LT

AD-A236 682

An Expert System for Searching in Full-Text

TR89-043
December, 1989

DTIC

g JUN131991 %% B

Susan Gauch

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175

A TextLab Report
This work was supported in part by ONR contract N00014-86-K-0680.

UNC is an Equal Opportunity/Affirmative Action Institution.

01685 B 53
\\\\\\\\\\\\\\\\\\\\\\\ “\\\\\\\\\\.\\\ 91 6

An Expert System for Searching in Full-Text

by

Susan Evalyn Gauch

A dissertation submitted to the faculty of The University of North
Carolina at Chapel Hill in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Computer

Science.

1 Accasion For

MTIS CRM
Eiis vrd

U.cocuced

Jusufication |

2y

Dist-ibuticn

Aviilabiiy Corles

——— i .

. Avail aad/or
Dist

Special

Chapel Hill
1990

Approved by

Advisor: Dr. John B. Smith

Reader: Dr. Stephen Weiss

Reader: Dr. Judith Wood

© 1990
Susan Evalyn Gauch
ALL RIGHTS RESERVED

Abstract

This dissertation explores techniques to improve full-text information retrieval by
experienced computer users who are novice users of retrieval systems. An expert system
which automatically reformulates Boolean user queries to improve search results is
presented. The expert system differs from other intelligent database functions in two ways:
it works with semantically and syntactically unprocessed text; and the expert system
contains a knowledge base of domain independent search strategies. The passages
retrieved are presented to the user in decreasing order of estimated relevancy. This
combination of user interface features provides powerful, yet simple, access to full-text
documents.

Experimental results demonstrate that the expert system can improve the search efficiency
of novice searchers without decreasing their search effectiveness. Further, an evaluation of
the ranking algorithm confirms that, in general, the system presents potentially relevant
passages to the user before irrelevant passages.

Acknowledgments

Many qualities are required of a doctoral candidate to enable them to reach their goal. They
need intelligence to pass the required exams, naivete when choosing their thesis topic, and
persistence to complete the research. More than this, they need the unflagging support of
family, friends, and colleagues when the final year inevitably drags on for two.

At this ime I would like to thank my parents for the intelligence I was born with, and the
love of learning they instilled afterwards. They are unable to share this accomplishment
with me, but they are always in my thoughts.

My committee (Frederick P. Brooks, Jr., David Plaisted, John B. Smith, Stephen Weiss,
and Judith Wood) deserves a chorus of praise for doing their best to offset my naivete.
Their insistence on a firmly rooted proposal guided me to an achievable research plan.
Cutting the proposal in half allowed me to graduate this decade.

Persistence comes from within, but external encouragement is necessary to get over the
rough spots. I owe a great debt to my advisor John B. Smith for his enthusiasm every step
of the way.

Finally, I want to thank my husband John Gauch for his technical, emotional, and financial
support. Focusing on this dissertation after the birth of our daughter Laura was difficult,
but it would have impossible without John's help. He is therefore forgiven for defending
his dissertation before me.

iv

Table of Contents

I. Introduction. i i e 1
1.1 DrivingProblem............. ... it 1
1.2 ResearchOverviewciiiiiiiiennneeeneenann 2
1.3, RelatedWork......... ...ttt 2

1.3.1 UserInterfaces.cviiinerinnnnnnnannnn 3
1.3.2 Associative Networks for Information Retrieval. 3
1.3.3 Natural Language Processingc....... 4
1.3.4 Expert Systems.coiiiiieuninnneeennnnn. 5
1.3.5 Search Strategies.ciiiiiiinennnnnn.. 7
136 Summary. i e e e 8
1.4 ResearchGoalsandResults.c.....o.... 8
141 Goals....... .ottt ittt i, 8
142 SummaryofResults. 9

II. System Architecture0 it inerennnn. 11
2.1 OVeIVIEW. . . . e e e 11
22 MICROARRAS i i i i et i i e 12

221 Capabilitiesivtiiiiiie ittt 12
222 Implementation.ttt 14
23 Textbasec.ciiiiiiniiinn ittt 15
2.4 Thesaurusttt e e e e e e 15
24,1 Logical Structure.civiiiieetrnrnnnnnnnn. 15
242 Thesaurus Words co it iiin i i i iiineennn. 17
243 ASCIIFilesttt innnnnennnn 18
244 BinaryFiles. e 19
2.45 AccessRoutines.oiiuniiiiinnnnnnnn 20
25 Userlnterface......... ...ttt iiiinnnnnnennnnn 24
251 QueryLanguage.cciiiiiiiiiinnnnnn.. 24
2.5.2 Guidance Requestscoviiiiennnnnn... 27
2.5.3 PassagePresentationc.0uirinn.... 27
2.6 Expert System.ciitttttrrtiiiia., 27
2.6.1 Overviewttt 27
2.6.2 Interaction MICROARRAS. 27
2,63 Sample Scenariottt 28
III. Knowledge Base.....................0iitiiiiriininnnnn.. 30
3.1 OVerview. e e e e e 30
3.1.1 KnowledgeBaseContents 30
3.1.2 KnowledgeBase Design. 30
3.2 Working Memory Elements. 31
3.3 SystemControlRules., 33

3.4 Query ReformulationRules 33

341 OVeIVIEW. . .. ittt e e 33

342 AddingSearchTerms.cciiuvieennnnn.. 38

3.43 Adjusting Contextciiiietiriitaa e 41

3.4.4 Changing BooleanOperators.c.vvueuenn. 43

345 DecisionRules i, 43

35 RankingRules........... 45

3.5.1 Calculating Passage Weights 45

3.5.2 Calculating Concept Weights 46

3.5.3 Calculating Term Weights 46

354 Example.o i ittt e e e e 47

IV, Evaluation e 49
41 IntroducHoniiiiiinimnineinennenennnnns 49

4.1.1 Hypotheses.......... ..ot 49

42 Methodttt e e e 50

4.2.1 Subjects e 50

4.2.2 APpParatusottt e e e 50

423 Proceduret i e e 52

424 DataCollection., 53

4.3 ResUltsttt e e e e 56

4.3.1 Search Effectiveness..............c.. ..., 56

432 SearchEfficiencycoiuuiiiinnnnnnnn.. 56

433 Rankingcuiiiiiiiin et 57

44 Analysis............c. i i e e e e e 57

45 QUesHOoNNaIre.ttt e et e 59

V. Future Work i i i e e e 61
S.1 Refinements.t . 61

5.1.1 UserlInterface.coiiiiiiin .. 61

5.12 Knowledge Base.ouiuiiiinnuunnannnnn 62

52 NewResearchDirectionscoiiiiinrennn... 63
Bibliography 65
Appendix L. Table of Contents for Textbase................... 71
Appendix II. Rule Base............. ...t .. 75
Appendix III. Experiment Handouts........................... 116
Appendix IV, Experimental Data.............................. 120

Chapter 1
Introduction

1.1 Driving Problem

Technological advances are causing a revolution in information retrieval. Optical character
recognition, word processors, and computer publishing software are capable of producing
massive quantities of online text. The development of optical storage media is making the
storage and distribution of large collections of online text feasible. Proliferation of personal
workstations, combined with modems, are allowing an increasing number of end-users to
do their own searching of online databases. Textbases, online full-text databases, are
becoming more common. BRS, a major vendor of online databases, already provides
access to over twenty full-text databases compared with just one in 1981. All these trends
lead to end-user's performing their own textbase searches.

The main roadblock to wide-spread use of online textbases will soon be the inability of end-
users to search effectively. Christine Borgman [Borgman, 1986] identifies two types of
knowledge necessary to search: knowledge of the mechanical aspects of searching (e.g.,
syntax and semantics of both the query language and the system interaction commands) and
knowledge of the conceptual aspects (e.g., ways to broaden and narrow searches using
alternative vocabulary, choosing alternative search paths). She summarizes the results of
many different user studies, concluding that, whereas system mechanics are rarely a
problem for any but very inexperienced and infrequent users, even experienced searchers
have significant problems with search strategy and output performance.

User difficulty with search strategy shows up in many different studies on searching online
bibliographic databases. Carol Fenichel [Fenichel, 1981] finds that even experienced
searchers could improve their search results. The searchers lost sight of the search logic,
missed obvious synonyms, and searched too simply. Search performance is often
measured by recall, the ratio of relevant documents retrieved to the number of relevant
documents in the entire database. The searchers were satisfied with 51% recall on
average, indicating that almost half of the relevant information was not retrieved. The lack
of successively refining queries, called iteration, is another problem identified. In spite of
the low recall, half of the searchers never modified the original query in an attempt to
improve their results.

Studies of inexperienced searchers find even more problems with search strategy. In one
study [Borgman, 1987], a quarter of the subjects were unable to pass a benchmark test of
minimum searching skill. In another experiment [Oldroyd, 1984], contrasting the
searching of novices versus experienced searchers, the novices found some relevant
documents easily, but they failed to achieve high recall and were unable to reformulate
queries well. The experienced searchers in this study were more persistent and willing to
experiment than the novices.

David Blair [Blair and Maron, 1985] paints an even bleaker picture for searching full-text
databases. Lawyers searching a legal database achieved only 20% recall, although they
were attempting to do a high recall search. The factors, as identified by the authors, leading
to this poor performance were poor searching technique (failure to use stemming and

synonyms), stopping the query iteration too soon, and the inability to search on inter-
document relationships.

1.2 Research Overview

To address the problems identified above, I have developed a query reformulation expert
system to act as a front-end to a textbase. The expert system addresses the problems of too
little iteration and improper use of vocabulary identified in several different user studies.
This prototype augments the searching capabilities of novice users by providing automatic
query reformulation to improve the search results and automatic ranking of the retrieved
passages to speed the identification of relevant information. The hope is that, given such a
tool, novice searchers will be able to search more efficiently and more effectively. The
prototype was tested under experimental conditions to demonstrate the feasibility of an
online intelligent assistant function.

The system uses the MICROARRAS system [Smith et al, 1987] to provide full-text search
over the entire contents of the experimental textbase. A knowledge base of search
strategies guides the automatic query reformulation, similar to PLEXUS [Vickery and
Brooks, 1987] and the OCLC system [Teskey, 1987], although my collection of search
strategies is more extensive. The knowledge base is based on the published literature of
studies of expert searchers, search training manuals, consultation with professional
searcher, and my own searching experience.

Domain knowledge is supplied by a predefined online thesaurus, similar to IOTA
[Chiaramella and Defude, 1987] and IR-NLI II [Brajnik et al, 1988]. Since the domain
knowledge is separated from the searching knowledge base, the search strategies are
domain-independent. This should allow the expert system to be applied to a different
domain by merely replacing the textbase and thesaurus.

Finally, the system includes a ranking function. Jung Soon Ro's [Ro, 1988] work
comparing ranking schemes formed the basis of the ranking algorithm used. His
algorithms were modified to work with a single text database and to incorporate the
contextual information available to the expert system.

1.3 Related Work

Research to improve access to online information is proceeding in many directions. By
helping the user with the mechanics of their search, and by providing access to an online
thesaurus, better user interfaces can lead to improved search results with existing
databases. Some projects in this field are summarized in Section 1.3.1. Similarly,
allowing the user to query the database in his natural language, rather than requiring him to
form a Boolean query, may lead to simpler searching. Some natural language interfaces are
described in Section 1.3.3.

Accessing relevant information may also become easier by improving the quality of the
information that is stored in the database. The three main approaches are: representing
documents and search term as an associative network (see Section 1.3.2); using natural
language processing techniques to select index terms (see Section 1.3.3); and building a
knowledge base from the document contents. Based on the contents of the knowledge
base, the user receives direct answers to his queries, rather than documents or document
passages.

Finally, search performance may be improved by providing an online search assistant as

the front-end to existing retrieval systems. Research in this area is summarized in Section

1.3.4. The knowledge bases for these systems, including my own, should be built on

§xisting searching practice. Current knowledge on good search technique is presented in
ection 1.3.5.

1.3.1 User Interfaces

As the demand for direct access to existing online information retrieval systems has grown,
so has interest in providing friendlier interfaces. Marcus [Marcus, 1981] and Meadow
[Meadow et al, 1982] describe research prototypes based on conventional programming
techniques which make existing bibliographic databases easier to search. These projects
focus on providing menu systems to guide novice users. The menus provide information
about the different databases available, selecting search terms, and connecting to a remote
database. More recently, Richard Marcus [Marcus, 1986] has proposed an online help
facility which would include a menu of query reformulation techniques.

The F-TAS system [Prasse et al, 1988] provides a state of the art menu/mouse/icon based
user interface to a full-text retrieval system. It has a state-of-the-art user interface, requiring
user terminals with graphic abilities, and is designed specifically for searching in an online
book. The user searches by accessing the book's table of contents, back of the book index,
or by doing a free-text search.

Essentially, these systems aid in the mechanical aspects of searching, with less emphasis
on helping users with the more significant conceptual problems of searching.

H. P. Giger [Giger, 1988] has built a user interface incorporating an online thesaurus. The
user enters a Boolean query which retrieves a set of documents. The user’s search terms
are located in the thesaurus, from which sub-concepts and overlapping concepts can be
identified. These related concepts are then used, with the original search terms, to rank the
retrieved documents. No query reformulation is attempted.

Many projects have looked at the possibility of allowing users to query databases in natural
language, removing the need for them to form Boolean queries. Since these projects
usually incorporate some natural language processing of the database as well, they are
discussed in Section 1.3.3.

1.3.2 Associative Networks for Information Retrieval

My approach is to improve search performance by providing an expert system front-end to
existing textbases. An alternative approach to improve search performance is to change the
information that is stored in the database. Artificial intelligence research into knowledge
representation has spawned investigations into using semantic or associative networks to
implement information retrieval systems. The hope is that, by providing links between
related documents and terms in the database, relevant information will be easier to find, and
irrelevant information easier to discard.

One type of associative network that can represent a database is one based on citations and
references. Bruce Croft [Croft et al, 1988] has built such a network. He evaluates several
techniques for locating the most closely related nodes in the network. The highest ranking
20 documents from a standard probabilistic search are used as the initial nodes, and several
techniques for using the link information in the network were tested. The best technique
seems to be quite good at locating relevant documents, at low recall levels.

THOMAS [Oddy, 1977] is a system containing an associative network with nodes .or
authors, documents, and terms. Documents are linked to documents they reference or are
cited by, to the terms used to index them, and to their authors. The user enters a set of
terms which are used to locate the most "highly involved" document. The user is expected
to browse through the connected nodes on his own. Robert Ledwith [Ledwith, 1988] is
building a semantic network of documents to allow user browsing through the Chemical
Abstracts literature. Using the available taxonomic information as his domain knowledge,
he has built a large (over 900,000 nodes) semantic network. A short description of each
document is parsed, and the document is linked into the existing semantic net. It will be
interesting to see how effectively users can navigate through such a complex structure.

AIR [Belew, 1989] is a more sophisticated associative network system. The network
contains document, term, and author nodes as in THOMAS. The user enters an initial
Boolean query which selects, or activates, some of the term nodes. Each node that is
reachable from an activated node is assigned a weight. The weight a node receives
decreases as the number of links traversed from the initially activated nodes increases. The
weight increases with the number of initially activated nodes from which it can be reached.
The propagation of the weights along the links in the network is called spreading activation.
The documents are ranked according to the total weight they receive. AIR has the added
feature that the links between nodes receive weights based on the user's relevance
feedback.

Gerard Salton [Salton and Buckley, 1988] compared a simple spreading activation model to
standard term weighting schemes. Whereas precision seems to be slightly worse for the
activation spreading formulae he used, he felt that a more sophisticated form of activation
spreading could lead to improved results.

In conclusion, search performance may be improved by changing or augmenting the
information stored in databases to include associative links. More research must be done to
demonstrate that this approach does lead to improved performance before it is included in
commercial databases. Even if associative networks do provide improvements, the cost of
improving search performance by providing an intelligent front-end is likely to be less than
approaches based on changing the contents of the databases themselves.

1.3.3 Natural Language Processing

Syntax

Several projects have attempted to include syntactic processing into the retrieval process. A
popular approach is to parse the documents in the database to identify multi-word phrases
which are then used to index the documents. Gerard Salton [Salton and Smith, 1989]
compares the sets of syntactically identified phrases with those generated statistically, as
candidates for indexing a book. Using a state-of-the-art parser from IBM, he finds that one
third of the sentence parses were seriously flawed, leading to more incorrect phrases and
more missed correct phrases than those generated statistically. However, several recent
improvements in parsing may lead to better results in the near future.

Other syntactically based systems allow the users to query the database in their natural
language. The queries are then parsed to locate hierarchical relationships between terms in
the query, called dependencies. These dependencies are searched for in the text of the
online documents. Douglas Metzler [Metzler and Haas, 1989] describes a parser which is
capable of reliably identifying such dependencies, although some sentences generate more
than one possible parse. Furthermore, A. F. Smeaton [Smeaton and van Rijsbergen,
1988] found that ranking documents based on dependencies occurring only in noun
phrases lead to improved precision.

Semantics

Semantically based natural language processing is used for two different purposes: to
improve the performance of retrieval systems, and to build knowledge bases which are
used for question-answering systems. Some examples of the former include: ranking
algorithms which replace anaphora with the noun phrases to which they refer [Bonzi and
Liddy, 1988]; and indexing documents with word senses, identified using an online
dictionary, rather than words [Krovetz and Croft, 1989].

A hybrid system is being built by Bruce Croft [Croft and Lewis, 1987]. Full natural
language understanding is attempted on the user queries, causing a frame to be filled in.
The information in the frame is used to perform a statistical search and to rank the retrieved
documents. High-ranking documents are presented to the user, and natural language
processing is used to re-rank the medium-ranked documents.

A different type of information system, called a question-answering system, has received
much attention in the artificial intelligence world. Initially, knowledge b.ses were
constructed by hand, and users were allowed to query the knowledge base and receive their
answers in natural language [Zarri, 1984a] [Zarri, 1984b]. BASEBALL [Green et al,
1969] was one of the earliest question-answering systems. It answered English language
questions about a database of baseball facts. Due to the limited domain of discourse, the
restricted form of user queries, and the use of deduction, BASEBALL produced impressive
results.

More recent projects have focused on automatically constructing the knowledge base from
natural language text [Katz, 1988]. Some examples of question-answering systems which
build their knowledge bases from input text are Researcher [Lebowitz, 1985], which has a
knowledge base of patents, and SCISOR [Jacobs and Rau, 1988], which collects merger
and takeover information from newspaper stories. Building a knowledge structure from
natural language text is a slow and error-prone process that is currently not feasible for
large, dynamic collections of documents. Even if knowledge structures can be built and
queried effectively for large document collections, many users will want to see the actual
text of the original documents, not just a synthesized answer to their query. I agree with
Karen Sparck Jones that "The language of documents is part of their information content.”
[Sparck Jones, 1983].

1.3.4 Expert Systems

The exploration of possible applications of expert system techniques to information
retrieval systems has generated interest. Early projects are surveyed by Karen Sparck
Jones [Sparck Jones, 1983] and Helen Brooks [Brooks, 1983], whereas Nicholas Belkin
[Belkin et al, 1987] summarizes more recent research. The most common goal is to
develop an expert system to help with the retrieval process by assuming some of the tasks
of the search intermediary. An exception is James Driscoll's [Driscoll et al, 1988] expert
system whose task is to index documents. This section will give an overview of expert
(slyst%m projects designed for bibliographic retrieval and those which work with full-text
atabases.

Bibliographic Expert Systems

Steven Pollitt [Pollitt, 1984] has built one of the earliest expert systems for bibliographic
retrieval. Itis designed to search the MEDLINE medical database for cancer literature. The
expert system can search cancer literature only, since the knowledge base contains
information on cancer, rather than on search strategies in general. Whereas the
performance of the system has not been formally analysed, informal evaluations have been

discouraging. The project has since been replaced by CANSEARCH [Pollitt, 1987], an
expert system to guide users in the use of menus to form their own queries.

IR-NLI I [Brajnik et al, 1988] are incorporating user modeling into a domain-independent
bibliographic retrieval expert system. Domain knowledge is supplied by an online
thesaurus. A user model is built based on the user's amount of domain knowledge and
search experience. This model is used to tailor the dialogue between the system and the
user. Initially, the user lists some terms which describe his interests. The expert system,
through a lengthy dialogue, clarifies its model of the query, proposes terms to expand the
query, and comments on the user's search strategy. No automatic query reformulation is
done.

IOTA [Chiaramella and Defude, 1987] is a bibliographic expert system which incorporates
a natural language interface. Whereas the expert system does passage retrieval from an
online book, I include the system with the bibliographic systems because retrieval is done
on keywords which index each passage. Much of the research effort has gone into
processing the user's queries, but some simple query reformulation is also done.
Specifically, queries are broadened by replacing a term by its parent from an online
thesaurus and narrowed by removing OR terms. Their results show an increase in
precision and recall using the expert system. These results are tentative, since the textbase
is very small (3,000 words), the thesaurus is small (118 classes), and only 12 queries were
run.

PLEXUS [Vickery and Brooks, 1987] is an expert system to help novice users find
information about gardening. Natural language queries are accepted, and information is
extracted to fill in frames. If a frame is too incomplete, the user is asked for more
information. Once the frames contain enough information, a query is sent to the online
database. The system has a knowledge base of search strategies and term classifications
similar to a thesaurus. Most of the domain knowledge is in the classification, but some
appears in the rule base, itself. If queries are too broad (defined as more than 10
references) , no narrowing is attempted. The references are displayed S at a time to the
user. If the query is too narrow (defined as nothing retrieved at all), three strategies are
attempted: 1) if two or more terms appear in the same subcategory, OR them together
rather than AND; 2) drop one of the terms; 3) replace a term by its parent. There has been
no published evaluation of the system's performauce.

Full-Text Expert Systems

There have been fewer projects aimed at providing intelligent assistance for full-text
searching. The earliest such system is RUBRIC [McCune et al, 1985] [Tong et al, 1987],
which has the user describe his query in terms of rules. These rules describe the domain
knowledge for the system as a hierarchy of topics and subtopics. Rules may have weights
representing the certainty and/or importance of the defined relationships. The lowest level
subtopics define patterns in the text which indicate the presence of that subtopic. Whereas
the query language is very powerful, it places a heavy burden on the user.

3R [Croft and Thompson, 1987] also requires the user to provide the appropriate domain
knowledge. The query process is a dialogue between the user and the system, during
which the user is asked to supply a semantic ne.work, or thesaurus, that describes the
relationships among the concepts in his query. A blackboard architecture is employed to
control the search process, which consists of the user dialogue, probabilistic search, cluster:
based search, and user feedback. There is no automatic query reformulation, but the expert
system is able to infer the presence of concepts from the presence of related concepts
described in the domain knowledge structure.

A full-text system that incorporates query reformulation assistance is under development at
OCLC [Teskey, 1987]. The emphasis to date has been on providing an intelligent online
help function, but a few basic reformulation strategies are provided. Queries are broadened
by asking the user to OR together ANDed concepts, or to drop a concept altogether.
Narrowing is suggested when a single broad search term retrieves more than 30 passages.
If this happens, the system first searches for multi-word phrases containing the term in the
back-of-the-book index and the table of contents. These phrases, if found, are presented to
the user as alternate queries. If no such phrases are found, the system returns the passages
which are clustered. If there is no clustering of hits, a random selection is shown.

The CODER system [Fox et al, 1988] is an ambitious project that incorporates natural
language processing with expert systems techniques to produce a testbed for evaluating
advanced information retrieval techniques. It is designed for the domain of electronic mail
messages. The expert system identifies the structure within a message and semantic
relationships between messages. There is no user assistance, per se.

1.3.5 Search Strategies

The automatic query reformulation incorporated in the systems described in the previous
section are, in general, very primitive. However, search strategies employed by both
novice and experienced searchers have been widely studied. These studies formed the
basis of my expert system's searching knowledge base, which is described in detail in
Chapter 3.

Searching Studies

The most thorough catalogue of search tactics was compiled by Marcia Bates [Bates,
1979]. She outlines 29 search tactics in four areas: monitoring, file structure, search
formulation, and term manipulation. The tactics for search formulation and term
manipulation describe the available techniques to broaden and narrow queries. The search
formulation tactics include the selection of appropriate initial search terms and the
manipulation of query structure; the term manipulation tactics describe the use of context,
thesaural terms, and stemming to modify queries. The tactics she lists provide the basic
operations for my expert system; however, she includes no guideline as to when each tactc
is appropriate. Bates concludes by saying that knowing when to stop a search is a difficult
problem.

Philip Smith [Smith et al, 1989] reports on a similar study as the first step to building an
online search intermediary for searching the environmental literature of Chemical Abstracts.
By analysing the discourses and actions of 17 users and search intermediaries, he compiles
a list of 19 search tactics. He believes that the search tactics he finds are domain-
dependent, but I tend to disagree. The majority of the tactics finds are similar to those
described by Bates [Bates, 1979]. Domain knowledge is involved only in selecting which
terms to include when there were too many candidates from the thesaurus. This selection
of terms from a set of candidates is called filtering.

P. W. Williams [Williams, 1984] has developed a model of all possible search situations
and all possible responses, to be used as an expert system's knowledge base. Based on the
desired, versus the achieved, values of three variables (number of documents, precision,
and recall), he identifies 64 search situations which result in 27 unique states. He defines
four variables (generality, exhaustivity, simplicity, ambiguity) which can be manipulated to
respond to each state in an attempt to achieve the desired search results. Although he
describes some techniques to manipulate the four variables, he does not indicate how the
techniques should be combined or when they should be applied. In additdon, several of the

states have conflicting demands which are hard to resolve. It is an interesting
categorization of searching situations, but it is not yet developed enough to become the
basis of an automatic search assistant.

Effects of Query Expansion
A. F. Smeaton [Smeaton and van Rijsbergen, 1983] has studied the effects of query

expansion on retrieval performance. He finds that automatically adding terms based on
their statistical relationships to the user's search terms degrades retrieval performance. He
argues the need for better criteria for selecting terms to add. Donna Harman [Harman,
1988] also shows performance degradation when adding terms from a statistically
constructed thesaurus. However, when only those thesaural terms which occur in
documents already flagged as relevant by the user are added, retrieval performance
improves over that achieved by the original query. Allowing the user to add variants of the
original search terms to the queries proves to be better than selecting from thesaural terms.
However, statistically selected terms from the relevant documents proves to be the best
candidate for query expansion. Finally, the best performance is achieved when user
filtering of the three types of candidate terms (thesaural, term variants, and statistically
selected from relevant documents) is simulated.

Carolyn Crouch [Crouch, 1988] has investigated th2 use of terms from an automatically
constructed thesaurus for query reformulation. She concludes that augmenting a query
with thesaurus terms, rather than replacing the user's original search terms, improves
performance. She also advises that, for document ranking, terms included from a
thesaurus should receive lower weights.

1.3.6 Summary

This chapter has given an overview of some of the research involving information retrieval
systems. Exploratory systems incorporating sophisticated user interfaces provide
assistance with search mechanics. Whereas improved interfaces are desirable, search
strategy, not mechanics, is the main source of difficulty for searchers.

Other research systems have focused on the use of associative networks as a representation
for the database. These have not yet been shown to provide any improvements in search
results over inverted file systems, and it is not clear how they could be extended to full-text
applications.

Systems which include syntactic processing may improve indexing or query processing, if
more reliable parsers can be developed. However, they provide no assistance with search
refinement. Furthermore, systems which apply semantic pre-processing to the text seem
unlikely to be able to handle large online databases in the near future. For the near term, I
believe that retrieval breakthroughs will come from developing online intelligent assistants
to allow novice users to search easily and adequately.

1.4 Research Goals and Results

1.4.1 Goals

The goals of this research are to develop a prototype, as described in the Section 1.2, and
to evaluate its performance experimentally. The system's effectiveness and efficiency, two

measures of performance described by Gerard Salton [Salton & McGill, 1983], need to be
evaluated. Basically, the effectiveness of an information system is a measure of the system

performance, whereas efficiency is a measure of the amount of user effort required to
perform a task. My goals, then, are the following:

Goal 1: Develop an expert system for query reformulation.

Goal 2: Demonstrate that the query reformulation expert system improves the search
effectiveness for a novice searcher [Hypothesis 1].

Goal 3: Demonstrate that the query reformulation expert system improves the search
efficiency for a novice searcher [Hypothesis 2].

Goal 4: Demonstrate that an expert system can rank the passages retrieved by the
search in decreasing order of relevance [Hypothesis 3].

Search effectiveness is measured by the number of relevant passages retrieved and the
standard information-retrieval measures of precision and recall. Precision is defined as the
ratio of the number of relevant documents retrieved to the total number of documents
retrieved. Recall is defined as the ratio of the number of relevant documents retrieved to the
total number of relevant documents in the database. Search efficiency is measured by the
number of queries and the amount of time necessary to perform the search. These
measures are calculated and reported separately. Together, they give an overview of the
effects of providing an online search assistant.

1.4.2 Summary of Results

The first goal, the development of a prototype expert system for searching in full text, was
achieved. This system was evaluated experimentally. Twelve computer science graduate
students queried three configurations of a full-text retrieval system: 1) the subjects queried
on their own, using a contextual Boolean query language; 2) the subjects queried as in 1),
but they had access to an online thesaurus; 3) the subjects queried with the help of the
online expert system. Each subject performed four monitored queries with each system.
The order of presentation of the systems, and the queries performed with each system,
were counterbalanced among the subjects. The statistically significant results of the
experiment are summarized here. For a full discussion of the experiment, and its results,
see Chapter 4.

The goal of improving the search effectiveness of novice searchers was partially
demonstrated with this experiment. The experiment asked subjects to achieve a specific
level of effectiveness and measured their efficiency. The expert system was able to achieve
an improvement in precision. A statistically significant difference was found between the
60.4% precision achieved with the expert system versus 53.0% for the users searching on
their own. The 57.6% precision achieved by the user working with the thesaurus was not
significantly different from either of the other two means. There was no significant
improvement in recall. However, since it took the subjects more queries to retrieve the
desired number of passages working without the expert system, it follows that after a set
number of queries they had lower recall without the expert system.

The most important result of this research was the achievement of the third goal, proof that
an expert system could improve the search efficiency of novice searchers. The expert
system significantly decreased the number of queries the users required to retrieve
approximately ten relevant passages (see Section 4.3.2). The user effort was cut to less
than half, from an average of 4.83 queries per question when the subject searched alone
(5.46 queries using the thesaurus) to only 2.35 queries per question using the expert

system. Thus, the expert system enabled human searchers to search effectively with half
the effort.

The final goal, demonstrating that the expert system was able to rank order the retrieved
passages, was also achieved. Relevant passages were presented earlier in the retrieval set
than would be expected due to randomness. The normalized balance point for the ranked
passages was 0.195 (on a scale from -1 to +1), compared with a balance point of 0
produced by a random ordering. The improvement was slight, but significant.

The main result of this research is to demonstrate that an expert system can make searching
easier for novice searchers. This is important because it increases the usefullness of online
full-text databases. If more people can successfully search online textbases, and they can
do so with less effort, the information stored in these textbases will become more widely
disseminated.

10

Chapter 2
System Architecture

2.1 Overview

The prototype system consists of five major components (see Figure 2.1):

1) MICROARRAS, which serves as the full-text search and retrieval engine

2) a full-text database of over 188,000 words

3) a hierarchical thesaurus of approximately 7,424 words specific to the textbase's
domain

4) an expert system of 85 OPS83 rules and over 5,000 lines of C code, which
interprets the user's queries, controls the search process, analyzes the retrieved text,
and ranks the search results

5) a user interface, which accepts the user’s queries, presents requests for information
from the expert system, and displays the search results.

User ‘ Thesaurus) Textbase

Figure 2.1. System Architecture

The system is implemented on a Sun 3 workstation. MICROARRAS and the thesaurus
construction and access routines are written in the C language. The expert system consists
of a knowledge base of production rules, written in OPS83, and a set of C language
functions to carry out the actions prescribed by the rule-base. The textual database for the
current demonstration project consists of an unpublished manuscript on computer
architecture written by Gerrit A. Blaauw and Frederick P. Brooks, Jr. [Blaauw and
Brooks, 1987]. The search process consists of a dialogue between the user and the expent
system. The user enters the initial Boolean query and the number of passages he would
like to retrieve. The expert system parses the query and translates it into a request for
information from MICROARRAS. MICROARRAS retrieves text passages from the full-
text database and informs the expert system of the number of passages that satisfy the
request. The expert system compares the number retrieved with the target number to decide
" whether or not to reformulate the query, and, if so, how.

To expand a search query, the expert system may use three different strategies, alone or in
combination. First, it can expand individual search terms to the sets of words using the
thesaurus. The words are added iteratively, in the following order: words with the same
stem; synonyms; words which are broader in scope; narrower words; and, finally, similar
words. Second, it can relax contextual constraints. Since MICROARRAS provides

11

considerable generality in terms of segmental contexts, search expressions may contain
contextual parameters expressed in terms of any number of words, sentences, paragraphs,
etc. to either the right or left of any term in the search expression. For example, the context
for the query 'architecture AND design' may be broadened from the default context of the
same sentence to a context in which the terms must appear, in either order, within three
sentences. Finally, it can change the Boolean operators, making the query less restrictive
by replacing ANDs with ORs or removing ANDNOTS.

To restrict a search, the expert system uses the same strategies as those described above,
but in reverse. That is, it may add sets of search terms to those terms to be excluded from
the retrieval passages, contract contexts, and replace ORs with ANDs. Changing the
Boolean operators in this way will reduce the number of passages retrieved; however, it is
only likely to be useful when the user has used the incorrect Boolean operator in the

original query.

Once an appropriate number of passages is identified, the expert system attempts to rank
the passages in terms of probable relevance. It does this by performing a rudimentary
content analysis on the passages retrieved by MICROARRAS and computing a relevance
index for each. The relevance index for each passage is a function of the number of search
terms actually found in that passage, the number of distinct types for each (for terms that
are sets), and the number of different thesaural categories represented. Query structure,
distance between search terms, and frequency of the search terms in the textbase as a whole
are also taken into consideration. The retrieved passages are then sorted by their relevance
indices and presented to the user in order of probable interest.

A major advantage of this architecture is the separation of strategic knowledge, contained in
the knowledge base for the expert system, from domain knowledge, contained in the
thesaurus. Now that the search strategy rules have been developed and tested with the
existing textbase, the expert system can be tested with other content domains by simply
providing a suitable thesaurus for the new textbase.

2.2 MICROARRAS

This section describes MICROARRAS, the retrieval software. MICROARRAS developed
at the University of North Carolina under the direction of John B. Smith and Stephen
Weiss [Smith et al, 1986]. It was used without modification and is not part of this research.
However, it is described so that the reader will know which functions, required by the
expert system, were provided by the retrieval system.

2.2.1 Capabilities

MICROARRAS is an advanced full-text retrieval and analysis system. The system
provides direct access to any passage in the textbase. Users can browse through a
document's vocabulary as well as its text. MICROARRAS also provides contextual
Boolean search on any word or set of words in the text, and can calculate various numeric
distributions.

Textbase

To be inserted into MICROARRAS's textbase, a document must first be inverted. Inverted
files contain a dictionary with one entry for every unique word, called a fype, and an
associated list of all the positions in the text, called rokens, of the occurrences of the type.
There is no syntactic or semantic pre-processing necessary.

12

Once the documents have been inverted, they can be examined individually or in groups.
They can also be moved from one textbase to another. Thus, documents can be processed
on a workstation or microcomputer, uploaded into a textbase on a mainframe or textbase
server, searched and analyzed there, or downloaded once again for local use.
MICROARRAS can work with a textbase of many different documents, but I will confine
this discussion to textbases containing one document only since this is the way it was
used.

Segments

One of MICROARRAS's strengths is its flexibility in handling context specifications. The
system generally views a document as composed of two overlapping hierarchies of text
segments. The first denotes logical divisions, such as volume, chapter, paragraph,
sentence, and word within sentence; the second, physical divisions, such as page, line and
word within line. When a new textual database is established, the segments to be known
throughout the database are defined. In addition to these canonical segments, ad hoc
segmentations may be used for individual documents, but the user must define any
hierarchical relations among them that are to be recognized. These segmentation schemes
are used to format the display and to specify contexts for searching.

Text Display

MICROARRAS can display all occurrences of a given word along with some designated
context around each. Essentially, this is an interactive concordance or keyword-in-context
(kwic) listing. MICROARRAS can produce such displays immediately, no matter how
large the document or how scattered the occurrences. Contexts for searches can be
indicated in terms of words, sentences, paragraphs, etc., for the entire search expression or
for different parts of it.

Lexical Display

MICROARRAS can access an alphabetical lexicon of the words that appear in a document
or passage. Lexical information may be returned in one of three ways: by alphabetic
sequence, by pattern of characters, and by frequency of occurrence in the document or
passage.

Categories

One particularly important feature for this project is a generalized categorization option by
which one may define a category which contains groups of words. MICROARRAS
supports three types of categories: token lists, type lists, and recursive lists. Token lists are
sets of text positions representing individual occurrences of words; for example, the
specific places in a document where processor refers to a computer rather than a food
processor. Type lists represent sets of word types. When they are evaluated for a
particular passage, they yield a token list containing each instance in the passage of the
members of the type list. For example, the type list cpu-caregory may contain cpu and
central processing unit. Evaluating cpu-category with the Blaauw and Brooks textbase will
create a token list containing all occurrences of either cpu or central processing unit in the
textbase. Recursive categories are sets of other categories; for example, a new category
consisting of the cpu-category and the memory-category.

Search

To conduct a search, the user must specify three components: a Boolean contextual
expression, a passage in which to evaluate the expression, and a category in which to store
the resulting set of positions where the expression occurs (a token list). The expression is
any Boolean combination of words or category names. If categories are used, they imply
every occurrence of any word type included. For example, the query 'memory-category
and (within the same sentence) location’ can be evaluated against a particular textbase, or

13

part of a textbase. The result will be a token list of occurrences of members of memory-
category which appear in the same sentence as the word type location.

Contexts in which search expressions are evaluated can be specified in terms of any text
segment units valid for the textbase and can be specified in any number. Thus, one can
look for all occurrences of ‘cpu-category and memory-category' within, say, three words
of one another, or within the same sentence, or within three sentences, or in the same sub-
section, etc. Different contexts can also be specified for sub-expressions, e.g. ‘cpu-
category AND (within three words) memory-category ANDNOT (within the same sentence)
hardware-category'.

Arithmetic Functions

MICROARRAS provides facilities to compute various textual measures, display the
results, or pass them to an external statistical analysis package. Two kinds of data can be
computed. The first is frequencies of words or categories within a specified passage.
Thus, the user can compute and display the frequency with which a word or category
appears in a paragraph, a chapter, or the whole textbase. The second major class of
statistical data are segmental measures. These determine the number of times one
segmental measure occurs within another. For example, the number of words within a
paragraph, or the sentences in a document. These measures can be stored as scalar or
vector numeric variables of integers or reals which can be later analyzed by a statistical
package.

2.2.2 Implementation

Document Flow

Preparing a document for use by MICROARRAS is a four-step process. First, it must be
transcribed into a machine-readable form with internal marks indicating logical segments
(such as chapters, sections, and paragraphs) and physical segments (line and page).
Second, a correspondence is made between the segment names used in the document and
the set of segment names used in the textbase as a whole, the canonical set of segments.
For example, the canonical segment PARAGRAPH may be indicated by \paragraph in one
document and \para in another. Third, the document is scanned and inverted. Finally, the
inverted text is inserted into the textbase.

Flange

FLANGE is a two-way command language that was developed as part of the
MICROARRAS system. Consequently, it serves two major functions: it provides
communication between the user interface and the analytic engine that performs all search
and analysis operation, and it provides a formal specificaton for the system. It is written in
a BNF-like notation. Consequently, programs can easily construct command expressions
which, in turn, can easily be parsed. Additionally, the components of a FLANGE
"sentence” are strongly typed to simplify processing and to ensure reliable transmission
across a communication interface.

It is FLANGE's capability of providing a formal high-level text analysis language and its
capability of delivering its results in a structured and typed form - rather than as a stream of
data - that makes it feasible for an expert system to work iteratively with the textbase.

One particularly useful feature of FLANGE is its two-way communication capabilities.
The following example shows a typical interaction between MICROARRAS's user
interface program and its analytic engine. Suppose the user wishes MICROARRAS to
display concordance information for a particular word in a text in the textbase. The user's

14

request for a concordance is first translated by the interface program into a FLANGE
expression. That expression is then sent to the MICROARRAS engine, either running on
the same machine or on a remote computer. The engine parses the message and performs
the operation requested. It then encodes the results in the conventions of the return portion
of FLANGE and sends that message to the user interface. The user interface parses the
messages, interprets the result, and either displays the requested information to the user or
engages the engine in a further FLANGE dialogue.

2.3 Textbase

The textbase contains the Fall, 1986 draft of Computer Architecture, Volume 1 - Design
Decisions by Blaauw and Brooks. The manuscript consists of 188,278 words comprising
8 chapters, titled: "Introduction"”, "Machine Language", "Addresses", "Data",
"Operations”, "Instruction Sequence”, "Supervision", and "Input/Output”. It was chosen
as the test text because

1) it was available online.

2) I was familiar with the text's content domain.

3) Iwas familiar with the text itself.

4) there was a ready supply of experimental subjects (fellow computer science
graduate students) who were familiar with the text's content domain.

5) the text was large enough for a realistic demonstration of feasibility; there were
over 3,000 paragraphs in the text providing many different possible retrieval
sets.

6) the text was small enough to economically process and store online.

7) the scope of the text was broad enough to answer any of a large collection of
queries.

8) the scope of the text was dense enough to provide answers to most questions
within the text's coverage.

Texts to be used as MICROARRAS textbases require format marks of interest to users to
be inserted in the text. TeX format marks were already present and were used as the basis
for the MICROARRAS segments. These included format marks to be used in the display of
the retrieved text (line, italics, label), as well as those which provide context information
(chapter, section, subsection, subsubsection, paragraph, sentence, item). A series of
programs are then run on the formatted text to produce an inverted file. Finally, this
inverted file is converted to fixed length records for fast access.

2.4 Thesaurus

All domain-specific knowledge is contained in a hierarchical thesaurus. The expert system
uses this information to reformulate queries. The thesaurus was built by the author from
the Brooks and Blaauw text, and it strongly reflects the word usage of that textbase. For a
commercial database of many texts or documents, the thesaurus would need to be broader
in scope. Ideally, individual users should be able to tailor the thesaurus to better reflect
their areas of interests. For example, they may wish to add specific words to the thesaurus
that are too narrow in scope, or too infrequent, to be included in a general thesaurus.

2.4.1 Logical Structure

This section describes the structure of the thesaurus. There are several thesaurus constructs
that require definition. Word types which share a common stem are grouped into
stemgroups. The members of a given stemgroup are called stemwords. Each word type
in the Blaauw and Brooks text appears in exactly one stemgroup. Thesaurus classes
contain stemgroups which are synonyms for each other. Stemgroups may appear in zero,

15

one, or more than one thesaurus class. Because the thesaurus classes are linked together
with parent-child links, they are also referred to as nodes. The arrangement of the words
into stemgroups, stemgroups to thesaurus classes, and the classes into a hierarchy is
discussed. Throughout this discussion, word types will be written in lowercase,
stemgroup names with a leading uppercase letter, and thesaurus class names in uppercase.
At the lowest level, words with the same root are grouped into stemgroups. A stemgroup
contains all the words which lexically share the same root. Most are easily identified by
sorting the dictionary of word types in the database. Common forms of word types not
used in the textbase - for example if there was no plural of a noun - are added to the
stemgroup. Consider the grouping of words with the root, structure.

Stemgroup Name: Structure

Stemwords: structure, structuring, structured, structures

In addition to words which were lexically similar, words which are semantically forms of
the same stem were included. Thus, 7un is in the same stemgroup as ran. Finally, each
stemgroup also contains words formed from the stem by the use prefixes. Thus,
undecided is in the same stemgroup as decided.

Next, stemgroups pertaining to technical concepts are identified. Synonyms among these
stemgroups are combined to form thesaurus classes. Non-technical terms are not included
in the thesaurus. Extremely low-frequency stemgroups are also excluded. Low-frequency
stemgroups represent unimportant, little-discussed concepts, and excluding them detracts
very little from recall, while decreasing the size and complexity of the thesaurus [Salton &
McGill, 1983].

High-frequency stemgroups represent broad concepts discussed throughout the text. To
improve precision, most thesauri replace high-frequency stemgroups with multiple word
phrases, or they exclude them altogether. In this system, I combine high-frequency
technical stemgroups, for example dara and structure, to form lower-frequency multiple
word phrases, e.g. data structure, which are included in the thesaurus. However, I also
include the high-frequency stemgroups, because the user is likely to use these words, and I
want the expert system to be able to use the thesaurus to direct them to narrower terms.
The expert system filters out these stemgroups if they are introduced during thesaurus
expansion.

Finally, an ordering is imposed on the thesaurus classes. Conceptually, a thesaurus class
can be viewed as a node in a lattice structure (see Figure 2.2). Each node contains a name,
a list of synonym stemgroups, the names of zero or more parent nodes, and the names of
zero or more child nodes. Parent nodes - nodes higher in the thesaurus structure -
represent more general concepts than the current node. Child nodes - nodes lower in the
thesaurus structure - represent more specific terms. Nodes containing multi-word phrases
have as parents the nodes containing each of the component stemgroups. For example,
consider the thesaurus entry for Data_Structure:

Node Name: DATA_STRUCTURE

Node Stemgroups: Data_Structure

Parent Node(s): DATA, STRUCTURE, NAME_SPACE

Child Nodes(s): ARRAY, QUEUE, STACK, LIST

Notice that in Figure 2.2 vector is shown as a synonym for array and marrix. Whereas
mathematically a vector is more properly a particular type, or child, of an array, in an
architectural sense they are so closely related as to be treated as synonyms. A user
interested in vector processors is likely to be interested in array processors, as well.

16

Space

. Data_ Data_
Object Format
Array
giufeue Vector
° Matrix

Figure 2.2. A Sample Thesaurus.

2.4.2 Thesaurus Words

The thesaurus was manually constructed from the 8,313 different word types in the
textbase. Removing numbers, punctuation, English function words, proper names, and
words which appeared only once left 5,726 types. These were grouped into 1,993
stemgroups; common word forms missing from the stemgroups were added, bringing the
total to 6,990 types. Using a concordance and frequency of occurrence, 936 technical
stemgroups were selected to be arranged hierarchically in the thesaurus from the 1,993
available. The construction of the thesaurus relied on the procedure outlined by Gerard
Salton [Salton and McGill, 1983], the author's knowledge of computer architecture, and
the hierarchical arrangement of sections in the Blaauw and Brooks text.

Before the stemgroups were placed into classes of synonyms to be arranged hierarchically,
they were first partitioned into loose collections of related terms, called buckets. Each
stemgroup was placed into one of the following buckets: architecture, sequencing,
languages, hardware, formats, control operations, data operations, data representation,
operating systems, memory, input/output. High-frequency stemgroups were combined to
form multi-word phrases, which were added to the appropriate buckets. Ambiguous
stemgroups were placed in more than one bucket, as necessary.

The synonym stemgroups in each bucket were grouped into thesaurus classes, and a lattice
structure was imposed on all the classes in the bucket. The concordance was used again to

17

direct the formation and arrangement of the classes. Because there were few cross-bucket
references, dealing with one bucket at a time allowed me to decrease the complexity of the
hierarchical arrangement task . Finally, the lattices for all the buckets were merged. In all,
7,424 words in 2,253 stemgroups were arranged into 753 thesaurus classes.

2.4.3 ASCII Files

The ASCII files describing the contents and structure of the thesaurus are created manually.
Separate files enumerate each of the words, stemgroups, thesaurus classes, and hierarchical
arrangement of the thesaurus classes.

dict_ascii contains all the word types used in the textbase, plus the added common word
forms and multi-word phrases. The words are stored in lower case, only. For the
purposes of this description, word refers to a single word type only, whereas dictword
refers to either a single word or a multi-word phrase. stems_ascii contained the groupmo
of dictwords into stemgroups. nodes ascii contained the grouping of stemgroups into
thesaurus classes. links_ascii contained the links connecting thesaurus classes. Each of
these files will now be described in more detail.

The first file created was stems_ascii, which contains one line per stemgroup. This file is
sorted in ascending order by Stemname. Multi-word phrases, e.g. data_structure, always
contain an underscore.

Syntax: Stemname word+ | word_word

Examples: Data data datum
Data_Structure data_structure data_structures
Array array arrays

dict_ascii is created from stems_ascii by running a utility called crearedict.. Each dictword
in stems_ascii is placed on a separate line, followed by -1. dict_ascii is then sorted into
ascending order.
Syntax: dictword -1
Examples: data -1
data_structure -1
data_structures -1
datum -1

The fixed-length version of the dictionary file includes the index in the stem file of the
stemgroup containing each dictword. The ASCII dictionary file, dict_ascii, has these
indices initialized to -1

Each line of nodes_ascii defines one thesaurus class.

Syntax: NODENAME dictword+

Examples: DATA data
DATA_STRUCTURE data_structure
ARRAY array matrix vector

Whereas logically each NODENAME is a grouping of stemgroups, I found it simpler to
represent a stemgroup by one of its member dictwords than to use the Stemname. Since a
dictword may only appear in one stemgroup, there is no ambiguity introduced by using
dictwords, instead.

The arrangement of the classes into a lattice is described in links_ascii. There is one line
for each node defined in nodes_ascii. The line contains the NODENAME for the node

18

]

followed by the NODENAMES of its children, if any. Each thesaurus class in node_ascii
has an entry, even if it has no children. The file is sorted in ascending order by the parent
NODENAME.

Syntax: NODENAME NODENAME*

Examples: DATA DATA_STRUCTURE DATA_FORMAT
DATA_STRUCTURE ARRAY, QUEUE, STACK, LIST
STRUCTURE DATA_STRUCTURE

2.4.4 Binary Files

The final phase in the creation of the thesaurus was to convert the ASCII files, described in
the previous section, to binary files. Most of the entities in the system (e.g. words,
stemgroups, thesaurus classes) are of variable size, indicating that variable length records
would provide an efficient use of space. However, I chose to use fixed length records to
allow direct access to a given record via its index. Thus, I decided to trade space for time.

The thesaurus is composed of three binary files:
dict: contains a record for each dictword
stem: contains a record for each stemgroup
node: contains a record for each thesaurus class

The record structure for each of the files will be described next. The following format will
be used to describe the records:

field name field name field name
field contents field contents field contents
field size field size field size

(1n bytes) (1n bytes) (1n bytes)

Figure 2.3. A sample record.

A dict entry has two fields, dictword and dictstem (see Figure 2.4). Dictword is
MAXWORDLENGTH (the maximum dictword size) bytes long and contains a word type
or multiple word phrase. Dictstem is an integer index into the stem file indicating the
stemgroup to which the dictword belongs. Dict is created from dict_ascii, which contains
all word types and in which dictstem is initialized to - 1.

dictword dictstem
word or multi-word phrase index into stem
MAXWORDLENGTH sizeof(integer)

Figure 2.4. A dict record.

A stem entry has three fields: stemname, stemwords, and stemnodes (see Figure 2.5).
Stemname is MAXWORDLENGTH bytes long and contains the name of the stemgroup.
Stemname is taken directly from stems_ascii. Stemwords is an array of
MAXWORDSPERSTEM (the maximum number of words in a stemgroup) integer indices
into the dict file, indicating the words contained in the stemgroup. All elements of
stemwords are initialized to -1, then dict is searched for each word in the stems_ascil entry,
and its index is used to set the stemwords elements. At the same time, the dictstem entry

19

for the word is updated to contain the index of the current stemgroup. Stemnodes is an
array of MAXNODESPERSTEM (the maximum number of nodes in which a stemgroup
may appear) integer indices into the node file, indicating the nodes to which the stemgroup
belongs. All elements of stemnodes are initialized to -1.

stemname stemwords stemnodes
* *
word | (index into dictor-1) (index into node or -1)
MAXWORD sizeof(integer) * sizeof(integer) *

LENGTH MAXWORDSPERSTEM MAXNODESPERSTEM
Figure 2.5. A stem record.

A node entry has four fields: nodename, nodestems, parents, and children (see Figure 2.6).
Nodename is MAXWORDLENGTH bytes long and contains the name of the nodegroup.

Nodename is taken directly from nodes_ascii. Nodestems is an array of
MAXSTEMSPERNODE (the maximum number of stemgroups a node may contain)

integer indices into the stem file, indicating the stemgroups contained in the node. All
elements of nodestems are initialized to -1, then dict is searched for each word in the nodes_
ascii entry, and its dictstem entry is used to set the nodestems elements. Parents is an array

of MAXPARENTSPERNODE (the maximum number of parents a node may have) integer
indices into the node file, indicating the parent nodes of the current node. The elements of
parents are initialized to -1. Children is an array of MAXCHILDRENPERNODE (the
maximum number of children a node may have) integer indices into the node file, indicating
the child nodes of the current node. The elements of children are initialized to -1.

nodename = nodestems nodeparents nodechildren
K3 * F3
word | (index into node or -1) (index into node or -1) (index into node or -1) -'
MAXWORD sizeof(integer) * sizeof(integer) * sizeof(integer) *

LENGTH MAXSTEMSPERNODE MAXPARENTSPERNODE MAXCHILDRENPERNODE
Figure 2.6. A node record.

Finally, links_ascii is processed to fill in the children and parents fields of node. As each
entry of links_ascii is read, node is searched for the first nodename of the entry. The index
of this nodename is the parent index. Next, the node is searched for each of the child
nodenames, in turn. For each child index, the children field of the parent index entry is
updated to include the child index. Also, the parent field for the child index entry is
updated to include the parent index. The fixed length files now contain all the information
provided by the ASCII files. Figure 2.7 shows the files created for the thesaurus shown
in Figure 2.2.

2.4.5 Thesaurus Access Routines

The previous section outlined how the thesaurus stores information. This section discusses
how that information may be accessed. First, the primitive routines which merely return
information stored in the thesaurus will be described, followed by the higher level routines
which implement the functions needed by the expert system. The following syntax will be
used to describe the routines:

FunctionName(input parameter) -> returned value [| returned value]*.

20

The parameter types are fields of the records described in Section 2.4.4.

dictword dictstem

0 | amay 0

1 arrays 0

2 [da 1

3 data_format 2 stemname stemwords stemnodes

4 data_structure | 3 0 | Amay 01-1.isvnnnns -110-1...-1

s [damm 1 1 [Daa 251 e SIRRER

6 | fifo y 2 _Igata_Forma: I -1]2-1...-1

7 Tomat 5 3 [Data_Structure | 4 -1ccccoeveeme 1] 3-1.-1

8 [Tormms 3 : ::ifo :;9"1.5"1 -1l Z-f i

ormat L Q. - -1 ...-

9 | formatied | 6 [T T T 114
10 | formatting | 5 7 {List 2131 . 15111
11] lifo 6 8 [Mamix 730 L ge— T 0T T
12 | list 7 1 9 [Name 16171819-1..-1 [6-1 ... -1
13 | lists 7 10 | Name_Space 20 -1 oo 1711
14 | matrices 8 11 [Object 21 22 -1 e, -1 |8-1..-1
15 [mamix 8 12 [Queue 23242526 -1..-1 [9-1 ... -1
16 | name 9 13 | Space 27 28 -1 cveenn [10-1..-1
17 [named 9 14 [Stack 29 30 -1 ..ooonne T 11-1..-1
18 [names 51 15 |Swucture 31323334 -1.-1] 12-1..-1
19 | naming 9 16 | Vector 3536 -1 -1{0-1..-1
20 | name_space 10 () stem
21 object 11
2 objects 11
23 quese 2 nodename nodestems nodeparents nodechildren
2% | quened 12 0 IARRAY 0816-1.-1 3-1...-1] -1 ... -1
25 | queues 12 1 DATA 1-1 .o Aaf -1 -] 231 -1
26 | queuing 12 2 DATA_FORMAT |2-1...) 1411 -1 -1
27 | space 13 3 PDATA_STRUCTURH 3 -1) 112-1.-1f 91105-1..-1
28 | spaces 13 4 [FORMAT 5-1 . -1 -l A1) 241 -1
29 | stack 14 5 ILIST 7-1 . Al 3.1 -1f -1 -1
30 | stacks 14 6 INAME 9 -1 . NY IS A 71 -1
31 | structure 15 7 INAME_SPACE 10-1....-1] 610-1.-4 8 -1 ... -1
32 | structured 15 8 [|OBJECT 111 el | 71 -] -1 -1
33 | structures 15 9 |QUEUE 412-1..-1] 3-1...-1f -1 ... -1
34 | structuring 151 10 [SPACE 13-1 =1 | -1 . A 71 -1
35 | vector 16 | 11 |STACK 614 -1...-1] 3-1.-1f -1 ..., -1
36 | vectors 16 | 12 STRUCTURE 150 1| A 1] 3-1..... 1

(a) dict (c) node

Figure 2.7. The Sample Thesaurus's Files.

21

Primitive Routines

The primitive routines provide access to the raw data stored in the thesaurus files. Since
the thesaurus was implemented using fixed-length records, information can be accessed
directdy. The index into the file is multiplied by the size of the file's records to provide the
offset into the file of the desired record The examples are based on the thesaurus files
shown in Figure 2.7.

DSearch(dictword) -> dictindex | error
This routine does a binary search of dict to return the index of dictword.
Example: DSearch(matrices) -> 14.

‘'matrices’ is the 14th record in dict.

DGetStem(dictindex) -> stemindex | error
This routine returns the contents of the stemindex field of the dictindexth record of
dict.
Example: DGetStem(14) -> 8.
The 14th entry of dict (matrices) is a member of the 8th stemgroup (Matrix).

DGetWord(dictindex) -> dictword | error
This routine returns the contents of the dictword field of the dictindexth record of
dict.
Example: DGetWord(14) -> matrices.
The 14th entry of dict is marrices.

SGetName(stemindex) -> stemname | error

This routine returns the contents of the stemname field of the stemindexth record of
stem.
Example: SGetName(8) -> Matrix.

The name of the 8th stemgroup is Marrix.

SGetWords(stemindex) -> stemwords | error

This routine returns the contents of the stemwords field of the stemindexth record of
stem.
Example: SGetWords(8) -> 14, 15, -1, ..., -1.

The 8th stemgroup (Matrix) contains dictwords 14 (matrices) and 15 (matrix).

SGetNodes(stemindex) -> stemnodes | error

This routine returns the contents of the stemnodes field of the stemindexth record of
stem.
Example: SGetNodes(8) -> 0, -1, ..., -1.

The 8th stemgroup (Matrix) is a member of node 0 (ARRAY).

NGetName(nodeindex) -> nodename | error

Tgcils routine returns the contents of the n¢. ename field of the nodeindexth record of
' node.
Example: NGetName(0) -> ARRAY.

The Oth node has the name ARRAY.

22

NGetStems(nodeindex) -> nodestems | error

This routine returns the contents of the nodestems field of the nodeindexth record of
node.

Example: NGetStems(0) -> 7, 8, 16, -1, ..., -1.

The Oth node (ARRAY) contains the stemgroups 7 (Array), 8 (Matrix), and 16
(Vector).

NGetParents(nodeindex) -> parents | error
Ttl}is 0idoutim: returns the contents of the nodeparents field of the nodeindexth record
of node.
Example 1: NGetParents(0) -> 3, -1, ..., -1.
The Oth node (ARRAY) has node 3 (DATA_STRUCTURE), as its parent.
Example 2: NGetParents(3) ->7, 1, 12, -1, ..., -1.
The 3rd node (DATA_STRUCTURE) has nodes 7 NAME_SPACE), 1 (DATA),
and 12 (STRUCTURE) as its parents.

NGetChildren(nodeindex) -> children | error
This routine returns the contents of the nodechildren field of the nodeindexth record
of node.
Example: NGetChildren(3) ->9, 11,0, 5, -1, ..., -1.
The 3rd node (DATA_STRUCTURE) has nodes 7 (QUEUE), 11 (STACK), 0
(ARRAY), and 5 (LIST) as its children.

Higher Level Routines

The primitive routines described above can be used to implement the thesaurus functions
needed by the expert system. The following higher level thesaurus access routines are used
by the expert system:

1) map from a word to its stemgroup.
The algorithm, in pseudo-C, is:
DSearch(word) -> dictindex
DGetStem(dictindex) -> stemindex

2) map from a stemgroup to the set of all words with the same stem.
The algorithm, in pseudo-C, is:
SGetWords(stemindex) -> stemwords
For each stemword
DGetWord(stemword) -> dictword

3) map from a stemgroup to the set of all nodes containing that stemgroup. Once the
nodes are found, their names can be displayed.
The algorithm is:
SGetNodes(stemindex) -> stemnodes
For each stemnode
NGetName(stemnode) -> nodename

23

4)

5)

6)

7

8

map from a stemgroup to the set of all synonym words for that stemgroup.
The algorithm is:
SGetNodes(stemindex) -> stemnodes
For each stemnode

NGetStems(stemnode) -> stemindex

SGetWords(stemindex) -> stemwords

For each stemword

DGetWord(stemword) -> dictword

map from a stemgroup to the set of more general (parent) words.
The algorithm is:
SGetNodes(stemindex) -> stemnodes
For each stemnode
NGetParents(stemnode) -> nodeparents
For each nodeparent
NGetStems(nodeparent) -> nodestems
Map from nodestems -> words as in 1.

If the stemnode is the root of the tree, i.e. has no parents, all the node indices in
nodeparents will be -1.

map from a stemgroup to thesaurus classes of more specific words. This
would be done in a manner similar to 4, substituting NGetChildren for
NGetParents. If the stemnode is a leaf of the tree, i.e. has no children, all the
node indices in nodechildren will be -1.

map from a stemgroup to thesaurus classes of related (sibling) terms.
The algorithm is:
Map from stemgroup -> parentnodes as in 5.
For each parentmode
Map from the parentnode -> childnodes as in 6.
For each childnode
Map from the childnode -> nodestems.
Map from nodestems -> words as in 1.

determine the hierarchical relationship, if any, between two words. This can be
done by mapping from each of the words to their node sets and then looking for
relationships between the nodes. In this implementation, the routine looks for
self, parent, child, or sibling. In all other cases, it returns none.

Other functions could be defined from the primitives, if needed. For example, the next
most useful functions might be grandparent, grandchild, cousin, etc.

2.5 User Interface

This section presents the current user interface for the research prototype. A basic
command line interface was used. The interface implemented for this research prototype is
straightforward and not one of the major thrusts of the project.

2.5.1 Query Language

When the user starts the system, the following prompt appears:

Enter a query, or quit, terminated by <return>:

The system expects a Boolean query. A Boolean query language was chosen because it is

24

the most common type available on existing systems. I wanted the main difference
between this prototype and conventional full-text retrieval systems to be the searching
knowledge base so that any improvement in search performance could be attributed to the
encoded search strategies, rather than the user interface. Possible improvements to the
interface are discussed in Section S5.1.1.

Operators

The operators provided, in decreasing order of operator precedence, are: ANDNOT, AND,
and OR. A logical equivalent to any Boolean expression can be constructed using these
operators. Where there are two or more operators of equal precedence, they are evaluated
left to right. Parantheses have the highest priority and can be used to override the default
order of evaluation. The operators are distinguished from the search words by their
position. A formal grammar for the query language appears later in this section.

Search Terms

When a query is parsed, the expert system interprets each search term to represent a unique
area of interest, or concept, specified by the user. The concepts, and the operators, are
flagged as positive or negative based on whether they are specifying information the user
does, or does not, wish to receive. For example, the query 'i/o ANDNOT (device OR
interrupt)’ contains three concepts: i/o, device, and interrupt. 1/O is a concept on which the
user wishes information, so it is considered a positive concept. Device and interrupt
indicate concepts on which the user does not wish information, so they are considered
negative concepts. The ANDNOT and OR operators are followed by negative concepts, so
they too are flagged as negative.

Context

A default context of one sentence is used for the AND and ANDNOT operators. For
example, 'virtual AND memory' will retrieve all passages in which virzual and memory
appear within the same sentence, regardless of order. Similarly, 'page ANDNOT fault' will
retrieve passages in which page appears, but not those in which it appears within the same
sentence as fault.

When the user is searching with the expert system, the expert system controls the context.
Initially, the default of one sentence is used, but the expert system may adjust the context
during query reformulation. However, when the user is searching without the expert
system, the AND and ANDNOT operators may be augmented with a user-specified context.
The user may define the search context for AND or ANDNOT in terms of words, sentences,
or paragraphs. The most general context definitions have the form:

left-expression operator [integerl to integer2 units] right-expression
where integerl must be smaller than or equal to integer2, and units is either words, or
sentences, or paragraphs. The integers specify the range around the tokens satisfying the
left-expression (tokenL) in which the tokens satisfying the right-expression (tokenR) must
appear. 0 represents the unit containing the token from the left hand side. Thus, the
default context of one sentence is equivalent to

0 to 0 sentences
indicating that tokenR must appear in the same sentence as tokenl.. An abbreviation for
this context, sentence, is provided for the user's convenience.

Negative integers indicate that tokenR must precede tokenL; positive integers indicate that it
must follow. Thus,

-5 to +3 words
specifies that tokenR must appear in the region around tokenL that includes the 5 words
preceding tokenL and the 3 words following it. If one is looking for paragraphs containing

25

a specific phrase, for example computer architecture, one would use the query

computer AND [+1 to +1 words] architecture
which requires that architecture immediately follow computer. There is also a shortform
for this relationship, called nexmword.

Finally, since the retrieved passages are one paragraph long, search expression contexts
should not be larger than one paragraph. Thus, the only valid context involving the unit
paragraph is

0 to 0 paragraphs
and this context is abbreviated by paragraph.

When user-defined contexts are evaluated, they may cross paragraph boundaries. For
example, if the user has specified a context of plus or minus three sentences, tokenR may
appear in a different paragraph than tokenL. In this case, MICROARRAS retrieves the
paragraph containing tokenL. In contrast, when the expert system controls the context, it
builds more complicated contexts which eliminate hits if the tokens do not appear in the
same paragraph.

Formal Grammar

The context-free grammar for the query language described above is specified in modified
Backus-Naur form. Syntactic constructs are denoted by capitalized English words, literal
tokens appear in boldface, and optional constructs appear between meta-brackets { and }.
Constructs superscripted by + may appear one or more times.

Expression -> AndTerm | Expression Or AndTerm

AndTerm -> AndnotTerm | AndTerm And { [Context] } AndNotTerm
AndNotTerm -> Factor | AndNotTerm Andnot Factor

Factor -> Word | (Expression)

Or ->or |OR

And -> and | AND

Andnot -> andnot | ANDNOT

Context -> Integer To Integer Unit | nextword | sentence | paragraph
Unit -> word | sentence | paragraph | words | sentences | paragraphs
To->to ! TO

Integer -> { + |- } Digit+

Digit -> 011 21314151 6171819

Word -> printable character+ Terminator

Terminator -> tab | newline I space | [1]1(1)

The above grammar contains left-recursion, which must be removed to allow a recursive
descent parser to be built for the language. The definitions for Expression, AndTerm, and

AndnotTerm are rewritten as follows (the Greek symbol epsilon (€) represents the empty
string):
Expression -> AndTerm Expression’

Expression’ -> Or AndTerm Expression' | €
AndTerm -> AndnotTerm AndTerm'

AndTerm' -> And { [Context] } AndnotTerm AndTerm' | ¢
AndnotTerm -> Factor AndnotTerm'

AndnotTerm' -> Andnot { [Context] } Factor AndnotTerm' | €

26

2.5.2 Guidance Requests

The expert system can run independently or interact with the user during query
reformulation. When the system is run interactively, the expert system makes two types of
guidance requests: after each reformulation step, if the reformulation is not complete, it
asks the user whether or not he wishes to continue query reformulation; and when search
terms (other than stemwords) are selected from the thesaurus, the user is asked whether or
not to add them to the appropriate concept group. The prompts for the two requests are:

<Query is shown here.>

Passages retrieved by the previous query: n. Decision: broaden or narrow or success.

Continue reformulation? Enter y or n <return>:

Add stemgroup stemname to concept original word? y or n <return>:
2.5.3 Passage Presentation

Once the system has completed query reformulation, either because it reached the target
number or the user stopped the reformulation process, the user is asked whether or not he
wishes to read the retrieved passages with the following prompt:

Query n retrieved m passages.

What next? d (display) or q (new query) <return>:

If he asks to view the passages, he will see the a 'Retrieving text.' message if there are
fewer than MAXPASSAGES in the retrieval set. MAXPASSAGES is set to 25 for this
version of the prototype. For the experiment, after each passage the user was asked for
relevance feedback with the following prompt:

Enter O (not relevant), or 1 (somewhat relevant), or 2 (very relevant) <return>:
If there are more than MAXPASSAGES in the retrieval set, the message 'Too many
passages to display’ is generated and the user is prompted to enter a new query.

2.6 Expert System

This section contains an overview of the expert system, a description of its interactions
with other system components, and a sample scenario. The knowledge base contents
which cause the actions described here are discussed in Chapter 3.

2.6.1 Overview

The expert system performs three main functions: it acts as system controller, it
reformulates the Boolean query based on previous search results, and it ranks the retrieved
passages in decreasing order of estimated relevance for presentation to the user. To
perform these functions, it uses a knowledge base of search strategies and text analysis
procedures. As pointed out earlier, all domain knowledge is contained in the thesaurus.

The expert system interacts with three other system components (see Figure 2.1): the user
interface, MICROARRAS, and the thesaurus. This section describes the expert system's
interactions with MICROARRAS. The expert system's use of the thesaurus is described in
Section 2.4.5, and the user interface interactions are described in Section 2.5.2.

2.6.2 Interaction with MICROARRAS
System Startup

The system as a whole is started by invoking the expert system. This causes OPS83 to
start and to load the expert system rules and C code. An OPS83 prompt is displayed and

27

the working memory element start is created by entering +szart. Entering xx to the next
OPS83 prompt begins the rule matching, which is the heart of the expert system. The
execution ends when no rules can be matched with the contents of working memory. A
final OPS83 prompt is displayed, and entering g exits the system.

The expert system can run on the same workstation as MICROARRAS, or it can run the
retrieval engine on a remote workstation. In the first case, the expert system forks off a
child process which runs MICROARRAS. The two processes communicate through pipes
opened by the expert system. In the second case, the expert system creates a process on a
remote workstation using rexec to execute MICROARRAS and the two communicate over
the network.

FLANGE

The expert system sends and receives FLANGE messages to interact with MICROARRAS.
The messages sent and received are placed in a 1025 byte buffer (1024 bytes plus 1 byte
for a null terminator). If a reply from MICROARRAS is too long to fit in the buffer, this
condition is flagged by placing a continue character at the end of the message. This flag
causes the buffer to be emptied and a continue message to be sent to MICROARRAS to0
refill the buffer. There are several C routines written to pack and unpack the various
FLANGE messages, and to synchronize the buffer access.

The expert system uses many of MICROARRAS's capabilities. Context specification is
used to define passages of length one paragraph and default searching contexts of one
sentence and, in the case of multi-word phrases, one word. Categories are created to
contain the search terms (one per stemgroup or multi-word phrase). Frequency
information in the textbase as a whole is requested for each word as it is entered as a search
term. During passage ranking, frequency information is requested for each search term in
each retrieved passage. Finally, the retrieved passages are requested for display to the
user.

2.6.3 Sample Scenario

Now that the system components have been described individually, a sample scenario will
be presented to illustrate how they work together to provide an intelligent online search
assistant. Since our current textbase concerns the domain of computer architecture, the
following example describes the interactions of the system and a user searching for
information on the alignment of word boundaries in memory. The contents of the
knowledge base which cause the following query reformulations will be describe in detail
in chapter 3.

The user might enter a query ‘boundary AND word ANDNOT page', which indicates that he
wishes to retrieve passages containing information on word boundaries but not page
boundaries. Assume a target number of 15. Applied to this textbase, the original query
would retrieve only one passage, so the expert system would attempt to broaden the query.
The first step would be to replace the word types boundary and word with their
stemgroups. The resulting query would be '‘Boundary AND Word ANDNOT page', where
the capitalized search terms indicate the whole stemgroup is included. Notice that page has
not been expanded to its stemgroup, as it is a negative, or excluded, concept. Four
passages would now be retrieved.

The next step would be to broaden the query by including synonym stemgroups for each of
the positive search terms, in turn. From the thesaurus it is found that Boundary has one
synonym, Limit, however there is no synonym for Word. The query now becomes

28

‘(Boundary OR Limit) AND Word ANDNOT page', which retrieves seven passages.
Relaxing the context around the AND operator to adjacent sentences while decreasing the
context around the ANDNOT operator to within § words increases the number of passages
retrieved to nine. To further broaden the query, the parent stemgroups for the positive
concepts are added. Block and Segment are added to the concept Boundary. The Word
concept remains unchanged, since Word has no parent in the thesaurus. The query
becomes '(Boundary OR Limit OR Block OR Segment) AND Word ANDNOT page', which
retrieves twelve passages. Twelve is within 20% of the fifteen passages requested, so the
reformulation stops. If the user requests to see the retrieved passages, the expert system
would rank the retrieved passages and present them to the user in decreasing rank-order.
This procedure is described in Section 3.5.

If the number of passages requested had been larger, for example, 35, the expert system
would have continued to broaden the query by adding more stemgroups from the
thesaurus, relaxing context, and changing the query structure. First, the positive siblings
would be added. Free, Frame, Fault, Fragment, and Scatter would be added to the
Boundary concept, although none is particularly useful for this query. Page is a sibling of
Boundary, but it would not be added because page already appears in the query. The
sibling stemgroups Align, Bit, and Byte would be added to the Word concept, increasing
the number of passages retrieved to nineteen.

Broadening would be continued by adding the child stemgroups. Align is a child of
Boundary, but it would not be added to that concept because it already appears in the Word
concept. Word_Size and Word_Mark are added to the Word concept, but they have no
effect because they are multi-word phrases containing word, and this concept already
contains word on its own. Next, the context required between the stemgroups would be
relaxed to the maximum (same paragraph for positive concepts, adjacent words for negative
concepts). This would increase the number of passages retrieved to 26. Dropping the
negative part of the query, 'ANDNOT page', would be tried next, but it would have no effect
on the number of passages retrieved. Finally, the AND would be changed to OR. This
substitution would retrieve far too many passages, resulting in over 100 passages, so the
system would backtrack to the previous query.

The final query, ‘(Boundary OR Limit OR Block OR Segment OR Fault OR Fragment OR
Scatter) AND (Word OR Align OR Byte OR Bit OR Word_Size OR Word_Mark)', would
retrieve 26 passages. The user could choose to display these or to restart the system with a
different query in an attempt to retrieve more information.

29

Chapter 3
Searching Knowledge Base

3.1 Overview
3.1.1 Knowledge Base Contents

Professional search intermediaries use three main types of knowledge - their knowledge of
how particular databases are constructed, knowledge about the domain being searched, and
knowledge of general search strategies - to form and improve queries. The expert system
handles all interactions with MICROARRAS, the text retrieval software used; the user will
need no specific knowledge of this system. Domain knowledge is all incorporated in the
hierarchically structured thesaurus. This chapter discusses the knowledge base of search
strategies that forms the core of the expert system.

The expert system performs three main functions:
1) it controls the operation of the system as a whole;
2) it reformulates the Boolean query based on previous search results;
3) it ranks the retrieved passages in decreasing order of estimated relevance for
presentation to the user.
To perform these functions the expert system contains a knowledge base of the search
process, search strategies, and passage ranking procedures.

3.1.2 Knowledge Base Design

In conventional programs, design is discussed in terms of data structures and algorithms.
The analogous discussion for an expert system covers working memory elements, the
knowledge base, and the inference algorithm. The working memory elements contain the
data available to the expert system describing the current state of affairs, whereas the
knowledge base is a collection of condition-action pairs, called rules, which execute based
on the current contents of working memory. The inference engine controls the choice of
which rule executes, or fires, if more than one has its conditions satisfied.

If more than one rule has its conditions satisfied, the conflict resolution strategy used in this
system will first choose the rule or rules with the largest number of conditions. These rules
are chosen because they handle more specific cases than rules with fewer conditions. If
there is still more than one candidate rule, the rule matched by the most recently created
working memory elements is chosen, leading to a type of depth-first execution.

Knowing the inference algorithm, the system execution can be explained in terms of the
rules in the knowledge base and the working memory elements that cause them to fire.
Section 3.2 describes the working memory elements, whereas sections 3.3, 3.4, and 3.5
describe the rule bases for system control, query reformulation, and passage ranking,
respectively. The complete rule base appears in Appendix I’. This knowledge base is
drawn from the published literature on searching (see Section 1.3.5), search training
manuals, consultation with professional searchers, and experience with sample searches.

30

3.2 Working Memory Elements

A description of the seven types of working memory elements, or elements , follows, with
an indication of how many instances of each type are created:

1) start: created to startup the system; one per user session

2) goal: the current high-level goal; one per user query

3) reform: contains information about the reformulation state; one per user query

4) query: contains information about the query as a whole; one per user query

5) concept: contains information about the concept group; one per concept

6) stem: contains information about the stemgroup; one per stemgroup

7) passage: contains information about the retrieved passage; one per passage

Several attributes contain indices into C structures which duplicate the information. Since
much of the reformulation work is accomplished by C routines under the direction of the
expert system, indices are passed to avoid exchanging large amounts of data between the
two modules. As they merely duplicate information, or store additional information merely
for efficiency reasons, the C structures will not be described in this dissertation.

start. No attributes.

Created upon system startup, it triggers the creation of a MICROARRAS process and a
goal element, then is removed.

goal. Attributes:
type: current goal, e.g. get query, or reformulate
subgoal: temporary goal during reformulation, e.g. addstemword
justright: target number entered by user
min: minimum number of passages acceptable, set to justright * 0.5
max: maximum number of passages acceptable, set to justright * 1.5
toofew: lower bound on success, set to justright * 0.8
max: upper bound on success, set to justright * 1.2

The first goal type is get query. This causes a rule to fire which receives a query from the
user and creates the query, concept, and stem elements. Each search term entered by the
user is assumed to represent a distinct concept and a concept and stem element is created for
each term.

query. Attributes:
status: indicates query's reformulation status, e.g. new, or reformulated, or final
version: index into C array for this query's parse tree
name: name of MICROARRAS's representation of this query
numpassages: the number of passages retrieved by this query
context: number representing the current context for the query
hi: the broadest context tried with this query so far
lo: the narrowest context tried with this query so far

Only one query is active at a given time. The user's query is parsed and information about
its structure is stored in a C array of parse trees. When the Boolean operators are changed
or removed, the current query's status is set to reformulated and a new parse tree is created.
A new query element is created with a new version and name. Changes to context or sets
of search terms do not require new query element, or new parse tree, merely an update to
the name field to reflect the new MICROARRAS category, or the context and hi or lo fields
to reflect the new context. The numpassages field is also updated to reflect the number of
passages retrieved at each step along the way.

31

concept. Attributes:
status: indicates whether or not this concept is in current query, e.g. active
id: index into C array for this concept
sign: indicates whether concept is positive or negative, e.g. + or -
freq: number of occurrences of all stemgroups in the concept in the textbase
state: the last reformulation performed on the concept, €.g. addsynonyms

A concept element is created for each search term in the user's initial query. As the query is
reformulated, search terms may be added to the concept by the expert system. These are
stored in a C structure whose identity is stored in the id field. During query reformulation,
negative concepts may be dropped. In order to allow backtracking to an earlier query, the
concept's working memory element is not deleted in this case, but merely has its status
field set to inactive. The concept's sign is stored in the element to allow different
processing of positive and ne Zative concepts. A concept's frequency is set to the sum of
the frequencies of all the search terms in the concept. Additionally, information about the
state of the reformulation process .3 stored for each concept.

stem. Attributes:
id: index into C array for this stemgroup
concept: identifier for the concept containing this stemgroup
name: English name for the stemgroup, e.g. boundary
freq: number of occurrences of this stemgroups in the textbase
added: reformulation step which caused this stemgroup to be added to the query, e.g. 5
dist: distance of stem in thesaurus from original search term

Initially, a stem element is created for each concept in the user's query. This stem element
initially contains only the user's search term. Reformulation may cause the other members
of the stemgroup to be added, which updates the freq field, and adds search terms to the C
structure for this stemgroup, but does not cause a new stem element to be created. Further
reformulation may add whole new stemgroups to the concepts, causing new stem elements
to be created. The dist field stores the diszance of the stem from the original search term. It
contains O for the original term, 1 for the rest of the stemwords in this stemgroup, 2 for
synonyms, 3 for parents, 4 for siblings, and 5 for children.

reform. Attributes:

global: the type of reformulation required by the user's initial query, either broaden, or
narrow

local: the opposite direction of global, e.g. if global is broaden, local is narrow

next: the direction of the next reformulation, i.e. broaden or narrow

lastglobal: the last reformulation technique tried in the global direction

lastlocal: the last reformulation technique tried in the local direction

laststate: the last reformulation technique

step: counts the number of reformulations performed

dist: distance of new search terms from original (used when creating new stem
elements)

If the user's query needs reformulation, i.e. does not retrieve the target number of
passages, a reform element is created. The type of reformulation to be performed on the
user’s query is stored in global. The sample query of 'boundary AND word ANDNOT page’
would retrieve one passage. If the target number was 15, global would be set to broaden,
local to narrow. Lastglobal, lastlocal, and laststate would all be set to original as no
reformulation has yet been done. Step is initialized to 0.

Global and local remain unchanged during reformulation. Next indicates the direction of
the required reformulation. Lastglobal, lastlocal, and laststate are updated to keep track of
the progress of the reformulation process. Step is incremented by one for each
reformulation technique tried. Dist is set by calling C reformulation routines which return
the thesaurus distance information for the search terms proposed. For example, if the
above query were broadened by adding stemwords, it would result in the retrieval of four
passages. Because four passages are not enough to meet the user's target number, next
would be set to broaden. Since the reformulation added search terms that were in the same
stemgroup as the original search term, laststate would be set to addstemwords, and dist
would be set to 1. Because the previous reformulation was a broadening technique, and
the global direction is broaden, lastglobal would be set to addstemwords. Lastlocal would
remain unchanged, and step would be incremented to 1.

passage. Atributes:
status: new, or ranked, or displayed
id: index into C array storing pointers to the reconstructed passages
wt: calculated weight of this passage

After the query reformulation stops, the passages corresponding to the final query are
retrieved, weighted, and displayed in decreasing order of weight. A passage element is
created for each passage, and information stored on it as indicated above.

3.3 System Control Rules

The system control rules are used to determine the execution path of the system. These
rules execute besed primarily on the contents of the szart and goal working memory
elements. As these working memory elements are created and modified, they satisfy the
condition parts of different reformulation rules and cause them to fire. Figure 3.1 shows
the flow of control of the system, with rules shown as nodes in the graph. The elements
that cause them to fire, with their attributes in parentheses, label the arcs. As a query is
reformulated, control cycles between the Reformulate and WhatNext nodes. The
reformulation tactics appear in detail in Figure 3.2.

The system is started by the user creating the start element. This causes the rule Init to fire
which removes start and creates the goal element with the type field set to getquery.
GetQuery, SendQueryToMA, and ChecklInitialResults then fire in sequence by modifying
the type field of goal. These rules initialize the elements described in Section 3.2 and begin
the reformulation process described in Section 3.4. Reformulation continues until success
(retrieving between toomany and toofew passages) or failure (running out of reformulation
techniques) occurs. In the interactive version of the system, reformulation can also be
stopped by the user after any step. After Success or Failure fire, the user may display the
passages, in which case WeightPassages and DisplayPassage fire. If there are too many
passages, or too few, he may choose not to display the passages, but rather to begin with a
new query. This causes a collection of RemoveWME rules to fire, removing the working
memory elements, and the system restarts at GetQuery.

3.4 Query Reformulation Rules

3.4.1 Overview

Queries are reformulated based on the target number, the number of passages retrieved, and
the history of broadening and narrowing techniques already applied. The expert system

has a collection of reformulation tactics at its disposal. Marcia Bates [Bates, 1979] and
others have identified successful search tactics. However, no one has outlined an overall

33

goal (cleanup)

(Figure 3.2)

goal (displaypassages)
passage (undisplayed)

Display
Passages

goal (=failure)

goal (cleanup)

Figure 3.1 System Execution Cycle

query reformulation strategy combining these tactics. The guiding principles for the expert
system's query reformulation knowledge base were: 1) each search term in the initial
query represents one concept on which the user does, or explicitly does not, want
information; 2) the user's initial search terms are the best indication of the user’s areas of
interest; 3) some terms from the thesaurus may be helpful, but others will not; 4) to
broaden a concept using the thesaurus, parent stemgroups should be added first, followed
by siblings, then children 5) the expert system should never discard concepts in which the
user has indicated an interest.

Each search term in the initial query is expected to represent a unique concept. This needs
to be explained to the users of the system. Carolyn Crouch {Crouch, 1988] found that

34

augmenting a query with thesaurus terms, rather than replacing the original search terms,
lead to improved results. With this in mind, concepts are expanded by adding thesaural
terms (ORing them with the terms already in the concept) rather than by replacing the terms
already present.

The importance of the initial search terms is reflected in the query reformulation strategy by
the decision to use context to broaden/narrow the query immediately after the terms have
been expanded to their stemgroups. Before adding new stemgroups from the thesaurus, I
felt that it was desirable to attempt to reach the target number using context alone.

The belief that some stemgroups from the thesaurus will be useful, while other will not, is
the basis for providing user filtering of the candidate thesaurus terms. The domain-
dependent search strategies identified by Philip Smith [Smith, 1989] involved the use of
domain knowledge to choose the appropriate terms from a thesaurus. In addition, Donna
Harman [Harman, 1988] showed that search results improved when thesaural terms were
filtered by the user. Based on these two studies, I decided to allow the users to select
which stemgroups to add from a set of thesaural candidates.

To expand a concept, he order in which the terms are added from the thesaurus is: parents,
then siblings, then children. Replacing a term with its parent to broaden a query is a
common practice, both by searchers [Bates, 1979; Salton, 1988], and in systems which
automatically reformulate queries [Vickery and Brooks, 1987; Chiaramella and Defude,
1987]. The rationale is that since parent terms represent broader concepts, adding the
parent term should broaden the scope of the query. Thus, parent terms are added first.
Siblings are added second since they represent related concepts, and children terms are
added third since they represent narrower concepts and seem less likely to broaden the
concept. While the expert system uses this ordering, the.reasoning is based on experience
with searching bibliographic databases using keywords. In full-text databases, I believe
that the reverse order may make more sense. Broadening a concept containing apple with
children terms, yielding 'apple OR mcintosh OR granny_smith', seems more likely to
retrieve relevant passages than broadening with the parent terms, yielding 'apple OR fruit'.
This tactic needs to be explored in future versions.

Finally, the expert system never discards positive concepts. If the user has indicated moie
than one concept in which he is interested, the expert system has no knowledge from which
to decide which concept is more important to the user. Thus, if expanding the query using
the thesaurus and context still yields too little information, the expert system does not drop
one of the concepts in an attempt to broaden. Rather, it ORs the concepts together to
retrieve the available information on all the concepts. In contrast, negative concepts are
dropped from a query if the other broadening techniques fail.

Figure 3.2 diagrams the flow of control among the reformulation techniques. The left side
of the Figure 3.2 diagrams the broadening techniques, the right side the narrowing
techniques. This figure is somewhat simplified since it does not show the use of context to
converge to the target number once queries have been found which bracket the target
number from above and below. The addition of search terms, including the handling of

multi-word phrases, is described in more detail in Section 3.4.2, context adjustment in
Section 3.4.3.

Flow of Control

After each reformulation, there are three possible outcomes, broaden, narrow, and success.
The node for each reformulation step contains an arc specifying the action taken for each of

35

(7]

A Dl

[7]

(D)<

0

ontex

+ve
siblings

+ve

i

context

N

B

N
increase
)4 (oan)

Figure 3.2 Query Reformulation Techniques

36

w

w

o

o

o

o

w

o

w

w

gontex

w

S

. . 2 ; § z
: g E . &, : -
(=)D C) (D))
w

[7]

w3

[7}

w

ontex

N

Legend

B: broaden

N: narrow

S: success.

+ve: positive concepts
-ve: negative concepts

the possible results. Success at any reformulation node leads directly to the Success node.
While reformulation continues in the initial global direction, the nodes down that side of the
diagram are visited in turn.

The earlier techniques on both sides of the diagram represent those which are expected to
be most useful. Thus, the first reformulation in the opposite, or local, direction moves the
reformulation to the node at the top of the opposite side of the diagram. For example, if the
expert system has broadened a query five times in a row, it would be in the Add Positive
Siblings state. If too many passages are now retrieved, the expert system would attempt
narrowing by adding negative stemwords, the first state at the top of the narrowing side of

the diagram.

Reformulation never continues in the local direction farther than it preceded in the global
direction. Queries have already been formed which bracket the target number from below
and above, otherwise the system would not have tried both narrowing and broadening
techniques. Rather than using techniques which are considered less likely to produce good
results, such as adding more distant thesaurus terms or manipulating the query structure,
the expert system adjusts the context.

Continuing the above example, if the expert system then narrowed the query five times, it
would be in the Add Negative Siblings state. If the query required further narrowing, the
expert system would not go to the next state down, Add Negative Children, because it did
not get that far in the global broadening direction. If context adjustment does not result in
success, the expert system chooses the most recent query which resulted in too many
passages, rather than one which results in too few.

Broadening

Examining the figure in more detail, one can see that the first broadening technique used is
adding stemwords to positive concepts, followed by adding synonyms. Next, the expert
system increases context simultaneously in three ways: strict adjacency between terms in
multi-word phrases is relaxed to the component words appearing, in any order, within
three words of each other; the context around positive operators is loosened from the same
sentence to +/- one sentence; and the context around negative operators is tightened to +/-
seven words. Related terms from the hierarchical thesaurus are added next: words from
parent classes first, followed by siblings, and finally children. Context is then further
broadened such that terms from multi-word phrases are required to appear within the same
sentence, positive operators are evaluated with a context of the same paragraph, and
negative operators have their context decreased to +/- three words.

More drastic approaches are attempted if the previous techniques do not broaden the query
enough. These affect the Boolean operators in the query. First the positive operators are
loosened from AND to OR, while negative operators are tightened from OR to AND. If the
query still requires broadening the expert system removes the negative portions of the
query altogether.

Narrowing

Narrowing techniques are identical to broadening techniques but are applied to the opposite
parts of the query. Narrowing is accomplished by expanding terms in the negative concept
groups, tightening positive context, loosening negative context, tightening positive
operators, and loosening negative operators. The right side of Figure 3.2 shows the order
in which these techniques are applied.

37

Stopping

Marcia Bates [Bates, 1979] stated that knowing when to stop a search is a difficult
problem. I partially side-step this problem by having the user explicitly state the number of
passages he wishes to retrieve. Since the target number he supplies is likely to be a rough
guess, a range of 20% is considered successful. A larger range may be desirable, but since
the user is able to stop the reformulation process himself, the size of the range is not
important. Left on its own, the expert system stops the reformulation process when it
retrieves within 20% of the target number, or it has run out of techniques to try. The rules
to implement stopping are described in more detail in Section 3.4.5.

3.4.2 Expanding Search Terms

Techniques

The expert system has several ways of expanding the search terms to reformulate the
query. Initially, ea