-

AD-A236 655 @
ll S A |s E c AN ET AR Er

US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,
COMMUNICATIONS, AND COMPUTER SCIENCES

DT"

FLg CTE

ARMY NONPROGRAMMER SYSTEM FOR
WORKING ENCYCLOPEDIA REQUESTS
PHASE IIIA REPORT
(ASQB-GT-91-007)

JANUARY 1991

S - ey s
-~

PACHE AT
g oo TR AT MINT X
Fogpioven o
L . : =2 WCIomuanns - re “CIQ
e IoaTos / «Axcd :

e e e *

AIRMICS

115 O’Keefe Building

Georgia Institute of Technology
Atlanta, GA 30332-0800

q‘ ¢. @ &

91-01423

RN

This research was performed by Honeywell Federal Systems, contract number
DAKF11-88-C-0024, for the Army Institute for Research in Management Information,
Communications, and Computer Sciences (AIRMICS), the RDTE organization of the U.S.
Army Information Systems Engineering Command (USAISEC). The report discusses a
set of data management tools and distributed query processing modules developed and/or
enhanced during a 9 month effort, the third phase of a four phase effort. Requests to
view a demonstration of the prototype may be made by contacting MAJ(P) David S.
Stevens at 404/894-3110. This research report is not to be construed as an official Army
position, unless so designated by other authorized documents. Material included herein is
approved for public release, distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Glenn Racine, Chief e John R. Mitchell
Computer and Information IR Director
Systems Division AIRMICS

r_Acce:ic:t for T
NTIS CRASY : !

Ciie Tag
Uoan 0u.023
Jolhiconon
e e e
By
Di.t ibotio] i

e e

ER -_-n_.—-i

Avananty €00

e e
V Ay G Cior
Sptral

Al |

Dizt

Section

it

Table of Contents

Introduction

1.1 Phase llIA
1.1.1 Query Formulator
1.1.2 Query Processing Algorithms
1.1.3 Distributed Query Processing

Query Formulator

2.1 Invoking the Query Formulator
2.2 Query Editor

2.2.1 Editing Scenario
2.3 Condition/Expression Editor
2.4 Operations on Open Leaf Nodes
2.5 Operations on Nonleaf Nodes
2.6 Operations on Closed Leaf Nodes

Query Processing Algorithms

3.1 Term Substitution Algorithm
3.1.1 Term Substitution Strategy
3.2 Approximate Query Processing

Distributed Query Processing Platform
PHASE HIIB and PHASE IV Plans

5.1 PhasellIB
5.1.1 Task lIB.1—Implement Browser/UIMS Enhancements
Task 1IB.2—Query Formulation Implementation
Task I1IB.3—AI Techniques
Task HIB.4—Security Study
Task I1IB.5—Demonstration and Training
Task I11B.6—Distributed Query Processing
Task IIlIB Deliverables
ase [V
5.2.1 Task IV.1—Distributed Query Processing
5.2.2 Task IV.2—Demonstration and Training
5.2.3 Task IV Deliverables

et bt et
~NOh Ut b o

.
-
.
.
.
.

it

5
5
5
5
5
5
P

5.2

b= o

G90326

Page

1-1

1-2
1-3
1-3
1-3

2-1
2-3
25
26
28
2-10
2-10

31

31
32

41
51

51
5-1
31
51
51
5-2
5-2
52
52
5-2
53

Section

iv

Table of Contents (Concluded)

ANSWER Implementation

6.1 Query Processor
6.1.1 Limitations of Current QF Term Substitution
Implementation
6.2 Approximate Query Processing Algorithm
6.2.1 Limitation of Approximate Query Processing
6.3 Query Formulator

References

G90326

Page

6-1
6-1

6-2
63

7-1

List of Figures

ANSWER Chart
ANSWER Chart
Query Formulator Initial Screen

Condition/Expression Editor Invoked

Before CONNECT TO Operation in C/E Editor

After CONNECT TO Operation in C/E Editor
Generalization Hierarchy in an ECR Schema
Sample Query Decomposition

Local Schema 1

Local Schema 2

Integrated Schema

ANSWER/Distributed Query Processing

G90326

Page

1-1

2-2
2-7

29
3-2
33
3-5

37
41

1-1

Section 1
Introduction

This report covers the Phase [IA activities of the ANSWER program from December 16,
1989 to September 30, 1990.

In Phases I and Il of the ANSWER program, we emphasized the development of data
administration tools to aid in the process of creating and maintaining a heterogeneous
distributed system. The overall ANSWER architecture as envisioned as the end of the
program is shown in Figure 1-1. For review, deliverables for Phases I and II are highlighted in
the figure and are described below.

User Intertace Manager

: : : :

Query
Schema DECT Browser _
integrator Formulation

° IROS Distributed Query Processor

<« N 4> I >
=
Schemas

G9381-3478

Figure I-1. ANSWER Chart

The schema integrator creates integrated schemas from individual schemas and data
administrator assertions about individual schema relationships. The integrated schemas
can be used as the basis of distributed query processing by providing a global definition of
available data and static mappings to local systems. The schema integrator reads and
writes schemas to and from an IRDS repository, an ANSI and FIPS standard for data
definition repositories. All ANSWER tools will eventually share information through the
IRDS repository.

The browser and schema editing facilities provide a graphical browser for entity-category-
relationship (ECR) schemas and for information about standard data elements. The
browser/editor also reads information from and writes information to IRDS. The editor
supports the graphical creation of schemas and the inspection of associated standard data
element information. The browser also supports the browsing of integrated schema
information and associated individual schema information.

G90326

The Army Data Dictionary (ADD) is an implementation of the ADD currently under
development at the Data Management Directorate (DMD) at Rt. Belvoir. The schema used in
the current ANSWER prototype is a subset of the schema used for the ADD by DMD.
Extensions may be made to the ANSWER ADD to store additional information.

The Data Element Creation Tool (DECT) is a tool designed to support the creation of
standard data elements. The tool is intended to be used at the installation level as an aid to
developing new standard data element names. It supports the creation of a syntactically
correct name (in accordance with AR 25-9) and also supports the semantic analysis of that
name to determine if any other closely related names have already been proposed. The
analysis is based on an internal representation of the semantic structure of the data
element name and may be related to the use of that name in a schema.

The User Interface Manager is a multi-window graphical user interface that supports
control integration of muitiple tools. Each tool is represented as a state transition diagram,
which is managed by the interface manager. The state transition diagram controls the
points at which the user may suspend execution of one tool and invoke execution of a
different tool. The user interface manager also controls the tool interfaces, managing input
and output for each tool as well as window managing functions and graphical display
functions required by the tools.

Further information about these tools may be found in the Phase I and II final reports.

1.1 Phase MA

Phase IIIA addressed the query formulation tools associated with ANSWER. In this phase we
developed a query formulation tool and experimented with different query processing
algorithms for a distributed query processing environment. Figure 1-2 shows the Phase A
deliverables.

User Intarface Manager

: ' :

Schema
integrator

DECT Browser

e A
= EE

Figure 1-2. ANSWER Chart

G90326

The specific tasks of Phase A are described below. This report discusses each of these
tasks in greater detail in the following sections.

1.1.1 Query Formulator

The query formulator task addresses the design and development of a query formulation
aid for end users that supports the formulation of syntactically correct SQL queries. In
Phase IMA we addressed the design and initial impiementation of query formulation. We
addressed the problem of formulating queries directly against individual or integrated
schemas, and we addressed the problem of formulating queries using standard data
elements instead of schemas. The query formulation tool produces queries executable by
an SQL processor for queries stated against individual schemas.

1.1.2 Query Processing Algorithms

For queries stated against integrated schemas or stated using standard data elements,
additional processing is necessary to obtain an executable SQL query. In Phase [IIA we
investigated several alternative query processing algorithms. We have implemented two
algorithms for query processing that address the issue of query decomposition, execution
and result composition for queries against the integrated schema. One algorithm is
designed for use with standard data element queries and the other is designed for use with
standard integrated schema queries. Section 3 discusses the two algorithms, their strengths
and weaknesses and makes recommendations for query processing algorithms appropriate
for distributed query processing in ANSWER.

1.1.3 Distributed Query Processing
As part of Phase [IIA we also needed to identify existing commercially available distributed

query processing capabilities. These capabilities are to be used as a target for a design of
the integration of ANSWER tools with a distributed query processing environment.

G90326

2-1

Section 2
Query Formulator

The ANSWER query formulator is a tool designed to aid end users in creating well formed
SQL queries. The query formulator produces queries executable by an SQL processor. The
tool provides both graphical and textual means to create and edit queries.

In constructing the query formuiator we had several goalis:

¢ A “modeless” environment, where users can freely move between text and
graphic creation of query terns;

* Incremental query development, where a user may test out individual select
clauses before composing a complex embedded query;

* Alternative views of query formulation, including a relational view and a
standard data element view (following AR 25-9).

This section will discuss the architecture of the query formulator including the query
editor, the condition expression editor, and standard data element query formulation.

The Query Formulator (QF) provides a syntax-directed, window-based tool for defining SQL
queries. A QF user may enter and edit queries by pointing with the mouse at items on the
screen, by selecting options from context-sensitive pop-up menus, or by typing information
to the editor. Thus, QF supports multiple modes of interaction in the query definition
process. To focus the editing process, individual conditions and expressions in a complex
query can be edited independently. The entire query is always visible so that, while editing
a particular component of the query, the user can view that component within its context.
Furthermore, through the use of separate “query buffers”, the user can work on several
independent queries simultaneously. With this mechanism subqueries can be developed
separately and then combined through straightforward linking operations. This encourages
an incremental strategy in defining complex queries.

Queries can be defined in either of two modes—relation mode and standard data element
(SDE) mode. Queries defined in SDE mode are automatically converted into relation mode
when query execution is requested so that they can be executed as standard relational SQL
queries. The user can also request that any query in SDE mode be converted into relation
mode without executing the query. The resuiting query (or queries) can then be edited
further in relation mode.

2.1 Invoking the Query Formulator

There are two ways to invoke QF: (1) as an independent tool or (2) from the grapher
window.

G90326

In the first approach, QF is invoked through a pullkdown menu available from the top level
menu bar in the ANSWER system. An initialized query buffer is created. and the user can
define a query in this buffer, as shown in Figure 2-1.

e e e e e

| [move >> § scruii | redrsw § ANSWER { find noce I acroil]«mavelzhwmghﬂ eat l

vl o] [Rename] [Gwve] [Load] [Copy] [Buy] [Booe] [CQoe] [Trpeuey] [Exeme] [ExtoF]

R
b MRem .
CONNECT BY
‘.’%L START WITH
: GROUP BY

HAVING

Figure 2-1. Query Formulator Initial Screen

Under the second approach, the user indicates through a menu command attached to
some node in a grapher window that she wishes to define a query. This node is taken as a
starting point in the query specification. QF will be started and an initial buffer will be
created. If the node corresponds to a relation or a prime term, then the relation or prime
term will be included in the FROM clause of the new query. If the node corresponds to an
attribute or a standard data element, then the attribute of data eleinent will be included in
the SELECT clause. The user may also request a new buffer from within QF. An initialized
buffer will be created and exposed. and the user may then edit this new query.

If QF has previously been invoked in the user session, an additional invocation will not
cause a new QF to be created. Rather, the existing QF will be activated (it is inactive), and a
new butfer will be created containing any initial information specified through the
invocation.

(90326

23

Note that when QF is invoked from a relation or attribute grapher node, the buffer created
will automatically be in relation mode. When it is invoked from a grapher prime term or
standard data element node, the buffer will automatically be in SDE mode.

2.2 Query Editor

The Query Editor supports the editing of SQL queries. The term “clause” denotes any top-
level component of an SQL query. A query always contains a SELECT clause and a FROM
clause. It may also contain WHERE, CONNECT BY, START WITH, GROUP BY, HAVING,
UNION, INTERSECT, MINUS, and ORDER BY clauses. The term “select statement”™ denotes a
group of clauses headed by a SELECT and FROM clause. A select statement contains no
more than one of each of the above clauses. Thus, a subquery is not considcred part of the
containing select statement. The subquery constitutes an independent select statement
distinct from, but related to, the select statement that contains it.

Each query in QF is presented to the user in a query buffer. (Figure 2-1 shows a sample
initial layout for a query buifer.) In the left-hand portion of the QF window is the query
display window, which shows the current version of the query. If there are muiltiple select
statements in the query, all of them are shown, but only one of them can be edited at any
one time. We call this select statement the “current select statement.” The current select
statement is indicated by a surrounding rectangle. The select statement for any sub- or
superquery can be made into the current select statement simply by clicking on that select
statement. A select statement may have any number of immediate subqueries but no more
than one immediate superquery. Both select statements and entire queries may be
duplicated. The query display window can be scrolled vertically. Each query (and buifer)
has a name associated with it. The name of the currently displayed query is shown at the
bottom of the query display window in inverse video.

The right-hand portion of the QF window changes depending upon the state of the query
formulation process. In the initial state this portion contains a menu of the clauses that can
appear in a select statement (see Figure 2-1). These menu items have two options; (1)
create clause with editor or (2) create clause from type-in.

When the first option is selected, the right-hand section of the QF window is replaced by a
Condition/Expression Editor (see the subsection on this below) in which the user may
define an SQL condition or expression specifying the indicated clause. This editor is
subordinate to the current select statement. Once the user has defined the condition or
expression, the clause is added to the current select statement, the Condition/Expression
Editor is removed, and the clause menu reappears. When the user requests the second
option, a type+in window appears over the clause menu. The user may type any appropriate
clause, and the result wiil be added to the current select statement. Each clause may be
used no more than once in a single select statement. After they are used, clauses are
shaded out.

At the top of the QF window is a menu of commands for manipulating query buffers, which
we will now describe . The first one is NEW. This command creates a new initialized buffer
and exposes it. The new buffer contains only a single select statement (i.e., there are no sub-

G90326

24

or superqueries). This select statement consists of an empty SELECT clause and an empty
FROM clause. A name is automatically generated for the buffer.

The second command is RENAME. It asks the user for a new name to be associated with the
buffer and select statement. This new name is associated with the select statement until the
name is changed again or the select statement is discarded.

Next is the SAVE command, which stores the current query to a file. The user is prompted
for a file name where the query will be stored. (A reasonable default should be supplied.)
The SAVE command stores the current form of the query. Since the query might be in an
incomplete state, the saved representation must be capable of expressing these states.
That is, the stored definition might not be a valid SQL query. In particular it is possible to
have multiple unconnected pieces of single conditions or expressions. The SAVE command
should also store the name of the query. The LOAD command retrieves a query from a file.
It must read the output produced by SAVE and reconstruct the internal representation of
the stored query. A buffer is created to hold the query.

The COPY command is actually two commands. When the user selects this command, a
pop-up menu appears that has the following two choices:

e Copy current select statement,
¢ Copy entire query.

If the user selects the first option, the current select statement is duplicated in another
buffer. A name for the new buffer is automatically generated (e.g., Copy_of_<names>). The
second option works in much the same way except that the entire query is duplicated in a
new buffer. A new name is generated for the buifer.

The next two commands control which buffer is seen (and edited) by the user. That is, they
control which buffer is current. The first of these is BURY. Query buffers are conceptually
stacked on top of each other. The BURY command takes the top buffer (the visible one) and
moves it to the bottom of the stack. Whatever buffer was second on the stack will now be
the current buffer. The EXPOSE command gives the user a menu of all the buffers in the
buffer stack from top to bottom. The user may select any buifer. That buffer is moved from
its current position to the top of the stack and becomes the current buffer. The CLOSE
command removes the current buffer from the buffer stack without saving the associated
query. The user is asked to verify this step.

The TYPE QUERY command allows the user to type an SQL query into a window appearing
over the clause menu. A new buffer is created to hold the query. Note that once the user
has defined a new query through type-in, that query may be edited using the means
described below.

The EXECUTE command executes the current query. The results appear over the clause

menu. Finally, the TRANSLATE command converts a query in SDE mode into a query in
relation mode. One or more new buffers are created to hold the new query.

G90326

2.2.1 Editing Scenario

Now we are ready to consider in more detail how queries are edited. We have already
discussed the way in which new clauses are added. To review, the SELECT and FROM
clauses are automatically created for each query buffer. The other clauses of a select
statemnent can be added through the clause menu. We first consider the editing of SELECT
and FROM clauses. In the following, many of the editing commands are available in pop-up
menus, activated by a mouse click on the right button. The left and middle buttons are
generally unused. (At a later date, special commands could be attached to these buttons to
speed up the execution of those commmands.) The user can select a pop-up menu option to
proceed, or can move the mouse off of the pop-up menu, in which case the original
command is canceled. We should also note that all of these editing commands apply only to
the current select statement, not to its sub- and superqueries.

The FROM clause contains a list of relation names ~r prime terms. Clicking right on the
word FROM produces a menu with two options—owcriNE BY POINTING. and DEFINE BY
TYPING. With the first command the user indicates a relation or prime term by clicking on a
corresponding object in the graphics window. With the second, the user is asked to type
the name of a relation or prime term. Once a relation is in the FROM clause it too is mouse-
sensitive. The right-button menu contains three commands: DECLARE LINK, DECLARE
ALIAS, and DELETE ITEM. The declared links and aliases must be typed by the user. The
new link or alias replaces any existing link or alias. The DELETE ITEM command simply
removes the indicated item from the FROM list.

The SELECT clause contains a list of expressions. The menu on the word SELECT allows the
user to add a new expression at the end of the list, either through an expression editor (see
next subsection) or through type-in. It also contains commands to declare the
ALL/DISTINCT keyword for the SELECT clause. The default is ALL. The right-button menu
on SELECT items contains commands to edit the item in an expression editor, to replace
the item through type-in, to delete the item, and to modify the order of the select items. The
order modification commands are SWAP, PUT BEFORE, and PUT AFTER The GROUP BY
clause has similar behavior. The difference is that it lacks the ALL/DISTINCT commands on
the clause word GROUP BY. Similarly, the ORDER BY clause has no ALL/DISTINCT
commands and it has ASC/DESC commands associated with each ORDER BY item.

The other clauses have only two options: modify in editor, or retype. These options are
available through the right-button menu on the clause word. Since there can only be one
item associated with each of these clauses (e.g., the WHERE clause allows only a single
condition), these operations always replace the previous value rather than adding a new
one to the end of the list as for SELECT, ORDER BY, and GROUP BY.

While a condition/expression is being edited, the clause or expression is highlighted in the
query buffer to indicate that it is the one being edited.

(90326

26

2.3 Condition/Expression Editor

Now we turn our attention to the Condition and Expression Editors. These are really just
two separate modes of the same editor. In expression mode, the editor expects the user to
define an expression that can be used in a SELECT, GROUP BY, or ORDER BY clause. It
restricts the operators available to those that can be used in such an expression. In
condition mode, this editor expects the user to define a boolean condition that can be used
as a WHERE, CONNECT BY, START WITH, or HAVING clause. Since such a condition can
have any kind of expression as a component, all of the operators from expression mode are
available here as well. In addition, the boolean operators AND, OR, and NOT, and relational
operators such as “=', *>', IN, and EXISTS are accessible. In reality, a variety of more
restricted modes are used by the system *o enforce type checking. These will be covered
below. In this subsection we will for the most part discuss the Condition and Expression
Editors as a single entity, drawing distinctions between the two major modes when
necessary. We call this combined editor the Condition/Expression Editor (C/E Editor).

The C/E Editor is drawn in the right portion of the QF window (see Figure 2-2). The editor is
itself divided into three windows: the combination window, the term window, and a menu
pad. The left portion of the C/E editor is occupied by the combination window. This window
is used for building complex conditions and expressions from simple ones. The simple
expressions consist of terms and numbers. Terms are shown in the term window, which
occupies the lower right portion of the C/E editor. Terms include: attribute names, qualified
attribute names, SDEs, subqueries, and strings. Subqueries are not actually displayed in the
term window. Instead, QF automatically generates a name for each select statement. That
name is printed in the term window. There is a VIEW SUBQUERY command attached to
these names, which allows the user to see the select statement referred to by a particular
name. Associated with each term in the term window is an identifier (a letter), which is
used to denote the term in the combination window. Both the combination and term
windows can be scrolled vertically.

The third component of the C/E editor is the menu pad. It appears above the term window
and contains three menu options: NEW TREE, NEW TERM, and DONE. The DONE command
is used to indicate that the user has finished editing the condition or expression. The
resulting value is entered into the appropriate spot in the query, and the C/E editor is
deactivated.

New terms may be entered into the term window by selecting the NEW TERM command in
the menu pad. Clicking right on this button brings up a menu with the following options:
SELECT GRAPHICAL OBJECT, TYPE TERM, CREATE NEW SUBQUERY, and USE EXISTING
SUBQUERY. The user chooses one of the above commands and then supplies the term. For
the SELECT GRAPHICAL OBJECT option, the user can click on any appropriate node in one
of the grapher windows. The selected term is added to the term window (an identifier is
automatically generated for this new term). The CREATE NEW SUBQUERY option creates a
new select statement as a subquery of the current select statement. An automatically
generated name for the subquery is added to the term window with a new identifier. This
new subquery is immediately displayed in its incomplete form in the query bulfer (see the
comments on displaying incomplete queries). When the user selects USE EXISTING
SUBQUERY. she is given a menu of queries known to QF. A copy of the selected query is

(G90326

made. and this copy becomes a subquery of the current select statement. The subquery is
immediately displayed within the proper context in the query window. When TYPE TERM is
chosen, the user is given a type<in window. The entered term is added to the term window
with a new identifier. New terms may also be created through certain commands available
in the combination window. These will be described below.

———
AT move>> § acroll rodrsw | ANSWER § find node scroll § << move § show et

ﬂ

/
E

e

2 _IX gamry
al ¢

Lhew | [Reame] [Sove] [{load] [Copy] [Buy] [Eommmseiemtmore o ——
p— " [E=c)

it

PP

Figure 22. Condition/Expression Editor Invoked

The contents of the combination window is a set of trees drawn vertically from the root
down to the leaves. These trees reflect the structure of conditions and expressions in a
query. Each tree and subtree represents the application of some operator to its arguments.
Thus, each nonleaf node is an SQL operator. Each leaf node in a complete
condition/expression is either a number or a term identifier. The arguments are taken from
left to right in building SQL expressions from these trees. While trees are being built, their
leaf nodes may be unspecified. Such a leaf node is called “open.” All other tree nodes are
“closed.” Place holders are displayed in the combination window for open leaf nodes. The
holders have names appropriate to the corresponding arguments of the parent node
operator. Thus, if the first argument of an IN operator is unspecified, the leftmost child of
the IN node might have the name “attr.” If the second argument is unspecified, the
rightmost child might have the name “rel” (see Figure 2-1). Open leaf nodes are graphically

G90326

distinguished in some way (e.g., an italic font or underscoring). To be executable, a
condition/expression should have no open leaf nodes. During the process of defining a
condition/expression, there may be muitiple trees. Each of these trees represents an
independent condition or expression. Various commands are available to link trees
together to form one complete condition/expression. An executable condition/expression
can have only one tree. For flexibility, QF should be able to store conditions and
expressions with open leaf nodes and muitiple trees. These partially specified conditions
and expressions can then be completed in a subsequent editing session.

New trees can be created by selecting the NEW TREE menu option from the menu pad. The
options presented to the the user will depend on the mode of the C/E editor. If a condition
is being edited, every type of operator will be available. If, on the other hand, an expression
is being edited, some operators will be unavailable. The precise list of available operators
depends on the type of expression being defined (e.g., SELECT clause versus GROUP BY
clause). The specifics will be presented below when we discuss modes in greater detail.

2.4 Operations on Open Leaf Nodes

The basic operations on open leaf nodes are SHOW SQL DOCUMENTATION, CONNECT TO,
DEFINE FROM MENU, TYPE, and PASTE. The CONNECT TO operation fills in the open node
with a previously defined tree or term. The user simply selects this command on the open
node and then selects CONNECT FROM on the root of a tree or the identifier of a term. The
indicated item is spliced into the tree at the point of the open node. When the TYPE
command is issued the user is allowed to type a term, condition, or expression which is
then analyzed and spliced into the tree at the point where the open node was. Figures 2-3
and 24 show a CONNECT TO operation.

The DEFINE FROM MENU command presents a menu of things that could fill the open node.
The content of the menu depends on how the open node is used in the tree. If the node
should be filled by a condition (e.g., the node is a child of AND), then only condition
operators are presented. If the node should be filled by a numeric expression (e.g., the node
is a child of '+"), the menu allows the user to select numeric-valued functions, numbers,
numeric-valued attributes, etc. Again, this is heavily dependent on the mode system to be
described later.

The PASTE and COPY (available on closed nodes) commands work together. QF has a
scratch pad in which any expression or condition can be stored. Whenever a COPY
command is issued on any closed tree node (leaf or nonleaf), the expression or condition
denoted by that tree or subtree is placed in the scratch pad. The previous contents of the
scratch pad are discarded. A subsequent PASTE operation on any open node will cause the
contents of the scratch pad to be inserted for that node. This process differs from a
CONNECT TO in that a copy of the expression is made rather than directly hooking the
expression into place. Furthermore, a CONNECT TO can only be done within a single C/E
editor, but a COPY/PASTE operation sequence can copy information from one C/E Editor to
another.

The GET SQL DOCUMENTATION command displays information about the parent operator
and the purpose of the argument defined by the open node.

G90326

29

iy

N CHE | S | F

Figure 23. Before CONNECT TO Operation in C/E Editor

] << move § thow =1

(=] [fouen] [See] [ioed] [Comr] (Bl

Figure 24. After CONNECT TO Operation in C/E Editor

G90326

2-10

2.5 Operations on Nonleaf Nodes

The basic operations on nonleaf nodes are COPY, DETACH TRZE, DELETE TREE, GET SQL
DOCUMENTATION, and ADD CHILD and DELETE CHILD (in the correct context). COPY has
already been discussed. DETACH TREE is roughly the inverse of CONNECT TO. It takes the
subtree whose root is the node from which the DETACH TREE command is executed and
turns it into an independent tree. The root node reverts to an open leaf node. DELETE TREE
removes the indicated node and all its children from.the combination window. The node
reverts to an open leaf node. GET SQL DOCUMENTATION displays a description of the
operator and its arguments in a notification box.

Finally, the ADD CHILD command is used to expand the number of arguments for an
operator that takes an arbitrary number of them. (This does not include operators with
optional arguments. These arguments are included automatically along with some
indication of their default value. See the discussion of special arguments below.) The
operators that take an arbitrary number of arguments are AND, OR, VALUE-LIST, “+, **',
DECODE, GREATEST, and LEAST. All of these operators except DECODE have one argument
that can be replicated. DECODE has a pair of arguments representing a search condition
and a return value, and these are replicated together. The ADD CHILD command simply
adds one or more new child nodes at the right of the string of replicatable arguments. For
example, if we perform an ADD CHILD operation on a LEAST node with children nodes for
the terms A and B, a new child will be added to the right of the B node. If we perform the
same operation on a DECODE node with children expr, searchl, returnl, search2, return2,
defauit, then two new children, search3 and return3, are added between return2 and
defaulit.

The final nonleaf node operation is DELETE. As noted above this command is available only
in certain situations. Some SQL operators take an arbitrary number of arguments. For
example, the LEAST operator takes two or more arguments. The nodes for these operators
have special commands for adding children (see the subsection on nonleaf nodes). The
DELETE command is used to remove these extra children when they are no longer wanted.
In that case the child node is removed, and the number of arguments is reduced by one.

2.6 Operations on Closed Leaf Nodes

Closed leaf nodes are treated as a special case of closed nodes. They have only three
commands: DELETE-NODE, COPY and DETACH-NODE. These commands have the same
effect as the analogous commands for nonleaf nodes.

G90326

31

Section 3
Query Processing Algorithms

Under Phase [IA we have developed two alternative query processing algorithms:

¢ Term substitution aigorithm,
* Approximate query processing.

The two algorithms highlight different issues in the area of query processing against
heterogeneous databases. The term substitution algorithm is similar to algorithms
developed in the context of distributed homogeneous databases (e.g., [CERI83]. The
approximate query processing algorithm is based on work done by [BUDWS89]. which
addresses techniques for processing queries against categories which are not strictly
defined as part of the integrated schema of local database schemas managed by a
heterogeneous database management system (HDBMS).

The investigation of approximate query processing was prompted by the need to consider
issues associated with processing queries stated using standard data elements where there
is not a simple one-to-one mapping between SDEs and elements of a given integrated
schema. The term substitution algorithm is currently used with queries stated directly
against the integrated schema.

Distributed query processing requires at a minimum some approach to the following
issues:

1. Decomposition of a global query into locally executable queries,

2. Management of execution of the local queries including optimization and
transaction management,

3. Recomposition of the local query results into a final resuit.

At this phase in the project we have addressed issues 1 and 3;. we have not addressed the
problems in 2. The two algorithms we implemented under Phase [lIA will be presented and
discussed in the next subsection. The results of our investigations and the next step in
developing practical query processing algorithms for the heterogeneous environment will
be discussed in the conclusions of this subsection.

3.1 Term Substitution Algorithm

Our term substitution algorithm is based on an algorithm developed by [CHUN90], which
was developed for use in an HDBMS environment. That algorithm did not correctly address
the treatment of queries stated against generalization hierarchies such as the one shown in
Figure 3-1 below. The problem is that queries stated against such hierarchies must support
the recomposition of resulits using a operations such as union and outerjoin [DAYAS84].

G90326

32

Personnel

Coom >
G0326-2981

Flgure 3-1. Generalization Hierarchy in an ECR Schema

Noncommissioned Commigsioned

We modified this algorithm to perform unions of local query results as well as joins of local
query resuits to correctly recompose resuits of queries at the global level. Additional work
is required to adequately incorporate the use of outerjoin and other operations.

The term substitution algorithm currently in use is given below.
3.1.1 Term Substitution Strategy

1. Map the query to individual schemas using mapping rules which state
translations of integrated schema terms to local schema terms

2. If the query maps completely to more than one schema (the current version of
the aigorithm is written to support two schemas only), then UNION the resuits
of each local query execution

3. If the query does not map completely to either local schema but there are
global join conditions stated in the FROM clause of the global query, then
execute the partial queries and JOIN the results using the global join
conditions.

4. If the query maps completely to one schema but does not map completely to
the other schema, execute the query against the first individual schema only.

The mapping procedure used by the term substitution algorithm follow {CHUNS0]. The
mapping procedure translates a global query into local queries executable on different
databases. The local queries must be saved into temporary relations and recomposed into
a final result following a result query. The steps are presented in more detail below.

1. Assign target attributes from the global select clause and global aggregate
clause to the result query.

2. For each relation R in the query, substitute R with the local relations R(I) that
R maps to and associate a set of query attributes A(with R(), where A(D) is
the intersection of all attributes defined for the relation R() with the target
attributes from the global query.

G90326

33

3. Identify any global join terms in the query and add those terms to the WHERE
clause of the resuit query.

4. For each relation R(i), associate additional attributes with A(j). The additional
attributes are the global join terms, which are also attributes of R(D).

5. Create local queries by assigning all R({) of the local schema to the FROM
clause. Assign all attribute sets A7) of the R() to the SELECT clause. Assign all
local join terms to the WHERE clause. Execute each query and store the
resuits in a local relation L().
Once the local queries have been executed, the final result is composed following the term
substitution strategy outline above. This is the point where our algorithm differs from the
[CHUNS0] algorithm.
An exampie query decomposition is shown below in Figure 3-2. The case shown is one in
which the query maps compietely to each of two local schemas. The local schemas and
integrated global schema are shown in Figures 3-3, 34 and 3-5.
GLOBAL QUERY:
Select D_Item_No, D_MName
From E_Materiel_ltem
Where D_ltem_No > 500
LOCAL QUERY 1:
SELECT SC1_MATERIAL_ITEMITEM_NO,
SC1_MATERIAL_ITEM.MNAME
FROM SC1_MATERIAL _[TEM
WHERE (SCI_MATERIAL_ITEMITEM_NO > 500)
LOCAL QUERY 2:
SELECT SC2_MATERIAL.M_ID, SC2_MATERIAL MNAME
FROM SC2_MATERIAL
WHERE (SC2_MATERIAL.M_ID > 500)

Flgure 3-2. Sample Query Decomposition (continued on page 34)

G90326

FINAL RESULT QUERY:

SELECT SC1_MATERIAL_ITEM.ITEM_NO,
SCI_MATERIAL_[TEM.MNAME

FROM SC1_MATERIAL_ITEM

WHERE (SC1_MATERIAL_ITEMJITEM_NO > 500)

UNION

SELECT SC2_MATERIALM_DD, SC2_MATERIALMNAME

FROM SC2_MATERIAL

WHERE (SC2_MATERIAL.M_ID > 500)

Figure 3-2. Sample Query Decomposition (Concluded)

The mapping of each query is based on a set of mapping rules which state the relationships
between the local schemas and the global schemas. Currently those rules are stored in
local files. Eventually the rules should be stored in the IRDS repository along with the
schemas. The rules are given in Appendix A.

3.2 Approximate Query Processing

The approximate query processing algorithm is based on work done at the University of
Pennsyivania by (BUDW89]. They develop an algorithm for query processing that produces
a set of definite answers, a set of possible answers and a set of anomalous tuples for a
query. The determination of definite, possible or anomalous answers is based on a set of
rules which defines the query terms. For example, assume a query such as:

Select name, performance_rating
From hourly_employee

For this query, the algorithm would require a set of rules that defines hourty_employee in
terms of the schema elements. In this case, the term hourly_employee may be defined by
rules similar to the following:

SCl:secretary -> hourly_employee

SCl:.carpenter -> hourly_employee

SC2:noncommissioned -> hourly_employee

hourly_employee -> IS:Personnel

G90326

35

GLCl 68L6Y

I DwaYdS |vI07 ‘g 24nJiy

G90326

9rZ1-68L6D

uonepeideq

ri0] 150D

)¢

& DWaYIS U207 p-g 24nB)y

IS voytendoiddy

wel|
ej lvewe ndosy

—

u

1senbeyy
retsleyy

[euvosIey
e

ON~ Wwen Auj

wer ~Aolueaw

u

G90326

The rules describe 'is-a’ relationships between the term hourly_employee and the elements
of the schema. The basic idea behind the algorithm is to use the rules relevant to a
particular query to guide the process of constructing two different sets of
tuples—essentially all tuples that may be answers to the query (MAYBE) and all tuples that
are definiteiy answers to the query (DEFINITE). The MAYBE answers are tupies that occur
in relations named on the right-hand side of the rules. In this case, the space of all possible
hourly employees is defined by the tuples in IS:Personnel, SC1:Civilian and SC2:military. The
DEFINITE answers are defined by tuples that occur on the left-hand side of the rules, in this
case SCl:secretary, SCl.carpenter, and SC2: Non-<commissioned.

The basic ideas behind the algorithm can be given as follows:
1. Select rules relevant to a query.

2. Create a set of DEFINITE answers by computing an APPROXIMATE UNION of
schema terms on the left-hand side of the rules.

3. Create a set of MAYBE answers by computing the JOIN of all schema terms
named in the right-hand side of the relevant rules, RHS, and compute RHS
MINUS DEFINITE.

4. Improve the DEFINITE answers with additional information from the RHS
tables by joining tuples with identical key values.

5. Identify ANOMALOQUS tuples as tuples which are in the DEFINITE answers but
which are not in the MAYBE answers.

The algorithm is an effective approach to computing answers for queries about elements
that are not strictly part of the defined schema structure. In the example presented here, we
treated the term hourly_employee as a term that could be used to refer to a category of
individuals that is not explicitly defined in the database schemas. Hourly_employees are
defined to be subtypes of Civilian personnel that include secretaries and carpenters but not
engineers. To extend the problem to apply to both sample schemas we choose to treat a
subcategory of military personnel, non-commissioned, as hourly employees for sake of
developing the argument. In this situation, hourly_employees is a category that introduces
a cross classification of existing schema information. It is not present as an explicit category
in either schema. The advantage of the approximate query processing algorithm is that it
can compute the tuple that satisfies the definition of this cross classification. This is
important for distributed query processing because it would not always be necessary to
anticipate all possible cross classifications that some new user queries might require for
processing. It is difficult to anticipate all such categories and without some approach to
approximate query processing such queries cannot be satisfied.

G90326

39

We investigated the aigorithm as an approach to the problem of supporting queries
phrased using standard data elements. The scenario we envisioned is one satisfying the
following characteristics:

1. The standard data elements may have been developed independently of any
schemas for the databases that the SDEs describe.

2. The queries will be stated in terms of standard data elements but must be
translated to queries executable against existing database schemas.

3. Some data administrator has defined the standard data elements in terms of
the target schema elements (using rules similar to the ones presented above.)

4. The standard data elements, because they were developed independently of
existing schemas may not have a clean mapping to existing schema categories.
This may happen because the Prime-Word + Modifier construction may allow
the SDE developer to create categories for which instances exist in the
database, but for which there exists no isomorphic category. Personnel Hourly
employee is an example of such a case. The instances satisfying that
description exist in the databases but there is no explicit category that neatly
maps to the existing database schemas.

Given such a situation there are two alternatives:

* Redesign existing schemas so that they conform to the category distinctions
maintained by registered SDEs.

* Develop approaches to query processing that will allow queries phrased in
terms of SDEs to be executed against existing schemas.

The first of these alternatives, redesign existing schemas, has serious practical problems in
terms of cost for schema redesign and maintenance. The second alternative, developing
new approaches to query processing, has several benefits. It may provide adequate
support for querying existing databases through the alternative views provided by SDEs. In
addition, even if queries are phrased using only existing schema terms, similar situations
may arise in the distributed processing of queries against heterogeneous independent
databases, that is, there must be some kind of support for approximate query processing
whether or not the SDE view of data is maintained.

The approximate algorithm we investigated for Phase MIA shows that:
* Approximate query processing is feasible.

* Approximate query processing is applicable to the problem of supporting SDE
queries against existing schemas.

G90326

310

There are limitations to the existing algorithm that we plan to address in Phase [IIB. The
existing algorithm is well defined for queries within individualtype hierarchies. That means
that all rules used to answer a given query must reference the same keys in relations being
manipulated. The applicability of the algorithm is not as clear when queries extend beyond
single type hierarchies. That means any queries involving joins of individuals from
IS:Personnel of any of the subtypes of IS: Personnel with individuals from IS: Installation or
other parts of the schema cannot be appropriately satisfied. We are planning to investigate
the applicability of a newly defined relational algebra that allows for approximate answers
in the same sense as [BUDW89] but which may have broader applicability. It is clear from
our work in Phase [IIA that some approach to approximate query processing is required
independently of any approach requiring the use of SDEs to formulate queries. As a side
benefit, any approach to approximate query processing that is generally applicable should
work as well to support processing of SDE queries.

G90326

2 g

4-1

Section 4

Distributed Query Processing Platform

Phase IIA addressed the issue of what distributed query processing platform shouid be
used for the ANSWER tool set. The configuration for using ANSWER tools within a
distributed query processing environment is shown in Figure 4-1.

ANSWER

System A

User Interface

Gateway

—>

Integrated | Individual 3

Schema Schemas 3
[]
o -

Distributed Query | <4—
Processing Data
Gateway
v —

Data
System B - G0326-2982

Figure 4-1. ANSWER/Distributed Query Processing

AMSWER tools reside on a central workstation running client applications that access the
data servers running on possible other platforms. For Phase IIIB, the distributed query
processing will be the AIRMICS testbed running SQL*NET. ANSWER will supply the end user
tools. data administration tools and query processing algorithms that will enable a system
to access data through the integrated and individual schema views maintained by ANSWER.

For example, ANSWER may be used as an intermediary to finance, supply and accounting
systems to manage the exchange of information about contracts, vendors, inventory, and
funds. In particular, ANSWER could be used as an intermediary to manage requests for data
from Army systems such as SAACONS, FESS and STANFINS.

G90326

51

Section 5
PHASE IIIB and PHASE IV Plans

Phase [IA addressed the issues associated with end user query formulation tools and initial
algorithms for distributed query decomposition and execution. Phase HIB will look at
enhanced algorithms for query decomposition, investigating the applicability of an
extended relational algebra to use in formulating distributed heterogeneous queries and
will investigate associated integrity and security issues. The tasks for Phase [IB and Phase
IV are as follows.

5.1 Phase IIIB
October 1, 1990 to February 28, 1991

This phase is a six-month phase, which will address issues associated with query
decomposition in a heterogeneous environment.

5.1.1 Task IlIB.1—{mplement Browser/UIMS Enhancements

Investigate the feasibility of porting the ANSWER tool set to an appropriate hardware
platform for execution with the identified distributed query processing system.

5.1.2 Task IIB.2—Query Formulation Implementation

Expand the query decomposition and query processing algorithms implemented in Phase
MA. This will include implementation of an ANSWER/RDA interface. The ANSWER query
formulator produces SQL expressions, which will be submitted using an RDA-like protocol
to DBMSs for execution in a distributed processing system.

5.1.3 Task IIIB.3—Al Techniques

We will investigate approaches to treatment of inconsistent data and active database issues
that are required in the Army environment. We will implement selected approaches as part
of the query processing algorithms.

5.1.4 Task IlIB.4—Security Study

We will develop an overall approach to security issues within ANSWER and make
recommendations for exploration of key concepts. We will also explore issues associated
with fault tolerance of the ANSWER system and the RDA query processing environment.
Finally we will discuss the relationship of ANSWER to the ISM (Installation Support
Modules).

G90326

52

3.1.5 Task IlIB.5—Demonstration and Training

The ANSWER tools will be demonstrated against a set of sample relational schemas
representing the Installation-Level Acquisition Products and Services (ILAPS) environment
based on information obtained from PM{SM. The ANSWER/RDA interface deveioped in
Phase [IB.2 and the implementation of distributed query processing developed in Phase
[IB.6 will be demonstrated along with revisions to the query processing algorithms revised
under Phase [IB.3. We will provide training in the use of the software to a group selected by
AIRMICS.

5.1.6 Phase IlIB.6—Distributed Query Processing

We will design and do a limited implementation of local RDA processors for two target
systems and design and implement local system query translators.

5.1.7 Phase IIIB Deliverables
¢ Software prototype for query formulation (RDA/ANSWER integration).

* Design and implementation of integration of browser/UIMS with target
demonstration platform.

* Design and implementation of query formulation back end facility (local
translator design and development).

* Design integration of ANSWER tool set with target distributed environment
(RDA/local system interface design and implementation).

* Oral presentation, documentation, training and demonstration (includes final

report on ANSWER/ISM relationships, fault tolerance, security, and
ANSWER/RDA architecture design and implementation).

5.2 Phase IV

Duration: March 1, 1991 - August 30, 1991

3.2.1 Task IV.]1—Distributed Query Processing

This task will complete the integration of ANSWER tools with a distributed query
processing facility. The distributed query processing facility will be the AIRMICS test-bed.
The following subtasks will be performed in Phase IV.

Subtask IV.1.1—Scaling Tests: Develop new tests to explore the scalability of the solution
implemented in Phase [IB. These tests will include a larger set of query types, larger

schemas. and more interaction between systems requiring some transaction session
management and error handling. Execute tests on AIRMICS test-bed.

G90326

53

Subtask IV.1.2—Develop Local Database Language Translator Extensions: Design
and implement portions of the RDA transaction processing application context as a well as
new additions to the local database query language translators.

Subtask IV.1.3—Error Handling: Design and develop selected error handling facilities.

Subtask IV.1.4—Distributed System Manual: Write a manual on the steps necessary to
add a new system to the RDA-based ANSWER distributed query processing network.

Subtask IV.1.5—Reports: Written monthly reports, final report, and software
documentation.

52.2 Task IV.2—Demonstration and Training

Demonstrate the software developed in Phase [V and conduct training in the installation
maintenance and use of the ANSWER system.

5.2.3 Phase IV Deliverables

¢ ANSWER tool set integrated with a distributed query processor running at an
Army location on Army hardware .

¢ Documentation of software implemented in Phase IV.
¢ interim and final demonstrations.

¢ One to two demonstrations of ANSWER software to target groups identified by
AIRMICS and one training session on the installation of Phase IV software.

e Monthly reports.

¢ Final report.

G90326

61

' Section 6
ANSWER Implementation

- The following is a list of major files comprising the query formulator and query processing
algorithms implemented and delivered for Phase [lIA.

6.1 Query Processor
The term decompasition query processor comprises the following major files:

e query_form.pc—This file contains the major functions that process dynamic
SQL statements. The dynamic SQL statements are created for execution
against individual databases after query mapping. The major functions
included in this file are:

- UserLogin—Manages login to Oracle.

- ExecuteSQL—Contains the dynamic SQL statements required' to manage
execution of an arbitrary SQL command in Oracle.

- Warning—Traps Oracle SQL warning messages and returns them.

* query2.pc—This file contains the main query decomposition and
recomposition functions. Main functions in this file make use of functions from
the other files. The major functions here include:

- SQLQuery2—the main driver function that calls the parsing, mapping and
SQL execution manager functions.

- SQLParser—The main driver for parsing SQL queries into select, from and
where clauses so that each clause may be mapped to individual schemas

- Mapping—The main driver for mapping SQL queries from integrated
schema expressions to individual schema expressions.

* parse.c—This file contains the major functions for parsing SQL queries
including:

- SelectClause— Parses the select clause from an SQL input query.
- FromClause—Parses the from clause in an SQL input query.
- WhereClause—Parses the where clause in an SQL query.

* mapclauses.c—This file contains functions pertaining to the mapping of

queries from integrated schema terms to individual schema terms. It includes
the following major functions:

G90326

6-2

* MapSelectClause—Maps the Select clause. Currently the Select clause may
contain no aggregate functions. The function returns a list of attributes in the
local schema. Sets global flag CompleteSelect to 1 if does NOT map
completely.

* MapFromClause—Maps the From clause. A From clause may include more
than one relation name. The mapped SQL statement for a local query is
created. The function returns 1 if the query does NOT completely map to the
current individual schema.

* MapWhereClause—Maps a Where clause. A Where clause may contain
boolean tests only on the attributes of the Select clause. No Select statements
~mbedded in the Where clause may be mapped. The function returns:

0 if completely maps

1 if does not completely map

2 if there is no Where clause at all

3 if doesn't map any (Where removed).

* CheckForeignKey—This function includes any foreign key conditions which
are required to effectively map from an integrated schema expression to a
local schema expression. The foreign key conditions are embedded in the
mapping rules. The function returns the string of foreign key conditions to be
added to the Where clause. If there are none, the function returns NULL.

¢ CheckGlobalForeignKey—This function adds any global join conditions that

are required to effectively map from an integrated schema expression to a final

recomposed schema. In cases where the query results of local schemas must

. be joined together to obtain final results global foreign keys are required. The

global foreign key information is embedded in the mapping rules. The function

returns the string of foreign key conditions to be added to the final Where
clause. If there are none, the function returns NULL.

* readrules.c—This file contains functions to read mapping rules required for
mapping integrated schema queries to individual schema queries. The
following functions are defined in this file: ReadRules, ReadAttributeRules,
ReadRelationRules, ReadJoinRules. The rules are currently stored in a file.

6.1.1 Limitations of Current QF Term Substitution Implementation
The current query formulator implementation has the following limitations:

1. Only conjunctive queries can be processed. This means that no queries with
embedded select statements may be processed. In general queries may be
transformed to conjunctive form. Additional functions would need to be
written to either transform a query before processing or to extend the
functionality of the existing algorithms to appropriately treat nonconjunctive
queries.

- (90326

6-3

* 2. All query communication is currently done by using files. The communication
should be modified so that files are not used as intermediaries to transmit the
query or query results.

6.2 Approximate Query Processing Algorithm

The approximate query processing algorithm impiements a version of the Penn algorithm
[BUDW89]. The approximate query processing implementation makes use of some facilities
already discussed for communicating with Oracle and managing query execution and resuit
return. This subsection will document the central functions used by approximate query
processing to implement the algorithm. The main files are:

¢ structures.cl—Defines the major data structures used by the approximate
query processing algorithm. Some of the functions used to execute
approximate query processing are defined here as well. The functions and
structures include:

- Rule=—A rule has a header and a left-hand side and a right-hand side. The
header contains prime terms or IS terms or combination of these term; (the
only supported operator includes JOIN) The left-hand side as well as right-
hand side contain SDE terms or IS attributes. Some of these attributes may
be identifiers in a relation. (Each side of a rule should have at least one
identifier). When the header has prime terms on the right-hand side, then
the left-hand side can only contain SDE terms. Similarly when the header
contains IS terms, the right-hand side and the left-hand side have only
integrated schema attributes. The rules may support 'Don't care’' type of
attributes, which is a placeholder for an arbitrary number of attributes. All
are indexed by SDE or IS attributes. (Hashed by the identifier)

- qpquery—Defines the query information used by the approximate query
processing algorithm. This includes (1) information about standard data
elements and prime terms used in the query, (2) a query result term, which
represents all the attributes that must be referenced in the final result of
query evaluation, and (3) the specific rules that are required to map the
input query to queries against iocal databases.

- QP—Structure that stores rules that map from integrated schema terms to
local schema terms and rules that map prime terms and standard data
- _elements to local schema terms.

- start-qp—This function manages execution of the approximate query
processing algorithm. It coordinates the identification of relevant rules for a
given query, the construction of a query-result term, separation of the
terms and the terms and the join processing required for LHS terms, and
the union processing required for integrated schema terms appearing in
) rules as RHS terms.

G90326

- definite-answers—This function computes the set of tuples which qualify
as definition answers to a query (essentially the join of LHS terms in the
relevant rules with additional information supplied from the possible-
answers).

- possible-answers—This function computes the set of identifiers of tuples
which qualify as possible answers to a query (essentially the approximate-
union of RHS terms).

- anomalles—This function computes the set of tuples which occur as the
result of joining all the terms of relevant rules but which do not occur in the
set of possible answers.

e trw.cl—This file contains functions for requesting creation and dropping of
tables within ORACLE and functions necessary to read tables into the LISP
work area from Oracle relations and to write tables out to Oracle as relations.
This is necessary to execute some of the approximate query processing
functions directly in ORACLE as SQL queries. This file also contains functions
for creating a window to present the results of query execution in a scrollable
window.

e penn-union.cl—This file contains functions necessary to perform the
approximate union and promotion operations.

» qparser.cl—This file contains functions that parse the query received as input
from the query formulator into internal structures required for the
approximate union algorithm

6.2.1 Limitation of Approximate Query Processing

The current algorithm is well defined only for cases where all relations being manipplated
by the algorithm share the same key attribute. This limits the applicability of the algorithm.

6.3 Query Formulator

The query formulator provides assistance in the creation and editing of SQL queries using
text or graphic input. The major query formulator functions are in the following files:

* corec—This file contains functions that implement the main functions of the
query formulator such as editing functions (e.g., delete-item, add-item), and
buffer management functions.

o sqlparser.cl—This file contains functions that parse SQL text supplied as input
to the query formulator. The parsed queries are stored in internal data -
structures used by the query formuiator to support editing functions. The
parser is designed to tolerate ill-formed SQL and to supply place-hoiders for -

G90326

6-5

portions of a query that cannot be parsed as correct SQL. This aliows the user
to create partially formed SQL queries and still make effective use of the SQL
editing functions.

sqlprinter.cl—This file provides functions for managing the printing of
complete or partial SQL statements in the query formulator editing windows.
The SQL statements may be user-typed, insertions from a previously saved
query, or portions of a query developed graphically in the condition
expression editor. The sqlprinter functions must correctly format the SQL
statements for printing within the editing window.

modes.cl—This file contains functions that define the specific editing modes
supported by the query formulator. The modes are based on the items being
edited and include such things as: condition, expression, select clause,
Boolean operator, and others. The modes are used to manage the editing
actions available for the current item.

structs.cl—This file contains functions that define the major data structures
used by the query formulator. The structures defined include; query-buffer,
select-clause, condition clauses, leaf and non-leaf nodes in a condition tree,
operator and others.

operators.cl—This file contains functions that define the specific SQL
operators available to be used as part of an SQL query within the condition
expression editor. This set of operators may be extended in the future to
expand the coverage of editable statements available in the SQL Where clause.

graph.cl—This file contains functions that define the query formulator main
window, the commands buttons global to the query formulator and the pop-
up windows used with the left-hand window in the query formulator.

qwindow.cl—This file contains functions that define the window management
functions for the condition expression editor (the right window) in the query
formulator.

term.cl—This file contains window management functions for the term
window.

script.cl—This file contains the functions that define the state transition
representation of the query formulator used by the ANSWER user interface

manager.

G90326

[AR 259]
[CERI 83]

[BUDW 89]

[CHUN 90]

[DAYA 84]

Section 7
References

Army Regulation 259, Army Data Management and Standards Program, 1989.

S. Ceri, G. Pelagatti, “Correctness of Query Execution Strategies in Distributed
Databases,” ACM Transactions on Database Systems, Vol. 8, No. 4, December
1983, pp. 577-607.

O.P. Buneman, S.B. Davidson, A. Walters, “Federated Approximations for
Heterogeneous Databases,” [EEE Technical Committee on Office Automation
Neuwsletter, Vol. 3, No. 2, August 1989, pp. 27-34.

C-W. Chung, “Dataplex: An Access to Heterogeneous Distributed Databases.”
Communications of the ACM, Vol. 33, No. 1, 1990, pp. 70-80.

U. Dayal, H-Y. Hwang, “View Defimtion and Generalization for Database
Integration in a Multidatabase System,” /EEE Transactions on Software
Engineering, Vol. SE-10, No. 6, Novernber 1984, pp. 628-645.

G90326

