk (4
Ak = = Oykj=k+l

The term OWj(i)/OYk is equal to zero. The term Oy,/Oyjl is also equal to zero when j > k + L, where L
is the maximum number of delays in the feedback of dynamic system. Using these results, Equation 14 can
be written as

Ak OE + L O+E 0Yk+j (15)
'Yk -OYk+j (Yk

+ L (16)

j=1

where

19E

5Yk

Equation 16 is a backward difference equation which can be solved using the following boundary conditions

Ak, = (kf (17)
Ak, +I,.... Akl+L = O. (18)

We shall refer to equations 16, 17 and 18 as the Euler-Lagrange gradient equations. These gradient
equations along with

10

a+E
Ow(i)

form the discrete-time Euler-Lagrange equations. Equation 19 guarantees that a solution of these equations
results in either a minimum or maximum. It usually is not possible to find the analytic solution of these
equations. Instead, numerical methods, such as first-order gradient descent, are used to search for an
approximate solution.

5.1.2 Implementation of the Algorithm

Having derived the Euler-Lagrange equations, we introduce the Euler-Lagrange based algorithm which is used
to calculated the error gradient with respect to the weights for an epoch. First, the discrete-time dynamic
equation of the system, Equation 1, is iterated forward in time from iteration 0 to k,. An appropriately
selected training set element is used to supply the boundary conditions, R 0 ,r 0 ,...,rk, and Y0 , for the
forward iteration of Equation 1. Next, the error gradients with respect to the outputs, Ak, are calculated by
backward iterating Equation 16 using the boundary conditions of equations 17 and 18. Finally, the results
of the backward sweep are used to compute the error gradient, Equation 13.

The technique for calculating the error gradient presented above is independent of the dynamic system.
As long as the output gradient with respect to the weights and recurrent inputs exists, the epochwise error
gradient of a discrete-time dynamic system with adaptive parameters may always be computed using this
method.

5.1.3 Training Dynamic Systems Composed of Neural Networks

If the system function, f, is implemented by a feedforward neural network, an interesting observation can be
made. The error gradient summation computation, equation 13, contains terms of the form Ak0yk/Owk(i).
It is shown in Section 3.2 that terms of this form can be calculated using a backpropagation provide that Yk
is the output of a neural network. Therefore, in the dynamic network case, each term of Equation 13 can
be computed by backpropagating the vector Ak through the dynamic network. Furthermore, the summation
terms of the backward sweep calculation, Equation 16, are of the form Ak+jOYk+j/e 5 Yk. Once again, in
the dynamic network case, these terms may be calculated using the backpropagation algorithm. Although
it may seem that a large number of backpropagations are required for each epoch to calculate the error
gradient, only kf + I backpropagations are needed. By backpropagation of the vector Ak at each iteration
of the backward sweep and by storing the results of this backpropagation in memory, the minimum number
of backpropagations can be achieved. This technique of calculating the error gradient is known as the
backpropagation-t hrough-time algorithm.

Neural network controllers can be designed using the Euler-Lagrange "ased algorithm. Systems with
the neural network plant model may be trained using the backpropagation-through-time algorithm. If the
plant model consists of a set of equations, the summation terms of both the backward sweep calculation,
Equation 16, and error gradient computation, Equation 13, may be calculated by backpropagating the vector

=A = AkOyk/Ouk at each iteration of the backward sweep.

Finally, a combination of the Euler-Lagrange based algorithm and the MRIII algorithm can be used to
train a discrete-time neural network which is implement on a VLSI chip. The summation terms of both the
backward sweep calculation, Equation 16, and the error gradient summation computation, Equation 13, can
be computed using the MRIII algorithm at each backward iteration of the Euler-Lagrange based algorithm.

5.2 An On-Line Algorithm Based on the Euler-Lagrange Equations

The Euler-Lagrange based algorithm is an epochwise training technique. In many applications, such as
real-time filtering and adaptive control, it is necessary to allow on-line training. In these cases, an on-line
version of the Euler-Lagrange based algorithm, which is introduced in this section, can be used.

11

Generally, in the on-line case, at each forward iteration of the dynamic system, k', the error gradient is
first calculated and the weights are updated based upon this calculation. Using the results of the previous
section, the error gradient could be calculated by iterating Equation 16, which is repeated here,

L

A=k + E A+j y (19)
j=1 9Y

backwards through time from iteration k' to 0. Because it is common to use the mean squared error in the
on-line case, the boundary conditions of Equation 19 would take the form

,d, = - - yw,) (20)

Ak, ,Ak+L = 0 (21)
o,..-,(0,... - O. (22)

Finally, the results of the backward sweep are summed to produce the on-line error gradient using

0+Ek ' a+E ' L 9

~ w,(k,) =~ ~k(l

which is similar to Equation 13 of the previous section.

5.2.1 Problems Associated with On-Line Implementation

Two problems arise when one attempts to determine the on-line error gradient of a dynamic system in this
manner. First, the number of iterations, ', for most on-line applications quickly becomes large. Because the
error gradient is calculated by iterating a difference equation backwards from k' to 0, the number of com-
putations required to calculate the gradient grows linearly with k'. Obviously, this technique of calculating
the gradient quickly becomes computationally expensive. Instead of using an algorithm whose computations
grows linearly with the current iteration count, it is better to use an algorithm whose computations remain
constant and are independent of the current iteration count. This can be accomplished by iterating Equa-
tion 19 backwards through time a constant, T, number of iterations. Using this idea, the error gradient is
calculated by first iterating Equation 16 backwards in time from iteration k' to k - T using the appropriate
boundary conditions. After this computation, the error gradient is calculated using

a+ E k, k 0i + E i: k o ey k
F+E %OrE 23

k=k-T Ok(k') k=k'-T

Of course, the error gradient computed using this method is an approximation of the true gradient. An
example will illustrate the nature of this approximation. Figure 5, shows the values of O+E&./Owk(k') for
some given dynamic system. By summing only a portion of these terms, it can be observed in Figure 6 that
the resulting approximate error gradient is a windowed version of the true gradient. Thus, the validity of
the approximate gradient depends upon how much of the gradient lies outside of the window of length T.

The second problem with directly using the Euler-Lagrange equations in the on-line case results from the
weight changes at each iteration. In the on-line case, the system difference equation is

yk = f(Rk, Yk, Wk(k)) (24)

12

a+E k ,

awk(k)X Length T Window

- -- 1.0

F Ik'-T k'-2 k'-I

Figure 5: Error Gradients of a Typical System.

where the weight vector, Wt, changes at each iteration according to Equation 7. The on-line error gradient,
OEk0/8w(k'), is defined with respect solely to the knh weight vector. However, this weight vector is only
used at iteration k'. Because the weight w(k') only appears at iteration k', one could conclude incorrectly
that the error gradient could be calculated based solely upon iteration k'. This is incorrect because the
weight vectors are related by Equation 7. In fact, in most cases of interest, the weights change slowly from
iteration to iteration because the learning rate, p, of Equation 7 is small. Under this condition,'we find

W(k) % W(k - 1).

Using this approximation, the on-line error gradient summation of Equation 23, can be written as

OEk' k' a+ Ek L. k(
aw(k') Z W&(- ''Owk(k) (25)k~k,-T FL~k =kk'-T

where wh(k) has replaced wt(k') in the partial derivative o4yk/owk(k). The combination of Equation 25 and
a backward sweep of length T + I allows the calculation of an approximate error gradient.

The error gradient approximation can be improved by exponentially weighting the terms of Equation 25.
Because in most cases the weight change between w(k) and w(k') tends to become larger as k is decreased
starting from k', it can be argued that the approximation OEi/Owk(k) , 9E&.,/Ow:(k') becomes less valid
as k decreases. Under this assumption, when calculating the error gradient, the influence of the less accurate
terms of Equation 25 should proportionally be reduced. This can be accomplished using the following
exponential weighting scheme

aL .0k-O4 + Ev, Oy 1.

OEL'k- k Xk 49Yk (26)7w, ,kr aw,(k) - F- aL'L L w, (I) (26
Ow ~k')w k=k'-T

13

a)+E k ,
awk(k)

X- Length T Window

- 1.0

Figure 6: Windowed Error Gradients.

where the constant 0.0 < a < 1.0 is the weighting coefficient. The addition of exponential weighting causes
the window to have the form shown in Figure 7. It should be noted, that exponential weighting may be
desirable even in the epochwise training case if the backward sweep computation of Equation 16 is unstable.

5.2.2 Implementation of the Algorithm

Having derived approximate solutions for the two problems of implementing the Euler-Lagrange equations
on-line, we can now present the on-line Euler-Lagrange based algorithm. The algorithm is based upon the
following sequences being performed at each iteration k': a forward propagation based on Equation 24, a
backward sweep of length T-+ 1 using Equation 19 and the boundary conditions of equations 20, 21, and 22,
a calculation of the error gradient, Equation 26, and an update of the weights based upon Equation 7.

For a dynamic system with Q weights, the on-line algorithm outlined above requires that (T+ I)Q weight
vectors be stored. In most cases, this is an impractical amount of storage. Under these circumstances, an
approximate output vector of the form

Yb k f(Rk, Yk, Wk(k')) (27)

may be used in Equation 19, the backward sweep equation, instead of the output vector defined in Equa-
tion 24. Equation 27 is a function of only one weight vector, W(k'), therefore, only this vector needs to be
stored. Using the approximation of Equation 27 results in a good approximation of OEk,/Owk(k') provided
that the weights change slowly.

In the on-line case, the summation terms of both the backward sweep calculation, Equation 19, and the
error gradient computation, Equation 26, may be calculated in exactly the same manner as in the epochwise
case, which is discussed in the last part of Section 5.1. Therefore, dynamic systems composed of a neural
network or neural controller-plant system may be trained on-line. The on-line Euler-Lagrange algorithm can
be used in conjunction with the backpropagation algorithm to calculate the error gradient of a dynamic neural
network. This technique of calculating the on-line error is known as on-line backpropagation-through-time.

14

0 Wk(k)

1.0
J Exponential Window

k'-T k1-2 k'-I

Figure 7: Exponentially Windowed Error Gradients.

One difficulty associated with the on-line Euler-Lagrange based algorithm is the selection of appropriate
values for the constants T and a. Like the selection of the learning rate, p, there are no analytic procedures
for choosing these constants. Instead, the selection should be based upon knowledge of the dynamic system,
desired convergence rate and required misadjustment upon convergence.

5.3 Recursive Gradient Update Algorithm

The recursive gradient update algorithm provides yet another method for adapting a discrete-time dynamic
system composed fully or partially of a neural network. The earliest version of the algorithm, which adapted
a single linear node, was introduced by White in 1975 [13]. The algorithm received much attention during
the later 70's in the adaptive signal processing community. It was found to suffer from stability problems
and much of the recent research has been dedicated to overcoming this problem [14]. The recursive gradient
update algorithm for nonlinear networks became well known because of a paper by Williams and Zipser [1].
Although this paper dealt only with single layer nonlinear networks, their version of the recursive algorithm
could be generalized to multilayered networks by appropriatately selecting the connections between input
and output. In this section, the recursive algorithm for a general system, which may be composed partially
or fully of a neural network, is presented.

In both the epochwise and on-line cases, the recursive algorithm utilizes first-order gradient descent to
minimize an appropriate error function. The difference between the Euler-Lagrange based algorithm and the
recursive algorithm is the method in which the error gradient with respect to the weights is calculated. To
gain an understand of the difference between the algorithms, the epochwise version of recursive algorithm is
developed.

5.3.1 Epochwise Error Gradient

The Euler-Lagrange.based algorithm is derived using the first chain rule expansion, Equation 2. In this sec-
tion, the second chain rule expansion, Equation 3, is used to derive the recursive gradient update algorithm.
Once again, we assume the error, E, is calculated using the ordered set of equations shown in Section 5. 1. 1.

15

We begin by expanding the error gradient using .h '.i chain rule expansion, Equation 3, to obtain the
following result.

+ E _ OE k1 OE a+yk + OE O+W&i) (28)
Ou,(i) Ow(i) +ko= Oy& Ow(i) 9Wk(i) C9w(i) /

The two terms, OE/dw(i) and 8E/OWk(i), are equal to zero because the error, E, is not a direct function
of w(i) and Wk(i). Therefore, Equation 28 can be written as

O+ E - aE8+yk (2)
Ow(i) =O OYk Ow(i)

The first term of Equation 29, OE/Oyk, is easy to compute. The second term, 0+yl/Ow(i), can be found
by using the second chain rule expansion once more.

9+ y k --_ k (k k 0Yk O+W(i) W k yk '+yj

49 +Y +E9 k k l o (30)
Ow(i) w-(+ i) Wj(i) w(i) w(i)•=O j

The term Oyk/Ow(i) equals zero. The term, Oyk/Wi(i), of the first summation is nonzero only when
k = j, therefore, this summation only contains one nonzero term. Furthermore, it is easy to verify that this
term can be simplified to 8yL/Owk(i). Finally, the first term of the second summation, ayk/0yj, is nonzero
only when k -j _ L. Using these results, Equation 30, can be written as

a+Yk yk L yk a+yk-j(31)w(i) TWk(i) + 1 F- yk-j aW(i) "(1

The summation in Equation 31 can be eliminated using Yk = [Yk-1, ... ,Yk-LIT

O+yk Oyk + yk O+Yk (32)
Ow(i) - Otwk(i) OYk Ow(i)"

This equation can be used to recursively calculate the output gradients for the entire epoch. It is usually
initialized using

w-' = 0. (33)
aw(i)

5.3.2 Implementation of the Algorithm

The epochwise error gradient can be calculated by first using Equation 32 to determine O+yk/8w(i) for each
iteration of the epoch. Once these ordered derivatives are determined, the error gradient can be calculated
using Equation 29. In order to calculate the error gradient using this method, the output gradient at each
iteration of the epoch must be available. If the outputs are stored in memory, a total of (k! + 1)NQ memory
slots are required, where N is the number of outputs and Q is the number of weights. In many cases, this
amount of memory may not be available. The memory requirements may be reduced to (L + I)NQ using a
recursive calculation, Let Sk, an intermediate error gradient sum, be defined as

16

k aE O+yj
Sk = E 8 yi Ow(i)"

j=O

Using the recursive equation

OE O~yt+i
Sk+1 = Sk + - Ow(i) (34)

which is initialized by

S OE= y0 (35)So= yo Ow(i) (5

it follows

O+E
Ow(i) =

The epochwise recursive update algorithm is implemented using the equations derived immediately above
to calculate the error gradient. For a given epoch, the feedback input gradient, o+Yo/Ow(i), is initialized
using equation 33 while the intermediate error gradient sum, Sk, is initialized using Equation 35. At each
iteration, from the initial iteration k = 0 to the final iteration k = k1 , the following sequence is performed:
the system is forward propagated using the function f defined in Equation 1, the output gradient is com-
puted using the recursive calculation of Equation 32 and the intermediate error gradient is updated using
Equation 34. Because Sk and O+yk/Ow(i) are calculated at each iteration, only the previous L output gra-
dients need to be stored in memory, therefore, the storage requirements of the algorithm are approximately
(L + 1)NQ. After the final iteration, the error gradient is available as St.

In order to update the output gradient at each iteration using Equation 32, it is necessary to compute
the direct output gradient, yk/Owt(i), and the Jacobian matrix, Oyt/Yk. Many different techniques
can be used to calculate these terms depending upon the form of the dynamic system. As shown below, if
the structure of the discrete-time dynamic system is a neural network, these two components can be found
using N backpropagations of N appropriately selected vectors {A, ... , A,,... , AN}. These vectors are all
backpropagated through the kVh iteration of the dynamic network.

The N vectors take the form

f 1 ifn=jA,,, = 0 otherwise

where An, is the j"' element of the row vector An E R(1Nl]. Each vector has only one nonzero component in
the n = j column. Because Yk is the output vector of a neural network, the backpropagation of the vector
A,, through the network at iteration k results in the calculation of the output gradient of the nth output, as
indicated by

A Oyk _ Oyk(n)
a"Wk(i) =Ow(i)

Furthermore, as shown by,

17

A yk a 9yk (n)

backpropagating the ?1 h vector, A, back to the input nodes results in the calculation of the n h row of the
Jacobian matrix. This shows that the direct output gradient, ayk/dwk(i), and Jacobian matrix, _ykl/0Yk.
can be computed using N backpropagations through the kth iteration of the dynamic network. Using this
technique in the epochwise recursive gradient update algorithm shall be referred to as epochwise recursive
backpropagation.

The computation of the direct output gradient and the Jacobian matrix for a neural controller-plant
system is similar to the calculation for the dynamic neural network. In fact, if the plant model is a neural
network, the technique discussed above can be used directly. If the plant model is based upon a set of equa-
tions, once again, the direct output gradient and Jacobian matrix can be computed using N backpropagat ions
through the neural network. In this case, the backpropagated vectors are of the form

% Ayk -0yk(n)

n U k Oiuk

The backpropagation of A' through the neural controller of iteration k results in the computation of the
direct output gradient as indicated by

A' yk - Oyk(n) Ouk Oyk(n)

k -Ouk OWk(i) wk (i)"

Similarly, it can be shown that the n"h row of the Jacobian matrix can be computed using the backpropagat ion
of A' to the inputs of the neural controller.

If the system is composed of a neural network implemented in hardware, the two terms c9yk/awk(i) and
Oyk/Yk of Equation 32 can be computed using MRIII. The MRIII algorithm uses the output gradient to
calculate the error gradient. Therefore, this algorithm can be used without modification to find the two
terms of Equation 32.

The epochwise recursive algorithm can be used to calculate the epochwise error gradient of any discrete-
time dynamic system. In the next section, we show that this algorithm is easily extended to the on-line
case.

5.4 On-Line Recursive Gradient Update Algorithm

The on-line version of the recursive gradient update algorithm is easily derived from the epochwise version.
The calculation of the output gradient at each iteration performed by the epochwise version of the algo-
rithm depends only upon the current and past values of the dynamic system. The lack of dependence on
future values of the network in calculating the output gradient makes the algorithm attractive for on-line
implementations.

In the on-line case, the mean squared error is often minimized by updating the weights at each iteration
based upon an error gradient of the form

= Ek' _ E V O9Yko (36)

O4w(k') 9Yk' Ow(k')

Y)T 9+Ykl' (37)

18

The second term of Equation 37 may be calculated using the recursive gradient update calculation, Equa-
tion 32. which was derived in the previous section. Using this approach. the squared error is reduced at each
iteration, and the mean squared error is approximately minimized.

The calculation of the output gradient using the recursive update computation,

a + y k , 0 y , 19 y k, a + y k (3 ,S
aw(k') - &tw-k,(k) + Yk, w(k')

is based upon the assumption that the weights are constant. However, in the on-line case, the weights change
from iteration to iteration according to Equation 7. In order to use the recursive equation, it is assumed
that the weights change slowly or equivalently

W(k) ; W(k - 1).

This assumption allows

O+yk, 4r+Yk,_l T -9+yk,2 T O+yk,_L Tl

-9w(k') w(k') ' ow(k') "' ow(k,)

of Equation 38 to be approximated as

O+yk [9+y,_i T 4+yk,_2 T O+yk,_tL T]T

aw(k') [aw(k,- 1) ' aw(k,- 2) '"'ow(k- L) I

Because of this approximation, the on-line error gradient of Equation 37 can only be approximately calcu-
lated.

In a manner similar to the on-line Euler-Lagrange based algorithm, the accuracy of the error gradient
approximation can be improved by introducing exponential weighting. The exponentially weighted output
gradient can be calculated using

+yk, 4Oy-, + y , y (39)
aw(k) wk, (k) + -Yk' o-w(k 9

where the diagonal matrix F E R [LNXLNI is used to perform the exponential weighting. In general, F takes
the form

0 00 01 0
F= 0

00 0 OL

where

0 0
0ck 0..0

0

19

with 0 E R['vx-'N l and 0.0 < a < 1.0.

The on-line recursive algorithm with exponential weighting is easily implemented. The fetolback input
gradient. which is used in the recursive gradient update equation. is initialize as indicated by Equation 33.
The elements of the first weight vector, W(0), are randomly initialized. At each iteration, the following
sequence is performed: a forward propagation implemented by Equation 24. a recursive update of the
output gradient by Equation 39. a calculation of the error gradient which utilizes Equation 37 and azi update
of the weights using Equation 7.

The on-line recursive algorithm can be used to adapt the weights of a dynamic neural network or neural
controller-plant system. As discussed in the previous section, in these cases, the two terms, Oyk'I/wk,(k')
and dYk'0/Yk', can be calculated using N backpropagations. The combination of the on-line recursive
algorithm and the backpropagation algorithm to adapt a dynamic network shall be referred to as the on-line
recursive backpropagation algorithm. In addition, a neural network which is implemented on a VLSI chip
can be adapted on-line using a combination of the on-line recursive algorithm and the MRIII algorithm. The
on-line recursive algorithm provides an alternative technique to the on-line Euler-Lagrange based algoritlm.
A comparison of these algorithms is presented in the Section 7. This comparison will allow proper selection
of an on-line algorithm for a given problem.

6 Comparison of the Algorithms

Although the Euler-Lagrange based algorithm and recursive gradient update algorithm may appear to be
quite different, they both perform first-order gradient descent in weight space. In the epochwise case where
no approximations are required to calculate the error gradient, the two algorithms are equivalent. In this
case, because the selection of algorithm does not affect the convergence rate, the algorithm should be chosen
on the basis of computational complexity and storage requirements which are discussed in Section 7.

In the on-line case, the two algorithms result in approximately identical weight updates given the same
set of inputs. This can be shown using the formulation of Section 5. The exponentially weighted on-line
error gradient of the Euler-Lagrange based algorithm, shown in Equation 26, is repeated here for comparison
with the on-line gradient calculated by the recursive algorithm.

0 + Ek, _a
+

_ (41)
=w(k') -zw(k)"

An equation similar to Equation 41 can be derived for the on-line recursive algorithm. Using induction, it can
be proved that the on-line recursive output gradient calculation of Section 5.4, Equation 39, is approximated
as

Lq+y YO yk, ky' F0 Y -k '9+Yj'
_____~~~ ayk F~k aY + Yk' k'Oyk

i8w(k') tOwk,(P) + F 8aw(k') = wk(k)'k=O

Substituting this result into the error gradient calculation of the on-line recursive algorithm, Equation 36,
the weighted on-line error gradient calculated by the recursive algorithm is

k'k' .2
a+k ') a~k' k=O '-k (k) k=0 O+E''j

The two on-line techniques are approximately equivalent when equations 41 and 42 are approximately equal.
This occurs when

20

k'-T-I1 _ Ok

/CA 9Ek' 'Z0(43)
k=O awk(k)

By appropriate selection of a, one can guarantee that Equation 43 is made arbitrarily close to zero. Thus,
we can conclude that the two on-line algorithms are approximately equivalent and that the validity of this
approximation depends upon satisfying Equation 43.

7 Computational Complexity and Storage Requirements

If the two algorithms are equivalent in both the epochwise and on-line cases, then how does one choose which
algorithm to use? Obviously, the choice should be based upon practical issues such as computational efficiency
and storage requirements. In this section, the computational and storage requirements, with the system
architecture, f, implemented by a neural network, are analyzed and compared. We choose to present only the
dynamic neural network case for two reasons. First, the dynamic neural network system is the most common
form of discrete-time dynamic system encountered in the neural networks field. Second, the computation
and storage requirements are easy to calculate for any system once one understands these requirements for
the dynamic neural network. Because we assume a neural network structure of the system architecture,
the computational and storage requirements of the backpropagation-through-time, on-line backpropagation-
through-time, epochwise recursive backpropagation and on-line recursive backpropagation algorithms are
discussed below.

All four of these algorithms are based on the backpropagation algorithm. Therefore, an understanding of
the computation requirements of this algorithm is necessary before deriving the complexity of the dynamic
network algorithms. Epochwise training, using the backpropagation algorithm, consists of a forward propa-
gation, a backward propagation and a weight update. Each of these computations requires on the order of
Q multiplications and additions, where Q is the number of weights in the network. Therefore, the epochwise
computational requirement of the backpropagation algorithm is on the order of 3Q multiplications and addi-
tions. Throughout the remainder of this section, we shall use the term operation to refer to a multiplication
and addition.

7.1 Backpropagation-Through-Time Based Algorithms

The backpropagation-through-time algorithm, which is an epochwise technique of adapting a dynamic sys-
tem, is based upon repeated forward and backward propagations through the dynamic network. For any
given epoch, kf + I forward and backward propagations are required. Because each of these propagations
requires on the order of Q multiplications and additions, 2(k1 + 1)Q operations are needed to calculate the
error gradients, 9+ E/awk (i), of each epoch. Using Equation 13 to compute the epochwise error gradient and
Equation 5 to update the weights requires approximately (k, + I)Q operations. (In calculating the epochwise
computational requirements, it is assumed that the weights are updated at each epoch.) The total number
of multiplications and additions using the backpropagation-through-time algorithm, is

CBPTT - 3(k] + 1)Q. (44)

The storage requirement of the backpropagation-through-time algorithm is derived from two primary
components. First, the weights and their associated error gradients need to be stored in memory for efficient
computation. These terms require 2Q floating point memory slots. Secondly, the output vector, yk and
external input vector, rk of the dynamic system at each iteration of the epoch are required for the calculation
of the backward sweep. In order to minimize the storage requirements, only the inputs and outputs need
be stored. The internal states of the system, such as the hidden node activation levels, can be recalculated
from the input and output vectors. It should be noted, that minimization of the storage requirements may

21

increase the computation requirements by at most (kI + l)Q because of the need to recalculate internal
states. The external input is composed of M floating point numbers while the output contains N terns.
Thus. (kf + 1)(Mf +N) memory slots are required for the external inputs and outputs of the dylamic systt,-*.
Adding the two components together, the minimal storage requirement of the backpropagation-through-tilit
algorit hm is

SBPTT 5 2Q + (kf + 1)(M + A').

The computational complexity of the on-line backpropagation-through-time algorithm is based upon the
number of operations per iteration. These requirements are easily derived from those of the backpropagation-
through-time algorithm. At each iteration, the error gradient is calculated using T + 1 backpropagations,
and the weights are updated based upon this gradient. The backpropagations and weight updates require
2(T + 1)Q operations. In addition to these computations, one forward propagation of the dynamic system,
which requires Q multiplications and additions, is necessary. Using these calculations, the computation
requirements per iteration of the on-line algorithm is

COBPTT z (2T + 3)Q.

In order to achieve the minimal storage requirements of the on-line backpropagation-through-time al-
gorithm, the output vector, yL, must be defined as shown in Equation 27. In this case, only one weight
vector need be stored in memory. In addition to the weights, the associated error gradients of each weight
must be stored. Finally, only the output vector and external input vector of the previous T + I itera-
tion are needed for calculation of the error gradient. Thus, the minimal storage requirement of the on-line
backpropagation-through-time algorithm is

SOBPTT z 2Q + (T + 1)(M + N).

7.2 Recursive Backpropagation Algorithms

The epochwise recursive backpropagation algorithm is based upon a forward propagation, a recursive update
of the output gradient and a recursive update of the error gradient being performed at each iteration. The
weights are updated at the final iteration based upon the error gradient. The computational complexity of the
forward propagations is (kf + 1)Q. The complexity of calculating the kf + 1 output gradients is determined
by the computational requirements of the recursive gradient update calculation, Equation 32. In the dynamic
network case, the two terms OykL/wk(i) and 0yk/ 8Yk are computed using N backpropagations. In addition
to the calculation of these two terms, a matrix-vector multiplication, which requires N 2 L operations, must be
performed to compute the second term of Equation 32. Finally, the addition of the two terms of Equation 32
requires N operations per weight. Adding all these components together, the computation complexity of the
recursive output gradient calculation, Equation 32, is (N 2 L + 2N)Q. The complexity of finding all output
gradients is (kf + 1)(N 2 L + 2N)Q. At each iteration, the error gradient is updated using Equation 34 which
requires a minimum of N operations per weight. The computation requirements of updating the Q error
gradients over the k! + I iterations of the epoch is (kf + 1)NQ. Finally, Q multiplications and additions are
needed to update the weights. The computational requirements of the epochwise recursive backpropagation
algorithm is

CRB .Z (k! + 1)(N 2 L + 3N + 1)Q + Q. (45)

As pointed out in Section 5.3.2, the storage requirements are determined by the recursive output gradient
calculation, Equation 32. Therefore, the storage requirement of the epochwise recursive backpropagat ion
algorithm is

22

Epochwise Algorithms On-Line Algorithms

Requirements Backpropagation- Recursive Backpropagation- Recursive
through time Backpropagation through-time Backpropagation

Computational 3 (kf + 1) Q (kf+ 1)(2 L + 3N + I)Q+Q (2T + 3)Q (N2L + N(L + 3) + 2)Q

Storage 2Q + (kf+ 1)(M+N) (L + 1) NQ 2Q + (r + 1)(M+N) (L + 1) NQ

Table 1: Computation and Storage Requirements.

SRB , (L + 1)NQ.

The complexity of the on-line recursive backpropagation algorithm follows almost immediately from the
computational requirements of the epochwise algorithm. At each iteration, the error gradient is calculated
using an exponentially weighted recursive update calculation, Equation 39. The only difference between this
equation and the one used in the epochwise case is the exponential weighting. Because the weighting constant,
F E RLNxLN] , is a diagonal matrix, LN operations per weight are introduced by this matrix multiplication.
Therefore, the recursive update calculation of Equation 39 requires (N 2 L + N(L + 2))Q operations. The
error gradient, Equation 37, is calculated using at least NQ operations. Finally, the forward propagation of
the system and the weight update both require Q operations. The computational complexity per iteration
of the on-line recursive backpropagation algorithm is

CORE z (N 2 L + N(L + 3) + 2)Q.

The only differences between the on-line and epochwise recursive algorithms are the exponential weighting
of the recursive update equation and the weight update at each iteration of the on-line case. These two
differences do not account for any difference in storage requirements. Therefore, the storage requirement of
the on-line recursive backpropagation is

SORB (L + 1)NQ.

which is the same as that required for the epochwise recursive backpropagation algorithm.

7.3 Comparison of Algorithms

The computational and storage requirements are outlined in Table 1. Comparing the computational coni-
plexity of the two epochwise algorithms, equations 44 and 45, we find the epochwise backpropagation-
through-time algorithm to be computationally more efficient than the epochwise recursive backpropagatio,
algorithm. In general, epochwise algorithms based on the Euler-Lagrange equations are more efficient than
those based on the recursive update equation. The computational inefficiency of the recursive technique is
a result of the output gradient calculation which requires a matrix-vector multiplication for each weight.
Although this calculation introduces inefficiency into the recursive backpropagation algorithm, it has the
advantage of fixing the storage requirements to (L + 1)NQ, which is independent of the number of iterations
in an epoch. In some cases, where the total number of iterations, kf + 1, is large compared to the number of
weights. Q, the epochwise recursive backpropagation algorithm may be advantageous to use for this reason.
However, in many cases the total number of iterations is small compared to the number of weights and the
storage requirements favor use of the epochwise backpropagation-through-time algorithm.

23

The ratio of the computational requirements of the two on-line algorithms

COBPTT (2T + 3)Q
CORE (N 2 L + .'(L + 3) + 2)Q

can be used to compare the efficiencies of the two on-line algorithms. The most efficient on-line inethod
can be chosen on the basis of the number of outputs, N, the maximum delay in the feedback loop. L, and
the error gradient window length of the backpropagation-through-time algorithm, T. Using the ratio of
Equation 46, a couple of general statements can be made about selection of an on-line algorithm based on
computational efficiency. First, for systems with a small number of outputs, N, and a laximum delay, L.
less than the window length, T, the on-line recursive algorithm is the most efficient technique of updating
the weights. A general class of systems which meet these conditions are single output 11R adaptive filters.
With this in mind, it is not surprising that in the adaptive filter field, the computationally more efficient
on-line recursive technique has been well studied [9,14] while we are unaware of any attempts to use the
on-line backpropagation-through-time algorithm. Secondly, for dynamic networks with a large number of
outputs, N, or a large number of delays, L, the backpropagation-through-time algorithm is most efficient.
Fully recurrent networks, which have a large number of outputs because each node is regarded as an output,
should be adapted using the on-line backpropagation-through-time algorithm. The algorithm should also be
used to train multidimension adaptive filters.

In addition to the computational efficiency, the storage requirements of the two on-line algorithms were
derived in the previously in this section. On the basis of the storage requirements alone, the on-line
backpropagation-through-time algorithm is preferable to the on-line recursive backpropagation algorithm
when (T + I)(N + M) < (L + I)NQ. For almost all dynamic neural network systems, this inequality will
hold, and the storage requirement will favor the on-line backpropagation-through-time algorithm.

8 Reducing On-Line Computational Complexity

Both the on-line backpropagation-through-time and on-line recursive backpropagation algorithm are com-
putationally expensive. In this section, two techniques for reducing the number of computations are briefly
presented.

8.1 Feeding Back the Desired Response

We have already stated that in the on-line case, it is common to minimize the square error at each iteration.
In this case, a desired response vector, dk, must be available at each iteration. One method of speeding-up
on-line learning, is to feed back the desired response instead of the output vector. Using this technique, the
system equation is

yk = f(Rk, Dk, Wk(k)) (47)

where Dk = [d T 1d 2 ,. .. , dTt.L] E RMNLX1I . Because the system defined by Equation 47 is independent
of previous states of the system and therefore static, the error gradient can be calculated using a single
backpropagation. Obviously, this technique is computationally less expensive than the two on-line algorithhis
of Section 5.

However, a price is to be paid for using this method. An approximate error gradient is calculated, whose
validity depends upon the magnitude of the difference between the output and desire response vectors of the
previous iterations. If these vectors are significantly different, a poor approximation of the error gradient
is used to update the weights. Thus, even though the calculations per iteration are reduced, the number
of iteration required to reach convergence will probably increase. Despite the increase in the number of
iterations, feeding back the desired response is a method which can greatly decrease the computationally
complexity per iteration.

24

Feeding back the desired response has been extensively studied in the field of adaptive signal processing [9].
This technique. which has been used to adapt single output linear filters, is known as tile output-error
formulation. A detailed analysis of the advantages and disadvantages of using this method for an adaptive
linear filter can be found in Shynk, 1989 [14].

8.2 Redefining the On-Line Error Function

A second technique, which reduces the computational requirements while slightly increasing the time to
convergence when using the on-line backpropagation-through-time algorithm, is based upon redefining the on-
line error function. In the on-line case, the error function is commonly the squared error. In order to calculate
the error gradient using the on-line backpropagation-through-time algorithm, T backpropagations through
the system are required at each iteration. However, by changing the error function, the computational
complexity of the algorithm can be significantly reduced. Instead of using the squared error, the error
function can be redefined as

L. a+E
0+Ek"' = -j=k'-C+1 jg8-j if (k' mod C) = 0

cOw(k') 0 otherwise

where C is an integer constant greater than 1, and k' denotes the forward iteration count. Using this
definition, the error is nonzero every C iterations. Thus, the error gradient need only be calculated every C
iterations instead of every iteration. For example, if C = 10, the number of computations is approximately
reduced by a factor of 10, assuming the window length T is not drastically increased. In general, the window
length should be increased to T + C, and the learning rate, p, should be multiplied C. The reduction in
computational requirements is accomplished by grouping the square error gradient calculations. Even though
the number of computations is reduced, the number of iterations to convergence may increase because it
may not be possible to multiply p by a factor of C for stability reasons. A more detailed explanation of this
technique of reducing the on-line computations can be found in Williams and Peng, 1989 [15].

This method of speeding-up on-line learning can only be used for the on-line Euler-Lagrange based algo-
rithm. Because the on-line recursive algorithm calculates the output gradients at each iteration, redefining
the error gradient as shown in Equation 48 does not significantly change the computational complexity of
the algorithm.

9 Examples

In this section, two examples which illustrate the uses of the dynamic system training algorithms are pre-
sented. The first example demonstrates the use of the algorithms for nonlinear controller design. A neural
network is trained using the Euler-Lagrange based algorithm to provide the steering angle of a boat which
is placed in a river with a nonlinear current. By providing the proper steering angle, the neural network
guides the boat across the river to a designated dock position. The second example illustrates the use of
the on-line recursive algorithm for adaptive filtering. In this example, an adaptive noise cancelling system
is trained to eliminate filtered noise from a corrupted signal.

9.1 Nonlinear Control Example

In this example, a boat is initially placed in a river, which is 200 feet wide, within a region 100 feet upstream
or downstream of a dock. The boat is powered by a constant thrust motor which is also used to point the
boat in any desired direction. Starting from the initial position, it is desired to maneuver the boat to a
dock, which is located on one shore of the river. Maneuvering the boat to the dock is made difficult by the
stream's nonlinear current.

25

Let zk denote the distance from the center of the boat to the shore with the dock at iteration k. Let yi
denote the distance of the center of the boat upstream or downstream of the dock. Assuming the curr'nt
only to be a function of the distance from the shore, xL., the equations of motion for the boat are

XL+ = Xk + lOCOS(uk) (48)

yk+l = yk + lOsin(uk) + fc(Xk).

where ut, the orientation of the boat given in radians, is the control signal, and f,.(xk), the influence of the
current on the boat, is given in feet per iteration. The current, which is parabolic in nature with the greatest
force in the middle of the stream at x = 100, is given by the following equation

fh(Xk) =7.5 -k Xk2)

The control signal is supplied by the output of a three layer neural network. The first layer contains the
two inputs, Zk and k, which are the states of the system. The hidden layer contains ten sigmoidal neurons
which are fully connected to the inputs and a bias. The output layer, which is linear, is fully connected to
the hidden layer and the bias.

The boat system operates in an epochwise manner with the initial position determined randomly and
the final position specified as the iteration prior to the boat hitting the dock's shore. For this reason, one of
the two epochwise algorithms should be used to train the neural controller. Because of the computational
efficiency of the epochwise Euler-Lagrange based algorithm, it was selected for training the controller. In
order to make the boat come near to the dock at the final iteration, the following error function was used

E = (Zd - Xk,)
2 + (Yd - yk)

2

where zd is the z position of the dock and Yd is the y position of the dock.

In order to train the neural controller, 4000 thousand training epochs were required with a learning rate,
p = 0.0001. After training, four demonstration epochs, which are shown in Figure 8, were run. In the
lower portion of Figure 8, the current is shown as a function of z. In order to show the boat graphically,
it was necessary to move the two shores outward a distance equal to half the boat length. For this reason,
the current near both shores is shown as zero. The four demonstration epochs show that by using the
Euler-Lagrange based algorithm, it is possible to design a neural controller for the boat system.

9.2 Adaptive Filtering Example

In this example, an adaptive noise cancelling system was used to reduce additive noise from a corrupted
signal. Before getting into the details of this example, the adaptive noise cancelling concept is introduced.
Whenever an adaptive noise cancelling system is to be used, it is assumed that it possible to detect a noise
source, rk, which corrupts the original signal, sk. Furthermore, it is assumed that a filter version of the
noise, nk, corrupts the original signal. Finally, it is assumed that the noise signal and the original signal are
uncorrelated. The adaptive noise cancelling system receives as input the noise signal, rk, and the corrupted
signal, sk + nk. In order to eliminate the filtered noise from the corrupted signal, the noise signal is adaptively
filtered and the result, yk, is subtracted from the corrupted signal. If the adaptive filter is appropriately
trained so that yk = nk, this subtraction will result in the output of the noise cancelling system, ck, being
equal to the original signal. Figure 9 shows an illustration of the basic noise cancelling system.

We have stated earlier that an on-line error function of the form (d - y)2 minimizes E[(dk - yk)i1. For
the adaptive noise cancelling system, we select an error function of the form Cj. Therefore, on-line adaptation
of the system results in the minimization of E([]. We can find this quantity by expanding the expected
values of fk as follows

26

Left Bank Right Bank

Epoch I

Epoch 2

Epoch 3

Epoch 4

Figure 8: Nonlinear Control Example.

E[=] = E[(sk + n - Yk)] (49)

= E(sk + 2 sk(nk - Yk) 2 + (nk _ y&)21. (50)

Assuming the original signal is uncorrelated with the noise signal and the adaptive filter output, Equation 50
can be written as

E[i] = E8]1 + E[(nk - yk) 2 • (5k)

Minimization of Equation 51 requires that nk = y&. Therefore, by using an on-line error function of the
form Ek = C, the noise is adaptively eliminated from the corrupted signal by the adaptive noise cancelling
system. For a more detail discussion of the adaptive noise cancelling concept, see Widrow and Stearns [9].

In our example, the original signal was

sk = .25cos(.4k). (52)

The noise signal, rk, is selected randomly from a uniform distribution between -1.0 and 1.0. The filtered
noise, nk, is calculated using the following nonlinear difference equation

27

Sina I 5k SJ Sytem

Source + rn Output

k

Noise k Adaptive Yk

Figure 9: Adaptive Noise Cancelling System.

nk = rk + fn(nlk-1) (53)

where

=- 1.0)o (-(nk-1 +1.0)2(

= 5ep . 0.67 0 5ep~ .67).(4
It should be noted that the noise filter contained nonlinear feedback.

The adaptive filter was implemented by a three layer feedforward neural network. The input layer was
composed of two components, the noise signal, rk, and the previous output of the adaptive filter, y -1. The
hidden layer was composed of 17 hidden units each of which were squashed by the sigmoidal function. The
first five nodes were connected through five different weights to the noise signal. The remaining ten nodes
were connected to the feedback signal, Yk-1. In addition, each of the hidden units were connect to a bias.
The output layer contained one linear unit which was connected to the hidden nodes and the bias through
18 separate weights.

One of the primary reasons for selecting the adaptive noise cancelling system as an example is that the
feedback adaptive filter described above can only be trained using one of the on-line learning algorithms
discussed in Section 5. The speed-up technique of feeding back the desired response cannot be used for
this example because a desired response does not exist. The on-line recursive gradient update algorithm
was selected for training the adaptive filter because it is computationally more efficient than the on-line
Euler-Lagrange based algorithm when the number of outputs, N, and the number of delays, L, are both
equal to 1.

A learning curve for the system, with the learn rate, p = .005, and the forgetting factor, a = .95, is
shown in Figure 10. The initial decrease in the mean squared error over the first couple hundred iterations is
due to learning the feedforward component of the filter. The slow learning, which lasts for several thousand
iterations, is due to learning the feedback component. The corrupted signal, s + nk, and the original
signal, sk, for iterations 5900-6000 are shown in Figure 11. Notice that it is impossible to determine the
characteristics of the original signal from the corrupted signal. The output signal, ck, and original signal,
sk, for these same iterations are shown in Figure 12. Although the output signal is not perfect, the noise
has been significantly reduced.

28

2

01

S1.5

0 1000 2000 3000 4000 5000 6000

Iteration

Figure 10: Learning Curve of the Noise Cancelling System.

10 Conclusion

The training of discrete-time dynamic systems using first-order gradient descent can be accomplished using
either the Euler-Lagrange based algorithm or the recursive gradient update algorithm. Both these algorithms
have been derived in this paper using the notation of the standard representation. Epochwise training can
be accomplished using either of the two epochwise training algorithms which have been shown to produce
identical weight updates. In general, because of both computational and storage requirements, the Euler-
Lagrange based algorithm is preferable for epochwise training. However, the epochwise recursive algorithm

may be desirable in cases where constant memory size is required. The two on-line algorithms produce
approximately the same weight updates at each iteration. In general, the selection of an on-line algorithm
is determined by the number of outputs, N, of the dynamic system. As this number increases, it becomes
increasingly computationally expensive to use the recursive algorithm. Therefore, for large N, the Euler-
Lagrange based algorithm is preferable for on-line training. Both on-line algorithms are computationally
expensive. One method of reducing the computations is to feedback the desired responses, if they are
available. Another method, which is applicable only to the Euler-Lagrange based technique, is to redefine

the error function. Finally, two examples which illustrate the usefulness of the algorithms are presented.
The first demonstrates the use of the Euler-Lagrange based algorithm for designing nonlinear state feedback
controllers. The second illustrates the necessity of on-line algorithms in certain adaptive filtering problems.

29

2

0

-2
k

5900 5910 5920 5930 5940 5950 5960 5970 5980. 5990 600

Iterations

Figure 11: Corrupted Signal and Original Signal.

2

Sk

5900 5910 5920 5930 5940 5950 5960 5970 5980 5990 6000
Iterations

Figure 12: Output Signal and Original Signal.

30

References

[1] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural Computation, pages 270-277, Summer 1989.

[2] B. Pearimutter. Learning state space trajectories in recurrent neuaral networks. In Proceedings of the
International Joint Conference on Neural Networks, volume 11, pages 365-372, Washington, DC, June
1989.

[3] D. Nguyen and B. Widrow. Neural networks for self-learning control systems. IEEE Control Systems
Magazine, April 1990.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error prop-
agation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1.
chapter 8. The MIT Press, Cambridge, MA, 1986.

[5] K. S. Narendra and K. Parthasarathy. Identification and control of dynamic systems using neural
networks. IEEE Transactions on Neural Networks, pages 4-27, March 1990.

[6] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD
thesis, Harvard University, Cambridge, MA. August 1974.

[7] R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent connectionist networks.
Technical Report NU-CCS-90-9, College of Computer Science, Northeastern University, Boston, MA
02115, April 1990.

[8] M. Jordan. Generic constraints on underspecified target trajectories. In Proceedings of the International
Joint Conference on Neural Networks, volume I, pages 217-225, Washington, DC, June 1989.

[9] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, 1985.

[10) D. Andes, B. Widrow, M. Lehr, and E. Wan. MRIII: A robust algorithm for training analog neural
networks. In Proceedings of the International Joint Conference on Neural Networks, volume I, pages
533-536, Washington, DC, January 1990.

[111 M. Holler, et al. An electrically trainable artificial neural network (etann) with 10240 "floating gate"
synapses. In Proceedings of the International Joint Conference on Neural Networks, volume fl, pages
191-196, Washington, DC, June 1989.

[12) A. E. Bryson, Jr. and Y. Ho. Applied Optimal Control. Blaisdell Publishing Co., New York, 1969.

[13] S. A. White. An adaptive recursive digital filter. In Proc. 9th Asilomar Conf. Circuits Syst. Compt.,
page 21, Nov. 1975.

[14] John J. Shynk. Adaptive IIR filtering. IEEE ASSP Magazine, April 1989.

[15] R. J. Williams and J. Peng. An efficient gradient-based algorithm for on-line training of recurrent
network trajectories. Technical Report NU-CCS-90-10, College of Computer Science, Northeastern
University, Boston, MA 02115 1990.

31

MLSMON

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 3) activities
for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C31 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

