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FOREWORD

The Eighth Army Conference on Applied Mathematics and Computing was held on
19-22 June 1990, at Cornell University, Ithaca, New York. Four years earlier, the fourth in
this series of conferences was also held at Cornell University. At that time the
Mathematical Sciences Institute was established. At each of these meetings, there were
several invited speakers that addressed vital research areas. At the 1990 conference, invited
talks covered topics such as new ideas about turbulence, nonlinear dynamical systems,
symbolic methods, domain decomposition methods for partial differential equations, and
variational methods for free boundary problems with discontinuities and interfaces. Special
Sessions were organized on wavelet transforms for image analysis, geometric modeling,
symbolic methods, and adaptive methods for high performance architectures. In the eleven
Technical Sessions and one Poster Session, more than sixty papers were contributed. An
informal discussion session was held to discuss research issues in geometric modeling for
vulnerability analysis.

The subcommittee of the Army Mathematics Steering Committee that oversees these
conferences was very pleased with the high scientific quality of the contributed papers.
Many of these papers provided the attendees a chance to see scientific developments taking
place in the Army laboratories. Through these meetings techniques developed at one
installation are brought to the attention of scientists at other places, thereby reducing
duplication of effort. Another important phase of these meetings is presenting the members
of the audience an opportunity to hear nationally known scientists discuss recent
developments in their own field. This year the invited speakers, together with the titles of
their talks, are listed below.

SPEAKER AND AFFILIATION TITLE OF ADDRESS

Professor T. Brooke Benjamin New Ideas about the Origins
University of Oxford of Turbulence
Oxford, England

Professor Ivar Ekeland Variational Methods and
University of Paris IX Ceremade Dynamical Systems
Paris, France

Professor James H. Bramble On the Analysis of Domain
Cornell University Decomposition Methods for
Ithaca, New York Elliptic Partial Differential

Equations

Professor Sanjoy Mitter Variational Problems with
Massachusetts Institute of Technology Free Discontinuities and
Cambridge, Massachusetts Nonlinear Diffusions
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SPEAKER AND AILIATIO (cont) TITLE OF ADDRIS j

Professor Bruno Buchberger Symbolic Computation:
Johannes Kepler University Theory and Practice
Linz, Austria

Professor George R. Sell Approximation Dynamics for
University of Minnesota the Navier-Stokes Equations
Minneapolis, Minnesota

The benefits derived from these conferences depend a great deal on the host's
Chairman on Local Arrangements. The attendees at this meeting were fortunate to have
Professor Anil Nerode, Director of Mathematical Sciences Institute, serving in this capacity.
He, together with members of his capable staff, provided all those amenities such as coffee,
projection equipment, travel information, etc., needed for an enjoyable and profitable
symposium.
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EIGHTH ARMY CONFERENCE ON APPLIED MATHEMATICS AND COMPUTING

Cornell University, Ithaca, New York

19-22 June 1990

AGENDA

Tuesday, 19 June 1990
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0830 - 0900 Opening Remarks - Warren Hall, Room 231

0900 - 1000 General Session I -

Chairperson: Benjamin E. Cummings, U.S. Army Human Engineering
Laboratory, Aberdeen Proving Ground, Maryland

NEW IDEAS ABOUT THE ORIGINS OF TURBULENCE
T. Brooke Benjamin, University of Oxford, Oxford, England

1000 - 1030 Break

1030 - 1210 Technical Session 1 - Dynamical Systems - Warren Hall, Room 231

Chairperson: Norman Coleman, U.S. Army Armament R&D Center,
Picatinny Arsenal, New Jersey

LOCAL DISSIPATIVITY AND ATTRACTORS FOR THE KURAMOTO -
SIVASHINSKY EQUATION IN 20

Mario Taboada, Cornell University, Ithaca, New York, and
George Sell, University of Minnesota, Minneapolis, MN

NEW BIFURCATION PROCESSES FOR NONLINEAR PERIODICALLY FORCED
EVOLUTION EQUATIONS

M. S. Berger, University of Massachusetts, Amherst, MA

A MATHEMATICAL CARTOON FOR THE DYNAMICS OF FINE STRUCTURE
Philip Holmes, Cornell University, Ithaca, New York

THE DYNAMICS OF THE CHAOTIC MIXING OF RAYLEIGH-TAYLOR UNSTABLE
INTERFACES

Qiang Zhang, State University of New York at Stony Brook,
New York
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Terence M. Cronin, U.S. Arny Signal Warfare Laboratory,
Warrenton, Virginia

OPTIMAL DIGITAL REDESIGN OF CONTINUOUS-TIME SYSTEMS
L. S. Shieh and Jian L. Zhang, University of Houston,
Houston, Texas, and Norman Coleman, U.S. Army Armament R&D
Center, Picatinny Arsenal, New Jersey

EFFECTIVENESS OF A CLASS OF SMART MUNITIONS: A STOCHASTIC MODEL

B. D. Sivazlian, University of Florida, Gainesville, Florida

1530 - 1600 Break

1600 - 1700 Technical Session 5 - Theoretical and Computational Physics -
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Watervliet, New York
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Dov Bai, Cornell University, Ithaca, New York
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ON SOLVING CAUCHY SINGULAR INTEGRAL EQUATIONS BY USING GENERAL
QUADRATURE-COLLOCATION NODES

Ram P. Srivastav and Fenggang Zhang, State University of New
York at Stony Brnok, New York

ON A HYPERBOLIC TANGENT QUADRATURE RULE FOR SOLVING SINGULAR
INTEGRAL EQUATIONS WITH HADAMARD FINITE PART INTEGRALS

Fenggang Zhang, State University of New York at Stony Brook,
New York

1600 - 1700 Poster Session - The three papers for the Poster Session are
listed below - Warren Hall, Room 101

DOMAIN DECOMPOSITION METHOD FOR NONSELF ADJOINT OPERATORS
Zbigniew Leyk, Cornell University, Ithaca, New York

INELASTIC MICROSTRUCTURE IN RAPID GRANULAR FLOWS OF SMOOTH
DISKS

Michel Louge, Cornell University, Ithaca, New York and
Mark A. Hopkins, Dartmouth College, Hanover, New Hampshire

COMPUTATION OF NONEQUILIBRIUM ELECTRON SWARM PARAMETERS IN AIR
William T. Wyatt and C. S. Kenyon, U.S. Army Harry Diamond
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0800 - 1600 Registration - Warren Hall, Room 231

0830 - 1030 Special Session 1 - Geometric Modeling - Warren Hall, Room 231

Chairperson: Paul Stay, U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland
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0830 - 1030 Technical Session 7 - Linear and Nonlinear Waves - Warren Hall,
Room 245

Chairperson: A. Tessler, U.S. Army Materials Technology
Laboratory, Watertown, Massachusetts

ELASTIC WAVES AND TOTAL REFLECTIONS IN ANISOTROPIC MEDIA
William W. Hager and Rouben Rostamian, University of
Maryland, Baltimore, Maryland

VARIOUS SCENARIOS OF DETONATION INITIATION
A. K. Kapila, Rensselaer Polytechnic Institute, Troy,
New York

FRONT TRACKING FOR THREE DIMENSIONS
Y. Deng, J. Glimm, Y. Wang, and Q. Zhang, State University
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Bruce Kellogg, University of Maryland, College Park, MD
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Abstract

We study the global existence, regularity and boundedness of solutions of the two-dimensional periodic
Kuramoto-Sivashinsky equation with a thin periodicity rectangle !Q = [0,2irlx[0,2xe]. The main result is
that for a large set of initial conditions, the solution exists and is uniformly bounded. This implies the
existence of a local compact attractor with a basin of attraction which expands to the whole space as e -- 0.
We state various theorems and give only brief indications of the proofs. A full treatment will be published
elsewhere.

1. Introduction

Our goal in this paper is to present some results on the global asymptotic

behavior of the Kuramoto-Sivashinsky (K-S) equation
(1.1)

2 1 2u+VAu+AU+-IVuI =0,
t  u2

in spatial dimension two, where u = u (y,t) = u (Y ,Y2,t) satisfies the periodic boundary

condition
(1.2) u(y1 + 27t, Y2,t) = u(y1 ,y2 + 27m,t) = u(y 1,Y2,t) for all y in R2 and t > 0

and the periodic initial condition

(1.3) u(y,O) = u0(y).

Here 0 < E:5 1 is a small parameter, so that the basic periodicity cell [0,2t) x [0,27tE] =

QE is a thin domain.The dissipativity of the general two (and higher) dimensional

problem has been open for some time, the essential difficulty being the lack of a proof

of the existence of an absorbing set. In fact, if such a set exists, then there exists a global

attractor, and one can prove very precise regularity results (cf.[NST2], [Tel).

The approach we shall adopt is based on the intuitive idea that (1.1)-(1.3) should

be close to one-dimensional, and is close to the methods introduced by [HRI,21 and

[RS]. The odd-periodic case was studied by [NSTI,21,[FNST.The same authors treat



[NST1I a Neumann type of problem without symmetry, and the rigid Dirichlet problem
is studied by [Ta], again without any symmetry assumptions.The general periodic one-
dimensional problem has only recently been proved to be dissipative [1].

We start by changing (1.1) into a system by means of the hodograph
transformation

DyiU = Ui ,i=1,2 and U = (U1,U 2).

Equality of the mixed partials requires the condition curl U = 0. Notice also that the
average of U over the periodicity cell is zero. After this transformation we obtain
(1.4)

Ut +VA2U+AU+(U. 7 )U = 0.

Functional Setting
A point in OF = [0,2n] x [0, 27ne] will be denoted by y = (Y1,y2). Let us define

x = (x1,x 2) by x1 = y, and x2 = E- ly 2.This maps CIE onto the square Q2 = [0 ,2X1 2.

Define also the rescaled operators

V =(D , -'D ) A =D 2 +E 2 D2
c X1  X2  C X1  X2

Note that these become singular when e is small. Finally, we define a new function u
u(x) by u(x) = U(y), where x and y are related as above. In the sequel, we write (.,.)
and I. I for the standard inner product and norm in L2(Q2).

Given ue L2(Q2) we define the projection operator M as follows:
2n

v = Mu, where v = v(x1 ) = u(x)dx2 and w=(I-M)u.
2n0

This averaging operation maps L2(Q2) onto the closed subspace formed by functions
of x, alone and it is an orthogonal projection.The complementary projection I - M
defines w = (I - M)u. Notice that Mw = 0, so that w has zero average with respect to x2.
Also, M and I - M commute with the Laplacian on its domain , and they preserve
periodicity. After rescaling, Eq. (1.4) becomes

u+vA 2u+A u +(u.V )u =0£ £ £

u = u(x,t) 27t periodic in x1 , x2 ,

u(xO) = uo(x), also 2n periodic.
(1.5)
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Without loss of generality, we shall set v = 1.

Let us now apply the projections M and I - M to (1.5). This gives

(1.6)

vt + A2 v+A v+M[(u.V )u] =0
S £

w +A 2 w+Aw+(I-M)[(u.V )u]=0.t C C C

We wish to associate with (1.6) a simpler problem which, for small e, will turn out to

govern to a large extent the dynamics of the system. We thus define the reduced problem

to be the one obtained from (1.6) by setting (v,w) = (,0) in (1.6) and taking as initial
condition the projection of u0 onto the v-space.This gives

(1.7)

Vt+A 2 v + AV + (v.V)v =0

(x,O) = v0 = Mu0 .

Let us write vi, i = 1,2 for the components of V. Then these satisfy

vz +A 2 - +A + _VDv =O0

v2 ~ +A 2 - +A + DV=0

2.t + V2 + 2 1i DxV2 =  O .

Notice that the first component satisfies the one-dimensional K-S equation (the
dependence of the equations on e is illusory), while the second one satisfies a linear

equation. By the results of [I], [NST2], if the initial condition uor Hk, then there exists

an absorbing set in HS for 0 -< s _< k. Moreover, the same property holds, even for

dimensions 2 and 3 , as soon as a solution is uniformly bounded in time in L2.
The above dissipativity result for the ID problem, together with general theorems

on attractors of asymptotically smooth nonlinear semigroups [Hal imply the existence of

a global attractor of finite Hausdorff and fractal dimensions [r], [NST2].

The evolutionary equation

In what follows, we will always assume that the initial condition has zero

average over the periodicity cell; it is then easy to prove that the solutions have the same

property for all times for which they exist. Let us define the unbounded linear operator

3



AC by A~u = AE2 u on the closed subspace X of L2(Q2) consisting of functions with

zero average and whose (e-rescaled) curl is zero. The operator defined above is self-

adjoint, has a dense domain and, when restricted to the subspace of periodic functions

with zero average, is positive definite. It is also well-known that its resolvent is compact.

These properties imply that the fractional powers of A, are well-defined. In particular,

one has

A 2 
-- A ,and IA4uI2 = IV ul2 .

£ E C C

We will also introduce rescaled versions of the classical bilinear and trilinear forms

associated with the nonlinear term in our equation ([Te I , [Li] ). We thus consider

B (u,v) = (u. V ) v , and b (u,v,w) =( B (u,v), w)

The trilinear form satisfies the following inequality, where C is independent of E:

(1.8)
1 1 1 1 1 1

lb(u,v, w) 1 : C lul IA4 ul IA 4vl IwI 2A 4wl2

In particular, when u = v this gives
(1.9)

1 1 3 1 1 1

2 4 2 24 2
1 b (u,u, w) I< Cu IA ul 2 IwI IA w I

S £ £

With the above definitions, equation (1.5) can be written in evolutionary form as

follows

u' + A u - A 2u + B (u,u)= 0

and the projections v and w satisfy the system

(1.10)

v'+Av -A 7v + M B (u,u) = 0.
£ £ £

w'+ A w- A 2w + (I - M)B (u,u) = 0.

4



2. Regularity results for a thin domain

We now turn to the problem of global existence and regularity of solutions of the

K-S equation on a thin drnmain (local existence and uniqueness are a consequence of

classical theorems for sectorial evolutionaiy equations [PI). Our strategy is to prove

existence and regularity for solutions with initial conditions in a large set, over intervals

whose length is independent of the initial condition chosen in this set. This enables us to

patch up local solutions and thus construct a global solution. In order to do this we shall

need some results on the ID equation, as well as on the reduced 2D equations.

The dynamics of the reduced 2D problem

We recall the reduced 2D Kuramoto-Sivashinsky equations

(2.1)

v1.t +A 2 V +A v + vD v=0

v + A 2 v+A ~ ~
I.t £2 C 2 1 X1 20

We observe that (2.1) is independent of F and V, , V2 are independent of x2.

Notice that V, satisfies the ID K-S equation. In order to study the dynamics of the

system, we first solve the equation for V1 . We note that the absorbing property holds for

V1 in L2[0,2it]. Also, since the E-curl of V is zero, V2 is also independent of xj, hence

this function depends only on time. It then follows from the equation satisfied by V2 that

it must be constant . However, its average is zero, hence V2 is identically zero.

Therefore, the reduced 2D K-S equation has a global attractor, namely Ax{0).

Growth Estimates for the reduced equation

Let us recall some results regarding the one-dimensional K-S equation

(2.2)

ut +A 2 u +Au+ uu =0.

We know ([I, [NSTI,21) that (2.2) has a global attractor A in X, and that there exist

constants Po and p, such that

lim sup IS(t)uo12 < P2

lim sup LA 4 S(t)u 01 2 < 2,
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where S(t) is the solution semigroup of (2.2). Moreover, there exist absorbing balls of

radii 2 Po and 2 p, in X and X1/4 = D(A1/4). The next results are of a technical nature,

and make more precise the above absorbing properties.

Lemma 2.1

Consider Eq. (2.2) in ID with a periodic boundary condition and initial condition.

Then there exist absolute positive constants y and L, and a function D, real analytic in lu0I,

such that the solution semigroup satisfies the estimate

IA1/4S(t)u012 < e- 2ft D + L for t > 0.

This result is an easy consequence of the dissipativity estimates for (2.2)

[NST1,21.

Lemma 2.2

Given k such that 0 < k < 1, there exist absolute positiv constants bi, i =1,2,

such that for all u0E X1/4 one has

IAI/ 4S(t)uo12 5 L + k IA1/4u0 12 for t _ To, where L is a constant and

To =bjexp(b 21A/ 4uo14).

Lemma 2.3
Assume that B1 > L, with L as above. Then there exists a K0 > 1 such that for

all '1 such that 0 5 r < 1 and for all u0 e D(A1/4) satisfying L < IA1 /4Uo12 1 B1
2 the

following holds for t _> 0:

IA1/4S(t)Uo12 < Ko IA1 4u0 12 1* - 2 where rT* -2 = exp (al exp (a2BI 4rl- 4)

and ai,a 2 are constants.

The proofs of these results are very similar to those in [RS].

The growth condition "G"
We will often consider functions Tr = 71(E) for which T" -1 blows up at a certain

sufficiently slow" rate as e. 0+. Instead of giving a list of ,he requirements on TI, we

note that a function that satisfies these growth conditions is, for example,

_.1

71(E) = {A + B log log log log(C e- 1) } 4 for appropriate constants A,B,C.

Our first result is a lower bound on the blow-up time of solutions. Let us define, for a
given initial condition uo, the blow-up time in D(A."/4 ):

6



4

T* =T*(u0)=sup ( t: supo <<IA4u(s)I < 00.

Then, by a fairly crude estimate, one has

K
T* 

2

IA4u o 12

where K is a constant, independent of the initial conditions. As an easy consequence we

have :

Lemma 2.4

Let R0 and N > 1 be given. Then, for any uo e D(A'/ 4) such that IA1/4U0
12 < R0

the following holds:
I

IA 4S(t)u0 2 NRo for 0 < t< -15 K where K is a constant, independent of u0.- - - N "R0

For simplicity, we shall henceforth assume that K = 1.

In the following Lemma, we give a short-time result which will be essential in

the proof of the main global existence theorem.

Lemma 2.5

Let Bo > 0 , CO > 0 be given, and consider a function TI satisfying the growth
hypothesis (G) indicated above. Then there exist co , 0 < co <1, B1 > BO , C1 > CO and

TI= TI(e) > 0 such that the following hold for all e such that 0 < E < F-:

1 1

if I A. v0I2<BO 71 and IA. w012 : C;c r; 71 hen
1 1

4 2 2.2 adiA~woT)2 < 2~ _r-2
IfI

IA Ev(T1)I
2 < B I 1- and IA E (T1)I 2  CIE "2

The quantities Eo, B1, C1, depend on Bo, Co, but not on £, and TI(E) -+ 0; s -- O+.

The proof follows by taking the inner product of equations (1.6) for v and w %ith A1/ 2v

and A1/2w, respectively. The growth rate ofti plays a particularly important role in the

estimates.

As a direct consequence of Lemma 2.5 we have the following result:

Lemma 2.6

Let B0 > 0 and Co > 0 be given, and let 1 satisfy hypothesis (G). Then there
exist Eo, O< o<l, B1 > B0 , C1> Co and T1 > 0 such that the following holds for all e

satisfying 0 < E < o:

7



- I I a

42 22 4 2 5CIf IA V I2  Bo i2 and JA 4w I _ 11V then
£0 0 F

1 1

4  
1)12 B2  2 and jA4 w(T 1)12 < C E.

Lemma 2.7
Fix B1 and C1 and let uo = (v0,w0) be chosen such that

1 1

Let Ko0> 1 be given by Lemmas 2.2 and 2.3 with, say, k = 1/8 and set N -4Ko , and
define To =T0(r) = bI exp (b2 B,4"y- 4) so that one has

1 1

4- 2 1 4-2IA V(01 <L+T-IA Vol , t >- T O .

Next, define tN by

4 2 2
TN =sup I z>O: A Eu(t)I < ND 4 *L-2 1]- 2 for 0 5 t < }

where D4
2 = B1

2 + C12.
Then there exists eo, 0 < c < 1, such that for all e satisfying 0 < £ < co the

following hold

TO< cN

1

IA4 2 v(T)2 2.B 2

IA4 w(To)12 < C,12 e.
E 0 1

The estimate for w is straightforward, while the estimate for v relies heavily on a

comparison between v and the corresponding solution of the reduced problem.
The existence and ultimate boundedness of solutions are now an easy

consequence of this Lemma.
Theorem 2.8

Consider the Kuramoto-Sivashinsky equation with periodic boundary conditions
given by the thin periodicity cell [0,2ntjx[0,2ire] and a periodic initial condition.Then

8



there exists E0. 0 < go < 1 and a constant B o and on this range there are real-valued

functions R(E) and K(e) such that R(e) > 0, K(e) ? 1 and R(e) -,%- as e - 0 + and such

that for all Uor D(A14) such that U0 11/45 R(e) one has U(t)eD(A114)for all t 0 and

IU(t)l 1 < K(e) R(e)
4

limsup IU(t)11 < B0
4

for all t? 0.

This result follows by repeatedly applying Lemma 2.8. Notice that we are stating

the result in terms of the original function U.

Existence of a local attractor

We recall that a set A is a local attractor for a nonlinear semigroup { S(t) } if it is
compact, invariant, and there exists a bounded neighborhood B of A such that A attracts

B. Let us also recall the following result:

Lemma 2.10 ([Ha], Lemma 3.2.1)

Let (S(t), t >- 0) be an asymptotically smooth semigroup in a Banach space X
and let B be a nonempty set in X such that the semiorbit y+(B) is bounded. Then co(B) is
nonempty, compact, invariant, and it attracts B. If B is connected, so is cO(B).

By using this result for B = BF = (U : 1U11/4 < R(e) I we see that A, = (o(B.) is

a local attractor whose basin of attraction contains at least the set BE.
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Abstract

We summarize results on a dissipative infinite dimensional evolution equation hav-
ing an associated Energy (Liapunov) function which possesses no classical minimizers.
The equation has a countable set of equilibria, all unstable, which form a minimizing
sequence, and our main result implies that a large, dense set of solutions explore this
sequence. In doing so, energy approaches its global minimum via an escape to arbi-
trarily high wavenumbers in Fourier space. We describe the asymptotics of this process
and illustrate it with numerical computations. This equation exhibits a remarkably
subtle dependence on initial data very different from that li classical finite dimensional
"chaos".

Introduction

This study concerns thr behavior of the equation

Uti = (llu.]l 2 - 1)uXX - cu + ourxt, (1)

which was motivated by the simple model of a one-dimensional nonlinear viscoelastic bar
bonded to a rigid substrate, namely

Utt = (ux - u + 3ut), - au. (2)

Further details on the background to these problems can be found in [1] and full details
are in [2], from which most of the following is adapted. Here the displacement u = u(x, t)
is defined on x E (0,ir) with Dirichlet boundary conditions u(O,t) = u(7r.t) = 0 and

JIull
2 = fo u2dx. The term au penalizes large displacements and tends to promote the

formation of microstructure. The 0uzzx term represents viscoelastic damping. The more
tractable model (1) is obtained by replacing the nonlinear term uXUXX in (2) by the spatially

*Supported by the U.S. Army Research Office under ARO DAAG 29-85-C0018 (Mathematical Sciences
Institute) and NSF under DMS 87-03656. The computations were performed using the Cornell National
Supercomputer Facility, which receives major funding from NSF and the IBM Corporation.
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averaged term 11U,11 2U"Z. We remark that such non-local terms do arise, for example in
ferromagnetism [31.

We henceforth restrict our attention to (1). This model can also be interpreted as the
Euler-Lagrange equation corresponding to the nonlocal "strain" energy

Eru, -t 11 I2 +1 1U12_12 +aIIU.I12 (3)
L~cUj-2 4 2It

to which has been added viscoelastic dissipation, which constantly bleeds of energy at the
rate dEd = -fIluTtl2" (4)

The minimum of this energy cannot however be attained by any classical solution, since
the conflicting requirements u = 0 and Itu.II 2 = 1 cannot be met. In other similar problems
with nonconvex energies, the equilibrium solutions are characterized by a severe loss of
uniqueness. It is by studying the long term dynamical behavior of such systems that we
hope to shed some light on their equilibrium solutions.

Equilibrium States

Expanding u(x, t) in the Fourier sine series

u(x,t)= -ak(t) sinkx (5)
k=l

we obtain the infinite set of ODE's
00

ak + k26k + k2 (5 - 1 + Zj 2 a2)ak = 0, k = 1.2 .... (6)
k2 j=1

In addition to the trivial solution u = u= 0 the equilibria of (1) are easily seen to occur
in "pure-mode" pairs

a a 0 a =5,j4k, k2 >a. (7)

We therefore have the countable set of equilibria

_± = 0 1,- = ± - sin k., A, = A'. A'= 1.... (N)

where K = K(a) = min{klk 2 > a}. Since E[u,0] = 2--k - 2 \ 0 as t - x. it follows
that Iu±,0}'KX is a minimizing sequence for this Liapunov function.

local stability analysis shows that every equilibrium u±is exponentially unstable.
albeit increasingly weakly as the wavenumber k is increased. Moreover, if k2 > k, > I'.
then u± lie in the unstable manifolds of u±. To see this, note that each 2N-dimensional

subspace of the form XN = {(u, ut)j(u, Ut) = EN 1 (a,,h,)sinjx} is invariant for (6) (and
(1)). This fact is used in the proof of Theorem 1, belov.
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Asymptotic behavior

We establish a dichotomy which implies that solutions behave either in a "finite dimensional"
fashion, essentially involving only a finite set of Fourier modes, or that all Fourier modes
are active and that energy cascades out to infinity in wave number space. Since typical
initial data contains arbitrary high Fourier wavenumbers, almost all solutions will contain
"unstable" Fourier components and hence realize the second alternative.

Theorem 1 (J.M.Ball) Let (u, ut) E X = Hx L 2 solve (1). Then as t - 0c, either
(u, ut) -' (u , O) strongly for some equilibrium u± and E(t) - 22[1 - 2'[ k, or

IutjI- 0, u- 0 weakly in Ho

I1u I - 1 and E(t) - 0.

The first alternative is realized for initial conditions in a set of first category and dense
in the phase space, whilst the second alternative is realized for all initial conditions in its
complement, a set of second category and also dense in the phase space.

This is a striking result. Arbitrary initial data can be arbitrarily close to orbits realizing
either alternative, implying a sensitive dependence on initial data that is quite different
from that in chaotic dynamical systems, being truly infinite dimensional and without any
recurrence.

Energy Transport to higher wavenumbers

Since "most" solutions do minimize the energy by developing some form of microstructure
we now describe how this happens. It is most conveniently stated in terms of the Fourier

components of the "strain" u, = E'1 bk/ coskx, ck = bk.

Theorem 2 Assume that the second alternative of Theorem I holds and pick any V > 0
and K < cc. Then there exists a time T = T(v,K, a, 3) < oc such that, for all t > T and
k < K the solutions of (1) satisfy

(bk, ck)(t)I v, and 11 - Eb I < V2 . (9)
k=1

Moreover, for all k $ I with k, I > K and t > T, the modal ratio Pki = bk/bl satisfies
a( .L .-1) t-T)

Pki - e3 12-- 2)k( )pkI(T) (10)

where Uk,I(s) = s( 1 + 0(1/K 2 ) + O(1l2 /k 2 K 2 )).

The first assertion follows from Theorem 2. The key to the proof of the second result
is the realization that, for each large k, (6) is a singularly perturbed second order ODE.
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Noting that bk = kak, we may rewrite (6) as

= ck, (11)

y E (12)
j=1

solutions of which rapidly enter and thereafter remain near the slow manifold
Ck = (1 - - - " I b)bk,3. Substitution of this into the first component of (11) yields

bk-(1k2--Z b )bk/3 (13)

and differentiation of pk,l and use of (12) yields (10) with k,l = S. Justification of these
formal manipulations and derivation of the error estimates may be found in [2].

This shows that any specific Fourier mode bi eventually dies and it describes how the
energy escapes to k = oo. In fact, for k > 1 > K this shows that high modes grow

exponentially at the expense of low modes and that every mode eventually decays at an
exponential rate. We can use this to illustrate the delicate influence of initial data on modal
dynamics.

1.0

=O

2 0.8-
b

0.6
t=10

t ;6000
0.440

0.2'0.40.= 0

00 10 20 30 40

k

Figure 1: Typical evolution of the modal energy.

Suppose first that the initial data is analytic, namely that bl(T) = Ae-c for some
A,c > 0. Then, as t - oc, the peak of the energy in wavenumber space can be shownI I
to slowly move out to k = oc at a rate - t/c3 and the "bump" spreads out with half
bandwidth increasing as te/cf. This behavior is illustrated in Figure 1.
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Secondly, suppose that bl(T) = Al - , so that u E C' - 1. In this case it follows
from (10) that the peak of the energy in wavenumber space moves out to k = cc at a

rate - t2/r and the "bump" spreads out with halfbandwidth increasing as t /r as t - oo.
Numerical experiments (performed over large finite times and restricted to a large but finite
number of Fourier modes) showed these estimates to be very accurate [2]. The system (6),
truncated to N modes, becomes increasingly stiff as 11u.,I 2 - 1 decreases in size and was
numerically integrated using the backwards differentiation algorithm DDEBDF from the
SLATEC subroutine library.

Numerical Examples

We now illustrate the sensitive dependence on initial conditions with some simple examples.

In order to avoid the rather costly numerical integration of the full system (6), we assume
that the solution is already on the slow manifold and that the reduced system (13) therefore
provides a good description of the dynamics. The exact solution to (13) is given by

bk(t) = A(t)e- bk(O), k = 1,2,... (14)

where

A(t) = 1 + bi(oJ (15)

[V 1 )e O'2 e (16)

-= _ ]7)
_= (1-,

Note that the e Ok
2 bk(O) term represents the solution to the "truly backwards" heat equa-

tion i3u,,t = a u and that the A(t) term acts as a uniform scaling so as to achieve IIui zll 1.
The modal ratio Pki = bk/b for (14) now satisfies (10) but without any error terms. Sensi-
tive dependence on initial conditions is best illustrated using the long-term approximation

given by (16). A further simplification follows by assuming that the first N modes have
already decayed to zero, and choosing a < N2 while keeping o/3 fixed, so as to obtain

A(t)= ( +(a)+o(e-) (17)

which provides an accurate description of the long-time evolution of (1) for initial data
containing at least one nonzero high frequency component. We now use this approxima-
tion with 1024 Fourier modes and a/3 = 1 to generate some simple numerical examples
displaying sensitive dependence on initial conditions.

In our first example we illustrate the effect of ignoring the high-frequency components
that are present in generic initial data. In Figure 2 is shown the evolution of analytical
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ux  t = 0 ux  t = 100
22

n16

ux  t = 1000 ux  t 1 0000

-2 -2

Figure 2: Approximate numerical solution of (1) using 1024 nonzero Fourier modes, obtained
via (14) as described in text. Note that u, is plotted vs x in this and in Figures 3, 4 and 5.
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ux t = 0 Ux 100
2, 2

-R -11

-2- -2-

U x t = 1000 U x t=10000

22

-1 -T

-2 -2"

Figure 3: Approximate numerical solution of (1) using 20 nonzero Fourier modes, obtained
via (14) as described in text.
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-10 t=01 0

S 5

Ot X

-5s -5

-10, -101

Figure 4: Approximate numerical solution of (1) using 1024 nonzero Fourier modes, obtained
via (14) as described in text. Initial condition is given by u.,(x, 0) =-(x - 0.77r).
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lo. t = 0 1o 1000
ux Ux

-5 -5,

-10 -10

10 t 10000 10 t=30000
Ux Ux

7C X

-10 -10

Figure 5: Approximate numerical solution of (1) using 1024 nonzero Fourier modes obtained
via (14) as described in text. Initial condition is given by u.(x,O) = -Hto, 20 0 (X - 0.77r) -

O.lH 2oo,1 o2 4(x - 0.37r).
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initial data u,(.,O) with Fourier components bk(O) = Cske- k , where the "resonant" coef-
ficients sk = {1, 1, -1, -1, 1, 1, -1, -, ...} are chosen to force concentration in the interior
of the interval (0,7r) and C is chosen such that I1uA(.,0) 2 = 1. These initial conditions
illustrate how solutions of (1) can focus spatially and form localized fine structure. Note
that the increasingly finer oscillations observed as t - o- is not a numerical artifact, but
characteristic of a solution u that converges weakly to zero in H1 while forced to satisfy

lu1,(-, 0)112 c 1 ( cf. Theorem 1 ). The first 20 modes of such initial data provide an excellent
approximation at t = 0 and in Figure 3 is shown the evolution of this "truncated" problem.
If there are initially only a finite number N of active Fourier modes, then (14) implies that.
after a time t -, O(3N2 /ca), all the modes except bN will be decaying exponentially, with
the highest active mode bN(t) -, ±/1 - a/N 2 and preserving the sign of bN(O). This is
clearly displayed by the large time behavior shown in Figure 3. Note that the solutions only
diverge after t - 1000, as expected.

In our next example we show how the solutions of the reduced system (14) can be made
to display strong spatial concentrations at arbitrarily chosen points and after arbitrarily
long times. In Figure 4 is shown the solution corresponding to u,(x,O) = -H(x - 0.77r),
where f is the Heaviside step function, shifted to be of zero average and scaled such that

Iu (.,0)112 = 1. This example also illustrates the "persistance of strain discontinuities"
( cf. [2]) - discontinuities in u, cannot be destroyed or created in finite time. Let Htk.t
be the function obtained by considering only the contribution of the k'th through to the
l'th Fourier modes of H (rescaled to be of unit L2 norm ). fIk,,(x - xo) represents a
"spike" at x0 that can be localized by choosing k large. In Figure 5 is shown the evolution
of the initial data u,(x,O) = -/H 0 ,200 (x - 0.77r) - 0.1/H200 1024(x - 0.37r). The first term
dominates initially, but decays after t ,z 30000. The second term, although initially an
almost unnoticable little "spike" at x = 0.37r, displays its presence after the first term has
begun to decay.

We can therefore construct initial data of the form _ Hfk,.,(x - xj), with
k3 < , < kj+l < /j+ and arbitrary xj, for which the process observed in Figure 5 can be
repeated as often as we wish, causing the slow and successive appearance and disappearance
of spatial concentrations at x = xi, x 2 , .... Typical solutions of (1) therefore need not sta-
bilize pointwise and can display the formation of concentrations in a seemingly haphazard
fashion. Even when adding stronger dissipation to the system. e.g. by adding a capillarity
term -- Iur-x. to the right hand side of (1), this process can still continue for extremely
long times before the solution eventually settles down to an equilibrium.

Conclusion

WVhile only of indirect physical interest, we believe the model discussed here provides a signif-
icant example of behavior characteristic of certain infinite dimensional evolution equations.
In spite of the strong diosipation and the fact that the energy E decreases monotonically
along solutions. excluding any chaotic or time-periodic motions, the initial data exerts a
remarkable influence on the dynamical behavior and approach to equilibrium. In "simple"
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dissipative systems possessing Liapunov functions, such as the Chafee-Infante problem:

ut =u + )f(u) (e.g.f(u) = u - u3 )

or the damped nonlinear wave equation:

Utt = uXX - /3ut + Af(u),

one expects almost all solutions to approach a classical equilibrium corresponding to a
local minimum in energy. For models (1) and (2), however, the forw,,, e-bits {u(t)It > to}
cannot be shown to lie in a compact set and the usual methods fail, cf. [i, 2j. For (1) almost
all solutions minimize energy with the nonlocal nonlinear energy term allowing new zeroes
to appear in u, without appreciable kinetic energy expenditure. However, our asymptotic
results show that the rate at which and manner in which the "modal strain energy" Iu r12

escapes to arbitrary high Fourier wavenumbers is controlled by the smoothness of the initial
data. This rather delicate influence of the initial data suggests that there may be problems in
the interpretation of numerically determined equilibrium states of nonlinear elastic continua
with non-convex strain energies by means of "dynamic relaxation" methods. Such methods
usually ignore the inherent dynamics of the problem and identify the asymptotic equilibrium
states with the minima of a nonconvex energy functional. Inertia and dissipation terms are
then added in order to be able to apply dynamic relaxation, and the resulting initial value
problem is then numerically solved for various initial data until the kinetic energy has
numerically stabilized. If, as in model (1), initial data can so acutely affect either the
fineness of the resulting equilibria or the rate at which fine structure develops, then such a
dynamical process run for finite times from specific (sets) of initial data might yield results
of doubtful significance. Secondly, the fact that such a process appears to have stabilized
may merely be the consequence of a long period of extremely slow evolution and cannot
rule out interesting surprises in the distant future.
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ABSTRACT. The instability of a cylindrical liquid jet encapsulated by a viscous gas
in a pipe is analysed in a parameter space spanned by the Reynolds number, the Froude number,
the Weber number, the density ratio, the viscosity ratio, and the diameter ratio. A convergent
solution of the problem is constructed by a Galerkin projection with two orthogonal sets of
functions. Two distinctively different modes of instability are obtained. The first is the Rayleigh
mode which tends to break up the jet into drops of diameter comparable with the jet diameter.
The Taylor mode instability is due to the pressure and the other mode tends to produce droplets
of diameters much smaller than that of the jet. It is shown that the former mode appears when
the Weber number is much larger than the gas to liquid density ratio. When this ratio is of order
one, the instability can be due to either modes depending on the values of the rest of the
parameters. When the density ratio is much larger than the Weber number, Taylor's
atomization mode replaces the Rayleigh mode.

INTRODUCTION. The instability of an inviscid liquid jet with respect to temporally
growing disturbances in the absence of gravity and ambient gas was analyzed by Rayleigh
(1879). He showed that the disturbance possessing the maximum amplification rate could cause
the jet to break up to form droplets comparable in size with the jet diameter. Chandrasekhar
(1961) showed that the neglected liquid viscosity can only reduce the amplification rate of
disturbances but cannot supress the instability caused by capillary pinching. The convective and
absolute instability of a liquid jet was investigated by Keller et al. (1972), Leib and Goldstein
(1986), and Lin and Lian (1989). Taylor (1963), Lin and Kang (1987) and Lin and Lian (1990)
showed that when the gas to liquid density ratio, Q, is much greater than the Weber number, a
viscous jet of radius R 1 may actually become unstable with respect to disturbances of wave
length X << R 1 . Lin and Creighton (1990) found that while the mechanism of Rayleigh's
instability is capillary pinching, the mechanism of Taylor's mode is the interfacial pressure
fluctuation. However, the effects of the interfacial shear on the Rayleigh and the Taylor modes
of the jet instability remain unknown, since the gas viscosity is neglected in all of the above
mentioned theories. The effect of the viscosity of a motionless surrounding fluid on the breakup
of a motionless viscous cylindrical thread was investigated theoretically by Tomotika (1934).
The breakup mechanism for this case remains capillary pinching.

Joseph et al. (1984) investigated the instability of two immiscible liquids of the same
density but of different viscosities in a pipe. The interfacial tension was neglected. The effects
of surface tension and density stratification in the absence of gravity were later included in the
investigations of Preziosi et al. (1989) and Hu and Joseph (1989). Smith (1989) investigated
the instability of two immiscible fluids of the same viscosity but of different densities in a
vertical pipe. These works are of fundamental importance, because they isolate the effects of
the density and viscosity discontinuities at the interface. However, they cannot be applied to

*Supported by U.S. Army Research Office
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infer the coupled effects of surface tension, interfacial shear gravitational acceleration and
pressure fluctuation on the Rayleigh and the Taylor modes of instability.

FORMULATION. Consider the stability of a cylindrical liquid jet of radius R 1 . The
jet is surrounded by a viscous gas enclosed in a vertical circular pipe of radius R2 which is
concentric to the jet. For the jet to maintain a constant radius the pressure gradient in the steady
liquid- and the gas-flows must remain the same constant. This will allow the pressure force
difference across the liquid-gas interface to be exactly balanced by the surface tension force as
required. Such coaxial flows of liquid and gas, in the presence of gravity, which satisfy exactly
the Navier-Stokes equations are given by

Wl(r) = -I + Nr 2 ( 1 - (I-Q) R..e [21nl + (1-12)1},

M (I-_ ( _2 ) I 4N Fr

W2(r) 2_ 2r 2) [I - (-Q l _e- [21nW + (1-12)] }
[N_(I_ 2 4N Fr

+(l-Q) R( )_r$12 r2- 21Q Re['nA(l1 2 J
2N 4 r

N = . 2 /gl , 1 = R 2/R 1 , Q = p2/pl,

Re - Reynolds number = p1WoRl/tl

Fr Froude number = Wo 2/gR 1 , R = Re/Fr,

where the subscript I or 2 stands for the liquid or the gas phase respectively, Wo is the magnitude
of the jet velocity in the z-axis (c.f. Fig. 1), r is the radial distance normalized with R 1, W(r) is
the axial velocity distribution, . is the dynamic viscosity, p is density, and g is the gravitational
acceleration in the negative z-direction. Some velocity distributions in a water jet and in the
surrounding air flow under one atmosphere are given in figure 1 for various values of Re/Fr.
Note the large difference in the slopes of the velocity profiles in the liquid and the gas phases due
to the large difference in their viscosity, when R is relatively large.

The stability of the basic state described by (1) with respect to a normal mode
axisymmetric disturbance is governed by the well known Orr-Sommerfeld equation (Drazin and
Reid, 1985),

[o - (N'/Re)D2 ]D2 0i(r) + ikWi(r)D2 Oi(r) - ikrd[dWi(r)/r0i = 0, (i=1,2) (2)

D2 = d2 - r-ld - k2 , d = d/dr, N' = vi/v 1 ,

where v is the kinematic viscosity, the subscript i stands for the liquid phase or the gas phase
depending on if i=l or i=2, co and k are respectively the dimensionless complex frequency and
the wave number of the disturbance, and Oi is the amplitude of the normal mode disturbance
related to the Stokes stream function Wi by

xvi(r,z,t) = Oi(r)e(ikz+t),

where t is time normalized with R 1/Wo. The Stokes stream function is related respectively to the
radial and axial components of the disturbance velocity by

ui = Viz /r and wi = - ir /r ,
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where the subscripts z and r denote partial differentiations.

The boundary conditions at the perturbed liquid-gas interface r = 1+i1 can be linearized
by use of the Taylor series expansions of all variables involved about r=-1, and retaining only
terms of the first order in perturbations. Hence, the interfacial conditions are to be evaluated at
r=l with T as an additional unknown. Since the interface is a material surface, Tl must satisfy at
r=-1 the kinematic condition

,It + Willz =- Wiz"-

Other interfacial kinematic conditions are the continuity of the radial and tangential components
of the velocity across the interface given respectively by

1 =['Viz]12 -- [z - 'V2z]r=-I =0, and

[Wirn - Vir]2 = 0.

The balancing of forces per unit area of the interface in the tangential and normal directions leads
respectively to the dynamic conditions at r=l,

[Ni{ Wirr - (Vir/r)r + Wizz)]2 = 0, and

[Pi -(2JRe)Ni(Viz/r)r] 2  + (Ti + Tlzz)We = 0,

where Pi is the disturbance pressure,

We -Weber number = S/p 1W 0
2 R1 , Ni = gi/g 1,

in which S is the surface tension. Thus, We signifies the ratio of surface tension force to the
inertia force per unit area of the interface. The boundary condition at the pipe wall is the no-slip
condition at r=,

2z =0 , V2r = 0 "

The normal mode axisymmetric pressure disturbance and interfacial displacement are written as

[pi, T1 = [Ci(r), je(ikz+wt). (3)

Substituting (3) and the normal mode of Wi into the above boundary conditions, we
rewrite them in the same order of appearance

((o + ikW 1) - ikol = 0, (a)

=0 (b)

[Wirr]2 = 0, (c)

[NiBoi] ] - (1-Q)R =0, (d)

B =d 2 - d/r + k2 ,
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[i "(2ik/Re)Ni(¢ir - i2 + (1-k2 )We = 0, (e)

02r(1) =0, (0
020) = 0O. (g)

The last term in (d) arises from the second derivatives of the basic flows. The pressure amplitude
discontinuity in (e) can be obtained from the linearized Navier-Stokes equations, and are found to
be

1

[Ki2 = [Qi{(cO+ikWi)ir -ikWir0i}

- Ni(D2 i 2Re] (ik)-, Qi = Pi/P I •

Nontrivial solutions of (I) with its boundary conditions (a) to (g) for given flow
parameters Re, Fr, We, Q, N, I and k exist only for certain eigenvalues o. The real part of co
determines the stability of the flow, and the imaginary part of co determines the characteristic
frequency of the disturbance.

SOLUTION. The solution of the problem formulated in the previous section will be
expanded in an orthogonal set of functions in each of the flow fields in the liquid and in the gas
(lighter imcompressible fluid). The two orthogonal sets are associated with the same differential
operator in (2), i.e. D2 , but with different domain boundaries. By use of the change of variable

O i = r fi , (i= 1,2) ,

we have

D2 0i = r(L-k2 )fi,

where

L = r- 1 d(rd) - r-2 .

The orthogonal functions will be chosen among the solutions of the Bessel equation of the first
order with the parameter kin

(L2 + kin2)Fin = 0, (n=l,2,...Mi), (4)

where Fin stands for Fi(kinr), and Mi is an arbitrarilly large integer. The bounded solutions of (4)
which forms an orthogonal set of functions in r:l are

Fin = Jl(klnr), (5)

where k1 n are the roots of

klnJo(kln) - Jl(kln) = 0. (6)

With these values of kin, we have
4 (C1)

Jor Fim Fin =8mn (7)
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where S( 0 if m n, if m = n it is given by

Lnn = 0.5 (kin2  1)Jo2 (klm). (8)

The bounded solutions of (4) which form an orthogonal set of functions in the domain 1<r< are

F2n =- F2 (k2 nr) = Y 1(k2 nl)J1(k 2 nr) - J I(k 2 nl)Yl(k2nr), (9)

where k2n are the roots of

F2(k2n) - k2n F(k2n) = 0, (10)

F(k2 nr) = -o(k 2 nr)Y1(k 2 n/) - JI(k 2 nl)Yo(k2nr). (11)

With the values of k2n thus determined, we have

(2)
r F2n F2m dr = -mn (12)

(2)
where Stn = 0 if m -= n, otherwise it is given by the integral on the left side of the above equation
with F2n given by (9). Note that

F2(k2nl) = 0. (13)

We now expand the eigen-vector in a truncated series of the above orthogonal functions

Oi=rainFin, (i=1,2) (14)

where the repeated indecies n denote sumation over n=l to n=M i (i=1,2). The number of terms
Mi required in the two flow domains may not be the same for the required accuracy. The
components of eigenvector will be obtained by use of the Galerkin projection. The following
formula which can be derived with integration by parts will be used repeatedly in the reduction of
the Galerkin projection,

trGL(g)dr = sI rgL(G)dr - [rgd(G) - rGd(g)] (15)

where g and G are function of r. The Galerkin projection of (2) gives

Jti rFim[(L-k2 Reco')(L-k 2 )fi + ik(v i/vi)ReWi(L-k 2 )fi]dr = 0, (16)

where (o' = o(vl/vi). By use of (15), the orthogonality conditions, and the following relations

[rL(fl)d(Fim)-rFimdL(fl)]r=s = 0,

F2 (k2mt2 ) = 0,

we can reduce (16) to

eimnain - Vtl 8 li[(dFlm)tl a - (Flm)t

vs 282i[(t 2 /s2 ) (dF2m)t 2 ' + (F2m)s 2 8 - (d F2m)s2 E1 = 0
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(m, n=1,2 .... Mi) (17)

where v = (vi!, 1), the subscripts of parantheses denote the values of r at which the paranthesized
functions are to be evaluated, and

ein = 8rm [k2 (vk2 +Rew0) + (2vk2 +ReO)kim + v(kinkim) 21

t1  t 2
+ ikRe(k 2 + kin)fs r WiFimFin dr - ik82 , [(1-Q)RRe/N] Js FimFin r ldr,2

a= [L(fl)It ,13=[dL(fl)It ,

Y [LUf)t 2 = ' [dL(f2)] 2  r= [L(f 2 )]s 2

It is known that termwise differentiations of truncated series representations of functions do not
provide as high an accuracy for the derivatives of functions as for functions themselves. For this
reason we treat a to e in (17), which involve derivatives higher than second, as five additional
unknowns. Thus (17) is a system of M1 + M 2 equations in M, + M 2 + 5 unknowns. The
required additional equations are provided by the six, boundary conditions (a) to (f) which
contain an additional unknown . Note that boundary condition (g) is already satisfied, because
of (13).

Substituting the series solution (14) into (a) to (f) we have

ikFI(kIn)aIn - [co+ikWI(1)1 = 0, (a)'

1
tain Fin12 =0, (b)'

1
[Wir - ain(Fin + d Fin)12 = 0 (c)'

[Ni((k 2 -1Fin + dFin + d2Finain]2 0 -Q)= 0 (d)'

((o+ikW )Re Qi(Fin+dFin)

- ikRe Qi Wit Fin

+ Ni[(k 2 +kin)Fin + (3k 2 +kin)dFin1)ain]2

+ ikReWe(1-k 2)g = 0, (e)'

(dF2n)la2n = 0 , (f)'I

Equation (17) and the above boundary conditions form a system of (M1 + M 2 + 6)
homogeneous linear equations in the same number of unknowns. Making the following
identifications

aln = Xn (n=1 to M1 )

a2n=Xn+M1 (n=l toM 2 ),M=M I +M 2

(a, [, , 8, E, E) = (XM+ 1, XM+2, XM+3, XM+4, XM+5, XM+6),
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this linear homogeneous system can be written in a standard form

(Amn + o Bmn)X n = 0, (m,n= 1,2,...M+6)

where the elements of matrices Amn and Brn can be identified easily from (17) and the above
boundary conditions. A nontrivial solution up to an arbitrary multiplicative constant of this
system exists only if the determinant of its coefficient matrix vanishes, i.e.,

IAn +oBrnnl =0. (18)

To construct the eigenfunctions of the original system, which is not required in this
work, we need only the eigenvectors aln and a2n. The values of at, 5, y, 8, £ and t are not
required. The explanation of the numerical computation involved in the solution of (18) is in
order. All computations are carried out, in double precision with Gould PN 9780 at Clarkson and
the supercomputer facility at the Cornell Theory Center. To construct the orthogonal functions
Fi , we solve (6) and (10) with (11) respectively for kln and k2n with the Muller (1956) method.
All integrals involved, in (17) except 8mn which has a closed form expression, are evaluated with
the Gauss-Kronrod quadrature. For a given set of parameters (Re, We, Fr, Q, N, 1) the eigenvalue
co is obtained from (18) for various values of k with the method by Kaufman (1974). In this
complex eigenvalue solution, M1 and M2 are systematically increased until the eigenvalue
corresponding to the most amplified or the least damped disturbance converges to the desired
significant digits.

RESULTS. Table I gives a typical example which demonstrates the convergence of
the method of determining the eigenvalues for a given set of flow parameters. It is seen that as
M1 and M2 are
increased respectively from 6 and 54 to 7 and 63, the eigenvalues remains the same up to the first
four significant digits. Note that when M1 = 7 and M2 = 63 there are 76 eigenvalues for the
given set of parameters. Only the one corresponding to the most amplified disturbance is given
in the table. The same convergence test was carried out for every computation for the most
amplified or the least damped eigenvalues for various sets of parameters reported in this work.
Preziosi et al. (1989), used Chebyshev polynomials as base functions for their solution of a
special case of zero gravity in the present problem. They required 80 terms for satisfactory
convergent results. Thus the terms required in the present problem with gravitational effect is
slightly less than that required in their problem of zero gravity. A finite element method was
used by Hu and Joseph (1989) in their extension of the work of Preziosi et al. The finite element
method seemed to be more efficient than the collocation method. Attempts have been made to
test the accuracy and convergence by doubling the number of terms in the present problem. It was
f..that for such. a l.ge '"stem, the numerical error with a double precision calculation
dominates the reduced truncation error.

Figure 1 shows the velocity distribution in the basic state for various values of R for the
given parameters 1=10, N--0.018, and Q=0.0013. These values of N and Q correspond to a water
jet in atmosphere at room temperature. Figure 2 plots the growth rates (or against the wave
number of the disturbance for various values of We for the set of parameters specified in the
figure caption. R = Re/Fr = 0 signifies the absence of gravity. It is clearly seen that as We is
decreased from 0.01 to 10-5 in steps, the amplification rates decrease for k<1. For k>l the trend
is reversed, although the growth rates are relatively small. The reversal of the trend can be easily
understood by looking at the last term in (e). The factor (l-k 2 ) in this term arises from the
curvature of the interface. The -term is associated with the interfacial curvature along a
direction perpendicular to the jet axis which gives rise to the necking at <0 and expansion at
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t>O. The -k2 t term is of opposite sign and is associated with the curvature in the axial direction.
This curvature tends to pull the displaced interface back to its basic state position. When k<l, the
former destabilizing pinching effect dominates the latter stabilizing effect. When k> 1 the role of
surface tension is reversed. For the given parameters the jet instability is clearly due to the
Rayleigh mode of capillary pinching, since the maximum growth rate occurs at k<l. As We is
decreased further from 0.0001, the wave lengths corresponding to the maximum growth rates
gradually shift to the region k>l. This is examplified by the curve for We=10 "5 in figure 2.
Then the instability judged by the maximum amplification rate is no longer due to capillary
pinching, but due to the Taylor mode. This mode will be expounded more clearly later when
gravity is taken into account. Contrary to the dramatic effect of surface tension on the Rayleigh
mode, the air viscosity has little effect on this mode. The destabilizing effect of the basic state
shear rate is significant for shorter waves for which k>l. Comparisons between our theoretical
results and the experimental results of Goedde and Yuen (1970) and that of Donnelly and
Glaberson (1966) are made in figure 3. Unfortunately, the values of We and Re corresponding to
the experimental points were not reported. Two amplification curves were obtained from our
theory with the parameters corresponding to the lower range of the jet velocity reported by
Goedde and Yuen. Rayleigh's amplification curve is also included in this figure for comparison.
While the slope of Rayleigh's curve has a discontinuity at k=l, and the jet is neutrally stable for
k>l, our curve is continuous in slope and gives negative o r for k>1.1. The good agreement
between the experiments and our curve for Re = 3000 and We = 0.0013 and Rayleigh's curve,
which is independent of We at Re = 0- is probably fortuitous. It has already been shown that the
amplification curves depend very sensitively on We, although less so on other parameters. For a
better comparison with theories, complete records of all relevant parameters (1, Q, We, Re, N) for
each observation of ((or, coi , k) are needed. Figure 4 further demonstrates the stabilizing effect of
the interfacial tension. As We is decreased to values much smaller than Q, both the amplification
rates and the wave number of the unstable spectrum are increased dramatically. It is seen that the
most unstable disturbances of Taylor's atomization mode are of wave length several orders of
magnitude smaller than the jet radius. Moreover, the wave lengths near the maximum growth
rates of the amplification curves all scale with the capillary length a = 27CS/P 2 Wo2 R I. This can
be verified by showing that the following equation is satisfied with the values of the wave number
kmi, corresponding to the maximum growth rate, taken from each curve of figure 10,

(2nRl/k) = a 2tS/P2 Wo 2 R1 = 27tR 1 (We/Q).

Recall that in the Rayleigh mode, the most amplified waves scale with R1 in length. Contrary to
the situation in the Rayleigh mode the air viscosity has a more significant effect on the
atomization mode, as can be seen in figure 5. When N is increased from 0.0018 to 0.018 the
disturbances for which k<23 are damped while the disturbances for which k>23 are amplified.
This seems to reflect the fact that the enhancement of the amplification rate due to the relative
increase in gas viscosity more than compensates for the decrease in the damping rate due to the
relative decrease in the liquid viscosity for shorter waves such that k>23. The reverse is true for
longer waves for which k<23. This also reveals the crucial roles played by the gas shear stress in
the generation of small droplets. Neglecting the gas viscosity, Lin and Kang (1987), and Lin and
Creighton (1990) showed that only pressure fluctuation can generate short waves scaling with
capillary length. It is clear now that the interfacial shear and pressure fluctuations are equally
capable of generating short waves scaling with the capillary length. This view is further sub-
stantiated by figure 12 which show qualitatively the same behavior as figure 10, when the ratio of
inertia force relative to viscous force is raised respectively by raising the value of Q and Re.
Figure 7 shows the destabilizing effect of the basic state shear rate on the Taylor mdoe. A large
basic state shear rate at the interface requires a large shear stress fluctuation when the interface
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fluctuates from the unperturbed cylindrical surface, in order to satisfy the condition of vanishing
shear force at the interface. (c.f. Hinch, 1984; Kelly et al. 1989) This large shear stress fluctuation
inevitably brings about a large pressure fluctuation, and causes the growth rate to increase. In
contrast to the case of the Rayleigh mode, the radius ratio I has a very significant effect on the
Taylor mode (Fig. 8). A decrease in 1 brings about a larger basic state shear rate which again
results in an increase in the growth rate. Unlike the casz of Q=I, We--0, and N<I investigated by
Joseph et al., we did not find stability near k--0 when l-1 for finite values of We and Q<<1.
However, when we put We=O, Q=1, N=0.5, R=O and Re=27.2 we did find that the jet is stable for
6<k and k<0.7. This is consistent with the results of Joseph et al. (1984). Hooper and Boyd
(1987) and Renardy (1985) also found a similar stable region for planar Couett flow of two
superposed fluids of different viscosities but of the same density.

DISCUSSION. It should be pointed out that the instability waves near k=O in the
present work are not of the type of Yih (1967), since Yih's long shear waves are not apparent
when N<I (c.f. Hooper & Boyd, 1987). The stability analysis of a vsicous liquid jet in an
ambient gas reveals that there are two distinct mechanisms of the jet break up. The first is that of
Rayleigh mode by capillary pinching, and the second is that of the Taylor mode by interfacial
shear and pressure fluctuations. The theory is not yet fully substantiated by experiments. The
present theory predicts that the growth rate of disturbances increases significantly with the Weber
number as it should, since the instability is due to capillary pinching. Unfortunately, the known
experiments in the Rayleigh mode regime failed to record the values of relevant parameters
including We for each experimental point. Only the ranges of velocity, temperature, and jet
diameter were reported. Thus only the ranges of the parameters encountered in experiments can
be estimated. This deprives us of a more complete comparison. Consequently the apparent
agreement between experiments and the present theory with We = 0.0013 and Re = 3000, and
with the Rayleigh theory remain fortuitous. This value of We and the values of the rest of
parameters used in figure 7 are in the lower end of the parameter range estimated from the
reported experimental data. It is possible that most of the experimental points were obtained in
the lower range of the parameters encountered in experiments. The theoretical results on the
Taylor mode are only qualitatively substantiated by the experiments of Reitz and Bracco (1982).
The average diameters of their atomized droplets seem to all scale with the capillary length as
predicted by our theory. Careful measurements of (wor, coi, k) for varioius given sets (We, Re, Q,
N, 1) are required for a better comparison with the theory for both modes. There may exist other
modes of instability in the parameter ranges not considered in this work. A possible third mode
which may correspond to a dripping jet (c.f. Lin and Lian, 1989) is yet to be explored by
considering the convective and absolute instabilities of spatially growing disturbances when
We>>Q. The known analysis of absolute and convective instabilities of a jet all ignore the effect
of gas viscosity (Leib and Goldstein, 1986; Lin and Lian, 1989). Blennerhassett (1980) showed
that Tollmien-Schlichting waves are more stable than the interfacial waves in two superposed
viscous fluids flowing over a plane. The same situation appears to happen here. The
Tollmien-Schlichting wave will probably not appear until Re is raised to a value miuch greater
than those considered in this work.

While the present analysis also applies to the case of N>1, the compu~ation for this case
has not yet been carried out. The extension of the present analysis to the case of
non-axisymmetric disturbances is quite straightforward. The nonlinear stability analysis of the
linearly unstable disturbances described in this work will be useful for many industrial processes
which utilize the mechanisms of the jet breakup either in Taylor's atomization mode or
Rayleigh's ink-jet mode.

This work was supported in part by Grant No. DAAL03-89-K-0179 of ARO, Gra;.t No.
MSM-8817372 of NSF and a New York State Science Grant. The computation was carried out
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with the computer facility at Clarkson University and with the Cornell National Computer
facility, which is founded by the NSF, the State of New York, and IBM Corporation.

Ml M2 011
3 15 0.0238 0.7003
5 35 0.0239 0.7013
5 45 0.0239 0.7017
6 54 0.0239 0.702 1
7 63 0.0239 0.702 1

Table 1. Convergence to the most amplified mode. k--0.7, We =0.0025, Re =400.0,

Re/Fr = 0.0, Q =0.0013, 1= 10.0, N 0.018
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Abstract

This paper investigates communication and control in SPMD parallel computations, and
introduces the Events/Threads of control, E/T, model which allows qualitative and quantitative
analysis of parallel execution. The principal component of the E/T model is the characteristic
function g(P) which relates the number of events to the number P of threads of control (usually
a processor). Many properties of a computation follow from the behavior of g(P), such as limits
on the potential speedup. The model includes the effects of reads and writes in communication.
algorithmic blocking, work intensity, etc. It is most appropriate for SPMD (Single Program
Multiple Data) computations that are common in scientific applications. An experiment is
described briefly which relates the the detailed behavior of a parallel computation, observed
through monitoring, with the high level characterization provided by the E/T model.

1 Overview

The E/T model describes a parallel computation C as a collection of P threads of control and E

events. Informally a thread of control is an agent capable to perform some work in behalf of C and

an event is an explicit action perform by a thread of control in order to coordinate its activity with
other threads of control. In a wider sense an event is a change of state of a thread of control.

Modeling and analysis of numerical problems which lend themselves to the Same Program

Multiple Data, SPMD, paradigm are the focus of our investigation [11], [121. Communication

and control latency can strongly influence the performance of these computations and we use the

E/T model to analyze this influence. Informally a SPMVD computation is performed whenever all

processing elements, PE's of a parallel machine execute the same program on different data. SPMD
computations lead to a collection of similar threads of control therefore their modeling and analysis

seems an easier task than the analysis of non-homogeneous computations with a large number of

unrelated threads of control.
The E/T model can used for qualitative analysis of a parallel computation C, an analysis based

upon the study of the characteristic function g, which relates the number of events, E. and the

number of threads of control P. E = g(P) of C. An optimal parallel computation with P threads of

*Work supported in part by ARO grant DAAG03-86-K-0))06.
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control is a computation characterized by a linear function g(P). If g(P) cannot be expressed as a

polynomial then there is little hope that C will ever be performed efficiently. Consider two parallel

computations C, and C2 with P threads of control which represent two different implementation of

an algorithm A or implementations of two different algorithms A, and A 2 which perform the same

task. If the characteristic functions of C1 and C2 are in the relation gP(P) < g2 (P) for P1 _< P < P2

then we have a high degree of confidence that C1 performs better than C2 in the range P1 5 P < P2

for a wide variety of parallel architectures.
Whenever more information about a parallel computation C is available, for example when the

sequence of events occurring in a thread of control can be identified or when the characteristics

of the parallel machine executing C are known then the E/T model is capable of providing more

accurate assessments about the expected performance of C. A quantitative analysis can only be

carried out if the threads of control exhibit some form of invariance to data dependencies, in other

words if data dependencies can only alter the timing but not the order of events in a thread of

control.
A first type of quantitative analysis is a static analysis. This is an analysis of the mapping from

a directed acyclic graph, V to a parallel computation C. The E/T model is used to determine the

computation and communication workload. The computation workload can be analyzed at different

levels, e.g,, the amount of computation between two consecutive events, the workload per thread

of control, and the total workload of C. Similarly, communication workload can be characterized

by the amount of data transferred during a single event, the amount of data transferred per thread

of control, and the total amount of data transferred at the computation level. The effects of

synchronization and blocking are not captured by the static analysis.

A second type of quantitative analysis is the dynamic analysis concerned with schedules which

associate times with events. At this stage a detailed knowledge of the hardware is necessary in order

to determine the time required to perform computations and the time to send and receive data.

Alternatively, performance monitors and execution traces for a selection of data may provide suffi-

cient knowledge to carry out a dynamic analysis. This analysis reveals the effects of synchronization

and blocking.
Static analysis is often susceptible of an analytical approach but the dynamic models only seldom

lead to a tractable analysis. Often dynamic models can be constructed only through monitoring

the actual execution of C on a particular parallel system.

2 Qualitative Analysis Of Parallel Computation in the E/T Model

2.1 Basic assumptions

We propose a model for parallel computing based upon events and threads of control, the E/T

model. A parallel computation C with P threads of control and E events is described by its

characteristic function g defined by E = g(P). The model is based upon two assumptions:

(a) Conservation of work. Any work required by a computation C(1) with one thread of control

has to be performed by one of the threads of control of C(P), the parallel computation with

P threads of control.

(b) W(P), the work required by a parallel computation is an increasing function of the number of

threads of control, P.

The first assumption needs little justification. It is an immediate consequence of the view that

a thread of control is an agent performing some work in behalf of C. To carry out a computation
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with P threads of control simply means to redistribute in some fashion the work which otherwise
would be carried out by only one thread. Call this constant amount of work reflecting the work
conservation principle Wcona-

The second assumption is supported by the following arguments. An event is associated with
every communication and control act. Any thread of control needs to communicate with other
threads at least at the instance when it is initiated when some work is assigned to it, and at the
termination time, when it has to communicate its results. It follows that g(P) is an increasing
function of P. Moreover any event requires a small amount of additional work, say 0, to be carried
out by the thread of control when an event occurs. Let W,,(P) denote the additional amount of
work required by C(P) for communication and control. The previous arguments show that W"c(P)
given by

Wee(P) >_ 0 x E = 0 x g(P) (2.1)

which is an increasing function of P. Thus, while WC(P) might not increase monotonically, it is
plausible to assume that the variations from the trend are small and that W,,(P) is increasing.
But W(P), the work carried by C(P) consists of at least wo components the first one, ,
independent of P and the second one, Wee(P), an increasing function of P

W(P) = W.I 3 + W(P). (2.2)

A parallel computation C with P threads of control is considered to be optimal iff E = 0(P),
the number of events in C is linear in P.

Some of the algorithms we have encountered exhibit a convex characteristic function g(P). We
show that if the characteristic function g(P) is convex then: the speedup has a maximum for some
finite P = Psma and it is a concave function for P > Psma.

2.2 Threads of control and events

The basic idea of the model is to describe a parallel computation C in terms of threads of control and
events. Important properties of C are its duration T and work intensity w(t). The work intensity is
the actual measure of work performed as a function of time, e.g., operations per second. The work
associated with C is

W = J w(t)dt. (2.3)

In view of the previous discussion the work intensity w'(t) associated with thread o' has two
components

W(t) = w".o,(t) + wc (t) (2.4)

where w(, is from the work assigned to the thread by virtue of the work conservation principle.
and the second one, w4(t) represents the work intensity for communication and control. Note that

W',,n,(t) and w,,(t) cannot be non-zero simultaneously.
The duration T of C(P) is expected to depend upon the number P of threads of control of C(P).

The work performed by the ith thread, 0', is

T TrT
W1= w'(t)dt = W'on,(t)dt + w,(t)dt. (2.5)

The total work required by C(P) is thus
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W(P) = w= w(t)dt. (2.6)
i=-0

The thread 09 can be in one of two states at time t: active if W, 0, 8(t) > 0, and suspended if

wio.,(t) = 0. When the thread 0' is suspended then it can be either communicating if wic(t) > 0,

or blocked if wcc(t) = 0, as shown in Figure 1 (which is explained later).

A parallel computation C(P) may have several threads of control 0' active at any given time
t. Call t',ct(t) the number of threads active, vcc(t) the number of threads communicating and v(t)

the number of threads non-blocked, either active or communicating at time t. Note that v(t) is

sometimes called the profile of the parallelism, [14]. Clearly

V(t) = vact(t) + Vcc(t) (2.6a)

and
1 < V(t) <P for 0 < t < T(P). (2.7)

We say that the system changes its state at time t if vct(t - c) # L'act(t + E) for any positive C.

To mark the change of state, we say that an event e(t) has occurred at time t. If thread 0' has

changed state at time t, we denote the event by e'(t). Note that we make the following convention:

an event is associated only with the transition from active to suspended state. The duration of an

event is equal to the time spent by the thread in the suspended state.

For the sake of convenience we consider that all P threads of control are created at time t = 0

and exist until time t = T(P). In addition, we assume that there are two intervals of time when

only one thread of control is active, v(t) = I for 0 < t < t, and for T(P) - t < t < T(P). The

times t, and t, are called start parallel and end parallel times, respectively. At t, the thread of

control active initially, 0 1 , explicitly performs an action to assign a part of work to a thread 02,

which changes its state from suspended to active, 01 is called a parent of 6' . This process has to

be repeated at least P times, such that each thread must become active at least once.

In case of a serial computation, only one thread of control is active at any time t. Without loss

of generality, we assume that a serial computation, C(1) has only one thread of control active at

any time t.
In a parallel computation C(P) changes of state occur due to the need for communication and

control. Such communication must take place at least once during the lifetime of 0, otherwise

0' would not be able to coordinate its work with other threads. Communication between two

threads of control, 0' and OJ takes place as the sender, say 0', performs an explicit action of

making available private information, and the receiver, say 0J , performs an explicit action to access

this information. The terms sender and receiver are considered in the sense of information theory

and the E/T model is not concerned with the mechanisms used for communication. Sending and

receiving may be performed in different ways, such as by message passing or by accessing shared

data.
Every time a thread 6' performs an explicit action for communication or control. oar model

assumes the behavior illustrated in Figure 1. Note that the workload intensities associated with

the thread d' exhibit the following behavior

w'o,(t) > 0 for t < tsuspend and t >_ treactivate

w,,,(t) = 0 for t,,up,nd < t < t reactmuate

w'cl(t) > 0 for t,uspnd < t < t hlock and t,,,, < f < t< r t,,vate (2.8)
w".(t) = 0 for tbo 0 k < t tesum
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tsuspend tblock tresume treactivate

- F - 0 time

4)i: active communica- blocked communica- active
tion tion

FIGURE 1: The states of the thread of control 0' when an event etupe,, occurs.

The additional work for communication and control, 0 in (2.1) reflects the work associated
with the periods when w~c(t) is non-zero. A blocking period may occur only for some events.
For example, in a message passing system, an asynchronous write operation does not experience
blocking, while a synchronous read may experience blocking if the data has not been received yet.
In a shared memory system, both reading and modifying a shared data element may experience
blocking.

It is difficult to predict the duration of a blocking period, therefore, knowing that an algorithm

for matrix multiplication requires say, O(n2/p2/ 3) communication steps, for two n x n matrices,
using p processors (1], does not translate easily into statements concerning communication time.

2.3 W,T characterization of a parallel computation

Statements about a computation C can be made when the amount of work, W and the time
T required by C are known. To simplify the discussion, let us assume that the work intensity
associated with thread 4)' is constant when the thread is not blocked,

I if 4)' is active or communicating
Wi(t) 0 if 4t is blocked. (2.9)

In this case if C is performed using a serial execution, i.e., as C(l), with only one thread as shown

in Figure 2a, then there is a clear relationship between W(1) = Wo,,, and T(1), the execution time
with one thread only:

W(1) = T(1). I. (2.10)

The relationship between W and T is loss obvious in case of multiple threads of control, as shown
in Figures 2b and 2c, where two alternative computations CA(2) and CB(2 ) are used to perform C.
We observe that

W(1) < W(A)(2) < W(B)(2), (2.11)

but
T(B)(2) < T(A)(2). (2.12)

Even the simple question of which one of the two variations of C(2), CA(2) or CB(2), is better

cannot be answered unambiguously, as CB(2) requires less time, but more work than CA( 2 ).

The relationship between W(P) and T(P) is explored next. Consider the case described by

equation (2.9). Then the work intensity can be expressed as

W(t) = w'(t) - V(t) = J.v(t) (2.13)
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I I
t =0 Figure 2(a)

t=0 t TA(2)
Figure 2(b)

_ZZJ
t =0 t = TB(2)

Figure 2(c)

FIGURE 2: (a) Sequential computation C(1) = < W(1),T(1) >. (b) Computation
reorganized to be < CA(2) > = < WA(2), TA(2) > with two threads of control. (c)

Computation reorganized in a different way to be CB(2) = < WB(2), TB(2) > with
two threads of control. Solid lines represent work periods and dotted lines blocked
periods.

with v(t) the number of threads of control non-blocked at time t. The work W(P) associated with
C(P), can be expressed as

rT(P) o T( P)
W(P) = 10 w(t)dt = 1 v(t)dt. (2.14)

Define the expected number of threads non-blocked (active or communicating) at time t as

P(P) = -iyj ) v(t)dt. (2.15)()=T(P--'-'

From (2.14) and (2.15) it follows that

w'(P) I
T(P) = - ( 1 (2.16)

I 1(P)

Similarly

wcons(t = wco0n(t) - V-ct(t) = I. - act(t) (2.17)

with vct(t) the number of threads of control active at time t.

The work Wn can be expressed as

WC... = Wcons( t)dt = I avct(t)dt. (2.18)

Define the expected number of threads active at time t as
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P.:I)T(P) Vact( t)dt. (.9T(P 0TPi, ct(P) = T(P) Jo Vattd.(1)

Then we have

Wco. = IT(P)F, ct(P). (2.20)

But W,,,, = W(1) = IT(1) hence

T(1)
T(P) = j~ac(P), (2.21)

2.4 The expected amount of work per thread of control

To study the asymptotic behavior of a parallel computation C when, P, the number of threads of
control increases, we first investigate the behavior of the function

W(P) = w(P) (2.22)

P

Consider first computations C with E = O(P) where each thread of control ' experiences only a
few communication events, in addition to the events to initialize and terminate 0i. An example
of such a computation is a plotting computation when each thread operates in isolation upon its
private data to create its part of the plot and makes th! results available at the end. In this case

l(P) = ! + 0(1). (2.23)P

For such parallel computations the expected amount of work per thread of control is a monotonically
decreasing function of the number of threads of control as shown in Figure 3.

Consider now parallel computations with E = O(P 2), for example when each thread of control
communicates with every other thread of control during its lifetime. In this case the asymptotically
expected amount of work per thread of control is

(CP) = ) = - + O(P). (2.24)
P P

The amount of work per thread of control exhibits a minimum for a certain Pont and it is a
monotonically increasing function of P when P > Ppt. Clearly, P0,pt increases as W,,, increases.
For a given 6 the range of P such that W(P)- W(Popt) < 6 is usually fairly large, wi(P) is relatively
flat around its minimum. This case is ilustrated in Figure 4.

If g(P) = O(P n ) with n > :3 then w(P) increases rapidly with P and massive parallelism is
unlikely to be advantageous unless W,,, 8 is enormous.

In conclusion ui(P) provides a useful signature of C. This signature indicates that massive
parallelism is truly advantageous only when E = O(P). In this case the J(P) is a monotonicaly
decreasing function of P so that if reasonable load balancing is achieved among the threads of contre6
then the processors are used efficiently. When E = O(P 2 ) then there exists an optimum number
of threads of control which minimize the expected workload per thread, and uv(P) is relatively flat
around that minimum. If the characteristic function E = g(P) is eithcr a polynomial of degree
n > 3 or similar type of behavior, then tw(P) exhibits a minimum for a lower value of P0pt and
w( Ppt) is higher than in the previous case. The efficiency of computations in this class is rather
sensitive to the choice of P, the number of threads of control.
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FIGURE 3: The expected work per thread of control fv(P) function of the number
of threads of control, P, for a parallel computation of a fixed problem size with

E = O(P) according to equation (2.23).
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FIGURE 4: The expected work per thread of control Z'(P) function of the num-

ber of threads of control, P, for a parallel computation of fixed problem size with

E = (9(P 2 ) according to equation (2.24).
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2.5 The speedup

The speedup S(P) is defined as the ratio of the computation time with one thread of control to
the computation time with P threads, P > 1, that is

T(1) (2.25)ST())

First observe, that according to (2.21),

S(P) = 0 0t. (2.26)

Similar results have been reported, see for example [31, but in the framework of the E/T model,
the speedup is equal to the expected number of threads active, performing work assigned by virtue of
the conservation law. The speedup is less than v, the expected number of threads running (active
or communicating). Since vact < v < P, it follows that

S(P) <_ P. (2.27)

Consider now the asymptotic behavior of S(P). From (2.16) and (2.20) it follows that

S(P) =W(1) T(p . (2.28)

W(P)

We introduce the efficiency, b(P) as the ratio between the expected amount of work per thread
of control using P threads, fv(P) = W(P)/P, and the work W(1) = Wcon. using one thread
(sequential execution), that is

W(P) (2.29)
PW(1)

Note that W(P) W(1). Hence

b(P) 5 1/P. (2.30)

The expected fraction a(P) of non-blocked threads in C(P) is given by

a(P) =f() 0 < a(P) < 1. (2.31)
P

Then we have

S(P) - b(P) (2.32)
b(P)

The study of the asymptotic behavior of S(P) when P becomes very large is reduced to the problem
of the asymptotic behavior of a(P) and b(P). From the definitions of a(P), b(P) and W(P). the
following conclusion can be drawn:

(a) For parallel computations with g(P) = O9(P), we have b(P) = 1/P + constant for large P and

hence S(P) < constant for a large number of threads of control.

(b) For parallel computation with g(P) = O(Pn) with n > 2, b(P) is an increasing function of P

and hence S(P) tends to zero asymptotically.
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Let us now consider the case of scaled execution [5) where the computation size increases linearly
with the number of processors (threads of control) used, namely

W(1)= O(P)

T(1) = O(P). (2.33)

Scaled speedup SS(P) is defined for scaled execution by equation (2.25). The quantities a(P) and

b(P) are analogously defined and relations (2.27) through (2.32) hold. The asymptotic behaviors

of b(P) and SS(P) in this case are as follows:

(sa) For parallel computation with g(P) = O(P), SS(P) is an
increasing function of P.

(sb) For parallel computation with g(P) = 0(P 2), SS(P) < con-

stant for large P.

(sc) For parallel computation with g(P) = O(Pn) and with n > 3,
SS(P) tends to zero for large P.

It seems reasonable to question whether scaled execution and parallel computations with g(P) =

O(P) are compatible with one another. A computation is called embarrassingly parallel if

W(P) = W(1) + constant, v(t) = P for to:5 t < T(P) -to

and

E = constant x P.

This terminology is especially appropriate if the constants involved are small. For these computa-

tions we have a(P) = 1 - 2to/T(P) which is asymptotically 1 and b(P) = (W(1) + constant/(P.

W(1)) which is asymptotically 1/P. Thus for embarrassingly parallel computations, we have

SS(P) = P + 0(1). (2.34)

Such computations arise when the work can be partitioned into P parts at the beginning and then

done completely independently by the processors. Thus we can achieve optimal speedup for such

computations.
Diiide and conquer algorithms may provide scaled speedup nearly as great. Let P = 2k and

assume conservatively that

1. The work after each division of the problem is the same as W(1).

2. The events take place only at dividing the computation up and recombining the results.

Then we see that W(P) !_ W(1) logP, E = O(P) and we compute that, asymptotically,

b(P) = log P/P
T(P) T(1) x 2logP
i(P) < constant x P

SS(P) = O(P/logP).
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In [3] the average parallelism was propos'd as a high level characterization of software structure.
The average parallelism is defined as the speedup, given an unbounded number of processors.
The previous discussion shows that there are parallel algorithms, such that S(P) or SS(P) tend
asymptotically to zero, hence the average parallelism does not provide a useful characterization of
such applications.

2.6 Analysis when E = g(P) is a convex function

The qualitative analysis continues with the case when g(P) is a convex function. Several algorithms
we have examined suggest that g(P) is often a convex function of P as well as increasing.

Theorem 2.1 If E = g(P) is increasing and convex function for P > 1 then W(P) is also convex.
Let P,,. be the unique solution of

P = [a + g(P)]/g'(P). (2.36)

where a = W(1)/O. Then S(P) is increasing for P < Psmax and decreasing for P > PmaX.

Proof We have W(P) = W, + 0 x g(P) so W(P) is convex if g(P) is. The speedup S(P)
may be expressed by

S(P) = T(1)/T(P) P W(1) + 0 x g(P)1 + [O/W(1)]g(P) W(1) + 0 × g(P)

W(l)/I

(W(l) + 0 x g(P))/(PI) (2.37)

Combine 6/W(1) into the constant 1/a and differentiate this expression to obtain

S'(P) = a + g(P) - Pg'(P) (2.38)
(a + g(p)2

Set g(P) = Ph(P) with h'(P) > 0 by the convexity assumption. Then we have

S'(P) = a-P 2h'(P) - [a + Ph(P) - P(h(P) + p 2h'(P))j/(a + Ph(P))2. (2.39)
(a+ g(p)) 2

Since h'(P) is positive, (2.39) is 7ero exactly once. A manipulation of (2.38) allows one to obtain
(2.36) as asserted by the theorem.

We may use this result to provide estimates of maximum speedups and the corresponding
number of threads of control (processors) for a few cases as given in Table 1. Note that the
speedups given are maximums, other factors (e.g., lack of load balancing) can make them smaller.

2.7 Additional workload due to algorithmic effects

To characterize the work required by a computation C with P threads of control, we have identified
two components so far, the intrinsic work, W,,, assigned to the threads by virtue of the con-
servation law and W,,(P) the work for communication and control. However, the transformation
from a computation C(1) with one thread of control only to a computation C(P) with P threads c
control, often introduces additional work called in the following algorithmic workload and denoted
by V,tg(P), i.e.. we have
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TABLE 1: Values of maximum speedups and corresponding Ps,, for
a W(1)/ = 106, 104, 102 and g(P) = P" for n = 1.5, 2, 2.5, and 3.

g(p) = pl. a = 106 e = 104 a= 102

Speedup 5291 245 11
Psmax 16000 736 34

g(p)=p 2  a=106  a=104  a=102

Speedup 500 50 5
Psmar 1000 100 10

g(P) = P 2-5  a = 106  a = 104  a =102

Speedup 128 20 3.2
Psma 213 34 5

g(P)-- p 3  = 106  a= 104  a= 10
2

Speedup 53 11.4 2.4
Psmax 79 17 4

W(P) = Wcon + WCI(P) + Waig(P). 10)

We study alternative parallel ways to do the same work and exclude from considering complete
changes of algorithms. However, we do allow the work to be transformed in various ways using
simple equivalences of operations. Specifically,

C(1) = 4 * 5 9 * 412

is equivalent to CA(2) defined by

Thread 1 Thread 2

4 * 5 = 20 9 *412 = 3707

20 * 3707 = 74160

but is not equivalent to CB(2 ) defined by

Thread I Thread 2

log 4 + log 5 = 1.301 log 9 + log 412 = 3.569
Blocked 1.301 + 3.569 = 4.871
104871 = 74160
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Similarly

C(1) = sort (listl), sort (list2), sort (list3), concatenate (listl,list2,1ist3)

is equivalent to CA(2) defined by

Thread 1 Thread 2

sort (listi) sort (list2)
sort ! ii3) concatenate (listl,list2) = list4

concatenate (list4,list3)

The question of when two computations are equivalent is a subtle one, which we do not attempt

to make precise here because most parallelizations of algorithms introduce new work, called WaIg(P)

above. However, this concept is useful in heuristic discussions of the work of different algorithms

for the same task. The range of possible effects of parallelization of an algorithm are very large,

but there seem to be two common ones. Later we examine realistic algorithms in some detail, but

here we consider a simple algorithm.

(a) Algorithmic overhead associated with individual events. An algorithm may have internal infor-

mation that needs to be updated when new external information is received. For example, an

iteration on one domain receives values from an adjacent part of another domain. These val-

ues affect the error estimates along the domain boundary, which in turn, affect the estimate of

convergence ratio and relaxation factors. All these estimates and factors must be recomputed

when new information is received. A very high rate of events could distort the computation

until most of the work done is recomputing these estimates and factors, instead of carrying

out the iteration. This example of algorithmic overhead behaves like communication and

control work (indeed, the update computations are to control the numerical behavior of the

iterations).

It is plausible to merge this work into W,, even though it appears to be algorithmic work.

There seems to be no advantage in carrying along two independent sources of work propor-

tional to the number of events.

(b) Algorithmic overhead associated with (long) event free periods. The computation in one thread

might profitably use information from other threads to reduce its algorithmic work. For

example. a search party of 10 men covering an area will be forced to have all 10 men search

the entire area unless there is communication between them about which areas have already

been searched. Many analogs of this simple situation exist in computational search algorithms.

Another example occurs when long periods between events force one t1 .,,I to save data for

future communications, buffers or queues can become full, requiring extra work to save data in

special ways, or the thread can even become idle (introducing an unnecessary event) waiting

to empty space for saving data. A more subtle example is a set of parallel iterations where long

periods of no communication means that the iterations are running but not accomplishing

anything useful.

The average event interval is T(P). P/E and this type of algorithmic overhead is modeled by

,,Ig(P) = 0 (T(P) P) (2.42)
E
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Thus, W,,gg(P) is proportional with the expected time between successive events. The larger
this interval, the more likely it is that a thread will perform unnecessary work, or it will
duplicate work done by another thread.

This informal presentation shows that the avoidance of additional work for the algorithm occurs
only in embarrassingly parallel computations.

Note that long event-free periods are usually associated with other types of undesirable effects
besides work duplication, effects related to practical implementation of partial computations on
real machines with finite memory. Whenever the lifetime of partial results defined as the interval
between the instance partial results are produced by thread 0' and the instance they are consumed
by thread 03, is large, then the memory requirements for C become substantial as observed in [101.

The algorithmic workload and the lifetime of partial results discussed in this section are difficult
to be captured and they will be largely ignored in this study. But it is conceivable to assume that
a second conservation law of the type

WC(P) + W01g(P) = f(P) (2.43)

is valid and captures the effect that for a given P the sum of the work for communication and
control and algorithmic work is constant and any gain obtained by reducing the number of events
is compensated by increasing the level of work duplication.

2.8 Extensions of the model to non-SPMD computations

The SPMD parallel computations are homogeneous, all threads of control k6. 1 < i < P. ex-
hibit similar behavior. In the framework of the E/T model, this translates into the fact that the
characteristic functions of all threads of control g'(P) are identical

g,(p) = T 1 < i < P. (2.44)Pg(f)

In case of non-SPMD computations, the dissimularities among different threads of control is re-
flected by a partial ordering of threads, based upon the number of events associated with each
thread. Call Ot the thread which has the laTgest number of events. In such a case, the E/T model
requires one to identify the thread 6t and to study its characteristic function gl(P). Of course,
things can become even more complex when the thread with the largest number of events is data
dependent or its behavior changes widely with the data.

3 Quantitative Analysis of SPMD Parallel Computations

In this section we focus upon quantitative analysis of a parallel computation C and attempt to
estimate measures of performance such as speedup, execution time, processor utilization, etc. Such
an analysis is possible only if C exhibits only limited data dependencies. Dynamic computations
in which the actual sequence of events in every thread of control are data dependent lead to an
intractable analysis. Fortunately, most SPMD computations satisfy this condition, while the timing
of different events in a thread of control may change depending upon the data, the actual sequence
of computations and events occurring in a thread of control is invariant to input data.

First, we consider a static analysis which is an analysis of the mapping from a directed acyclic

graph, D to C. The computation and communications workloads can be analyzed at different levels

as discussed in the overview. The effects of synchronization and blocking are not captured by
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the static analysis. The dynamic analysis is concerned with schedules which associate times with
events. At this stage a detailed knowledge of the hardware is necessary.

The transition from the static to the dynamic stage of the quantitative analysis is difficult.
A "superposition" property which would allow the extension of results obtained in stage one to
stage two would be desirable but it seems that the occurrence of such a property is an exceptional
event. Some of the problems encountered in this area are due to the difficulties to estimate the
communication time between two processors, 7ri and 7rj. This time depends upon factors as

(a) The architecture of the system H and the number of processors in the system n. For example
if we call - the communication delay for a message of unit length then r(n) is of the order of
V/f for a grid, log 2 n for a hypercube and n for a ring interconnection network.

(b) The communication software, the communication protocols, the routing strategy, etc.

Effects unrelated to the parallel computation C but determined by the need to share resources in
a multiuser system can only be considered during the dynamic analysis. Such effects are: fragmen-
tation in communication, the need to split a large message into a number of packets, or processor
sharing, in case of multiuser systems. These effects are extremely difficult to be captured by any
model.

While static analysis is often susceptible to an analytical approach the dynamic models only
rarely lead to a tractable analysis. Often dynamic models can be validated only through the
process of monitoring C. Static analysis may be useful to make decisions concerning scheduling in
a multiuser e vironment. For example if the thread 0' expects a large message from the thread
6 then the 2rating system of the node where 0' runs may suspend it. run another process and
return to it tter the message has been received. Performance measures as the average degree of
parallelism, [3] are clearly related to stage one in our approach and can be used successfully to
make scheduling decisions as pointed out in [14].

3.1 Static analysis - Mapping in the E/T model

Mapping in the context of the E/T model is the process of deciding which computations and which
problem data are assigned to every thread of control of C. The two aspects of mapping, computation
mapping and data mapping are closely related.

Let us for the moment consider the general case when a parallel algorithm A is given as a directed
acyclic graph, DAG, D = (V,A) whose nodes di E V are computational tasks with given workload
requirements and whose arcs, ai E A, represent both temporal and functional dependencies. In
addition, the arcs have associated with them communication load requirements. The mapping of
the DAG P to a parallel computations C is a process of deciding how many threads of control should
C have and how different nodes of -D will be assigned to the threads of control. The computation
mapping consists of the following steps

(a) Choose the number P of threads of control ( i , 1 < i < P.

(b) Group together a number of nodes of P and assign them to 6'.

The data mapping is the process of assigning problem data to different threads of control. Data
mapping follows computation mapping and allows us to

(c) Define the sequence of actions performed by every thread 0'. 1 < i < P.
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(d) Determine the sequence of events associated with every thread 0', 1 < i < P.

Note that the SPMD execution corresponds to the case when the computation mapping assigns
all nodes of V to every thread of control Oi. The data mapping makes the execution of the P
threads of control different.

Formally, the computation mapping is described as follows. Denote by N the number of nodes

of D = (D,A), N = IDj. Then the work associated with the DAG, D is characterized by a N x 1
vector Wp

WD = [w] (3.1)

with wj the work associated with node d3 E V. The mapping from D to C is characterized by the

(P x N) computation mapping matrix MD

MD = [mi] (3.2)

with

m i = 1 if dj is mapped into 0', 1<i<P and 1<j N (33)
mij = 0 otherwise.

The integer m{ = EN mij is called the grouping factor of 09 and represents the number of

nodes of D assigned to 0', with 1 < i < P.
The data mapping associated with a domain 5 decomposed into K subdomains, bj, is charac-

terized by the (P x K) data mapping matrix QB

Qt; = [qjj] (3.4)

with

qij = 1 if b, is mapped into 09, 1 << P and 1<j_ N (35)
qij = 0 otherwise.

The work performed by C(P) is characterized by a P x 1 vector Wc,

Wc = [to' (3.6)

with wi the work assigned to 49 by the mapping M. Clearly,

WC = MPWv (3.7)

N

w i = mijw j .  (3.8)
j=1

We consider a nondeterministic model and assume that the work process of E) is stationary

and the random variables wj, I < j :_ N have mean PD and variance aD. The assumption of a

stationarity process is common in the analysis of stochastic processes and it is necessary in order

to promote tractability of our model. In general, the wi are dependent random variables and their

dependence is characterized by the work covariance matrix of V, a

=[(0,2 hJl (3.9)
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with

2 = Cov(w,,u). (3.9')

If we assume that the work process associated with the DAG V is stationary, it follows immedi-
ately that the work process associated with the mapping C is also stationary. The random variables

w i with 1 < i < P have a distribution with mean I' and variance a' such that

P' = miPD (3.10)

(a 2 =m2 2+ Coy (Wj, Wk). (3.11)
j=1 k=1

The work covariance matrix of C is ac defined by

a = [(Oaj] (3.12)

with

ac)ij = Cov(wwJ). (3.13)

An important aspect of mapping is related to load balance. Intuitively, it seems desirable to
assign to every thread of control an equal amount of work with the hope that such a load balanced

mapping will eventually lead to the shortest possible execution time and to the best possible

utilization of resources. An SPMD computation seems an ideal case from the load balance point

of view since in this case all threads of control have assigned to them identical workload. But data

mapping makes the execution different, the actual instruction execution sequence in each thread of

control is different due to data dependencies and a perfect load balance is unlikely to be achieved.

For this reason we consider a nondeterministic analysis and regard the workload associated with
any thread of control as a random variable.

In addition to such algorithmic load imbalance effects there are non-algorithmic causes such

as hardware failures and retrys, message retransmission, etc. To characterize the load imbalance

associated with any given mapping we introduce a load imbalance factor, A defined in the following.

Denote by Y the workload associated with the most heavily loaded thread of control.

Y = max(wI,' ..... wi,...,wP). (3.14)

Call Y the expected value of the random variable Y and call -CV the mean value of pi defined as

1P

S '- .(3.15)

Then A is defined implicitly as

V= ,(l + A) (3.16)

In this expression wv is the expected workload per thread of control and Y is the expected workload

of the most heavily loaded thread of control.

To conclude this section we summarize, the parameters which may be used to characterize

statically a parallel computation C, in addition to P, E and W(P), which have been discussed

previously.
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X - The number of events in the thread of control 'k', 1 < i < P.

i - The amount of work performed by the thread Oi between two
consecutive events ejand ej, for 1 <-i < P, 1 < K

ai - The expected amount of work associated with an event in
thread 46, computed as the mean value of a&, 1 < i < P,
1 < j < r

W i - The total workload associated with the thread 09, 1 < i < P.

Ai - The expected workload associated with the thread 0', 1 <
i<P.

- The expected workload per thread of control.

Oil - The amount of data transferred when the event e' in thread

0' occurs, 1<i< P, 1<j K'.

/3 - The expected amount of data transferred per event in thread

0', computed as the mean value of 13, 1 j

,3' - The total communication load associated with thread 0', 1 <
i<P.

- The expected value of B3.

A - The load imbalance factor.

Finally, we stress again that without the detailed information required to compute a schedule,
the performance of a parallel computation can only be estimated. Such estimates may be used
to compare different mappings Mi of a given algorithm A but no definite statements about the
actual execution time, the speedup and/or the efficiency can be made at the stage. Two examples
applying these ideas follow.

3.2 Examples

3.2.1 A parallel algorithm for matrix multiplication

Consider a parallel algorithm for matrix multiplication with P threads of control. This algorithm
is described and analyzed in [1]. Let A and B be two (n x n) matrices. The algorithm requireb
the partitioning of A and B into q2 disjoint submatrices Ai3 and Bjk. Each submatrix is of size
(m x m). The values of q and m are given by

q = p1 3

n = =- (3.17)
q =
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Without loss of generality assume that P = 2a and we have n = mq with a and m positive
integers. The algorithm proceeds as follows. For every triplet (i, j, k) compute

e(i,j,k) = (i - 1)q 2 + (k - 1)q + j. (3.18)

Clearly 1 < (i,j,k) < P when (i,j,k) E [1,q]. There are two steps:

A. Let the thread q/t( ij,k) perform the following actions

(Al) - Read the submatrix Akj with m 2 elements.

(A2) - Read the submatrix Bjk with m 2 elements.

(A3) - Compute the submatrix Cijk = Aim x Bik. This re-
quires 0(m 3 ) operations.

B. Organize the threads Ot with 1 < t < P as q2 complete binary trees such that /(i,k) will

compute

q

Cik = Cijk 1 < i < q, 1 < k < q. (3.19)
j=1

This addition is done in a pipelined manner. Each group of q threads 01( ijk) with i and k
fixed and with 1 < j < q computes the corresponding Cik.

An example with P = 26 and n = 12 is shown in Figure 5. Figure 6 shows the q threads of
control used to compute C1 , for this example.

For this algorithm the total number of events is

E = 3P + P(2- 1) = 3P + P1(2 P  ). (3.20)
q

Note the number of events per thread of control ranges from

t = 0(log2 q) when t= t(i1,k) to (3.21)
K = 0(1) when e= e(i,q,k).

The expected active period between two consecutive events is the same for all threads and it is
equal to the workload required to multiply (add) two submatrices of size m x rn

e = O(m 3 ). (3.22)

The expected duration of an event varies from

3' = Q(m) when t = t(i,,k) to (3.23)
-3 = Q(m 2q) when t = (i,q,k).
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1/ B12  B13  B14

A21  A22  A23  A24  B22  B23  B24

A31  A32  A33  A34 B32  B33  B34

A41  A42  A43  A44  B42  B43  B44

C] 2  C13 014

021 C22 023 C24

031 C32 033 034

041 C42 043 C44

FIGURE 5: A parallel algorithm for matrix multiplication, with P threads of control.
(P = 64, n = 12, q = P'1 3 - 4, m = a=3).

p
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Start Read Read Multiply Read Add Read Add Write
Cil= C1 = Cli =

A,,1  BI,k Ail x Blk Ci,2 ,k Ci,1,k + Ci,2,k C" C1 + C" c1'

Ai2 B2,k Ai,2 x B2,k

Ai,3  B3.k Ai,3 x B3,k C,3,k Ci.4k

Ai,4  B4,k A,,4 X B4,k

FIGURE 6: The pipelined algorithm for matrix multiplication. The time series of
events are shown for q = 4 threads of control which compute C11.
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3.2.2 A parallel algorithm for banded matrix LU decomposition

The next example is from a concurrent algorithm for banded matrix LU decomposition. A detailed
discussion of this algorithm can be found in Chapter 20 of [4] where its implementation on a
hypercube is analyzed. The solution of many PDE's can be formulated as the solution of the linear
systems of equations

AX = B (3.24)

where A is a banded M x M matrix with bandwidth b and where X and B are M x n matrices of
n solutions and free terms, respectively. Only the case when

1 << b << M (3.25)

is considered here. To solve (3.24) a window of size m x m (m = 2b + 1) is defined and an iterative

algorithm is used as follows. At iteration k the window covers the submatrix consisting of rows k

to k + m - 1 and column k to k + m - 1. The process of solving (3.24) consists of three steps.

1. An LU decomposition of A is performed. During the k-th iteration, the following transfor-

mations are made:

Set

Lkk =,

and
Ak+i k

Lk+lk= k,k < i <m. (3.26)

Ak,k'

Uk,k+, = Ak,k+j, 1 i < m

and

Uk+ik+, =Ak+,,k+j-Lk+i,k'Uk,k+), I i<m-l, l<jm-1.

2. A forward reduction of B is performed by

Bk+ij = Bk+i., - Bk,,Lk+ik for 1 < i < m, 0 < i < n - 1. (3.27)

3. A back-substitution from last to first now generates the solution by

Bk.kX , = k , < j< b- 1,

Bk_,. = Bk-ij - XkjUk-i, 2 . (3.28)
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In this presentation, only the LU decomposition (Step 1) is analyzed. The LU decomposition
takes a square matrix A and performs an in-place transformation. The L matrix overlaps the lower
triangular part and the U matrix overlaps the upper triangular part of A, including the diagonal.
The m x m window slides along the diagonal such that at step k the k-th row forms the upper side
of the window and the k-th column is the left hand side of the window. To simplify the presentation
of the algorithm, assume that the current iteration k satisfies the condition

k mod m = 0 (3.29)

and that the matrix element Ak+i,k+j is assigned to the thread iq+JI with

il = i mod q, j, = j mod q, (3.30)

where q = VT. This assignment of the matrix elements corresponds to a scatter decomposition as
described in [4]. Our analysis corresponds to the case when the size of the window m is a multiple
of q and when no pivoting is necessary. In this case n = mn2/q 2 = m 2 /P elements of A are handled
by every thread of control 0'.

The k-th iteration proceeds as follows:

Step 1. The main diagonal element is updated by €o as

1
Uk,k = (3.31)

Step 2. The k-th row of A is updated by

Uk,k+i = Ak.k+i, 1 < i < m - 1. (3.32)

This requires no computation and no communication.

Step 3. The k-th row is transmitted. Each 6' with 0 < i < q - 1 multicasts v' / elements to
(q - 1) related threads 6i+lq with 1 < j <_ q - 1. This stage requires q(q - 1) events and no
computation.

Step 4. The k-th column of A is updated. The threads o'q with 1 < i < q - 1 compute

Lk+j,k = Ak+1 ,k • Uk,k with 1 < j < rn - 1. (3.33)

Here (m - 2) computations are performed. The total amount of work per iteration is a =

I + (m - 1) + 2(m - 1)' = 2M 2 - 3m + 3. The total number of events per iteration is

K = 2q(q - 1) + q' = 3q 2 - 2q = 31' - 2V". (3.34)

The expected amount of work per event is

2m 2 - 3m + 3
a, = (3.35)

The expected amount of data transferred per event is 3 =V7. Since M iterations are needed

and P events are involved in the start-up process, we have

E = A (3P - VPF) + P = P(3A + 1)- VTI'M. (3.36)
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3.3 The dynamic analysis - Schedules in the E/T model

During the previous stage of analysis only static estimates of the performance of parallel compu-
tation C can be obtained since so far the model does not include the concept of time. To extend
the model we have to consider a parallel hardware 7j with n processors, 7ri, 1 < i < n such that
n > P. A schedule in the sense of the E/T model is a mapping of every thread of control 0) to a
processor iri.

If detailed information concerning the architecture 'H is available then a schedule can be con-
structed and accurate performance data can be obtained. Following [11] a schedule means to decide
for every node of the DAG associated with the computation, C the processor and the time when
the node could execute. In the context of the E/T model, creating a schedule means to determine
when every event will occur and how long it will take. The information about the processing speed
will allow us to map the amount of work between two consecutive events in a thread of control into
the corresponding execution time. The information about communication speed will allow us to
map the volume of data to be transferred into a communication time. In this case the time when
every event ei occurs is well determined.

Note that at the time a schedule in the E/T sense is constructed, in addition to the algorithmic
events, the events required by the mapping process, new events may need to be considered. Among
the classes of new events we recognize

(a) Events related to the monitoring of C. The next section will discuss in detail this class of
events.

(b) Events related to different functions of the operating system. Is is conceivable that in the
future more sophisticated operating systems for parallel machines will allow multiprocessing.
In this case events related to processor scheduling, memory allocation, etc., will affect the
performance of any computation C.

Consider a thread of control O assigned Lo processor 7r' and define the following quantities
related to 0', 1 < i < P, and to C

a _ The interval of time 0' is active, following the jth event e' in
thread €'.

a - The expected active time of 0' between two consecutive
events.

5 The expected active time of C between two consecutive
events.

,3j' The duration of the jth event e' in thread V.

- The expected duration of an event in 0'.

J - The expected duration of an event in C.
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-y - The expected ratio, -, of suspended time to active time in

thread 4'.

- - The expected ratio, , of suspended time to active time in C.

If k is the expected number of events per thread of control then the average fraction 71(P) of
the lifetime of a thread of C devoted to computation is given by

S (k- 1)& 1
(R - 1)6 + 1 -"y(P) (3.37)

As expected 77(P) -* 1 when -(P) -- 0, i.e., when << d, or suspended time is much less than
active time. In the case of a one-to-one mapping from threads of control to processors qf represents
the average processor utilization for C.

The speedup is given by (2.25). We have T(1) <_ P(k - I)& with equality when WaIg(P) = 0.
Clearly we have

T(P) =( - 1)& + FO ; R+ i3). (3.38)

and hence we have the bound

S(P) = T(1)/T(P) < Prq(P). (3.39)

The last inequality shows that a low processor utilization leads to low speedup, as expected.

3.4 Monitoring parallel computations

A model of a physical system (process or phenomena) is an abstraction which distinguishes between
essential and non-essential aspects of the system being modeled and attempts to predict the behavior
of the system using a small subset of essential parameters. To validate a model means to compare
predictions of the system performance obtained through the analysis of the model for a particular
set of input parameters, with actual data gathered from observations of the real system.

In this section some of the issues pertinent to the validation of the E/T model are discussed and
it is argued that the parameters necessary for the validation of the model of a parallel computation
C can be obtained easily through monitoring. A detailed discussion of monitoring as well as a
formal model for the monitoring process and an architectural model for software and hardware
tools for monitoring parallel and distributed software is presented in [8]. Here we discuss only the
relationship between monitoring and validation of the E/T model.

The E/T model characterizes a parallel computation C at two levels, at the thread of control
level when information about one thread of control is necessary for the model and at the global
level, when the entire collection of P threads of control are taken into account. At the first level,
the total number Ki of events in thread Oi, as well as the mean time &' between two consecutive
events, and the mean duration fi of an event, are the parameters of the model. How .', d' and 13
can be obtained directly by monitoring the execution of 0' is shown later.

At the global level data concerning all threads of control must be gathered. While the global
level characterization of C is not qualitatively different at the thread of control level, the validation
of the model through monitoring does require a much larger volume of data to be collected and
analyzed. Hence this type of characterization becomes more difficult to validate for massively
pa-allel computations when a large number of threads of control must be monitored and analyzed.
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Note also that in case of SPMD parallel computations, all threads of control exhibit quasi-identical
behavior and monitoring a sampling of threads (or even one) can provide enough information to
estimate accurately the global level characterization of C. For other types of parallel computations
(non-SPMD) it is rather difficult to extrapolate the knowledge acquired through monitoring one
thread of control to the global characterization of C.

Monitoring a parallel computation C is the process of recording the events of interest which
occur during the lifetime of processes running different threads of control of C. A monitoring event
is defined [8] as a change of state of a process. An event is "of interest" depending upon the goals
of the monitoring process. Monitoring the execution of a parallel computation C is necessary for
debugging a particular implementation of C and for performance evaluation. During monitoring
each event of interest generates a trace record which contains all relevant information concerning
the thread, e.g. the type of event, the time of the event, the state of the process, etc.

The definition of a monitoring event is more general than the one discussed so far in the context
of the E/T model. For example "I = 5" can be defined as an event of interest for monitoring, it is
indeed a change of state of the corresponding process since a new value is assigned to the variable
I, but it is not an event in the sense of the E/T model since the corresponding thread of controi
does not change its state as a result of this assignment. However, as soon as a change of state of a
process is designated as an event of interest and it is decided to monitor it, then this monitoring
event becomes also an event in the sense of the E/T model since monitoring means an interruption
of the original flow of control done to record the pertinent trace data. On the other hand, any event
in the context of the E/T model corresponds to a change of state of the process which embeds the
corresponding thread of control, hence it can be monitored.

A first important conclusion of this discussion is that there is a one to one mapping between
monitoring events and the events defined in the context of the E/T model. In other words the
E/T model is "observable" through monitoring, all the parameters required by the E/T model can
be obtained as part of the trace data gathered through monitoring. A second conclusion is that
monitoring a parallel computation may affect the timing of events as well as the total number of
events in the original computation. This is an undesirable effect associated with every process of
measurement.

3.5 Monitoring the performance of iterative methods on a distributed memory
system

An experiment to study the performance of iterative methods on a distributed memory system
is described in detail in [9]. The experiment uses the parallel ELLPACK. PELLPACK system
developed at Purdue [6], running on a 128 processor NCUBE. The TRIPLEX tool set [7] is used
to monitor the execution and to collect trace data.

The purpose of the experiment was to collect detailed information concerning the execution of
a particular SPMD application, to study how this data relates to the high level characterization
of parallelism in the framework of the E/T model, and to investigate how similar or dissimilar the
behavior of the threads of control of an SPMD computation are.

The experiment monitors the execution of the code implementing a Jacobi iterative algorithm
for solving a linear system of equations, an important component of a parallel PDE solver. To
ensure a load balanced execution, the domain decomposer, part of the PELLPACK environment.

attempts to assign to every PE an equal amount of computation. A careful selection of the interface
points of the neighboring domains is also necessary in order to achieve a balanced communication.

The experiment was conducted by taking a problem of a fixed size and repeating the execution
with i ,mber of PEs ranging from 2 to 128.
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The detailed behavior of all threads of control was captured by recording all the events, marking
changes of state for every thread. For every event the TRIPLEX tool creates a trace record,
which contains the pertinent information about the event, type, time stamp, PE, amount of data
transferred, etc. All the measurements reported are based upon a clock with resolution of 0.1 mcr.
To minimize the volume of trace data, only events related to communication and control wore
r'c..ded. Even so, the trace data collected during a single experiment with 128 PEs amounted to
about 25 Mbytes.

The raw data were processed in several stages. First, the events outside the scope of Jacobi
iterations were filtered out. Then a preprocessing to gather the data required by the E/T model
was performed. The active time between events, the duration of an event (read/write) and the

length of a blocking period, were obtj&ined by correlating local events, events occurring in the sa roe
thread (on the same PE). The time for communication and control was computed as the difference
between the duration of an event and the length of its blocking period. To compute the algorithmic
blocking (defined as the interval from the instance a read is issued until the corresponding write
takes place) it was necessary to correlate non-local events, events involving more than one thread.
Finally, a statistical processing was performed in order to obtain data as described in Section 3.3.

Preliminary results indicate that in spite of all the precautions to achieve a well balanrcd
communication, the behavior of threads of control can be con.iderably different. The number of

events, the active time, the total read time per thread, may be within a factor of two from on,

thread to another as shown in Figure 7 for the expected active time. Figure 8 represents the
characteristic function g(P) of the parallel computation, which indicate a O(P2 ) behavior. This
happens, since at the end of every iteration a global communication implemented as broadcact-
collapse takes place in order to communicate values between threads of control. There is also) a
global exchange of information every few iterations to obtain information for convergence contr,,I.
While this could be done by fan-in, fan-out communication in principle, the NCUBE system focs
the use of broadcasting which is another source of 0(P 2 ) events. One familiar with Jacobi itera'ion
would not expect g(P) = 0(P 2 ). This behavior arises primarily because the NCUBE system dos
not provide adequate communication utilities, one must use a broadcast when one actually wants
to do a multicast to just a handful of "nearby" processors. Using the system provided "supposed'"
multicast facility actually increases the communication time, because it is implemented using a
broadcast. The allocation of threads of control to actual processors can also affect g(P), while the
optimal allocation for this problem is NP-hard in general, there are heuristic algorithms which
keep the distances between actual processors to a reasonable level. The expected active time por
event decreases linearly (Figure 9), while the write time is essentially constant (Figure 10).

The read time per event experiences a sharp increase (Figure 11) and most of it is due to the
algorithmic blocking (Figure 12). The active time fraction of the total non-blocked time decrea,,s.
die to the 0(P 2 ) of the number of events per thread (Figure 13).

These results, though preliminary, seem to indicate that the point of view taken by the 1- I"

model, namely, that the work for communication and control is essential in understanding tIe
behavior of parallel computation is well motivated. The measured speed lip of a parallel conpu tati,,n
C may be disappointingly low, even when a high PE utilization is observed, simply dle to th
overhead associated with communication and control. This overhead is difficult to measure, but it
can be estimated when q(P) is known.

Further experiments are necessary to establish a sound relation between the algorithmic blocking
and g( P). The present data show a strong interdependence between the two.
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4 Conclusions

It is extremely difficult to provide concise characterization of parallel computations, invariant to
problem size and especially to the architecture of parallel systems. The E/T model of parallel

execution is best suited to the important class of SPMD applications and provides little or no
insight for dynamic computations where data dependencies affect the sequence and possibly the
number of events in a thread of control.

The characteristic function E = g(P) defined by the E/T model, is less sensit: v, to the architec-
ture of the parallel system and the problem size than other types of high level characterizations of
parallel computations. It allows a uniform treatment for both message passing and shared memory
paradigms. The average workload per thread of control, kv(P) provides a signature of a parallel
computation and allows interesting conclusions concerning the asymptotic behavior of different
classes of parallel computations.

The E/T model allows quantitative characterizations of the model as well. The static charac-
terization is based upon the computation and data mapping and it is insensitive to timing charac-
teristics (instruction execution rate, communication speed) of the parallel machine, but it does not
capture the effects of blocking and synchronization.

A final strength of the E/T model is its closeness to the experiment. Monitoring tools typically

provide precisely the data required by the model. The measurements reported in the previous

section capture the detailed behavior of all threads of control of a parallel computation in a PDE
solver. A preliminary analysis of the measurements shows the effects of the additional work for
communication and control and of blocking. For a problem of a given size, the fraction of the time

a PE is active, working on W,, to its total running time, including work for communication and
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control, decreases when the number of PEs increases under these conditions. The actual shape
of both functions seems closely related to g(P). Further investigations of other parallel compu-
tations and comparisons of results obtained from running the same computation on distributed
memory and shared memory systems, are necessary to gain insight into the relationship between
the characteristic function g(P) and other measures of performance.
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Abstract

We discuss implementations of block algorithms for recursive linear least squares problems (LLSP) on

a linear array of p processors. A recursive least squares problem is a composite task that involves trian-

gularization of the data matrix and solution of the resulting triangular systems of linear equations. These

two problems when mapped on to a linear array of processors have different communication requirements
that may lead to a high communication overhead for this composite problem. In transforming the data

matrix to a triangular form, we consider the sliding rectangular window approach to eliminate the influ-

ence of old data on the current solution vector. This approach involves both updating and downdating of
the data matrix. The back-substitution process is normally used for solving the triangular system. How-

ever, as the back-substitution process is communication bound, we also consider updating and downdating

of the inverse of the triangular factor directly and hence replace the back-substitution process by direct

matrix-vector multiplication. We discuss block and wrap mappings of the data matrix onto a linear array
of processors. The effects of each mapping on the overall execution time are also discussed. We propose

ways to decrease the execution time by modifying the algorithms for this problem. We present results of

numerical tests on a linear array of transputers.

* This work was supported by the ARO grant number DAA L03-90-G-0092
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1. Introduction

Let A be a full rank m x n matrix, and let b be a real m dimensional vector. In the linear least

squares problem (LLSP for short), we want to find a real n-dimensional vector x such that

IAx- x - b112 = rin 11A- y - b112 . (1.1)

The first step in solving LLSP is to reduce A to the upper triangular form R by applying an orthogonal

transformation Q to the matrix A. Then the problem (1.1) is equivalent to the problem of finding x such

that

fIR-x -c1 2 = n IIR-y - 112  (1.2)YER*

where c - b. Now (1.2) can be solved by the back-substitution process.

Suppose now that the new data matrix (X bx) is to be added to the matrix (A b). Let

(Atel b =(A b ). The new problem to be solved is the following:(A ., b () X bx)

A x,.., - b,,.,112 = min IIA,,v • y - b .,,II 2. (1.3)
YER.

It is easy to see that x,.., satisfies the following equivalent relation:

b,.. ,112 = min (R) .y_ (b) c (1.4)

Thus, while solving the new problem (1.4) we can exploit the fact that we already know R. What

remains to be done is to transform (R) to upper triangular form. This is known as the updating problem.

Similarly, suppose that a subset of rows in the data matrix is no longer representative to the behavior

of the system and should be removed from the data set. Formally, let (A b) - (Ac1 et bcgyef )
Then we would like to solve the problem (1.3) where A,.. and b,, are replaced by Ac,,... and bc ...

respectively. Again, we would like to exploit the fact that we already know R. We are now looking for an

orthogonal transformation P such th,

where H is upper triangular. This is known as downdating.

In applications, we often want to remove an old data set, add a new data set and possibly repeat this

process over and over again. In signal processing, this combined process of updating and downdating is

referred to as a rectangular sliding window process. In the rectangular sliding window approach at each

recursive step, we want to find an orthogonal matrix W such that

WT. bx 0 0 (1.6)

0 Y by
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where R is upper triangular. In (1.6), R represents the old window and R represents the new window in

the current step.

Once the new factor A is known, the corresponding triangular system of linear equations is solved.

The back-substitution process is normally used for finding the solution of this system. On parallel architec-

tures, back-substitution is communication bound. Thus, on system where interprocessor communication

is expensive relative to computation, back-substitution may increase the overall execution time. One way

around this problem is to work directly with the inverse of the triangular factor R. Then back-substitution

process can be replaced by a matrix-vector multiplication that is usually very efficient on any parallel

architecture. It is known that the transformations which update and downdate the triangular factor R are

closely related to those that update and downdate the inverse R - 1. We will consider two approaches to

update and downdate R-'. In the first approach, the transformations to update and downdate R- are

computed based on the factor R, the data to be added X, and the data to be deleted Y. In the second

approach, the transformations are computed based on R - 1 , X and Y. In this sliding approach, we will

compare these two approaches with respect to the execution time on a linear array of processors. The

important issue of numerical behavior will be considered separately in a companion study.

We consider two popular mappings, block mapping and wrap mapping. In block mapping the matrix

is partitioned into blocks of column with each block assigned to exactly one processor, and consecutive

blocks mapped onto consecutive processors in the array. In wrap mapping, consecutive columns are mapped

to consecutive processors modulo the number of processors. In general, block mappings lead to smaller

communication requirements and wrap mappings exhibit a better load balance. We compare various

strategies for solving recursive LLSP on a linear array of 8 transputers.

2. Up-Downdatings of Order k

One of the two major steps in solving recursive linear least squares problems is updating and down-

dating of the data matrix. We will consider this process where data to be added to the matrix consists of

k-rows and the data to be deleted consists of another k-rows (k > 1). Formally, given a nonsingular n x n

upper triangular matrix R, a k x n matrix X and a k x n matrix Y, where rank(X) = rank(Y) = k, we

want to find an orthogonal matrix W and an n x n upper triangular matrix A such that

X 0 (2.1)

Note that (2.1) implies that

iT rt = R +XTX _ yTy (2.2)

Thus as long as the right hand side of (2.2) is positive definite, the problem (2.1) is well-defined. The

problem (2.2) is that of finding the Cholesky factor after two rank-k modifications of RTR (one rank-k

addition of XTX and one rank-k deletion of yTy). We will call the joint process of rank-k updating and

rank-k downdating as up-downdating of order k.
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We can treat the problem (2.2) as a sequence of 2k rank-1 modification problems, k rank-1 updating

problems and k rank-1 downdating problems. Each rank-1 modification could be realized by a sequence

of n two-dimensional rotations (6]. Such an approach would require 2n" + 3n + 0(1) flops per rank-1

modification for a total of 2kn(2n + 3) flops. It is well-known that Householder transformations require

fewer operations than the corresponding sequence of rotations. If we treat (2.2) as a two step process

consisting of a rank-k updating followed by a rank-k downdating, then each step can be realized by a

sequence of Householder transformations in (k + I)n(n + 1) flops for a total of 2(k + 1)n(n + 1) flops, a

two-fold saving over the rotation based approach.

Recently hyperbolic Householder transformations have been proposed to realize the joint process (2.2)

of updating and downdating. Let -= diag (I,,, Ik, -I), then a transformation H is called hyperbolic with

respect to 4 if and only if

-- = Hr • •H. (2.3)

Note that if H is hyperbolic with respect to 0 such that

H (X = (2.4)

where A is upper triangular, then (2.2) holds. We will consider three algorithms for recursive LLSP based

on hyperbolic transformations.

3. Algorithms for Recursive LLSP via Hyperbolic Transformations

3.1 Algorithm A

The recursive algorithm for up-downdating of order k based on the hyperbolic Householder transfor-

mation is simple. The hyperbolic transformation H is constructed as a product of hyperbolic Householder

transformations -, (1 < z < n), where -, operates on X, Y and the 9-th row of R, i.e.,

H H ,- ...H , -• b x = 0 S "x (3 1 1)

by 0 by

and A is an n x n upper triangular matrix. The definition of a hyperbolic Householder transformation and

the way it can be constructed and applied to a matrix are discussed in section 7.

Algorithm A requires (2k + 1)n(n + 3) multiplications.

3.2 Algorithm B

Let us start with a procedure for the updating the inverse of a triangular matrix. The algorithm for

rank-1 updating of the inverse of the triangular factor R [6] can be extended to rank-k updating of the

inverse. Let R be an upper triangular n x n matrix, X be a k x n matrix, and H = H H,_ .. H, be a
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product of Householder transformations which transform the matrix (X) to upper triangular form. The

transformation H when applied to (R 0  gives R.t
- . To see this, let us consider the following identity:

I=(R - 1 0r).HT .H. (R

Note that because of the form of H, matrix R- I is upper triangular, hence it must be the inverse of

R. It can be shown that Z is such that ZTZ = R-IV r (I + VVT) - ' VR - T and V - XRl- 1.

The same idea can be extended to umdowndate R and R - r simultaneously. Let F = FF,- -.. <F,

be a product of hyperbolic matrices to up-downdate R with X and Y, respectively. The same F can be

applied to up-downdate R-r. Let

F - Xbx 0 bx •

Then

J=(R-1 Z T  WT).(o) X

i.e.

where WTW R- N r (I - )'N.
-T and N= YR -

This algorithm requires 2(2k+1)n(n+2) multiplications. The number of multiplications is almost twice

as large as that of Algorithm A, hence Algorithm B is not recommended for a sequential processor where the

number of operations determines the cost. However as the inverse lt - T is known, back-substitution can

now be replaced by matrix-vector multiplication. Matrix-vector multiplication, in general, requires less

communication among processors than back-substitution, thus potentially leadi-r, tr' a faster execution

time of the recursive sliding window approdch.

3.3 Algorithm C

Note that Algorithm B requires storing both matrix R and its inverse R-'. It is possible to operate

on the inverse R- without keeping the triangular matrix R. Algorithm C is based on the algorithm for

rank-I downdating of the inverse in [6].

Let us rewrite the rank-I: updating problem as:

RTR + XTX = TA (3.3.1)
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Assume that X is an 1 x n data matrix, then (3.3.1) is a rank-1 updating problem. Let us find a

sequence of plane rotations G,,,,,+t, G- t,,s+1, *, Gl,,+I, such that for G -G,n= G,, l ... Gl,, l,

0;(R1 X R T ) (Oui A - (3.3.2)

G,,.., (1 < I < n) is the Givens rotation operating in plane (i, n + 1) which forces the s-th component of

the first column of the matrix on the left in (3.3.2) to zero. Then 1 T is the inverse of the desired factor

in (3.3.1). It can be shown that ZT Z - R-V T (I + VVT)' VR - T and V = XR -1.

We can generalize the process (3.3.2) of rank-1 updating to rank-k updating by treating the rank-k

updating as a sequence of k rank-1 updatings. Assume that X is a k x n data matrix, and consider the

matrix
B _R-TX

" ]R- T )

I( kxn"

Let G! be the product of Givens rotations as defined in (3.3.2) operating on the top n rows and the (n+j)-th

row of B such that the first n components of the j-th column of B are zero. Then for G" = G" G " G"

G -(-R-TXT xR-7) = ( 0 j IA- r ) (3.3.3)

where A- I is the desired updated factor.

Similarly, we expand the same idea to rank-k downdatings. Let Y be a k x n data matrix and consider

the following equation:

RTR - yry l t, (3.3.4)

and the matrix

C(R-TyT 
R

-T )
C=\ Ik Okx,,

Let G" be the product of hyperbolic Givens rotations operating on the top n rows and the (n + ;)-th row

of C such that the first n components of the j-th column of C are zero. Then for Gd = GdGd_ l ...G

G Ik 0 ) - Ud W (3.3.5)

where A- T is the desired lower triangular factor. It can be also shown that WT W = R- INT (I - NNT) -'

NI-T and N = YR - '.

The combined process of (3.3.3) and (3.3.5) is an algorithm for up-downdating of order k of the

triangular factor. Let

RTR + XTX _ yTy = i-r '

and consider the matrix
/-R rT R- T Y T R- T d

D = I Ok O.f, bx .
0 Ik 0kx,, by

Let S), 1 < I < k, be the product of Givens rotations operating on the top n rows and the (n + j)-th

row of D such that the first n components of the j-th column of P are zero. And let 5,, k + 1 < J < 2k,
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be the product of hyperbolic Givens rotations operating on the top n rows and the (n + j)-th row of D

such that the first n components of the ( - k)-th cuoimn of D are zero. Then for S = SUk S2k - -S,

S. Ok 0k×, bx = U. P Z bx (3.3.6)0k Ik 0kx. by 0k Ud W br

where P is a square matrix and A-T is the desired factor.

This algorithm is based on Givens/hyperboli, Givens transformations, so it requires nk(8k + 5n + 17)

multiplications

4. Mapping

We assume that we are given a ring of processors. The processors are numbered from 1 to p with

the leftmost processor labeled P and the rightmost processor labeled P.. The data matrix is distributed

among processors. The mapping of the matrix onto the processors affects the communication require-

ments, the degree of concurrency and the load balance among the processors. The objectives to minimize

communication, maximize concurrency and uniformly balance the load tend to conflict [7].

There are two widely used mappings; 'block mapping' and 'wrap mapping'. In the block mapping,

contiguous blocks of n/p columns are assigned onto each processor, where n is the size of the matrix and p

is the number of processors. The first processor P, has the first n/p columns (column i to column n/p), the

second processor P 2 has the next nip columns (column n/p + I to column 2n/p), and so on. In the wrap

mapping, consecutive columns are assigned to consecutive processors from the first processor P, to the last

processor P., then wrapping back to P and continuing with further columns. In the wrap mapping, the

first processor P contains all columns J -p + 1 (0 < j < nip), the second processor P2 has all columns

-.p + 2 (0 <j < n/p), and so on. The two mappings are illustrated in Fig. 4.1.

Pi A r. 11. /:,: A(f A

* I 1* % 4A ~ (
%I

N '--- - J -

*I . " ,.~ t

(a) Block Ma,,ing (b) Wrap Mapping

Figure 4.1. Two Mappings for n = If and p = 4
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We will ccmpare the two different mappings in implementing Algorithms A and B and their effects on

the overall execution time of up-downdating followed by solution of a triangular system of linear equations.

At the i-th step of up-downdating (1 < i < n), the processor which is assigned the s-th column of the

matrix computes the corresponding transformation and sends the parameters of the transformation to the

processors that are assigned the columns whose indices are greater than '. In the wrap mapping, the last

processor P, receives the transformation from P,_ I and sends it to P, again if necessary. In the block

mapping, the last processor in the ring P, only receives and never sends transformations.

After applying transformations to its assigned columns, each processor becomes idle for the remainder

of the current step. The block mapping causes processors containing the earlier blocks to be idle much of

the time, whereas the wrap mapping keeps all processors busy as long as possible. Thus the wrap mapping

is likely to yield higher concurrency and processor utilization than the block mapping. On the other hand,

the block mapping has potentially smaller communication requirements, since transformations generated

by a processor need to be sent only to higher numbered processors, rather than all processors as in the

wrap mapping. Once the data matrix is triangularized, the resulting triangular system of linear equations

has to be solved. This is discussed in the next section.

S. Parallel Triangular Solver and Inverse of the Triangular Matrix

5.1 Parallel Triangular Solver

Back-substitution is used to solve the triangular system in Algorithm A. The serial algorithm to

compute the solution of R. x = b is as follows:

For 9 = n:i

x; = b, / R1
bt:,-tI = bt:,- I - Rj:_ ,1 .,- x,

end

where we use MATLAB notation: bl:,- 1 = [bj,b 2,--. ,b_] T , 1R:,.-., = [Rj,,,R 2 ,,, ,R, 1 _1,] T , R., is

the %-th column of R and R,. is the J-th row of R

Li & Coleman [41 and Heath & Romine [5] implemented the algorithms for solving triangular systems

on a hypercube multiprocessor. We adopt the Li & Coleman algorithm for solving the triangular system

in tLe wrap mapping of Algorithm A. In a naive implementation of back-substitution algorithm using the

wrap mapping at the t-th step, 1 < s < n, the processor PF, 1 < j < p, receives the vector b:, from the

right processor Pj.-, computes one component x, of the solution, updates the vector bt:,-t and sends the

updated vector bi:,-t to the next processor P- 1 . The computations of the algorithm are distributed over

processors. but are not executed simultaneously. There are no concurrent computations. Li & Coleman

have modified the algorithm so that operations can be overlapped. For details, see [4].

Heath & Romine developed a wavefront algorithm for the wrap mapping. In their algorithm, each

processor computes one component x, (I < I < n) of the solution, then proceeds to compute the vector

zsuml:,_ I = Rt:,-. ,, .xj. After computing the first a components (for some integer o" satisfying I < a < n),
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(a) Wavefiont Algotiyhm (b) Modified Wavefront Algorithm

in Wrap Mapping in Block Mapping

Figure 5.1. Snapshots of the Wavefront Algorithm

the processor P (1 < ) < p) sends them to the left neighbor Pj, -I so that the latter can compute the next

component. Meanwhile, the processor P resumes the computation of the next 47 components of zsum.

We modified the algorithm for the block mapping. Each processor, when ready, computes n/p components

of x. After the processor receives n/p components of zsiun from the left neighbor, it updates them by

multiplying the components by the corresponding n/p x n/p submatrix of the triangular matrix R and

sends them to the right neighbor, and so on. A snapshot of the wavefront algorithm for the wrap mapping

and a snapshot of the modified wavefront algorithm for the block mapping are illustrated in Figure 5.1.

5.2 Parallel Algorithm for Computing the Transposed Inverse of a Triangular Matrix

In order to avoid the back-substitution in Algorithms B and C, the triangular matrix is inverted during

initialization of the recursive process and then the inverse is maintained. The cost of computing the inverse

is high but affects initialization only. Here we propose a parallel algorithm for computing the transposed

inverse of a triangular matrix.

Assume that R is a nonsingular and upper triangular n x n matrix. Rt- is required in the initial step

of the Algorithms B and C. Let R.T = B. Then B,, = F R Tj,. Assume that T R- , B =I, so
k=1

R- T = T • R = I. T is also a nonsingular and upper triangular matrix. From R . T = II R,, = 1, ifS=J
F, RTtk, =0, if <j

Rk lRT =0, if > j

The elements of T are
I1/1R,, if=

Ti= ( K Tk)/ , ifs < J (5.1)

0, if 9 >j
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T I I I

Figure 5.2. Order of Computing L(- R - T )

Let L = T " 
- R - T. The elements of L are generated from top row to the bottom row. The order of

computation is shown in Figure 5.2.

A sequential code to compute (5.1) could look as follows:

For i : n
L,., = I1.

if&> I
lernpi;,- I = L,R:,- Lt

For k = - 1:-I: 1
L,. "-empk • Lk,.

ernpl:,k- L = erpiP- I +L,,k .R.:k-... (if k > I)

end
end

end

Assume that we are given n linearly connected processors P, (1 < I < n) arranged from left to right.

Let the S-th processor P store initially the 1-th column of R (RI.,.); at the end of the computations, it

will have the s-th column of L (L,:.,). The parallel version of the algorithm might look as follows:

L,,, = 1/ 1t,,,
lempi,_ - = LI,, RI:, - I,,

send femp-:,_I to P,- 1  (if I> 1)
For k = + :n

receive tempi:, from P , 1  (if t < n)

Lk, = -tempi • L,,,

temnPi:,- I = templ:,- I + Lk,, • Ri:i- I.,

send IempI:..-t to P,..L (if S> 1)

end

Processor P computes L,,,, calculates, - I components of the intermediate vector lemp, tempi,, -I

L,, RHt:, - t,, and sends them to the left neighbor P_ 1 . Next P receives lempi:, from the right neighbor

P, 1, computes L,,.,, and updates templ:,_1, and so on. The order of computing L,...,, in P, is shown in

Figure 5.3.

80



* I
I: !

I I

Figure 5.3. Order of Computing L (R -r) in Parallel

The transposed inverse L is lower triangular and can be conveniently stored together with the upper

triangular matrix R, forming a square matrix. The parallel algorithm for computing the transposed inverse

of a triangular matrix can be easily implemented in both the block mapping and the wrap mapping.

6. Transputer and Occam

The INMOS transputer is a high-speed parallel processor which combines processing, memory and

interconnect in a single VLSI chip. It contains 4 inter-processor links which provide high-speed commu-

nication. INMOS T800/20 is a 32-bit transputer with floating point processor which is able to perform

floating point operations concurrently with the processor, sustaining a rate of 1.5 Mflops [2].

A link between two transputers is implemented by connecting link interfaces on the transputers by

two one-directional signal wires, along which data is transmitted serially. Messages are transmitted as a

sequence of bytes, each of which must be acknowledged before the next is transmitted.

The test system has 8 transputers on two boards in a Mac IIx. Each board contains up to four

transputers and has one INMOS C004 programmable link switch designed to provide a full crossbar switch

between 32 input links and 32 output links. A message has to pass through the C004 switch once for

on-board communication, and twice for off-board communication. We configured the transputers as a

ring and measured the communication time for this configuration. We measured the time for sending a

64-bit message around the ring of 8 transputers 1000 times. Then the average time for the toral of 8000
communications was recorded as Tce,,. We also measured the execution time for the loop,

For % = 1:8000

y = xy + z
end

where all operations are double-precision (64-bit) floating point operations. In order to decrease the

overhead caused by the loop, the loop was modified by repeating 10 multiplications and additions within

the loop. The average computation time was recorded as T,.,. The ratio of the communication time to

the computation time of the system is,

Tco,,. 8.944usec- _______", 4.219.
TCoRP - 2.120u 1ec
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The communication time is about 4.219 times more expensive than the computation time in the

transputer system. The communication speed plays an important role in the execution time of paral-

lel algorithms. By reducing the communication requirements of the algorithms, even at the expense of

increasing computational work load, we may save the total execution time of parallel algorithms.

The main programming language supported by transputers is OCCAM. All programs were written

in OCCAM. Occam is designed to support explicit hardware concurrency and it reflects the concurrency

found in the transputer [9]. Although transputers provide implementation of most modern programming

languages, concurrency in transputer systems is most effectively supported by Occam.

T. Implementation of Hyperbolic Householder Transformation

In this section, we present a possible implementation of a Householder transformation. The variant

we consider is related to that suggested in [101.

We start with a definition of a hyperbolic Householder transformation. An n x n hyperbolic House-

holder matrix has the form

Hy = 4 - 2vvT/v r4v (7.1)

where 4' = diag(±1) and v is any vector for which v4v :$ 0.

In our recursive up-downdating 4 is of the form,

4= diag (1, IPI-I)

where the middle I. corresponds to rank-p updating and the last -I. corresponds to rank-q downdating.

Let c be a vector such that lic{t_* - c4rc is positive. Then the choice v = c : IIcjljet guarantees

1- = -ijcjjej, i.e., H can compress the hyperbolic norm of the vector c into a selected component of c.

Let us consider the l-th column of Eq.(3.1.1) in the k-th modification step. From (7.1), we have that

Hy* k fR.: \ (Rh,: - 2v, M4: / v4'&v
X.. =Hy - X.) = X:,: -2 2 p. MA: / v v (7.2)

-Y:.: + 2v, 2:,-,.Ml/v$&v

where Mk : vT. (Rf, X*,Y: ) T

Let

S : Rk . + iX:* - IIY:.k 112 =Rft2

sh= sqrt(Skkj,

and
Vq

SA: = Rk,kR.: + x,,AX,: - YA Y,,,.

According to the definition of v, v1 = cl ± cll. = Rk,k ± irk R.: can be represented as follows:
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R, -2 =Rk,: - 2(R=,± ± # -Rh _ -. (7.3)2~ hV 2sh(th ±Rk.) -

Then, using the above result,

:= x:, 2v 2 , 1 - = x:. -1 - 4 (R.: -VR,)
VI

and
Mky V p-*2:p+q ---

Y:- = Y: - 2 v,,:,,, + I =v = Y : " - (Rk.: - fk.:)

By defining V2:-, L = V 2 ;.+,-l/Vl, (7.2) can be represented as follows:

x:., - X:.! . (Rk,- - lk ,) . (7.4)

R&.h- is computed directly from (7.3). By forming the component ft.h., first, the other components,X.:

and Y,, can be formed in a straitforward way.

8. Implementations

We implemented the three algorithms for up-downdating on the transputer array. Figures 8.1, 8.2 and

8.3 show how the data is distributed in the transputer array for Algorithms A, B and C, respectively. The

figures show snapshots for the cases of a 16 x 16 data matrix, 4 processors and up-downdating of order 2.

The darkly shaded area represents data for which corresponding computations are finished and no more

changes will occur. The data in the lightly shaded area represents active data which is operated on. The

white area represents data that will be operated on.

Figure 8.1a shows the typical block mapping of the algorithm. The computations start from the left-

most node and propagate to the right. The other processors receive transformations, send them to the right

and update their own data according to (7.4). The rightmost processor only receives the transformations

from the left. The block mapping of Algorithm A has the simplest communication scheme. However the

load balance of the block mapping among the nodes is not as good as that of the wrap mapping. The wrap

mapping of Algorithm A is shown Figure 8.2b.

Algorithm B operates on the triangular matrix and its inverse. The transposed inverse matrix is placed

at the bottom of the triangular matrix. The computation load is perfectly balanced among processors.

The block mapping of Algorithm B has simpler communication strategy than the wrap mapping.

Each processor in Algorithm C computes its own partial products of -R-TXT and R-TYT of (3.3.6)

based on its own partial data R - T, X and Y. All partial pruducts in all processors have to be added to

construct the elements of -R-rX T and R-TYT. The nodes send their own partial products to the right

neighbors, receive the others' from the left, and then update their own partial products with the received

partial products. Then the nodes send the received partial products to the right neighbor, receive new

partial products from the left and update their partial products again. After repeating p - 1 times, all of
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Figure 8.3. Snapshots of Algorithm C (n = 8, p = 4 and k = 2)
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Table 9.1. Timing Results of Algorithm A (msecs)

a) Block Mapping

Size of Data I Proc 2 Poc 4 Proc 8 Proc
1 cd Up&&i 5.3U 4.9U 334 3.008

16 x 16 .2_cAi&. 3.960  7163 5.114 4.096
4 cal up&di 15.040 11.712 1.26 6.100

32 x l .ua_&,d 23.104 19.264 12.352 8.320

32x 32 2ccluTiW" 35.00 21.864 17.792 11.712
4cel iudzi 5, 816 47.552 28.800 18.5601

48x 48 2c d 77.312 63.360 37.561 23.104

4 ca UP&dn 130.176 105.088 61.248 37.120

- ,-, t 90.916 715.392 47.433 27.001
64x 64 2caiudl 138.112 11.256 69.561 33.720

4 caL u 232.763 115.721 114.560 62.656
- 140.1oo 115.963 71.360 40.31,

80 x 80 2cctup&t 214.336 173.8U1 106.240 5.560
4 co/ up"da 361.728 23.192 176.000 95.040

b) Wrap Mapping

Size of Data I Proc 2 Proc 4 Proc 8 Proc
I C UP&ln 5.813 &734 4.211 3.392

16 x 16.2ca._u..d s.960 10_2A0 6.20s 4.736
4 calup&41 15.040 16.960 10.112 7.424

.I l .u., 23.104 26.361 14.592 9.152

32x 32 2c upd. 35.00 40.064 21.696 13.114
4 ca up&dn 55.816 67.392 35.776 21.312

48x 48 2cclup&dn 77.312 86.528 45.696 26161
4colu .dn 130.176 146.240 75.904 43.009

- couP&nI 90.816 101.312 54592 30.144
64x 64 2cLup .n 131.112 155.64 82.432 44.606

4 ool up dn 232.769 256.920 137.914 73.472
Su 140.800 156.160 1l.92 44.928

80 x 80 .2U* 621433. .... 6.94 .
4 co up&An 361.728 410.176 208.512 111.040

the nodes collect products of -R-TXT and R-TYT. Once the elements of -R-rXT and R-TYT are

computed, no more communication is required. Now, each processor computes Givens rotations based on

-R-TXT and hyperbolic Givens rotations based on R-TYT, and applies the rotations to R as well as to
_P-ry-2 and R-YT. This part of the computation is purely sequential. The snapshots are illustrated in

Figure 8-3, where the leftmost box represents -R-TXT, and the next shows R-TYT. The wrap mapping

of Algorithm C exhibits better load balancing than block mapping.

9. Results and Discussions

We implemented the three algorithms and measured the execution time on an 8 transputer array.

Tables 9.1, 9.2 and 9.3 show the time results of Algorithms A, B and C, respectively. We tested the

algorithms for several sets of data with one, two and four column up-downdatings.

The time results of the algorithms are compared in Figures 9.1, 9.2 and 9.3 for 32 x 32 and 64 x 64

data matrices. The results show that Algorithm A is usually the fastest since it requires the minimum

number of operations. The block mapping of Algorithm A is better for small data matrices, small numbers
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Table 9.2. Timing Results of Algorithm B (msecs)

a) Block Mapping

Size of Data IPTc 2Proc 4 Poc 8Proc
I o up&dn 10.176 6784 4.288 3.392

16 x 16 2_. u &. 15.616 10.2,0 62o8 4.736
4 ooi p&dn 26.624 16.960 10.112 7.424
_co UEdn 41.152 26368 14.592 9.152

32x 32 2 cat uP& 63.308 40.064 21.696 13.14
4 co; up;dn 108.992 67.392 35.776 21.312

48 x 48 _2 o u-- dn 143.M2 6.6523 45.66 26.368
4 Cal W& 5 04 146.24 L 5.904 43.00
I t~ 165.568 101.312 54.592 30.144

64 x 64 2oa1 up&cs 257.920 155.648 82.432 44.609
4 cal up&n 442.560 256.920 137.954 73.472

1c aprn2.57.472 156.160 31.920 44.928

80 x80 .O IU &dN 401048 240.32 124.160 66.944
49 col :1.16p 410.176 208512 O11.040

b) Wrap Mapping

Size of Data IProc 2Proc 4Proc 8Proc
c"l up~dr 10.176 7.104 5.056 4.160

16 x 16 _2Lu.d 15.616 10.6. . 7.360 5.696
4 c up&dn 26.624 1. 856 1 .4W 8.768

J.4c.152An L. L2 16.064 11.456
32x 32 2ccupdn 63.808 40.896 23.309 16064

4 cal up&dn 103.992 69.154 39.104 25.472

48 x 48.2 Cc .__. 143.23-2 8s.192 4.832 30.794

4 col up&dn 2,5.504 149.838 81.408 49.472
c u 165.568 99.712 56.512 34.560

64 x 64 2ci up&..i 257.920 154.2A0 85.760 50.432
col up&dn 442.560 263.232 144.192 32.304

Io u .n.257.472 153.024 3.4.992 50.112

80 ,x 80 2 ' 0'1 4 02. 129.7. 7 .-
4cclup&4n 691.136 406.848 219.264 121.152

of up-downdating columns and large numbers of processors. On the other hand, wrap mapping is better

for large data matrices, large numbers of up-downdating columns and small numbers of processors. For

example, if each node has a light computation load, block mapping is preferable. In the case of a heavy

load, however, wrap mapping is preferable.

Algorithm B operates on the triangular matrix and its transposed inverse. It uses direct matrix-vector

multiplications to obtain the solution of the triangular system. The number of multiplications in Algorithm

B is twice that of Algorithm A, so it is usually slower than Algorithm A. The block mapping of Algorithm

B always has better performance than wrap mapping, since the computation load is perfectly balanced

among processors for both mappings, and the former has a simpler communications scheme.

The construction of - -RTX" and R-TYT in Algorithm C impose a large communication overhead

since each processor needs its own copy of -R-TXT and R-TYT, and this requires additional transfer

of data among processors. Each needs p - I communication and addition steps to acquire their own

copy of the products. In addition, the algorithm uses Givens and hyperbolic Givens rotations instead

of hyperbolic Househoider reflections. Therefore, it requires more multiplications than the other two
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Table 9.3. Timing Results of Algorithm C (msecs)

a) Block Mapping

Size of Daua I Prc 2 Proc 4 Ptoc 8 Proc

-1 Cluan _7.872 St.4 5.5.160

16 x 16 2ai&h 1.1 366 1.6 .6
4 ~ccl V&1nf 33.600 29.504 23.680 2D3"4

acd Ue'k! 27a.2 470 16.384 11.776

3 2x 32 _2caL~dn f 56.576 48.704 321704 24.128

4 colp&in 116.480 T01.696 7.8 5.0

48x 48 200iL&j 4;11 5..0.0_ 700 5.
4848kcat V&Anj 245.504 213.248 139.648 99.944~

- ~ TUP&111.82 94.080 5.2 78

64 x 64 2c~~a[214.080 173.618 113.856 73.408

172992 145.536 593 54272
80 X 80 2 ole"fl -. t 329984 204 173.36 107072

4 cal iu,&An 657.152 555.072 354.944 li6.240

b) Wrap Mapping

Size of Dam I Pnc 2 Proc 4 Proc 8SProc
I Cal UP&&, 7.872 5.760 4.672 4.54

16 x 16 -c~d 1561 -158 9764 92-
4 cot up& 3.;9 571 2222 2.0

32 x 32 2 ccl p&dn 56.576 38.208 2&560 22-912
4coup~z~ 16480 80.32 59.008 51.776~i

48x 48 2colupWd 1=31 12 77.568- 49.600 3.8
4calu~&d 2550 158.208 10.5 97.936

1Tci dd 111.872 66.944 41.408 30.272

64 x 64 Zclp l 214.080 129.024 81.152 60.096
4ccliup&dn 428.800 268.416"- 174.336 130.944a

172.9 0.4 60.544 42.0

80 x 80 2calu_&d I2.8 .2 1792 8.4
4 col up&dni 6 57.152 400.896 247. 168 180.672

algorithms. Householder transformations have almost the same number of multiplications as additions,

and the number of additions in Givens rotations is half the number of multiplications. Algorithm C needs

slightly more multiplications than Algorithm B. But the number of additions required by Algorithm C

is almost half of the number of multiplications. aiid much less than the number of additions required by

Algorithm B. Thus. Algorithm C is faster than Algorithm B for small numbers of up-downdating columns

though more multiplications are required. The wrap mapping of the algorithm is even faster than that of

the Algorithm A for I column up-do, ndatings with 2 processors. The algorithm performs poorly for the

large number of up-downdating coiumns since each node has to modify ..R.rXT and R.TYT as well as

portions of the matrix inverse.

A buffer between two processors is necessary to smooth communication among nodes. The transr lter

system does not support the hardware buffer. However, the buffer can be simulated with software. A

software buffer is different from a hardware buffer, in that communication between a software buffer and

a process can be accomplished through a software channel, which is a memory-read or memory-write

operation. One software buffer is inserted between every two processors. Figure 9.4 shows performance of

the algorithms without using buffers. Note that processors in Algorithm C do not need buffers since they
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Figure 9.1. Comparison of Algorithms for 1 columnn up-downdatings
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Figure 9.2. Comparison of Algorithms for 2 column up-downdatings

do not have to communicate to modify their own data. Clearly, the buffered implementations have better

performance than the unbuffered, especially in the wrap mapping of Algorithm A.

The communication speed can be altered in the transputer array. The algorithms were initially run

with 20 Mbits/sec transfer rate on each channel. In addition, they were run with 10 Mbits/sec transfer

rate. The ratio of the communication time to the computation time is changed to the following ratio when
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Figure 9.4. 2 coimn up-downdatings without buffer for n a32

the link speed is 10 Mbits/see:
T :', , ,, 14.380usec , .783.
Tco,,p =2i.120usec

Comparisons of elapsed times for the algorithms when the link speed is 10 Mbits/sec are presented

in Figure 9.5, which is compared with Figure 9.3b. The time difference between the wrap mappings of
the Algorithms A and C using 2 processors becomes slightly larger than that of Figure 9.3b. The block

mapping of Algorithm A has better performance than the wrap mapping using 8 processors, since the wrap

mapping requires more communication.
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Figure 9.5. 1 column up-downdatings with 10 Mbits/sec for n - 64

10. Future Work

We implemented the three algorithms, measured their elapsed time and compared the performance

results on the transputer array. The future work for the time analyses of the algorithms will be presented

at a later date. The propagation and truncation errors resulting from the different algorithms will be

monitored and analyzed. Finally, the algorithms will be implemented on a two-dimensional transputer

array, and the comparison of the time results conducted by the different algorithms will be presented.
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Abstract
A new generalization of the singular value decomposition (SVD), the hyperbolic SVD,
is advanced, and its existence established under mild restrictions. The hyperbolic SVD
accurately and efficiently finds the eigenstructure of any matrix that is expressed as the
difference of two matrix outer products. Signal processing applications where this task
arises include the covariance differencing algorithm for bearing estimation in sensor ar-
rays, sliding rectangular windowing, and array calibration. Two algorithms for effecting
this decomposition are detailed. One is sequential and follows a similar pattern to the
sequential bidiagonal based SVD algorithm. The other is for parallel implementation and
mimics Hestenes' SVD algorithm. Numerical examples demonstrate that, like its conven-
tional counterpart, the hyperbolic SVD exhibits superior numerical behavior relative to
explicit formation and solution of the normal equations. Furthermore the hyperbolic SVD
applies in problems where the conventional SVD cannot be employed.

1. INTRODUCTION

The singular value-decomposition (SVD) is a tool of both practical and theoretical im-
portance in digital signal processing. The SVD of an n x m complex valued matrix A is
given by [8):

A = USVt,

where S is an n x m diagonal matrix with non-negative diagonal (with the entries ordered
from largest to smallest), U is an n x n unitary matrix2 , V is an m x m unitary matrix
and t denotes Hermitian conjugation in case of a complex valued matrix and simple

I A more comprehensive description of the algorthmic aspects of this decomposition can be found in
"The Hyperbolic Singular Value Decomposition and Application? to be published in the IEEE ASSP.

2A square matrix U is unitary if it satisfies UUt = UtU = I the identity matrix.
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transposition in case of a real valued matrix.

The SVD provides a solution to the following problem:

P1 Given a matrix A, find the eigenvalues and eigenvectors of AAt.

The SVD can thus be interpreted as follows: the eigenvalues of AAt are the squares of
the entries of S, (note that all the eigenvalues of AAt are real and non-negative), and
the columns of U are the corresponding eigenvectors. We get the elgenvectors of AtA
"for free" in the columns of V. For numerical reasons it proves more accurate to not
explicitly form the product AAt, but rather to perform an algorithm on the data matrix
A directly3 [8]. The outer product AAt arises in the normal equations encountered (among
other places) in various estimation and adaptive filtering problems. Further details on
the normal equations and the role of the SVD in its analysis and solution are found in
[11], and in [8].

Consider now the foflowing (related) problem:

P2 Given two n x m matrices A, , A2 find the eigenvectors and eigenvalues ofA, At- A 2 At.

We would like to solve P2 without forming the outer products and subtracting them
explicitly. To this end we introduce a new generalization of the ordinary SVD which we
call the hyperbolic singular value decomposition or HSVD. Just as the ordinary SVD was
initially "designed" to allow efficient solution of P1, our HSVD is designed to efficiently
solve P2. Again the primary motivation is numerical accuracy. In addition, as we shall
see, the HSVD can be implemented on a parallel machine. The HSVD actually solves the
following slightly more general version of P2:

P3 Given a matrix A and a matrix 4} that is diagonal with ±1 on the diagonal,
find the eigenvalues and the eigenvectors of AOAt.

P2 is indeed a special case of P3, which is easily made evident by setting:

A =[A A2 1

¢= 0 -1

3it is not advisablu to form outer products of matrices explicitly. Suppose we are working in fixed
point, with an accuracy of three digits after the decimal point, and

[5.015 -4.995 1A= -4,995 5.01 "

Then the eigenvalues of A are: {10.01 and .02) and A is not singular. Square A to get:

AA t = [ 50.1002 -50.09981
-50.0998 50.1002 "

But with the limited (three digit) accuracy:
AAt _[ 50.100 -50100 ]

A -50.100 50.100 J
Thus the computed AA t is singular, while the unlimited accuracy one isn't. The singular values, computed
as the square roots of the eigenvalues of AA t will of course be, not {10.01 and .02), but {10.01 and 0).
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Note also that P1 is likewise a special case of P3 associated with 0 - I. The problem
P2 comes up in at least three distinct physical scenarios. One is the downdating problem,
another (the one that initially caught our interest) is the so-called covariance differencing
problem, and a third is array calibration. Note that the data in these problems can be
complex (11], and therefore that the solution must work for both real and complex data.

In downdating, an estimation or filtering problem (the solution of which involves the
SVD) is solved for a string of data. Anticipating subtle changes in the data and in
the solution, the older data is expected to be outdated, and should be discarded". The
columns of A2 in P2 are then a subset of the columns of A,, and the resulting difference
is actually non-negative definite. This simplifies the problem somewhat, and indeed there
are two efficient algorithms for solving the problem by serial computation. One approach
is to form the Cholesky factor of the covariance matrix using the hyperbolic Householder
scheme [201 and then proceed using the conventional SVD. The second approach is the
one described in [131 which is tailored to single column downdating. In contrast, in the
event that a parallel computer is used the HSVD algorithm is the only one we know of
for this problem.

The covariance differencing problem arises in high resolution bearing estimation in un-
known noise fields (1], [141, [161, [18], [19], [241, [25], [26], [271. Bearing estimation in
unknown coherent noise is a topic which has received a great deal of attention recently, as
evidenced by the large number of references cited above. The failure of standard eigen-
structure schemes (such a MUSIC, ESPRIT etc.) in the presence of coherent noise fields
was demonstrated by Bienvenue in 1979 [1]. A solution, based on covariance differencing,
was presented by Paulraj and Kailath [161 in 1986, and independently by Tuteur and
Rockah (24]. Since then, variants have been proposed [14], [18], and order determina-
tion and performance analysis issues addressed [25], [261, [27]. A general overview of the
bearing estimation problem is available in [15].

The key idea behind this bearing estimation scheme is as follows. Suppose that the noise
remains the same (in statistical average) between A,, and A2 , but that the signals of

interest change. Thea the covariance difference will contain only a residual amount of
noise, but the signals will still be present. Details as to how the two snapshot matrices

A,, A2 are formed, and how parameter estimates are found from the eigenstructure of the

difference covariance, are found in the above references.

Despite the interest in covariance differencing for coherent noise bearing estimation, no

(prior) published work has addressed computational issues.

A related problem is array calibration. Suppose we have an array which (due to component

errors, or other physical considerations) has an unknown array response. We are hampered

in our efforts to measure the response by ambient noise. An (offline) solution, proposed in

[23], is as follows. First form a covariance matrix from the array with no sources present.

Then turn on a calibration source at bearing angle 0 and frequency W, and form the new

array covariance. Next find the principle eigenvector of the covariance difference. This
eigenvector should be an accurate estimate of the array response at the specified wP, 9
co-ordinates.

'In the adaptive filtering community this procedure is often called sliding rectangular windowing (il.
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The structure of this paper is as follows. The hyperbolic decomposition is introduced in
§2.. We also establish that the HSVD is canonic in the sense that it exists subject only to
mild restrictions on the attendant A and 4 matrices. In sections §3. and §4. we describe
both sequential and parallel algorithms for implementing the HSVD. A simple numerical
example of the sequential algorithm is detailed in §5., where we also explore the numerical
behavior of the HSVD using numerical experiments. We use simulations from a realistic
covariance differencing based bearing estimation application as well as a more artificial
example selected for its analytic tractability. Both cases demonstrate the anticipated
superior numerical behavior of both sequential and parallel HSVD as contrasted to direct
outer product formation.

2. THE HYPERBOLIC SVD

We now state and prove the fundamental existence theorem for the hyperbolic SVD.

Theorem: Let 1 be an m x m diagonal matrix, with entries ±1 and let A
be an n x m matrix, such that AAt is non degenerate in the sense that
rank(A-MAt) = min{n, m} 5 . Then there exists an n x n unitary matrix U,
and an m x m matrix V with

vtv = (1)

where 4 is a diagonal matrix with entries ±1 (possibly different from 0), and
an n x rn diagonal matrix D with positive real diagonal entries, such that

A = UDVt. (2)

Following the nomenclature in [201 we call a matrix W satisfying WtOW = 0 a hyper-
normal matrix. A matrix satisfying the more general condition in (1) will be called a
hyperexchange matrix. Note that a hyperexchange matrix and a hypernormal matrix are
related by the equation WP = V where P is a permutation matrix such that p4pt = 4.
Note also that "hyperexchangivity" is partially preserved under multiplication, in par-
ticular, if V 1) is hyperexchange with respect to 0(0), such that V(1)tV(1)V() = 0 (2),

and if V (2) is hyperexchange with respect to 1(2), such that V(2)t(2)V(2) = 0(3) , then
V(2)tV1)t$(1)V(1)V(2) = §(3), and V(')V (2) is obviously hyperexchange with respect to
(1).

As mentioned above we call (2) the hyperbolic singular value decomposition of A. As a
special case when I = I we obtain the ordinary SVD. For real data the proof remains
valid, and the Hermitian operator t reverts to the ordinary transpose operator.

The columns of the matrix U of the hyperbolic SVD of A are the eigenvectors we seek,
and the diagonal entries of D4Dt are the eigenvalues we seek.

'This result can be extended for rank deficient matrices. However, though this extension is not trivial,
it is mostly of theoretical value, as "real world" matrices are not rank deficient (due to noise at least).
For details see (22].

9F



It would be interesting at this point to note some of the properties of the hyperexchange
matrices.

* The hyperexchange matrix always has an inverse. This inverse bears an interesting
relation to the matrix's Hermitian transpose. To see this consider the hyperexchange
matrix V in (1), and multiply both sides of the equation by the matrix 4, to obtain,

4vtov =I.

It is directly apparent that the inverse of V (which is unique) is given by,

V-1 = 4V10 , (3)

and that it always exists.

e The singular values of a hyperexchange matrix have an interesting structurm. The
singular values come in pairs of reciprocals, i.e., if 0, is a singular value of a hy-
perexchange matrix V, then so is I/. This is a direct consequence of (3) because
while the singular values of reciprocal matrices are reciprocals of each other, those of
transpose matrices are identical (to within the number of zeros, which is irrelevant,
here), and by (3) it can be seen that V- 1 and Vt have the same singular values.

* The eigenvalues of a hyperexchange matrix don't in general have any structure, but
if it is a hypernormal matrix (recall that means that 4 and 9 in (1) are equal), then
the eigen-structure is similar to the singular-structure. More precisely, if A is an
eigenvalue of V, then so is I/A6. This property was already discussed in [201, where
it was also proven, but it can also be easily seen from (3), for if 6 and 9 are equal,
then Vt and V are orthogonally similar, and have the same eigenvalues.

An existence proof of the hyperbolic singular value decomposition follows. It is not
a straight forward extension of the existence proof of the SVD. Rather it has its own
interesting features.

Proof of the Hyperbolic SVD Existence Theorem: For (2) to hold U must sat-
isfy:

A9At = UD4DtU (4)

We can find such a U by diagonalizing the left hand side of (4), i.e. U is a
unitary matrix such that:

Ut(A9At)U - A (5)
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where A is a diagonal matrix whose entries ae eigenvalues of the Hermitian

matrix A#At. U always exists since Hermitiane matrices are always diagonal-

izable by unitary transforms [8). Let the elements of A be ordered,

Ifm! 'n I,+It-" 1 1 = 0. Let

and

.)sgn(A) ZO

0 X=0

Then if V = AtUD- i, A = UDVt and

VtOV = D-IUtAOAtUD- i = 4.

This completes the proof for the case m _ n.

If m > n let

D = .i' 1  "~ lA211/ ...

and

* = sg(Ar) sn(A2) anA.

so = . Let

D=[b ) . (6)

$A matrix M is Hermitisa if it satisfies Mt = M, for a teal matrix that is equivalent to M being

symmetric.
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To establish (2) it suffices to show that for some hyperexchange matrix V,

AtA = VDtUtUDVt = V [ 20 V. (7)

Let us partitionV= [ i' ' ],and set

/ aAtUD (8)

then (7) is satisfied.

Eq (1) can be restated in the. following manner:

(a) Vt$V:4(b) =/~f 0 (9)
(c) 041V-

where $, $ and $ are related by:

,_L! o]*
0 41.

(9)(a) follows directly from (4) (6) and (8).
Note that since by assumption AAI is full rank (when m > n,) so is A. By
the way in which V is defined in (8) both V/ and 4f/ are full rank. If V is
chosen to lie in the exactly m - n dimensional subspace orthogonal to 41V, i.e.
f/ E ($V' then (9)(b) is satisfied.

Let Q be an orthogonal matrix that spans ($V) ' , then V" can be decomposed
as V/ = QX with X some m x m matrix. To assure satisfaction of (9)(c), all
we must show is that a matrix X exists, so that XtQt4QX = $. This rests
on the fact that Qt$Q is non-singular, which we prove by contradiction7 .
Suppose that Qt4Q were singular, then a vector y # 0 would exist such that
Qt4Qy = 0. This implies that OQy lies in the space orthogonal to Q, i.e., in
the space spanned by 4f/. Thus there exists a vector z 3 0 so that

4QY = 4f/z.

Multiply both sides on the left by t to get,

Vt$Qy = 4tlz. (10)

The left hand side of (10) is clearly zero, which implies that z = 0 as well,
which is a contradiction.

7An alternate proof can be found in [7] where 4 norms are studied as a particular case of indefinite
scalar products.
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Having established that Qt$Q is nonsingular, we can diagonalize it by an
orthogonal matrix I':

ytQtOQy = A.

A of course has no zero diagonal entries, and we can therefore let

161 1m/]
b 16211/2

and

sgn(6,)[ gsgn()2)

and A = NAD. We choose X = YD-', and f/= QX. Then,

0/ = D-ytQt0QYD-1 = $,

which completes the proof of the HSVD existence theorem. U

3. A SEQUENTIAL ALGORITHM FOR HYPERBOLIC SVD

The serial hyperbolic SVD algorithm, outlined below, mimics the classic SVD procedure
[8]. The main difference is in the use of the hyperbolic Householder transform described
in 120] and the hyperbolic Givens rotation, described in [3]. Both are here further per-
fected for the matter at hand. The main difference between the transforms and rotations
described previousl and the ones used (and described) here, is in the concept of the ex-
change. Thus if (for reasons that become apparent later) a transform or a rotation cannot
be completed as expected, the elements of the matrices involved are exchanged in a way
that preserves pertinent properties, but enables the algorithm to proceed.

3.1. The Hyperbolic Householder Transform and the Hyperbolic Givens Ro-
tation

The original Householder transformation [10] of a (column) vector v involves finding an
orthonormal matrix M so that

MV = ± IvII e,, (11)

where 11 v 11= v/vt and el is the unit vector with the first element one and all the rest
zeros. This can be viewed as compressing all the vector's energy into the first entry. It
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is easily verified that a matrix M given by: M = I - 2bbt/btb where b = vq: 11 v 11 el
satisfies (11). The hyperbolic Householder transform will take on a similar form, and a
signature matrix I has to be specified as well as the vector v. We will then expect H to
be hypernormal (see definition after equation (2)), and Hv = +11 v II1,e where,

11 v =11 sgn(vtov)v/iij. (12)
Note that despite the notation 11 v I11 is not a norm, because norms are always non-negative.

The natural thing to try would be to let b = vT: 11 v IIe, and H = 0 - 2bbt/btOb. This was
done in [201 and H was defined only for v's and 's for which vtov > 0 and thus II v 1i*
is well defined. But in order to be useful for HSVD a matrix H should be obtainable for
any pair 4 and v.

In order to achieve this generality, look more carefully into what actually happens when
a vector is transformed. If v denotes the original vector and denotes the transformed
vector, then we expect two things:

* Ot = vttv, and

* i has the form +11 v 1,el, this can be viewed as compressing all its hyperbolic "en-
ergy" into its first entry.

It turns out that the two conditions cannot generally be met simultaneously, because the
sign of
(v I.e)tIj II 1i = IVI 11'2(1, 1) is determined by sgn(f(1, 1)) and is independent of
the sign of II v 11.. Suppose for the moment that II v I1.# 0, then a solution springs to mind:
why insist on el? Why not choose another unit vector ek, or in other words, why not
try to compress the hyperbolic "energy" into the k1h entry, where $(k, k) is the "right"
sign, i.e., it equals -1 if IJvj[, < 0 and +1 otherwise. Alternately, permute 4 and v,
exchanging the kt" and the 1" entries, in the manner described in the pseudo computer
code below:

if sgn(Ilv 1,) # 4,(1,1)
then

find a k so that sgn(lIvI1,) = 4'(k,k)
permute entries 1 and k in v, and entries (1, 1) and (k, k) in 0

end if
b :- v : /I I.-li lei

The resulting matrix H is a hyperexchange matrix with respect to . This hyperbolic
Householder scheme is used mainly in the introductory part of bidiagonalizing the data
matrix', see subsection 3.2..

For use in the main part of the serial HSVD scheme another hyperbolic extension of a
classic algorithm will be introduced, it is the hyperbolic Givens Rotation. The original

"This extension of the hyperbolic Householder transform for nonpositive normed vectors was also
developed (independently) by Cybenko [5] in a different context.
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Givens rotation, (81 is a two by two matrix that is similar to the Householder transforma-
tion for a length two vector. Let v be a length two real column vector vt = [tV v2], and
let

G=[c ] (13)

where, s = V2 /vv-l+ v , and c = vl/Vl + v2. Then Gv =11 vII [1 0]t, and GGt 1, or
otherwise phrased (Gv)t(Gv) = vtv and Gv is proportional to el. Now suppose we are
interested in finding a matrix H so that Hv is proportional to el, and (Hv)t$6(Hv) = vttv,1 0 ]
where $ and t equal ± 1 1. Again, as in the hyperbolic Householder transform, we

have to allow 4b # . In order to achieve that we note that s and c in (13) are the cosine
and sine of tan-(v 2/vl). The hyperbolic Givens rotation will naturally use the hyperbolic

trigonometric functions sinh and cosh. Thus, given vt = [vi v2] and 0 = 0 and

supposing 11 v 11.# 0, the required matrix will be given by:

H -- A (14)
-'3h Cht

with

Sh = V 2/V/ i-V , Ch = V/'i - V, and a = sgn(IlvI,* 4(1, 1)).

Note that sh and c,% are indeed the hyperbolic sine and cosine of tanh-l(V 2/Vl). Note
also that although all the references above were to column vectors, and that the matrices
were employed from the left, the above is trivially translated to row vectors with matrices
employed on the right.

At this point a problem that is common both to the hyperbolic Householder and to the
hyperbolic Givens algorithms should be addressed: what happens when 11 v I10= 0? The
answer is that both procedures per se fail (see [5] for some implications of this problem).
But when put in the context of the whole HSVD algorithm a mechanism for recovery
exists, and will be described subsequently.

What we rely upon in recovering from a situation of I v I,= 0 is that the hyperbolic
Householder and the hyperbolic Givens are applied to whole matrices, not merely to iso-
lated column or row vectors, and that while hyperbolic transformations are applied to the
columns orthogonal transformations may be performed on the rows. To demonstrate the
recovery suppose we attempt to transform A into a bidiagonal matrix using an orthogonal
matrix on the left and hyperbolic Householder transformations on the right (the overall
HSVD ?rocedure is composed of just such tasks). We start by attempting to "squeeze"
all of a, into its first element. We employ the hyperbolic Householder procedure, but to
our chagrin discover that 11 a, I,= 0. A solution can be found by using a2t in the following
way:
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If we choose an angle 8 and let c = cos$ and s = sin8 then the block diagonal matrix

Q = s c is orthogonal. Its affect on A is as follows:

It - +A =sa 2
at t- ta2  ca2  j ai
a t tA a3  =QtA. a3

-t at

Now calculate the t-norm squared of a,:

SIla, Il, 12 = la'OaI = Is2at'a 2 + 2csRe(a1 a2 )I.

Since a~t2a 2 and Re(atta2 ) are just real numbers, we can find 8 such that Ia &1,gE
sn(aa)VA 'tall# 0 thereby recovering from the initial "trap" of the vanishing
norm. The choice of 0 is rather unlimited (so long as the new norm isn't zero as well),
but we might for instance choose to maximize the resulting norm.

3.2. The Serial HSVD Algorithm

The best available serial algorithm for the full SVD is the bidiagonalization based scheme
due to Golub and Kahan [8]. Our serial HSVD algorithm borrows heavily from Golub and
Kahan's original algorithm. We assume that the reader is familiar with this algorithm,
(to which we will refer as the "classical" algorithm,) and will just note where our differs.

The first step is to bidiagonalize the matrix A, i.e., find unitary matrices U and V so the
UAVt is bidiagonal. This is classically achieved through the use of Householder matrices.
Our algorithm requires a unitary matrix on the left, but a hyperexchange matrix on the
right, we use Householder and hyperbolic Householder matrices respectively to build these
matrices. We will call the bidiagonal matrix "B". If the matrix A was not square, B will
have columns of zeros. If only the eigenvalues and eigenvectors of A$At are of interest,
not the HSVD of A per se9 , AAt can be summarized as f34fBt where P is the matrix
composed of the first n rows of B, and -6 is the n x n top left hand corner of 0.
We note that the matrix B (or B) can now be made into a real matrix with diagonal
unitary (and thus also hypernormal) matrices on the right and on the left. Once this is
achieved we procefd with a hyperbolic version of the QR algorithm, which we call the
hyperbolic QR algorithm. It differs again from the classical version by using unitary
matrices on the left and hyperexchange matrices on the right.

An important point is that the proofs of the theorems used, the implicit Q theorem and
the convergence of the QR algorithm, do not depend on the positive definiteness of the
composite matrix (AAt), nor on how it was formed. Thus they are applicable for AAt
as well.

9 As is true for all applications considered by us.
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4. A SYSTOLIC ALGORITHM FOR HYPERBOLIC SVD

Our parallel algorithm for the hyperbolic SVD is an adaptation of a well known biorthog-
onalization technique developed by Hestenes [9] for computing the singular value decom-
position of an n x m matrix A. The method is known as a one-sided Jacobi method.

The one-sided (Hestenes) method can be modified to carry out the singular value de-
composition of a matrix, A = UEVI. The technique finds a unitary matrix U such that
UtA = rEVt has orthogonal columns, i.e., UtA has orthogonal rows.

If we insist that UtA be hypernormal with respect to the matrix $, then (UtA),0(UtA)t
will give the eigenvalues of A4.At, the precise quantities we were interested in in the first
place. The process of finding V is iterative and proceeds by constructing a sequence of
matrices A(k), k = 0, 1,..., A(k+ ') = J(k)A (k), here A(( )) = A and (k), k = 0, 1,..., are
plane rotations operating on pairs of rows of A. Angles of rotations are chosen in such
a way that, for a single rotation, the resulting rows become hypernormal. By applying
rotations to all different pairs of rows in a sweep, and iterating the sweeps, the limit
matrix lirn*,_. A(k) becomes hypernormal.

Parallel implementations of the algorithm are based a, ,-rfier works on one-sided Jacobi
methods [2]. The key observation is that u !cag as rotations operate in different planes,
they are independent and can be executed by different processing units all at the same
time; such a simultaneous transfc-mation is called a parallel rotation. The success of
this approach heavily depends on the ordering of ;,at.Lons in a sweep. There are various
strategies for choosing the order of rotations, or pivot rows, in the sweep. The choice
is influenced by the communication geometry directly supported by the target computer
architecture. In several studies it has been shown that there exist strategies which are
well suited for linear array, ring and hypercube topologies. It turns out that one can
essentially mimic the Hestenes sweep selection process for hyperbolic rotations.

5. SIMULATION RESULTS

We coded both the sequential and the linear systolic array versions of the hyperbolic SVD
scheme and applied them to the square root covariance differencing task. The primary
purpose of simulations is to explore the numerical accuracy of our new algorithms, as
compared to direct, explicit, formation of covariances matrices followed by differencing,
and finally eigenanalysis. We shall refer to this latter approach as the "power domain"
scheme, since it demands the explicit formation, storage, and processing of squared-data,
that is power-like, quantities.

We conducted two numerical experiments. The first of these involved the example fur-
nished in the original paper on covariance differencing by Paulraj and Kailath [16]. There
is little point in detailing this example here, the interested reader can consult [161 for
specifics. We used 8 sensors, 3 signals at -300, -120, and -15 ° , and 500 of rotation.
We retained the same noise field as in (16]. Howe'ver, to better differentiate numerical
errors from statistical fluctuations, we increased the number of snapshots from 300 to one
thousand giving matrices of size 8 x 1000. (Spot checks for 300 snapshots assured us that
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this had no effect on the relative stability of either method.) When the signal power levels
used were as per [16] the problem is well conditioned, and both the systolic and the power
domain schemes work well with a 64-bit floating point number system ° . To produce
ill conditioning for the rather extended precision of our computer language we increased
the dynamic range of the signals to 80dB, by increasing the first signal's amplitude, and
leaving the rest alone. This led to a breakdown in the power domain method, but not in
either of the two new methods based on the hyperbolic SVD. More specifically, all three
methods accurately identified the first signal. However the next two signals were identi-
fied correctly using the HSVD method (with an error of 1 and 4 respectively) while the
power domain gave estimates off by 5* and 41° . An error of a few degrees (z 1 - 4) is
within the range of statistical fluctuations for this estimation task, while an error of 41
intimates numerical collapse.

In the Paulraj/Kailath example exact assessment of numerical errors is impossible since
the "exact" answer, furnished by mapping the computations onto an infinite precision
computer, is unknown. To avoid this shortcoming the second experiment we conducted
involved a covariance difference whose eigenvalues we knew explicitly. This allowed us
to determine exactly how much numerical error each algorithm produced. The draw-
back here, in contrast to example one, is that the covariance difference no longer has a
nice physical interpretation, and does not (as far as we know) correspond to any known
practical application.

To begin we form the n by m matrix % _- [diag(Ai, ..., A,)10]. If we define the signature
matrix 0 via $ - diag({(-1)', i = 0 .... n - 1)) then the eigenvalues of 'I'Zt are quite
clearly A', -A..., 4 Now suppose we multiply %P on the left by any n x n unitary
matrix U and on the right by any m x mr matrix V hypernormal with respect to 0 to
form the matrix A. Then AfAt = U%PVVttUt = UVs$PtUt has the same eigenvalues
as Toft, but is now a full matrix. We can readily generate random choices for U and
V as products of respectively Householder and hyperbolic Householder transformations.
By selecting A, we can influence the condition number of the eigenanalysis problem. As
in the first example both hyperbolic SVD schemes lead to better numerical behavior for
a given condition number and a given wordlength. Some examples are given below.

The preliminary simulations were conducted using MATLABTM for which relative pre-
cision e is 2- 48. For a given data matrix A = UPV we constructed the corresponding
"covariance" matrix AOAt. We chose % -- diag (10w, 104,1), and generated the hypernor-
mal matrix V as a product of k, k = 1,2,3,4,6, random hyperbolic Householder matrices.
Note that the condition number of AtA t is 10" which is comparable to the reciprocal of
the relative precision used in the computations. We computed the eigenvalues of A$At
via hyperbolic Hestenes method, on the original data matrix A. Next we repeated the
computation via the two-sided Jacobi method which operated on A$At.

Let us denote the exact eigenvalues of AOAt as Af, the computed eigenvalues by Hestenes
method as A', and by Jacobi method as A,.

"0 The simulations were conducted on an IBM-PCTM using MATLABTM. (AU data types are 64bita
in MATLABTM.) The power domain scheme used tridiagonalization followed by the QR method (81 to
excise the eigeastructure of the covariance difference.
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Let =/ and ^t E

We observed, see Table 1 below, that the hyperbolic Hestenes method always gave better
approximation of the eigenvalues than the Jacobi method. However, the accuracy of
the hyperbolic Hestenes was influenced by the number of terms in the product V and
varied from simulation to simulation. This can be explained by the loss of accuracy while
computing the hyperbolic norm.

Table 1
k A -yJ  7I

1 A, 10-4  10-9

2 10-4  10-8

3 10- 3  10-a

4 10-3  10-8

6 100 1
- 4

I A3  10-14 10-13
6 10- 12 10-12

We also ran the QR eigenanalysis [8] method on AZA t and the serial hyperbolic SVD on
A. The results did not differ markedly from the ones indicated above, so we decided not
to include them in the table above.

6. CONCLUSIONS

We presented an extension of the SVD, which we called the hyperbolic SVD. Its existence
was established under mild restrictions. We derived two algorithms for effecting this
decomposition, one sequential and the other parallel.

The HSVD is indicated whenever one seeks to evaluate the eigenstructure of a covariance
(outer product) matrix provided:

(i) The covariance involves a difference of outer products,

(ii) all (or mot) of the eigenvectors and eigenvalues are required,

(iii) numerical ill-conditioning is anticipated (using the available wordlength for a
given computer), and

(iv) either a sign indefinite matrix arises or a parallel implementation is required.

We mentioned three signal processing applications of this new canonic decomposition,
which satisfy the above conditions, mainly bearing estimation, sliding rectangular win-
dowing, and array calibration.
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Numerical experiments demonstrated the enhanced numerical accuracy available using the
HSVD in contrast to competing schemes. Theoretical backing for this improved accuracy
remains a topic for future investigation.

We feel confident that there are many more applications within and beyond digital signal
processing where the HSVD will be useful for its numerical stability, fast computational
characteristics, and as a theoretical structure.
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Taylor series and the overall properties of composites

Oscar P. Bruno
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206 Church St. SE, Minneapolis, MN, 55455.

Abstract. We deal with the effective electrical conductivity and the effective elastic
moduli L* of multiphase, ordered or disordered composite materials. The problem
of estimation of L* can be approached through perturbation expansions around the
uniform case. Interestingly, knowledge of truncated expansions for L" leads to rigorous
bounds on this quantity. We describe a general construction which permits one to find
a hierarchy of bounds from truncated expansions for L*. Our approach is motivated
by previous work of Beran and others. These bounds give good estimations for weakly
heterogeneous materials, i.e., composites in which the departure from homogeneity
is not too strong. For strongly heterogeneous materials, such as conductor-insulator
mixtures, these bounds lead to broad intervals of uncertainty. We thus address this
problem, and show that tight bounds can be found for the effective conductivity of
two-phase ordered or disordered composites, in which material of very large or very
low conductivity is arranged in the form of particles inside a conducting matrix. These
bounds depend on two parameters A and B which are related to the particle shapes and
the interparticle distances. For instance, if the particles are assumed to be spherical,
the bounds depend only on a parameter q which is related to the minimum interparticle
distance, and they give excellent estimations for a wide range of values of the parameter
q. In many cases, they improve substantially over previous estimations for the effective
conductivity of this type of composites.

Introduction. We deal with a physical property, elasticity or conductivity, whose
constitutive linear relation is

f Le. (1)

In the case of conductivity, L is a symmetric tensor of second order which represents
the local conductivity, and f and e are the current and electric field respectively. In
the case of elasticity, L is the Hookean fourth order tensor, and f and e are the tensors
of stress and strain respectively. In this case, products are understood as follows:

(Le)ij == L,jklek,

eLe = ci3Li3kjek

where the usual summation convention has been used.

An r-phase composite material is usually modeled by a spatially varying tensor L.
which is locally constant and assumes r different values. Similarly, in a polycrystal.

'Supported by the U.S. Army Research Office under grant DAAL-03-88-K-0110
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the tensor L is locally constant and its values vary among all rotations of a given
fixed tensor L0 . The quantity of interest is then the effective tensor L* defined by (see
e.g. [2,131)

(f) = L*(e) (2)

where (h) stands for the average of the quantity h, and f and e are fields of strain
and stress, or current and electric field that are compatible with the uniform applied
field (e) = eo. The averages above should be understood to be ensemble averages
if one deals with random materials, or averages over the unit cell if one deals with
periodic materials. Of course, all the quantities involved are assumed to be statistically
stationary, so that ensemble averages do not depend on the point in space at which
they are performed.

The minimum energy principle states (see [2,3]) that the true field e in the composite
that is compatible with an uniform applied field e0 is the one that minimizes the energy

(etLet ) (3)

among all curl free trial fields verifying (et) = eo. Furthermore, the true energy in the
material due to the applied field e0 is given by

1 1- (eLe) = eoL eo. (4)

The complementary principle of minimum energy states (see [2,31) that the true
field f in the composite that is compatible with an uniform applied field fo is the one
that minimizes the expression

(f t L-lf t ) (5)

among all divergence free trial fields ft such that (f') = fo. The true energy in the
body due to the applied field is

11

(f(L)-1f) =fo(L*)-'fo. (6)

Series expansions. Series expansions are central in the theory of bounds for
effective moduli. Typically, the fields e and f and/or the effective modulus L are
expanded in series of the form

00

e= E e (7)
i=O

'0

f=Zf (E)
t=0
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00

L" = L* (9)
i=O

The order of smallness of the quantities ej, fi and L! is, roughly speaking, the i-th
power of the order of smallness of the heterogeneity. One simple way to obtain such
expansions is to consider Taylor series. Other kinds of expansions have been considered,
which lead to consideration of the n-point correlation function of the microstructure.
We will assume, however, that the expansions above are simply the Taylor series of
the various quantities. For instance, in the case of conductivity of a mixture of two
components of conductivities z and w, we take w as fixed, and consider expansions in
powers of (z-w). In the case of elastic moduli of a mixture of two isotropic components
of bulk moduli r., and K2 and shear moduli pi and Y 2, we take K, and p1 as fixed, and
consider expansions in powers of (112 - i1 ) and (r- 2 - Ki).

We note that for all i, e, is a curl free field and fi is a divergence free field, and
that, for i > 1 the mean values of ej and fi are zero. It follows (see also [8]) that the
true fields in a composite verify the equations

(em Le) = 0 (10)

and
(f,,(L)- 1 f) =0 (11)

for all m > 1.

Bounds for the effective moduli. To obtain upper bounds on a given effective
modulus, we follow Beran (see [2]) in using a truncated expansion together with varia-
tional parameters. We choose to consider a Taylor series expansion (7). We substitute
the trial field

k

et =eo+Eaiei (12)
i=1

in the energy expression (3). The a,'s are real constants to be determined. Since (12)
is an admissible tilal field, we have the upper bound

k

,Leo < a 'oj(fLej). (13)

wilere we have put co = 1. This is an upper bound on L* for any choice of the
parameters a,, i > 1. Finally, minimizing this expression on the parameters aj, (i _ I).
yields the Beran type upper bound for V.

Of course, this Beran type bound can only be made explicit if the quantities (eLc,)
are known. Quantities of this type can be computed as integrals of certain statistical
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functions: the n-point correlation functions (see, for example, [2] in the case of con-
ductivity of mixtures, [3) in the case of elastic properties of mixtures, [24] in the case
of conductivity of polycrystals). These functions are, in general, extremely difficult
to determine. For low orders, however, the quantities needed to evaluate the bounds
have been computed for cell like mixtures as introduced by Miller [20] (see, for instance
[20,11,19]).

The point we wish to establish here is that, because of equations (9), (10) and (11),
the quantities (eLej) (1 < i,j < k) can be simply read off from the first 2k + 1 terms
in the Taylor expansion of L*.

To illustrate the procedure, we derive the first upper bound in the hierarchy. We
substitute a trial field of the form

et = eo +a e 1  (14)

in the variational principle (3), and obtain

eoL*eo < eo(L)eo + 2a,(eoL'e,) + a 2((eL'e,) + (elLoe,)), (1.5)

where Lo is a constant isotropic tensor, and L' = L - Lo represents the oscillation of
E about L0 (Note that (eoLoei) 0 since (ei) 0). The choice of a, that minimizes
the right hand side is

(eoL'ej)
(eL'ei) + (eiLoei)

Because of equations (9), (10) and (11), one can show that

(el'ej) = eoLeo

(eiLoei) = -eoLeo, (17)

and
(eoL'e,) = -(eLoei) = eoL;eo. (18)

Therefore, the upper bound reads

eo0L eo S (L)eo - (eL 2e) 2  (1e
c- oL,;( )- c)L :.t "

where L7 denotes the term of order i in the Taylor expansion of L*.

An explicit upper bound for different kinds of materials and physical properties
can now be obtained simply by substitution into equation (19) of the results for the
truncated expansions given in (or easily obtainable from) [1,7,15,24,11]. Lower bounds.
and bounds of higher order can be obtained in an entirely analogous manner.
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Strongly heterogeneous composites. Here we discuss the problem of determin-
ing the effective electrical conductivity of two-phase, isotropic, strongly heterogeneous
mixtures. Because the constitutive relation (Ohm's law) is linear, we can assume that
the conductivity of one of the components equals one. The conductivity of the second
component will be denoted by z, and the effective conductivity will now be denoted by
m = m(z).

It is a well known fact that the function m can be extended as an analytic function
to complex values of z outside the negative real axis [4,13]. There are examples of
materials for which the function m is singular in the whole negative real axis (see [12]).

For ordered or disordered materials which consist in a matrix containing separated
inclusions, the zeroes and singularities of the function m cannot accumulate neither at
z = 0 nor at z = oo. More than that, an explicit interval in the negative real axis can
be found depending on the distribution and shapes of the particles, outside which the
function m is regular and nonzero [9]. This allows us to find, by means of the complex
variable method of Bergman [4,21,13], new bounds on the effective conductivity of
mixtures with separated inclusions. (The problem of describing the singularities of the
function m is also connected to the properties of absorptance of solar energy exhibited
by some ceramic-metal mixtures [10]. Numerical calculations of the singularities for
periodic arrays have been conducted [5,6,17,18]. Our results are in agreement with
these numerical calculations.)

Consider a microgeometry which consists of a matrix containing a number of ran-
domly placed, separated inclusions. Associated with any such material, there are two
constants A and B which determine a region in the negative real axis where the singu-
larities and zeroes of m can occur [9]. The constants A and B depend on the shapes
of the inclusions and on the interparticle distances. Assuming, for simplicity, equally
sized randomly placed spherical particles, the constants A and B depend on a single
parameter q, 0 < q < 1, equal to the ratio of the particle diameter to the minimum
distance between two centers. Values of A and B for arrays of spheres are given in
table 1, for the whole range of values of the parameter q.

The bounds on m depend on the constants A and B. Explicitly, calling t) the
volume fraction of material of conductivity Z, P2 = 1 - pl. and defining

A
m =~, (20)

1 + B'

SM =1 ±+B' (21)

6 = sM - SM, (22)

1( )= I Pi (23)

i-z d
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and
1 1 )SM (1- )2

W(z) -1z)M (1 + 1_)(i-(1-z)S, , (24)
6 (1Z)Sm 9( M

our bounds read (see [9])

W(z) m r(z) <V(z) for 0 < z < 1 (25)

and
V(z) < m(z) _ W(z) for z> 1. (26)

The upper bound in the case 0 < z < 1 and the lower bound in the case z > 1
coincide with the corresponding bounds given by Hashin and Shtrikman [14]. The two
remaining bounds are, in many cases, much tighter than the corresponding bounds of
Hashin and Shtrikman, reflecting our assumption that the particles cannot touch.

To illustrate numericallv o-" -esults, we consider a microgeometry formed by spheres
of conductivity z coated ov -t corona of material of conductivity 1 immersed, in a ran-
dom manner, in a m,. .r: of conductivity 1. This is a random array of closely packed
coated spheres. Tb's. coated spheres fill about 60 percent of the volume [22]. In figures
1.a-3.b we plot ,ur bounds for this microgeometry. In table 2.a-2.b we give the values
of the bounds V and W for the complete range of values of the parameter q. For
comparisoi., we include the values BI and B,, of the lower and upper bounds obtained,
for the same microgeometry, by the method of security spheres (see [16,23]). We thank
S. To:quato and J. Rubinstein for communicating their preliminary results to us.
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Table 1

q A Zm = -B ZM Sm SM
.00 1.00000 -2.00000 -1.00000 0.33333 0.50000
.10 1.00000 -2.00300 -1.00000 0.33300 0.50000
.20 1.00000 -2.02419 -1.00000 0.33067 0.50000
.30 1.00000 -2.08325 -1.00000 0.32433 0.50000
.40 1.00000 -2.20513 -1.00000 0.31200 0.50000
.50 1.00000 -2.42857 -1.00000 0.29167 0.50000
.60 1.00000 -2.82653 -1.00000 0.26133 0.50000
.70 1.28311 -3.56621 -0.77936 0.21900 0.56200
.80 2.07377 -5.14754 -0.48221 0.16267 0.67467
.90 4.53506 -10.07011 -0.22050 0.09033 0.81933
.91 5.08694 -11.17389 -0.19658 0.08214 0.83571
.92 5.77776 -12.55552 -0.17308 0.07377 0.85246
.93 6.66702 -14.33404 -0.14999 0.06521 0.86957
.94 7.85395 -16.70789 -0.12732 0.05647 0.88706
.95 9.51709 -20.03418 -0.10507 0.04754 0.90492
.96 12.01360 -25.uz719 -0.08324 0.03842 0.92316
.97 16.17681 -33.35361 -0.06182 0.02911 0.94178
.98 24.50669 -50.01339 -0.04081 0.01960 0.96079
.99 49.50305 -100.00631 -0.02020 0.00990 0.98020

1 00 -00 0 0 1

Table 1: values of the different constants related to the bounds (25) and (26)

for an arbitrary array of spheres, as functions of the parameter q. The interval

z, < z < ZM contains all the zeroes and singularities of m in the z plane.
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FIGURE L&a
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Figures L.a-3.b: the bounds (25) and (26) in the case of a random closely packed

array of coated spheres. The coated spheres are assumed to fill 60 percent of the

volume of the sample. Figures 1.a-1.b: case q = .5. Figures 2.a-2.b: case q=.8.

Figures 3.a-3.b: case q=.99. Other quantities of interest can be found in tables 2.a

and 2.b.
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FIGURE 2 .a
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FIGURE 2. b
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FIGURE 3. a
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FIGURE 3.b
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Table 2.a

Case z = 0

q P V W B B.
0.10 0.000600 0.999100 0.999100 0.999100 0.999100
0.20 0.004800 0.992813 0.992817 0.992794 0.992829
0.30 0.016200 0.975851 0.975895 0.975634 0.976024
0.40 0.038400 0.943238 0.943485 0.942029 0.944186
0.50 0.075000 0.890653 0.891566 0.886076 0.894118
0.60 0.129600 0.815090 0.817430 0.801308 0.824549
0.70 0.205800 0.712703 0.720102 0.680336 0.736492
0.80 0.307200 0.574567 0.600555 0.514334 0.633121
0.90 0.437400 0.376004 0.461639 0.292309 0.519165
0.93 0.482614 0.293637 0.416807 0.212756 0.483717
0.96 0.530842 0.191347 0.370753 0.126452 0.447948
0.99 0.582179 0.056292 0.323619 0.032892 0.411999

Tables 2.a, 2.b: the bounds (25), (26) and the corresponding security sphere

bounds B and B. Table 2.a: a closely packed array of coated spheres, z = 0.

Table 2.b: a closely packed array of coated spheres, z = oc.
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Table 2.b

Case z =

q P W V B B,
0.10 0.000600 1.00180 1.00180 1.00180 1.00180
0.20 0.004800 1.01447 1.01449 1.01438 1.01452
0.30 0.016200 1.04940 1.04959 1.04834 1.04995
0.40 0.038400 1.11980 1.12097 1.11374 1.12308
0.50 0.075000 1.24324 1.24841 1.21951 1.25714
0.60 0.129600 1.44669 1.46525 1.37270 1.49592
0.70 0.205800 1.77739 1.85262 1.57777 1.93973
0.80 0.307200 2.33025 2.66324 1.83599 2.88852
0.90 0.437400 3.33239 5.14329 2.14523 5.84207
0.93 0.482614 3.79838 7.28052 2.24720 8.40043
0.96 0.530842 4.39443 12.6322 2.35310 14.8163
0.99 0.582179 5.18012 50.1269 2.46269 59.8044
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DYNAMIC SHEAR BAND DEVELOPMENT IN PLAN STRAIN COMPRESSION
OF A BIMETALLIC BODY

R. C. Batra and Z. G. Zhu
Department of Mechanical and Aerospace Engineering

and Engineering Mechanics
University of Missouri-Rolla
Rolla, MO 65401-0249, USA

ABS3TRA .T. We study plane strain thermomechanical deformations of a prismatic
viscoplastic body of square cross-section and deformed at a nominal strain-rate of 5000
sec- 1. The body has two thin layers placed symmetrically about the horizontal centroidal
axis. The layer material differs from that of the body in only the value of the yield stress in
a quasistatic simple compression test. The yield stress for the layer material is taken to be
either one-fifth or five times that of the matrix material. Three cases, namely, when there is
an elliptical void with its major axis aligned along the horizontal centroidal axis or the ver-
tical centroidal axis, but the void center coincides with the center of the cross-section, and
when there are two elliptical voids with major axes aligned along the vertical centroidal axis
and a void tip abuts the layer/matrix interface are studied. The deformations are assumed
to be symmetrical about the vertical and horizontal centroidal axes.

It is found that in each case shear bands initiate from points on the traction free edges
where the matrix/layer interfaces intersect them and propagate into the softer material. For
the soft layer these bands initially merge into one and propagate horizontally.
Subsequently, each of these bands bifurcates into two which propagate into the matrix
material along the direction of the maximum shear stress. There is minimal interaction
between these bands and those initiating from points near the void tips.

INTRODUCTION. Adiabatic shear bands are narrow regions of intense plastic
deformation that form during high strain-rate processes, such as shock loading, ballistic
penetration, metal forming, and machining. As these bands generally precede material
fracture, a knowledge of factors that inhibit or enhance their growth is essential to the pro-
duction of durable materials and more efficient manufacturing processes. These bands
form in both ferrous and nonferrous alloys.

Johnson (1987) has recently pointed out that Tresca (1878) and Massey (1921)
observed hot lines, now referred to as adiabatic shear bands, during the forging of platinum.
Both Tresca and Massey stated that these were the lines of greatest sliding, and also there-
fore the zones of greatest development of heat. Wulf (1978) has reported everimental
observations of adiabatic shear bands in high strain rate (2000 to 25000 sec- 1) compression
of 7039 aluminum armour. He found that the cross-section of the cylindrical specimens
changed from circular to elliptical after the compression test, and adiabatic shear bands
formed in the specimens which subsequently failed by crack propagation along the dom-
inant band. Further references to the analytical, numerical and experimental work on shear
banding may be found in two recent books (Dodd and Bai (1987), Semiatin and Jonas
(1984)).

Recently, LeMonds and Needleman (1986), Needleman (1989), Anand et al. (1988),
Zbib and Aifantis (1988), Batra and Liu (1989,1990), Zhu and Batra (1990), Batra and Zhu
(1990), and Batra and Zhang (1990) have studied the phenomenon of shear banding in
plane strain deformations of a viscoplastic solid. Whereas Needleman studied a purely
mechanical problem, other works have treated a coupled thermomechanical problem.
LeMonds and Needleman, Zbib and Aifantis, and Anand et al. neglected the effect of iner-
tia forces on the ensuing deformations of the body. These investigations have employed

* Supported by the U. S. Army Research Office Contract DAAL03-88-K-0184 to the Uni-

versity of Missouri - Rolla.
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different constitutive relations, different techniques to integrate the stiff set of governing
partial differential equations, and have generally assumed that the entire body or the por-
tion of the body whose deformations were analyzed had only one defect in it. The prismatic
body whose plane strain thermomechanical deformations are studied herein is of a square
cross-section and has two thin layers made of a viscoplastic material different from that of
the body and placed symmetrically about and parallel to the horizontal centroidal axis.
These horizontal layers may be thought of as representing planes of chemical inhomoge-
neity. Also, as stated above in the abstract, there is either an elliptical void at the center of
the cross-section or two ellipsoidal voids with major axes along the vertical centroidal axis
and tips touching the layer/matrix interfaces. The voids can form during manufacturing.
However, the symmetrical situation considered herein is to simplify the problem. The ver-
tices of the ellipsoidal void on its major axis and the points on the free edges where the thin
layer and the matrix materials meet act as nuclei for the initiation of shear bands. It thus
becomes an interesting exercise to study the initiation and growth of various bands and the
interaction, if any, amongst them. We account for the effect of inertia forces, strain-rate
sensitivity of the materials, thermal softening effects, heat conduction, and the heat gener-
ated due to plastic working.

FORMULATION OF THE PROBLEM. Figure 1 depicts the cross-section of the
prismatic body, and the relative dimensions of the ellipsoidal void and the two thin layers.
For this case, the centers of the void and the cross-section coincide and the major axis of the
void coincides with the vertical centroidal axis of the cross-section. It is assumed that the
body is loaded along the vertical axis, plane strain state of deformation prevails, and that the
deformations are symmetrical about the two centroidal axes. Thus the deformations of the
material in the first quadrant are analyzed. We use a fixed set of rectangular cartesian coor-
dinate axes and the referential description of motion to describe the thermomechanical
deformations of the body. The governing equations are:

balance of mass: (pJ)" = 0, (2.1)

balance of linear momentum: p 0 vi = Tia,a, (2.2)

balance of moment of momentum: Ti,, xj,a = T,, xi,,, (2.3)

balance of internal energy: p0 e = "Q, + Ti,a vi'Q, (2.4)

where
Tia = (Po/P) Oij XC '(
oij = - B (P/Po - l ij + 2M Dij ,  (2.5)

2p = [oO/J3I] (1 + bI)m (1 - aO), (2.6)

12 = (1/2) Dij Dij, (2.7)

Dij - Die- (1/3) Dkk Sj , (2.8)

Q, = (Po/P) qi Xc, i, qi = - k 8,i, (2.9)

e = C i + B(p/p 0 - 1) p/p2 
. (2.10)

In these equations xi gives the position at time t of the material particle X., vi = xi is
its velocity in the xi-direction, p is its present mass density, po its mass densi in the refer-
ence configuration, J = det [xli ], xiO = a xi/8 Xv, Tic is the first Piola-Kirchoff stress ten-
sor, o ij is the Cauchy stress tensor, e is the specific internal energy, Oc is the heat flux
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measured per unit area in the reference configuration, D is the strain-rate tensor and Iis

its deviatoric part, a superimposed dot indicates material time derivative, a comma followed
by index a j) implies partial differentiation with respect to X. (xi), and a repeated index
implies summation over the range (1,2) of the index. In the consttutive relations (2.5),
(2.9) and (2.10), the material parameter B represents the bulk modulus, o o is the yield
stress in a quasistatic simple compression test, parameters b and m characterize the strain-
rate sensitivity of the material, a describes its thermal softening, 8 equals the temperature
change of a material particle from that in the reference configuration, k is the constant ther-
mal conductivity and c is the constant specific heat. Here we have not considered the
stresses caused by the thermal expansion.

The foregoing equations hold in regions occupied by the matrix and the layers. The
values of material parameters for the matrix and the layer materials are the same exceptthat either ta layer = 5 a0 matrix, (2.11a)

or or layer = (1/5) oo matrix. (2.11b)

In terms of the deviatoric stress s defined by

s = 0 + [B(p/p o - 1) - (2M/3) tr D]I, (2.12a)

- 2g D, (2.12b)

equations (2.12), (2.5) and (2.6) give

(1/2 tr s2)1/2 = (od/J3) (1 - a6) (1 + bI)m. (2.13)

We assume that the body is initially at rest at a uniform temperature, has a constant
mass density and is initially stress free. That is

p(xo) = 1, V(xo) = O, 8(xo) = 0 . (2.14)

For the material in the first quadrant, we impose the following boundary conditions.
V2 = - h(t), T1 2 = 0 and Q2 = 0, on the top

surface AB, (2.15)

T11 = 0, T2 1 = 0 and Q1 = 0, on the right
surface BC, (2.16)

v2 = 0, T1 2 = 0 and Q2 = 0, on the bottom
surface CD, (2.17)

TizNx = 0, Qa No = 0, on the void
surface DE, (2.18)

V1 = 0, T2 1 = 0 and Q1 = 0, on the left
surface EA. (2.19)

That is the top surface is moving downward with a speed h(t), contact between it and the
loading device is smooth, the right surface is traction free, and the entire boundary is ther-
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mally insulated. If at any time during the deformations of the body, a point on the void
surface touches the vertical axis, the boundary condition on it is changed to (2.19). The
boundary conditions (2.17) and (2.18) reflect the presumed symmetry of deformations
about the x1 and x2 axes. For the loading function h(t) we take

h(t) = vo t/tr, 0 < t < tr,
= vo  t > tr. (2.20)

The steady speed vo of the top surface of the block is reached in time t
The matrix and the layer are assumed to be perfectly bonded. ihus at the common

interfaces between them, the velocity field, surface tractions, the temperature and the nor-
mal component of the heat flux are assumed to be continuous.

For other configurations of the voids, the boundary conditions are vpropriately
modified.

RESULTS. The finite element code developed by Batra and Liu (1989, 1990) was
modified to analyze the present problem. In order to compute results, we used the follow-
ing values of various material and geometric parameters.

b = 10000 sec, o O = 333 MPa, k = 49.22 W m-1 "C- 1 ,
m = 0.025, c = 473 J Kg- I "C- 1 , p. = 7860 Kg m- 3 ,
B 128 GPa, H = 5 mm, v 0 = 25 m sec - I , (3.1)
a = 0.0025 *C-1 .

Thus the average applied strain-rate * avg equals 5000 sec " 1, the reference temperature

0 " /(poc) = 89.60 C, and v - po vo/o 0.015. The nondimensional number v signi-
fies the effect of inertia forces relative to the flow stress of the material. For the simple
shearing problem, Batra (1988) noted that the inertia forces play a noticeable role when v
= 0.004. Thus for the present problem, the inertia forces will very likely play a significant
role.

LAYER MATERIAL SOFTER THAN THE MATRIX-MATERIAL Figure 2
depicts the contours of the maximum principal logarithmic strain e at an average strain of
0.079 when the center of the ellipsoidal void coincides with the center of the cross-section
and the major axis of the void is aligned along the venical centroidal axis. These contours
and other results reported by Zhu and Batra (1990b) reveal that shear bands initiate from
points on the right traction free edge where the matrix layer interfaces intersect it.
Because the layer material is softer and its thickness quite small, these bands merge into one
band that initially propagates horizontally into the layer. When the matrix material has
softened somewhat due to the rise in its temperature, the horizontally propagating band
bifurcates into two bands that propagate into the matrix along ±45* directions. The band
propagating into the matrix material above the layer has more severe deformations associ-
ated with it than the one propagating into the matrix material below the layer.

The band initiating from a point near the void tip on the vertical centroidal axis pro-
pagates along a line that makes an angle of 45* with the horizontal. This band seems to
pass through the soft layer rather easily.

Figure 3 shows the contours of the maximum principal logarithmic strain e at an aver-
age strain of 0.0333 when the ellipsoidal void is at the center of the cross-section and the
major axis of the void is aligned along the horizontal centroidal axis. These plots look quite
similar to that for the case when the major axis of the void coincides with the vertical cen-
troidal axis. For a further discussion and details of results in this case, see Batra and Zhu
(1991).

When the void tip touches the matrix/layer interface and the major axis of the void
coincides with the vertical centroidal axis, the contours of ( plotted in Figure 4 at an aver-
age strain rate of 0.0175 look quite different from the previous two cases. Results given by

130



Batra and Zhu (1990) and these contours of e suggest that a shear band initiates within the
matrix surrounding the void tip near the matrix/layer interface and propagates into the
matrix material below the common interface, the direction of propagation being nearly 45"
to the vertical axis. The shear bands initiating at points of intersection of the matrix/layer
interfaces with the right traction free surface propagate into the soft layer and then bifur-
cate into the matrix material along lines making an angle of approximately 450 with the
vertical. The band in the layer near the upper matri/ayer interface bifurcates into the
matrix prior to that near the lower interface. Also the band in the layer near the upper
matra er interface continues to propagate horizontally into the layer too, while Tat near
the lower surface does not.

LAYER MATERIAL STRONGER THAN THE MATRIX MATERIAL. We first
study the case when the center of the ellipsoidal void coincides with that of the cross-
section. In Figure 5, we have plotted contours of e at an average strain of 0.122 when the
major axis of the void is vertical. Now the bands initiating from points on the right traction
free edge where the matrix/layer interfaces intersect it propagate into the matrix material
along lines making an angle of approximately -45* with the horizontal. Recall that the
matrix material is softer than the layer material. The quarter of the square cross-section
studied is divided into five subregions, each of which is deforming essentially rigidly, and
there is a shear band at the four common boundaries (e.g., see Zhu and Batra (1990b)).
However, when the major axis of the void is horizontal, contours of e depicted in Figure 6
at an average strain of 0.031 suggest a picture different from the one when the major axis of

the void was vertical. We should add that the average strains in the two cases are quite
different. Hence, a direct comparison is not very meaningful.

Figure 7 shows contours of e at an average strain of 0.057 when a void tip is at the
matrix/layer interface. These contours and other results given by Batra and Zhu (1990)
reveal that a shear band initiating from the void tip abutting the matrix/layer interface pro-
pagates initially along the interface and then into the matrix material along a line making an
angle of nearly 450 with the vertical. The shear band initiating from the lower void tip also
propagates into the matrix material along a line making an angle of approximately 450 with
the vertical. Two shear bands also initiate from points on the right traction free edge where
matrix/layer interfaces intersect it, and these bands propagate into the matrix material along
lines making an angle of 45* with the vertical. Even though it seems that near the vertical
centroidal axis a shear band has propagated into the layer, there is no localization of defor-
mation occurring in the layer material. This is evidenced by the plots of e versus the aver-
age strain at several points in the layer that are given in Fig. 8c of Batra and Zhu's (1990)
paper. The contours of the temperature rise, not included herein, support the picture laid
out above for the development of four bands, two from void tips and two from points on the
right traction free surface where the layer and the matrix materials meet.

CONCLUSIONS. We have analyzed the problem of the initiation and growth of shear
bands in a prismatic viscoplastic body containing an ellipsoidal void, and two thin layers
made of a different viscoplastic material placed symmetrically about the horizontal cen-
troidal axis. The body is deformed in plane strain compression along the vertical axis at an
average strain-rate of 5000 sec' 1 , and its deformations are assumed to be symmetrical about
the two centroidal axes.

Two shear bands initiate from points on the right traction free edge where the mat-
rix/layer interfaces meet it. These bands propagate into the softer material. When the
matrix material is softer, these bands propagate along lines that make an angle of
approximately ±450 with the horizontal. However, when the layer material is softer, these bands
essentially merge into one and initially propagate horizontally into the layer. Subsequently,
this band bifurcates into two bands that propagate into the matrix material along ±45
directions.

Shear bands also initiate from points near the void tips and propagate in the ±45
directions. When the layer material is stronger than the matrix material, these bands do not
pass through the layer and are deflected back upon arriving at the matrix/layer interface.
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However, they pass through easily through a softer layer.
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An Analysis of the Torsion Specimen
Used in Constitutive Modeling

Charles S. White

Materials Dynamics Branch
Materials Reliability Division

U.S. Army Materials Technology Laboratory
Watertown, MA 02172-0001

ABSTRACT

In the constitutive modeling of metals there has long been the need for a sim-
ple, test methodology to achieve large defo nation with a uniform stress and strain
state. The torsion test has been recognized ijr its potential to fill this need. The ge-
ometry of the test specimen does not change significantly even for very large deforma-
tion. In recent years, the thin-walled tubular specimen having a short gauge length
has been proposed to meet this need. In this paper, a nonlinear finite element analy-
sis of a typical specimen geometry has been conducted using the ABAQUS finite ele-
ment code. Several different three dimensional models have been used.

The analysis shows the suitability and limitations of applying a simple shear
approximation to the deformation of the gauge section. Quantitative assessment is
made of the macroscopically derived stress and strain states with the numerically pre-
dicted variations within the gauge region. A correction factor is found to be required
when converting the applied twist at the grips to average shear strain across the
gauge section. Plastic deformation extends from the gauge section into the shoulder
region whether there is an abrupt or gradual transition from the large shoulder region
to the gauge section. This also causes the development of axial strain in the gauge
section even when the axial motion of the grips is constrained to be zero.

The usefulness of the thin-walled, short gauge length specimen is discussed
in light of the detailed analysis. The need for accurate modeling of experimental pro-
cedures is highlighted.
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Introduction

Determining the behavior of materials, particularly metals, to large deformation condi-
tions has presented substantial experimental difficulties from the time of Tresca's early met-
alworking experiments [Tresca, 1864] to the present. Primary difficulties have been in deter-
mining the stress and strain accurately in an experimental test specimen that undergoes
gross deformation. A homogeneous test region is required which is free from large stress or
strain gradients and is large enough to measure displacements from which strain can be in-
feed. Tension, compression, rolling, extrusion, torsion and drawing are all types of proce-
dures that have been applied to metals to achieve large deformation.

Torsion of solid rods and thin-walled tubular specimens have been particularly attrac-
tive because they do not undergo a large change in dimensions during a test. The biggest
drawback of the solid rod torsion specimen is the large radial gradient in stress and strain.
The distribution of shear strain in a twisted rod is linear varying from zero at the center to a
maximum on the surface. The variation of shear stress depends upon the constitutive behav-
ior. A solid specimen can have a very three dimensional stress distribution even if the ends
of the specimen are free to expand or contract. Symmetry conditions require that the cross
sectional planes of material must remain plane during deformation [Crandall, Dahl and
Lardner, 1972]. An unmeasurable axial stress distribution is required to produce that defor-
mation for all but the simplest constitutive models. There are two very attractive features of
this type of test: the geometry is very simple and easily machined, and the solid rod is very
stable against buckling. These two features must be measured against the uncertainty in the
results due to the nonhomogeneous stress and strain states.

The thin wall torsion specimen has received considerable attention in the literature in
recent years because it offers the possibility of a simple deformation field and homogeneous
stress and strain states. A specimen which has a wall which is only a small fraction of the
radius of the section will have a nearly uniform strain distribution through the wall thickness.
The stress state is given by dividing the required torque or axial (thrust) load by the cross
sectional area and mean radius. The tubular test specimen has been historically used to
probe biaxial stress states and infinitesimal theory flow rules [Taylor and Quinney, 1931;
Phillips and Lu, 1984]. The specimen is known to be unstable at large strains when it is pro-
portioned by conventional means having long uniform gauge sections with gradual transition
to the gripping region. Torsional buckling is a primary mode of failure for such a specimen.
The problem of torsional buckling can be avoided by shortening the gauge length so that it is
only a fraction of the diameter of the gauge section. It is much harder to buckle a short, squat
cylinder than a long, thin one. A specimen of this type was first proposed by Hodierne in
1962 for use in hot working studies [Hodieme, 19621 and popularized by Lindholm et al.
(19801. Figure 1 shows a generic sketch of this type of specimen. Notice the short, thin wall
gauge section which quickly transitions to the thick walled shoulder region where the speci-
men is gripped.

Torsion test results have been originally used to compare normalized flow stress be-
havior with tension/compression results [Hecker, 1982]. A landmark paper by Nagtegaal
and deJong [19821 showed that simple shear deformation can yield startling stress predic-
tions which are very sensitive to material model. These results show the importance of sim-
ple shear deformation for discriminating material behavior, especially kinematic hardening.
Nagtegaal and deJong showed that classical Prager type kinematic hardening predicts very
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large normal stresses in simple shear. The stress components are seen to oscillate with
plastic strain for very large shearing due to the objective stress rate (Jaumann) which was
used. In the past decade there has been intensive work aimed at describing material behav-
ior in large simple shear and even formulating constitutive models with the specific goal of
describing simple shear in a more intuitively acceptable manner. In light of these results the
torsion test has a new importance insofar as it provides an approximation to simple shear de-
formation. Just how close an approximation this is will be examined below.

The kinematics of the finite strain tension torsion of a thin-walled tube have been ex-
amined in detail by McMeeking [19821. For a uniformly deforming tube, the stretching ten-
sor (symmetric part of the velocity gradient) can be written in curvilinear coordinates as:

t 0
D= 0 r/r

. /2 " ,

where the 1, 2, and 3 directions are in the radial, hoop and axial directions, respectively. The
torsion test provides an approximation to simple shear only as well as it restrains the chang-
es in wall thickness, t, mean radius, r, and axial strain , e, to be zero. The geometry shown
in Figure 1 attempts to enforce the gauge section to be free from normal stretches by the
presence of the large shoulders near the gauge region. The massive shoulders provide the
restraint against changes in the radius. The shoulders also provide the restraint against axi-
al deformation. The grips can be restrained against axial motion to within the stiffness of the
testing machine frame. The thick wals of the shoulder region transmit this axial stiffness to
the gauge region. The effectiveness of this geometry to restrair, the radial, hoop and axial
normal straining is one of the primary things to be determined in evaluating the torsion test.

The thin walled torsion specimen has been used largely without investigation, either
experimentally or numerically as to its effectiveness in simulating simple shear. The single
exception is Lipkin, Chiesa and Bammann [19871 who conducted a numerical analysis of
their test specimen using the DYNA3D finite element hydrocode. This analysis will be re-
ferred to below in comparison with the present results but a few comments are in order.

A number of features of this type of specimen were first observed. The gauge length
shows a slight lengthening during torsion even for perfectly fixed specimen ends. Also, the
shear strain at an element in the gauge section can differ from the average shear strain calcu-
lated from the twist of the grips.

This analysis was conducted for the express purpose of comparing experimental re-
sults of the authors with a particular constitutive model. As such, no comparison was made
with better uiderstood, more classical material models.

The finite element mesh that was used was very coarse containing only 3 elements
through the thickness. No mesh convergence comparisons were reported.

The results of Lipkin et al. have shed new light on the behavior of the thin-walled tor-
sion specimen but have not provided a detailed, quantitative assessment as to the limita-
tions and usefulness of the specimen. The current analysis addresses these questions.
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Finite Element Model

The specimen geometry that was simulated corresponds to the 316 stainless steel
specimen reported in White, Anand and Bronkhorst L19901. The gauge length was 5.9 mm.
The inside diameter was 19.05 mm. The outside diameter of the gauge region was 20.52 mm.
The outside diameter of the shoulder region was 38.1 mm.

The finite element analysis was conducted with the ABAQUS finite element program
[ABAQUS, 1989]. All of the elements were eight node, linear displacement bricks having a
full eight material integration points (C3D8 elements in ABAQUS). Two different types of
mesh designs were employed. These are shown in Figure 2.

The first type of mesh is one that represented the full three-dimensional geometry of
the specimen, Fig. 2a. Only one half of the specimen was discretized due to symmetry about
the midplane. The mesh had 5 elements through the thickness of the specimen wall. In the
one-half gauge region 8 elements were used in the axial discretization but were not evenly
spaced, they were smaller near the shoulder than at the specimen midsection. The mesh
was discretized into 12 rows of elements around the circumference. Thus each element cov-
ered 30 degrees of arc. The applied boundary conditions were very simple. The nodes on the
specimen midplane were restrained against movement in the axial, and local hoop directions
but were allowed free movement in the radial direction. The outermost ring of nodes at the
top of the shoulder region farthest from the gauge section was constrained to move in a circle
at the original radius. This was to simulate the twist applied to the specimen by the hydrau-
lic, collet grips of the testing machine. All nodes on the plane furthest from the midplane
were restrained against axial motion. All other free motion of the specimen boundaries was
allowed without constraint.

The second type of mesh, Fig. 2b, discretized the specimen into just one circumferen-
tial slice of either one or five degree extent. A fine mesh within that slice was used. Each
plane had 9 elements through the wall thickness and 15 along the axial length of the one-half
gauge length. Again, the nodes on the midplane of the gauge region were restrained against
axial or circumferential motion but radial motion was allowed. The nodes along the top face
of the shoulder region were restrained against axial motion. The outer node on the top face
was constrained to move in a circular arc simulating the applied twist. The compatibility en-
forced on this strip to make it simulate an entire circumference was by requiring the initially
straight radial lines of nodes to remain on straight lines and by requiring the corresponding
nodes on the two faces of the strip to retain the prescribed circumferential angle (either one
or five degrees) between them.

The material models that were used in the simulations were classical, large strain
plasticity laws: isotropic hardening, kinematic hardening, and perfect plasticity. The material
was assumed to behave elastically with Young's modulus of 200. GPa and Poisson's ratio of
0.33 up to a yield stress of 250. MPa. Above this stress the elastic plastic behavior had a
constant plastic hardening modulus of 1500. MPa. The objective stress rate employed was
the Jaumann derivative. These material models satisfactorily bound the behavior both of ex-
perimental results and of most of the constitutive laws in the literature.

Convergence studies were conducted of the step size and nodal force tolerance in the
acceptance criterion for the finite element studies. The automatic load stepping was used in
full large deformation analysis. Approximately 200 displacement increments were used to
twist the specimen to a nominal engineering shear strain of unity.
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Results

The majority of the comparisons of the numerical results are shown in terms of macro-
scopic variables that would be determined in an experiment. The nominal shear stress in the
gauge section was determined by summing the reaction forces in the circumferential direction
on the top face of the specimen at the shoulder (the applied torque) and dividing by the cross
sectional area and average radius of the gauge section. The axial, normal stress was deter-
mined in similar manner by summing the axial reaction force on the top face of the specimen
and dividing by the gauge cross sectional area. The average strains in the gauge section
were determined assuming an extensometer could measure the circumferential and axial dis-
placements on the outside of the gauge section at the intersection with the transition region
to the shoulder. The nominal axial strain was determined by dividing the axial displacement
by the original gauge length and the nominal average shear strain (engineering) by dividing
the arc displacement by the gauge length. These numerical results then can be compared
with the variables measured in an experimental test.

In results not shown here, the different models described above were compared for
calculations using both isotropic and kinematic hardening. The macroscopic stress-strain re-
sults and the stress and strain contours within the specimen were virtually identical. The
models: full circumferential, one degree slice and five degree slice all yielded results that
were almost indistinguishable. This was taken as verification that the mesh was sufficiently
fine and the boundary conditions for the single slice meshes were appropriate. Most of the
succeeding results that will be discussed were obtained with the single slice model having
five degrees circumferentially.

In order to evaluate how well the thin wailed torsion specimen approximates simple
shear a comparison is made between the shear and normal stress response inferred from the
finite element simulation with that for the same constitutive models integrated directly as-
suming only simple shear deformation. The results of this comparison are shown in Figure 3
for both isotropic and kinematic hardening. For isotropic hardening we see an almost exact
correlation. No normal stress develops and the shear stress linearly increases with strain.
For kinematic hardening (using Jaumann derivatives) a substantial axial normal stress is
predicted both by the finite element model of the specimen and the assumed simple shear de-
formation. The finite element results an axial normal stress approximately 20% larger than
predicted for simple shear. This provides a good way to estimate how well the specimen ap-
proximates simple shear. This kind of result is okay but not terrific. Notice that the shear
stress is quite well correlated by the specimen and simple shear.

Stress contours are provided in Figure 4, for kinematic hardening, to demonstrate
what kind of variability exists in the gauge sections. Notice that the shear stress is quite
uniform except right at the shoulder transition. The axial normal stress and the hoop normal
stress show a much larger variation across the wall of the gauge region. For a perfect simple
shear specimen these would be constant and of equal magnitude and opposite sign with the
axial stress being compressive and the hoop stress tensile. In the specimen he tensile
hoop stress tries to pull the radius of the gauge in to the center and creates a slight bending
in the wall which creates the stress nonuniformity. For the geometry shown we do notice
that there is a cross section through the wall that has a fairly constant stress both for the ax-
ial and hoop stresses. This cross section is about one wall thickness away from the shoul-
der transition. At this location simple shear appears to be maintained quite well. Thus the
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macroscopic variables do give pretty good results.
The reason for the increased axial normal stress when compared to simple shear

(Fig. 3) can be traced to the fact that the plastic deformation is not completely contained in
the gauge section. Figure 5 shows the contours of equivalent plastic strain at a shear strain
of approximately 78%. Notice that the contour of 1% plastic strain extends into the transi-
tion region for about one-half gauge length. Thus the plastic deformation is not completely
contained in the gauge section. One effect of this is that the axial restraint is not perfect.
Figure 6 shows the development of average axial strain across the gauge length with shear
strain. For the three plasticity laws considered, an extension of the gauge length is ob-
served during testing. The magnitude of this strain is small but it is enough to increase the
axial stress, especially for kinematic hardening.

Another effect of the plastic strain extending into the transition shoulder region is up-
on the shear strain. In the results presented above, the shear strain was calculated by tak-
ing the twist measured across the gauge section to convert into strain. In experimental prac-
tice, the twist applied by the testing machine has been assumed to be entirely transmitted in-
to the gauge section and hence it has been used to calculate the shear strain. From the finite
element results we compare the twist measured across the gauge section with the twist ap-
plied across the entire specimen. In Figure 7 the ratio of these twists is plotted against rota-
tion. For the geometry considered here, the ratio is independent of hardening model. It is in-
dependent of applied strain after an initial transient. The rotation ratio does depend slightly
whether it is measured along the inner surface or the outer surface of the specimen. For this
specimen, about 78% of the twist that is applied at the grips actually goes into the deforma-
tion in the gauge section. It is very fortuitous that this ratio is independent of hardening mod-
el and deformation level. A simple correction factor can be applied to the experimentally
measured twist in converting to shear strain (just multiply by 0.78). This correction factor is
dependent upon the particular specimen geometry but can be easily evaluated from finite ele-
ment modeling. Of course, experimentally one would like to have a rotational extensometer
to measure the twist in the gauge section. This correction factor is the next suitable ap-
proach.

Conclusions

A finite element model has been used to evaluate the thin-walled torsion specimen.
The specimen is shown to provide a reasonable approximation to simple shear. In evaluating
the specimen response to twisting the following observations are made:

The shear strains are almost constant in the gauge section.
The axial strain across the gauge section increases with deformation but remains small for fixed grips.
The shear stress is quite uniform in the gauge section.
The axial and hoop normal stresses have a large variation across the wall thickness except at one

location where they are uniform.
The plastic deformation extends into the shoulder transition region and has the main effect of reducing

the twist that the gauge section experiences to a fraction of the twist applied by the grips. This
factor is well characterized and can be used to correct experimental results.

Future work is needed to optimize specimen geometry. The effect of gauge length
needs to be explored as well as the onset of torsional buckling. Experimentally, the largest
need is to be able to directly measure the strain in the gauge region.
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Figure 1. Geometry of the Thin-Walled, Torsion Specimen

a) Full Circumferential Mesh. b) Mesh of Single Slice of Specimen.

Figure 2, Finite Element Meshes Used to Simulate the Torsion Specimen.
a) Full Circumferential Mesh.
b) Mesh of Single Slice of Specimen.
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WRAPPABILITY OF CURVES ON SURFACES

Royce W. Soanes
U.S. Army Armament Research, Development, and Engineering Center

Close Combat Armaments Center
Benet Laboratories

Watervliet, NY 12189-4050

ABSTRACT. In this paper, conditions are derived under which a patt on a
general smooth surface is wrappable or capable of receiving an essentially one-
dimensional flexible filament under tension that clings to the surface
throughout its length and does not slip. Wrappability considerations are of
practical importance in the fabrication of filament-wound composite pressure
vessels, for instance. The general wrappability conditions derived are applied
to two special cases: general cylinders and general surfaces of revolution.

INTRODUCTION. Imagine a rotating spinole accepting string from some deliv-
ery point which moves parallel to the axis of the spindle. This is the essence
of the filament winding process where the "string" is replaced by a band of
epoxy impregnated fiber glass, for instance; layer upon layer of this filament is
evenly laid down; and the whole thing is ultimately cured or baked into a
filament-wound composite structure - often a pressure vessel. The spindle or
mandrel is designed so that it may be broken down into parts and removed sub-
sequent to curing, leaving only the wrappings embedded in the matrix material.
This paper considers the question of how the winding or wrapping process is
limited by the differential geometric nature of the mandrel's surface.

PRELIMINARIES. Begin with point P in three space:

P = iX + jY + kZ

Restrict P by parameterizing with respect to x and 6, defining a surface S
embedded in three space:

X=x

Y = r(x,O)sin 0

Z = r(x,O)cos 6

where r(x,9) is the radius of the surface. We require r to be sufficiently
smooth, positive, and 2n periodic in 0, making S a closed surface with an inside
and an outside. If P is further restricted by defining 0 in terms of x, P will
lie on a curve or path embedded in the surface S.

Let ( 'denote 9- ( ) and let s denote distance along curve c. The
dx

tangent vector t to curve c is
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t dP ='s1
ds

and the curvature vector K of any curve c is

K 1 = VS)
ds

= (P"-tsf)(s')-2

A family of vectors tangent to surface S at point P is

dP = Pxdx + Pede = t dx + 2 de

Two independent vectors spanning the tangent space at P are therefore Px and Pe.
Now form the vector cross product of Px and Pg to obtain v, a vector normal to
the surface and pointing away from the outside of the surface.

V = Px x Pg

WRAPPABILITY CONDITION I - NO LIFTOFF. Now, in order for c to be a wrap-
pable curve on surface S, it is necessary for a length of flexible filament
under tension to cling to c and S. In order for this clinging to take place, it
is necessary for c to see the outside of S as being convex. This will be the
case only if the curvature vector of c points away from the inside of the sur-
face. It is therefore necessary that the inner or dot product of v and K be
negative for clinging to take place. Now,

V.K = V.(P"-tS")(S')- 2

but

lot = 0

therefore,

V-K = V.P"(S') -
2

and since only the sign of v.K matters here, the function A is defined as

A = V.P"

When X is positive, a filament under tension tends to lift off the surface and
form a bridge between two distant points; when A is negative, the filament tends
to cling to the surface.

Now, the evaluation of X in terms of x, 6, and r is outlined.
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First,

P, = Px + poe'

and

P" = Pxx + 2Px86 ' + P90012 + Poo '

but Po is in the tangent space, so

V.P6 = 0

Hence,

A = = Pxx + 2v'Pxge' + v.P99e' 2

Note that all the inner products defining A are determined at a point on the
surface independently of the curve c and that the only thing that changes A at a
point is the direction of c determined by 0'. Therefore, all curves with the
same direction through a given point on the surface have the same value of A at
that point.

Continuing the evaluation of v.P" we have

Px= i+jYx + kZx

Pe= JY + kZo

V = PxxPe = i(YxZe-YeZx) - jZq + kYq

Pxx = JYxx + kZxx

Pxe = JYxe + kZxo

P0 = jY6 6 + kZ90

The dot products in A are therefore

l.Pxx = YeZxx - ZoYxx

'Pxo = YeZxo - Zeyxe

V'Pe = YoZee - ZeYee

Obtaining the partials in these dot products

Y = r sin 6

Yx = Yrx/r
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Y9 = Yrg/r + Z

Yxx = Yrxx/r

Yxe = (Yrxe+Zrx)/r

YVe = jY(reo-r) + 2Zr6 }/r

Z = r cos 9

Zx = Zrx/r

Z9 = ZrO/r - Y

Zxx = Zrxx/r

Zxe = (Zrxg-Yrx)/r

Zqe = IZ(ree-r) - 2Yrej/r

The dot products then become

V.Pxx = rrxx

V.PxO = rrxe - rxre

u-Poe = rro6 - 2r9 2 - r z

Hence,

X = rrxx + 2(rrxe-rxro)O' + (rroo-2ro2-r2)6'2

- aO' 2 + 2b8' + c

2 2

=a(e' + -) + c b
a a

It is clear that the sign of A is completely independent of 0' at points
for which ac > b2 . Hence, any curve is wrappable where ac > b2 and a 0, but
the surface is unwrappable if ac > b2 and a > 0 anywhere. If ac < b2 , some
curves will be wrappable and others won't. In any case, given the radius func-
tion r, its partial derivatives at a point, and the direction of a curve through
that point, one can immediately compute whether or not a taut filament following
the curve will tend to lift from the surface.

Consider two special cases. For a surface of revolution, re = 0.
Therefore, X = rr" - (rO') 2 [1]. If r" < 0 everywhere, all curves on the
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surface of revolution are wrappable. Points for which r" > 0 are also wrappable
for curves with e' sufficiently large. No surface of revolution is unwrappable
in the sense of liftoff.

For a cylinder, rx = 0, and

A = a9' 2 = (rroG-2re2-r2)9,2

Hence, every curve on a cylinder is wrappable if a < 0 everywhere, but if a > 0
anywhere, the cylinder is unwrappable.

In this section the phrase "is wrappable" has meant "does not experience
filament liftoff or bridging during winding." In the next section, the defini-
tion of "wrappable" is augmented by considering friction between filament and
surface.

WRAPPABILITY CONDITION II - NO SLIPPAGE. If there were no friction between
filament and surface (or between filament and filament since the surface is
filament after the first layer is laid down), there would be only one type of
path along which one might wind filament without the filament slipping - a path
with no transverse (tangent to the surface and perpendicular to the filament)
forces acting on the filament - a path which curves neither left nor right in
the surface - a path with zero geodesic curvature - a geodesic path. If there
were no friction available, and only geodesic paths could be wound, there would
be no filament winding industry. In fact, for numerous reasons, it is seldom if
ever pcisible to wind along geodesic paths in practice [1]. The geodesic path
remains as an ideal, however, and in this section the degree of closeness to
this ideal is quantified.

Le.

* = force per unit length that filament exerts on surface = TK

where T is the scalar tension in the filament and K is the vector curvature of
the fi iment.

No:e that the curveture vector can be resolved into a component tangent to
the sur'ace and a component normal to the surface K = Kg + Kn (2] where the
tangent component of K is called the geodesic curvature vector and the normal
compone-t is called the normal curvature vector.

The force that a small length of filament exerts on the surface is

4OdS = TKds = (Kg+Kn)Tds = KgTds + KnTdS
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Now, in order to avoid slippage of this small section of filament, the
ratio of the magnitude of the tangent force to the magnitude of the normal force
should be less than p, the coefficient of friction

IK ITds kg0' 9~i = s kg I <

(or more precisely, 0 4 a = < V , since we want kn < 0). We call this
kn

ratio of geodesic to normal curvature the slippage function a. This function
measures how close a given path comes to the ideal geodesic path (a a 0). The
evaluation of a is now detailed. First, if P is on the surface,

dP = Pxdx + PedO

and

ds2 = dPodP = Px.PxdX2 + 2Px.Pedxde + Pe.Pedez

= Edxt + 2Fdxde + Gde2

Hence,

(sl)2 = E + 2Fe' + G6'

for a point on a path on the surface.

We now define a Cartan frame [2-4] relative to the surface, i.e., an ortho-
normal basis having two vectors tangent to the surface and a third normal to it.
Let

el = Px/IIPx

= Px/(Px°Px)36

=Px/E36

and

e3 = PxxPO/lPxxPOR = V/iII

but from vector algebra,

(AxB).(CxD) = (A.C)(B-D) - (A.D)(B.C)

Hence,

(PxxPe)-(PxXPe) = IIPXxPGI12 = 110u12

= x.Px)(Pe.PO) - (px.Pe)'

= EG - F2
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Therefore,

e3 = PxXP9/(EG-F2)%

Now

e2 % e3xe1

(PxxPe)xPx/(Ef(EG-F2)%)

but again from vector algebra,

(AxB)xC = B(A-C) - A(B-C)

Hence,

(PxXP)XPx = Pe(Px.Px) - Px(Px-pq)

= EP9 - FPx

and

e2 = (EPe-FPx)/(Ek(EG-F2) )

Now, el and e2 span the tangent space (plane) at any point; therefore, the path
tangent vector t can be written

t = AeI + Be2

If t makes an angle w with el,

el.t = A = cos w
and

e 2 .t = B = sin w

Hence

t = el cos w + e2 sin w

where w is the angle between the path and a meridian (9 = constant). Now

dt de1  de2  dw
K - ds a d- cos O + d- sin w + (e2 cos w - e1 sin w)

Let

T = e3xt

= e3x(el cos w + e2 sin w)

= e2 cos w - el sin w
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Therefore,

del de2 dcK = i - Cos W + d - sin w + T --

and

de1  de2  +w
T T -- cos w + T d- sin w + ds

but since

el-el = e2.e2 = 1

one has

del de2el a;- = e2 0

and since
ele2 = 0

one has

del de2
dis e2 ds el

We therefore have
de1  de1

T a-- = e2 d- Cos W

and

de2  de2  de1
T ds = -el da- sin w = e2 -as- sin w

Therefore

de1  de1  dw de1  dw
T.K = e2 * a- cost w + e2 * ds sin2 w + ds = as-- + d

but

= Kg + Kn  and TK n = 0

hence,

T.K = T.xg = IIKgII = kg

and the geodesic curvature is

de1  dw ' w'
kg = e2 + (e2He +

Now

1k

kn
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so kn must be computed, but most of the work has already been done to find kn.

kn = KI =

S 2 e 2' + w'.,

- '!?!()II + W&

At this point, a few dot products must be computed. We have the identity

(Pu.Pv)w = Pv.Puw + Pu.Pvw

Letting v = u,

PuPuw = 6(Pu*Pu)w

Therefore

Px.Pxe = %Ee

Pe.Px = 4Gx

Px.Pxx = %Ex

and

P9.POO = 3jG

Letting w =u,

(Pu.Pv)u = Pv.Puu + Pu.Puv

= PvPuu + 4(Pu.Pu)v

or

Pv*Puu = (Pu-Pv)u - %(Pu*Pu)v

Hence

Px.Pee = F9 - 3jGx
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and

Pe'Pxx = Fx - JiEe

Recalling

el = PxE-%

and applying d/dx,

ei' = Px'E-% + Px(E-3f)I

=(Px+Px9e')E-% + xE3)

but

ePx= 0
Therefore

e2*el' = (e2'Pxx+e2.Pxee')/E%
Now,

e20Pxx = (EP9eFPx)'Pxx/(ENN))

=(E(Fx - 'SEq) - F('SEx))/(ESii.J)

e2@Px9 = (EPq-FPx).Px/(EIvU)

=(E(ISGx) -F(ISEe))/(ESIvfl)

and therefore

e =e' IE(2Fx-Eo) -FEx + (EGx-FE)9'I/(2E1)II)

Now, consider the meridian angle w

el*t = cos wi

=Px-t/ES
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= Px.(Px+Pee,)/(s,Ei)

= (E+Fe')/(s'Eh)

Therefore,

Tan ( = _
E + FO'

-(E(E+2Fe,+GO,2) - (E2+2EF6,+F2e'Z))

E + Fe'

= l:Eal = Iie'
E + Fe' E + Fe'

Solving for e', we have

E Tan w

(EG-F2)3 - F Tan W

Therefore, a can be computed in terms of x, 0, w, and W'.

The basic metric coefficients in terms of our parameterization are now com-
puted:

P = iX + jY + kZ

but

Px = i + jYx + kZx

and

Yx = Yrx/r

Zx = Zrx/r

hence,

E = Px.Px= 1 + Yx2 + Zx2 = 1 + FT_ (Y2+Z2 ) = 1 + rx2

Now

Pq = jYe + kZ6

and

Y6 = Yrq/r + Z
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Z= Zrg/r - Y

Hence

F =Px*Pe = Yxye +. ZxZ6

Yrx Yr6  Z Zrx Zr6  Y
r r r r

rxr (y2+Z2)

Also

G =PqeP6 a 9 + Z91

Y2roa 2YZrI6
!= -- + --- +ZVrr

+ Zroa 2YZro
r r

= r2 + r82

Now some of the more important relations can be summarized:

A=rrxx + 2(rrxo-rxrg)61 + (rrOO - r rO(0 2

(s')2 = E + 2F6' + GO)

NV1 = EG - F2

0' j----(e2 -el I + j

e2el IE(2Fx-EO) - FEx

+ (EGX -FEO)06i/(2EIlvIl)

of -ETan,(--
lIl - F Tan w

E = 1 + a

F = rxrg

G = r2 + re2
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Now consider the two special cases addressed before. First, the general

cylinder (rx = 0):

E = 1 , F 0 , G = r2 + r92  Gx = 0 = Ex =E e

1V11 = G%

e2-e 1 l = 0

' = Tan-w
Gh

s' = (1+Tan2 w)3 = Sec w

Tan 2 w
A = (rrqO-2r2--r2) G

Sec w G36 w'
a = 1(rree_2re2_r2) 

Tan 1G

(r2+re2)3/2Csc ( Cot 0 (A'- (r2+r92)3/2 d W)
(rro-2re2-r2) =rr 6 o - 2r6

2 - r2  dx

hence,

(r+ro2)3/ZI u' I
= r2 + 2re2 - rree

where u = Csc w. Note that u = 1 at turning points and u > I between turning
points. (A turning point is defined as a point at which 0' = ao or i-t = 0.)
Also note that at points for which u' = 0, the path is geodesic. In addition,
a - 0 if r99 - -®, while rq and u' are bounded. This can be called a "knife
edg. " condition where a is zero due to infinite normal curvature instead of zero
geodesic curvature. Now, consider the general surface of revolution (re = o):

S 1 + r'2 , F = 0 , G = r2 , EO = 0 =G

ll101l (EG)3 = ri'l + r'2

el E Tan w 1)
= II) I - (t Tan

e2,el ' = EG'e'/(2EIIWvI)

- G' (E)4 Tanw

2(EG)3 G

G'
- Tan w
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E
(s')2 = E + G • - Tan2 wG

s' = Sec w =)(1+r'2)3Sec w

A = rr" - rz(e') 2 = rr" - r2 • - Tan2 w = rr" (I+r'2) Tan2 w
G

E Sec w IEG2 Tan
a F-- ( Tan w + w'

rr" - E Tan2 w 2

rr" - (1+r'2 ) Tan2 w r- + Cot W )

Now,

r+ o =d d d
+ Cot w W = Inr + - In Sin w In(r Sin w)

r dx dx dx

It is clear that if r Sin w = constant, a will be zero and the path will be
geodesic (Clairaut).

One can define a quasi-geodesic path on a surtace of revolution by replacing
Clairaut's relation [2,3,5] with r Sin w = ro [1] where the function ro has the
following properties:

" ro(x) = r(x) at exactly two values of x (turning points), and

" ro(x) < r(x) at all points between the turning points.

The function ro is called the polar radius function, because it is the radius of
the surface at the boundaries of the uncovered polar regions [1]. Now, w will
be eliminated in favor of ro . Since

Sin w = 
--

r

one has that

Sec w =
(r2-r 0 2)3

Tan w =
(rZ-r0 2)k

rr
Sec ( Tan ( r- r=2

r 2 - r16

162



and

dIr rot9
dxtoax no 0 F -

Hence, one finds after simplification that

ral ro'I
ra-rol

roa - rr"lrt-r-)
1+r1 2

Note the following: a = I ro'l at turning poinxs; ro' = 0 at geodesic points;

a= (E-)' ro'- if r is linear; a - 0 if r" + -®; while r' and ro' are bounded

(knife edge); and positivity of the denominator in a implies that

0 +r,2+rr"

It has been shown how the slippage function a can be computed for a general
closed surface (rx*Oore) and what simplifications take place in the F n 0 cases.
It should be emphasized, however, that a is more than just a number to be com-
pared with the coefficient of friction W to determine whether or not slippage
occurs. The slippage function a measures pointwise path quality and should
ultimately be usable to synthesize or define quality wrappable paths on general
closed surfaces.
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Optimal Control of Distributed Parameter

Systems under Resonant and Unstable Loading
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Abstract. Vibrations of linear, conservative distributed-parameter systems can
be suppressed by a set of discrete actuators and an optimal control algorithm which
minimizes the current value of a positive-definite, time-dependent objective
function. The control procedure depends on the initial data and is independent of the
ultimate outcome.

The control algorithm that is developed has a limited time interval of
applicability about the arbitrary initial point. Outside this interval, negative
damping and reduced stiffness may arise. However, the arbitrariness of the initial
point allow re-initiation of the end-point and thus provides a means of continuation
of control.

Using variational methods and the general Duhamel integral representation of
the solution, explicit representation for infinite dimensional gain matrices is obtained.
Examples of successful control under conditions of resonant loading and moving loads
are carried out. The control algorithm can also be modified to control a
beam-column subjected to transverse loads on the span before the beam is buckled.
Due to loss of modal stiffness of the buckled beam, the controller can only provide
modal damping to the structure. The controller cannot suppress the vibrations of a
buckled beam. The question of the effect of control force spillover into higher
uncontrolled modes of the system is considered.

Introduction. Active control of continuous flexible structures by means of the
classical variational theories has been considered by many authors, among them
Barnes (1971), Balas (1978), Soong (1982), Leipholz and Abdel-Rohman (1986), and
Abdel-Rohman and Nayfeh (1987). For systems governed by self-adjoint partial
differential equation the control can be naturally formulated in terms of the spatial
modal functions and modal amplitudes.

In a series of papers Meirovitch et al. (1980, 1982, 1983, 1985) have developed
the method of independent modal space control (IMSC). In this method each mode
of the system is considered to be controllable independently. The distributed
response of the controlled system and the forces of the actuators are obtained from
the controlled mode shapes and the modal control forces using the orthogonal
properties of the eigenfunctions.

Assuming that a finite number of sensors and actuators are placed on or about
the structure that monitor the response and apply the control forces, one would
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expect that the control algorithm should be causal i.e. it should depend only on the
information available up to the time at which control is being exercised. Yang et al.
(1985, 1987) have considered "instantaneous control" of discrete dynamic systems.
They consider the discretized state equations of motion and represent the solution in
terms of the unknown control forces. Then optimization of the Hamiltonian of the
system yields as necessary conditions the optimality algorithm and the response state
vector. Komkov (1972) also speaks of "instantly optimal control" algorithms that are
obtained by a limiting process from the time optimal law reducing the energy of the
system at the maximum possible rate.

The problem of active control of a distributed-parameter system with discrete
sets of sensors and actuators is of the category of coupled modal control (Meirovitch,
1987). Here an optimal, coupled-modal control algorithm is developed for continuous
self-adjoint structures by minimizing a time-dependent weighted sum of the kinetic
energy, potential energy, and the control effort. This leads to a causal optimal
algorithm whereby control forces are determined solely on the b'sis of information
available up to the time at which control is being implemented.

The behavior of the controlled structure will be governed by a system which is
generally non--self-adjoint and with modified damping and stiffness matrices of
infinite order. For the system considered the elements of the matrices consist of
harmonics with modal periods. It turns out that the control algorithm that is
developed has a limited time-interval of applicability about the arbitrary initial
point. Outside this interval negative damping and reduced stiffness may arise.
However, the arbitrariness of the initial point allows definition of the end-point of
the interval of integration as a new initial point and thus provides a means of
continuation of the application of the control.

The method is used to suppress the vibration of an undamped beam subjected
to a periodic load resonant with the fundamental frequency of the beam. The control
of the beam under a moving load is also considered. Both cases show that the control
interval affects the behavior of the controlled system significantly. The control
algorithm is applied to a beam-column subjected to an impulse load at midspan.
The vibrations are suppressed when the axial load is below the first buckling load of
the column.

The Control Problem. Consider a flexible elastic medium such as a plate, a rod,
a column, a membrane or a cable. Let z(r,t) denote the deflection of the structure
with r and t respectively representing the position of a material point in a domain D

and the time. Assume n actuators are at locations ri, i = 1,2,3,...,n with control
forces ui (t). Motion of the controlled structure will be described by

n
m(r) 2 + Lz = f(r,t)+ E ui (t) 4r -ri), reD, t > to (1)-1

where m(r) is the mass distribution, f(r,t) is the external excitation, 6 is the Dirac

delta function and L is a self-adjoint spatial operator with sef-adjoint boundary
conditions. The initial time to is any arbitrary point on the time scale at which the
initial conditions
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zo(r) = zQ(r,to) , o(r) = t(r,to) (2)

are known. In (1) and (2) a dot denotes tiwe derivative.

Associated with the above system is the positive definite potential energy U(t)
whose variation 5 U due to a small variation 6z(r,t) is given by

6U = fD Lz 6z dD (3)

A positive performance index J is defined for the current value of time and
consists of the kinetic energy, potential energy and the control effort

n

J(t)MQ(j Dm 2 dD)+Q 2 U+ E Riu. (4)i--i=1

The positive functions Q, (t), Q2 (t) and Ri (t) determine the level of the
effectiveness cf the control criteria and can be assigned arbitrary values by the
designer. The control forces ui will be determined such that J(t) is a minimum
subject to the constraint of the equations of motion (1) - (2). This minimization

implies that the system will acquire a state as near its state of rest z = t = 0 as it is
possible with limited control effort.

Using the eigenfunction expansion the displacement z can be represented by an
infinite sum of the products of orthonormalized modes k (r) and the corresponding

modal amplitudes ak (t), k = 1,2,3,.... When this representation is used in (1) and
(2), the following system is obtained

a + 02a = f + B u , t > to (5)

a(to) = o , i(to) = o (6)

where a, f, ao, io are infinite dimensional vectors with their elements given

respectively by

(aj, aoj, ioj) = fD m[z, z., ijo Obj (r) dD,

fJ = fD fJ j= ,2,3,..., (7)
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and diag(u), j = 1,2,3,..., where wj are the modal frequencies as determined

from (see Meirovitch 1967)

2
W -= JD ij L j dD, j 1,2,3,... (8)

Also u = (u, U2, U3, ... , Un)T is the vector of actuator forces and B is a matrix of
infinite rows and n columns with the elements of the jth row given by

B31 - j (ri) , i = 1,2,3,...n (9)

Solution of (5) - (6) with the aid of the convolution integral can be represented by

a- C(t - to) ao - S(t - to) o = S * (f + Bu)

f S(t - r) [f(r) + B u(r)] dr (10)

where C and S are infinite dimensional diagonal matrices of the modal harmonics

given by

S =diag[wj 1sin wjt], C = S = diag[cos wjt],j = 1,2,3,. (11)

Control Algorithm. Introducing the arbitrary variations 6u in the interval [to,t]
we have for the variation 6A from (10)

Oa=S B u (12)

By differentiating (12) one obtains

bi = C * B 6u (13)
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It is understood that certain modes may be uncontrollable due to coincidence of
the actuator locations with nodal points. Also, it may be advantageous to limit the
number of modes that participate in the control in order to achieve better controller
design. Therefore variations of these uncontrolled modes will be zero either

automatically, Oj (rj) = 0, or by choice. In all cases the variations 6z and 6i can be

written from the eigenfnction representation of z as

M M
E j &j E O= j bj (14)
juI jal

where it is understood that certain terms in the sums may vanish. Then from (3) -
(4),

n
6J=J;(Q mi bi+ Q Lz &z) D + r uibi (15)

il

These together with the relations defining the eigenfunctions, the frequencies and the
orthogonality conditions

L~bj = m wj Oj, C m Oj Ok dD -6 jk , j,k 1,2,3,... (16)

yield the modal equivalent of (15)

T T

6J Q, a T+Q2 2 T (17)

where R - diag[RI, R2, R3,... Rn].

Substitution of (11) - (13) into (17) yields

61J - Q (t)aT(t) fP B6 u(r)d" + Q2(t)aT(t) 0Ct f S(t-r) Bbu(r)dr
to to

+ u T (t) R(t)bL) (18)

By introducing the Heaviside unit step function H(t) and the delta function 6 (t) one
can represent (18) as a single integral over the extended interval to _ r < w. Thus
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= f {H(t--r)[Q (t)a(t)C(t-1)+Q2(t)aT(t)n S(t-)B+

6 (r-t) T(T)R(j} 6 (r)dT (19)

Vanishing of MJ for arbitrary 6V impies the vanishing of the coefficient of 6 u(i")
in the integrand in (19). This condition is

H(t-,r)[Q, (t)aNT (t)C(t-'r)+Q2 (t)aT(t)n 2S(r-t)]B+6(t-)uT( )R(r) = 0,

for t > to, t > to (20)

Integrating this equation with respect to 'r, from to to t, one obtains

• T T1Q1 as(t-to) + Q2 a[LI- C(t-to)]) B + uT R = 0, t > to (21)

which determines the control force in the time domain.

Assuming that a certain ordered number Nc of modes are to participate in the

control algorithm we denote them by ac = (a,, a2 , ... aC)T . The remaining modes

will be denoted by a . In a corresponding manner vectors and matrices will be

partitioned

a= f ,B= ,S=

(22)

0 0 0 C0n72
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Then (21) can be solved for the control force

U = Q D & - Q2 E ja23
N cQ~-Q~ (23)

where

R~ BTc (t- , = R [IC-Cc (t-to)] (24)

Meirovitch and Baruh (1985) developed spatial modal filters for reconstruction of the

modal states ac and ac. Using orthogonality of eigenfunctions they showed that the

problem of observer spillover that was discussed by Balas (1978) can be
circumvented. Assuming that the effect of time delay due to computation on the
system is small enough to be negligible, the behavior of the controlled modes are
determined from (5) and (23), to be

+QC P ic + (( + Q2BC .) ac = fc (25)

The residual modes are subject to control spillover and are determined from

i 2_r+ fr!r= !,r-Qi r & -Q 2 Br c (26)

It is evident that the terms corresponding to Q,, Q2 in the performance index J
respectively modify the damping and the stiffness of the system. The gain matrices
E, D are non-symmetric non--diagonal infinite dimensional matrices that couple all
the modal amplitudes. The governing equations for the controlled system are non
self-adjoint raising the question that in the event of instability the transition may be
through flutter.

The elements of gain matrices consist of modal harmonics coswj(t-to) and

sinwj(t-to) which initially, i.e., near t = to. are non-negative. As t increases, the

higher harmonics begin to change sign thus creating negative damping and reducing
the stiffness of system. It thus becomes clear that the optimal algorithm derived here
is valid for an interval of time during which occurrence of negative damping or
reduction of stiffness have not caused amplification of the response of those higher
modes that participate significantly in the dynamic of the system. Therefore the
control interval, i.e., t - to should not exceed one-half of the period of the highest

controlled mode, i.e.,

(t - to) < 7 (27)
-JNC
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Control of A Simlv Suirorted Beam. Consider a uniform beam hinged at both
ends and controlled by four actuators, Fig. 1. The corresponding location of the
actuators, xi, i = 1, 2, 3, 4, are 13, 25, 35, and 47m from the left end of the beam

respectively. We assume that the length of the beam is 60m, its bending stiffness El
is 5 x 105 N-m 2 and its mass per unit length m is 1.0 Kg(m). Then the eigenvalues

2
wi and normalized eigenfunctions are given by

2 4
wi = 0.039(iir), i(x) = 0.183 sin(ir/60), i = 1, 2...

The control parameters are assigned fixed values Q, = Q2 = 5000 and Ri = 1,
i = 1, 2, 3, 4. The lowest ten modes of the beam constitute the controlled and the
uncontrolled modes.

In the first example, the beam is subjected to a unit cyclic load resonant with
the first mode of the beam acting at the midspan. The external excitation in Eq. (1)
is expressed as f(x,t) = sin (1.95t) • 6(x - 30). The control intervals are 0.01, 0.08
and 0.80 seconds and only the first mode is subjected to control. Control of
additional modes is not called for as they are not being excited. The results that are
presented refer to the deflection at midspan of the beam as shown in Fig. 2. It can be
seen that, unlike the uncontrolled beam the response remains bounded. From Table 1
the maximum control gain for the first mode is approximately 0.81 seconds. Thus the
beam is almost completely controlled, without any oscillations, by setting the control
interval, i.e., t-t 0 , equal to 0.80 seconds.

In the second example the beam is subjected to a 20N load that travels along
the beam with a speed of 37 m/sec. Now the lowest 5 modes are controlled and the
next 5 modes are uncontrolled (Nc = Nr = 5). The results corresponding to control

intervals of 0.01, 0.03 and 0.06 seconds are shown in Fig. 3. It is clear that the
controllers suppress the vibration within 10 seconds.

Cgtrol of Simvly Supported Beam--Columns. Beam columns are members that
are subjected to both bending and axial compression. They will be unstable when the
axial compression reaches certain critical values. For a given beam-column with
certain specified boundary conditions, theoretically an infinite number of critical
loads and associated buckling mode--shapes exist. In this section, we attempt to
follow the same procedure derived previously to control the beam-columns at and
above their buckling load.

Let P denote the axial compressive load applied to a beam in Fig. 1, the
eigenvalue problem is given by

612 (EI(x) a0) + P 0 = m j, j= 1, 2, 3.... (28)
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with the boundary conditions

82 j
j= -= 0 for x = 0, 1 (29)
&x2

that hold for the simply supported case.

The normalized eigenfunctions for Eqs. (28) - (29) for a prismatic beam can be
written in the form

= 2jm sinJ-, j = 1,2,.. (30)

As a result of substitution of Eq. (30) into Eq. (28), we have

jfj ifp<j,j=1, 2 .....
=~ ' (31)Sijpyj ifp>j,j=1, 2 .....

where

P , 16 - P (32)
P E

= , i=1

and P denotes the Euler load of the beam-column, i.e., P E = r2EI/12.

When p is smaller than 1, i.e., the axial load P is smaller than P the beam is

stable and the control law expressed in Eq. (29) is still valid with the wj, j = 1, 2,

3.... given by Eq. (31). When the beam is in critical condition, i.e. p = 1, then w,

sin(w1t)
is zero. However, because lim = t, and tim cos(wit) = 1, one obtains

p-l w4 p-4

from Eq. (11) [ -1
(t)=diag t, Waj sin(wjt)], j=2,3 ... Nc (33)

C(t) diag1l, cos(jWt)], j= 2, 3,. . . Nc
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Following the same procedure described in previous sections, one can obtain the same
control law that is already shown in Eqs. (23) - (24), in which S and C are now

defined by Eq. (33).

Similarly, when 1 <p < 2, then the control force and the system behavior can
be given by Eqs. (23) - (26) wherein S, C can be written in the form

SJt)  diag Iw I'tsinh~w1lt, Wj sin (wit)], j = 2, 3,. Nc
(34)

C (t) diag [cosh Iw I t' cos(wjt)] I j = 2, 3......N

For numerical evaluation the beam with the same parameters as shown in Fig. I
is used. The system is subjected to an impulse at midspan. The control intervals are
set to 0.01 and 0.05 seconds to compare results. The behavior of the beam-column is
assumed to be adequately represented by its first ten modes and of these the lowest
five are controlled. Fig. 4 shows the response of the system over a 10 seconds
interval. The axial compressive load ratio p = P/P is set to 0.9. The deflection of

the beam remains bounded and is accompanied by control force spilling over into the
higher modes. The time histories of the commanded forces for the actuator A2 - one

of the middle two actuators - are shown in Fig. 5. The larger control interval causes
higher beginning values for the force and lower tail end values. Thus it may be
concluded that the control is effective at the axial load of 0.9 of buckling load.

Next, we consider the control of beam-column at the buckling case, i.e., p = 1.
In this case, the E defined in Eq. (24) can be partitioned as

,.B 21  BNlI

[E0 12 B 2 . .[.-. (1) R ]
E -- L . 2 = B R 1nn B R 1( 3 5

E 1 22i 0 (1 lC 2) B 2 2 .... (1 CSC)  2
R2  R 2

L (1-C2) B n .... " BNcn J

where

Ci: cos(w1(t - to)), i = I .... NC

Also the B., D matrices and the a. vector can be partitioned as

a,= (36)
BB22j -- D21 ?2J.12
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Then the first modal equation, that corresponds to the buckling mode of the

beam-column in Eq. (25), becomes

a1 + Q, B1 D11 al = f, - Q1 D12 '12 '2 - Q2 (B11 E12 + B 12 E22) a2 (37)

with appropriate initial conditions at to. From Eq. (37), it is clear that the feedback

control law can only provide a certain amount of damping to the system and the
coupled modal control force acts as a counter force to balance f,. Because al is

coupled with a,, it is difficult to find the analytical solution for a,. Therefore the

same numerical procedure employed previously is used to find approximate results.
Fig. 6 shows the results of the control of the beam-column at its buckling load when
the control intervals are set to 0.01 and 0.05 seconds. The control spillover is present
and the system acquires a permanent deflection that depends on the control interval
in both cases. Different control efforts are pumped into the system for the different
control intervals, and this is responsible for the different levels of permanent
deformations shown in Fig. 6. As observed form Fig. 7 the commanded force for
smaller control intervals have higher initial and lower final values.

Fig. 8 and Fig. 9 show the control of the beam-column when p = 1.1. In Fig. 8,
the system appears unstable with deflection growing continually for both control
intervals of 0.01 and 0.05 seconds. The deflection of the control interval of 0.05
seconds have a smaller rate of growth than that of the control interval of 0.01
seconds.

Fig. 9 shows the A2 the actuator's commanded force histories for both cases.

The importance of the beginning stages of control effort, being a function of the
control interval, shows up prominently in these cases. In the case of the short
control, i.e., t-t 0 = 0.01 seconds, the commanded force of the actuator A2 increases

with the unbounded response of the controlled system. However, in the long control
interval case, i.e., t-t 0 = 0.05 seconds, the commanded force grows with a more

moderate rate compared to that of the short interval. Therefore, it is clear that the
longer control intervals are better in that they provide slower rate of growth of
deflections.

Conclusion. The control algorithm developed here determines the control forces
in the time domain explicitly in terms of the coupled modal amplitudes and
velocities. The algorithm is optimal in that it minimizes the total energy of the
system instantly and spatially rather than over a time domain. Consequently the
algorithm is causal and can be implemented on the basis of what has transpired prior
to implementation. Additionally the algorithm allows participation by a limited
number of modes with the remaiuder being subject to spillover effect. The
instantaneous nature of the algorithm limits its apphcability to the sml
neighborhood of the initial point which however is arbitrary. This arbitrariness
allows integration over a sequence of intervals whose initial data is determined by the
end conditions of the previous interval.
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The coupled-modal control algorithm can successfully be used to suppress the
vibration of the beam subjected to a resonant cyclic load and a moving load as shown
in this paper. The algorithm is causal, i.e. it only depends on the past history of the
system and such that the control interval dominates the system's behavior. The
maximum control interval as given by Eq. (27) is a function of the period of the
highest controlled mode. The response of controlled system is significantly affected
by the control interval. Therefore, a proper choice of the control interval is necessary
for the algorithm. The algorithm can be applied to control of a beam-column before
buckling. However, the controller can only provide a damping resistance to the
buckled mode, and the algorithm is not well suited for controlling a beam after
buckling.
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TABLZJ1

Mode Max. (t-to), sec. Mode Max. (t-t.), sec.

1 1.621 6 0.045

2 0.405 T 0.033

3 0.180 8 0.025

4 0.101 9 0.020

5 0.065 10 0.016
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z

L

System Parameters: Control Parameters:

L :60.m Q 1: 5000.

EI: 5 *105N/M 2  Q2: 5000.

m : 1. kg/rn Rj: I., i=1,2,3,4

x, =13. m X3 =35. m

X2 =25. m x4 =47. m

Fig. 1 SiMplY supported beam with 4 discrete actuators, NJi 1,.. 4.
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Fig. 3 The midspan deflection of the beam subjected to a moving load traveling
at 37 rn/second speed, t-t = 0.01, 0.03 and 0.06 seconds.
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Fig. 4 The midspan deflection of the controlled beam-column subjected to an
unit impulse at midspan, p = 0.9, t-t0 = 0.01, 0.05 seconds.
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Fig. 5 Commanded force of A2 actuator for the control of the beamn-column,

p = 0.9, t-t0  0.01, 0.05 seconds.
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Fig. 6 The midspan deflection of the controlled beam--column subjected to an
unit impulse at midspan, p = 1.0, t-to = 0.01, 0.05 seconds.
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Fig. 7 Commanded force of A, actuator for the control of the beam-column,

p= .0, t-t0 = 0.01, 0.05 seconds.
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Fig. 9 Commanded force of A, actuator for the control of the beam-column,
p = 1.1, t-to = 0.01, 0.05 seconds.
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A CENTRAL LIMIT THEOREM FOR INTEGRAL FUNCTIONALS OF A

STATIONARY GAUSSIAN PROCESS*

Simeon M. Berman

Courant Institute of Mathematical Sciences

New York University

New York, NY 10012

ABSTRACT. Let X(t), t > 0, be a real stationary Gaussian process with covariance

function r(t). Let f(x) be a function in L 2(0), where O(z) is the standard normal density,

and assume that f x f(x) O(x) dx 6 0. It is shown that the central limit theorem holds for

the functional fo f(X(s)) ds, for t -- oo. under the sole assumptions r(t) >_ 0 and r(t) --* 0

for t --. o.

1. Summary.

Let X(t), t > 0, be a real stationary Gaussian process with mean 0 and covariance

function r(t) = EX(O) X(t). For a Borel function f(x) and t > 0. consider the functional

(1.1) jf(X(s))ds

There has been a sustained interest in proving the Central Limit Theorem. for t - x.

for such functionals. that is, determining the limiting distribution of the normed randon

variable

(1.2) f f(X(s)) ds - E[f{ f(X(.s)) d.,]

Supported by the U. S. Army Research Office.
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Let O(x) represent the standard normal density, and let Hk(x), k = 0, 1._ be the

family of Hermite polynomials. The assumption commonly used for the function f is that

it belong to L 2 (0), that is, f If(X)12 O(x) dx < c. Every such function has an expansion

00

(1.3) f(x) = E fkHk(x)/ 'Vk"
k=O

where

(1.4) fk- j f(x) Hk(x) O(x) dx .

The Hermite rank of f is the smallest positive integer k for which fk # 0.

Limit theorems for (1.2) are of two categories. The first is characterized by conver-

gence of the distribution to a normal distribution under a hypothesis of mixing, involving

sufficiently rapid convergence of r(t) to 0 for t --+ cc. The best results in this area up to

now are those of Breuer and Major (1983) for a discrete time process and Chambers and

Slud (1989) for a continuous time process. The general result is that if the function f is

of Hermite rank k, and r E Lk(-cc, 0c), then (1.2) has a limiting normal distribution.

The second category of results is a collection of "non-Central Limit Theorems". where

(1.2) has a limiting distribution which, except for the case of a function of Hermite rank

1, is not a normal distribution. Such theorems state in their hypotheses that the process

is assumed to have "long range dependence". More precisely, it is assumed that i) The

function f is of Hermite rank k, for some k > 1, and ii) For some a < 1/k. r(t) is reggularly

varying of index -a for t --+c (Dobrusin and Major (1979), and Taqqi (1979)).

Our main result represents an extension of previous resvlts for the case of a function

of Hermite rank 1, in which the limiting distribution is normal under either the mixing

condition r E LI or the long range dependence condition of the regular variation 'if r for

index -a > -1. Our only assumptions on r(t) are that it be nonnegative, and converge

to 0 for t - co. The limiting distribution of (1.2) is always normal, however, the variance

of the limiting distribution has two forms, depending on whether r E LI or r L1.
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The result is:

THEOREM 1.1. If r(t) _ 0 for t > 0, and r(t) --* 0 for t -* oc, then, for any function

f E L 2 (0) such that

(1.5) = j y 0(y) f(y) dy 0,
0o

the random variable

(1.6) f: f(X(s)) ds - t f-L f(y) 0(y) dy

(2-y2 fJ(t - s) r(s) ds)' 1 2

has a limiting normal distribution with mean 0. The variance of the limiting distribution

is equal to 1 if r V L1 and is equal to

(1.7) EZ=I fk fo rk(s)ds

2 fo r(s) ds

if r E L 1.

The main idea of the proof is that f0 r(t) dt is either finite or +oc. In the former

case, the result follows from that of Chambers and Slud (1989). In the latter case the

process has a form of long range dependence, and the contribution of the theorem is that

the limiting distribution exists without a precisely assumed form of r(t) for t - 0c.

2. Proof of the Theorem.

Let ¢(x, y; r) represent the standard bivariate normal density with correlation r. A

direct calculation shows that the variance of fo f(X(s)) ds is equal to

2 (t -s)f f f()f(Y)[(,y;r(s)) - 6()o(y)] d. .

By the diagonal expansion of O(x, y; r(s)) in Hermite polynomials (Cramr 1946 page 290)

the integral above is equal to

(2.1) 2 f(t - S) 1:,k() ds
k=1
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with fk as in (1.4).

Suppose r E LI; then, for every k > 1,

t -1  (t - s) rk(s) ds - r k(s) ds

for t -* co, and so the expression (2.1), divided by t, converges to

2Z00f k 1jrk(s) ds

Since, by definition, Hi(x) =x x, we have f= -y #4 0 under (1.5). Therefore, the assertion

of the theorem in the case r E L, is the special case of the result of Chambers and Slud

(1989) for a function of Hermite rank 1.

Next consider the case r V Li. Since y = fl, (2.1) is equal to the sum of

(2.2) 2y2 (t -s) r(s) ds

and

(2.3) 2 (t-s)[ fRrk(s)]ds
) k=2

Our first aim is to show that the expression (2.3) is of order smaller than (2.2) for t --+ c.

and this will establish that the denominator in (1.6) is asymptotically equal to the standard

deviation of the numerator:

(2.4) Varj f(X(s))& -da 2/2 j(t - s) r(s) ds

For arbitrary fixed T > 0, take t > T in (2.3), and write the latter as the stun of two

terms

(2.5) 2 (t- s , : .k2]rds
k=2

and

(2.6) (t - q)[ 1 f,2,r (, 1 ,..
k=2
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The term (2.5) is at most equal to

00

2tT Z f = constant x t.
k=2

This is of order smaller than that of the right-hand member of (2.4) because, by L'Hospital's

Rule and the assumption r V LI,

lim = lim 1 0 .
t-00 f (t - s) r(s) ds ,-o ft r(s) ds

The term (2.6) is at most equal to

t 00 2

(2.7) 2 (t - s)r(s)ds x E fk x sup r(s)
Jk=2 sT

The ratio of the latter expression to the right hand member of (2.4) is at most

00

^1 2  f k2 x supr(s)

k=2 s>T

Since T is arbitrary, and r(t) --. 0 for t --+ oo. the expression above can be made arbitrarily

small by choosing T sufficiently large. This concludes the argument that (2.3) is of smaller

order than (2.2), and this confirms (2.4).

By expansion of f in Hermite polynomials, we find that

f(X(s)) ds - J f(x) O(x) dx

is representable as

(2.8) Zfk Hk(X (s)) ds
k=1 'k

It is known that the random variables

i -- Hv k(X(s)) ds, k = 1,2,...

are uncorrelated and have means 0. The first term in (2.8) is

(2.9) 7 jX(s) ds
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which has a normal distribution with mean 0 and variance (2.2). According to the method

of Berman (1979), the fact that the variance of the sum (2.8) is asymptotically equal to

the variance of the first term implies, in this case, that the limiting distribution of the sum

(2.8) is equal to the limiting distribution of the first term in (2.9). 0
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The Voronoi Diagram for The Euclidean Traveling Salesman Problem
is Piecemeal Quartic and Hyperbolic

T.M. Cronin
CECOM Center for Signals Warfare

Warrenton VA 22186-5100

Abstract. It is shown that the Voronoi diagram for the Euclidean traveling salesman problem is
piecemeal quartic and hyperbolic. Previous attempts to leverage the traditional (linear) Voronoi
diagram upon the problem have failed; in particular, counterexamples have demonstrated that the
optimal tour need not traverse the Voronoi dual. In this paper, the shortest tour is treated as the union
of a set of perturbations of the convex hull, with interior cities added incrementally, one at a time. A
perturbation is defined to be the union of a new city with a subpath which connects two adjacent hull
vertices to a set (possibly null) of previously entered interior cities. The length of a perturbation is
therefore equal to the sum of two variable distances, minus the sum of a set of fixed distances. This
length is called the elliptic length of the perturbation. Beginning with the convex hull, a single city is
randomly added to the interior, and the hull is perturbed to capture the new city in optimal fashion. For
a perturbation of a specific elliptic length, this quantity determines an ellipse symmetric about a hull
segment, with foci at the segment endpoints. Any other hull perturbation of the same length defines
another ellipse symmetric about some other hull segment. As the perturbation length is allowed to vary
continuously from zero to infinity, a set of confocal ellipses is produced about each hull segment, and
the intersection across all other such sets produces a set of quartics. For the special case in which hull
segments share an endpoint (focus), the locus is a hyperbola. Each hull segment is bounded by those
quartics for which the segment is the source of minimal perturbation length. The region of the plane
thus bounded is called the quartic Voronoi cell for that segment. There is a quartic cell corresponding to
each hull segment, and the union of all such cells forms the Voronoi diagram of the hull. Now, if a
random city is injected into the hull, and the city is observed to lie in a specific Voronoi cell, we know
that to produce the minimal tour, the city must be connected to the endpoints of the hull segment
corresponding to the cell, and in turn the endpoints of the hull segment must be disconnected. If one
maintains the proper canonical forms to alter the topology of the perturbation space when a new city is
added, the technique may be extended to accommodate multiple interior cities. The quartic Voronoi
diagram is shown to differ from the traditional Voronoi diagram in three distinct ways: it depicts
shortest tour connectivity rather than point-to-point proximity; its cell boundaries are quartic and
hyperbolic rather than linear; and the diagram is bounded by the convex hull rather than being
unbounded (although this last constraint may be relaxed to add new cities outside the hull). A naively
derived ceiling function demonstrates that an unsupervised perturbation approach is of exponential
complexity, with a scaling factor as a function of the size of the hull. By resorting to an algorithm which
exploits the canonical forms, it is shown that this bound may be diminished to O(n 3l. The algorithm is
demonstrated for a database consisting of the forty-eight capitals of the contiguous United States.
Open research issues include whether the technique may be extended to accommodate a hull which
encloses an arbitrary number of cities, and whether the ceiling function may be further reduced

Statement of the Problem. The Euclidean traveling salesman problem (ETSP) is a special case of the

general traveling salesman problem (TSP). Given a set of cities and the associated costs between pairs of
cities, the goal of the TSP is to find the optimal tour which visits every city exactly once, except for the

start city, which is revisited at tour's end. Unlike the TSP which utilizes a general cost function to link
cities, the ETSP employs the Euclidean distance between cities as the metric, and equates optimality with
shortest tour length. The objective of this research is to attempt to rigorously characterize the
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underlying geometry of ETSP tour construction, and subsequently to pursue an algorithm for an exact
solution to the problem for city databases of modest size.

Background. The traveling salesman problem has been an outstanding research issue for over a century,
and has been approached computationally since the end of the second world war [Li]. It is important to
differentiate between the TSP and TSP decision; the former requests a list of cities ordered as they
appear in the optimal tour, whereas the latter seeks a yes or no answer to the question "is there a tour
of cost k or less"? In 1972, it was proven that TSP decision is NP-complete [K21; and in 1976 it was shown
that ETSP decision with discretized distance is also NP-complete (P4, G 1. The ETSP with non-discretized
distance is NP-hard in the strong sense [G1. The failure of the ETSP to yield to known problem-solving
strategies has caused the vast majority of researchers to abandon the search for an exact algorithm, and
instead strive for fast approximation techniques. Many heuristic algorithms have been developed to
date; they include: k-opt edge exchange [L3, J41, branch-and-bound [L4), simulated annealing [M 1, J41,
neural networks [Fl, J4J, genetic algorithms (841; and elastic hands (D4] A preeminent researcher in the
field is of the opinion that for consistently high quality solutions on databases of very large scale, the
Lin-Kernighan edge exchange algorithm has few competitors [.S]. Chapters 5-7 of reference [L]
provide valuable suggestions for evaluating the performance of some of the heuristic methods

An Historical Perspective of the Euclidean Traveling Salesman Problem and the Voronoi Diagram.
Operations research has been the historical forum for ETSP. There have been very few efforts

possessing a computational geometry flavor. In the seventies, the issue was raised about whether a ETSP
optimal tour must necessarily traverse adjacent cells of the Vorono, diagram [52]. This conjecture has
subsequently been answered in the negative. A counterexample for a degenerate case was discovered
in 1983 (KII, and one for the general case was skillfully crafted five years later [D3]; the latter
counterexample is portrayed at Figure 1. It will be shown in this paper that the fundamental reason for
the difficulty in applying the traditional Voronoi diagram to ETSP is that the search space imposed by a
perturbation of Euclidean distances is non-linear (in particular, it is quartic), whereas the traditional
Voronoi cell possesses linear boundaries. It will also be shown that with modifications, the traditional
Voronoi diagram may be extended to portray the optimal tour for an n-city problem, given the optimal

tour for n-1 cities.

t4 t 5 /

tl I 2 / t:3

Figure 1. The traditional Voronoi diagram, computed for the Dillencourt dataset. in the optimal tour, t4 and
t3 are connected, but their respective Voronoi cells are not. which counterindicates Shamos' conjecture that
an optimal tour must traverse the Voronoi dual.
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The Euclidean Shortest Tour as a Perturbation of the Convex Hull.
In 1957, Barachet proved that there exists an optimal tour which preserves the relative order of

the points on the convex hull (B1]. This result implies that the shortest tour may be expressed as a hull
deformation produced by an excursion into the interior, to capture points which do not lie on the hull
(Figure 2). In 1977, a heuristic was developed to utilize the hull as an initial starting tour, and to attach
interior cities based on a two step procedure [541. First, the sum of the distances from an interior city to

the endpoints of an existing segment are computed, and the length of the segment subtracted; across
all existing segments, the minimal such expression associates the city with a particular segment. The
next step involves selecting a city to be inserted based on the maximal angle formed with its associated
segment. The procedure iterates until a Hamiltonian cycle is formed utilizing all interior cities. Finally,
an arbitrating function decides if the resultant cycle is sufficiently accurate. Analysis of the method has
indicated that it is superior to some methods which do not utilize the hull (G31. Nevertheless, due to the
fact that the approach is only approximate, the tour produced is generally suboptimal, and it is not well
understood why the heuristic performs as it does.

d 2

dl I
I C3

,4 d4

L

Figure 2. What is the shortest tour connecting cities dl -d7?We know that the tour must preserve the order
of the cities lying on the the convex hull, so a natural way to proceed is to perturb the hull. The problem thus
reduces to finding the optimal (shortest) way to attach city d7 to a pair of adjacent hull vertices.

Terminology and Notation.
In the following discussion, we shall call any excursion into the interior from two adjacent hull

vertices a perturbation of the hull. It is important to note that a perturbation of the hull entails the

corresponding loss of the segment which connects the two adjacent hull vertices. If a hull segment is

unperturbed it is called a null perturbation. A tour is defined to be the union of a set of perturbations in
counterclockwise order, as they appear about the hull. A convention will be adopted to represent

certain perturbation concepts: a perturbation is denoted by the letter "n", a tour is denoted by the
letter "L "; the length of perturbation n, or tour L is denoted respectively "len n " or "len L "; the

Euclidean distance between points p, q is denoted "d(p, c)"; the set of cities lying on the convex hull is

denoted "H"; the convex hull itself is denoted "t H"; the number of cities in set S, also called the order
of S, is denoted [ S ]. In concluding this introductory section, we formalize the definition of a

perturbation, and prove three minor counting theorems.
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Definition. Hull Perturbation. Given convex hull u H ordered with counterclockwise
orientation, and the set I of interior cities. A perturbation of the hull n k is an ordered
subpath n k = hk U Ij U hk + 1; l1 -. [Note that 1I may be the null set, in which case n k
is a null perturbation].

Theorem. When computing the Euclidean shortest tour, the number of perturbations of
the convex hull cannot exceed the rank of the hull. Proof: By definition, a hull
perturbation is an excursion into the interior of the hull which connects two adjacent
hull vertices to a subset of the interior. Without regard to order, there are n ways to
connect n adjacent hull vertices (the first to the second; the second to the third; ..., the
nth to the first), producing a set of n hull segments. Each of these segments may be the
source of a perturbation

Theorem. If the size of the set of interior cities I I I exceeds the size of the hull [ H ], then
the shortest Euclidean tour must contain a hull segment perturbation of order at least [ I]

- [ H] e+ 1. Proof: from the pigeonhole principle, since there are more interior cities
than hull segments, some hull segment must be assigned at least [I] - [H ] + 1 interior
cities.

Theorem. If the size of the hull [H ] exceeds the size of the set of inner cities [ I ], then
there must exist at least [ H - I ] hull segments which remain unperturbed when
constructing the shortest Euclidean tour. Proof: again, from the pigeonhole principle,
since there are fewer interior cities than hull segments, at least [ H - I I hull segments
must be null perturbations.

An Arbitrary Hull Enclosing a Single Interior City.

Since we know intuitively that the shortest Euclidean tour may be represented as a perturbation

of the hull, let us proceed with the simplest case by introducing a single interior city into an arbitrary
hull. It is natural to derive under what conditions a perturbation initiated from a given hull segment to

the new city results in the shortest tour, versus one initiated from another segment. If lent H represents

the sum of the lengths of the segments which comprise the convex hull, and p is an arbitrary point
introduced into the hull interior, then to produce the shortest tour, one is interested in minimizing the

expression len T H + [ d( p, h, ) + d(p, h,+ 1) - d( hi, h, .I )] V h, E H. The boundaries of equal hull

perturbation are those for which len n, = Len n, for distinct elements h,, h] E H. To formally

characterize the boundaries of equal perturbation requires that the expressions for perturbations

initiated from two distinct hull segments be set equal to each other, and the resulting equation solved.

The Elliptic Distance of a Point to Two Other Points.

During traveling salesman problem solving, the operation which decrements the length of a

segment from the sum of the the distances from the segment endpoints to an arbitrary point is

sufficiently fundamental to be given a special name, which we will call the elliptic distance.

Definition. The elliptic distance of a point p to two points q, r, denoted de(p,q,r), is
defined to be:

de(p,q,r) = d(p, q) + d(p, r) - d(q, r) (1]
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Derivation of the Quartic Locus for the Single Interior City Problem.

Theorem. In general, the Voronoi diagram of the convex hull of the set of cities for the
Euclidean traveling salesman problem has quartic edges.

Proof: Let p be an arbitrary point on the interior of convex hull I H, and let n,, nJ be
perturbations of two distinct hull segments such that len n, = len n,.

len r, = [d(p, hi) + d(p, hi + 1) -d(h, hi . )]for some h, E H, and

len nr = [ d( p, hj) + d(p, hj + 1) -d( hj, hj 1 )] for some h, E H.

Letlenfni = lenn, = k,j, which represents some specific elliptic length. Thus,

de[P,hi,hi+i] = dep, hj, hj+l] = kj [2]

Equation 121 describes two ellipses, the first with major axis aligned with the hull
segment having endpoints hi, hi+,, and the second aligned with the hull segment
having endpoints hj, hj +1. The endpoints of the hull segments are the respective foci of
the ellipses. The distances involving point p are variable, while the distances on the hull
are constant. Let us represent the two ellipses as follows:

x2/a2 + y2/b2 = 1 [31
Ax2 + Bxy + Cy2 +Dx + Ey + F = 0 [4]

Equation [3] denotes one of the two ellipses of interest after it has been rotated
and translated to be in standard form about the origin. Equation [4] represents the
second ellipse with the coefficients A, B, C, D, and E determined in the coordinate system
of [3]. To characterize the locus of equal perturbation, we are required to
simultaneously solve (3] and (4].

Sbortest Tour Criteria
a s+t-a ki

P u+ v-b =k i

u vTwo Ellipses
s+t - a+k

\ b

Figure 3. The locus of equal perturbation between hull segments is obtained by intersecting two ellipses.
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From [31, we obtain: y = + /- (b/a) V a2 - xZ (I

Substituting the positive root for y in [4] yields

Ax2 + Bx(b/a)V a2 -x 2 + C(b/a)2(a 2 -x 2 ) +Dx + EV a2 -x 2 + F = 0 [6]

Factoring, and moving the radical to the right side of the equation produces

[A-(b 2 /aZ)C]x 2 + Dx + b2C + F = -(b/a)V a2 -x2 (Bx + E) (7]

Squaring both sides of [71 to clear the radical, and gathering coefficients with respective
powers of x results in the equation:

[A2-(2b2AC/a2) + b4C2/a 4 + (b 2 /a 2 )8Z X4

+ [2AD-(2b2CD/aZ) + (2b 2BE/a 2 )1 X3

+ [2Ab2C + 2AF - ( 2b 4C2 /a2 )(2b 2 CF / a 2 ) + b2E2/a2-b2B 2 + D2] x2

+ [2b2CD + 2DF-2b2BE ] x
+ bC2 + 2b2CF-b2E2 + F2 = 0. [8]

QED. Thus the locus of equal perturbation for inserting a random city into the hull is
defined by a quartic equation, with coefficients expressed in terms of the parameters for
two ellipses, where the ellipses are symmetric about segments formed by linking two
cities.

A Graphic Depiction of a Simple Quartic Space.

Figure 4 illustrates an example of a quartic space imposed on a four city database. The segment

containing zi and z2 is fixed in the plane. The segment containing z3 and z4 is allowed to pivot about

z4, with z3 being rotated counterclockwise ninety degrees through an angle 0, in increments of ten

degrees. We are trying to find the locus such that a perturbation from the segment zl-z2 is equal to a

perturbation from segment z4-z3. Initially, when z3 is on the x-axis, the locus is a horizontal line lying

halfway between the two segments. For the sake of argument, when the angle 0 = 0,iet the locus be

the line y = k. At ten degrees, the locus lifts slightly from the horizontal and develops curvature. At

about forty-five degrees, the locus develops a prominent maximum, and also mainfests two inflection

points; it visually resembles the planar curve known as the Witch of Agnesi. Beyond forty-five degrees,

the locus gradually loses its smooth maximum and develops a pronounced cusp; the fact that four

distinct roots exist is now apparent. Finally, at ninety degrees of rotation, the locus becomes a diagonal

line connecting z1 with the initial position of z3.

Note that a peculiar phenomenon has occurred. Although the segment containing z3 has been

allowed to rotate ninety degrees (from the line y = 0 to the line x = 0), the corresponding locus has

rotated only forty-five degrees (from the line y = k to the line y = -x + 2k). Therefore, the angular range

of the output is only half that of the input. It should also be noted that realistically, the behavior which

produces the cusp does not occur, for when city z3 is rotated beyond a certain critical angle, it is

absorbed by segment z1 -z2, and the shortest tour becomes z1 -z3-z2-z4-zl, rather than z1 -z2-z3-z4-zl.
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Figure 4. A plot of a quartic locus, using z4 as a pivot, while rotating z3 counterclockwise.

Two Hull Segments Sharing an Endpoint Produce a Hyperbolic Locus.
In this section, a corollary to the theorem is proven to show that in a special case which

frequently occurs during traveling salesman problem solving, the locus of equal perturbation is
hyperbolic rather than quartic. The simplest hypothesis to maintain when inserting another city into the
hull is that the current set of perturbations will merely be extended by the new city, without radically

altering the topology. As will become apparent below, the simple extension of a perturbation is
arbitrated by an intrapath hyperbolic discriminator; the more complex operation of reasoning between
perturbations requires a quartic discriminator.

Corollary. When two hull segments share a city, the Voronoi edge is a semi-hyperbola

Proof: Refer to Figure 5 below Let theendpointsofthesegmentsbe respectively h.,,h,
and h, h. +. Let a be the length of the hull segment connecting h, and h, 41, and b the
length of the segment connecting h, and h..1 . Let p be an arbitrary point on the locus.
Let x be the distance from h, 1 1 to p, y the distance from h, to p, and z the distance from
h,.1 to p. We proceed to derive the locus:

de(h, h,.1 ) = de(h,, h, + 1)
x + y-a = y + z-b

x-a = z-b
x-z = a-b [91

QED Equation (9] represents a semi-hyperbola passing through hull vertex hi, with foci
at h.,1 and h + . It is bowed toward the longer of the two hull segments In the case

201



when the two hull segments are of equal length, the semi-hyperbola degenerates to a
line.

b
i+1

az+y-b = kI

h' .. x+,-a=z+y-b

p-z = a-b

Semi-byperbola

b wthlociat h and b

paSing througb b

6 i-I

Figure S. A hyperbolic locus results when two hull segments share an endpoint.

The Quartic Voronoi Diagram to Determine an Exact Solution to the Single Interior City Problem.

It is clear that to develop the delimiters of equal hull perturbation, we are required to develop a

subset of the union of quartics and hyperbolas induced by the elliptic distance between pairs of hull

segments. This subset is called the quartic Voronoi diagram of the hull, and is defined as follows:

Definition. Given convex hull I H, the quartic Voronoi diagram of the hull, VorQ ( H), is
defined to be:

VorQ(I H) = fX I de(xhh,+1) = de(x, hlh.1) forsomeh, E H,
and de(x, h, ,i+ l) < dex, hk, , 1) V k tj}.

For the seven city example introduced above, VorQ (1 H) is displayed at Figure 6. City d7 is properly

contained within the quartic Voronoi cell corresponding to the segment connecting d5 and d6, implying
the segment must be perturbed to capture d7. Note that prior to introducing city d7, the existing
optimal tour is the convex hull. The Voronoi diagram consists of some edges passing through the
existing tour's vertices (the cities on the hull), and some which do not pass through any of the cities in
the search space. In the former case, the edges are composed of hyperbolas, whereas in the latter case
the edges are pieces of quartic curves. It is important to keep this concept in mind, because it will be
revisited when the diagram is extended in general to accommodate a new city deposited into an
arbitrary optimal tour space. The generalization will be seen to function in the following manner: if

the existing optimal tour is extended simply by inserting a new city between two cities in the tour, the
locus of equal perturbation which arbitrates the decision is a semi-hyperbola; otherwise, a mcre
complex decision process must be invoked to reason across the perturbation space, and the locus is a
quartic polynomial,
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Figure 6 (computed quarrics and hyperbolas). The quartic Voronoi diagram of the hull as a connectivity map.
The curves passing through the hull vertices are hyperbolas; whereas the others are quartics. City d7 resides
within the quartic Voronoi cell corresponding to the segment connecting d5 and d6, and therefore the
optimal connection is as shown at the right.

A Two-City-in-a-Hull Example.
We will continue in this vein by commiting to computer memory the optimal perturbation for

city d7, and introducing yet another city into the perturbed space. Figure 7 depicts an instance of a
two-city-in-a-hull quartic Voronoi diagram. City d7 has been fixed, after having discovered its optimal
perturbation (d6-d7-d5) in a previous step. A new city (p) is about to be introduced. At the left, the
quartic edges demarcating optimal connectivity of p with d2, d3, d5, d6, and d7 are displayed, with the
globally relevant pieces highlighted. Similar plots may be obtained for other pairs of vertices; for the
complete interaction between segment d5-d6 and each of the other five hull segments, please refer to
the Appendix (where d7 appears under the alias of d8). When computed across all relevant pairs, the
quartic Voronoi diagram emerges (right). As an example, if p happens to fall in the quartic cell labeled
with the descriptor "6p75", the optimal tour must insert p between cities d6 and d7, in the already
established perturbation d6-d7-d5. However, if p happens to fall in the cell labeled "l1p6;6 75", two
distinct perturbations are required: the one involving p is issued from segment d 1-d6; whereas the one
involving d7 is issued from segment d6-d5.

Note that in the vicinity of city d7, a single perturbation from some hull segment is sufficient to
ensure optimality. However, if city p happens to reside in one of the quartic cells beyond this region, it is
necessary to perturb two hull segments to achieve optimality. Perhaps the most intriguing aspect of the
Voronoi diagram as a connectivity map is that it partitions the plane into cells which indicate precisely
how to maintain optimality when inserting an arbitrary city into the current tour. What this really
means is that one can predict how to attach a new city to an optimal tour, without specifying the
coordinates of the city ahead of time. The implications are profound, for if an efficient algorithm can be
designed to construct (or perhaps merely reflect) the quartic diagram for arbitrarily large sets of cities, it
follows that a dynamic programing approach is sufficient to solve the problem exactly. The
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fourth-order complexity inherent to the loci of tour constraints in large part explains why those
approaches which subscribe to Dantzig's linear simplex have to date failed to solve the problem.
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d. . 675 675

7. /i6 3p74

d!

J_ 6p I

- ~ 6  
675

/ E---

473 .

¢J- '

Figure 7 (computed quartics and hyperbolas). The quartic voronoi diagram for two interior cities.

Nested Hull Traversal, Outside-in vs. Inside-out.
Since the theory is based on a perturbation of the convex hull, there is an obvious requirement

to secure an algorithm which efficiently computes the hull. It is shown in reference [131 that in the
plane, the hull may be optimally computed in 0 [ n * log h I time. With the traveling salesman problem,
we interpret n as the total number of cities, and h as the number of cities on the convex hull. For our
implementation, we will compute the entire nested hull decomposition, sometimes called the "onion"

[E2). The purpose of computing the onion is to gain control of the search space by attempting to insert
the cities uniformly into the hull, to limit generation of "greedy" perturbations. A greedy perturbation
occurs when by mere virtue of having probed sufficiently far into the hull, a perturbed hull segment
continues to absorb cities which rightfully belong to another perturbation. Reference (C2]
demonstrates that a planar nested hull structure may be constructed in 0 [ n * log n I time However, in
the implementation described below, we will utilize an algorithm due to Eddy [Eli, with time

complexity 0 (n 2 1, but with average run time 0 [ n ].
Recall that by convention we order a hull with counterclockwise orientation, smallest ordinate

first. If we label the outer hull with index 0, and label each inner hull with an ordinal number formed by
incrementing the index by 1, it is seen that during processing, a city will be inserted based on a primary
key equal to the ordinal number of its hull, and a secondary key equal to its relative counterclockwise
position within its hull. The exception to this rule is to reject the insertion if it causes some unprocessed
city to be bypassed.

A rather startling twist to the outside-in approach is based on the fact that the quartic loci of
equal perturbation extend both inside and outside a hull. If we start with the innermost hull (the core
of the onion), in theory we should be able to probe outward one hull at a time, maintaining optimality
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as we proceed. This technique, which we will call the inside-out approach, is in fact as valid as the other.
An experiment detailed below demonstrates that both approaches are indeed capable of producing the
optimal tour.

The Topology of Quartic Voronoi Space, in the Context of the Shortest Tour.
In this section we develop the canonical forms required to maintain quartic incremental

optimality. Three primitive operations will be informally introduced, and then developcd more
rigorously.

The quartic Voronoi diagram partitions the plane into cells, the boundaries of which demarcate
the locus of the shortest tour among various combinations of subtours. It is intuitively obvious that if a
newly introduced city lies within an arbitrarily small neighborhood of an existing optimal tour, the new
tour can be formed simply by extending the old space to the new city. This topological structure, which
we shall call hyperbolic extension space, is computationally the simplest hypothesis to be entertained
when introducing a new city. Hyperbolic extension space preserves an existing tour by extending an
existing perturbation to encompass the new city.

A markedly different topology is manifested when an extended perturbation interplays with

another perturbation, which is located two hull segments backward (forward) to compel the issuing of a
new perturbation at the preceding (subsequent) hull segment, which is called a shunt to the left (shunt
to the right). This topology is called quartic shunt space. It addresses the issue of maintaining optimality
in a radial fashion; i.e., in a manner roughly orthogonal to the convex hull which defines the baseline
tour. An intuitive way to describe this canonical form is that it acts as a monitor of flanking behavior on

both sides of a perturbation, and cedes the flank to a neighboring hull segment when necessary to
maintain optimality.

Because of the existence of the two distinct topologies, it is necessary to maintain separate
computational hypotheses in parallel (Figure 8). An extension occurs if a new city lies in one of the
extension cells in the lower portion of the diagram at the top. However, if the city lies within a Voronoi
shunt cell as indicated at the top, a transition to quartic shunt space occurs when two existing
perturbations are bridged (diagram at bottom). This not uncommon spatial phenomenon may radically
alter the global shape of the tour, and must be hypothesized every time a new city is processed, to

guarantee tour optimality.
The final topology deals with the issue of perturbation encroachment. There are instances when

a perturbation probes suffciently far into the hull that for the sake of optimality it is necessary for it to
claim cities from another perturbation. This spatial phenomenon produces the third topology which we
call quartic interchange space. Quartic interchange space consists of those Voronoi cells which indicate
that cities from one or more perturbations are to be exchanged into an extended or shunted

perturbation. Quartic interchange is invoked after hyperbolic extension and quartic shunting, which
are performed in parallel. It can be an operation of quadratic complexity, because an existing
perturbation may be broken into sections and nullified by the operation, with separate sections being
absorbed by separate perturbations. Quartic interchange is particularly relevant when using the
outside-in nested hull approach, because at certain moments in time perturbations from across the hull
begin to collide with those on the near side, and the interaction must be arbitrated to preserve
optimality.
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Figure 6. Maintaining two quartic topologies in parallel.

Assume that after k cities have been optimally connected to the convex hull, we would like to know
under what conditions it is possible to simply extend the tour to a new city, vs. radically altering the tour
by permitting the new city to link others which are currently non-adjacent. It is obvious that if the new
city is within a small spatial neighborhood of the existing tour, optimality is preserved by simply
inserting the city into the tour between two cities. The question of which two cities is governed by a set
of hyperbolas which pass through the endpoints of the segments that connect the ordered list of cities
defining the current optimal tour, Whether or not the new city is within a suitable neighborhood of the
current tour is arbitrated by a set of quartic curves which discriminate if a shunting operation is in order.

Hyperbolic Extension Space.
It is a simple matter to connect a new city to an existing perturbation, if that is what is desired (it

will be seen below in the section on quartic shunting that optimality is not always preserved by simply

extending a perturbation). The city is connected to those two cities in the perturbation for which the

elliptic distance is minimal. In other words, an existing perturbation should be extended to a new point
if and only if the length of the perturbation plus the elliptic length of the optimal extension to the point

is less than the corresponding sum for all other perturbations. For example, referring to Figure 9, if a

new city is found to reside in quartic Voronoi cell "jk", it must be connected to cities j and k, while at the

same time the segment joining j to k must be deleted. In this way, perturbation f 3 is extended to

capture the new city.

There are cases when a specific perturbation requires reordering to maintain optimality:

namely, when some city is nearer to the city to be inserted than either of the endpoints of the best

segment found when minimizing the elliptic distance across all segments in the perturbation However,

the algorithm required to implement this operation is of linear time complexity, and does not detract
from the performance of the general extension philosophy.
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Figure 9 (estimated quartics and hyperbolas). Extending an existing perturbation is straightforward. When a
new city enters the system, it is connected to the perturbation for which the elliptic distance to a segment is
minimal, across all perturbations.

Quartic Shunt Space.
A shunt to the left is a bridging operat.ion which connects a new city to the hull segment to the

left of its extended perturbation, whereas a shunt to the right connects the city to the hull segment
succeeding it. The left shunt is formed by connecting the city to its nearest neighbor two perturbations
to the left, and then following the respective perturbation subpaths down to the hull vertices of the
perturbation at the left. Any cities which become detached by this process must be reconnected to the
perturbation space. The quartic shunt operator is a powerful tool, useful for merging two perturbations
of the same parity into one with opposite parity, lying between the other two.

An example of a quartic shunt to the left is shown at Figure 10 (the data is a handcrafted
approximation of a graphic depicted on p. 224, reference [P5]. At the left side of the figure, city c12 has
just been introduced. Hyperbolic extension space calls for a perturbation of hull segment c5-c4,
indicated by the dotted lines. However, quartic shunt space calls for a shunt to be formed between c12
and c16, which is the nearest neighbor two hull segments to the left of c12's extended perturbation.
rhe endpoints of the shunt are followed down from c12 and '16 respectively to c5 ar'd c6. City c13,
which is left dangling by the shunt operation, is optimally reattached to the perturbation space by
connecting it to segment c6-c7.

.. l c12 cit

C2\ dO .- c2\ dO -
cl5 cl15c 16-C

', -\ i Cl - cif

ci CS . .

Figure 10. A q:uartic snunt to the left, using the Preparata and Shamo5 dataset
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Quartic Interchange Space.
Quartic interchange space dictates when a new city's perturbation, whether it be an extension

or shunt, has encroached sufficiently far into the hull to encompass cities which earlier were optimally
installed in some other perturbation. Every time a new city is processed, it must be hypothesized that
the extending perturbation may now have encroached deep enough into the hull to begin influencing
perturbations on the other side. While at some time in the past it may have been legitimate to have
constructed a cross 6-ull perturbation to maintain optimality, it may now be time to partially or
completely "undo" the perturbation by swapping some of its cities to the near side of the hull.

Quartic interchange is iterative. The currently extended perturbation is compared to all other
perturbations in the space. If an exchange of cities is warranted, it is permitted to occur, and the revised
perturbation space is subjected to interchange once again. This action is repeated until no
improvement is obtained.

The General Voronoi Diagram for the Euclidean Traveling Salesman Problem.
Earlier, we proved that the Voronoi diagram of the convex hull has quartic edges, but possesses

hyperbolic edges between adjoining hull segments. For the general case, this concept may be extended.
The generalized Voronoi diagram partitions the plane into three types of cells: hyperbolic extension

cells; quartic shunt cells; and quartic interchange cells. Before the kth city is introduced, one computes
the Voronoi diagram for the set of previously introduced k-1 cities. As in the convex hull case,
computation must once again resort to an elliptic distance comparison, except now three different types
of tour topologies must be hypothesized, rather than the single hypothesis entertained by introducing a
single city into the hull. The space is once again quartic, because to obtain the boundaries of equal

perturbation to the kth city, two variable distances are added, and the sum of a set of fixed distances
(the length of a specific hypothesized subpath) is subtracted Rather than reasoning with perturbed
segments on the hull, one must reason with tangible segments which are part of an existing tour,
hypothesized segments which form shunts between perturbations, and hypothesized segments which
form interchange links with other perturbations. To formalize, the quartic Voronoi diagram indicated
by the optimal tour for k-1 cities, denoted VorQ( L k-1 ), is a function Y of five arguments:

VorQ( I k-1 ) q k-1, ExtH ( t k-1 ), ShuntL ( T _1 ), ShuntR (t k-1 ), Inter( ki)]

where:
r k-1 = the optimal tour for k-1 cities;
ExtH (t I ) = the hyperbolic extension space induced by t k-i,
ShuntL(r k.i) = the left quartic shunt space induced by t k
ShuntR ( T k) = the right quart:c shunt space induced by t .

Inter( t k- ) = the quartic interchange space induced by t k.i

The Principle of Quartic Incremental Optimality.
It is clear we are proceeding with a strategy akin to dynamic programming. Namely, when

adding a new city to the interior, we attach the city to an existing optimal tour in a way indicated by the
quartic Voronoi diagram computed just prior to the city's introduction. Formally, the shortest tour t
for k cities is a function N of two arguments:
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= ( (Ck, Ck y),VorQ(tk.l) ); k = [HI +

where:

Z k = the optimal tour containing k cities;

(Ck' Cky = the coordinates of the kth city to be introduced;

T k-1 = the optimal tour containing k-1 cities;

VorQ(T k-1) = the quartic Voronoi diagram prescribed by k-1 cities;

[ H I the order of the convex hull H;

n = the total number of cities to be processed.

Unique vs. Multiple Numbers of Distinct Optimal Tours as a Function of the Quartic Space.

Proper containment within a quartic Voronoi cell guarantees a unique tour. In nondegenerate

cases, there can be no more than three unique tours because quartic Voronoi edges converge in groups

of three just as linear Voronoi edges do. If a newly introduced city is situated at a Voronoi junction (a

point where three quartics come together), three optimal tours exist; whereas if the city lies on a quartic

but not on a junction, two optimal tours exist. In the degenerate case when cities are equispaced in the

plane, there may be more tours than in the nondegenerate case. For example, a hull consisting of a

regular polygon containing k sides produces k optimal tours if the introduced city lies at the center of

the polygon, because the center is at the intersection of k Voronoi edges (degenerate hyperbolas). As a

point of interest, it can be seen that if one allows the number of vertices of a regular polygon to

approach infinity, so does the number of optimal tours connecting the hull to the center. However, in

this case, the limiting form of the polygon is a circle, and a paradox arises, because the Euclidean

distance between adjacent hull vertices approaches zero as the number of distinct optimal tours rises to

infinity.

Future Work on A Proof of the Admissibility of A.

Mathematical induction will be used in an attempt to show that A is admissable. For the case of

inserting a single city into the hull (i.e., k = 1), the shortest tour is trivially depicted by VorQ (T H), so the

initial step of the inductive proof is satisfied. What remains to be shown is that the sequencing of the

operations of hyperbolic extension, quartic shunting, and quartic interchange preserves optimality.

Summary of the Generalization of the Voronoi Diagram to ETSP.

During the first decade of the century, Voronoi's intention was to develop a mathematical

structure which could be used to rapidly associate a query point with the nearest point contained within

a known two-dimensional constellation of points [V21. In decades of subsequent work, the

dimensionality constraint has been relaxed, as well as the specification that both the query object and

known objects be points [PS, E2]. This paper has focused on an exact solution to the Euclidean traveling

salesman problem, and consequently has introduced a new distance metric, known as the elliptic

distance, used to compute the distance of a floating query point from two fixed points- The limiting

form of this metric, when intersected with that from another perturbed segment, induces a quartic

structure on the Voronoi diagram. This non-linear search space permits a feasible testbed arena for the

problem which the traditional Voronoi diagram cannot provide

Dillencourt's nondegenerate counterexample [D31 to Shamos' conjecture that the shortest tour

must traverse the Voronoi dual is shown at the left of Figure 11. At the right is the quartic Voronoi
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diagram, which depicts connectivity of the three interior cities to the convex hull. All the curves
indicated are hyperbolas, except the short one plotted between segment tl-t7 and segment t2-t3, which
is a quartic locus. The shortest tour is tl-t2-t4-t3-t5-t7-t6-ti, but the linear Voronoi dual does not permit
t3 and t4 to be connected. Note that in this instance, if one merely attaches each of the three interior
cities to the hull segment indicated by the quartic Voronoi cell in which it resides, using the hyperbolic
extension operator, the shortest tour is obtained. Of course, the actual computer run invokes the
processes of quartic shunting and quartic interchange, but in this case the fourth-order operators fail to
improve the tour produced by hyperbolic extension space.

, I'+

It 7+ t

t6 .t6 

t4 t4 t5 ..

yl t2 Q3 tI t2 t3

Figure 11 (computed edges), The Voronoi diagram for the Dillencourt data (left), and its one-city-in-a-hull
quartic Voronoi diagram (right). This data is the first known nondegenerate counterexample to Shamos'
conjecture that the shortest Euclidean tour must traverse adjacent Voronoi cells. In the optimal tour, t4 is
connected to t3. It is apparent that t4 and t3 can be connected in the qurtic diagram, but not in the linear one.

The traditional Voronoi diagram is a proximity map, where at a glance it can be seen which
object in a search space is nearest to a query point The quartic Voronoi diagram is a connectivity map,

which displays shortest tour connectivity information for the kth city, as a function of a constellation of
k-1 fixed cities. It has been shown that the process of intersecting an infinite set of confocal eilipses
symmetric about an existing ETSP link with those about another link produces a quartic curve. The
quartic curve, which in practice frequently reduces to a hyperbola because of the tendency of extension
space to dominate during nested hull traversal, serves the same role as the perpendicular bisector does
in the traditional Voronoi diagram. Thus, instead of being piecemeal linear, the extended Voronoi
structure for ETSP is piecemeal quartic. The final discrepancy between the traditional Voronoi diagram
and the quartic diagram deals with the issue of boundedness. Traditional Voronot diagrams are
unbounded; i e , cells -n the perimeter of the diagram are permitted to extend to infinity. However, for
the Euclidean traveling salesman problem, the quartic Voronoi diagram is bounded by the convex hull

of cities, so that no cell is unbounded. Nevertheless, this is not to say that the boundedness constraint

cannot be looseneod to incrementally add new cities exterior to the hull, which is the philosophy behind
the inside-out nested hull approach (an example of this technique will be elaborated upon in an

example appearing below, in which the innermost hull is used as a baseline optimal tour from which to

add cities incrementally to the exterior) Table 1 summarizes the three distinctions between the
traditional, linear Voronoi diagram, and its quartic counterpart designed for exact solution of the
Euclidean traveling salesman problem.
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Traditional Usage - Extension to ETSP

Proximity Shortest-tour

Map Connectivity Map

Cell Boundaries
Cell Boundaries

are Piecemeal Hyperbolicare Line Segments
and Quartic

Perimeter of Diagram Perimeter of Diagram

is Unbounded is Bounded by Convex Hull

Table 1. Extension of the Voronoi Diagram to the Euclidean Traveling Salesman Problem.

The Computational Complexity of the Hull Perturbation Approach.

a. The Time Complexity of Blind Search.

The convex hull of a set of cities serves as a control structure from which to initiate

perturbations. In this section we naively derive an expression for the time complexity of the approach, if
the tack is taken to blindly generate perturbations from hull segments in an arbitrary fashion. The
derivation hinges upon making a substitution at an opportune moment when the binomial coefficients
are manifested. It is hoped that future research will lend insight into techniques to improve the naive
bound. The number of perturbations in the optimal tour cannot exceed the size of the hull, because a
perturbation is defined to be an excursion into the interior from a hull segment, the number of which is
equal to the number of hull vertices. Let H be the set of cities on the convex hull, and I be the set of cities
lying on the interior of the hull. Let the rank of H be h, and the rank of I be i. If n is the total number of

cities, then n = h + i. From each hull segment, the set of interior cities may be visited zero at a time,
one at a time, two at a time, . or i at a time. Thus the total number of computations required to find

the shortest tour is:

h *Cj + h *C 2 + ... + h*C,

h*(,Cl + ,X2 + .- + ,Q)

h* (2') =

h *(2 n' h )=

h *n
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Some observations may be made about this naive bound. Note that a large hull is desirable, because the

effect of the denominator is to diminish the 2n term. Although the complexity is exponential, it is an
order-of-magnitude improvement over a brute force approach, which is of factorial complexity.

b. The Time Complexity of Quartically-Controlled Search, using Nested Hull Traversal.
As a city is processed during nested hull traversal, there are three general phases of computing

which must be performed in sequence. The first is a linear time operation to extend the current
topology by minimizing the elliptic distance from all perturbations to the new city, which includes
reordering a perturbation if necessary. The second phase involves two linear time operations, to
construct the left and right quartic shunt topologies, after which they are compared with the extension
topology to render the one with shortest tour length. Finally, the quartic interchange space is
computed, which is a quadratic operation, because the left and right tour edges produced by the
insertion of the new city act as windows to possibly absorb whole groups of cities from perturbations on
the far side of the hull. Therefore, to process each new city, the worst case time complexity is quadratic.
The sum of a set of quadratic expressions in k, where k ranges from 0 to n, is a closed form expression
equalto n*(n + 1 )*(2n + 1)/6.

In summary, a computer implementation of the principle of quartic incremental optimality
requires Of n * log n ] preprocessing time to compute the nested hull decomposition, Of n I storage for
intercity distances and optimal partial tours, and Of n3 I time complexity to maintain incremental
optimality.

An Example: The Forty-eight Capital Problem.
The shortest tour connecting the forty-eight capitals of the contiguous United States remained

an intriguing open problem until Shen Lin obtained an optimal solution in 1985 [Al, A21. Each
coordinate of the database represents the location of a Bell telephone office in the capital of a state.
The principles of nested hull traversal and quartic incremental optimality were leveraged against this
database The nested hull structure for this data is exhibited at Figure 12. The implementation to derive
the convex hull is based on an iterative enhancement made by the author to an algorithm developed in

the seventies by W.F. Eddy (El].

=A

.-- ... ....,

Figure 12. The Nested Hull Structure of the Forty-eight Capitals.
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Working from the Outer Hull to the Inner.
First, the problem was attacked by starting with a baseline tour consisting of the outer convex

hull, and probing inwards. Each nested hull is traversed in counterclockwise order to insert new cities,

before the next inner hull is processed. A temporal history of incremental optimality is shown in Figure
13. The inserted city and the quartic function triggered are listed below each graphic. The interesting
cases are those which are not mere hyperbolic extensions, but those which also involve quartic shunts
and exchanges. The most dramatic quartic shunt occurs in row five, column seven, when the
introduction of Springfield, Illinois produces a shunt to the right. Springfield is originally processed by
the hyperbolic extension operator, which compels attachment to the perturbation which contains
Lincoln, Nebraska. However, quartic shunt space produces a shorter tour by conjoining Springfield with
a perturbation to the right containing Frankfort, Kentucky. Another interesting iteration occurs in row

four, column six, when the introduction of Cheyenne, Wyoming into hyperbolic extension space causes
the transposition of Bismarck, North Dakota with Pierre, South Dakota. Subsequently, quartic
interchange causes Salt Lake City , Utah to be drawn out of its perturbation with Carson City, Nevada
into the perturbation containing Cheyenne. The algorithm correctly terminates with Lin's optimal tour,

shown in row six, column two.

Working from the Inner Hull to the Outer.
Next, the same data was processed by starting with the innermost nested hull and probing

outward. Because the quartic Voronoi edges extend through the hull vertices both on the inside and
the outside, the nested hull technique is theoretically valid in either direction. Figure 14 illustrates the
optimal subtours produced by the algorithm when starting with the innermost hull and probing
successively outward through the outer hulls. In this case, the innermost hull contains only four cities, so
the original number of perturbations is four. There is an interesting tradeoff on time complexity when
working with fewer perturbations. Again, note thatthe optimal tour is produced.

- l do" - -- ****, -

--- =, -_ C.= .... ., 1=.E 1

I -

- .I..

Figure 13. Working inwards from the outer hull, employing quartic nested hull traversal.
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Summary.

The chief result of the research to date is a proof that the underlying search space (the Voronoi

diagram) for the Euclidean traveling salesman problem is non-linear; specifically, the space is quartic

when reasoning across subtours, and hyperbolic when reasoning within subtours. These facts become

apparent when one realizes that reasoning about shortest tours is a process which inherently involves

the intersection of a pai r of ellipses, the foci of which are defined by pairs of cities. Ellipse intersection is

an operation which in the worst case produces a fourth-order equation (quartic). in the special case in

which two ellipses share a focus, the locus is a semi-hyperbola. The discovery of the non-linear search

space has prompted the author to devise an algorithm which utilizes three operators to constrain

search: hyperbolic extension; quartic shunting; and quartic interchange. To limit the generation of

greedy perturbations, cities are gradually inserted in an incremental fashion, according to thei r position

within the nested hull structure of the city database. The new knowledge about the non-linear search

space has resulted in an Of[ n3 I solution to optimality of a forty-eight city problem. The solution is

obtained both by beginning with the outer convex hull and probing inward, or by starting with the

innermost hull and probing outwards.

Future Directions of the Research.

It is desirable to pursue a rigorous proof of the theory of quartic incremental optimality; the

proof will proceed by induction. Also, to facilitate further empirical analysis, the theory as it currently

stands will continue to be developed and leveraged against several large databases of cities for which

the opti 'mal tour is known, in an attempt to find examples which counterindlicate the algorithm.

Short-term plans include runs against a 127-city database [R1I], and a 532-city benchmark for which the

optimal solution has been developed [P1 ]. Subsequently, the runtime for the experimental dlata will be

214

'. • i i I I I I ' I



plotted as a function of the number of cities, to determine if the algorithmic ceiling function is of cubic

order as predicted by the analysis.
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APPENDIX

The appendix consists of a series of five computer plots which graphically portray the quartic

(fourth-order polynomial) loci which exist naturally when hypothesizing a solution to the

two-city-in-a-hull Euclidean traveling salesman problem described in the main body of text. These ioci

were discovered empirically by the author during the summer of 1989; it was only later after several

months of research that a proof was obtained to demonstrate algebraically that the loci are actually

comprised of quartic and hyperbolic curves. It may be of interest to some readers to know how the plots

were obtained. An algorithm was designed to capture the knowledge about the possible ways

(permutations) to connect city d8 and one other arbitrary city to the convex hull (dl-d2-d3-d4-d5-d6). In

the eight city example, there are six possible topologies to compare between any two hull segments:

the two ways to attach d8 and the arbitrary city to each of the two hull segments (which yields a

subtotal of four), and the two ways to attach one city to one segment and the second to the other

segment. In general, this means that there are fifteen quartic loci (the combination of six topologies

taken two at a time) among which to arbitrate when hypothesizing a shortest tour. The algorithm was

encoded in Lisp and run on an artificial intelligence computer workstation. A set of experiments were

conducted as follows: the computer mouse was moved about its pad on the desk, which caused the

cursor to move about the monitor screen displaying the constellation of cities. If the length of a specific

arrangement of cities was within one unit of that of another arrangement, a black dot was plotted to

the screen at the position of the cursor. This action provided positive feedback to the author, who

dynamically readjusted the position of the mouse to obtain "more black dots" in a continuous fashion,

until an entire quartic curve manifested itself. When a point in time was reached in which it became

obvious that no more loci were forthcoming, the session was terminated, and another pair of segments

was selected for experimentation. In the set of graphics selected for exhibit here, one of the pair is

always segment d6-d5. Also note that what in the text was referred to as city "d7" is here called city

"d8". It should also be pointed out that in exhibits A-3, A-4, and A-5, the quartic plots are superimposed

over the solution to the one-city-in-a-hull problem discussed in the text.
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Exhibit A-i. The quartic interplay between segment d6-d5

and segment d5 -A, when attaching d8 and an arbitrary city

to the convex hull to produce the shortest Euclidean tour.
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Exhibit A-2. The quartic interplay between segment d6-dS

and segment d4-d3, when attaching d8 and an arbitrary city

to the convex hull to produce the shortest Euclidean tour.
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Abstract

This paper proposes a new optimal digital redesign technique for finding a dynamic

digital control law from the available analog counter part and simultaneously minimiz-

ing a quadratic performance index. The proposed technique can be applied to a system

with a more general class of reference inputs, and the developed digital regulator can be

implemented via low cost microcomputers.
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1. Introduction

Many practical dynamic systems are described by continuous-time state equations for

which a state-feedback gain and a forward gain are designed based upon some specific

desired goals. Advances in digital control theory and industrial electronics have made a

dramatic extension in the possibilities of replacing these analog controllers by the equivalent

digital controllers so that they can be implemented via high performance, low cost micro-

processors and associated microelectronics. The conversion of the designed continuous-time

controller (analog controller) to an equivalent discrete-time controller (digital controller)

so that the responses of the redesigned equivalent digital system closely match those of

the original analog system for the same input and initial conditions is a digital redesign

problem [1]. The digital redesign problem can be described as follows.

Consider the linear controllable continuous-time system described by

= Axro(t) + Buc(t); x,(O) (1)

where zx(t) and u,(t) are an n x 1 state vector and an m x 1 input vector, respectively, and

A and B are constant matrices of appropriate dimensions. Let the state-feedback control

law be

uc(t) = -Kcxc(t) + Er(t) (2)

where Kc is an m x n feedback gain, Ec is an m x m forward gain, and r(t) is an m x 1

reference input. The resulting closed-loop system becomes

ic(t) = (A - BKc)xc(t) + BEcr(t); xc(O) (3)

Let the state equation of a continuous-time system which contains the same system matrix

A and input matrix B of the system in (1), with a different input, be represented by

Xd(t) = A~d(t) + Bud(t); Xd(O) (4a)

where Ud(t) is an m x 1 piecewise-constant input function,

Ud(t) = ud(kT) for kT < t < (k + I)T (4b)
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and T is the sampling period. A zero-order hold is utilized in (4). The solution of the

state equation in (4) is

Xd(t) = eA(t-kT) Xd(kT) + e A(-)BdA Ud(kT) for kT < t <kT + T (5)

For t = kT + T, the equivalent discrete-time model of the continuous-time system in (4)

can be written as

id(kT + T) = Gzd(kT) + Hud(kT); Xd(O) (6a)

where
G AT ATF~AI

G A and H- e -BdA =[G-I,,]A-'B (6b)

Let the discretized state-feedback control law for the system in (4) be

Ud(kT) = -Kdzd(kT) + Edr(kT) (7)

where Kd is an m x n digital feedback gain, Ed is an m x m digital forward gain, and

r(kT) is an m x 1 discrete-time reference input. The resulting closed-loop system becomes

Xd(t) = Axd(t) - BKdXd(kT) + BEdr(kT); Xd(O) for kT < t < (k + 1)T (8)

Now, the static digital redesign problem reduces to finding the digital constant state-

feedback gain Kd and forward gain Ed in (7) from the continuous state-feedback gain K,

and forward gain E, in (2) so that the states of the digital model in (8) are approximately

equal to the states of the analog system in (3) for x,(O) = zd(O) and the same reference

input.

In Kuo's pioneer work [1], a discrete-state matching method was proposed to solve

the static digital redesign problem and successfully applied to a simplified one-axis skylab

satellite system [1). In their work [1), they have assumed that the continuous-time reference

input r(t) in (2) can be closely approximated by the piecewise-constant input r(kT) in (8)

and the continuous-time state zx(t) in (3) can be closely matched the continuous-time

state Zd(t) in (8) at each sampling instant, t = T, with a sufficiently small sampling

period T. The values of zx(t) in (3) and Xd(t) in (8) between each sampling instant are

not considered in their work. In this paper, a new optimal digital regesign technique is
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proposed for finding a dynamic digital control law, instead of the static digital control

law as shown in (7), from the available analog control law in (2) for a continuous-time

reference input r(t). It is optimal in the sense that the quadratic performance index of

the errors between x.(t) in (3) and the digital redesigned state, controlled by a dynamic

digital control law, is minimized.

2. Optimal Digital Redesign

Consider the dynamic system described as in (3) and (4) with xc(0) = Zd(O). Let the

quadratic cost function be

J= j [X(t) - c(t) T Q[(Td(t) -z () dt (9)

where Q E IZ" ' is a positive definite symmetric weighting matrix, zc(t) is the state

of the system in (3), and Zd(t) is the state of the system in (4) to be redesigned. It is

desirable to find a dynamic digital control law for the system in (6a) such that J in (9)

is minimized. The above optimization problem is slightly different from an optimal state

tracking problem [21 in the sense that the states of interest in (9) are those of the dynamic

systems in (3) and (4) which involve the same system matrix A and input matrix B with

different input functions.

An alternative expression of J in (9) is

00 1 kT+T

J = 2 T [Xd(t)- Xc(t)] T Q[Xd(t) xc(t)] dt
k=0 (IlOa)

k=O

where

1f ITT
A - [ z(t) - z (t)JTQ[Xd(t) - X,(t) dt (lob)

2 JT

Assume that the continuous-time reference input r(t) in (3) can be realized via zero-input

state equations (an example of this method is shown in Appendix 7.1) as follows:

r(t) = Ayr(i); yr(O) (Ila)

r(t) = C,y,() (11b)
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where y,(t) is an p, x 1 state vector, r(t) in (llb) is an m x 1 output vector (the reference

input of the system in (3)), and A, and C. are constant matrices of appropriate dimensions.

Combining the state equations in (3) and (11) leads to
[ _ At BECV x7(,) x (0[i,.(t) Ac [y,()] ; y,(O) ] E I (12a)1A, E [J(

or

4(t) = Ajq(t); q(0) (12b)
AA

where n1 = n + p,, Ac A A - BKc, and

A A. E , q(t) Yr(t)

The solution of the state equation in (12) is given by

q(t) = eA(t-cT)q(kT) for kT < t < kT + T (13a)

The equivalent discrete-time model of the system in (13a) is

q(kT + T)= Glq(kT); q(O) (13b)

where

= G 04[A,(kT G)1 E on × 7 n, q(kT) = y(kT) Ej 7

with GC 4 eA.T , G, 4 eAT, and Hc 4 GcfT e-A ABEC,eA,' dA (Note that Hc can

be solved using the method developed in Appendix 7.2). Also, by combining the dynamic

systems in (4) and (12),we obtain

I)(t) A 0] [xdt) ] []Ud(kT) (14a)

The solution of the state equation in (14a) can be obtained by combining the solutions in

(5) and (13a) as

L d(t) 1-reAi) 0 Xd(kT) 1 t ffeA(t-A)B dAJ
q(t) 1 0 eA(t-kT)] [ q(kT) J + d(kT) (14b)

for kT < t < kT + T
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For t = kT + T, the equivalent discrete-time model of the augmented system in (14)

becomes

z(kT + T) = Gz(kT) + #ud(kT); z(O) (15)

where

z(kT) = [zT(kT),qT(kT)]T E 7Z(n+n,)xl

G block diag[G, GI E R(n+nl,)x(n+,n1) with G = eAT and G, = eAIT

and H - [HT,O]T E J(n+nz)xm with H = AeaBdA = [G - I,]A-'B

Note that the augmented system in (15) contains the reference subsystem in (11), whereas

the cost function in (9) does not include the state of the reference subsystem in (11). To

include the state of the reference subsystem in (11) into the cost function in (9), we modify

the cost function in (10) as follows:

1 jk [T(t), (t)) [ -Q Q] [d(")] dt
= k T [Q Q J 1c(J d

1 IkT+T zT (t)QZ(t)dt (16)2 ,kT

where
Z(t) [.T(t),qT(t)IT = [x T (t),y T(t),yT(t) I T r R,(n+nx)x

l

0 0 0

Substituting (14b) into (16) and making some algebraic simplifications results in

J 1 zT(kT)'z(kT) + zT(kT)Mud(kT) + 1UT (kT)Rud(kT) (17a)

where

11 ~ Rj 7(n+n1)x(n+nl)
O T z E (17b)

with

Oil eATtQe
A t dt E 7Zn x n

I2 IT eATt[-Q,OleAr t dt E lZfl × ft

00
T jTet [Q A, t di , Zx
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and

Ji1J% [ I]EZ(n+nl)xm (1 7c)
with

AI T {eA T tQ ' AABdA}dt C Tnxm0 0'
Me I e Q-O, T f e A B dAldt E R ni / x '

o0

and

R { f eAABd]TQ[ eA-BdA]}dt E 1ZmXm (1 7d)

If the matrices A and A 1 satisfy certain conditions (see Appendix 7.2), the weighting

matrices Q, M, and R can be solved from a set of Lyapunov equations. Thus, the quadratic

cost function in (10) can be rewritten as

E [2zT(kT)z(kT) + zT(kT)Mud(kT)+ -u1T(kT)Rud(kT)] (18)
k=O

Now, we can easily identify that the cost function in (18) and the dynamic equation

in (15) constitute a standard discrete-time optimal regulator problem [1,2]. The cytimal

control law is given [1,2] by

Ud(kT) = -(R + -ITpf-)-,(f-Tpd + MT)z(kT) (19a)

where P E lZ('+ni)x ( ' + " ) is the positive definite symmetric solution of the discrete-time

Riccati equation:

p = dTp ± - (GTp- + M)(R + HTTpft)-1(dT pf- + .Al)T (19b)

Since the adjoint system in (15) is not completely controllable, it is not always possible

to find a positive semidefinite symmetric matrix P from (19b). However, for a stable

subsystem matrix G1 , there exists a positive definite symmetric matrix P [3] which can be

solved as follows.

Define the matrix P as

P 1 P23 (20a)
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where Pl E R " ' , P 12 E Znxt, and P22 E 1Zn, × i . The Riccati equation in (19b) can

be partitioned into separate equations for P11 , P12, and P22:

P11 = GTPIIC + - (GTP 1 H + M1 )(R + HTP1
, H) - (GTP1 1 H + M )T (20b)

P12 -GTP 12 G1 + Q12 - (GTP 11H + Al)(R + HTpliH)-(GTPTH + A12 )T (20c)

P2 2 = GTP22G1 + 22 - (GTPIT2 H + .A 2 )(R + HTpliH)-(GTPTH + M2)T (20d)

Equation (20b) is a discrete-time algebraic Riccati equation and can be solved via eigenvalue-

eigenvector approach [4] or sign algorithm [5]. Once P11 has been found, it is substituted

into (20c), which can be rearranged into the following Lyapunov equation:

[G - H(R + HTplH)-'(HTp,G + AlT)]IP12 - P12G'

+[12 - (GTp 11H + M1 )(R + HTp 1 H)-AITMG'11 -- 0 (21)

Equation (21) can be solved via a matrix direct-product method [6]. The desired optimal

digital control law in (19a) becomes

Ud(kT) = -gdxd(kT) + Kqq(kT) (22)

where
Kd = (R + HTp1 1H)-1 (HTPIG + MT)

Kq = -(R + HTPI1 H)-l(HTP12 G, + AI)

Because q(kT) in (22) is generated from the dynamic system in (12) or (13), i.e.,

q(kT +T) = C(kT +T )J Kc Hcj [XC:kT) .I Tcy(0)] (23)[y,(kT + T) I= 10 G, y,(kT) ; y'40)

We decompose the dynamic gain Kq in (22) as Kq = [kc,kI where k, E IZ" ' and

k, E lz " p,. Hence the desired optimal dynamic digital control law in (22) can be

rewritten as

Ud(kT) = -KdXd(kT) + kcxc(kT) + Kry,(kT) (24a)

where
k-I

a"(kT) = GGXd( -) + ZG- ' Hcy,(iT) (24b)
i=0
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and

y,(kT) = Gyr(o) (24c)

Thus, the digital redesigned system via the optimal dynamic digital controller in (24)

becomes

id(t) = AXd(t) - BKixd(kT) + Bk~xc(kT) + Bkry(kT); Xd(0) (25)

The digital redesigned closed-loop system is shown in Fig. 1.

If y,(t) in (11) is measurable, or the initial vector yr(O) is available, the control law in

(24a) can be realized via a microcomputer. However, in practice, it is quite possible that

only an incoming signal r(t) is available. In this case, an estimator can be constructed

with r(t) as an input, and the estimated state ,(t) of yr(t) as an output [2) provided that

the pair [A,, Cr) are observable.

When r(t) in (11) is a step function, then Cr = Im, y,(i) = r(t), and y,(kT) = r(kT).

The optimal dynamic digital control law in (24) reduces to

ud(kT) = -Kdad(kT) + kcxc(kT) + krr(kT)

= -Kd3d(kT) + kcG'Xd(0) + [k k + (2]6(kT))

i=0

3. Illustrative Example

Consider an unstable system in (1) with

. 0.809 -2.060 0.325 0.465 0.895]
6.667 0.200 1.333 0.000 0.667

A = -1.291 0.458 -1.072 -2.326 -0.199 (27a)

-0.324 0.824 1.670 -1.186 -0.358
-3.509 -4.316 -0.702 0.000 -8.351J

[ 0.955 -0.3791
-1.667 -1.6671

B -0.212 1.1951 ; zc(O) = 0 (27b)
0.618 0.052

L 0.877 1.403 J

and the eigenvalues of A are a(A) = {0.2 + j4.0, -1.0 : j2.0, -8.0}.
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Using the optimal pole-placement method proposed in [7], the optimal state feedback

gain K, in (2) is found as

K [7.871 -0.563 3.255 -0.137 0.754(
1.625 -1.247 1.297 -1.003 0.182] (28)

Utilizing the feedback gain K, the eigenvalues of the closed-loop system in (3) are placed

within the common region of an open sector (with a sector angle ±450 from the negative

real axis) and the left-hand side of a -1.1 vertical line on the negative real axis in the

complex s-plane, and or(A - BKC) = {-4.6789 ± j4.6518, -1.8983 ± j1.898, -8.0}.

Assume E, = 12 in (2), and let that the reference input r(t) in (2) contain a sine

function (sin(wat)) with an angular frequency w = 3.0 and an unit-step function, that is

r L i(t) [ -sin(3.) ; t >0 (29)

The reference input r(t) can be represented by a zero-input state equation in (11) with

0.0 3.0 0.01
A, = -3.0 0.0 0.0 (30a)

0.0 0.0 0.0

C, = 1.0 0.00 (30b)
10.0 0.0 1.0

and an initial vector y,(O) = 10.0 1.0 1.0]T.

Using the method proposed in this paper, we obtain the dynamic digital control law

in (24) with a sampling period T = 0.5(sec.) as

utd(kT) = -KdXd(kT) + Kczc(kT) + ky,(kT) (31)

where

_ [ 0.7940 -1.0970 -0.2206 0.3500 0.05741
Kd - -2.2280 -0.2333 0.0002 -0.7134 -0.1575] (32a)

k [c = -0.4472 -0.2190 -0.7267 0.2998 -0.05871
-0.0501 0.0972 0.5231 -0.2748 0.0399] (32b)

k = [ 0.2112 0.2314 -0.2938 (32c)-0.1482 -0.0498 0.5082 (2)

The simulation results of the closed-loop systems in (3) and (25) are shown in Fig.2

for both xc(t) in (3) and Xd(t) in (25), and those of the controls u,(t) in (2) and Ud(t) in

(24) are shown in Fig.3. The simulation results have shown that zd(t) is very close

te z(t) even with a rather larger sampling period (considering the dynamics of the given

system and the frequency of the reference input).
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4. Conclusion

A new optimal digital redesign technique has been developed for finding a dynamic

digital control law in (24) from the available analog counterpart in (2) and simultaneously

minimizing a quadratic performance index in (9). First, an augmented system in (14a),

which consists of a reference model in (11), an orginal closed-loop system in (3) and the

digital controlled original open-loop system in (4a), is constructed and converted into

a discrete-time dynamic system in (15) to be designed. Next, a quadratic performance

index in (18) is established from that in (9) using a set of weighting matrices in (17).

A set of Lyapunov equations have been developed in Appendix 7.2 to find the weighting

matrices for the quadratic performance index. Then, a standard discrete-time optimal

regulator in (22) is determined by solving a small dimensional Riccati equation in (20b)

and a Lyapunov equation in (21). Finally, the desired digital state-feedback gain and

forward gain in (24a) can be computed from those in (22), (24b) and (24c). An illustrative

example has been presented to demonstrate the effectiveness of the proposed method. The

developed dynamic digital redesigned control law enables an optimally close matching of

the states of the digital redesigned closed-loop system as compared to the states of the

original closed-loop system and it can be implemented via low cost microcomputers. The

proposed technique can be applied to a system with a more general class of reference inputs

having a relatively large sampling period.
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7. Appendices

Appendix 7.1

Let an m x 1 output rational function R(s), which is the product of a transfer func-

tion matrix and an input function, be represented by an irredu ble left matrix fraction

description 14] as

R(a) = [1,9 P + D, P- ' + ... + Dp-[NjP-' + ... + Np] (A.1)

where Di E 7" mxm and Ni E Rmxm for i = 1,2,... ,p.

The left matrix fraction description can be realized by the following zero-input state

equtation:

(t) = Ay,(t); y,.(O) (A.2)

r(t) = Cy(t) (A.3)

where y,(t) E 7 "pmI r(t) E 7zmxI

On I ,m ... 0,m .,
0, 0- IM ... Om C O= ]

-Dp -Dp-i -Dp-2 ... -DAM0

and
an Im 0m On ... Om 0m- N

D, Im O ... On Om N 2

y,(O)= D 2  D I I ... 0,, Om N 3

LDi .P2DP3. .. .I J LN

The above result can be obtained by following the method shown in [83
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Appendix 7.2

Some useful formulas for computing the matrices i, 012, Al1 , A12, and R are given

as follows.

Let the matrix 01, be defined asIT T
Oil eQATtQe A t dt T FQ(t) dt (A.4a)

where

FQ(t) -eArtQe At (A.4b)

Taking the derivative of (A.4b) with respect to t gives

PQ(t) = ATeA T tQeAt + eArtQeAtA = ATFQ( t ) + FQ(t)A (A.5)

Integrating (A.5) on both sides from 0 to T yields

T

jP-Q(t)dt = FQ(t) IT= eATTQeAT - Q

=A TjfFQ (t) dt +J1FQ(t) dtA

Thus

ATQ 11 + 0 11A = GTQG - Q (A.6)

where G e eAT.

When A is nonsingular, the unique solution 01, can be solved from the Lyapunov

equation in (A.6) via the matrix direct-product method [6].

Let 012 be defined as
Qi2 =j e ATt ~ di (A.7)

where [ $ [-Q, O] E IV", , Similar to the above derivation, if A and A1 are nonsingular

and ao(A) + aj(A1 ) # 0 for all ij, where a(.) denotes the eignspectrum of (.), then the

unique solution 012 can be obtained from the following Lyapunov equation:

ATQ 1 2 + Q 12 A 1 = GTQG 1 - Q (A.8)

where G A- eAT and G1 -4 eAiT
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Let M1 be defined as
M, = T Fit( t) dt (A.9a)

where

FtM(t) 1 eAtQ e-"B d\ (A.9b)

Carrying out the differentiation of (A.9b) with respect to t, we obtain

FM(t) - ATeATtQ eAABdA\ + eA tQe AtB (A1)

= ATFM(t) + FQ(t)B

Integrating both sides of (A.10) from 0 to T gives

FM(t)T =eArTTQjoTe A-BdA = GTQH

= AT  FM(t)dt + AoFM(t)dtB A TM + Q11 B

where H 4 fT eA'B dA Thus,

A TMI, + Q1 1B - GTQH (A.11)

If A is nonsingular, then

M, -' (AT)-,[GTQH - Qi1B] (A.12)

Define

Ml2 A jT{e I feABdA]}dt

Similar to the derivations of (A.9) through (A.12), if A, is nonsingular, AM2 can be found

as

Al2 = (AGT)-Q[GT T H - QTB]

Let R be defined as

R j[ eA"B dA]TQ j eA'B dA] }dt (A.13)

If A is nonsigular, then

jeA-BdA = [eAt - In]A-1B (A.14)
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Substitute (A.14) into (A.13), we have

R = (A-B)T T[eATtQeAt - eATtQ - QeAt + Q] dt(A- 1 B)R (-B 0 (A.15)

= (A - B)T [O 11 - (G - I.)T(AT)-,Q - Q(G - I )A - 1 + QT(A - 1 B)

If A and/or A 1 are singular, the matrices 0)11 21, AM1 , l 2 , and R can be computed

by any numerical integration method.
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Effectiveness of A Class of Smart Munitions:

A Stochastic Model

B. D. Sivazlian and K. Gakis
Department of Industrial and Systems Engineering

University of Florida.
Gainesville, Florida 32611

ABSTRACT

A methodology is developed to assess the effectiveness of a class

of smart munition system. Following a formal analysis of the aggregate

problem and the characterization of the elements of the system, a

prototype mathematical model is formulated. This model describes the

temporal operation of the weapon system in the battlefield in the

presence of threats and countermeasures. Simultaneously, it captures

the uncertainty element typically arising in such problems. The

solution results derived may be used to develop cost-free and cost-

related measures of effectiveness to evaluate and select smart munitions

weapon systems.

I. INTRODUCTION

Over the last decade, various DOD agencies have been involved in

developing a family of weapon systems known as smart munitions (SM)

which could significantly enhance the U.S. capability in the

battlefield, while simultaneously improving mission survivability.

SMs have the autonomous capability to search, detect, acquire and

engage targets. They can be delivered by a variety of means such as

rockets, guns, dispensers, etc .... in large quantities over a large

arrays of land-mobile targets. They can simultaneously engage multiple

targets and be accurately delivered on selected targets without

requiring an operator on the loop. The development of a methodology to

assess the effectiveness of this new weapon system in the battlefield
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while incorporating threats and countermeasures, becomes an important

problem to be analyzed and studied.

II. OBJECTIVES OF THE RESEARCH EFFORT

As part of an ongoir.- program, the Analysis Division of the Air

Force Armament Laboratory at Eglin AFB has requested its Technology

Assessment Branch to provide an assessment for a Smart Submunition

Technology program.

The objective of this program is to integrate advanced technologies

for the next generation of smart submunitions (SM). The technologies

would be advanced technology sensors, warhead, and maneuvering,

compatible with advanced aircraft and dispenser delivery systems, and

capable of providing substantial increases in effectiveness over current

weapons against ground mobile targets. The target set being considered

for the program spans the spectrum of ground mobile targets, and

includes heavy armour, softer vehicles ranging from air defense targets

to light armor, and rail transport.

The technology assessment necessitated the development of an

appropriate methodology for evaluating the proposed system. As a

result, the following tasks had to be undertaken:

i. Study the operational characteristics of the Smart Submunition

Weapon Systems;

2. Analyze the system by identifying the various components in the

operation of the system as well as the targets;

3. Characterize each component. Develop appropriate descriptive

parameters which may be used as inputs in an effectiveness model;

4. Formulate a mathematical model which describes the operation of the

weapon systems under combat condition by incorporating threat and

by capturing the stochastic nature of the problem;

5. Provide a systematic methodology to solve the mathematical model;

6. Develop appropriate measures of effectiveness.

A brief review of items (1), (2) and (3) is provided. The emphasis

of the present report is
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1) to formulate a stochastic model and to provide a method of

solution to a prototype model describing the operations of the weapon

system;

2) to provide selected measures of effectiveness of the operation

of the weapon system.

III. THE SMART SUBMUNITION WEAPON SYSTEMS (SSWS)

The effectiveness in the use of a SSWS depends on the assumption

that the ultimate engagement in the battlefield is a "many-on-many". A

number of smart submunitions (SS) are delivered in the proximity of an

area where several targets are located such as tanks in a tank company.

Through its sensors, each submunition is capable of locating, detecting,

acquiring and engaging a target of a given type. The sensors have the

capability of identifying the kind of targets (e.g. tanks or APC) that

they are to engage. In general, the design of a SS is governed by the

environment within which it will be deployed and the characteristics of

the targets. As many factors as possible are accounted for in

developing the configuration of the SS. Even then, the effectiveness of

the SS may be enhanced or deterred depending upon the mode by which ch

weapons are delivered in the vicinity of the target. For example, a

parachute-suspended SS is typically not highly maneuverable and uses a

small search footprint. As such, it would not be very effective against

moving targets. A better design would be a parafoil-suspended SS or an

inflatable-wing SS both of which are highly maneuverable and have a

larger footprint. They have the capability of guiding the SS more

rapidly towards the target, thus being more effective against moving

targets. In addition, a larger footprint increases the probability of

acquiring a target.

For the engagement to be successful, it is necessary to deliver a

large number of weapons over a given area, and to provide each weapon

with the capability to search and locate a target with a high

probability of success. This requires that a large number of targets be

available within the footprint of the delivery weapon. The larger the

footprint, the more likely the weapon will acquire a target during its

search, assuming the same target density in the area. Once acquired,
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the discriminating sensors carried by the weapon will identify the

target, select the ones to be attacked and thus pair each munition to a

target of a kind. An obvious disadvantage of this system is the

likelihood of more than one weapon attacking one particular target

unless specific algorithms are built into the weapon system to preclude

such situations. A second disadvantage is that in order to be

effective, the SS must be placed in the vicinity of the target by a SS

delivery system. Finally, in order to acquire and to precision guide

towards the target, it becomes necessary to slow down the search and

acquisition process. These disadvantages do not appear in most of the

existing weapons involving one-on-one engagement in which the weapon is

delivered from a much longer distance at a very high speed.

So far, of these three disadvantages, a solution has been found

only to the second one in which an unmanned carrier or dispenser

launched from a platform at a standoff position is used to place the

weapons in the vicinity of the target. This however requires the use of

a data link system which provides the platform with the necessary

information about target area coordinates and target movement so that

the carrier is launched and directed towards the vicinity of the target

area. Additional information may have to be continuously provided to

the dispenser regarding target location and the specific time at which

weapons are to be released. Aerial and ground sensors are typical means

to collect information on target location and movement. Aerial sensors

may be in the form of remotely piloted vehicles (RPV) or unmanned air

vehicles (UAV) or AWACS. A combination of aerial and ground sensors may

be used. The information provided is transmitted to a C31 post which

then relays it to the launch platform. The launch platform function is

to transport the dispenser and to utilize the relayed information from

the C31 post to aim and launch the dispenser from an appropriate

location at a given time. The dispenser transports the SS subpacks to a

given location and drops them so as to create a dispersal pattern which

results in the best engagement opportunities for the SS. It must be

noted that once the SS is dispensed, it depends solely on its own

seekers and sensors to guide it terminally towards the target.

In detailing the effectiveness of the aggregate weapon system in

the context of the mission it is supposed to be performing, one may not.
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neglect the contribution of the intelligence gathering system used in

support of the mission as well as the contribution of C3 . The

reliability of the mission is as good as the reliability of its

components and C31 must be considered as an integral part of the overall

system.

When developing the appropriate equations to compute the overall

mission reliability as a function of time, it may be assumed that the

system is made up of two subsystems. The first subsystem consists of

the C31 components providing the data link. The second subsystem

consists of the smart submunition weapon system (SSWS) whose components

are the platform, the dispenser, the parafoil and the submunition.

Assuming independence of operation of these two subsystems, the overall

mission reliability is the product of the reliability of the first

subsystem and the second subsystem. Mission reliability is sometimes

used as one of the measures of effectiveness.

A very important consideration at this stage is that time becomes

an important parameter to be accounted for in the development of

appropriate measures of effectiveness. This is insignificant when

studying the mission performance of traditional weapons since they rely

on their high speed for delivery and on the element of surprise when

attacking target.. However, in the case of SSWS, weapon delivery time

is much longer. This in turn eliminates the element of surprise and

provides the enemy significant more time to react to the attacking

weapon system. Thus the enemy will have increased capability to perform

such actions as:

- maneuvering out of the range of incoming weapons;

- visually acquiring and destroying the guiding vehicle of the

weapon;

- initiating countermeasures to minimize or eliminate the

effectiveness of the weapon;

- securing positions by scattering or scrambling so as to decrease

the target density in the area of attack.

Typical components of the SSWS are:

1. The air platform;

2. The dispenser;
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3. The parafoil;

4. The submunition warhead;

5. The submunition sensors;

Each of these components is characterized next. Following some

remarks concerning the operational effectiveness of the weapon system,

the target element is characterized.

1. The Air Platform

In the delivery of smart submunitions, it is envisioned that an

aircraft will carry a number of dispensers, each loaded with several

subpacks of submunitions. From a standoff position, end following a

process of target area acquisition and location, the aircraft will fire

the dispensers either in salvo or in sequence so that each dispenser is

capable of maneuvering towards the target area.

Descriptive Parameters

- Range and speed;

- Average time to release dispenser from the moment the aircraft enters

enemy terr -ory:

- Intensity f threat encounter;

- Probability of aircraft being killed;

- Intensity of electronic jamming encounter;

- Probability of aircraft's communication and data link being jammed and

loosing its mission capability.

2. The Dispenser

The dispenser is a container capable of self propulsion. It can

either be preprogrammed to move from its launch platform towards the

target area or it can be directed towards the area through a data link.

Alternatively, it is conceivable that through its own sensors it has its

own capability of homing towards the target area (autopilot). Once

within target area vicinity, it releases the submunition subpacks either

in salvo, or in sequence though an intervalometer setting. The release

time of the subpacks from the time of the dispenser's release from the

air platform is a variable and is constrained by the range of the

dispenser. Once the subpacks are released, the dispenser being not

programmed to be recovered is allowed to crash on landing and/or self-

destruct.
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The choice of the dispenser depends on the mission to be

accomplished. This will dictate its capacity, load, speed, range and

other characteristics. For example a dispenser with a longer range is

desired if the weapons have to be carried from the air platform in a

distant position to second echelon supply lines in an interdiction role.

In addition the dispenser may have to generate a larger footprint.

Descriptive Parameters

- Range and speed;

- Average time from instant of dispenser release from air platform to

instant of subpack releases;

- Intensity of threat encounter;

- Probability of dispenser being killed;

- Intensity of electronic jamming encounter;

- Probability of dispenser's data link being jammed and loosing its

mission capability.

3. The Parafoil

The parafoil is the element used for the indirect delivery of the

submunition in widely dispersed area of target elements. It is a wide-

area search and control system of the targets with its own guidance. It

generates the search of a target over a relatively large footprint and

once the target is acquired by the submunition sensors, it controls and

directs its motion towards the target so as to achieve a range from

which the warhead could be fired. The payload consists of the sensor

and the warhead. At the desired altitude, the subpacks in the dispenser

are ejected and the submunitions released. The parafoils are then

deployed and the search mode initiated. The wide area scan greatly

increases the search area to compensate for large delivery errors. Once

the fuze ignites the charge and an explosion is set up, the slug is

formed. Simultaneously the submunition sensors and the parafoil are

destroyed. The ability of a parafoil-controlled submunition to glide

provides an increased search area and control to target. With an

ability to change horizontal to vertical velocity ratio and to brake,

,he parafoil can be programmed to provide a simple terminal homing

capability.
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DescriDtive Parameters

- Average time to search and acquire a target.

4. The Submunition Warhead

The objective of the warhead is to achieve mobility kill in ground

mobile targets including heavy armor (tanks), softer vehicles (APCs, air

defense targets, light armor) and rail transport. The means of

attaining this objective is a modular Explosively Formed Penetrator

(EFP). The warheads are used in shoot-to-kill sensor fuzed

munitions(SFM).

In EFP warheads, the fuze ignites the explosive material (chemical

energy warheads). Some of the explosive energy is used to reshape the

liner and accelerate it towards the target.

5. The Submunition Sensors

The submunition sensors perform five basic functions:

a. A search function involving target search, detection,

identification, discrimination, classification and acquisition;

b. A target location function involving the location, relative speeds,

coordinates and other dynamic characteristics of the target with

respect to the submunition for target engagement;

c. A maneuvering function so that once target is acquired, the

submunition will maneuver to an optimum lethal range and position

to fire a warhead at a predetermined aimpoint;

d. Auxiliary functions such as false target rejection, false alarm

elimination, warhead mode selection, etc ....

Sensors perform their functions by receiving electromagnetic

radiation emitted by targets and their surrounding environment.

Variations in electrical pulses due to radiation changes are sent to a

signal processor which perform the above functions. Sensors are

characterized by their operating mode (passive, active or dual) and

their operating waveband (infrared, millimeter wave, etc...).

In a passive mode, sensors receive radiation through a receiver,

emitted or reflected by objects on the battlefield. In an active mode.

sensors transmit radiation through a transmitter and receive the

associated reflections as well as radiation from other sources through a

receiver. Sensors operating in a dual mode include typically an active
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mode for target acquisition and tracking and a passive mode for the

terminal phase.

We shall discuss three types of sensors: the infrared (IR)

sensors, the millimeter wave (MMW) sensors, and the electro-optical (EO)

sensors.

i. IR Sensors

IR sensors capture the radiant energy emitted by heated objects.

In their simplest type, IR sensors operating in the passive mode, scan

optically the target area for IR radiation in a single waveband by all

bodies. A more complex design involves IR sensors that detect target

signature in two different wavebands, thus allowing discrimination

between a true target (e.g. tank) and a decoy (e.g. flare). Finally,

for high angular resolution for target detection and tracking, imaging

infrared (IIR) resulting in image like properties of the target, may be

used.

ii. MMW Sensors

MMW sensors capture the radiant energy emitted by the reflection of

metal objects.

iii. EO Sensors

EO sensors typically integrate optics and lasers and employ

advanced forward-looking infrared (FLIR) sensors and image-processing

computers for

- automatic target recognition;

- intelligent tracking;

- prioritization of multiple targets;

- sensor input integration.

They contain a laser designator for directing laser-guided weapons and

for helping see at night where smoke, dust, haze and smog are present.

Descriptive Parameters of the Submunition

- Number of submunitions;

- Average time to search and detect a target;

- Probability of acquiring a target given that it is detected.

- Probability of acquiring a false target.

6. Remarks

i. The use of multi-mode (active and passive) and multispectral (MMW

and IR) systems present several advantages such as:
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- provide greater accuracy in target hit;

- reduce false alarms;

- improve target detectability and acquisition;

- defeat enemy countermeasures.

ii. The final disposition of the submunition is a critical one

particularly if it is not paired to a target and its explosive is

not activated. In such a case, if the submunition is designed to

self-explode at a given altitude, it can create a source of heat

which could capture other incoming live submunitions. If it is not

designed to self-explode or if the self-destruct mechanism fails to

be activated, it is liable to fall into enemy hands and thus be

technologically accessible for the development of countermeasures.

7. The Target

Primary targets are ground mobile targets including heavy armors

(tanks) as well as softer vehicles ranging from air defense targets to

light armor and rail transport.

The distinguishing feature of smart munitions from other types of

anti-armor weapons is that they home on their targets and/or are

activated by them. They also attack targets at their most vulnerable

point namely the top. Typically, a large number of smart munitions will

be needed to insure defeat of a massive armored assault consisting of

many targets. A barrage of thousands of these munitions would blunt

armored assault and reinforcing columns.

Descriptive Parameters

- Total number of targets (true And decoys);

. Proportion of decoys to total number of targets;

- Probability of target being hit;

- Probability of target being killed given that it is hit.

IV. THE MATHEMATICAL MODEL

1. The Problem

The development of a mathematical model depends on several factors

governing the actual conditions under which the weapon system operates.

This may include for example, environment, combat scenario, operation
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sequence, mode of weapon delivery, weapon technology, etc... In

general, a model should be able to capture the uncertainty element

present in an actual combat situation together with the evolution of the

combat state at successive time epochs. Very often the objective is not

on simply winning a battle, but on how quickly to win a battle. From

that point of view, time becomes an important parameter to be

incorporated in the model.

To illustrate the methodology, we consider a situation in which an

aircraft releases a single dispenser from a standoff location just

before penetrating enemy lines. The dispenser carries M submunitions to

be released over an area A containing N targets (M > N).

2. Assumptions

We assume that:

a. the dispenser carries M submunitions to be released over an area

containing N targets;

b. the number of targets is reduced only by the number of targets

killed by the submunitions. No other weapons are fired against

these targets and the targets are considered to remain within the

scanned area;

c. if a submunition does not acquire a target, it searches for another

target;

d. once a submunition acquires a target, it is locked onto the target

to be shot and killed;

e. no two or more submunitions may acquire the same target;

f. each submunition acts independently of any other submunition;

g. the submunition sensors are not subjecL to threats;

h. a submunition can kill only one target;

i. a submunition may kill only the target that it acquires. That

means that a target cannot be killed "by mistake";

j. a submunition may not acquire a false or dead target;

k. the dispenser releases the M submunitions in salvo;
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If any of the above assumptions are changed, the mathematical model

will have to be modified accordingly. The present model may be viewed

as a prototype which may be used to construct other model variants.

The stochastic aspect of the problem is characterized by

P(M-m, N-n, t), the probability that at time t following release from

the dispenser, there are exactly M-m remaining live submunitions (m - 0,

i, ..., M) and N-n remaining live targets (n - 0, 1, ..., N). One can

obtain P(M-m, N-n, t) by developing appropriate differential -

difference equations subject to a set of initial conditions. One way of

obtaining the solution of these equations is through a recursive

approach. Once P(M-m, N-n, t) is derived, one can obtain such

characteristics as the expected number of targets killed, the expected

number of submunitions to kill a given number of targets, the mission

reliability, as well as other measures of effectiveness.

2. The Symbols

Adt + o(dt) - probability that the dispenser will release the

submunitions in salvo in the time interval (t, t + dt);

vdt + o(dt) - probability that the dispenser will encounter an enemy

threat in the time interval (t, t + dt);

Pl - probability that the dispenser will be killed given that

it encounters an enemy threat;

wdt + o(dt) - probability that the dispenser will encounter enemy

countermeasures (e.g. jamming) in the time interval

(t, t + dt);

P2 - probability that the dispenser will be neutralized by

countermeasures and will not be able to accomplish its

mission;

P(i,t) - probability that at time t, the dispenser is in a state

i, i - 0, 1. State i - 0 corresponds to the state

"dispenser killed"; state i - I corresponds to the state

"dispenser not killed";

- time at which dispenser releases the submunitions,

measured from time origin at which dispenser is ejected;

M - number of submunitions released in salvo by the dispenser;

N - total number of targets in footprint area (includes

decoys);
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NI  - total number of decoys in footprint area;

pdt + o(dt) - probability that a submunition will detect a target in

the time interval (t, t + dt); (r is time origin);

PA - probability that a submunition will acquire a target once

detected;

PK - probability that a submunition will kill a target once

acquired;

P(M-m, N-n, t) - probability that at time t, there are M-m remaining

live submunitions and n remaining targets,

m - 01, ... , M and n - 0 , ..., N.

EC.] - the expectation operator.

3. The Model

i. The Dispenser

We have

P(l, t + dt) - P(l, t)(l - vdt)(l - wdt) + P(I, t)vdt (I - wdt) (i - pl)

+ P(l, t) wdt (I - vdt)(l - p2) + o(dt)

dP(l,t)
or dt - - (vpl + wp2) P(l,t)

subject to the initial condition P(l, 0) - 1

This yields P(l, t) - e('(Pl + wP2 )t

The probability that the submunitions are released in the time interval

(r, r + dr) following dispenser ejection at time origin is:

f(r)dr - P(l, r)e-"r Adr

- e "(A + vPl + wP2 )r Xdr (1)

ii. The Submunitions

In general the total number M of submunitions exceeds the total

number N of targets. Let P(M-m, N-n, t) denote the probability that at

time t there are (M-m) remaining live submunitions and (N-n) remaining
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live targets (n targets killed). Note that always m ' n. For

t - 0, P(M, N, 0) - 1.

Now for 0 5m 5M and 0 :n 5N, n m

P(M-m, N-n, t+dt) -

- [I - (M-m)(N-n) APA dt] P(M-m, N-n, t)

+ (M-m+l)(N-n+l) MpAPk dt P(M-m+l, N-n+l, t)

+ (M-m+l)(N-n) APA (1-Pk) dt P(M-m+l, N-n, t)

By expanding the first term, bringing P(M-m, N-n, t) to the left side,

dividing by dt and then taking the limit as dt + 0 we obtain:

d P(M-m, N-n, t)
- - (M-m)(N-n) APA P(M-m, N-n, t)

dt
+ (M-m+l)(N-n+l) ApApk P (M-m+l, N-n+l, t)

+ (M-m+l)(N-n) APA (1-Pk) P(M-m+l, N-n, t)

for m - 01, ... , M, n - O, 1, ... N

The solution to this system of differential-difference equations is

M! N! 1
P(M-m, N-n, t) p kn (l-Pk)m-n

(M-m)! (N-n)! (m-n)!

m-n (m-n)! n e-(M-i-j)(N-J) uPAt
E (-i)( m - Ei)
i-0 (m-n-i)!i! j_0 n [(M-i-k)(N-2)-(M-i-j)(N-j)]

I-I

9.0j

Now as t--, we have

For 0 5 n < m < M and n < N

lim P(M-m, N-n, t) - 0
t-)_

Also that for 0 s n s m - M and n s N

P1 (n) - lim P(O, N-n, t)
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. n (1-Pk)n .- H pn (l-Pk) Mn

(M-n)!n! k n k

For n - N 5 m 5 M

P2(m) - lrm P(M-m, 0, t)

k (Pk)m-N Z (-I)( m'N ' l )-Pk i-O Mm

Expressions for the probability that all targets are killed and the

expected number of targets killed are as follows:

1) for M N

P(all targets killed) - I- Z pr (lPk)M-r - Pl(N)r-O k 1P

N
Expected number of targets killed - Z nPl(n)

n-0

2) for M - N

Pall targets killed) - pM

Expected number of targets killed - MPk

3) for M < N

P(all targets killed) - 0

Expected number of targets killed - MPk

Steady state results for the probability of kill and the expected number

of targets killed are presented in Figures 1 and 2 for N - 5, Pk - 0.90
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Figure 2: Expected number of targets killed as a function of
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and M - 1, ..., 15.

V. MEASURES OF EFFECTIVENESS

We develop five measures of effectiveness

1. Expected number of targets killed at time t, n(t):

A M min (m,N)
E[n(t)] - Z Z n P(M-m, N-n, t)

m-O n-O

A

2. Expected number of submunitions to kill n targets at time t, m(t):

A M

E[m(t)] - Z m P(M-m, N-n, t)

m-n

3. Probability that all targets are killed at time t:

M
E P(M-m, 0, t)

m-N

4. Mission reliability for the dispenser

This is the probability that the dispenser successfully releases

all submunitions. Let

A

P(l, 0, t) - probability that at time t the dispenser is operating

successfully and the submunitions are not released;

A

P(l, 1, t) - probability that at time t the dispenser is operating

successfully and the submunitions are released.

It is then easy to verify that

dP(l, 0, t) A

dt- (A + API + vP2 ) P(1, 0, t)

A

and dP(l, 1, t) P(, , t)
dt
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A A

subject to P(I, 0, 0) - I and P(l, 1, 0) - 0

From these two equations one obtains for mission reliability of the

dispenser

A J
P(l, 1, t) - l + 1- e " (' + AP1 + vP2 )t]p+ ApI + v/p2

5. Expected duration of the battle

Lt T be the random variable denoting the duration of the battle.

The battle will terminate if either all targets are killed or there are

no munitions left. Hence

M N-I
P(T > t) - 1- S P(M-m, N-N, t) - E P(M-M, N-n, t)

m-N n-0

E[T] - F0 P(T > t) dt

After some algebraic manipulation, one obtains

M M! N! m-N (-i) m -N-i

E[T] - _ n-- pr(-P N E
m-N (M-m)! k i-O (m-N-i)!i!

N-I I/(M-i-j)(N-j)ApA

j-0 N
I[ (M- i-.) (N-Q)- (M- i-j )(N-j) ]

9-0
20j

N-I M! N! M-n-I (-l) M -n - i

+ E - Pkn

n-0 (N-n)! i-0 (M-n-i)! i!
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N-1 l/(M-i-j)(N-J)PpA

j-o N
H [(M-i-a)(N-I)-(M-i-j)(N-j)]
9-0
20j

N-i M! N!
+ z p" (l-Pk) M-n

n-0 (M-n)!(N-n)! k

n-I l/(n-j)(N-j)PA

J-O n
II [(n-I)(N-9)-(n-j)(N-j)]
2-0

Remark: Case When Decoys Are Present

Let

N - total number of targets including decoys

N1 - total number of true targets

N-N1 - total number of decoys

P(rln) - probability that r true targets are killed given that n total

targets are killed

r) (N-i

Then P(rrn) - r - 0, 1, 2, ... , n

The probability that r true targets are killed, n total targets are

killed and m submunitions are used is [P(rln).P(M-m, N-n, t)]. Using

this expression one obtains the following

i. Expected number of true targets killed, r(t).

A M min(m,N) n
E[r(t)) - Z Z Z r. P(rjn) P(M-m, N-n, t)

M-O n-0 r-O
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ii. Expected number of submunitions used to kill r true targets, s(t).

A M min(m,N)
E[s(t)lr] - Z Z m P(rln) . P(M-m, N-n, t)

m-r n-r

VI. CONCLUSIONS

The effective use of the smart submunition weapon s)stem depends to

a considerable extent on the environment in which it will be operating,

whether such environment is natural or man-created. It becomes thus

imperative to factor out all the elements which may exist in an actual

battlefield situation and which contribute adversely on the performance

of these weaponA, either by neutralizing or degrading their

effectiveness. Among such elements, one has to consider the following:

i. Hostile threats against the carriage aircraft, the dispenser, the

submunitions and the supporting C3 1.

2. Adverse weather conditions, particularly rain, snow, sleet and fog.

3. Use of various passive and active countermeasures on the

submunition sensors, such as smoke, corner reflectors, IR sources,

decoys and camouflage.

4. Use of ECM on the C31 system supporting the delivery of the

submunition. This includes air and/or ground sensors for target

area location and target movements, which transmit information

through data link'to the air platform and/or the dispenser.

5. Use of reactive countermeasures by the enemy particularly as a

result of:

i. the visual acquisition of incoming submunitions delivered by

slow moving devices, such as parafoils;

ii. the activation of target mounted sensors warning of laser, radar

and IR acquisition;

iii. the possibility of acquisition by the enemy in the battlefield

of partly damaged dispensers and undetonated submunitions.

6. The potential use of presently unknown types of countermeasures.

7. The acquisition by submunition sensors of false targets.

8. The acquisition by submunition sensors of dead targets.
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9. The engagement of one target, single or dead, by several

submunitions.

Consideration needs to be given to IR/MMW submunition sensors

homing on targets which have been incapacitated by previous attacks.

Such a situation can considerably deter the effective engagement and

pairing of a given submunition with a given live target.

Second, it is possible that test results may have demonstrated

acceptable performance level of weapons under the condition that a

single target is present in the test area. However, the main

characteristic of a smart submunition weapon system is that it is a

many-on-many engagement system. Therefore, tests must be conducted

simulating actual combat conditions when several targets are present and

when they are being simultaneously engaged by several submunitions.

Finally, when assessing the performance of a smart munition system

either mathematically or by simulation, it is essential

1. to study and analyze the aggregate system including the carriage

aircraft, the dispenser, the submunitions and the supporting C31;

2. to incorporate in the model all pertinent and significant factors

that bear on the performance of the system, including environment,

threats and countermeasures;

3. to define likely engagement scenarios and to perform the analysis

for each scenario in order to assess and compare their performance.

These scenarios should be the ones that are the most likely to

occur in a realistic combat situation using existing weapon

technologies for target acquisition, discrimination and

classification.
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ELECTROMAGNETISM AND GRAVITY

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. Space and time coordinates exhibit broken symmetries that are
carried over long distances by gravitation. Electromagnetism in space and time
with broken internal symmetries has electric and magnetic field vectors and po-
tentials that have internal phase angles. These phase angles enter the calcu-
lation of the measurable electric and magnetic fields. Maxwell's equations with
broken internal symmetries are solved for simple physical cases and the general
form of the internal phase angles of the field vectors are determined. The inte-
gral equation development of electromagnetism is formulated in asymmetric space-

time, and the Gauss theorem and Ampere's law with broken symmetry are developed.
The elementary calculations of electromagnetism are examined to determine the
effects of the broken symmetry of space and time on electrostatics, magnetostat-
ics, electric currents in wires and the propagation of electromagnetic waves in
matter. Over long distances the broken symmetry of space and time is due to
gravitation so that the elementary calculations and measurements of electromagne-
tism are expected to depend on gravity. Simple electromagnetic experiments are
suggested to determine the internal phase angles of space and time in the vicin-
ity of the earth. The results of this paper will have applications to the theory
of the propagation of electromagnetic waves in the neighborhoodof the earth, the
measurement of the electromagnetic properties of matter, and high temperature
superconductivity.

1. INTRODUCTION. Electromagnetism is a gauge field.1- 3 There are also
other gauge fields in nature such as gravity and the strong and weak nuclear
forces. All of these forces may individually retresent various degrees of the
broken gauge symmetry of a single unified force. Gravity is described by a
metric tensor gauge theory as being the manifestation of the curvature of a four

dimensional spacetime which is determined by the mass distribution in space.5

Electromagnetism is a vector gauge theory whose forces are mediated by a mass-
less spin one photon. 1-4 These apparently distinct forcesmay be related through
gauge field theory.

6

Before the advent of gauge field theory it was already known that gravita-
tional forces interacted with electromagnetic forces. This was predicted by
Einstein's theory of general relativity in the concept of the gravitational red
shift of spectral lines from the sun, and in the bending of star light in the
gravitational field of the sun. 7-10 The interaction of gravity with electromag-
netism is weak and it requires a body as massive as the sun to bend star light
sufficiently to be measured. The corresponding effect due to the earth's grav-
ity is negligible and has no practical effects.

This paper considers another way in which gravity affects electromagnetism.
This occurs through the broken symmetry of space and time that is associated with
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a pressure field in matter. 11,12 Ultimately the pressure field in the solid
earth, ocean and atmosphere is due to gravity, and therefore the dominant ef-
fect producing the internal phase angles of space and time in the vicinity of

the earth is due to gravity. The method of determining the internal phase
angles of the space coordinates from the internal phase angle of the pressure
has been presented for gravitating stars and planets. 1 2 It involves the solu-
tion of a series of coupled differential equations. Numerical values of the
internal phase angle associated with the radial coordinate can be determined
experimentally through the apparent deviation from Newtonian gravit2 in the
earth, and from the Pound-Rebka-Snider photon red shift experiment. It has
already been shown that the field vectors of the electromagnetic field have a
broken symmetry which is represented by internal phase angles.

1 2

The internal phase angles of the electric and magnetic field vectors and
potentials will be shown in this paper to depend on the internal phase angles
of the space and time coordinates. For a relatively weak electromagnetic field
in the vicinity of the earth, the internal phase angles of the electromagnetic

field vectors will depend on the gravity induced internal phase angles of the
space and time coordinates. In this way gravity will have a direct and measur-
able effect on the character of an electromagnetic field.

The broken symmetry of space and time requires that coordinates be complex
numbers of the form for cartesian coordinates

1 2

= xejex y = yeJ Y zej0z (1)

while for cylindrical coordinates

- rej fr  z = ze j oz =eJ 84 (2)

and for spherical coordinates

= rej O r  =e 0 W $=ej8¢ (3)

The internal ?base angles of the coordinates depend on the local energy density

and pressure.

The broken symmetry sine and cosine functions are

sin p = S e jeb (4)

Cos = C e -j e c  (5)

where

S = [sin ( cos 6 ) + sinh ( sin 0)I / 2  (6)

C = (cos ( cos e ) + sinh (' sin )] /2  (7)
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tan 6 cot(P cos 0 ) tanh(p sin 0 ) (8)

tan ec tan( cos e ) tanh( sin 6 ) (9)

The following angles are used to describe the variation of the internal phase
angles with the magnitudes of the corresponding coordinates

tan x. X36 x/X (10)

tan ayy = y 6 y/ay (11)

tan azz -ZD z /az (12)

tan rr r3 r /r (13)

tan % 3 0 6e/; (14)

tan 8 3 04 /3p (15)

The corresponding measured values of these coordinates are given by

x = x cos 0 Ym y cos 0 z zcos (16)in xm y m z

rm = r cos 8 z = z cos 6 z Cos 0 (17)

rM = r cos 6 r, = cos 6 4 cos 0 (18)

From these equations it follows immediately that

3x /3x = cos 0 - x tan 6 36 /3x (19)

aym/3y = cos 0 - YM tan 0 30 /3y (20)

aZm/9Z = cos 0z - zm tan 6 z3z /az (21)

,Ir /ar = cos 0r - rm tan 0r a6 r 3r (22)

34 m 14 = cos a - 4m tan 0 36 /alp (23)

34,/3 = cos 0 - 4m tan O 06/3 (24)

The skewed nature of the coordinates is due to the skewed nature of the
pressure1

2

F = PejeP (25)

Whenever an internal phase angle appears in the electromagnetic calculations of
this paper it represents mainly the effects of gravitationally induced broken
symmetry associated with the pressure and spacetime coordinates. The measured
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value of the pressure is given by

P M P cos 8p (26)

Time also has a broken symmetry represented 3y an internal phase angle, so that
time must be written as a complex number as follows

t= te j t  (27)

The internal phase angle of time depends on the local energy density and pres-

sure et - Ot(E,P) . The components of particle velocity can then be written as12

v= v eJv = dc/d_ (28)

where va and eva are calculated in Reference 12 for a - x, y, z

This paper determines the electric and magnetic field vectors for space and
time that has broken internal symmetries. The vacuum has intrinsically broken
space and time coordinate symmetries.1 2 Thus the electromagnetic field has in-

trinsically broken symmetry associated with the field vectors. 12 But in the
presence of matter it is predominantly gravity (with its infinite range) that
determines the br, ken symmetry of the coordinates and the electromagnetic field

vectors. Section 2 treats asymmetric gravity, Section 3 considers Maxwell's

equations with broken internal symmetries, Section 4 deals with broken symmetry
electrostatics, Section 5 studies asymmetric magnetostatics, and Section 6
treats electromagnetic waves in a gravitational field.

2. ASYMMETRIC GRAVITY. The force of gravity for radially symmetric stars

or planets composed of matter with broken internal symmetries is described by

the following two equations
1 2

- 2eG + nT 0 + a (29)
r P Pr

cos a8G  1/r2 3/ar(r2/p 2 P/r cos 8G  sec Bpr) = - 4TGp (30)

where
tan 8 (PPr (P/ r)/(P/(ar) (31)

tan a = ra0G fr (32)
rr r

where p = density magnitude (not the measured density) and G = Newtonian gravi-
tation constant. It is easy to show that equations (29) and (30) are equivalent
to 12

cos B r P/ar - - GMP/r2  (33)

cos 8rr 3M/3r = 4rr 2p (34)
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Thus r is related to the pressure field in matter which over macroscopic dis-
tances is produced by gravity. In general 6G = eG(P) For geometrically asym-r r
metric planets, such as the earth, the internal phase angles e4 and 6* also en-
ter the calculation of the gravitational field. 12 Note that apr is in the third
quadrant and can be written as Pr = I + 4pr where 4r is in the first quadrant,
then equation (29) can be written as

- 29Gr = 6p + pr (35)

tan 8Pr = tan a'r (35A)

For small angles equations (31) and (35) give

- 20Gr = 8P + (Paop/3r)/(3P/3r) (36)

This is the value of Or that is associated with a gravitating body. For a par-
ticle falling, or in a circular orbit, in a gravitational field the acceleration
phase angle condition OG - 2 - 26G gives

r t r
G 8G
t G 3/2 e (36A)

r

= - 3/4 [6p + (Pa p/r)/(aP/ar)]

For an elliptical orbit the situation is more complicated.
1 2

In general the pressure at a point in matter is due to other forces in ad-
dition to gravitation such as the strong and weak nuclear forces and electromag-
netism. The total radial coordinate internal phase angle can be written as

0 = 6G + 0SN + aWN + 8EM + ev  (37)r r r r r r

G SN WN EM
where Or , ar , Or , Or , Or and Or  total, gravitational, strong nuclear,
weak nuclear, electromagnetic and vacuum values respectively of the internal
phase angle of the radial coordinate. Over long distances in matter one has
approximately

o 0 G + EMR + ev (38)r r r r

ENR
where 6r = internal phase angle for electromagnetic radiation. Static electric
fields are shielded in matter and rapidly attenuate with distance. For matter
in a star or planet where gravitation is the dominant force equation (38) becomes

o a eG (39)r r

In tenuous isolated matter one expects
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a IeEMR + 6 v (40)
r r r

V

In empty space 8r = r The approximation in equation (39) is expected to be
valid in the vicinity of the earth. It should be mentioned that rest mass is
considered to be a scalar having zero internal phase angle. 1 2 For the internal
phase angle of time the same general argument gives

t= 0 G + aSN + eWN + 6EM + 6 V (41)

t t t t t

Similar results hold for the internal phase angles of the angular coordinates.

A. Density and Mass

The definition of the mass density in broken symmetry space for spherical
polar coordinates described by equation (3) is

1 2

d3M/(i2 sin dp d' dd) (42)

p = cos 8rr cos 0 cos d3 M/(S r 2 dV ddr) (43)

o = -3 - -e - -s -V -8 (44)p r s p ' - err -p' 4 -

where Sp and Os are given by equations (6) and (8) respectively. For spherical

symmetry

P (4ni2 s)- dM/di (45)

p1 =cos 6rr (4ir 2LS) -dM/dr (46)

61 =-3e - - (47)P r OLs 8rr

where
1 2

f L e j L s = l/2eJ<04 >[l - cos(reJ<O>)] (48)s s

is the complex number angular factor for spherical geometry defined by

Ls 1/(4r)4 sin ' d d (49)

The average values of internal phase angles are given by <8 > = O(n) and
<0 > = 0(2n) . The real and imaginary parts of equation (t8) determine Ls
ans OLS . For applications of the divergence form of Gauss's law (subsection B)
it is necessary to have a density independent of the angular factor L s because
this factor cancels in the definition of the divergence. Therefore an often
used definition of complex number density for spherical symmetry will be
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5 (4 2) - I dM/df (50)

p = cos 8rr (4rr 2) dM/dr (51)

0 - 30r -rr (52)

The measured mass density is given by

Pm = P Cos Op f 3rPC (53)

where the conventionally calculated mass density is given by

Pc = (4rr) -ldM/dr (54)

and combining equations (51) and (53) gives

f3r ' cos 8rr cos(30r + 8 rr) cos 2 0r drm/dr (55)

where drm/dr is given by equation (22). The mass is calculated as follows

M = 47fp sec 8 r2 dr = 4rfPr 2 dr (56)
Irpsc rr c m m

= 4rfjp/f r 2dr
m3r rm m

where p is given by equation (51).

For a cylindrical mass distribution the complex number density is given by

= pej 6 Pf= d3M/(idi dFdi) (57)

p - cos 8 cos 8rr cos 8zz d 3M/(r d dr dz) (58)

O0 - 2r -z - 8rr 8 8zz (59)

For cylindrical symmetry

Lc L ceJOLc = 1/(27)0d4

so that

Ec L- ej<o> Lc = 1 0Lc = <80> (61)

where the average value <0 > f 0 (21r) . Then
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' = (2rL )I d 2M/(di di) (62)

P1 =cos crr Cos 8zz /(2rr)d 2M/(drdz) (63)

6 = - 20 - <e > - 0 -8 -8 (64)p r z rr zz

As will be described in subsection B, the density that appears in the divergence
form of Gauss's law for axial symmetry does not contain the internal phase fac-
tor <e,> and for this usage the following density is used for a mass distribution
with cylindrical symmetry

= 1/(21i)d 2M/(didi) (65)

1/(2rf)d /di (66)

p - cos 8rr cos 8zz /(2irr)d 2M/(dr dz) (67)

op - 26r - -O - (67)p z 8rr 8zz

where the mass per unit length is given by

R= dM/di (68)

Pt = cos 8zz dM/dz p =- 8z -zz (69)

PXm = Pz cos a (70)

The measured mass density is given by

Pm = p cos 0 = f2rPc (71)

where the conventionally calculated mass density is

Pc = (21rmI) d2M/(drm dzm) (72)

= (2nr ) dp Zc/dr m

where

P9c = dM/dZm (73)

and where combining equations (66) and (71) gives

f 2 cos 8rr cos 8zz cos er cos 8p dz m/dz drm/dr (74)
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The mass is obtained from equation (66), (71) and (72) as

M = 2rffp sec Srr sec azz : drdz (75)

2n/f pcr dr dz
mm m m

- 2Ttffpm/f2r rm dr m d z m

For cartesian coordinates the mass density is given by
1 2

F = dIM/(dx dy dz) (76)

P = cos axx cos cyy cos azS d 3M/(dx dy dz) (77)

_ =-.O -O -o - -- - (78)
p x y z yy

where Oaa is given by equations (10) through (12). The measured mass density is

= PCosO = f3xyzPc (79)

where the conventionally calculated mass density is

Pc = d3M/(dxm dyM dzm) (80)

and where

f 3xyz =cos Op cos Sxx cos yy cos Szz dxm/dx dym/dy dZm/dZ (81)

where dam/da is given by equations (19) through (21), and where

c- Pm/c = 1 - f3  (82)

Finally, the mass is given by

M= fp sec a sec S sec S dx dy dz (83)
M=pse xx YY zz

- fpc dx dydz

= fpm/f3xyz dxmdYmdZm

B. Newton's Gravitation Law for Asymmetric Matter

The gravity field of radially s,, me-ric spherical mass composed of matter

with broken internal symmety can be obtained from Gauss's law and the diver-
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gence theorem which is given by the following broken symmetry generalization of
the standard result

1 3

±
V • F = V F -G (84)

rr

where Fr = broken symmetry gravity force on a unit mass - gravitational acceler-
ation, and 5 = complex number mass density as given in equations (50), (65) or
(76). These densities do not contain <84> and <6 > because the factors Ls and
Lc given by equations (48) and (61) respectively drop out of the calculation of
the divergence and so must not appear in the right hand side of equation (84).
For a system with spherical symmetry equation (84) becomes the following gener-
alization of the standard scalar result

1 3- 1 7

I/i 2 d/dF(?F 2) = - PG (85)

Combining equations (50) and (85) gives

Fr= Fe j  = - GM/(4 )-GM/(4rr)e -2j r  (86)

Fr = - GM/(4rrr) 2Fr = - 20r (87)

The broken symmetry gravity potential is given by

r = W e Wr = - GM/(4r) = - GM/(4Tr)e -jer (88)r r

Wr = - GM/(4nr) ewr =- 6r (89)

The measured gravity force and potential for spherical symmetry is given by1 2

Frm Fr cos eFr = - GM/(4nr 2) cos(26 ) (90)

= - GM/(4wr) cos2 er cos(20r)m r r

W = Wr cos 0Wr = - GM/(4nr) cos 0r (91)

2
- GM/(4rr m) cos or

where er is generally a function of the radial coordinate magnitude.

For the two dimensional axisymmetric case the following is the broken sym-
metry generalization of the standard scalar result

1 3- 1 7

I/? d/d( Fr) = -G (92)

Using equations (65) and (92) gives

Fr = F reJOFr = - G /(27rf) (93)
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Fr = - Gp Z/(2wr) (94)

0Fr = - 6r - z - 8 zz (95)

Wr W reJ6Wr - G/(2n) Z n G G/(21T)7(tn r + jO (96)

W = G/(2n)p (tn2 r + 62) 1/2 (97)
r x. r

8Wr = 8pZ + tan- (6r/1n r) (98)

where P , p. and Op. are given by equations (68) and (69). The measured grav-
ity force is given by

Frm Fr cos 6Fr0 -Go Z/(2nr)cos(8r + 0z + 6zz) (99)

GO ZMm/(2nr or cos(8r + Oz +zz )cos(Oz + Szz)

The measured gravity potential is given by

Wrm Wr cos eWr (100)

where Wr and OWr are given by equations (97) and (98) respectively.

The case of constant density (p = constant and 8p = constant) is easily
treated and gives the following generalization of the standard scalar result for
a sphere of radius R

W= p/6(3R2 - r 2)e- r  r < R (101)
r )

= p/6(3R2 - 2e JOr)e-j r

where Or = OR = constant. The gravitational force is then given by

Fr = - aWr/3i = - 1/3pre-2jOr (102)

Note that for constant density 5 , equations (50) through (52) give p = constant,
Or = constant, rr = 0 and

M(r) = 4n/3r 3p M(R) 4n/3R 3p r < R (103)

F - M(R)r/(4nR 3)e-2ir r < R (104)r

F r - 1/3pr r < R (105)r

0 = - 20 - 2 r(R) = - 20r(0) r 4 R (106)
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F rM Fr cos - - Pr/3 cos(26 ) r < R (107)'

- 1/3Pmrm cos(2 r)/[cos 6r cos(3E r)]

Pm  P cose ) = p cos(30 r < R (108)

C. Gauss Law for Broken Symmetry Matter

The form of Gauss' law for matter with broken internal symmetry is obtained
from equation (84) to be

1 2

ndA- -MGL (109)

where

L Ls for spherical coordinates (110)

= Lc for cylindrical coordinates (111)

where Ls and Lc are given respectively by equations (48) and (61). For broken
symmetry space a factor L(e80,6) must be included in the right hand side of the
Gauss law given by equation (109).

3. MAXWELL'S EQUATIONS. Maxwell's equations are a set of vector differ-
ential equations that characterize the electromagnetic field." - " For broken
symmetry space and time the coordinates, differential operators and the field
vectors have internal phase angles, and Maxwell's equations must be written a.

1 2

V x E = - 3B/3t (112)

V x H j + 3D/3t (113)

V B =0 (114)

V D = q (115)

where E f renormalized complex number electric field vector, B renormalized

complex number magnetic induction vector, H - renormalized complex number mag-

netic field vector, j renormalized complex number current density vector,

D = renormalized complex number electric displacement vector, and Pq = complex

number electric charge density. The components of the electric and magnetic
fields can be written as

Ea - EaeJOEa Ea = a8 - 26t + 2(0 - att) (116)

6 C D CeDj D  0Di =C + 6Ea 6C 2 t - 8x - y - 6z (117)

26 - 38
27r
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a - Hea e Ha = - at - Btt - 06  (118)

B = B ej S6 B= 6 W + H = 8 r = (8x + 8 + 8 )/3 (119)a a OBa OHa j r x y z)

where a and 6 - x, y, z or r , * , and 6 may or may not be equal to a . The
phase angles in equations (116) and (118) are the simplest forms. In fact eHa
and OEa are mutually involved because they are determined from equations (112),
and (113). For instance, this is shown in equations (448), (452), (458) and
(462) for electromagnetic waves. The measured field vectors are

Eam Ea cosE D D cos (120)am Eaam a c

Ham = Ha cos OHa Bam = Ba cos 6Ba (121)

A. Measured Coordinates and Field Vectors in Maxwell's Equations.

The component equations corresponding to Maxwell's equations (112) through
(115) appear in Reference 12. For instance, the x component equations corres-
ponding to equation (112) are
cos cos/z (2)
Cs (D cos 8 sec a DE /ay - Cs (D Cos B8 e 8 3E /az (122)
sin Ezy yy Ezy z sin Eyz zz sec Eyz y
- - COS ~8~ ~

sin PBxt Cos att sec 6Bxt 3Bx/Dt

with similar equations for the y and z vector components, where

DEzy = 8Ez + 8Ezy - 6y - ayy (123)

Eyz = 0Ey + aEyz - az - azz (124)

Bxt = 8Bx + BBxt - 0t - 1tt (125)

tan 8Ezy = (Ez DOEz /y)/(DEz/3y) (126)

tan 8Ey z = (Ey 8 Ey/az)/(E y/az) (127)

tan aBxt = (Bx  O Bx/Dt)/(DB x/t) (128)

From equations (16) through (24) and equations (120) and (121) it follows that
the derivatives in equation (122) can be written in terms of measured quantities
by

aEz/aY - gEzy 3Ezm/aym + h Ezy (129)

3Ey/3z - gEyz 3Eym /zm + hEyzEym (130)
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aBx/at - g 3Bx m /atm + h BxtBxm (131)

where

gEzy M sec eEz aym/y (132)

gEyz = sec eEy azm/az (133)

gBxt - sec Bx at m/at (134)

hEzy = sec 0Ez tan 0 Ez 36Ez /y (135)

hEyz m se e Ey tan 0 Ey 33Ey/az (136)

hBxt - sec 0Bx tan Bx ae Bx/at (137)

In this way equation (122) can be written in terms of measured quantities

(a x/ay + dx)E - x z + e = - (fXa/at + kx)B (137A)m + zm c (b n/Zm c ym c m c xm

(axa/3y + dx)E - (bX3/3z + ex)EyM = - (fxa/at + kx)B (137B)
s in s zm S in s yi in x

where

a O = s sa sec sec aym/ay (137C)
c,s sin Ezy co yy Ezy Ez y

bx = Cos Cos sec B sec ;z /az (137D)c,s sin Eyz zz Eyz Ey zm

dx = Cos Cos secB sece tan
C's sin Ezy yy Ezy Ez Ez BEz/ay (137E)

e Cx = osos sec E sec E tan D aEy/az (137F)
c's sin Eyz zz Eyz  Ey Ey

fX = cosB

f cosCs P sec B sec e at /at (137G)c,s sin Bxt cos tt Bxt Bx m/

kx = cos ( Cos a sec B sec B tan B ae lat (137H)c,s sin Bxt tt Bxt Bx Bx Bx

Equations (137A) and (137B) represent the x-component of Faraday's induction law
equation (112) in terms of measured field components and measured space and time
coordinates. The conventional Maxwell equation corresponding to equations (137A)
and (137B) is

aE zc/aym - E yc/Z = - aBxc/tm  (1371)

The remainder of Maxwell's equations are handled in a similar way. For
instance, equation (115) becomes the following two equations
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Cos D cos 8 sec 8 3x D /3x + c Cos a sec B D /y (138)
sin Dxx xx Dxx x sin Dyy yy Dyy y

+ cos cos
sin Dzz zz z  z q sin pq

where

(Dx= =i E)Dx +  Dxx - 6x - xx (139)

Dyy =  Dy +  Dyy - By - yy (140)

Dzz " Dz +  Dzz - z a zz (141)

tan 8 Dxx - (D xeDx/x)/(D x/ax) (142)

tan 'y - (Dy 0Dy/Dy)/(aDy/3y) (143)

tan 8 = (D /Dz/Z)/(D z/az) (144)

The derivatives appearing in equation (138) can be rewritten in terms of mea-
sured quantities as

Dx/aX = gDxx 3Dxm /xm + hDxxDxm (145)

3Dy/ay = gDyy 'Dym/'Ym + hDyyDym (146)

Dz/aZ = gDzz 3Dzm /zm hDzz Dzm (147)

where

gDxx - sec 0Dx axm/ax (148)

gDyy = sec 9Dy ayMay (149)

gDzz = sec 0 D z m/3z (150)

hDxx = sec 0Dx tan eDx aE Dx/x (151)

Nyy = sec ODy tan 0Dy /aDy/ay (152)

hDzz = sec eDz tan 6Dz 3Dz/aZ (153)

Placing equations (145) through (147) into equations (138) gives the divergence
equation in terms of measured electric displacement and measured coordinates
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(tca/Dx + tc)Dxm + (m ca/aym + u c)D ym+ (r a/az + v c)Dzm - Pq cos 8Pq (153A)

(tsa/ax + t s)Dx• + (m sa/ay + us)D ym+ (r sa/az + vs)Dzm - pq sin 6pq (153B)

where

O= Cos 6 sec 8 sec 0 ax /ax (153C)

c,s sin Dxx xx Dxx Dx mx

n Cos = yb cos 8 sec 8 sec 6 ay /ay (153D)
cgs sin Dyy yy Dyy Dy m

SCos cos sec a sec 6 az /az (153E)
ccs sin Dzz zz Dzz  Dz

t Cos cos 8  sec a sec 0 tan E0 a /ax (153F)
c,s sin xx Dxx Dx Dx Dx

Cos cos sec secO tan ae /ay (153G)
c,s sin Dyy yy Dyy Dy Dy Dy

v = DCos cos 8 sec 8 sec 8 tan ae /az (153H)
c 9s sin Dzz zz Dzz Dz Dz Dz

Equations (153A) and (153B) represent the divergence form of the Gauss law equation

(115) expressed in terms of the measured field components and coordinates. The

conventional Maxwell equation corresponding to equations (153A) and (153B) is

3D lax M +aD a/y + 3Dzc/az = O (1531)
axc/ai• yc [] z in ]

The Maxwell equations (113) and (114) are handled in a similar way.

B. Charge Density

The complex number charge density is given by

Pq = pqej pq = dQ/dV (154)

where charge is taken to be a scalar having a zero internal phase angle. From

equation (154) it follows that

Pq= dQ/IdVI = cos 8 w dQ/dV (155)

e = - V - w  (156)

tan S w = Vaev/av (157)

Q = fq dVI - fpq sec adi dV (158)

Case 1: Spherical Coordinates

q =d 3Q/(i 2 sin i d de df) (159)

pq Cos 8rr cos 80 cos B d3Q/(S r2 d do dr) (160)
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0 -3 r -e - - a (161)
pq r 0~ ~ rr p *(1)

where S* and 8Os are given by equations (6) and (8) respectively, and B., are
given by equations (13) through (15). For spherical symmetry

Fq = (4i2rz L)- dQ/dr (162)Pq

p 1  cos 8rr (4r 2L) -I dQ/dr (163)
q rr

81 = 3 - -8 (164)
pq r Ls rr

where Ls is defined in equation (48). The charge density that is used in the
right hand side of the divergence form of Gauss' law given in equation (115)
does not contain the factor Es because this factor cancels from the numerator

and denominator of the surface and volume integrals that define the divergence
of a vector. For use in the divergence equation (115) the following definition
of charge density for spherical symmetry is used

Fq = (4T 2)- I dQ/dr (165)

Pq = cos 8rr (4r 2)- 1 dQ/dr (166)

8pq = - 38 - rr (167)

Pqm = Pq cos 8Pq = f3rPqc (168)

where Pqc = conventionally calculated charge density given by

P qc = (47r )-1 dQ/drm (169)

and where f3r is given by equation (55). From equation (168) it follows that

(Pqc - Pqm )/Pqc = I f 3r (170)

Case 2. Cylindrical Coordinates

pq = d 3Q/(FdTddH) = Pq e j o p q  (171)

pq = cos 5 cos 8rr cos azz d 3Q/(rddrdz) (172)
O -20 0 -e - 8 - 8 -8 (173)

Opq r z - rr zz (7

For cylindrical symmetry
F' (2ifL) d 2 Q/(dr d) (174)

q c
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P - cos 8 cos 8 /(2Trr) d2Q/(drdz) (175)
q rr zz

61 -- 2 - z - < r - (176)
pq r z rr zz

For cylindrical symmetry the charge density that appears in the divergence equa-
tion (115) does not contain Lc and must be written in the following form

5q = (27i) - I d 2Q/(did!) - (2fff) dq /d (177)

where

pq = cos arr cos Szz /(27rr) d2 Q/(drdz) (178)

6pq - 20r z rr -zz (179)

PqZ = dQ/dz (180)

pqL = cos 8zz dQ/dz E -- z - Bzz (181)

where pqZ = complex number line charge per unit length. The measured charge
density is given by

Pqm = Pq Cos 0pq = f2rPqc (182)

where pqc = conventionally calculated charge density given by

Pqc - (21rrm)I d 2Q/(drm dzM) (183)

where f2r is given by equation (74). The measured line charge density is given
by

Pqim= Pq£ cos EoqZ = PqZc dz m/dz cos $zz cos (8z + zz) (184)

where the conventional line charge density is

Pq9= dQ/dzm (185)

Case 3: Rectangular Coordinates

q = d3Q(di d5 d ) = pqe ji p q  (186)

p = Cos a cos a cos 5 d 3Q/(dxdydz) (187)
q oyy zz
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pq x y z xx ayy azz (188)

Pqm = Pq cos Opq f p3xyzPqc (189)

where the conventionally calculated charge density is

Pqc = d 3Q/(dXm dym dZm) (190)

and

f3xyz = cos 8pq cos 8xx cos 8y cos Bzz dxm/dx dym/dy dzm/dZ (191)

where dam/da is given by equations (19) through (21).

In general the following relationships are valid

Pq = qn p q = qn Opq = an (192)

where q = particle charge and n- = complex particle number density. For use in
Maxwell's equations Pq in equation (192) does not contain the internal angular
factors Ls and Lc and q is defined by equations (165) and (177). Fur other
uses (subsection D) the definition of q given in equations (162) and (174)
must be used in Pquation (192) and n does contain the internal angular factors
Ls and Lc for spherical and cylindrical systems respectively.

C. Electric Current

The electric current for broken symmetry spacetime is given by

I lej8I = dQ/dt (193)

I cos att dQ/dt l = 0t tt (194)

The current density is given by the following vector component equations

J = dI/dA= d2Q/(dtdA ) = Va  (195)

where a = x , y , z ; r , , p or r , , z ; Aa = broken symmetry area normal
to the a direction, and ia = broken symmetry electron velocity along the a axis.
Equation (195) can be written in vector form as

t - - (96
i = q V (196)

Writing the current density component as

j = j eJeja (197)
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gives

"Ja = PqVa (198)

6ja O pq vO n vC (199)

where va and 6va are given in equation (28).

For a rectangular geometry equation (195) gives

2- -
jz = d I/(dxdy) (200)

z M cos axx cos ayy d 2/(dx dy) (201)

0jz -- t -0 x - - -8 - (202)Yz t y tt Bx yy

~'-E -e -e
t x y

which combined with equation (199) gives

0vz z zz t -tt (203)

which is the result obtained in Reference 12 by kinematical reasoning. It is
easy to see that for the current in the x and y directions

ix = Cos B cos B d21/(dydz) (204)

6jx = - at - ay - 8z - Btt - yy - zz (205)

jy = cos xx cos 8zz d2 1/ (dx dz) (206)

8jy = - et - 0x - 0z - att - PXX - 8zz (207)

For spherical systems of current flow the current density is

j d21/(F 2 sin d', 1p) (208)

j = cos 80 cos 5 d 2I/(r2 S1dod) (209)

0 =0 - 20 - 0 - 0 - -8 (210)j i r sip -i

where 01 is given in equation (194). For spherically symmetric systems equation
(208) becomes
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(4- 2 Ls) (211)

2 8I/(4r2Ls =8 - 2r - 8Ls (212)

But the current that appears in the curl equation (113) does not contain the
internal angular factor Ls because this factor drops out of the definition of
the curl of a vector in broken symmetry space. Therefore for applications to
Maxwell's equations the following definition of radially symmetric current den-
sity must be used

= !/(4ni2) (213)
j = I/(4Tr2  8 =81 - 20 (214)

j r

where 6I is given by equation (194).

Similarly, for a cylindrical geometry the current density is given by

= d 2 1/(rddi) 
(215)

j = cos 0 cos arr d 2I/(r d4 dr) (216)
8. =81 -20 -8 -5 -S (217)

j 1 r - Brr 40(1

For axial symmetry this becomes

j' =di/(2?l di) (218)c

jl =dI/(27Trdr) 6' = 1 - 29 - r - <8 > (219)
jI r rr 4

where 81 is given by equation (194). Again, this is not the current that ap-
pears in Maxwell's equation (113) which does not contain the internal angle
<84> . For application in equation (113) the following current is used for
axial symmetry.

= dI/(27rfdf) (220)

j = d/(27rdr) e e I - 20r - 6rr (221)

D. Asymmetric Constitutive Equations

Constitutive equations relate D to E for electric fields in broken sym-

metry matter and B to H for magnetic fields located in broken symmetry matter.

Case 1. Electric Fields

The generalization of the standard scalar result is 18-28
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4. -0. -

D 0 E + P E (222)
0

where e.3 permittivity of the vacuum, P - complex number polarization vector
for broken symmetry matter, and E = complex number permittivity for broken sym-
metry matter. The complex number polarization vector is given by

P 0 Ro e E  (223)

where Xe = complex number electric susceptibility. Then

P ejSPa -- (224)a a o"eEa

P = EoXeEa (225)

6Pa = 6xe + eEa (226)

where a = x , y , z From equations (222) and (223) it follows that

= C (1 + e) (227)

Writing

-= ej  (228)

Xe = Xee jeXe (229)

allows equation (227) to be written as

c Cos 8 = C +0 X cos 0 (230)

e sin 6 = CX sin 8 (231)
£ o~e Xe

Equations (230) and (231) give

tan e E (Xe sin xe)/(I + ×e cos xe) (232)
2 2

(C/Co)2 1 + Xe + 2Xe cos e (233)
0 e e Xe

In general 6. E Xe 0 0

In order to understand why 0. 0 0 xe one can use the fact that the polari-
zation vector is equal to the dipole moment per unit volume as follows for bro-
ken symmetry matter

Pa - fiqda q da (234)
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where da = broken symmetry value of the a component of the atomic dipole dis-
tance. Combining equations (224) and (234) gives

Eo XeE = nqd (235)

oxe + oEt =0 Pq + 0da (236)

Combining equations (188) and (236) and choosing the dipole to be oriented in
the z direction gives the following approximation

oxe " - aEz- 6x - ey + (6dz - aZ) (237)

From the theory of the simple capacitor the following simple generalization
holds for broken symmetry matter 1-28

T)= z E = d2 Q/(di dy) (238)z z

from which

Dz E z = cos xx cos 8yy d2Q/(dxdy) (239)
0D =8O+0 = -0 -eO -~ -~ " - -eO(20

Dz E Ez x y Bxx ayy x y (240)

Combining equations (237) and (240) gives

0xe a + (edz - OZ) (241)

Therefore because 0dz on the atomic scale (due to electromagnetic forces) dif-
fers from 6z on the macroscopic scale (due to gravity) it follows that
exe 0 e

Case 2. Magnetic Fields

The generalization of the scalar constitutive equation for magnetic fields
in broken symmetry matter can be written as

1 8- 28

B = io(H + M) = iH (242)

where o = magnetic permeability for the vacuum, M = magnetic polarization vec-
tor for broken symmetry matter, and i = complex number magnetic permeability
for broken symmetry matter. The complex number magnetization vector is given
by1 8-28

M = MH (243)

where XM = complex number magnetic susceptibility. Equation (243) can be writ-
ten as
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CL -Me j M.i = XMH X eJ( 8 XM + 8Ho) (244)

M 1 XMHa  (245)

E MC = OM +0 Ha (246)

where a = r , 4 , z for cylindrical coordinates. From equations (242) and
(243) it follows that

= o( + M)  (247)

Writing 5 and XM in complex form as

= eje p (248)

X MeJ e XM (249)

allows equation (247) to be written as

tan 86 = (XM sin 0xM) / (1 + XM cos eXM )  (250)

0/ i- + XM2 + 2X cos (x (251)
0 M M XM

From equation (242) it follows that

B I PH (252)

0 = (V + aHa (253)

Equation (250) shows that OP 0 8XM This can be understood from an atomic
basis by considering the fact that the magnetization vector is equal to the
magnetic dipole moment per unit volume, or in component form

nm d (254)

_d -±d

where m = components of the atomic magnetic dipole moment m , and where n =

complex number of dipole moments per unit volume where now the angular factors
<Ot> and <8 > are included for spherically symmetric systems and the factor
<Y4> is included for axially symmetric systems. Therefore for spherically
symmetric systems the 5 that appears in equation (254) is given by

fi -ne Jn = dN/dV = (4W 2L s)- dN/dr (255)

n1 (4r 2L s)- cos arr dN/dr (256)
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6n - - 3er - eLs - arr (257)

and for axial symmetry by

-i = dN/dV = (2-rLc)- d-2N/(ddH) (258)

n' = (2rr) I cos 8rr cos zz d2N/(dr dz) (259)

1 28 r -e <6 > - (260)On r z - rr 8zz

The general case for the number density of a spherical system is

ii = d3N/(F2 sin d d df) (261)

n = cos 8 cos 8 cos 8rr d 3N/(r2 S diddr) (262)

38n =- 36 - O -0 r - -) 0 rrr (263)

while for cylindrical coordinates

n = d 3N/( dc di di) (264)

n = cos a cos 8 cos 8 d 3N/(r d dr dz) (265)n cs8 co rr zz

o=2 -e - 8 -8 -8 (266)
8n 26r z - a 0 zz arr

and for rectangular coordinates

R = d 3N/(d dy di) (267)

n = cos 8xx cos 8yy cos 8zz d 3N/(dx dy dz) (268)

n x y z -xx -yy azz (269)

Consider a current in a wire situated in the z direction of a broken sym-
metry spacetime. The magnetic field is in the azimuthal direction and equa-
tion (254) can be written as

M = OM = ; md -M (270)

where the atomic magnetic moment is given by the following generalization of
the standard result 

8-2 8

_d 2- 2i 2- 01
m =  df cdld d d (271)
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where fd - complex number atomic radius, Lcd= internal angular factor for atomic
current loop given by equation (61), id - complex number atomic electron current,
and <61> = average value of the internal phase angle of the broken symmetry az-
imuthal angle of the atomic current loop. Equation (271) is based on the fact

that the broken symmetry area of the atomic electron orbit is
f 2

_2- -2 e>
Ad = 2trL =  2re J (272)

From equations (270) and (271) it follows that

MH= XMH ? = rnl i (273)
Md d

=1 + 26d + Ed + < d> (274)

M4 6XM + @H0 n r 1 4

where the following relations were used

r d = rd er (275)

d
I d= I dej 1 (276)

and where from equation (194) e d 0 d where e = internal phase angle of the

atomic time. Combining equations (273) and (274) with equations (260), (407)
and (408) gives

XM = iTr d nl( 2 Tr)Id/Iz (277)

0xM =M -0 Ho (278)

= (2d- er - 0) + (<Od> _ <e>)+(0 - e)

where the following results derived later in equations (407) and (408) were used

H = I z/(2r) (279)

0 = 1z- e r 0 -0 (280)

From equation (278) it is clear that #XM 0 only if the internal phase angles

of the coordinates at the atomic scale are different from the internal phaseangles~~ ~~~~ ~~~~ at m c o c p c d s a c s A h t m c s a d O and ardd
angles at macroscopic distances. At the atomic scale d sand are de-

termined mainly by electric forces, while at mazroscopic distances Or ,04? and

et are determined by gravitation. Note for superconductors it is expected that

the internal phase angles over macroscopic distances Or 0 and 8
t are deter-

mined mainly by coherent electrical forces and eXM % 0 The analysis in this

section shows the importance of axially symmetric and spherically symmetric

densities that appear in equations (162), (174), (255) and (258). The measured

value of XM is given generally by XMm = xM cos OXM •
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E. Broken Symmetry Form of Ohm's Law.

The current in a wire is driven by a potential difference (as produced by
a battery for instance) which is related to the electric field by the follow-

ing broken symmetry generalization of the standard scalar result 
1 8

-28

W = Wee Wa =fE-d9= E (281)

for the case of a constant electric field in the a direction. From equation
(281) it follows that

W =Ea0 0 +(2)
a a Wa Ea +  aO (282)

= [oa - 20t + 2(aaa - B tt) + ea

= 2(6a + aaa t tt)

% 2(0 a - 0 )

The current density is then given by the broken symmetry form of Ohm's law

3t =U (283)

where the complex number electric conductivity is

= a e 0OCa (284)

so that

j = aEa (285)

0 a. =a + \ 0 a + 0a - 20t (286)

Combining equations (199) and (286) gives
0o =0. -e = +0 -0 (287)
1z jz aEz n vz eEz

for the current in the z direction. Combining equations (203), (266), (269),
(282) and (287) gives the internal phase angle of the conductivity in the z
direction as

0 %- +0 -08 -0 -0 (288)

oz t z x y Wz

= -0 -0 -0

t Ox y z

t + n
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where 8. has been neglected. For current in the x and y directions respectively

Oax -t + ex e y a z - OWx (289)

=% -oB - 0 - 0
t x y z

=B+0
t +n

oy et + ay ex e z - Wy (290)

=0t-0 -0 -0t x y z

=0 +0t n

Therefore 6ax = = z and their common value can be called 9. . The meas-
ured voltage, current, current density and conductivity are given respectively
by

W m - Wa cos OWa Wa cos[2(6 - 0 d] (291)

Iam = Ia cos Oia Ia cos Ot (292)

Jzm c z Cos ajz (293)

a = a cosO a (294)

where Ojz and e.a are given by equations (202) and (288) through (290) respect-
ively.

The resistance of a wire located in a broken symmetry spacetime is given
by the following generalization of the standard result

1 8- 28

= R ejeRm U /(a A ) = /(o aA )ej(8ia- oa - 0Aa) (295)

where Ra = complex number resistance of a wire of complex number length La
situated in the a direction, and complex number cross sectional area Aa per-
pendicular to the a direction. Equation (295) is equivalent to

R = La/( A a) (296)

ORa L La a - Aa (297)

and the measured value of the resistance of a wire situated in the a direction
is given by
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R R cos (298)
am a ORa

Using equations (288) through (290) and the following simple results

8Lx =8 =80 =8 O(299)
x L y z

x E + 8 y =E + 8 z = + 8 (300)
y z Ay x z Az x y

in equation (297) shows that

eRa OWa + et 2(8a ot) + at = 20a t  (301)

for a = x , y , z Equation (301) becomes clear when it is realized that in
general

Ra = W a/la (302)

so that

R W/I 8 =8+-8 t"(30+)
a a a Ra = Wa Ia Wa t (303)

28 - E

a t

The measured resistance is given by equations (291), (292) and (303) to be

Ram = Ra cos OR= Wa/Ia cos(we + 8t) (304)

= W / am (1 -tan 8t tan 2wa)Cos2 t

= Wam /Iaml - tan 6t tan[
2 (at - 8t)]}cos 28t

where Wam and Iam are given by equations (291) and (292). Equation (304) is a
broken symmetry form of Ohm's law.

The conv~ntionally calculated resistance is given by

Rac = Wam/Iam (305)

and therefore a comparison of the measured and conventionally calculated resis-

tance is given by

a =(Rac - Ram)/R c = sin 0t cos 6t (tan Ot + tan 8Wa) (306)

t (8t + )=Wa) t0Ra =8 t(28 - ) } small angles
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A measurement of C. may possibly be used to determine Et and 6a for the local
spacetime in the vicinity of the experiment. The internal phase angle of a
battery voltage eWa for the potential difference W. applied in the a direction
is associated with the operation of a battery in matter with a gravitational
field present. The measured resistance given in equation (304) depends on et
and 6a , and therefore the measured resistance will depend on the orientation
of the wire relative to a gravitational field even when Wam/lam have the same
values for a - x, y, z. For gravity at the earth's surface, the Pound-Rebka-
Snider experiment gives the values z = - 5.7* and et = - 3/2(5.70 )  -8.55* .12
Accurate measurements of Ram , Wam and lam for various orientations of a wire
relative to the direction of the earth's gravity field may possibly be used to
determine ea and et through the application of equation (304) and the relation

Ot = 
3 /2 6r which holds for a massive particle falling in a gravitational field.

In fact even the measured voltage of a battery itself determined by equation
(291) for various inclinations relative to the earth's gravity field may be used

to determine 0 a and 0t . On the other hand the measured conductivities given
by equation (294) will have the same values irrespective of the orientation of
the wire with respect to the gravity field if ax = ay = az because their inter-
nal phase angles satisfy the relation 6cx = 0ay =eGz

An examination of equation (304) shows that it is possible for the measured
resistance to have a zero value resulting in a superconducting state. This oc-
curs when Ram = 0 in equation (304) and

tan Ot = cot eW8 6t = 7/2 - 6Wa (306A)

26a - Ot = T/2 = 7/2 - 2(e - 6 )

Therefore in a broken symmetry state the degree of coherency of time in matter
may be sufficiently large so as to allow equation (306A) to be satisfied. A
form of superconductivity is therefore possible if time in matter can form a
coherent state. This may occur for all matter when the gravitational field is
so large, as in the case of compact stars such as white dwarfs and neutron
stars, that a coherent time state described by equation (306A) can form. For
a vertical wire, the result of combining equation (36A) and (306A) gives the
following values of the internal phase angles for gravitationally induced su-
perconductivity.

a = - E =- 37/2 (306B)r t

On the other hand, even at ordinary pressures and densities it may be possible
for the atomic and molecular structure to be of such a form that the space and
time fields are coherent. For this case the charge carrying Cooper pairs
are essentially free particles with 6. = 26t , and this combined with equation
(306A) yields the following condition for structurally induced superconductivity

O = r/3 t = Tr/6 (306C)a t

The planar structure of the copper oxides that exhibit high temperature super-
conductivity may in fact be a structure that allows a large value of et to
arise from electromagnetic fields as in equation (41). In this case, time may
exhibit a coherent state due to electrical forces and equation (306C) may de-
scribe high temperature superconductivity if et is temperature dependent and
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becomes large below a transition temperature. For this coherent time state an
increment of time would correspond to an internal phase rotation of the form
At - tet . The two time scales t and t8t correspond to different energy scales.
The relative energies of superconductors are described by the normalized super-
conductivity energy gap

A' = 2A/(kT c ) (306D)

where A = superconductivity gap corresponding to the transition temperature Tc.
Then a simple analysis using the Heisenberg uncertainty principle shows that the
relationship between the normalized superconductivity energy gap for the coherent
time state Act and the conventional normalized energy gap for incoherent time
A! is given by

iby

A' = A' ie = 6/i A' - 1.91A' (306E)
ct it/t it it

corresponding to Ot = n/6 for superconductivity in a collection of free parti-
cles or holes. The result in equation (306E) agrees with measured superconduc-
tivity gaps for the planar cuprous oxide high Tc structures. 30  It should be
noted that the normalized energy gap for a gravitationally induced superconduc-
tor is much smaller and is obtained from equation (306B) to be

A' = 2/(37T)A' ' 0.21A' (306F)
ct it it

Equations (304) and (305) show that conventional supercondutivity occurs when Rotc = 0

F. Scalar and Vector Potentials.

The complex number scalar potential i and the complex number vector poten-

tial A are defined by the following generalizations

B= V x A (307)

E = - - t (308)

where

A = A ejeAc - e (310)

For cartesian coordinates equation (307) is written as

Bx = 3Xzl - 3 y/ai (310)

= 3A /3z - 3A /DR (311)
y x z

Bz = 3Ay /3R - Ax /a (312)

The real and imaginary parts of equation (310) are written as

B cos = cosD cos sec BAz /ay (313)x 0Bx Azy 8yy 8Azy ~~~ 33

- cos DAyz cos azz sec aAy z 3Ay/3z
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Bx sin 6Bx = sin PAzy Cos ayy sec 8Azy 3Az/ay (314)

- sin 4Ayz Cos azz sec Ayz @Ay/aZ

Azy 6 Az +  Azy- ay a yy (315)

Ayz 6Ay +  Ayz - az zz (316)

tan aAzy = (Az 3 Az/ay)/(aAz/DY) (317)

tan aAy z 
= (Ay eAy/az)/(aAy/az) (318)

Equations (311) and (312) can be handled in a similar manner. From equation
(308) it follows that

E = - 3 /aa - axa /ai (319)

where a = x , y, z . For a = x , the real and imaginary parts of equation (319)

are

E cos = - cos P cos 5 sec ao/ax (320)Ex 0E x xx 8€x

- Cos DAxt Cos tt sec aAxt 3Ax/3t

Ex sin 
6Ex = - sin Px cos axx sec a aax (321)

- sin PAxt Cos att sec aAxt 3Ax/3t

where

I x =e 0 +a 5x - 0x - axx (322)

DAxt OAx + BAxt - 0t - att (323)

tan x = (030 /ax)/(a3/3x) (324)

tan BAxt = (Ax Ax /3t)/(A x/3t) (325)

The y and z components of equation (319) can be handled in a similar fashion.
Equations (307) through (325) are the equations of the electromagnetic field
in a broken symmetry spacetime such as may be induced by a gravitational field.

The scalar and vector potentials for broken symmetry spacetime can also
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be written as the following modifications of the standard results
1 8- 28

= (4rL)-1 - 'reik(t - r)dV, (326)

-4 .- ik(

A =/(4JT)fj'/j - r le dv' (327)

where

L Ls spherically symmetric system (328)

L=L axially symmetric system (329)

where Ls and Lc are given by equations (48) and (61) respectively in terms of
<eo> and <8*> . These average values are defined as follows

L eJ<8¢> = 1/(2)f d4 = eJ84(2 ) (330)
Co

1 I/(2n2)f sec e j (  + 4 )d
0

and therefore

<8 > = 0 (2Tr) (331)

for cylindrical coordinates. For spherical coordinates it follows that

= I/(4n)f f sin P d4d4 (332)
0 0

2Tr T
= 1/(4)fo S4 see 8 sec a eJ d di

= 1/2 eJSa (2 )[ - cos(7eJe(1T))]

= 1/2 eJ<) >[I - cos(neJ<84)]

where

P = es +e +e + a + a (333)

<8 > = 6 (T) (334)

The integration over the volume elements dV' produces the factor L so that this
factor cancels in the numerator and denominator in equations (326) and (327),

-4 12
and * and A are independent of <04> and <0 > . This means that the electric
and magnetic fields are also independent oT <0,> and <Op>. This will be exam-
ined in more detail in Sections 4 and 5.
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G. Boundary Conditions in Broken Symmetry Spacetime.

For electromagnetic fields in matter located in a gravitational field the
standard four boundary conditions become complex number equations due to the
internal phase angles of the field vectors, current density and charge density.

Case I. Tangential Components of the Electric Fields.

The tangential component of the electric field vector is continuous at
the boundary between two materials

Etl = Et2 (335)

which gives

Etl = Et2 et I = Et2  (336)

Thus the magnitude and the internal phase angle of the tangential component of

the electric field vector are continuous across a boundary.

Case 2. Tangential Components of the Magnetic Field.

The tangential components of the magnetic field vector on either side of

a boundary are related to the complex number surface current density by

Js = HIt - H2t (337)

which gives

js cos e =H cosH -H cos (338)s s ilt eHit 2t eH2t

js sin 0js = Hit sin 6Hlt - H2t sin eH 2 t  (339)

.2 = H 2 +H 2t 
2HiH cos(H 2 t - (340)

tan 6. = (Ht sin e - H sin /)(Hl cos 0 - H cos t ) (341)s It Ht 2t H2t t Hit 2t H2

In a gravitational field, the internal angles of the field vector must be con-

sidered in the boundary conditions. Equation (338) shows that the measured
surface current density is equal to the difference of the measured values of
the tangential components of the magnetic field vectors.

Case 3. Normal Components of the Magnetic Induction Vector.

The normal component of the magnetic induction vector is continuous across

a boundary between two materials

Bni = Bn2 (342)
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and therefore

Bni = Bn2  6Bnl = eBn2 (343)

Both magnitude and internal phase angle are continuous across a boundary.

Case 4. Normal Components of the Electric Displacement Vector.

The normal components of the electric displacement vector are related to
the complex number surface electric charge density as follows

Ps = Dn1 - Dn2 (344)

Ps cos OPs = Dnl cos ODnl - Dn2 cos EDn2  (344A)

ps sin ePs = D sin eDnl - Dn2 sin eDn 2  (344B)

p2 = D2 +D 2 -2D D cos(e - ' (345)
s ni n2 nl n2 Dn- Dn2

tan eps = (Dn1 sin 0Dn1 - Dn2 sin 
0Dn2)/(D n1 cos 6Dn1 - Dn2 cos 

0Dn2) (346)

Equation (344A) states that the measured surface charge density is equal to the
difference of the measured values of the normal components of the electric dis-
placement vector.

4. ELECTROSTATICS WITH BROKEN INTERNAL SYMMETRIES. The preceding section
suggested that gravitation will have an effect on electromagnetism through the
internal phase angles of space and time coordinates. This section considers
the effect of a gravity induced broken spacetime symmetry on the elementary cal-
culations of electrostatics.

A. Gauss Law for Broken Symmetry Spacetime.

The differential form of Gauss' law equation (115) can be written in terms
of a potential function by

E = - VW (347)

where W = potential function with an internal phase angle. Then equation (115)
becomes

-2-V W - / (348)

q

It will be shown that q in equation (348) does not contain the angular factor
L . Or, the other hand, the integral form of the Gauss law for a broken symme-
try spacetime is

D. ndS = LQ (349)
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where L is given by equations (48) or (332) for spherical polar coordinates
and by equations (61) or (330) for cylindrical polar coordinates. The factor

occurs in equation (349) on account of the surface integral. In general the
factor L occurs because of an integration over a surface or a volume of a sphere
or cylinder with broken symmetry coordinates. In fact

dV L s4/3 3 (350)
spherical coordinates

OdS = L 4n**2 (351)
s

OdV = E c 2h (352)

OdS = c2 Th cylindrical coordinates (353)

ds= fc 2fr (354)

where L. and Lc are given by equations (332) and (330) respectively, and where
h = complex number height of a cylinder. Becau,_ - cCur on both sides of
equation (349) it follows that <6 > and <%> uo not enter the final expressions
for the complex number electric fiel: and electric displacement vectors. This
conclusion also follows from the definition of the divergence of a vector with
broken internal symmetry which .s

D = Lim D • ndS/OdV = Pq (355)
V-oq

and because L appears in both the integrals over dS and dV it cancels in the

numerator and denominator making D , E and 5q independent of L . Note that in
all calculations the charge is a scalar, so that the measured charge, the con-
ventional charge and the fundamental charge are all equal

Qm =Qc =Q (356)

In this respect charge and rest mass are similar.

B. Spherically Symmetric Constant Charge Distribution.

For spherical symmetry equation (115) becomes

1/f2 d/dP(I2Dr) = r q (357)

or

dD r/df + 2/FD r = q (358)

For q = constant (pq = constant, Opq = constant)

r = 1/3 qF = 1/3P q re- 2 j 6r (359)
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which gives

Dr = 1/3pqr 8Dr 2 r (360)

where equation (167) was used with 6r = constant and 6rr = 0 because 6pq = con-
stant. The crresponding complex number potential is given by

- / F = I/3F q (361)r q

W = - I/6 qr2 + c (362)

where the constant E is determined from the condition

W r(a) = Q(a)/(4na) - 1/3p qa2e - j a  (363)

where a = complex number radius of the spherical charge. This gives

= 1/2p qa2e- jea (364)

and therefore

Wr Pq /6(3a 2 
- r 2)e-j a r a (365)

where er = ea = constant. From equation (166) and Orr = 0 it follows that

Q = 4/3ra 3p (366)q

and

W Q/(SaTa3 )(3a 2  )e-Jea r a (367)r

Wr Q/(8 a3 )(3a 2 _ r2) Wr = - ea r < a (368)

From equation (359) it follows that

Dr = Qr/(4aa 3) 6Dr = - 28a r < a (369)

The measured value of the electric displacement for the case of constant charge
density and for r < a is

Drm = Dr cos BDr = Qr/(4na 3) cos(2e ) r < a (370)

and the measured potential is for r < a

Wrm = Wr cos Wr = Q/(ra 3) (3a2 - r2) cos 6a r < a (371)
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The conventional calculation of electric displacement and potential is given for

constant density and for r 4 a by

34 3)  -2

D = Qr /(4wa ) = Qr/(4na ) cos 0a (372)
rc m m a

W = Q/(8ita 3)(3a 2 r 2 Q/(8nra 3) (3a 2- r 2) cos e1 (373)
rc m m m a

and therefore

(Drc - D rm)/Drc = I - cos 2  a cos(26 ) (374)

(Wrc - W rM)/Wrc sin2 0a (375)

where the fact that 6r = 0a for r < a was used.

The general case of any spherically symmetric charge distribution is ob-

tained from equations (115) and (165) to be

1/T 2/3(i 2 r) = (4i2 ) IdQ/di (376)

which gives immediately

5 = (4n2)_IQ(r) = (4r2 -I Q(r)e-2Jir (377)
r

so that in general

D = (42 ) IQ(r) DR =- 20 (378)Dr DR -2r

For r >a equations (377) and (378) give

6 = Q/(4n2 )  2Q/(4r 2 )e - 2 j r r ) a (379)

Dr = Q/(41r 2 ) Dr - 20r r > a (380)

and

W = Q/(4ffi) = Q/(4nr)e-j er (381)
r

W r = Q/(4rrr) 8W = - 0r r > a (382)

The measured electric displacement and potential for r > a is

Drm - Q/(4vr 2 ) cos(20r) r > a (383)

W = Q/(41r) cos or  r ) a (384)
r3m
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The corresponding conventional calculations give

2 /4 2) -2
D =Qi(4rr2 ) =Q/(4r 2 ) cos e r > a (385)
rc m r

-1
W = Q/(4rmr ) = Q/(4nr) cos 1 r > a (386)rc m r

and therefore

2
(Drc - D rm)/D rc= I - cos 8r cos(2e ) r > a (387)

(Wrc - W rm)/W rc = sin 2 8r r > a (388)

Equations (379) through (388) agree with equations (367) through (375) for

r - a . For constant density Q(r) - 4/3rr 3pq and Or - constant and equations
(377) and (378) become the constant density case described in equations (359)
and (360) for r < a .

C. Line Charge in Broken Symmetry Space.

The line charge problem in broken symmetry space can be described by equa-

tion (115) written in cylindrical coordinates as

I/?d/d ( Dr) = q= dq/(27-d-) (389)

where pq is given by equation (177) and p by equation (180). From equation
(389) it follows that for a line charge of infinite length

Dr = qZ /(2wE) Dr =Pq/(2Tr) (390)

Drm r c Dr 0Dr z zz - 0 r (391)

The radial electric field is given by

Er =qZ /(2ir) Er =Pq /(27re) (392)

F - E cos 8Er eEr =- 0 - 8 - a - E (393)rm r EEr z zz r £

If qZ = constant then from equation (181) it follows that PqZ = Q/z = constant,

epqZ = - z = constant and 8zz = 0 . For a line charge of finite length the
electric displacement vector is given by the following generalization of the
well known result

2 7

r  F q9/(27ri) sin 6 (394)

where tan a = h/r , and 2h = complex number length of the line charge, and
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where sin 3 can be written as in equation (4). Equation (394) reduces to equa-
tion (390) for an infinite line of charge by noting that

S (/2)1 8s (7/2) = 0 (395)

In Reference 12 it is noted that only for the angles a = ± r/2 is 8  = 0 and
Osa = 0 .

For a charged cylinder of infinite length a simple analysis gives the
electric displacement for r < a as

5 -r = qq /(27a 2 ) = qF/2 Dr p£r/(21a 2) (396)

Drm Dr cos 8Dr eDr ar - 20a z azz (397)

where 9 complex radius of cylinder and am  a cos ea , rm = r cos 8r with

ea "' r

D. Broken Symmetry Capacitance.

The generalization of the standard definition of capacitance to broken sym-
metry space is

1 8- 28

CE = Q/Wa (398)

C = Q/Wa  8c = - 8wa = 2(6t - 8 ) (399)

For a parallel plate condenser this becomes
1 8- 28

C= Q/(Ez)5 = EE= (400)z

and therefore

C = Ax /I (401)z xy

c z =A / 8c = + + -8=2(8- )(42
z xy/z = + 8 x + Oy -z = - Oz (402)

with corresponding expressions for Cx and Cy . Fora coaxial cylinder of lengthh,
y 18-28

outer radius b and inner radius d the capacitance is

E = 2i: /Zn(S/a) (403)

2neheJ(Oc+Oh)/In(b/a) + j(E8b - 8a)]

The magnitude C in this case depends on Ob - 8a because
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C 27ch/[Zn2 (b/a) + (eb - ea)2]I/2 (404)

eC = e + eh - tan- 1[(b - a)/ln(b/a)] (405)

5. ASYMMETRIC MAGNETOSTATICS. This section considers the basic calcula-
tions of magnetostatics in a spacetime that has broken internal symmetries.
The broken symmetries are due to the local pressure and energy density of the
ambient matter. It is gravity that produces the pressure in the earth's atmo-
sphere and therefore the local broken symmetry of spacetime at the earth's

surface is due to gravity. The elementary calculations of magnetostatics are
affected by gravity.

A. Ampere's Law for Asymmetric Space and Time.

The broken symmetry form of Ampere's law must be written as

d= ILc  (406)

where L is given by equation (330). This must be the broken symmetry form of
Ampere's law because the factor Lc also arises from the line integral on the
left hand side of equation (406). For circular symmetry

2niH = I (407)

H = I/(2 r) H = 81 r a t - ar tt (408)

This result must also follow from Maxwell's equations.

B. Magnetic Field Due to Currents in a Wire, Solenoid and a Toroid with
Broken Spacetime Symmetry.

The stationary magnetic field for a current in a wire can be obtained from
equations (113) and (220) which can be written as

I/Pd/dr(iH ) = J = dl/(271dr) (409)

and therefore the azimuthal magnetic field associated with a current in the z

direction is given by

H = I/I(2 ) (410)
H. . ..lr 0 =8 - -e -s -e (411)

H' = I/(2Tr) H' I r t - Btt r

The measured and conventionally calculated magnetic fields are respectively

Him = H cos 8 = I/(2wr) cos(0 t + 0 ) (412)

Hic = I m/(2nrm) = I/(27r) cos 0t / cos 8r  (413)
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Combining equations (411) and (412) gives

2
Hm = H c(1 - tan er tan 8t)cos 8r (414)

(HC - H OM)/H c sin 8r cos 6r (tan 8r + tan 6 ) (415)

e r(8 r + et )

From equation (411) and (413) it follows that Htm = 0 when Ot + Or = n/2
and this combined with the free electron condition 8z = 20t in the wire gives
Oz/2 + 8r = 7/2

From equation (307) it follows that the magnetic vector potential for a
static current in a wire situated in broken symmetry spacetime is given by

B0 = - aAz/DP (416)

Combining equations (410) and (416) gives

= - 51/(27) en r (417)
z

or

A A e j Az (418)
z z

where

A = - pI/(2n)[fZn 2 r + 82 1/2 (419)
z r

Az 8r + al + u 8 Or - 8t - tt + (420)

tan 8or = ar/Zn r (421)

The analysis of the coaxial cable in broken symmetry spacetime is a simple ex-
tension of the standard analysis. 

1 8-28

For an infinite solenoid the generalization to broken symmetry spacetime
is 18-28

R =6'I (422)

H n'l8 = -8 t -8 -~ (423)
Hz aHz t z -tt

where ff' number of turns per unit length = N/z . For a toroid
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HO = NI/(27Ti) (424)

H = NI/(2nr) aHO, 0t tt - 6 r (425)

C. Biot-Savart Law for Broken Symmetry Spacetime.

The Biot-Savart law applied to the calculation of the magnetic field of a
current in a thin wire is given by the following complex number extension of a
well known result

1
8-28

H ) I/(4r f 2/ z 2 3/2 (426)

Introducing Z = F tan i where 4 = 4 exp(j64 ) gives

H4 = I/(4n)j cos T d (427)

1

- /(4nf) (sin '2 - sin (428)

= I/(2TF) sin 2

where

T2 = T/2 eJ0 ( T1 2 ) (429)

I = - 7T/2 ejE ( - T/2) (430)

But it has been shown in Reference 12 that 4, (±/2) 0 , and therefore

H = I/(21i) (431)

which agrees with equation (408) which comes immediately from the broken sym-
metry form of Ampere's law given in equation (406). Because 0*(±/2) = 0 it
follows that the Biot-Savart does not suggest that internal phase angles of
angles should appear in the expression for the magnetic field, and this sub-
stantiates the inclusion of the angular factor Lc in the right hand side of
equation (406) which excludes angular internal phase angles from appearing in
the expression for H,

It is easy to show that the broken symmetry generalization for the axis
value of the magnetic field of a circular current loop of radius 5 at a point
z on the axis above the loop is given by' 8 28

H = Is2 /(2R3) (432)z

where
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2 2 + j2 (433)

Therefore

H i la2 /(2R 3) (434)

0Hz I + 26a - 36R 6 t -Btt + 26a - 36R (435)

where R and eR are obtained from the following two component equations associ-
ated with equation (433)

2 2 2
R2 cos( 20 R) =-a 2 cos(20a) + z cos(2 Z) (436)

R2 sin(2 R) = a2 sin(28a) + z2 sin(28 Z) (437)

D. Asymmetric Hall Effect

A description of the Hall effect is given in detail in the literature.
2 9

In broken symmetry spacetime the application of transverse electric and magnetic
fic-ds to a solid conductor or semiconductor induces a complex number electric
field due to charge drift which is given by

= 3E B (438)x y z

where 6 = complex number ion mobility (Hall mobility) given by

= 5/(qfi) (439)

6 =a/(qn) 86 = 8a - 8n =0 t (440)

From equations (288) through (290) and (438) through (440) it follows that

E 6E B (441)x y z

6 -BEY +e =8 - +8 (442)eEx Ey 6 + Bz o n eBz

= t + eBz

=8 -8
x y

In fact

8x e t e Bz 9 -20 (443)

SEy= 8y - 2et (444)
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The Hall effect, both classical and quantum, may possibly be used to determine

ex % y and et

6. ELECTROMAGNETIC WAVES AND BROKEN SYMMETRY. This section considers the
effects of broken symmetry spacetime on the propagation of electromagnetic waves

in matter and the vacuum. In bulk matter it is gravity which is primarily re-
sponsible for the broken symmetry of space and time. 1 2 Therefore gravity is ex-
pected to influence the propagation of electromagnetic waves in the vicinity of

the planets and stars. The effects of the broken symmetry of spacetime on the
propagation of electromagnetic waves in the vicinity of the earth may be ex-

pected to be larger than the effects of a gravitational redshift (general rel-
ativity) which is significant only in massive bodies like stars.

A. Asymmetric Electromagnetic Wave Equations.

Consider broken symmetry electromagnetic waves propagating in the z direc-

tion. Then equation (113) becomes

H y/@ = - 3D /at (445)

Afx /ai = 3D y/t (446)

Equation (445) is equivalent to

cos azz sec a Hyz Hy/Z = - cos att sec 5Dx t 3Dx/3t (447)

6Hy + Hyz z zz Dx + BDxt - et a tt (448)

where

tan aHy z = (Hy aOe Hy/z)/(H 13Z) (449)

tan BDx t = (Dx3 Dx/at)/(D x/at) (450)

Similarly, equation (446) is written as

cos 5 sec Hx / H IZ = cos att sec Dyt 3Dy/3t (451)co zz BHxz xt y

aHx + aHx z  z - y + - t (452)

where

tan BHxz = (Hxex0Hx/z)/(Hx/faz) (453)

tan aDy t = (Dy aOe Dy/t)/(aD yat) (454)
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The Maxwell equation (112) for broken symmetry waves becomes

DE /ai = /aiat (455)

ax /aZ = - By/at (456)

Equation (455) can be rewritten as the following two equations

cos Ozz sec 8Eyz 3Ey/3Z = cos 8tt sec 8 Bxt 3fBat (457)

8Ey + -Eyz  - =0 +a - t - (458)Ey Ey- z zz 8Bx 8Bxt t 8t

where

tan 8Eyz = (E yEy /az)/(?V/az) (459)

tan Bxt = (Bex j<t / /(B x/at) (460)

while equation (45') yields

cos 8 zzec s aExz  Ex/Z = - cos 8tt sec 8 Byt  By/at (461)

EEx + 8Exz - az zz = 8By + 8Byt t - att (462)

where

tan 8Ex z = (E x3Ex /z)/(aE x/az) (463)

tan 8Byt = (ByaeBy/at)/(3By/at) (464)

Combining equations (448) and (462) or equations (452) and (458) gives
for electromagnetic waves in matter

01 + 0e = 2(0t +8 -0 -8 zz) 0 E 20t - 30z 0U 6 z (465)

2
where equation (465) corresponds to the wave velocity equation V 1I/(5) and
where uniform material has been assumed so that 8Dxt = aExt ' Byt 8Hyt and

so on. For the vacuum, equation (465) becomes

0 + =0 (466)

because the light speed in vacuum has a zero internal phase angle and Oz = et
for photons in vacuum. For electromagnetic waves in matter OP + 0, is determin-

ed through equation (465) by the values of 6z and Ot which depend on the local

energy density and pressure and ul-mately on gravity.
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B. Electromagnetic Waves in Broken Symmetry Matter.

Consider plane electromagnetic waves propagating in the z direction. As-
suming E and 5 are constants allows equation (445), (446), (455) and (456) to
be written as the following wave equation

2E/a2 = 1/72 a2E/a-2
x x(47

_2with similar equations for , E Hx and Hywhere v = 1/(Ell). Ifaproduct solution
of the form Ex = Z(E)T(t) is assumed then equation (467) becomes

d T/dt2 + g2T = 0 (468)

d2 /dz2 + k Z= 0 (469)

where @ = M/k , and where R - broken symmetry wave number generalization of a
standard result

2 7

-2 ---2k = 5Ecc2 + i5a 
(470)

and k = 5 + iS where a and S are the following broken symmetry generalizations
of the standard equations

2 7

-2 2 2/22)1= 5E/2 {(1 + a /(+ /2 (471)

-2 = 025E/2 {[I + 6 2 /(E2j2)]I/ 2 _ 1} (472)

from which a , a, a and Os can be obtained. Note that i and 5 are written as

= oej a  = Bej  (473)

The solutions of equations (465) and (469) are respectively

T e- i t (474)
0

Z e iki (475)
0

Then the broken symmetry electric field is

SEoe
-  ei(a - ;t) (476)

x x

Writing the broken symmetry electric field as

= E ejeEx (477)
x x

gives the following equations
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E e

E =E - z cos(e +Oz) ei[az cos(OaU+z) - Wt cos(ew+et)] (478)X x

a Ex - Oz sin(e + 8z ) + i[az sin(a + 8 ) - wt sin(86 + t )] (479)

Following Reference 12 E and ai must be real numbers for harmonic waves, and
therefore equations (478) and (479) become respectively

E = 0 e - z cos(ea + Oz ) ei(a z - Wt) (480)
x x

eEx = - Oz sin(8 B + E) (481)

where the following periodicity conditions were used 12

O = - 8 t  (482)

e = -e (483)

which correspond to equation (476) of the form

=EOe- i e i(az - Wt) (484)x x

For periodic electromagnetic waves in broken symmetry space and time the complex
number propagation constants W and a must adjust themselves to the local space-
time phase structure such that equations (482) and (483) are satisfied. Equa-
tion (484) can also be written in terms of measured s acetime coordinates zm
and tm and measured propagation constants am and m

For the case of periodic waves with zero damping 5 = 0 and equations (465),
(471) and (472) show that a = 0 and

o = - a (485)

o8 =8 =- z (486)

and

E Eei(az - Wt) = EOi(amzm/cos
2 8, - Wmtm/cos (487)

x x x

aEx = 0 (488)

which corresponds to undamped waves periodic in spacetime with broken internal
symmetries that satisfy equations (485) and (486). Because the local internal
phase structure of spacetime in bulk matter is determined primarily by gravi-
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tation it follows that equations (478) through (488) describe the effects of
gravity on electromagnetic wave propagation.

C. Doppler Effect for Waves with Broken Symmetry.

The generalization of the conventional Doppler formula for the frequency
of waves from a source moving with velocity 7 at an angle p relative to the
direction of a stationary observer is given by

TV = T(I + V/c cos ') (489)

where f' and f = complex number frequencies at the observer and source respec-
tively, U = ve3ov = complex number speed of the source and p= complex number
angle between the direction of the source and the direction of the observer.
The complex number frequencies are written as

= fe j 0 f = I/T -' = f'e j ef = I/T' (490)

= L/T e-jet = I/T' e - j e t

where T and T' = magnitudes of complex number periods of the wave motion at the
source and observer respectively, and 6t = - Of and Ot = - . The convention-
al Doppler formula can be written as

2 7

f= f (1 + v /c cos 'P)  (491)
c c m m

where fc = conventionally calculated frequency expected to be seen at the ob-c
server, fc = conventionally calculated frequency at source, vm = measured source
speed, and 'm = measured angle between the source direction of motion and the
observer's direction. The conventionally calculated frequencies are given by

f = I/T f' = I/T' (492)
c m c m

where Tm and TV = measured wave periods at the source and observer respectively.
m

Frequencies are derived from periods so that for broken symmetry spacetime

f = l/T f' = l/T' (493)

T T cos e T' = T' cos ' (494)
m t m t

Equation (493) holds only for the magnitudes of the frequency and period, not
for their measured values.

From equation (489) it follows that

f cos a' = f[cos e + vC IC cos(e + v - a )J (495)
f 'P f v CIP

f' sin 9' = f[sin Of + vC /c sin(9f + 9v - 0 c)] (496)
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where CV and 6 are given by equations (7) and (9) respectively. It is easy
to see that equation (495) can be rewritten as

f' = f ( + v /c F) (497)
m i m

where F is given by

F = C cos(ef + ev -9 %c)/(cos cf Cos ev) (498)

and where f' and fm = frequency measured at the observer and at the source re-
spectively and are given by'2

f fCosCos ' (499)
in f m f

22 ,

I/T cos 2 e = 1/T' cos 2
m t m t

22 , 2
cos e = f cos 8

c t c t

and

(fc - f m)/fc = sin 8t (500)

(f' - f')/f' = sin 2  ( (501)
c- m c t

Combining equations (491) and (497) gives

fc - f ' = f - f + v /c (f cos im - f F) (502)
c in c in in c in i

for the difference between the measured and conventionally predicted frequen-
cies at the observers position. Equation (502) can also be written as

f' sin 2 0' -f sin2 a = vm/c (f cos, -fmF) (503A)
c t c t i i

f' cos 8 ' f Cos 2 t (I + v /c F) (503B)
c t c t m

When 7 =/2 , then 1 2

CG(7/2) =0 c (Tr/2) # 0 0 ,(T/ 2 ) = 0 (504)

m = 7/2 F =0 (505)

and the conventional equation (491) gives f' = fe while the broken symmetry
equation (497) gives fm - fm so that fc -fm = c- fm for this case as can be
seen from equation (502). For this case also 8 = t
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When P = 0 it follows that

C (0) 1 1 8c (0) = 0 8 (0) 0 0 (506)

F = cos(8f + v)/(cos 8f cos a ) (507)

= I - tan 8f tan e v

1 + tan 6 tan 0
t V

I + etev t + et(ex -t

From equation (502) with i = 'm = 0 it follows that

f ' - f m  (fc -fm M + vm/C) - v m f m/ c tan 6t tan Gv (508)

(fc - fm)(1 + vm/C) - Vmfm/C tev

Measurements of fm - f and fm - fc may possibly be used to determine 6t , 6x
By ,8 z and 6t ' 3x ,' , 8' . For motion of the source away from the observer

= Tr , and the value o 7Pm to be used in equations (502) or (503) is
1m = cos e(7T) .

7. CONCLUSIONS. The broken symmetry of space and time affects the elemen-
tary calculations of the measured physical quantities of electromagnetism such
as charge and current densities and the electric and magnetic field vectors.

The effects are manifested through the internal phase angles of the charge and
current densities and the field vectors, which in turn are related to the inter-
nal phase angles of space and time coordinates. In the vicinity of the earth
the internal phase angles of the spacetime coordinates and of the electromag-
netic field vectors are determined primarily by gravity. Therefore gravitation
must be considered to affect the basic calculations of electromagnetic theory.
The gravity induced broken symmetry of spacetime should have measurable con-
sequences in simple electromagnetic phenomena as the electric resistance of
wires, the propagation of electromagnetic waves in matter, and the Hall effect.

In some cases atomic and molecular structure effects may induce a broken sym-
metry in the space and time coordinates which is greater over macroscopic dis-
tances thai, Lhe corresponding effect due to gravity. This is true for coherent
states such as occur with superconductivity. In this case the induced coherent
time state may be responsible for the high Tc superconductivity phenomenon in
the planar copper oxides. The coherent time state elevates the normalized
superconductivity energy gap by a factor 6 /7 \ 1.91 and may explain the exper-

imentally observed enhanced normalized energy gaps associated with high temper-

ature superconductors.
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QUANTUM MECHANICS AND THE BROKEN

SYMMETRY OF SPACE AND TIME

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. The quantum mechanics of particles located in spacetime with
broken internal symmetries is investigated. The forms of the momentum and
angular momentum operators in asymmetric space and time are developed. Schrd-
dinger's equation is written for both external and internal motion in asymme-
tric spacetime, and the eigenvalues and eigenfunctions for a free particle and
a rotating object are determined. The problem of a particle in a box is con-
sidered for both an internal and an external space box. The energy eigenvalues
and eigenfunctions for the one- and three-dimensional harmonic oscillator with
broken internal symmetries are determined, and the concept of an internal space
harmonic oscillator is introduced. The addition of angular momenta in a space-
time with broken azimuthal symmetry is examined and the existence of a corre-
sponding gauge boson is investigated. In particular, the addition of spin and
orbital angular momentum is considered for broken symmetry space and time, and
the eigenvalues of the total angular momentum operator are calculated. The
general problem of measurement in quantum mechanics is considered and the di-
chotomy of spacetime points in a continuum and the Heisenberg uncertainty prin-
ciple is examined. Applications to high temperature superconductivity are sug-
gested.

1. INTRODUCTION. The concepts of broken global and local symmetries have
a long history in quantum mechanics. -3 Even in classical mechanics the concept
of symmetry plays an important role; consider only the fact that the translational
and rotational symmetry of space gives rise to the laws of conservation of momen-
tum and angular momentum respectively, and translational symmetry in time yields
the law of conservation of energy. 3 -  For instance the application of an exter-
nal torque breaks the rotational symmetry of a system and the angular momentum
becomes time dependent. In quantum mechanics the concept of broken symmetry be-
comes even more important when it is applied to global and gauge (local) symme-
tries. 1-3 For example, a broken global symmetry is associated with a massless
scalar particle called the scalar Goldstone boson, while a broken gau e symmetry
is associated with massive vector bosons and massive scalar bosons. i '  An exam-
ple of the particles associated with a broken gauge symmetry are the massive W+ ,

W- , Z vector bosons and the neutral massive scalar Higgs boson H° that are as-
sociated with the standard electroweak theory.1- 3 At the macroscopic scale, a
gauge theory of bulk matter has been developed on the basis of a relativistic
trace equation whose form suggests the broken symmetries of the thermodynamic
functions.6,

7

Recently a new form of broken symmetry associated with spacetime coordinates
has been proposed. 7 The broken symmetry of the spacetime coordinates is associ-
ated with the broken symmetry of the pressure field in matter and the vacuum.7
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The manifestation of the broken symmetry of spacetime appears in the internalphase angles of the space and time coordinates. Euler's equation of motion re-lates the internal angle of the pressure to the internal phase angles of the co-
ordinates. 7 The skewed nature of spacetime affects classical mechatics, hydro-dynamics, the equilibrium of stars and planets, electromagnetism, atomic pro-
cesses and the structure of atoms.

The complex number cartesian space and time coordinates are written as 7

a= ae ~tae j eO 
(1)

-te jet 
(2)

where a x , y , z . Quantities which often occur in the calculations with b.o-ken symmetry spacetime are the angles Oaa and Ott which are defined by

tan aa /a a 
(3)

tan Bt = tet /at 
(4)

The measured values of the space and time coordinates are given by7

a = a Cos 8 
(5)

t = t cos 
(6)

and therefore

dam/da = cos 8 - a m tan 0a de /da (7)

dt m/dt = cos 8t - t tan 8t d t/dt (8)

The kinematics of particles in broken symmetry spacetime is treated in Refer-ence 7. The definition of measured coordinates in equations (5) and (6) alle-viates the dichotomy in quantum electrodynamics of having zero dimensional
points in a spacetime continuum simultaneously with the validity of the Heisen-berg uncertainty principle which implies infinite energy and momentum for thesepoints. From equations (5) and (6) it is clear that many values of a and t cancorrespond to the measured values am and tm respectively. A measured point inspacetime actually corresponds to an infinite set of possible values of a and tcorresponding to the possible ambient conditions which determine the size of theinternal phase angles of the coordinates. The apparent infinite momentum andenergy values predicted by the uncertainty principle for points in spacetimedo
not occur for measured spacetime coordinates.

One of the peculiarities of space and time with broken internal symmetriesis the possibility of internal motion of a particle which is externally at rest
in spacetime. 7 In particular, if the magnitude of i is fixed and t is taken to
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be a scalar parameter then

da/dt = jade /dt (9)

If the time is also treated as a complex number and if the magnitudes a and t
are both fixed, then space and time rotate internally and

da/dt = &/Ede /det = a/td /de teJ(ea - et) (10)

where a = x , y , z . With internal spin it is possible to have momentum and ki-

netic energy for an externally stationary particle (with a = constant and t =

constant). For external motion Oa and et = constants while a and t are vari-
ables. However, the measured values of space and time coordinates given by
equations (5) and (6) vary for both internal and external motion.

The angles of a spherical polar coordinate system are written as

= e jOl = Ipe0e  (11)

where i and = complex number azimuthal angle and zenith angle respectively.
The relevant trigonometric functions associated with and i are

sin = Se j es  (12)

Cos = Ce -j c (13)

tan = S¢/C€ eJ (e s + OcO) (14)

where
7

S€ = [sin2 ( cos 6 ) + sinh2 ( sin 6 )I/2 (15)

C, = [cos 2 0. cos 6 ) + sinh 2 ( sin )1/2 (16)

tan s = cot( cos 6 )tanh(O sin 6) (17)

tan 0c = tan( cos 6 )tanh( sin 06) (18)

with similar expressions for p . The measured angles are given by

m = * cos a m = * cos O (19)

The measured sin, cos and tan functions are

(sin O) S cos 0 (20)
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(cos ) C cos e (21)

(tan O)m = S /C¢ cos6O + 6c ) (22)

From equation (19) it follows that

3m = cos 8 - m tan 6 30 /30 (23)

3*m/ m = cosO -im tan e /3* (24)

In this way the measured values of angles and their trigonometric functions are
calculated.

This paper investigates the effects of the skewed nature of space and time
on some basic quantum systems. In particular Section 2 considers skewed single
particle momentum, angular momentum and energy operators, Section 3 studies the
Schr~dinger equation for asymmetric spacetime, Section 4 develops the theory of
a particle confined to a box in external and internal space, Section 5 calculates
the eigenvalues and eigenfunctions for the harmonic oscillator with broken inter-
nal symmetry, and finally Section 6 investigates the addition of angular momen-
tum in broken symmetry spacetime.

2. MOMENTUM, ANGULAR MOMENTUM AND ENERGY OPERATORS IN ASYMMETRIC SPACETIME.
This section develops the expressions for the measured values of the momentum,
angular momentum and energy operators in space and time with broken internal sym-
metries.

A. Momentum and Energy Operators.

The complex number momentum operators for cartesian coordinates with broken
internal symmetries are

7

P = eJPu pa - - iha/a& (25)

where a = x , y , z and

pa - ih cos act 3/aa (26)

8 = -O - a (27)

where a. is given by equation (3). The energy operator is given by7

= -ha/a (28)

E -i cos 8tt a/at (29)

SE  -3 t - Btt (30)
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where att is given by equation (4). The imaginary number i and j satisfy
2 .2

i 2 =- j = - 1 ij = ji (31'

Therefore the Dirac, Klein-Gordon and Schr6dinger equations must be complex I LU
ber equations in internal space, and the energy eigenvalues and eigenfunctions

must also be represented as complex numbers in internal space. 7 If the wave
function to which the operators 5 and E are applied is real then the measured

momenta and energy operators are given by

P am = cos 8pa pa = -il cos a a cos a 3/aa (32)

E Cose i cos att cos E  a/t (33)

For zero internal phase angles the following results are obtained

P - - iia/am (34)

E = ih3/at (35)

which are the standard operators of quantum mechanics.
8' 9

Generally the momentum and energy operators given by equations (25) and
(28) respectively are applied to a complex number wave function exhibiting an

internal phase angle as follows

'Pi - Teij 8X (36)

whose measured value is given by

'Pm = ' cos 6 (37)

The operator equations are then written as

p ' ff - ih cos a sec 8 a 3/aa ejDPa (38)

EN f ih cos att sec 8 t a'/3t ejl st (39)

where

tan B'a (TPae T/aa)/( a/3a) (40)

tan B 't (Tae'P /at)/(a'/Dt) (41)

( = e + a8e- a - 0 (42)

'Pt = 6 + a t - 8t - Btt (43)
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The real and imaginary parts of equations (38) and (39) are respectively

( T) - i1 cos 'T cos 8 sec 8 T / T (44)

(pOl i sin 4Va Cos a a sec 6 'Pa /aa (45)

(ET)R = ih cos ct Cos att sec 8 6t /t (46)

(ET)I = ih sin 0 t cos 8tt sec 8 t /t (47)

These expressions will be used to calculate the measured values of momentum
and energy.

The measured values of the linear momenta and energy are defined by

Pam- (Pa)R POmTm (48)

E' )R Em m (49)

where

Pam - ih cos (D cos a sec 6 3/3a (50)

E' ih cos 0 cos 8 sec 8 ;/at (51)

and where Pam and Em are the measured momentum and energy operators whose form
will now be determined. This is done by using equation (37) which gives

V/Wa AO9Tm /a m + BLTm  (52)

W/ft A tTVm /t m + Bt m  (53)

where

AL = sec 8 IF / faa (54)

B = sec 8 tan 8 Tae /aa (55)

At M sec 8 at /t (56)

Bt - sec e0 tan e TS /at (57)

Combining equations (48) through (57) gives the measured momentum and energy
operators respectively as
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Pm =- ih(C a/aam + D ) (58)

Em = ih(Cta/at m + D ) (59)

where

Ca = cos 0 cos Sa sec ST sec 0T am /a (60)

D = cos DTa cos Sa sec ST sec 0 tan 0 T/ / (61)

Ct = cos P t cos St sec Tt sec T Ptm/at (62)

Dt = cos PTt cos tt sec 0,t sec 0T tan 8T0 /at (63)

where Mam/3a and 3tm/3t are given by equations (7) and (8) respectively. There-

fore the measured momentum and energy operators generally include the effects
of the internal phase angle of the wave function. If the internal angle of the
wave function is zero, Da = 0 and Dt = 0 , and

PLm - ih cos 0pa cos a a m /aa a/am (64)

E = ih cos 0E cos Bi t m/at /atm (65)

which agrees with equations (32) and (33).

The conventional quantum mechanical momentum and energy operators are
given by

p ac = - iaT m /a m (66)

E c = ih3m /atm  (67)

where Pac and Ec = conventional momentum and energy operators. Combining equa-
tions (58), (59), (66)and (67) gives

Pac p am = - ih[(l - Ca )a/am - D ] (68)

E - Em = ih[(1 - Ct )3/tm - D t (69)

Differences between measured and conventionally calculated values of momentum

and energy should be detectable (especially for particles in bulk matter) due

to the broken symmetry of space and time. Finally, consider the momentum and
energy operators for the case where space and time rotate internally for con-
stant values of x , y , z , t . For this case equations (25) and (28) give re-

spectively for da = jadO. and dt = jtd t
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5/L ijh/Z/ = ijh/a e - j a 3/3e (70)

= - ijh/i a/a t = - ijh/t e- j et 3/36 t  (71)

These expressions will be used in Sections 4 and 5 where bounded motion in in-
ternally space is considered.

B. Angular Momentum Operators in Broken Symmetry Spacetime.

The generalization of the scalar forms of the angular moment,-! operators
are given by

8' 9

L = - ih(w/i - i/a) (72)
x

i = - ih(aa/ai - s/a) (73)
Y

L - - ih(ra3y - yfai) (74)
z

These broken symmetry angular momentum operators obey the standard commutation
relations. Similarly, the complex number angular momentum operators can be
written as the following generalization

8'9

x - ih(sin * a/3* + cot ' cos '- a/D) (75)x

y - ih(- cos * 3/3 + cot T sin $ ) (76)y

z = - (77)z

The eigenfunctions of L. have been shown to be given by7

MAei  R = Mej eM (78)

- IiMD (79)
z

where for periodic external rotations with 0 = constant 7

M= Me = MeeJOMe (80A)

Me = m cos M =6 - 8M (80B)

and for periodicity MeO - Me real number, so that

-- = Ae iM e o (81)

where for external motion Ox , , e , e r P and 8 constants.
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The generalization of the L2 operator eigenvalue equation is given by

2W h ZZ( + 1)W (82)

where

L = h 2[I/sin2 i 32/a2 + I/sin D/a (sin / aI/)] (83)

where for external rotations in broken symmetry space
7

= e = ' + v R' = Iml cos e e-je (84)

where the integer v is given by v = Iml . The complete angular wave function

is given by

= T6)W(p) (85)

Combining equations (82) and (84) gives for external rotations in broken symme-

try space

L2 =h 2(Z + )g (86)
e

= [I + Iml/Z(cos e6 e-Jo4 - 1)][1 + Imi/(a + 1)(cos e eje 4 - 1)] (87)

The technique for the generalization of the angular momentum rules to broken

symmetry spacetime is now obvious. For instance, the raising and lowering op-

erators L+ and L_ are written for broken symmetry space 
as8 - 1 1

L = h[Z(Z + 1) - M(M ± 1)] (88)

which for external rotations in broken symmetry space becomes

Le h[( e( + 1)-M(M ± ) (89)

- e e e e

- h[f(Z + i) - m(m + 1)9]

where g is given in equation (87) and 9 is given by

= 1/(m + 1) cos a e -JS(m cos e e-j e ' + 1) (90)

These equations reduce to the standard results when 60 = 0 because for this

case g = I and 9 = I .

The development of the measured angular momentum operators proceeds from

equations (72) through (74). The definitions of the measured angular momentum

operators are as follows
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(L T)R L m'T L Y (91)
x R x Xm m

(LyT) R L' L T (92)
y R y ym m

(LzT) L' =L T (93)
z R z zm m

where the measured angular momentum operators Lxm, Lym amd Lzm are determined

by the evaluation of the left hand sides of equations (91) through (93). Com-

bining equations (1), (3), (72) through (74), and (91) through (93) gives in a
fashion similar to that done for linear momentum

z - ih(E' ya/az - E' za/ay) (94)
'C YZ ZY

L' W - ih(E' z/3x - E' x3/z) (95)
y Z2 xz

L' = - ii(E' x3/ay - E' y3/ax) (96)

z xy yx

where

E' = cos yz Cosz sec (97)
yz~yz zz TfZ

Ez =cos czy cos ayy see y (98)

E' = cos E cos sec (99)
zx -Yzx xx Tx

E' = cos Cosz sec $ (100)
xz 'Ixz zz

E = cos cos see y (101)
xy 'XY yy

Er = cos os sec (102)
yx :yx xx 'x

and where

: =eyz + T +e Y z z (103)

-. + +e - - (104)
Tzy Y Ty z y yy

8= + +e - - (105)
-Vzx T x z x xx

- =e + 6Z + e - 0 - (106)-Vxz '' 4z x z zz

*:: xy e T + B Ty + ax - ay yy (107)

y =e, +sx + e - -x (108)
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Combining equations (91) through (96) with equations (5) and (37) gives

L= =- ih[Ym(Eyz3/azm + F yz ) - Zm(E zy /y m + F zy)] (109)

L - ih[z m(E zx/ax m+ F zx) - x m(E xz/z + F xy)] (110)

L - ii[x m (E xy ym + F y) - ym(Ey 3/x F yx (111)

where

E - A E' sece E = A E' sece (112)
yz z yz y zy y zy z

E - A E' sece E = A E' sec (113)
zX x zX z xz z xz x

E - A E' sece E = A E' sece (114)
xy y Xy X yX x yX y

F = B E' sec F = B E' sec (115)
yz z yz y zy y zy z

F = B E' sece F = B E' sece (116)
zX X zX z xz z xz x

F - B E' sece F = B E' sec e (117)
xy y xy x yx x yx y

where A. and B. are given by equations (54) and (55) respectively. If ey = 0,
equations (109) through (117) reduce to the real parts of the operator equations
(72) through (74) without the internal phase angle of the wave function. The

differences between the measured and the conventionally calculated angular mo-

menta are given by

L - L = - ih{y [(1 - E ) z - Fyz - Zm[(1 - E ) /ay - Fz]l (118)
xc xi m yz i yz i zy m zy

L yc- Lym - - ih{z m[(I - E z) /Wxm - F zx] - x m[(1 - E xz) /3zm - F xz (119)

Lzc - hzm = - i{x m[(1 - Exy)3/Ym - Fxy] - Ym[(1 - Eyx)3/DXm - F (120)

which may be experimentally detectable.

The same procedure applied to the spherical polar coordinate representation

of the angular momenta given by equations (75) through (77) and equations (91)

through (93) gives

L ' = ih(G /4 + H';/ I) (121)
xxx

'= ih(G; /9 + Ht /4)(122)
y y

L' = - ihH'a/31 (123)
z z
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G' = S cos cos B ccB (124)
x -p 'yip

G' =- C cos - cos sec (125)

H' = CC /S cos Cos a sec a (126)x p

H' = C S /S cos cos a@ sec aye (127)

H = cos cos sec (128)

z '1Tzc

where

Txl = IF + 8y +es -e -8 (129)

y= + a - e - e - B (130)

Tx + - (131)

y= -3 -8s +eSs -0 -8B@ (132)

= +8 -e - (133)

and

tan B = (134)

tan 8 = (' I /M)/O/) (135)

The derivatives that appear in equations (121) through (123) are obtained from

equation (37) to be

a =/3- A DT m /a* + B M (136)

A/3 = A 3Tm/24 m + B T (137)

where

A = sec 8 m / m/ (138)

BI = sec E), tan 6 yB8 /ap (139)

A = sec 8 T aml30 (140)

B M sec 08 tan 86 /34 (141)
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where 3pm/ap and 3 mla are given by equations (23) and (24). Combining equa-
tions (91) through (93) with equations (121) through (123) and equations (136)
and (137) gives

Lxm = ih(Gx/3@m + Hx /3m + Ix ) (142)

Lym = ih(Gy D/D* m + Hy3/am + Iy) (143)

Lzm = - i(Hza/3 m + IZ) (144)

where

G = A G' G = A G; (145)
x x y y

H =AH' H A H Hz = A H (146)
x ~x y 0 y z *

I = BG' + B H I =B G; + BOW I = BH; (147)
x Wx 0 x y tj y z z

The conventionally calculated angular momenta are given by
e- "

Lxc = ih(sin m 3/Pm + cot im cos 0m 3/aM) (148)

L yc = i(- cos /m /am + cot m sin m 3/ao M) (149)

L = - iha/m (150)

Therefore

Lxc - L = ih[(sin 0m - Gx )D/3m + (cot 'm cos m - Hx )D/3m - I x] (151)

L yc- Lyr ih[(- cos m - Gy )3/3m + (cot *m sin m - Hy )3/m - I y (152)

Lzc - L =- ih[(I - Hz)3/30m - IzI (153)

For pure internal phase rotations of the coordinates, equations (72) through
(74) become

x = ijh(y/z a/D -
/  a/36y) (154)

Ly ij(i/i e/ - R/i 3/6 Z) (155)

z = ijh(i/ 3/e - jr/R a/e x ) (156)
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while equations (75) through (77) become

L - ijh[(sin $)/ / * + (cot ' cos 3)/ ae 3/ ] (157)
x 4

Ly - iji[- (cos )/ /ae + (cot ' sin -)I/ /De ] (158)

= ij / (159)

The calculation of La and Lam for these equations is elementary. From equations

(91) through (93) and equations (154) through (156) it follows that

L' " - ih(Ey y/z 3/0 - E z/y va.y)
x iyz z izy y

L' = - ih(E' z/x D/DO - E'z x/z 3/a0z) (159A)
y zx

L' = - ih(E' x/y a3 - E' y/x 3/3)
z ixy y iyx x

where

Elyz - sin y sec 8 E'zy sin -zy sec y
iyVyz izy Toy

E' = sin sec 8 E! sin sec 8(9
xzx Yxzx e Tex  xz 8z (

Exy = sin sec 8 E' sin sec
ix 'xy TYy iYx -Tyx 8'i'x

tan a 0z -- / 0 z )/(ay/ae Z)

tan 6ey = ('a T /36y)/(a/aeO y) (159C)

tan 8Tx = (TaT/aex)/(y/ae x )

-i + +e 0
:yz T Tez y z

i =6+ +6 -
Tzy T Tey z y

i =8+ +

1zx F Tex z x
(159D)

..i = + + e-

'xz T0 ez x z

At =8+ + -8:"Yxy T 70y x y

_i a , + a + 0e - 0

:1yx T Tex y x
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The measured angular momenta are obtained from equations (91) through (93) to be

Lxm - ih[y/z(E iyz3/3 z + F yz ) - z/Y(E izy3/6y + F izy)

L yr - - ih[z/x(E izxa/a6x + F izx) - x/z(E ixz a / 6z + F ixz)J (159E)

Lzm - - ih[x/y(E ixy3/a6y + Fixy) - y/x(E iyxa/a6x + F iyx)]

where

E E' sec. E E' sec e
iyz iyz izy izy

E. Ez sec 6 E -E sec 6 (159F)
izx izx ' ixz izx T

E -E'x sec 6 E =E' sec 6
ixy ixy iyx iyx sc '

F iyz = BszEiyz  F izy - E izy

F M B E I F =B E:I (159G)
izx Ox izx ixz ez ixz

F. =B E I F. =B EI
ixy ey ixy Iyx ex iyx

where

Bez = sec e tan 6 3e /36z

Bey = sec e tan e T aey /3 (159H)

Bez = sec e tan 6 360/36 x

For the case when the wave function only rotates and di = j'd6 , then it

follows from equations (91) through (93) and (154) through (156) that

L' = - ih[y/z cos yz 6/3ez - z/y cos 3zy /0 (160)
x Deyz 'Y zzy 'P y

-r _r

L' = - ih[z/x cos r xz De0 /3ez (161)
y - xzx ox 'Pxz P z

Lz = - ih[x/y cos y_r ae/3 y/x Cos r M e/3 (162)
z Pxy 'P y +yx 'P x

L = L' secO (163)
xM x 'P

L L' sec 6 (164)
yin y '

L L' sec % (165)
zm z
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where
_r + - - (166)

IVy ~ y z T'zy q' z y,rz 8 + ay - Ez -4z = 8 + 8z - 8y (167)
= 8 +8 - =x 8 + - (167)

,r r
=r 8 6 + 8 - e :r =6e +8e - 8

~ ~ ~ ~(168)-fxy 6T+ x -6y - yx =6T+ y -ex(18

The measured angular momenta for this case are given by equations (160) through
(162).

From equations (91) through (93) and equations (157) through (159) the cal-
culation of 14 and Lam for the internal phase rotations of spherical polar co-
ordinates and for a wave function whose magnitude and internal phase angle are
variable is done as follows

L' - ih(G' a/;O + H' a-/a)
x ix ;, x

L' - ih(GI' a/ae + H' a/a) (168A)
y iy 4 iy

Lz - ihH' z/a6
z iz

where

G' S /* sec sin-
ix 8 ssecx

-i (168B)

G' -C/ sec N. , sin =,Y,
iy_

Hx =C C /(S *) sec a sin =

H'y =C S/(S0) sec a sin (168C)

H' 1/ sec 6 sin zi

iz Y84e "z

where

tan 8 = (Yas/38 4)/(aq/a8) (168D)

tan S - (Tae T/ae )/(aM/38 ) (168E)

and
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i = 8 + + -8 4

=8 e +a -a - e

i = e + 8 - 8 - 8 - 8 - 8 (168F)
'Yxo T~ TYo c4 s0 co~ 0

j = e y + 6 - 6 - + 6 - 6

8 +8 - -+ -8

Tz T Teo

The measured angular momenta can be obtained from equations (91) through (93)

so that for pure internal rotations of spherical polar coordinates

Lxm = ih(E ix /8 + E ix a/ + Fix* + F ix)

Lym M ih(E iy*a/3 + Eyo a/ae + Fiy* + Fiyo) (168G)

L = i(E izo/ae + F iz)

where

Eix, G sec E i sec 8

E y G' sec 6 E H' sec 6 (168H)
10i iy iyo iy

E = 0 E iz iz sec 6.

ixgp 8sp ix ixo BGix

F = B GI Flyo = BOGy (1681)

i p 8*p jy iy 8 y

F =0 F =B GI

iz ip izo 6 i~z

where

B = sec 86 tan 8 8 /38

(168J)

B =sec 6 tanG 3 8/

The case where the wave function only rotates in internal space will now be

considered.
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From equations (91) through (93) and equations (157) through (159) it
follows that for spherical polar coordinates and dY = j'Yde

- ih(G' a /; + H' ae / ) (169)
x xr Y xr T

L' = ih(G' a / + H' a0 /a ) (170)
y yr~ T yr' Y

L'= ihH' /ao (171)
z zr IF

where

G S 4 Cos H' =C C /(S ) cos (172)
xr = / o x* xr 0 x

G' =- C /* Cos _r H' = C S /(S 0) cos (173)
yr v yr

G' 0 H' = 1/0 cos (174)
zr zr z

r =0 +0 -O (175)

_ 0 -0 -0 (176)

; =0 -0 -e -o -e (177)
PxO 'P cij s* co 0

= -0 -0 +0 -0 (178)
'Py0 'P P c Sp SOp s

-' =0 -e (179)

The values of Lam are then obtained from equations (163) through (165).

3. SCHRODINGER EQUATION FOR ASYMMETRIC SPACETIME. This section considers
Schrdinger's equation for two extremes of the variation of coordinates: a) ex-
ternal space and time variation of coordinates with constant internal phase an-
gle, and b) internal variation of spacetime coordinates with constant coordinate
magnitudes and varying internal phase angles. The single particle energy is
calculated for both these cases. The general case where both the magnitude and
the internal phase angle vary has already been treated for Schrbdinger's equa-
tion.7  In cartesian coordinates Schrddinger's time independent equation for
coordinates with broken internal symmetry is written as

- h 2 /(2u)(a 2/a 2 + a 2/a 2 + a 2 /ai + W = F (180)

where V - V(i, ,£) = complex number potential, and E = complex number energy.
The corresponding time dependent Schrtdinger equation is given by7
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- h2/(2v)ja 2 /a&2 + VT= i a/E (181)

where a = x , y , z . The generalization of the standard scalar time independent
Schr6dinger equation in spherical polar coordinates to the case of broken sym-
metry space and time is given by

7

2- 2- 2a__ 2 ____ a -a ay) I a 2 + 8r-
+ r + .(siin + 2 2 2 V()]T = 0 (182)

ay2  ra sin a lpap r hL

The wave function in equation (182) can be separated as follows

= R(r)W( )# (j) (183)

which gives the following complex number generalization of the standard scalar
equations

7

d 2/dT2 + M2j = 0 (184)

1/sin 4 d/dp(sin ' dW/dp) + (8 - M 2/sin2 ) = 0 (185)

F d 2/dF2 + 2FdR/d + (2 )R =0 (186)

where

i2 2i/h 2 (E - V) (187A)

= MejeM (187B)

= Bej Oe (187C)

where M and 8 are complex number separation constants. The Schrbdinger equa-
tions (180) through (186) will now be considered for the special cases of ex-
ternal and internal coordinate variation. The combined case of external and
internal motion has already appeared in the literature.

7

A. External Coordinate Variation

For external coordinate variation in cartesian coordinates with broken in-
ternal symmetry the internal phase angles Ox , Oy and Oz are constants that de-
pend only on the ambient pressure and energy density. Then

dR = dxejex dy - dyej oy  di = dzej O z (188)

where the constant internal phase angles are written as

8 = a (P,E) ey = y(P,E) e = 0 (P,E) (189)

Schr~dinger's equation (180) becomes
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_h2 2 /(2p)[e-2Jx a 2le/;x + e-2jey a2e /ay2 + e-2Jz a2Te /z2I + V = ET (190)

e e ee e

For the free particle with external motion, the wave function is given by

= ei(Kex + yY + kez) (191)

where the complex number wave numbers are given by

= k ejokex k = k ekey k k ejskez (192)ex ex ey ey ez ez

and where because of the periodicity condition in measured coordinates
7

ex k ex xkex x

key key ekey = y (193)

kez k ez zkez = z

and therefore ie = Ye for periodicity. Equation (193) determines the internal
phase angles of the wave numbers for periodic waves in broken symmetry space.
The spatial wavelengths of the waves are given by

= 2ir/k A = 2w/k A = 2r/ke(14
ex ex ey ey ez ez (194)

where

A = A ei8Aex = eJ8AeY A = A eJ9Aez (195)

X e 8XeX e ey ez ez

Then it follows that
k22/re/A=k2=2w/A k 96/

kex 21/Xex key X ey kez ez (196)

kex  - = - a (197)x

Skey - 8 ey 0y (198)

8kez  - ez = - z (199)

For periodic waves the wave numbers and wavelengths must adjust themselves to
the local spacetime conditions according to equations (197) through (199).

The measured wavelengths are given by
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S = X Cos A X cos e (200)

A eym =  ey cos ey = Aey cos ey -(201)

X = cos 6Aez = X Cos 0 (202)ezm ez ez z

while the measured wave numbers are

kexm = k ex s ekexkex cos 6x (203)

keym = key Cos 6key = key Cos 9y (204)

kezm w kez Cos akez 2 kez cos 6z (205)

Combining equations (196) through (205) gives

-2r/exm cos 2  (206)
ex e xm x

2
k eym = 21t/Xeym Cos 2 8y (207)

kezm = 2/X ezm cos 2 6z  (208)

Note that kexm # 2 /Xex m and so on. Finally, for insertion into the wave func-

tion in equation (191) one has

kex kex x k exmxm/cos 2 ex = 21xm/Xexm  (209)

key keyy = k eymYm/cos2 6y - 2tYm/Xeym  (210)

kez ezz - kezmzm/Cos2 ez = 27Zm/Xezm (211)

Consider the case of free particles moving in external space that exhibits
broken internal symmetry. The single particle energy can be obtained from
equations (190) through (199) to be

S= h2 /(2)(k2eex k-2j 0 Y + k 2 e- 2j z ) (212)

e ex ey ez

= h20 /(2j)
e

where

-2 -2 + -2 + j2 (213)
e ex ey ez

The measured free particle energy is given by the real part of equation (212) as
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E = k 2/(2) cos( 2 6k) (214)
em e

where ke and eke are obtained from equation (213) and equations (197) through
(199) as

k2 cos(26 ) k 2  cos(26 ) + k2 cos(2ey) + k2  cos(2e ) (215)
e ke ex x ey y ez z

k2 sin(2 ke) k2  sin(26 ) + k2  sin(20y) + k2  sin(2e ) (216)
e ex x ey y ez z

Therefore the measured energy is

Ee- h2/(2j)[k 2 cos(28 ) + k2 cos(26 ) + k2 cos(2ez)] (217)
em ex 2 2y 2 z

This equation will be used in Section 4 to calculate the energy of a particle

localized in an external space box.

For external motion in spherical coordinates with broken internal symmetry
and O , 0* and er constant, equations (184) through (186) become7

d2Te/d 2 + Me = 0 (218)
e e e

I/sin , d/d(sin i dW /di) + (e - M /sin i)e 0 (219)
e e e e 0(29

22 2 2 -2 2 -
i d e /di + 2dA e/dY + (k F 6 e )R = 0 (220)

where 
7

e m cose eJe M e m cos 6 (221)e e

= Iml cos 6 e-Je M' = Im l cos e (222)
ee

e= e (Ze + 1) (223)

= M' + t - ImI (224)
e e

where m = ordinary magnetic quantum number - 0 , ±1 , ±2 , . For periodic

rotations Me - Me = real number, so that
7

d2 D/do2 + M2(D 0 (225)

- e ±iMe$ = e±imo cos e - e±imom (226)
e

where *m * cos e . Thus ie = Pe = real number in internal space (but obvi-

ously a complex number in external space).
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Consider now the calculation of the quantized energy values for a rigid
rotator in broken symmetry spacetime. For rotations about the z axis Schrd-
dinger's equation is obtained from equation (71) to be

- h 2/(21)3 2/3 2 = E T (227)

whose solution is

= AeiR (228)

which is also the eigenfunction for Lz as shown in equations (78) and (79).
Combining equations (227) and (228) gives the kinetic energy of the rotator as

E = 2/(21) (229)z

where I = complex number moment of inertia about the z axis. The measured ener-
gy is given by

E zm = h2 M 2/(21) cos(20M - 0 ) (230)

For periodic external rotations with 04 = constant it follows from equations
(80) and (230) that

E e = h2M2/(21) cos(20 + e) (231)
zm e 4

h= m 2/(21) cos e cos(2e0 + l

Equation (231) can be written as

Ee = em2/ (232)zm (2eff)

where the effective moment of inertia is

i eff = I sec(20 + 0 ) sec 2 8 (233)

The complex moment of inertia is written as

2
pr I = vir 0I =2 (234)I r

I = I cos 01 = I cos(20 r ) 1 (1 - tan 2 0) (235)
mI r c, r

where Ic = conventionally calculated moment of inertia given by

= I cos 2 0 (236)
c m r

Combining equations (233) through (236) gives
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Ieff = Ic sec[2(86 + r)] sec
2 80 sec 8r (237)

Now consider rigid rotations in three dimensional space with broken symme-
tries. In this case the rotational energy of a body is given by

7

= h2 /(21)g(Z + 1) (238)

where for external motion Z = Ce where Ee is given by equation (224). Therefore
for external motion

= h2/(21)e (ge + 1) (239)He e

h 2 /(21) (R' + v)(MR' + v + 1)
e e

where v is an integer given by v = I- ml . Combining equations (222), (224)
and (239) gives the measured energy eigenvalues as

Ee = h2/(21)[lml 2L2 + lml(2v + 1)L I + v(v + 1)L (240)
m 2o

where

2
L2 = cos 2% cos(26 + ) (241)

L1 = cos 8 cos(%) + a1) (242)

L - cos I  (243)

Equivalently, it follows from equation (239) that

E' - h2/(21)[C2 cos(28 - 8 ) + Ce cos(e - l)] (244)
m e Ce I e Ce I

where
7

Ce = ll- fmj/t(2 - jmi/Z)sin 2 e ]1/2 (245)

tan O - (Imi sin 8 cos 8 )/(P- - Im sin 2 a) (246)

B. Internal Coordinate Motion

The case where the cartesian and spherical coordinate magnitudes (x , y , z
and r , , 0 respectively) are held fixed and the system is moving in internal
coordinate space with 8x , Oy ,Oz and 6r , O* , 60 as variables is now con-
sidered. Also t = constant and 6t is a variable.

First the case of cartesian coordinates is treated. From equation (70)
it follows that for a - constant
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P2= - 22/2 (247)pa~ h L 27

= 2 2 2 2 - ja/36 ) (248)

where a = x , y , z . Combining equations (180), (247) and (248) yields Schrd-

dinger's equation for internal cartesian coordinate motion

- 2 /(2u)1 2T./9a 2 + V.E. T (249)a 1 ii 11

h2 /(2u)11/a-2 (32 i/De 2 j3'i/3 ) + V = (250,
a i a i a ~ 1

where the subscript "i" refers to internal motion. The time dependent Schrd-
dinger equation is obtained from equations (28), (71) and (250) by writing

ii ihi/a (251)

= - ijh/E Di/30t (252)

- iji/t e-Jit4i /36 (253)

remembering that dE = jEd8t

Consider a free particle located at a fixed position in external space
x , y , z and moving in internal space with Ox , Oy , ez as variables. The wave
function is written as

Ti,(6 'y, z e e i(kix + kiyY + kizi) (254)

= exp i[k ixx exp(jO x ) + kiyy exp(j y) + k izz exp(jBz)]

The requirement that equation (254) be a solution of Schrddinger's equation for
a free particle gives the single particle energy for internal motion to be

= h2/(2p)(j2 + k2 + j2 (255)

1 ix iy iz

where

k. = k. ej(kix k. = k. eJ(kiy k. = k. ejikiz (256)ix ix iy iy iz iz

which are complex number constants. The measured single particle energy is
given by

E = h2/(2p)[k 2  cos(2k) + k2co k 2
iy s(2 Okiy) + cos(26ki)] (257)

In Section 4 this equation will be used to calculate the energy of a particle
trapped in an internal space box. The phase in equation (254) is not a real
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number because there is no periodicity in measured real space as x , y and z
are fixed. Therefore

k R=k. xeJ(0kix + (258)
Ix ix

kiyY j= kye3(Skiy + ey) (259)

ki = k zeJ( 6kiz + 6z) (260)
12 iz

Equation (254) also follows from equation (25) which becomes

- 3i K = k i  (261)
i ix i

- ii f/aY = kiY 'i  (262)

- ia i/az k 'P (263)

For constant Ei , equation (251) gives

i(0t) = exp(- iE i /f) = expi- iEit/h exp(jt)] (264)

with t = constant and E given by equation (2). Therefore for x , y , z and t =
constants it is easier (for the free particle case) to solve the Schr6dinger
equations (249) and (251) in terms of x , y , z and t and then use equations (1)
and (2) to express the results in terms 6a and Ot , rather than to directly
solve equations (250) and (253). On the other hand, if the potential Vi is ex-
plicitly a function of the internal phase angles Vi = Vi(6x,6y,0z) with x , y
and z = constants, then it may be more convenient to solve equations (250) and
(253) directy. Yet even in this case it is possible to use the conventional
form of Schiudinger's equation (249) by using equation (1) to rewrite the po-
tential as

V i(x,,z y '6[- j Zn(f/x), - j tn(y/y), - j ln(!/z)] (265)

and equation (249) becomes

h2/(2) 2  /a 2 + Wiji = T (266)

Equations (250) and (266) are equivalent.

The situation of internal phase rotations in spherical polar coordinates
with r , p and 0 fixed is now considered. For this case Schrdinger's equa-
tion (182) becomes
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- 1/y2 (a 2 /Do2 + ja'i/ae - /2 sin d)a/M (1/ sin aT iae (267)
i r 1 r - /F*sn . i

1/(Y2 sin 2 )(a32T/ae - ja'i/ae6) + 8r 2 /h 2 (E 0

Equation (267) can be separated into three independent equations by writing

Ti = R i(r)Wi(6 )Pi(e) (268)

which gives the following equations

- 1/ 2(d 2i/d - jd4i/de) + M 2A. = 0 (269)

- I/( sin p)d/dO (1/T sin T dWi/de*) + 0 - M/sin 2 = 0 (270)

d2 2/dO _ jdR /dr + (kr ) i = 0 (271)

1 r 1 r i 1i

where

k. = 8 2/h 2[E - V (0e ,,r, (272)
1 i irp

and where

= Miej0Mi (273)

i. the complex magnetic quantum number for internal azimuthal angle rotations,
and possibly Mi = Mi(O) because 4 = constant. The solution of equations (184)
through (186) are relatively easy for external motion when e = constant and M
and S are constants given in equations (218) through (224). If 00 is not con-
stant but instead, at the other extreme, 00 is variable and 0 - constant then
the separation constant for internal motion Mi must be independent of 00 so
that certainly Mi 0 Me . Therefore equations (218) through (220) are valid for
Or , 0* and 90 - constants while equations (269)through (271) are valid for r

, = constants.

The solution to equation (269) can be obtained from a solution of equation
(184) with 4 = constant. This solution is

i0) = exp(±iFM., (274)

= exp[±iM 0 expj(Mi + e )I

Note that 0Mi + 0 0 0 for internal coordinate motion whereas 0Me + 0 - 0
for external periodic motion. Similarly, the solution of equation (270) can
be obtained from the solution of equation (185) with 4 constant as follows7

W.(0 PMi[cos(ej0)] (275)
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with

Si. = Ci(£ + 1) C. = M. + 6 (276)

where 6 = 0,1,2,3,.-- . Because constant, Mi cannot be related to an integer
as was the case for the external complex magnetic quantum number Me given in
equation (80). The solution of the radial equation (271) depends on the form of
the potential Vi •

The Schrtdinger equation for the internal space rigid body rotator is now
examined. For rotations about the z axis, but with * = constant and d = j~de ,
it follows from equation (227) that

2 /(2y2 ) ( d 2 i / d 2 - jd i/d@) + Vi(8e)ci =E (277)

Equation (277) can also be obtained directly from equation (159). The solution
to equation (277) for Vi - 0 is given by equation (274), and for this case a
comparison of equations (269) and (277) gives the energy as

Ezi = h22 /(2Y) (278)
zi

for free internal rotations. Also from equation (159)

LZ i = 1. (279)

EziP i  
2 /(21)D i  (280)

The energy in equation (278) can be obtained directly by operating with the left
hand side of equation (277) with Vi 0 on the solution given in equation (274).
The measured energy is given by

Ei = h2M/(21) cos( 2eMi - i (281)

For internal rotation in three dimensions it follows from equations (83), (269)
and (270) that for the rigid rotator

-2 h 2[i/(v 2 sin2  )(a2/362 _ ja/a) + 1/( sin )9/a6 (1/ sin 3/ O )] (282)

h 2 [F42/sin 2 i+ 1/( p sin w)alae (hI/ sin 1) 9/3e
iL

h h2; i = h 2 i i + 1)

so that

Ei h /(21)Zi(z + 1) (283)
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where 1i is given by equation (276). The measured energy is obtained fromequa-
tions (276) and (283) as

E. = 2/(21)[K 2M2 + (26 + 1)K M + 6(6 + 1)K] (284)
i Ii

where

K2 cos( 2OMi - 1 ) (285)

KIi= cos(eMi - 1) (286)

K 0 cos eI  (287)

Apparently Mi is a continuous real number that can assume any value. Thus the
spectrum of the internal space rotator is continuous.

4. PARTICLE IN BOX FOR ASYMMETRIC SPACETIME. From the previous section it
is clear that particles can have internal as well as external motions. This sec-
tion considers the motion of a particle in a box first for the case of motion
in external space with broken internal symmetries, and secondly for motion in a
box located in internal space.

A. Particle in External Space Box with Broken Symmetry.

Consider a particle in a box of complex number space dimensions 5 , b and
c . The measured dimensions of the box are

am = a cos ea bm - b cos eb cm = c cos ec (288)

and it is assumed that the internal phase angles of the coordinates are con-
stants and ex = ea , 0y = eb , ez = ec . The wave function obtained from equa-
tion (191) will be written as

T e = A sin(k exx)sin(k eyy)sin(k ezZ) (289)

If Te = 0 at the boundaries x = a , y = b and z = c , it follows that

k a = n k b = mnr k c = 7 (290)ex ey ez

and therefore equations (196), (209) through (211) and (290) give

A= 2a/n X = 2a /nX xm in

X = 2b/m A = 2bm/m (291)y ym i

X 2c/.e XA 2c/.e
z zm m
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Combining equations (217), (288) and (290) gives the measured energy fora par-
ticle moving externally in a broken symmetry space box as

Eem h 2 2/(2p)[n2/a2 cos( 2ea) + m2 /b2 cos(20b) + Y2 /c2 cos(29c)J (292)

h 2 2/(2p)(an2/a2 + Im 2 /b2 + I e2/c2
a i b m c m

where

Ia = cos 2  a cos(26 a)

Ib = Cos 2b cos( 28b) (293)

I= cos2  c cos(20c)

The conventionally calculated energy for a particle in a box is given by

E h7r 2/(21)(n2/a2 + m2/b2 + f2/c ) (294)

and therefore

Eec- E h 2 2 /(2)((l - I)n2/a2 + (I2- Ib)m2/b + (I - Ic)Y2/c (295A)
ec em a in bi m c in

A2 72/(2)i)(n 20 2/a2 + m2 0 /b 2 + Z 2 /c )
a in b in c m

For 6a ^' 0b \ 6c - 0a it follows from equations (294) and (295A) that

(E - E )/E ^ 3062 (295B)
ec em ec C&

The difference between the predicted and measured energies may be detectable and
may lead to an estimate of the value of 62may

Consider a rigid rotator oscillating between two angular positions = 0
and =a . Then the wave function is given by a form similar to equation (78)
for broken symmetry space

= Ae'M °  (296)

which must be a solution of Schrtdinger's equation for a body rotating about
the z axis

- h 2/(21)3 2/aT2 . Ee (297)
z

which gives the energy as

Ee _ h2R2 /(2Y )  (298)
z 0
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whose real part gives the measured energy as

Ee = h 2M'/(21) cos(2o - e1) (299)
zm 0 Mo I

where the constant M0 for the external rotational oscillator is written as

M = M ejeMo (300)0 0

and the values of M. and OMo are to be determined from boundary and periodicity
conditions. The periodicity conditions give

7

eMo = - 8 M = M00 (301)

In order to satisfy the boundary conditions the wave function derived from equa-
tion (296) for the rotational oscillator must be of the form

0 A sin(M o,) (302)

where Mo is to be determined by the boundary condition at 4 *a The condi-
tion that 0 - 0 at 0 = Oa gives

M - = nn (303)

or

M3 = nl/O a (304)

Therefore the measured energy is obtained from equations (299), (301) and (304)
to be

E = 2 n2/(21)(n/a ) 2 cos(26 + e) (305)
a 4,

F. Particle in internal Space Box

Consider a box in internal coordinate space with variables 6x , E@y and Oz
which are bounded by

8a < 6x < eb

e < e < e d  (306)c y d

@e z f

corresponding to the external coordinates x , y , z which are constants. For
the wave function take the real values of equation (254) as follows
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Ti = 'ixIiY'iz (307)

where

Tix sin[k xx sin(6kix + ix )]

I'iy = sin[kiy sin(Ekiy + y )) (308)

IFiz sin(kizz sin(6 kiz + 6 z)]

At the boundaries of the internal space box the wave function must be zero.
The conditions for the vanishing of the wave function at the boundaries are

kixx sin( ki x + eb) nn (309)

kixx sin(( kix + 8a 0 (310)

kiy sin( 6 kiy + d) mf (311)

kiyY kisin( kiy + ) 0 (312)

k zz sin( kiz + f) (313)

kiz sin( kiz + e) =0 (314)

where n , m and t are integers. From equations (310), (312) and (314) it fol-
lows that

ekix - a 6kiy =  c ekiz = e (315)

Combining equations (309), (311), (313) and (315) gives

kix = nJT/[x sin(8 b - Ea)]

kiy = mir/[y sin(0d - 9 ) (316)

kiz = I/[z sin(e f - Be) ]

where n , m and t - 0,1,2,3,4,.-- . Placing the results of equations (315) and
(316) into the expression for the measured energy eigenvalues given by equa-
tion (257) yields for a particle in an internal space box
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Eim 2 fT 2 /(2)(J'n2 /x2 + J'm 2/y2 + J'2/z2 (317)
xy z

where

J= cos(20a)/sin 2 (6 - a)

J' cos(2e )/sin 2(ed - e) (318)
y cd

J' cos(2ee)/sin 2 (6 - e)

During the internal motion of the particle the measured position of the particle
also changes because am - a cos 6a with a = constant and Oa being variables.

The values of x , y and z must be measured relative to some fixed center of
force, such as the nucleus of an atom, when the internal oscillations of an
electron are being considered. This determines Eim(x,y,z) . The energy of
physical interest is then

Um -EimndV (319)

where n - particle number density. The quantity Um gives the measured energy
associated with the internal oscillations of the coordinates. The integral in
equation (319) may be logarithmically divergent, and renormalization techniques
will have to be used for the calculation of the internal energy.

Finally, consider the angular internal rota-ional oscillations correspond-
ing to a fixed angular magnitude 0 of a body. The wave function for this in-
ternal space rigid rotator is given by equation (274). Therefore considering
only a real portion of the wave function gives

0(8) - sin[Mi sin(OMi + e,)] (320)

If the rotator is restricted to an angular sector in internal space given by
ea < 60 < eb then

Mi sin(eMi + a ) = 0 (321)

Mi sin(OMi + 8b) = nt (322)

where n = 0,1,2,3,--- . Equation (321) gives

eMi - -a (323)

while equation (322) gives

Mi - nn/[o sin(eb - a)) (324)
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Substituting equations (323) and (324) into equation (281) gives the measured
angular oscillation energy eigenvalues as

E.im 2iT2/(21)(n/p) 2 cos(20a + Q1)/sin2 (Eb - ea) (325)

During the internal angular oscillations, the measured angle will oscillate
according to m = cos 6 where = constant.

5. LINEAR HARMONIC OSCILLATOR. This section studies the simple harmonic
oscillator in broken symmetry spacetime. The study is separated into four parts,
a treatment of the one- and three-dimensional harmonic oscillators in external
spacetime with broken internal symmetries and, a discussion of the one- and
three-dimensional harmonic oscillators in internal space.

A. One-Dimensional Harmonic Oscillator in External Space with Broken
Internal Symmetries.

The standard Schrddinger equation for the one-dimensional simple harmonic
oscillator is given by

8

d 2T/dx 2 + (X - a2X2 ) = 0 (326)

where

A = 872 pE/h 2  (327)

* - 4T j/h (328)

After a number of transformations, the solution comes down to a power series
whose coefficients are related by8

a +2/a c = - (A/a - 2a - I)/((o + 1)(a + 2)] (329)

where a = integer. Only if the series breaks off at a value of a = k can a fi-
nite polynomial solution be found. Therefore the energy eigenvalues are

Ek = (k + 1/2)hv (330)

where k = 0,1,2,3,--. The eigenfunctions are
8

Tk = Nke_ 2 Hk() (331)

= x/ (332)

where Hk(&) - Hermite polynomial of degree k.

The generalization of equation (326) to broken symmetry space and time
with 8x and 6t as constants is given by
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d2 T/dI 2 + 2 R = 0 (333)e e e e

where the "e" refers to external motion with x variable and 8x = constant, and
where

e = 87w2 E /h2 (334)

e = 4 2 ue/h (335)

diE = dx ejeX (336)

Performing the same procedure as was done for the scalar case gives the follow-
ing set of complex number coefficients for a power series

Sa/+2/5 - (J/E - 2a - 1)/[(o + 1)(a + 2)] (337)

-k
where again a = integer. If the break off occurs at Ze where

e
R Vi/W (338)

e e
e

and k - integer. Then it follows that for = E ejEk

-e = k e
E e (k + 1/2)hU E = (k + 1/2)hv e = e (339)
k e k e Ek ye

where k = 0,1,2,3,** . The wave functions are
- -2

q ek - Neke Hk( e) (340)

where

(F& 1/2 = 2w(p/h) 1/2 V1/ 2 ejOve/ 2  (341)
e e

2n(p/h) 1/2 Xve1/ 2 ej(vBe/2 + ex) (342)
e e

The measured energy eigenvalues are given by

E , E cos
km k Ek

- (k + 1/2)hv cos 8 = (k + 1/2)hv (343)e ue em

Thus the standard result is valid if measured energies and frequencies are
used as in equation (343). The internal phase angle of the frequency is re-

lated to the fundamental asymmetry of spacetiiae because eve = - et . There-

fore for the one-dimensional linear harmonic oscillator, the effects of bro-

ken spacetime symmetry occur only through a complex number frequency and not
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through a complex quantum number. It will be shown subsequently that for the

three-dimensional linear harmonic oscillator a complex quantum number must be

introduced in addition to a complex number frequency.

B. Three-Dimensional Linear Harmonic Oscillator in Broken Symmetry

External Space.

The radial component of the standard Schrddinger equation for the isotropic
three-dimensional simple harmonic oscillator is given by

12 ,1 3

d 2u/dr2 - [Z(Z + 1)/r 2 - 21./h2 (E - l/2 w 2 r 2)u 0 (344)

where the total wave function is written as

IF - 1/ru(r)W()D( ) (345)

After a sequence of standard transformations the solution can be written as an

infinite series whose coefficients are related 
by12

,
1 3

c k+/c k = - [E/(hv) - t - 2k - 3/2]/[(k + 1)(2t + 3k + 3)] (346)

The condition for a break off solution is 12,13

E = (2k + P + 3/2)hv (347)

= (n + 1/2)hv

= (2n' + e - 1/2)hv

where some standard notations in common use are

n - 2k + t + 1 (348)

n' = k + 1 (349)

and k = 0,1,2,3,-' n = 1,2,3,- , n' = 1,2,3,-** , and t - 0,1,2,3,--.

Note that n - principal quantum number.

The generalization to the case of the three-dimensional linear harmonic

oscillator in broken symmetry spacetime with 
6r , Qp and 6 as constants is

given by
d2 e/dF2 _ + )/f 2 - 2 22] (350)

e/p ee Fe e (30

where

d= dre J er (351)

and where le - complex angular momentum quantum number. A break off solution

to the broken symmetry zenith angle equation does not require Te to be an integer,
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but only that
7

E- R' = Z - Iml = integer (352)e e

where 
7

=I = Im( cos e e - j ( (353)

For this case it is easy to see that the break off solution for equation (350)

is given by the following generalization to equation (346)

Ck+I/Ck - [Ee/(h7e) - e - 2k - 3/21/[(k + 1 )(2fe + 3k + 3)] (354)

so that the complex number energy can be written in the following equivalent
forms

Ee = (5e + 1/2)h e (355)

= (C + 2k + 3/2)hefi(e e

= (C + 2n' -1/2)he

- (9' + n - Iml + 1/2)h e* e e

= (H; + Z - jmJ + 2k + 3/2)h~e

where

e =n eij ne - 2k + Z + 1 (356)

= 2k + R' +Z - (ml + I
e

SM' + n- mle

For e6 = 0 equation (356) reduces to equation (348). From equations (352),
(353) and (356) it follows that 7

ne cos 0Te = n - Iml sin 2 0 (357)

ne sin OTe = - (ml cos 8 sin 0 (358)

£e cos 8e f  - Imj sin 2 0 (359)

Ce sin 8 e - ml cos a sin 6 (360)
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so that 7

= n[I - im(/n(2 - 'ml /n)sin2 6 11/2 (361)

tan 8Te = - (Iml cos 0 sin 0 )/(n - Imlsin 2 s(6Imlsn %)(362)

Ce = Z[- jm I/Z(2 - lml/Z)sin 2I1/2 (363)

tan 8£e = - (Iml cos 0 sin 0)/( - Iml sin2 e,) (364)

These quantities are required to calculate the measured values of the energy
eigenvalues.

The measured energy eigenvalues are obtained from equation (355) to be

Eem /(hv e) = ne cos(ee + ve) + 1/2 cos 6ve (365)

=C re cos(6 e + ve) + (2k + 3/2)cos 60e

= C cOs(e e + ve ) + (2n' - 1/2)cos eve

= mj cos a cos(Oe - %) + (n - mlj + 1/2)cos 09e

= Iml cos 6 cos(eve - E c) + (t - (ml + 2k+3/2)cos 8ve

The imaginary part Eel of the energy in equation (355) can be obtained as

E e/(hve) e ne sin(e e + ve) + 1/2 sin 0 e (366)

C sin(8 + 0 ) + (2k + 3/2)sin 6 ve

C e sin(O e + ve) + (2n' - 1/2)sin 6ve

(m( cos e sin(0ve - e6) + (n - Iml + 1/2)sin eve

Iml cos 8 sin(e e - e¢) (l - m( + 2k + 3/2)sin e e

Then
2 2 .1/2

E (Ee2 + E 2) tan e =E /E (367)
e eR eT Ee eI eR

If eve - - t is negligible in equation (365) these expressions become
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E m/(hv) ne cos e + 1/2 (368)

C e- cos 6 e + 2k + 3/2

I e cos 8Le + 2n' - 1/2

n + 1/2 - Iml sin2 e

t * - 2k + 3/2 - Iml sin2

Eel /(hve) e ne stn Te (369)

SCe sin 0 e

S- Iml cos 6 sin 0

and

tan %Ee (ie sin e )ie/(r cos 0 + 1/2) (370)

= - (Iml cos 6 sin 60)/(n + 1/2 - Iml sin 8 1

SEe '- [mN /(n + 1/2)

C. One-Dimensional Linear Harmonic Oscillator in Internal Space.

Consider the internal harmonic motion at a point along the x axis. For
this case the magnitude x - constant and the potential energy is written in
terms of the variable internal phase angle Ex as

Vi(E) = [/2Kx e2 (371)

1 x Ix x

The Schrddinger equation (250) for this case is written as

2/(2px2)e-2j x(92 y/8 2 - jqYi/9e ) + 1/2K. 02 = -- q. (372)

Equivalently Schr6dinger's equation can be written in the form of equation

(266) as

2 2- / 2
- 2/(211)a2 i/ + Wii = Ei~i (373)

Wi(R) = - 1/2 Rix n 2(i/x) (374)

where because x = constant
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di = jidO x(375)

Equation (373) can be written as
2-i/2 -2 - ]
2 Y/ax2Z X-XI (376)

[ . ln2(x/x)1I = 0(36

where

Xi = 2UEi/A 2  (377)

2 -2 -2Kix = 41 u i =1 i (378)

-2 i2 4 2-22
a2 = A ffi 167 U in/h (379)

i i i~l

D. Three-Dimensional Linear Harmonic Oscillator in Internal Space.

The potential energy of a three-dimensional internal space harmonic os-
cillator with x , y z constants is written as

V, = 1/2(K. e2 + R e2 + K az2 (381)
1 ix x ly y zz

For central symmetry in internal space this simplifies to

2 - 2v.(6 ) 1/2R r 1/2 K. n2 (F/r) = Wi (F) (382)Vi(r) /2irr i-[/

where r - constant. The radial Schrdinger equation becomes

d2 i/dr2 
- + 0/i - 2u/ 2  + 1/2v 2 In2 (F/r)lia= 0 (383)

where

dF - jidr (384)

-2 = K ir/ (385)
0i i

and where

Ci - Mi + 6 (386)

where 6 - 0,1,2,3,-.- Equation (383) can be rewritten as

d 2 /dF2 + [ +  r2 n2(/r) - + 1)/F 2]i = 0 (387)
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where Ai and Si are given by equations (377), (380) and (385). Making the
substitution ui = i in equation (387) gives

d2-./d2 _2 22
d 2K./d + 2/f dR./dF + [. + a. n (fir) - Ci(C. + 1)/F2 R. = 0 (388)1 1 1 1 1l

Equations equivalent to (387) and (388) can be written using equation (384)
as follows

d2 id2 2 22 2 -

- + jdi /de + [ X 2)F _ fi(T + 1)]r. = 0 (389)
1 r 1 r 1 ir 1 i+) iO(39

-d2/d di/r+[(i ir)2  2 22 -

- - jdR-d + [(X - 2 0 )j _ £(T. + 1)]Ki = 0 (390)
1 r 1 r 1 ir 1 1

The author has not solved equations (387) through (390).

6. ADDITION OF ANGULAR MOMENTUM. This section studies the addition of
angular momentum in space and time with broken internal symmetries. It will be
shown that the standard addition law for angular momenta must be modified for
the case where the magnetic quantum number exhibits a broken internal symmetry.

A. Complex External Magnetic Quantum Numbers.

Consider two complex magnetic quantum numbers that describe the motion of
two particles in external space with constant broken internal symmetries

7

M = Ml eJMI = m I cos 6M0 eM1 = m ICos a eje 1 (391)

2 = M ejeM = m Cos e Me j M2 = m2 cos a2 ej
0 2 (392)2 2m2 M2s2 M2

where equation (80) was used for external motion with NMi = - 60 i = constants and
where m, and m2 are integers 0,±i,±2,±3,. . The ordinary rule of addition of
magnetic quantum numbers would givelo

,1 1

= MI + M2 (393)

where K , being a magnetic quantum number, is itself written as

F Mej eM = m cos 0M ej eM = m cos e e- je (394)

where m should be given by

m = mI + m2 = integer (395)

and 6 = constant. The real and imaginary parts of equation (393) are

2 2 2
m cc2 eM = m cos 2MI + m cos 2 (396)

1 M1 2 M2

m sin e cos 0M = m sin 0 cos 8 + m sin 2 Cos a (397)
M 1 M M 2 M2 M2(397
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Equations (396) and (397) determine m and eM in terms of ml , eMI and m2 , 6M2.

In general the calculated value of m will not be an integer m = mI + m2 except

for the special case of eM =.eMl = eM2 . Therefore equations (396) and (397)
do not yield integer values for m , and therefore equation (393) in general

does not agree with equation (395). This suggests that in broken symmetry space-

time there exists an internal space scalar particle such that the addition
law for complex magnetic quantum numbers must be written as

- A = MI + M2 (398)

instead of equation (393). Equation (398) then represents two equations for the

two unknowns A and 6M in the following manner

Cos2 +Am Cos + m2 cos
2 M2 (399)

m sin 0M cos EM . m1 sin eMl cos eMl + m2 sin cM2 Cos 0M2 (400)

where the integer m is given by equation (395).

The solution of equations (399) and (400) is easily obtained to be

m/2 [I + (1 - 4f2)1 / 2 + m Cos 2M0 + m2 Cos 2M2 (401)

cos 0M 1/2 [1 + (I - 4f2)11 2  (402)

where

f = 1/m (m1 sin eM cos 6MI + m 2 sin 6M2 cos 6M2) (403)

If m = 0 , then A = 0 . Equation (401) can be written as

2 2 2 04
A =-m cos 2M + m1 cos 2Ml + m2 cos 2aM2 (404)

If Iml = Im21 then m = 0 or 2m , and A = 0 and 6M 
= 6M1 = OM2 for this spec-

ial case. Thus only when Iml 0 Im2 1 will the A particle carry angular momen-
tum. Therefore in general equation (393) is not valid except for the special

case Imll = Im2l . If OM 
= EMl = 0M2 , then A = 0 for all values of mI and m2 .

Finally, if OMI = 0 and OM2 = 0 corresponding to an internally symmetrical sys-

tem then eM = 0 and A = 0 .

The additional internal scalar particle that is required for the conser-

vation of quantized angular momentum in systems with broken azimuthal symmetry

is called the muthon. This particle may be important in the explanation of

high temperature superconductivity in the planar copper oxides because it may

mediate the attractive forces between Cooper pairs of electrons or holes. It

may be responsible for the coherent time state that is associated with high

temperature superconductivity.
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B. Addition of External Angular Momenta

The standard result for the addition of angular momentum operators is that
they add vectorially as follows

9

J= Jl + J2 (405)

whose z - component equation is

z Jlz J2z (406)

These operators have the following eigenvalues
9

2 =jj + I)h (407)

z mjl (408)

where j - 0,1,2,3,.-- , and mj - j,j-l,j-2,-.-, 0,-1,-2,..., -j

The corresponding equations for a broken symmetry spacetime are

J + A = JI + J2 (409)

z z J lz +2z 
(410)

where A and Az do not have internal phases. The following eigenvalues are as-
sociated with external momenta in broken symmetry space and time

j2 = J( + 1) (411)

J M mj cos M ejeMJ (412)
z J MJ

iz M jI = mjl cos e 1M I ej 0 MJ I  (413)

J2z M J2 = m J2 cos 9MJ 2 ej
6 MJ2 (414)

where for external motion MJl , eMj2 and @Mj are constants, and
7

j M Ri + j - Imj M = Imj9 cos OMj eje M J  (415)

and H5 is related to MRJ and MJ2 by placing equations (412) through (414) into
equation (410) which gives a result essentially equivalent to equation (398),
and where as before mj - mJl + mj 2 . Equation (410) determines A z and 8Mj .

For the case of the coupling of spin and angular momentum, the following
are standard results 

9 -
11
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+ (416)

Jz Lz +S (417)

L l + 1) (418)

2 s(s + 1) = 3/4 (419)

L = mL (420)

Sz  mS  (421)

J Z mj - mL + mS (422)

12 i (j + 1) (423)

j Imj + v (424)

Z =JmL + v' (425)

sff ImsI = 1/2 (426)

where t = 0,1,2,3,-..; mL = O,1,-2,--,± ; mS = ±1/2; mj ± ±1/2, ±3/2, ±5/2,
•-; j 1/2, 3/2, 5/2, -.-; and v and v' = 0,1,2,3,---.

The generalization of these equations to the case of broken internal sym-
metry for external motion is as follows

J+ A -a L + S (416A)

+ A =L +S (417A)2 Z Z 2

E2 + (418A)

L2 = f( + 1) (419A)

E - - ML Cos 8ML e j EN L  (420A)

§z MS M m s cos 0MS eJeMs (421A)

Jz M J = mj cos Mi eJ BMJ  Mi = mL + M S (422A)

2 3(3+ 1) (423A)
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j= M + j - ImjI (424A)

= + Z - ImL (425A)

f (4 26A)

where

Mi .Imj cos eK ejeMJ M j Cos eMj e j eMJ  (427)

ML i ImLI Cos e0 e j6 L  = Cos e e j 6 JL  (428)

. ImSI cos O6 eje S  MS = m cos 60 ej M (429)

and where m s 1/2 and ImsI = 1/2 in equation (429). Note that A is a scalar
in internal space. The unknown constants Az and eMj are then calculated from
equations (401) through (403) in terms of mL , mS , eML and 6MS using the fol-
lowing value of the function f

f - I/mj (mL sin 6ML cos OML + m. sin eMS cos eMS) (430)

For the case of spin and orbital angular momentum mj # 0 because spin is half-
integer and mj = mL + mS # 0 . For this case Az # 0 always. From equation
(417A) it follows that

mj cos ej ejeMJ + A f mML cos 6ML eJ eML + mS cos eMS ejeMS (431)

whose real and imaginary parts are given by
222

mj cos OmJ + Az -mL cos 2  ML + MS Cos 2MS (432)

mj sinO 0M cose OM = L sin aML cos ML + m S sin 9 MS cos 0MS (433)

This gives Az and eMj as in equations (401) and (402). Note that equation (422)
mj - mL + mS is a universal law that holds whether or not spacetime has broken

internal symmetries and must be used in conjunction with equations (430), (432)
and (433) to determine Az and eMj .

By writing the complex quantum numbers J , C and as

5 - Je J0  C Z - CejeC 5 = $e J O (434)

equations (424A), (425A) and (426A) can be used to obtain expressions for
J , ej , C , Oe and , . From equation (424A) it follows that
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cos f Im21 cos e j + -i (435)

sin 6. =mjI sin Mj Cos Mj (436)

which gives

tan 03 = (ImjI sin 8Mj cos 8MJ)/( j - Imj1 sin2 e M) (437)

6 3 %mjleMj/j (438)

J jil - imjl/j(2 - ImjI/j)sin2 eMI/2

Equation (425A) gives

C cos e C - I LI COS2 e ML - I LI (440)

£ sin 0' = IMLj sin 8ML cos 8ML (441)

which gives 
7

tan 6 C- (ImLI sin cML Cos ML )/( - (mL sin 2 ML) (442)

8£ 8MLIML/ (443)

C ZII - ImLI/l(2 - ImLI/t)sin2 ML12 (444)

Finally for the spin, equations (426A) and (429) give

$ - ImsI cos OMS - 1/2 cos 8MS (445)

e = 8MS (446)

Because both spin and orbital angular momentum are associated with rotations it
follows that for external motion

9ML = - 9 L 6MS =  S MJ -dj (447)

where 8OL , 85S and G5j are constants.

A theory of the addition of internal spin and internal orbital angular .mo-
mentum can be developed except that for this case the basic representation in
equation (394) is not valid when eM and O are variables for a fixed value of m.
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7. CONCLUSION. The broken symmetry of spacetime requires that the momen-
tum, angular momentum and energy operators are complex numbers in internal space.
These operators can be expressed in terms of the measured space and time coor-
dinates by noting that the measured coordinates are the real parts of the com-
plex number coordinates. The energy eigenvalues and eigenfunctions of the 3-D
linear harmonic oscillator are obtained for broken symmetry space and time and
it is found that the principal and magnetic quantum numbers are complex numbers
whose difference must be an integer. The momentum operator, energy operator
and Schrddinger's equation can be developed for the case of pure internal phase
rotations with constant coordinate magnitude, and the equations for an internal
space harmonic oscillator and for a particle in an internal space box can be
developed. A muthon particle must exist to account for the conservation of an-
gular momentum in space and time with a broken azimuthal symmetry. This particle
may play a role in the explanation of high temperature superconductivity in the
planar copper oxides where broken azimuthal symmetry may be associated with a
coherent time field and a raised level of the superconductivity energy gap.
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GAUGE THEORY OF TIME

Richard A. Weiss

U. S. Army Engineer Waterways Experiment Station
Vicksburg, Mississippi 39180

ABSTRACT. A gauge invariant differential equation is developed that re-
lates time to the pressure and energy density of a thermodynamic system. This
renormalization group equation for time is developed as a relativistic trace
equation that involves the same gauge parameters that are used in the relativis-
tic trace equation for the internal energy. In conjunction with the time equa-
tion and the internal energy equation, two equations giving the dependence of
the dimensions of space and time on the local energy density and pressure are
developed. Four simultaneous equations must therefore be solved to determine
the reaction rates of processes that occur in real media. The results of these
calculations indicate that physical processes occurring in a pressure and energy
density field associated with an ambient background material will run more slow-
ly than the reaction rates predicted by conventional calculations. This is due
to the non-ideal character of the state equation of the background substance;
for ideal state equations the renormalized and conventionally calculated reac-
tion rates are equal. The scale and gauge invariance requirement of the equa-
tion of time gives a set of equations that describe the time evolution of an
interacting thermodynamic system in terms of the fundamental gauge parameters
of the equation of time. The effects of mechanical or electromagnetic radia-
tion on the equation of time is treated by a perturbation technique. Applica-
tions to solids, quantum liquids and real gases are considered. A theory of
coherent time states in matter is developed and applied to the development of
a theory of high temperature superconductivity in the planar copper oxides.
This theory predicts that the value of the normalized superconductivity energy
gap 2A/kTc should be 6/T times greater than the value of the normalized energy
gap predicted by the BCS theory for conventional superconductors.

1. INTRODUCTION. The nature of time is still a mystery today although
theories about time date back to the ancient civilizations. 1 - 27  The Babylo-
nians, Greeks and Romans believed in cyclic time and the theme of recurrence
appears repeatedly in their literature. 9- 1 1 Aristotle and Plato both believed
in cyclic time. With the advent of Judaism and Christianity came the idea
that events occurred in linear time. 9 , 11 Only with the development of the
mechanical clock did time acquire an abstract nature of mathematically mea-
sured sequences, and time as an abstract arameter was introduced by Galileo
in his studies of the motion of bodies. 9 , 1 Newton and Leibniz introduced

the concept of instantaneous velocity, and it was Newton who introduced the
idea of absolute time that flows uniformly without any relation to external
things. 1 1 However, it was Einstein who made the important discovery that time

is in fact local and dependent on the relative velocity of observers.
2-1 ' 1 7 '

18,22-27 It was also Einstein who demonstrated that time slows down in the

presence of a gravitational field by predicting the gravitational red shift
of spectral lines in light from stars like the sun. ,  Time also plays an
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important role in the rhythms and processes of biological systems. 5,17 In
thermodynamics time is closely related to the second law of thermodynamics for
irreversible processes where the concept of time's arrow appears. 1

- , 7 , 8 , 2 2 , 2
4

Cosmology is intimately related to the concepts of time, and it has been sug-
gested that the expansion of the universe is the prime cause of the arrow of
time in thermodynamic systems.7,11,16-18 In quantum gravity theory the concept
of time itself becomes nebulous and may not be definable in the early universe.28
Time and thermodynamics are closely intertwined. A deficiency in the present
day concepts of time is the lack of a theory that describes the effects of am-
bient bulk matter and energy on time, i.e., a theory that describes the effects
of pressure and temperature on time in gases, liquids and solids.

This paper develops a thermodynamic gauge theory of time that is based on
a previously developed relativistic gauge theory of thermodynamics. 2 9 This
gauge theory of bulk matter and energy is formulated by means of a relativistic
trace equation which can be written as follows

2 9

E+a 3P= E aaa (1)

a
where the gauge functions E , 8p and aE are given by

T/V(dU/dT) T/V C (2)

$p = d/dV(PV)U = P - KU (3)

a = T/V(dUa/dT) pav (4)8E

and where E , U and P = renormalized energy density, internal energy and pressure
respectively; Ea , Ua and pa = unrenormalized energy density, internal energy
and pressure respectively; T and V = absolute temperature and volume respective-
ly, and the heat capacity at constant PV is given by

CPV = (dU/dT) (5)

and where the bulk modulus at constant U is given by

KU - - V(dP/dV)u = n(dP/dn)U  (6)

where n = I/V . Equation (1) requires the renormalized state equation to be
softer at high densities than the state equation predicted by the unrenormal-
ized calculation.2 9 Figure I shows a comparison of the average energy per par-ticle for the renormalized and conventional neutron star matter state equations.

A generalization of equation (1) to thermodynamic systems with broken in-
ternal synmetry has been proposed for partially coherent matter in the form 30

+ E 3 p Ea + 6a (7)
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where the complex number gauge functions aE and Bp are given by30

E = T/V(dU/dT)pv 8P = d/dV(PV)U (8)

and U and P - complex number internal energy and pressure respectively. The
vacuum equations corresponding to equations (1) and (7) are respectively

3 0

Ev + v - 3,v = 0 (9)

EV + 8E - 38 = 0 (10)

Equation (9) determines Ev and PV while equation (10) determines Ev , 0Ev and
pv , Opv . Thus Ev and pv have finite values for the vacuum.30  Equations (1),

(7), (9) and (10) also have zero-temperature forms which are written as follows

E - 3$ =0 Ea - 3 f Ea (11)
0 p 0 0 P o

Ev - 3 aov 0 vo - 3v =0 (12)
0 p 0 P

where
2 9 ,30

S=( + )P -K p (I + -K (13)o 00 0 p 0 0 0
ov V pV KV -ovrv - (14)

ap = (1 + y)Pv - K V = (1 + V)V - KVo
o 0 o 0

where yo , Ko and Yo , Ko = scalar and complex number values of the zero-tem-v
perature GrUneisen parameter and bulk modulus of matter respectively, and Yo
Kv and T , KY = corresponding values of these quantities for the vacuum. The
zero-temperature values of the bulk modulus are given by

K = ndPo/dn K - ndP /dno 0

(15)
Kv = ndPv/dn Kv = ndPV/dn

0 0 0 0

For T = 0 the value of KU in equation (6) is29

0 -0 -
%=Ko -YP 0%= - (16)

The zero-temperature GrUneisen parameter yo is the gauge parameter for the T = 0
29 ,3 0theory. For systems with PV = aU or PV = aU where a = constant it follows

that

B1E  = 0 = 0 E =Ea (17)

BE f 0p = 0 = f real number
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Equation (17) describes the ideal classical gas and the ideal nonrelativistic
and ultrarelativistic Fermi gases. It is plausible that the gauge theory of
time that will be developed in this paper must incorporate the functions OE and
ap as coefficients in the fundamental equation of time in a manner similar to
the way they are used in the energy trace equation (1).

It has been suggested that the complex number trace equation (7) with its
complex number internal energy and pressure implies that the coordinates of
space and time must also exhibit broken internal symmetries and be represented
as complex numbers. The internal energy, pressure and spacetime coordinatescan then be written as30

Uej U  P = Pe 0 P  (18)

= xee x  y = ye j oy  (19)

- ze J e z t = tej e t  (20)

where U , e U , P , ep , x , 6x , y , ey . Z , e z and t e t = magnitudes and internal
phase angles of the internal energy, pressure, spatial coordinates and time re-
spectively. 30 Time varying processes are described in this paper as being in-
coherent (or linear) if dt - td6 t and coherent (or circular) if dt << tdet. In
the general case dt . td6t and time both stretches and rotates with changes in
the energy density and pressure of matter.

Equation (1) with its gauge functions aE and Sp was developed in part to
account for the need to have a softer equation of state of nuclear matter and
the neutron gas.29 This paper will use the gauge functions 6E and Bp to develop
renormalization group equations for coherent and incoherent time whose solutions
determine the reduced rate of processes that occur within the energy density and
pressure fields of real (non-ideal) thermodynamic systems. Time is locally de-
pendent on the energy density and pressure of the ambient matter, t = t(E,P) or
E =E(E,P) , and is determined by relativistic renormalization group equations.
These calculations do not change the rate of processes that occur within an ideal
ambient thermodynamic system. A theory of coherent (or circular) time is de-
veloped and applied to high temperature superconductivity in the planar copper
oxides.

This paper is organized as follows: Section 2 develops a gauge theory of
scalar and complex number time and presents a basic partial differential equa-
tion for time in bulk matter and the vacuum, Section 3 treats the differential
equations that determine the dimensions of space and time in ambient bulk mat-
ter and energy, Section 4 considers scale and gauge invariance of the equation
of time and its connection with nonequilibrium thermodynamics, Section 5 studies
the time equation for solids, quantum liquids and real gases, Section 6 consid-
ers the effects of vibrations on the determination of time in matter, and fi-
aally Section 7 investigates coherent time states in matter and their applica-
tion to high temperature superconductivity.
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2. GAUGE THEORY OF TIME. This section develops a relativistic partial dif-

ferential equation of time that describes the dependence of time on the local
energy density and pressure of matter and energy. Both scalar and complex num-

ber equations of time are developed which can be expressed in terms of the tem-
perature and particle number density of matter.

A. Scalar Equation of Time.

The chosen form of the equation of time is based on five conditions: a) that
it be linear in time, b) it must contain the Minkowski spacetime signature, c) it
must involve the gauge functions aE and 6p so that the time equation affects real
thermodynamic systems and produces a null effect for ideal systems in a manner
similar to that of the energy trace equation (1), d) that the effect in real gases

occurs in the third and higher virial time coefficients in order to agree with
the effects of the energy trace equation (1) on the real gases, and e) that the

time equation be scale and gauge invariant. These conditions and an inspection
of the form of the energy trace equation (1) suggest that the proper equation

for incoherent (scalar) time is

t- at/SE + 3p at/aP = ta  a ta/9Ea (21)
E ~ PE

where t = renormalized time, and ta = unrenormalized time. Equation (21) can be

written in operator form as

Ct = ta 6 ta/ Ea (22)

where the time operator £ is given by

C = I - /E  /E + 3p 3/3P (23)

Equation (21) is a renormalization group equation of time that treats time as a

function of the local energy density and pressure, t = t(E,P) . The zero-tem-
perature version of the time equation (21) is written as

t + 360 dt /dP = ta (24)
0 P 0 0 0

where to and ta = zero-temperature values of the renormalized and unrenormalized

time, Po = zero-temperature value of the pressure, and 6p is given by equation

(13). From equation (21) it follows that

t>ta 6p < 0 high density and temperature (25)

a ap > 0 low denzity and temperature (26)

while equation (24) gives
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> a o
to > ta < 0 high density (27)

t<a 0 > 0 low density (28)
0 0 P

Figure 2 shows the relative behaviour of t and ta in terms of density. For ideal
systems 8 E - 0 , 6p - 0 and 8a - 0 so that equation (21) gives t - ta and equa-
tion (24) gives to ta for an ideal T - 0 system.

According to equation (21) the renormalized time depends on the local ener-
ry density and pressure of matter and energy. At high densities and temperatures
of interacting matter and energy the renormalized time slows down (the time inter-
val between two events is larger) relative to the unrenormalized time evaluated
at the same energy density and pressure. Accordingly, the rates of processes
that occur at high pressures and temperatures are expected to be slower than is
conventionally predicted. Equation (21) gives the renormalized time in the pres-
ence of ambient matter and energy. For the vacuum equation (21) becomes

t- 8v atv/aEv + 38a atv/3Pv = tva (29)

where the renormalized vacuum energy density Ev and pressure pV are obtained
from equation (9) as the homogeneous solution to the energy trace equation. Be-
cause tva = constant, equation (29) can be rewritten as

3V VtvvIE V +3aV 3tV1/apv = 0 (30)
E P

by a change of variable tv' = tv - tv a . Equations (9) and (30) show that tv
Ev and pv have nonzero values for the vacuum. The general solution of equation
(21) can be written as

t = t p(E,P,ta ) + tv'(EV,Pv ) (31)

where tp = particular solution of equation (21). The energy trace equation (1)
can be used to determine E(n,T) and P(n,T), and if ta = ta(n,T) and tv tv(n,T)
it follows that

t = t (n,T) + tV' (n,T) (32)

where n = particle number density of ambient matter. The constant tva = char-
acteristic time for a process occurring when the ambient medium is the vacuum.

B. Complex Number Time Equation.

It has been suggested that time is associated with an internal phase and
must be written as in equation (20). Therefore the simplest generalization of
the scalar time equation (21) is the following complex number equation for par-
tially coherent time

- SE 3t/DE + 36 t/3P = ta - a ta/ Ea (33)
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The solution of equation (33) gives t and Ot in terms of energy density and
pressure. The complex number equation of time for the vacuum is obtained from
equation (33) with tav - constant to be

f 8Ev aEv,/aEv + 3,v /Ev',/pv 0 (34)
-.v, -.v va

where the constant value of tva is introduced as t - t - t . The solution
to equation (34) gives tv and 6v . The general solution of equation (33) can
be written as the sum of a particular and a homogeneous (vacuum) solution as
follows

E = E (n,T) + iV'(n,T) (35)

A more complicated generalization of equation (21) would incorporate complex
number energy density and pressure as follows

- 3f/3E + 3p -/aP _ ta _ $a ata/aEa (36)

Correspondingly, a more complicated vacuum time equation is obtained from equa-
tion (36) to be

-v -v aEV'/3r + 3-v ,v'/,P v = 0 (37)
t +(

Neither equation (36) or (37) is considered in this paper. The complex number
time equation (33) will be used in Section 7 to introduce the concept of co-
herent time states in matter and to describe high temperature superconductivity
in the planar copper oxides.

C. State Equation for Time and Alternate Form of Time Equation.

In this subsection the dependence of time on density and temperature is
considered and the equation of time is rewritten in terms of these parameters.
For instance, the chain rule for derivatives gives

Dt/an = at/DE aE/an + at/aP 3P/an (38)

at/aT = at/aE aE/aT + at/aP aP/aT (39)

where n = particle number density and T = absolute temperature. In fact E and
P are more fundamental quantities than n and T , but n and T are conventionally
used to write the state equations for matter. From equations (38) and (39) it
follows that

at/aP = eat/an - fat/aT (40)

at/3E = hat/aT - gat/an (41)

where
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e - LI/D eE/T f - LI/De  E/an (42)

h - I/De  P/an g - L/De  P/aT (43

D e= P/an aE/3T - aP/BT aE/an (44)e

Combining equations (40) and (41) with the equations of time (21) and (33) gives
the following alternative forms for the equations of time

t - qI at/3T + sI at/an - ta -.qa ta/MT+Sa ta/3n (45A)a a a/t T + a tan (45B)

S- q 3a+ta/T + a ta/ n (45B)

where

q, = h$E + 3fSp (46)

sI = gBE + 3e8p (47)

a_ h 8 (48)

aga am (49)

where ha and ga are calculated in a manner identical to that in equations (43)
and (44) except that the superscript "a" is added to E and P . Solutions to
equations (45A) and (45B) are useful for astrophysical and geophysical problems
because having a state equation for time of the form t - t(n,T) and et - et(nT)
leads to a calculation of the rate of change of time with radial distance as
follows

3t/3r = at/3T aT/ar + at/an Wan/r (50A)

ae t/3r ae t/aT aT/ar + 3 t/n an/ar (50B)

where aT/ar and an/ar are calculated from stellar equilibrium equations. Equa-
tion (45B) is used in Section 7 to describe coherent time states and high temper-
ature superconductivity.

D. Formal Solution for the Zero-Temperature Scalar Time Equation.

The solutions of the time equations (21) and (33) or (45A) and (45B) are
generally difficult to obtain. However, the solution to the zero-temperature
time equation (24) can be obtained formally because of its simple form. Stan-
dard methods show that equation (24) has the following solution

31

e ( n )  O i3en) nr.H
t = Ce + 1/3e fG'/H' dn'/n' (51A)
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where

G' - e-(n') ta(n') H 80(n')/Ko(n') (51B)

O(n) = - I/3fl/H dn/n H = 0 (n)/K (n) (52)
0 0 P 0

where the zero-temperature bulk modulus Ko is given by equation (15) and where
from equation (13)

H B0(n)/Ko(n) - (1 + yo)Po/K - 1 (53)

The zero-temperature vacuum solution is

tv = C e(n) + tva (54)

Finally, because of the appearance of the renormalized quantities Po , Ko and o
in equation (51) it is clear that a prerequisite for the solution of the zero-
temperature time equation (24) is the solution of the zero-temperature energy
trace equation (11).

E. Renormalized Process Rates.

The simplest calculation of renormalized process rates is to assume t -

characteristic renormalized time for a process, and ta = characteristic unre-
normalized time for a process. Then the corresponding rates are given by

R= 1/t Ra = 1/ta  (55)

where R = renormalized process rate, and Ra = rate given by conventional calcu-
lation. Placing equation (55) into equation (11) gives

I/R2 (R + $ R/E - 38 aR/aP) = (/Ra) 2 (Ra + 5' aR aIEa) (56)

Equation (56) gives the renormalized reaction rate of a process in terms of the
conventionally calculated reaction rate. The reaction rate solution of equa-
tion (56) is of the form R = R(E,P) . For an ideal state equation of the am-
bient matter in which the reaction is occurring 8E - 0 and Bp = 0 so that for
this case R = Ra . For T = 0 the reaction rate equation (56) becomes

I/R 2(R - 30 dR /dPo ) = I/Ra (57)
0 0 P o 0 0

From equation (56) it follows that

R < R a  high density interactipg Fermi Gases (58)
high temperature real gases
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low density Fermi gases
R > Ra (59)

low temperature real gases

Equation (57) gives

< Ra  high density T -0 interacting Fermi gas (60)0e 0

R > Ra low density T- 0 interacting Fermi gas (61)
0 0

For ideal systems R - Ra and Ro = R . An analysis similar to that given in
equations (38) through (44) gives

R/P - eaR/an - f3R/aT (62)

R/E - haR/aT - g3R/an (63)

so that the reaction rate equation (56) can be written as

I/R 2(R + qI aR/aT - s I 3R/3n) (1/Ra) 2(Ra + qa 3Ra/3T - s' R a/3n) (64)

where q, s, qa and sa are given by equations (46) through (49) respectively.
The solution of equation (64) gives the renormalized reaction rate as R -R(n,T).
Finally, it should be pointed out that the definition of reaction rate given by
equation (55) is a simplified version of the more general definition

R = dN/dt Ra = dN/dta (65)

where N = species particle number. From equation (65) it follows that the re-
normalized incoherent reaction rate is

R = R a/(dt/dta) (66)

where t is given by the solution of the time equations (21) or (4"). Equation
(64) is useful when only a characteristic time is known for a prJcess from
which the rates can be estimated by an inverse time as in equation (55). Equa-
tion (66) is useful when a formal reaction rate function Ra given in equation
(65) is known for a process. Figure 3 shows the relative behaviour of R and Ra

in terms of particle number density. The complex number rate equations analo-
gous to equations (56) and (64) are obtained from the replacement R R . For
this case equation (66) becomes

R Ra/(dt/dta) (66A)

For completely coherent time variation dt = jtd~t and

R = Ra/(JdO t/dta) (66B)

a result which will be examined in Section 7.
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3. DIMENSIONS OF SPACE AND TIME. This section considers the possibility
of the dependence of the basic dimensions of space and time on the energy den-
sity and pressure of the ambient matter and energy. It is not apriori clear
that the dimensions of space and time are independent of the local pressure and
energy density. This section develops a set of four coupled partial different-
ial equations for the energy density, time, space dimension, and time dimension.
At low energy density and pressure common experience suggests that

Ds %3 Dt , 1 (67)

where Ds  renormalized space dimension and Dt - renormalized time dimension.
Equation (67) may not be valid for high densities and temperatures. In this
paper it will be assumed that Ds f Ds(n,T) and Dt - Dt(n,T) are unknown func-
tions of particle number density and temperature that need to be determined
along with E(n,T) and t(n,T) by a set of four coupled renormalization group equa-
tions that are similar in form to the energy trace equation (1) and the equa-
tion of time (21). It is sometimes convenient to write

Ds  3 + ds  Dt  I + (68)

Da =3 + da Da =I + da
s s t t (69)

where Da and Da = unrenormalized space and time dimensions respectively. Space
and time are fractal when d. < 0 and dt < 0 .3 0

For reasons similar to those used for the development of equations (I) and
(21) it is suggested that the four coupled energy density, time, time dimension,
and space dimension equations are

E+D 8 E - Dsa P = Ea + D aa (70)

t - DaE at/aE + Ds6 at/aP = ta - D a a ta/Ea (71)

D + Dta 3Dt/3E - Ds0 aDt/3P - Da + Da 3D /Ea (72)
t tE aE D8 s /P D Dt E t

Ds + DE Ds/3E - Ds8 P 3D /aP = Da + D a ,, 3Da/aEa (73)

The four unknown quantities that are determined by these equations are E, t
Dt and Ds . For low density matter Dt = Dt I and Ds = Ds = 3 and in this
limit the left hand sides of equations (70) through (73) have the Minkowski
signature (I , -I , -1 -1) . Using equations (38) through (44) allows equa-

tions (70) through (73) to be written as

E + D - D6= Ea + Daaa (74)
t E -s P t E

a a a
t - q2 at/T + s2 Wat/n = t - qD ata/aT + s. ata/an (75)
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D + q Dr/3T - s Dt/an - Da + qDa 3D/aT - sa aD an (76)
t 2 t 2 t t D/ttt

D + q 3Ds/3T - s aDs/an - D a + qD s' D T/an (77)
s 2 s 2 s s D s D 8

where

q - hDt E + fDs - h(1 + dt )BE + f(3 + d)a qa Dq (78)

s 2 - gDt BE + eDsBP - g(l + dt) BE + e(3 + ds)BP  s8 a D as a  (79)
5D Dta (9

The rate equations (56) and (64) with space and time dimensions Ds and Dt re-

spectively become

E/R2(R + Dta R/aE - Ds8 9R/aP) - (l/Ra) 2 (Ra + D'S 'Ra /aEa) (80)

1/R2 (R + q2 3R/3T - R/n) (I /R a)2(o + q aRa/aT - a aRa/3n) (81)

Equations (80) and (81) can replace equations (71) and (75) respectively.

For systems with PV = aU , such as the ideal classical gas, ideal nonrela-
tivistic Fermi gas and the ideal ultrarelativistic Fermi gas, BE = E = 0 and
Bp = =a - 0 and it follows that

E = Ea t =t a  R = Ra (82)

Dt = D a I D =Da = 3 (83)
t t S 5

dt = da = 0 d =da = 0 (84)
t 5 5

The choice Da v I and Da 3 for low density and pressure systems is due to com-
t 5

mon experience. From equations (70) through (73) it follows that

a a a a
E = Ea t = t R = R Dt = D 1 D - Da = 3 zero density (85)

E> Ea a R>Ra Dr >Da D >Da low density (86)
t s s

E < Ea t > ta R < Ra D < Da D < Da high density (87)

a =Ra D Da D Da
E = Ea t = ta R R Dt 

= Da  D = Da  infinite density (88)
(asymptotic freedom)

Figures 4 and 5 show the relative variation of D and Dt and Ds and Da respec-
tively. These figures assume a compactification of dimensions to the values
Da = 3 and Da = I in the zero density limit. At high densities the renormal-s ~ ta
ized dimensions satisfy Dt < Da and Ds < D so that even at high densities the
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renormalized dimensions Ds and Dt may not be too different from the 3 + I Min-

kowski spacetime.

The vacuum is a real system with the properties

Eva . 0 tva - constant (89)

Dva = 3 va dva vas Dt  - s -0 dt  -o (90)

For the vacuum equations (70) through (73) become

Ev + Dt8 Dvav = 0 (91)

t DtE s P "(2

t Dvav atv/aEv + D Vv a tv/apv -va (92)

D V + Dv a v aDv/aEv - DVV Dv/aPv = Dva (93)
t tE tsP t t

Dv + Dv5 v 3D v Ev - Dvv 3Dv/3Pv = D va (94)

The vacuum is a real system that exists at finite values of density and temper-
ature. In this paper the renormalized vacuum is simply the set of solutions to
equations (70) through (73) with Ea = 0 in equation (70). The corresponding
vacuum equations for equations (74) through (77) are

Ev + Dt PDv = 0 (91A)

tv -qv 3tv/ar + sv atv/an =t v a (9A

V V 3 , v v

DV + qv DDV/aT - sv 3Dv/3n 3 (94A)s 2 s s

which allow the calculation of renormalized vacuum parameters. Equations (93),
(94), (93A) and (94A) can be made homogeneous by writing

Dv = I + dv  Dv =3 + dv  (95)
t t s s

It should be noted that Dv Dva = 1 and Dv j Dsa = 3 . Finally, the vacuum
time equations (92) and (92A) can be made homogeneous by writing tv' = tv - tva

as was done for equation (30). The constant tva = characteristic time for a
reaction occurring when the ambient medium is the vacuum. The time tva depends
only on physical constants and the kinematic parameters of the reaction. The
renormalized vacuum values Ev , tv , Dv and Dv depend on density and tempera-

t S
ture. The homogeneous forms of the vacuum equations (91) through (94) are
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Ev + (I + d')8' - (3 + d - 0 (91B)

-,_ VV ( + V V V d ,8 ptv/DEv + (3 + dV)8p at /DP v  0 (92B)
t d E v  s v d/p, 9B

d t + (I + dt)E ad'aE - (3 + ds)B P  d /av 0 (93B)

dV + (i + d')a adv/aEv - (3 + dv) Bv adv/3PV 0 (94B)
s tE ss P s

while the homogeneous forms of the vacuum equations (91A) through (94A) are

Ev + (1 + d')Bv - (3 + dv)V 0 (91C)

tv q2 3tv/T + s2 atv/n 0 (92C)

dV + q2 dv/3T - s2 adv/an - 0 (93C)
t 2 t 2 t

d + qv d/DT-sv ad/nO (94C)
s 2 s 2 s

where from equations (46), (47), (78) and (79) it follows that

qV tha + fDs=p = h(l + + f(3 + ds)B P  (95A)
q2  tD8 fE~ sdPt)Es

-vv= gDa + eDV -ap g(1 + dv)8 + e(3 + (95B)s2 =gt E s P t(95s)

The zero-temperature forms of equations (70) through (73) are

E 0 0 D0 °  E a (96)

to0 +Do 3t°/Po t a  (97)

D0 - D0 a0 3D0 /ap ° =Da (98)
t s P t to

DO - D 0 D0 0fi Da (99)

S s P s so

where sometimes it is convenient to use the following notation

D t 1 + d°  D 0  3 + do (100)
t t S s

Da =I + da Da 3 + da (101)
to to so so
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Equations (96) through (99) are four equations for determining the renormalized
values E° , to , DO and Do for zero-temperature solids and quantum liquids. As
described in Reference 29 an additional equation is required to determine yo
that occurs in equation (96). From equations (96) through (99) it follows that
E° , to , Do and DO have the same variation with density as is shown in equa-
tions (85) through (87) and in Figures 1, 2, 4 and 5 respectively. The solu-
tion of equations (96) through (99) are generally difficult because of their
coupled nature. An approximate solution for equations (98) and (99) can be found
by first taking DO - 3 in equation (96) and solving for E° and PO (and yo , with
an additional differential equation coming from a power series expansion in the
temperature as in Reference 29). Then the solutions to equations (98) and (99)
can be written approximately as

3 1

DO'E /3e GD o dn /n' (102A)
0t E e(n) - 1/3 e - (n) nGt/H n

D F Fe-(n)- 1/3 e - (n) f G/H' dn'/n' (102B)

where

G = e (n') Da(n') GDso  = e0(n')Da (n) (103)Dt to Dsso

where (n) and H' are given in equations (52) and (51B) respectively. The zero-
0temperature vacuum equations are obtained from equations (96) through(99) to be

Eov - D Ov o = 0 (104)
s P

tov + Dov Ov at OVpov =va (105)s P o

DOv - D ov ov DDO0PV = 1 (106)t s P t

D ov - D ovov 3D0 /DP'v = 3 (107)
s s P s
va

where to = constant = characteristic time for a process to occur in the vacuum
at zero temperature. Equations (104) through (107) can be made into homogene-
ous equations by writing tov' = tov - tva and

D v = I + d v  Dv a = I dva = 0 (108)
t t to to

D v = 3 + dov  Dv a = 3 dva = 0 (109)S S so so

and therefore from equations (106) through (109)
dov E0e-(n) dov FOe-(n)

o-, n), F (110)
t s

Note that the renormalized zero-temperature vacuum does not have the 3 + 1
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geometry. Equations (104) through (107) are four equations for Eov , tov

DOv and DQV for the renormalized zero-temperature vacuum.
t s

4. SCALE AND GAUGE INVARIANCE AND NONEQUILIBRIUM THERMODYNAMICS. This
section develops simple expressions for the time evolution of an interacting
thermodynamic system by considering the scale and gauge invariance of the left
hand sides of the time equations (21) and (33). Suppose that for fixed energy
density and pressure a scale and gauge transformation of time is made of the
form

t =te-  =t(l- +-) (111)

V = te - j o F(I - jo + --- ) (112)

in the left hand sides of the time equations (21) and (33) respectively by
changing some physical parameters such as interparticle interaction parameters.
Using equation (111) and the assumed scale invariance of the left hand side of
equation (21) gives

(0 - BE 3/3E + 3a' 3/P)te- 0 = e-O(l - 6 3/3E + 36p /aP)t (113)

Some elementary calculations show that equation (113) is equivalent to

6E(- at/aE + ta0/E) + 3Bp( t/aP - t o/P) = - BE  t/3E + 3Be 3t/aP (114)

Assuming separability, equation (114) can be written as

a'E = a /[I - (ta /9E)/(Ot/aE)l % B [1 + (t3O/3E)/(3t/aE1] (115)

!Bp 
= ap/[1 - (t3O/3P)/(0t/3el] nu ap[l + (ta /aP)/(3t/ae)] (116)

P P P

which relate the transformed gauge parameters to their original values. The
approximations in equations (115) and (116) are valid for short time scales.

A power series expansion of a and a gives

6E = 6E + d E/dt(t' - t) + -.- (117)

I I

6p = 6 p + d p /dt(t' - t) + -- (118)

Using equation (111) in equations (117) and (118) gives

8B = 6E - (daE/dt)ot + 
(119)

6B = 5p - (dBp/dt)ot + (120)
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Combining equations (119) and (120) with equations (115) and (116) respectively
gives the following time evolution equations for the gauge parameters

(daE/dt)_ = -[BE/ (a3/aE)/(at/aE)]/[1 - t(as/aE)/(at/3E)] (121)

(d p /dt)_ = -[ p/4 (W3/P)/(3t/3P)]/[l - t(a/P)/(at/aP)] (122)

where to obtain equations (121) and (122) a negative expoaent sign was chosen
in equation (111). If a positive sign had been chosen in equaL-on (111) the
time evolution equations would be

(d6E/dt)+ = -[aE/0 (30/aE)/(at/aE)J/[1 + t(a/aF)/(at/E)] (123)

(d8p/dt)+ = -[/ (/3P)/(3t/3P)]/[1 + t(I/)/( t/aP)] (124)

where the gauge parameters PE and Bp are given in equations (2) and (3) respec-
tively.

Because the time evolution equations must be independent of the choice of
the sign of the exponent in equation (111) the rate of change of the gauge para-
meters must be written as

d8E/dt = 1/2[(dBE/dt)_ + (d6E/dt)+ (125)

dap/dt = 1/2[(dap/dt)_ + (d$e/dt)+] (126)

Combining equations (121) through (126) gives

22
d E/dt = - (BE E/0 - t 22) (127)

22
d6e/dt = - (ape/)/(0 - t 2p) (128)
P P P P

where

E = (/E)/(3t/3E) (129)

p = (/SP)/(3t/Me) (130)

Because appears symmetrically in equations (127) and (128) a positive or neg-
ative choice for the sign of 4 does not alter the result. A similar analysis
using the gauge transformation given in equation (112) gives the result

d EIdE = - /)I + E2-) (131)

da/d E = - ( Mp/P)/(l + T 2) (132)

383



where

*E (flE)(atlaE) (133)

p ( laP)lOE/aP) (134)

Again, because 0 appears symmetrically in equations (131) and (132) it follows
that these equations are independent of the sign in the exponent of equation
(112). For coherent time variation with dE - jFdet it follows from equations
(131) and (132) that

I/t dBE/dOt M - (8E /O)/(j - j2) (135)

I/t dBp/dOt M - (app/¢)/(l - I;2) (136)

where

,P = (30/lE)/(ae /3E) (137)
E t

= (a/aP)/(Et /3P) (138)

A similar analysis can be done for equations (45A) and (45B) to obtain expres-
sions for dqj/dt and dsl/dt , however a simpler way is to combine equations
(46) and (47) with equations (127) and (128)

Equations (127) and (128) become more simple for short time scales

dBE/dt = - 6EOE/ (139)

d p/dt = - 6pp/ (140)

By writing 0 as a product 0 = f(P)g(E) , it is easy to show that the solution
to equations (139) and (140) is

* = c(BEB p) - = c[T/V C PV(P - KU)] -1 (141)

where c = constant. The value of c can be chosen by evaluating equation (141)
at a specific thermodynamic state with * - 01 P T = T1 and n = nI * Equations
(127) and (128) describe the time evolution of an interacting thermodynamic
system in terms of the gauge parameters 6p and BE and in terms of a potential
function *(E,P) .Thus the gauge parameters Bp and BE are the basic physical
quantities of nonequilibrium thermodynamics. Equation (128) has a proper T=0
limit

=0- (Btp0p )/(1 - t 2 o 2 ) (142)

P PP o P
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o0
where $p is given by equation (13) and p is obtained from equation (130) to be

o = (oo°lP°)/(ato /ap) (143)

The basic time evolution equations for interacting thermodynamic systems can
be obtained from the scale and gauge invariance of the fundamental equations
of time (21) and (33) respectively.

5. THERMODYNAMIC PARAMETERS FOR SOLIDS, QUANTUM LIQUIDS AND REAL GASES.
This section evaluates the thermodynamic parameters e , f , g , h BE and Bp that
appear in the equations of time (45A) and (45B) and the reaction rate equations
(64) and (66).

A. Solids and Quantum Liquids.

The state equation of a solid or Fermi liquid in which a nuclear, atomic
or molecular reaction is occurring is assumed to have the following simple
closed form

2 9

E = E + E.Tj  (144)o *j

P = P + P.Tj  (145)
o j

where E and P = renormalized energy density and pressure respectively, Eo and
Po = corresponding zero-temperature values of the energy density and pressure,
and Ej and P. = thermal coefficients for energy density and pressure respect-
ively, and wIere29

j = 1 high temperature solid
j = 2 low temperature Fermi gas
j = 5/2 low temperature molecular Bose gas
j = 4 low temperature solid

Combining equations (44), (144) and (145) gives

De = jTJ- 1 (Z + mT j ) (146)

I/De = (jfT j - 1) - I ( I - m /Z'TJ + ") (147)

where

t. = E. 3P /an - P. aE /;n (148)

m. = E. aP.lan - P. aE.lan (149)
S 3 3 3 3

Then equations (42) and (43) are used to calculate the coefficients e , f , g
and h as follows
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e - E/(tj + mjT j ) (150)

f - (aE /an + 3E /3n TJ)/D e  (151)

g M P /(tj + mT) (152)

h = (P /an + aP /3n TJ)/D e  (153)

For small T equations (150) through (153) can be expanded in a power series in
T . These equations determine e , f , g and h for state equations of the form
given in equations (144) and (145). The gauge functions are required for the
solution of the time and rate equations (45) and (64) or (66) respectively. The
functions aE and Op are defined in equations (2) and (3) which combined with
the state equations (144) and (145) give 29 '3 0

8
E - J1 + YoPo/(Po - Ko)]E TJ (154)

S (I+Y)P -K 0 + E. Vdy0/dV Tj  (155)

For the conventional state equation of the form

Ea = Ea + EaTj  (156)
0 J

pa = pa + PaTj (157)

it follows that

Da a, jTJ-l(a + ma Tj )  (158)

e j j

fa = 3 a /3n - a a/an (159)

ma , E a aPa/an _ pa aE/3n (160)

21i i i

g a aP /(, + maTJ) (161)i Pj/(Z

ha = (aPa/an + Pa/ an TJ)/Da (162)
o i e

Ea= j[l + Yaa/(P - Ka)]aTEj (163)

which are the quantities required to evaluate the right hand sides of the time
equation (45) and the rate equation (64). Before equations (45) and (64) can
be solved, the energy trace equation (1) must be solved to determine the re-
normalized functions Eo , PO , Ej , Pj , OE and 6p in terms of the correspond-
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ing unrenormalized quantities E0 , o ' , and . Finally, the

unrenormalized reaction rate Ra that appears in equations (64) and (66) for
processes that occur within solids or quantum liquids may be of the form

Ra = Ra + RT (164)
0

where a - constant. Equation (164) allows processes to occur at T = 0 due to
pressure.

B. Real Gases.

For real gases the renormalized state equations are given by a solution of
the relativistic energy trace equation (1) as

2 9

P = nRGT( + Bn + Cn2 + Dn3 + ...) (165)

= nR GT(3/2 - TdB/dT n - 1/2TdC/dT n 2  1I/3TdD/dT n 3  .) (166)

where RG =2gas constant. The corresponding unrenormalized state equations are
written as

pa = nRGaT(I + Ban + Can2 + Dan3 + 3(167)

Ea = nR GT(3/2 - TdBa/dT n - 1/2TdCa/dT n 2 - /3TdD a/dT n .... ) (168)

where Reference 29 gives the connection between the renormalized and unrenormal-
ized virial coefficients by solving equation (1) out to third order. Combining
equations (44), (165) and (166) gives after some algebra

D = n2R2 T( ° + ain + 2 + --.)+(169)

e RGT o a 1 n 2n .

where

= 3/2B - T 2d2 B/dT2 - 3/2TdB/dT (170)

CI = 3C - 1/2d/dT(T 2dC/dT) - 2Bd/dT(T 2dB/dT) + 2TdB/dT d/dT(TB) (171)

a2 = 9/2D - 5/6TdD/dT - 1/3T2 d 2D/dT 2 - 4CTdB/dT - 3CT2 d 2B/dT 2  (172)

- 1/2BTdC/dT + 7/2T 2dB/dT dC/dT - BT2 d 2C/dT 2

Note that De given by equation (169) begins with a second order term n2 whereas
the pressure and energy density begin with linear terms in n as shown in equa-
tions (165) and (166).

The values of e , f , g and h for the real gases are then calculated using
equations (42) through (44) as follows
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e m nRGID [3/2 - d/dT(T 2dB/dT)n - L/2d/dT(T 2dC/dT)n ....2 (173)G e

- 1/(nRGTao)(3/2 - e n + e 2n2 -

where

e I  3/2ct1/L + d/dT(T 2dB/dT) (174)

e 2  3/2[(a1/ao)2 - a2/ao] + a /a d/dT(T2dB/dT) - 2/2d/dT(T2dC/dT) (175)

f RGT/D e(3/2 - 2TdB/dT n - 3/2TdC/dT n 2 (176)

= 2R(n2RGo0)(3/2 - flIn + f n  ... ) (177)

where

f = 3/2a I/a + 2TdB/dT (178)

2

f2 = 3/2[(a 1/ao) 2 a2/ao + 2aI/az TdB/dT - 3/2TdC/dT (179)

g = nRG/D e[ + d/dT(TB)n + d/dT(TC)n 2 + .- ) (180)

= 1/(nRGTIao)( + g1n + g2n
2 + -.-)

where

g = d/dT(TB) - aI/a (181)
2

g2 = (a/ I /o - a 2 /a + d/dT(TC) - aI/ 0 d/dT(TB) (182)

h = RGT/De(I + 2Bn + 3n 2 + 4Dn + ... ) (183)

= /(n2RGao)(1 + hIn + h2n2 +...)

where

h I = 2B - aI /a (184)

h2 = 3C - 2Ba I/c0 + (aL/ao)2 - a 2/A°  (185)
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The corresponding unrenormalized coefficients ga and ha that appear in the right
hand sides of equations (45) and (64) are obtained in a similar way with the
substitutions B - Ba , C _ Ca and D - Da in equations (180) through (185) and

in equations (170) through (172).

The values of OE and Bp that appear in the time equation (45) and the rate
equations (64) and (66) have already been evaluated for the real gases and are
given by

2 9

p= [2/3(a - TdO/dT) - $]n2 + (186)

- _ RGT(B + 2/3TdB/dT)n
2 +

E = nT(Y - nZ) (187)

where

Y = R G[3/2 - 1/8(O - TdB/dT)1 (188)

= R G(3/2 + T/B dB/dT)

2 2 2 (189)
Z = Td 2/dT - 2R G1/ (B - Td$/dT) + 1/B da/dT(8 - TdB/dT) + R G/(r - Tdr/dT)

= RG[2TdB/dT + T2 d 2B/dT 2 + 2C/B 2TdB/dT - (1 + T/B dB/dT)TdB/dT - T/B dC/dT]

and where the two forms of the second and third virial coefficients are related
by 

2 9

= RGTB r = RGTC (190)

The values of 8p and 8 are obtained by analogous formulas with the superscript*
"a" added. The connection between Ba , Ca and B , C is given in Reference 29.
The reaction rate of processes that occur in real gases can be written in the
form

Ra = ga (n)TK (191)

where K = constant. Thus all of the quantities necessary to solve the reaction
rate equations (64) or (66) have been determined for processes occurring in the
real gases.

6. INCOHERENT TIME IN A RADIATION FIELD. This section considers the ef-
fects of radiation (mechanical or electromagnetic) on the local time in matter
or energy. The effects can be calculated by considering the presence of radi-
ation as producing a perturbation in the time calculated by equation (45) as
follows
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t + t r - (q, + q lr 3/aT(t + tr) + (sl + slr a/3n(t + tr) (192)

t a + t a _(q a + qa)a/BT (ta + t a) + (sa + sa )3/3n(ta + t')r r r r r

Subtracting equation (45) from equation (192) and retaining only first order
terms gives the renormalization group equation for time in a radiation field in
matter or energy as

t r-q at r/aT +s Iat r/3n - q lr t/aT + s 3t/an - t +Har (193)

where

q r hr0E+h r+3 a + HO Pr (194)

S 1r g &r 8E + gEr+ 3e r~p + 3e$ Pr (195)

H a Bah~a ata a + saga ata/ an - q a ata/ 3T + a ata/an(16
r E r E r r +r

and where

h r= (aP rIan - hZ r)/D e(197)

f r- (aE rIan - fZr )/D e(198)

r= Oapr/DT - gZ r)/D e(199)

e r =(aE r /T - eZ r)/D e(200)

Zr = 3P' rOn aE/aT + 3E rf/T 3P/an - aP rlaT aE/an - aE r an aP/aT (201)

r r E rEr

sa = g a a + ga~a (203)

where D eis given by equation (44) and where

B Er TIV{[d/dT(U + U r >1(P+pr)V - [dU/dT] PV} (204)

B Pr d/dV[(P + P r)V] U+Ur - dldV(PV) U (205)

The value of a a is obtained from equation (204) with the superscript "a"

added to U and Ur -Finally, combining equations (194), (195) and (197)
through (203) gives
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qIr w q1 (faP
r /aT - haEr/3T) - s (faP r/an - haE r/an) + haEr + 3f6pr (206)

Sir w q(eaPr /3T - gaE r/aT) - sI(eaPr/an - gaEr/an) + goEr + 3e8Pr (207)

All the necessary quantities for solving the radiation time equation (193) have
now been determined.

7. COHERENT TIME AND HIGH TEMPERATURE SUPERCONDUCTIVITY. This section
develops a relativistic equation for coherent time and considers applications
to the theory of high temperature superconductivity. First the complex number
time equation is written in its general form where both the magnitude and the
internal phase angle of time vary with temperature and pressure. Secondly the
case of slow processes is considered where time varies linearly and the internal
phase angle can be set to zero and the scalar incoherent time equation is re-
gained. Thirdly the case of ultrafast time changes is considered in which time
coherently rotates in internal space. Finally, applications to high temperature
superconductivity are considered.3238

A. General Form of the Complex Number Time Equation.

The complex number time equations (33) and (45A) can be written as

Ef = E(I + Linc + jLh) = a - a ta/ Ea (208)

where L = time operator given by equation (23), and where Linc and Lcoh = in-
coherent and coherent time components respectively which are given by

Linc = 1/t(- aE at/aE + 3op at/ap) (209)

= 1/t(- q, at/aT + s, at/n) (210)

Lcoh = - 8E aet/aE + 38p ae t/aP (211)

= - q1 a6t/aT + sI aot/3n (212)

where in order to obtain the coherent components in equations (211) and (212)
the following coherent time rotation is used

= jEde = jteij t d6 (213)t t

The real and imaginary components of equation (208) are obtained using equa-
tions (209) and (211) to be

t cos et - oE sec 6tE cos( t + 6tE at/aE (214)

+ 36 sec 6tp cos( + 8 ) at/ap = a_ -6a ata/3Ea
P P t tPE
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t sin 6t - BE sec 
8tE sin(6t + 

8tE) at/aE (215)

+ 38P sec 0tp sin(8t + 
8tP) at/P = 0

where

tan 8E = (taet /aE)/(at/aE) (216)

tan -tp M (tao t/aP)/(at/aP) (217)

Similarly, the real and imaginary parts of equation (208) can also be written
using equations (210) and (212) as follows

t cos 0t - q sec BtT cos(6t + atT) at/aT (218)

+ sI sec 8tn cos(Ot + 
8 tn) at/an = ta  at aT + s at'lan

t sin O t - q, sec 8tT sin(Ot + 8tT) at/aT (219)

+ sI sec 8tn sin(6 t + 8tn) at/an = 0

where

tan 8tT = (t3t /aT)/(at/aT) (220)

tan atn = (ta t/an)/(at/an) (221)

These are the equations that describe partially coherent time.

B. Incoherent Time Equation.

If the processes occur relatively slowly then the change in linear time
is much greater than the rotated component dt >> tdet or Linc >> Lo h and equa-

tion (208) becomes

CE lu (I + L.n)E= ta - 8ata/aEa (222)
incE

which gives et = 0 and yields the scalar equation

t - a at/aE + 36 at/aP = ta _ a ata/aEa (223)
E P E

which is the equation for incoherent time presented in the previous sections.
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C. Coherent Time Equation.

For an ultrafast process, time changes mainly coherently by rotation in
internal space so that the rotational time change is much greater than the
linear time change tdet > dt and Lcoh >> Lin c in equation (208) which becomes

I ' E(i + JLh) = ta _ a ta/3Ea (224)

which can be rewritten as either of the following two equations

F(I - js 38t/E + 3Jp aet/3P) = ta a ta/ aEa (225)
- aet/aT+3Sl aet/an) = 

t  t sE

E( - jq /T a q ata/T + sata/n (226)

Combining equation (20) with equations (225) and (226) and taking the real and
imaginary parts of these two equations yields the two equations for the coher-
ent time state

tan e t = BE aet/aE - 3p 36 at/P (227)

= q Iet/aT - s1 36t/an

t = cos O (ta - Ba ata/aEa) (228)
a sa

= cos e t (ta - q a ta/ 3 T + sa ta/an)

Equation (227) is a nonlinear differential equation that determines the inter-
nal phase angle of time Ot , and equation (228) determines the renormalized

incoherent linear time in terms of the unrenormalized time ta . The measured
incoherent linear time is given by

t = t cos et = cos
2 0 (ta _ E ata/3Ea) (229)

Coherent time becomes important when processes occur so fast on a linear time
scale that dt << tde t and the rotated time describes the time in a coherent
state of matter.

D. High Temperature Superconductivity.

In the accompanying paper on electromagnetism it is shown that the broken

symmetry form of Ohm's law is

R m = R c I - tan 6t tan[2(e a - et)]}cos2 et  (230)

for a = x , y , z and where Ram = measured resistance in the a direction, and
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Rac conventionally calculated resistance in the a direction. For the high
temperature superconducting state Ram = 0 which gives et = 7/2 - 20a - et)
which combined with the free s - pair condition 6a = 26t gives et = n/6 and
6a = f/3 .Therefore, whereas the standard Bardeen-Cooper-Schrieffer (BCS)
theory predicts superconductivity to occur when Rac= 0 , the high-Tc super-
conducting state is associated with Ram = 0 which occurs when a coherent time
state exists within the planar copper oxides with 6t = /6 when T < Tc

For the coherent time state with Ot = 7/6 equation (227) gives

I/,7 = qc(ae /3T) - s(c ;e /n) (231)
~1 t Tc I t T

which determines the critical temperature Tc in terms of the particle number
density of matter, Tc Tc(n) , provided the internal phase angle et(T,n) is
known. Equivalently, equation (231) determines the pressure dependence of the
critical transition temperature Tc M Tc(P) . For a coherent time superconduct-
ing state, equation (228) gives the relativistic linear time as

t = /-/2(t' - a ata/3Ea) (232)- E

= // 2 (ta - q a ta/aT + sata/an)

The measured linear time for the high-T c superconducting state is given by

tm = 3 /4 (ta _ Ba ata/aEa) (233)
mE

In a high-T c superconductor processes run faster than is predicted by conven-
tional calculations.

Two renormalized time scales must be distinquished in matter: a) linear
time or incoherent time t , and b) circular or coherent time tet for a co-
herent time state. Therefore in a coherent time state physical processes,
such as electron-muthon scattering, occur during the time tet , while in an
incoherent time state physical processes, such as the electron-phonon scat-
tering of the conventional BCS theory, occur on the linear time scale t
These two time scales are associated with corresponding energy scales. The
characteristic relative energy scale for superconductors is the normalized su-
perconductivity energy gap

3 2 - 3 8

A' = 2A/(kT C ) (234)

where A = superconductivity energy gap and Tc = transition temperature. For a
coherent time state high-T c superconductor the energy gap is designated by Act
while the superconductivity energy gap for an incoherent time (conventional
BCS) superconductor is designated by Ait . Then using the Heisenberg uncer-
tainty principle with the normalized superconductivity energy gaps gives

A It = I Al t = / T e (235)
ct t it p
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so that

Ait = Ak /8 = 6/n A' 1.91At (236)ct tti it

because 6t - n/6 for the high-Tc superconducting state. The larger normalized
superconductivity energy gap predicted for high temperature superconductors by
equation (236) has been experimentally observed. 38

8. CONCLUSION. A renormalization group equation for time is developed
which suggests that the reaction rates of processes occurring in an ambient
thermodynamic medium depend on the state equation of the medium. Physical pro-
cesses run more slowly when they occur in a real medium with PV # aU than they
would if they occurred in an ideal thermodynamic medium or vacuum. These re-
suits follow from a gauge theory of time that is based on the Minkowski space-
time metric. The dimensions of space and time also depend on the thermodynamic
state equation of the ambient matter. Theoretical predictions of reaction rates
and the dimensions of space and time can be made for solids, Fermi liquids, and
the real classical gases by solving the coupled renormalization group equations
for energy, time and the dimensions of space and time. The renormalization
group equation for coherent time is developed and applied to the problem of de-

scribing the high-Tc superconducting state. It is concluded that high-Tc su-
perconductors represent a coherent time state of matter which can be described
by the renormalization group equation for coherent time. This time state occurs
in matter with free pairs of electrons when the internal phase angle of time is
given by et = 7/6 . This implies that the normalized superconductivity energy
gap for high-Tc planar copper oxides should be 6/n times the magnitude of the
normalized energy gap of conventional BCS superconductors.
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THERMAL RADIATION OF HIGH-Tc SUPERCONDUCTORS

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. The theory of a photon gas with broken internal symmetry is
developed. The broken symmetry of time induces a broken symmetry in the photon
frequency so that Planck's heat radiation law must be written in terms of a com-
plex number spectral energy density. Over long distances the broken symmetry
of time can be produced either by gravity or by some special nuclear, atomic
or molecular structure that causes a coherent time state to exist in matter.
For the case where the gravity of a star or planet produces the broken symme-
try of time the internal phase angle of the frequency is essentially constant
and the thermal radiation of matter is incoherent and the Stefan-Boltzmann
law is valid. But for the case of a high-Tc superconductor with T < Tc the
presence of an incoherent time state for the crystal lattice and a coherent
time state for the electron (hole) pairs requires the emitted thermal energy
to have both an incoherent blackbody radiation component and a coherent non-
blackbody component that is calculated by integrating over the internal phase
angles of the frequency. This paper calculates the thermal energy spectrum
and thermal energy density for high-Tc superconductors and suggests that the
measured thermal energy density of high-T c superconductors may serve as a test
for the theory that the planar copper oxides in their superconducting state
represent matter in a coherent time state.

l. INTRODUCTION. Broken symmetries play a major role in the understand-
ing of basic phenomena in both particle and bulk matter physics.' The broken

symmetry vacuum is similar to the ground state of a many-body system.2 The
physical vacuum has non-vanishing fields, and is analogous to the ground state
of a ferromagnet. In both cases the Hamiltonians describing these systems
are rotationally invariant. This is the case of spontaneously broken symme-
try where the ground state does not have the symmetry of the Hamiltonian. 2

The vacuum is thought to have the Higgs field extending throughout all space
and having a non-zero value for the ground state. It is similar to the broken
symmetry associated with the Ginzburg-Landau order parameter that describes
the broken symmetry superconducting state in which the Cooper electron pairs
break the symmetry of the ground state and produce a macroscopic coherent
state of matter.

2

The broken symmetry of the vacuum affects the state equations of inter-
acting bulk matter by requiring the state functions such as pressure, inter-
nal energy and entropy to be complex numbers having internal phase angles.

3 ,4

The effects of the broken symmetry vacuum on matter and energy are determined
by solving a complex number relativistic trace equation.4 The broken symmetry
of the vacuum state requires that the coordinates of space and time be complex
numbers.4 This requirement affects the calculations of such diverse scien-
tific disciplines as mechanics, electromagnetism and thermodynamics. In par-
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ticular, it affects the calculation of the gravitational equilibrium of stars
and planets through an intimate connection between the internal phase angle
of the pressure and the internal phase angles of the space and time coordin-
ates.4 The broken symmetry of the time coordinate requires that the frequency

of light in matter also has an internal phase angle so that the elementary for-
mulas of atomic physics, such as Planck's radiation law, must have asymmetlic
forms and exhibit broken internal symmetries. The broken symmetries of the
space and time coordinates are induced over macroscopic distances in incoherent
matter mainly by gravity, but atomic and molecular structure can also create
a coherent state of space and time coordinates of macroscopic dimensions as
perhaps in the case of high-Tc superconductors. This paper describes the bro-
ken symmetry forms of Planck's law and the Stefan-Boltzmann law for the thermal
radiation of matter in a gravitational field and for the thermal radiation from
the surface of a high-T. superconductor.

The effects of the broken symmetry of the Minkowski vacuum on the thermo-
dynamic state functions of matter are calculated from the following complex
number relativistic trace equation

4

+ T(dU/dT)PV - 3Vd/dV(PV)_ = Ua + T(dUa/dT)pav (I)

where U and P = complex number renormalized values of the internal energy and
pressure respectively, Ua and pa - unrenormalized values of the internal energy
and pressure respectively, T = absolute temperature and V - volume of a fixed
number of particles. The renormalized internal energy and pressure are written
as

= Ue j e U P = Pe j P  (2)

A many-body theory is used to determine Ua(V,T) and pa(V,T) for an interacting
system, and then equation (1) is used to determine the renormalized pressure
P , ep and internal energy U , . For a noninteracting system paV = c 1Ua where
c, = constant, and it follows from equation (I) that U - Ua , P = pa , eU = 0

and ep = 0 . The complex number values of the internal energy and pressure re-
quire that the coordinates of space and time are also complex numbers which can
be written as

Sattejt (3)

for a = x , y , z . The internal phase angles of the space and time coordinates
0. and Ot are determined from the laws of mechanics such as Euler's equation of
fluid motion. From the broken symmetry representation of time in equation (3)
it follows that the period and frequency of vibrations can be written as

Te j o t = ve j o (4)

where because V - I/i it follows that

V ev  = - = - t  (5)
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and therefore the internal phase angle of the frequency of vibration of a system
follows directly from the internal phase angle of the time. The measured fre-
quency and period are given by vm = v cos Ov and Tm = T cos Ot so that
Vm # 1/Tm

Planck's law for the symmetric photon gas gives the thermal spectral
energy density as

S 9

Ea = A/(ehv/kT -1 ) A = 8nhv 3 /c3  (6)
V

where E= unrenormalized spectral energy density, h = Planck's constant and
k - Boltzmann's constant. From equation (6) it follows that the Stefan-Boltz-
mann radiation law can be written as5-9

Ea f Eadv = aT4  (7)
r V

0

where Er - unrenormalized thermal energy density and a = Stefan-Boltzmann con-

stant given by 
S - 9

a = (4 /15) (8k 4)/(c3 h 3 ) (8)

Neglecting the density dependence of the index of refraction gives the radia-

tion pressure as3-
9

pa = /3Ea = 1/3oT 4  (9)
r r

Because equation (9) describes a noninteracting gas of photons, an immediate
application of the trace equation (1) gives the renormalized radiation energy
density as

E = Ea = Ea  0 (10)

r r r r Er

as expected for a noninteracting system.
3

For thermal radiation in matter with broken internal symmetry, due either
to gravity or to nuclear, atomic or molecular structure, the procedure for cal-
culating the renormalized radiation density is simple in principlebut difficult
in practice. The first step is the calculation of the unrenormalized energy
of the photon-matter system, in which the radiation internal energy is written

a a a = aa
as Ur = VEr - VEa(n,T) and the matter internal energy as Ua(n,T) where n =
particle number density. The energy density of radiation is now a function of
n and T . The trace equation (1) is then solved with Ua(n,T) + Ua(n,T) used
as the source term, with the result that the renormalized internal energies
U(n,T) , U , Ur(n,T) , OUr are obtained along with the renormalized values of
the GrUneisen parameters y(n,T) ,y, Yr and Oyr for matter and radiation re-
spectively.4 The calculation of the unrenormalized radiation internal energy
Ua(n,T) is very complicated if gravitational effects in matter are included.

Even the calculation of the unrenormalized internal energy Ur(T) for thermal

radiation in empty space with gravitation is very complicated.
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An approximate solution to the problem of calculating the energy of thermal
radiation in matter with broken internal symmetries has been suggested that
utilizes the implication of the trace equation (1) that the renormalized radi-
ation density must be a complex number. The broken symmetry nature of time
and frequency as described by equations (3) and (4) respectively suggest the
following complex number generalization, of Planck's radiation law

!/- ] A = 8Trh 3/c ()

where E= complex number value of the renormalized spectral energy density.
Placing equation (4) into (11) gives4

E E e j OEv = A(B + JC)/D (12)V V

E = A/D (B2 + C2 ) 1/2  (13)

v
tan 0 Ev ' C/B (14)

where A is given by equation (6) and where
4

D = e 2x - 2 cos y e x + 1 (15)
x x

B = cos (36V ) (cos y e - 1) + sin (3 V) sin y e (16)

xx

C=sin (3 V ) (cos y e - 1) - cos (36 V) sin y ex (17)

x = hv/(kT) cos 6 (18)

y = hv/(kT) sin 6 (19)

When 8v = 0 equation (13) reduces to the standard Planck spectral energy den-
sity.

The complex number integrated energy density is given by4

00
r e j eEr = JE d = fE sec 6 ej(OEv+Ov+avv) dv (20)

where

tan aVV = vdO IV/dv (21)

d5 = e Jv(dv + Jvd9V ) - sec 6VV dv ej(ev+BvV) (22)

The complex number thermal radiation energy density given by equation (20) has

the following real and imaginary parts
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ErR m Er cos 
8Er J"fE V sec 0 cos t dv (23)

0

E r ff E r sin eEr = fE sec a sin € dv (24)
0

where

Ov Ev v +VV (25)

and where E, and 6Ev are given by equations (13) and (14) respectively. The
magnitude and internal phase angle of the integrated radiation density are given
by

E = (E 2 + E2 ) 1/2 (26)
r rR rI

tan EEr = Erl/ErR (27)

The measured thermal radiation density is given by the real part of the complex
number integrated radiation density so that

Erm = ErR (28)

and therefore the integral in equation (23) must be evaluated.

Further insight into the meaning of the complex number integral in equa-
tion (20) can be obtained by combining equations (20) and (22) to get

r r + r(29)
r inc coh

where

Er -E e vdv (30)
inc

0

Er =jfE : dO (31)
coh v V

where Er incoherent radiation energy density and Eoh = coherent radiationinc o
energy density. The complex number radiation density given in equation (20)
has not been evaluated for arbitrary values of the frequency internal phase
angle 6,(v) due to the difficulty of evaluating the integral. The same is
true for the measured energy density given in equation (23). Also there is
the question of what the function Ov(v) should be for radiation in matterwith
broken internal symmetries due to gravity or structure. In this paper two
special cases of equation (20) are considered. The first case is that of in-c
coherent radiation with 6v - = constant and the frequency v being an iate-
gration variable, the second case is that of coherent radiation with v = vc =

constant and the internal phase angle OV is the variable of integration. For
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these two cases equation (20) or equivalently equations (30) through (31) can
be written as

dv ev d = const. d; = ej'c dv (32)

0

coh = Jvf ' eJ v dO v = V = const. dv = jdO V (33)

This paper assumes that the incoherent radiation from ordinary incoherent mat-
ter in a gravitational field can be described by equation (32), and that co-
herent and incoherent time states exist in high-Tc superconductors and the cal-
culation of the radiation energy density for these materials with T < Tc in-
cludes contributions from both equations (32) and (33). Equation (32) gives
the radiation contribution from the time incoherent lattice of the high-Tc su-
perconductors, and equation (33) gives the radiation contribution from the co-
herent time states of the electron (hole) pair condensate. Other forms of mat-
ter may require 6,(v) to have a more general behaviour thus making equations
(20) and (23) difficult to evaluate.

The general form of the integral in equation (20) can be rewritten by in-
troducing the following change of variables

-e
j o = h;/(kT) (34)

hv/(kT) 6  v 6 t (35)

The equation (20) can be written as

E (8k 4T 4)(c h 3 ) I (36)r

where

I f (e - 1)- 1 dZ (37)

The standard technique for evaluating the integral in equation (37) begins by
using the following expansion

5- 9

(e -1) e + e-2& + e - 
+3& (38)

Then

-n

n-I

where n - integer and

-nn  3 e- ri dZ (40)
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Then the thermal radiation energy density is

r = (8rk4 T4 )/(c 3 h 3) In (41)
n=1

Thus far no assumption of incoherent or coherent radiation has been made.

The thermal radiation energy density for matter with broken internal sym-
metries is calculated both for the incoherent and coherent cases. Section 2
determines the incoherent thermal radiation energy density for the case of con-
stant internal phase angle of time as is found for example in a uniform gravi-
tational field, and for the case of coherent thermal radiation which is associ-
ated with the coherent time states of the electron (hole) pair fluid in high-Tc
superconductors. For coherent time superconductors with T < Tc the thermal
radiation density is a weighted average of a blackbody Stefan-Boltzmann compo-
nent associated with the atomic lattice, and a coherent non-blackbody component
which is associated with the electron (hole) Cooper pairs.

2. ASYMMETRIC THERMAL RADIATION. This section calculates the integrated
thermal radiation density for: a) the case of incoherent radiation with constant
internal phase angle of time which perhaps describes radiation in the presence
of a gravity field, and b) the case where electrons and radiation are in a co-
herent time state in which transitions occur so fast that a change in time occurs
as a rotation in time, as perhaps in high-T c superconductors, rather than as a
linear time variation as in ordinary matter and conventional superconductors.

A. Incoherent Thermal Radiation.

The integral in equation (20) can be easily evaluated for the case when
Ov - - Ot - constant. This can be done by evaluating the integral in equation

(37) for the special case = = 0= - et - constant, and d = dE eJeZ
In this case the integral in equation (40) can be written as

_n =f eJ4 . 3  - eJ 4 c 64 =I= 4 C e d e i 6/ 4 =6/n (42)
0

where n = neje and is a real number and s- 9

fi e - n C d = (43)

0

Then equation (39) gives the following standard result
5- 9

I = I = 6/n 4 
=
i 
i
4 /15 (44)

n-1
c

Therefore for 0 =-8 t - constant the integrals in equations (36) and (37) are
real numbers and the expression for the incoherent thermal energy density for
broken symmetry radiation is
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r k 4  a f (875k4)/(15c3 h 3 ) (45)r -inc

which is the standard Stefan-Boltzmann law. For this case the integral in equa-
tion (32) is a real number giving the result in equation (45).

B. Thermal Radiation Spectrum of Coherent Time States.

The accompanying papers on electromagnetism and the gauge theory of time
suggests that high-Tc superconductors are coherent time states of matter. In a

manner analogous to the Planck concept of radiation being composed of harmonic
oscillators, the radiation in a high-T c superconductor is envisioned as being

composed of complex number frequency harmonic oscillators each having internal
degrees of freedom. For radiation in high-Tc superconductors, each oscillator
of a fixed frequency undergoes internal vibrations. The calculation of the
thermal radiation energy density for high-Tc superconductors with T < Tc there-
fore involves an integration over the internal degrees of freedom (the internal
phase angles of the frequency). For these internal vibrations v -vc =constant

and from equations (34) and (35) - &c exp(jQ6) with c = constant and

= hv /(kT) d = jCd F de =de - dGt  (46)

The integral in equation (40) for these conditions can then be written as

-1T6 /6n . j f eJ-46E e-n C dOe  (47)

= 16 e-nc cos e6 (F? + jF) d6

4 n + n= c(l + 12

where

n -iTr/6n c
i'n = f F e-nc cos de (48)

0

n -T16 Fnen~c cos dO (49)
12= F 2

0

and where

F n _ _ sin(4) - n& sin 86) f sin(48 - n c sin e ) (50)

IC t C t

= cos(40 )sin(nE c sin 86) - sin(4 6)cos(nEc sin 6
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n
F2  cos(4 - n c sin e ) = cos(4e t - n& sin e t) (51)

cos(4% )cos(n 'sin 0 + sin(48 )sin(n c sin e)

The limits of integration in equation (47) will be explained subsequently.
The integrals in equations (48) and (49) can be rewritten as

In Gn -Gn (52)
1 1 2

In Gn +Gn (53)
2 3 4

where
-iT/6 c

Gf e-nC ) c f cos(46 )sin(n&c sin 0) dO (54)
0

n-Tr/6 -~ o
G( f en c COS O sin(4e )cos(n~c sin 6) d6 (55)

0

-nT /6
G3(&c) = f e-nc cos 0 cos(40&)cos(n&c sin e) de (56)

n -Tos(4n~)ccosn0-ii/6

G2( ) = Se-nccosO0 sin(40 )sin(nEc sin ) de (57)
oC

Using the phase angle relationship given in equation (35) allows equations (54)
through (57) to be written as

it/6

G (&)= / e-nc cos Ot cos(
4O )sin(n& sin 6t) dOt  (58)o t c t

ii/6

G3( = f e-c COS t sin(4Ot)cos(n~ sin t) d t  (59)

n e-n~c cos(60)

0
it/6

G )= - J e-n~c cos St sin(4Ot)sin(n~c sin St) dOt  (61)

where &c is given by equation (46).

The limits of integration in equations (54) through (57) need some expla-
nation. In the accompanying paper on electromagnetism and gravity it is shown
that the broken symmetry form of Ohm's law gives the measured resistance of a
body as
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Ram R ac{1 - tan 0t tan[2(0 a - 6t )]cos2 Ot  (62)

where a = x , y and z specifies the orientation of the conductor, and where
Ram = measured resistance in the a direction, and Rac = Wam/Iam = convention-
ally calculated resistance in the a direction, where Wam and lam = measured
voltage and measured current respectively in the a direction. The high-Tc su-
perconducting state is described by Ram = 0 due to the broken symmetry portion
of equation (62) which occurs when Ot + 2 (6a - 0 t) = 7/2 . This condition com-
bined with the free s - pair condition 0a = 2 0t gives the result Ot - 7/6 and
0a = 7r/3 for the coherent time high-Tc superconducting state which exists when
T < Tc . In this scheme conventional superconductivity occurs when Rac - 0 .
Conventional and high-Tc superconductors are distinct, for instance experiments
show that the normalized superconductivity energy gap for high-Tc superconduc-
tors is about twice the normalized energy gap for conventional superconductors1 0

From equations (41), (46) and (47) it follows that the coherent thermal
radiation energy density for high-Tc superconductors with T < Tc is given by

ro(VcT) = 87hv 4/c 3coh(Bc )  (63)
coh cc coh c

where

Bo(E (In + jln) (64)
coh c n=1

= [G n G2n + j(Gn G n),

The real and imaginary parts and magnitude of Bcoh are given by

B = -(Gn- G n Bo = (Gn + G,) (65)
cohR n= cohl n= 3 4n= I n= I

B = (B2  + B2  I/2 (66)
coh cohR cohi

The choice of the constant frequency vc is related to the superconducting tran-
sition temperature by

hv = kT (67)
c c

so that equation (35) and (67) give

&c = Tc/T (68)

and equation (63) can be rewritten as

Er (TcT) = 15a/w 4 TB (T /T) (69)
coh c ccoh c
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which gives the coherent-time portion of the thermal radiation energy density

that is associated with the Cooper pairs of electrons and holes.

The total thermal radiation energy density emitted by a high-Tc supercon-

ductor for T < Tc is the weighted average of the incoherent-time radiation

energy density from the solid lattice of the copper oxide superconductor and

the coherent-time radiation energy density from the condensate of Cooper elec-

tron (hole) pairs and therefore

r + r
Er = ainc Einc + Lcoh coh (70)

= aT4 [inc + coh 15/ 4(T c/T) B coh(T c/T)]

where ainc - particle number density fraction of lattice atoms (ions) and where

Ccoh - particle number density fraction of electron (hole) pairs, which satisfy

the following relations

coh /a inc np e /2 ainc + acoh (71)

ainc  (I + n ) 2(2 + n e )  (72)

coh= np + np = ne(2 + ne) (73)

where n_ = average number of electron (hole) pairs per lattice site, and ne =

average number of electrons (holes) per lattice site. Therefore the radiant

energy density for a high-T. superconductor with T < Tc is the weighted average

of a blackbody term associated with the lattice of atoms and ions, and a non-

blackbody term associated with the coherent time state of the electron (hole)

pair fluid. From equation (70) it follows that

E =a . T + a o5a/4 T4B (Tc/T) (74)
rR inc coh c cohR C

E = c 15a/u4 T B hI(Tc/T) (75)
rl coh Ccoh c

2 2 1/2

E =(E 2 + E 2) (76)
r rR rI

tan 0Er = E rlErR (77)

The measured value is the real part of the thermal radiation density given in

equation (74).

Equation (70) is valid for a blackbody high-T c superconductor. For real

copper oxide materials a surface emissivity factor E needs to be introduced

into equations (70) through (77). Thus equation (74) becomes for T < Tc
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ErR = EoT4 (ainc + a coh5/r 4(TC/T)4 BcohR (Tc/T)] (78)

- E effT
4

where the emissivity e may be temperature dependent, and where the effective
emissivity for high-Tc superconductors with T < Tc is given by

Eeff = e[ainc + acoh15/7 4(TC/T)4 BcohR(Tc/T)] (79)

For matter in an incoherent time state the thermal radiation energy density is
given by

Er -coT4  (80)
inc

which is also the case for high-Tc copper oxides with T > Tc . Therefore from
equations (78) and (80) it follows that at the transition temperature T = Tc
there is a sudden drop in the thermal radiation energy density as the tempera-
ture is lowered across the transition temperature given by

AE r = [ErT - I = - eoT [1 - an - a o  15/T 4 B](81)

rR inc B nc ccohR()

where from equations (58), (59) and (65) BcohR(1) < 0 . Equivalently, at the
transition temperature there is an abrupt drop in the value of the emissivity
given by

Ae = [C - c]Tc - c[i - a - a 15/T4 B () (82)
eff T coh cohR

For T < Tc equations (78) and (79) show that the thermal radiation energy den-
sity and emissivity are given approximately by

E " at EGT4 (83)
rR inc

C eff L inc

4
because the exponential functions in BcohR( c) attenuate the factor cBcohR(Cc)
rapidly for T < Tc . The value of the emissivity approaches the value aincE(O)

for T - 0 .

3. CONCLUSION. It has been suggested that a high-Tc superconductor with
T < Tc is composed of two states of matter: a) a time-incoherent lattice of
atoms and ions, and b) a fluid of Cooper pairs of electrons (or holes) which
in this paper is assumed to be in a coherent-time state. The thermal radiation
from such a two-state system is itself separable into a universal inccherent
blackbody component arising from the atomic and ionic lattice, and a coherent
non-blackbody radiation component which arises from the time-coherent electron
or hole pairs. The coherent non-blackbody radiation component isnot universal
because it depends on the particular transition temperatures of the planar
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copper oxide compounds. This coherent thermal energy density is determined by

integrating the broken symmetry Planck spectrum over the internal phase angles

of time. Thus gauge rotated or circular time describes the internal phase
motion of oscillators in a coherent time state. A measurement of the non-

blackbody thermal radiation component for T < Tc in the planar copper oxides
would represent proof that high-T c superconductivity is described by a coher-

ent time state of matter and is completely different from conventional BCS
superconductivity.
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SOME RESULTS ON NUMERICAL SOLUTION OF PARTIAL

INTEGRO-DIFFERENTIAL EQUATIONS

Lars B. Wahlbin
Department of Mathematica

Cornell University
Ithaca, NY 14853

AIRACT.
The aim of this note Is to describe briefly some recent developments in the

numerical analysis of the finite element method applied to partial integro-differential
equations.

1. INTRODUCTION.

Consider the following linear partial integro-differeatial problem of "parabolic"

type for u = u (tx),

u - Au = ft B(ts)u(s)ds + f(tx),t> 0, xt fl,

(11) u(t) = o on M),
[u(o) = v given.

Here fi is a bounded domain in Rd with sufficiently smooth boundary, A is the Laplace

operator (for simplicity) and B(t,s) is a second order (at most) partial differential operator

in the spatial variables, with smooth coefficients for now. As a general reference to this

and similar problems we give RENARDY, HRUSA and NOHEL [8].

Supported by the Army Research Office through the Mathematical Sciences Instiute,
Cornell University and the National Science Foundation.
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Let Sh , 0 < h < 1, be a family of finite element spaces on Q of the "usual" kind in

Ho1(Dl). Using the weak formulation of (1.1) one seeks the semidiscrete (time--continuous)

approximation uh(t) in Sh by the formula

(Uht, Y) + D(uh,x)

(1.2) - 'o B ( t, s; Uh(S), x)ds +(f,X), for X ( Sh ,

Uh(O) v h ' Sh.

Here D(v,w) is the Dirichlet form (Vv, Vw) with (v,w) = f( vw dx the L2 -inner product.

B(t,s;v,w) denotes the bilinear form on H0
1 obtained in the natural way from the partial

differential operator B(t,s) via integration by parts, if necessary.

Numerical solution of the problem (1.1) via finite differences goes back to

DOUGLAS and .JONES [3]. In the present finite element context a seminal paper is that

of YANIK and FAIRWEATHER [121, cf. GREENWELL [5]. The techniques used there

treated the case when the partial differential operator is of at most first order.

THOMEE and ZHANG [101 adapted the techniques of WHEELER [11] from the

parabolic case, B 0=  . With Rhu the (fictitious) Ritz projection into Sh defined by

(1.3) D (Rhu - u, X)= 0, for X Sh,

one proceeds to write an equation for 0 = uh - Rhu. (One knows a lot about the error in

RhU - u.) The equatior for 0 turns out to be fairly complicated and far from easy to

handle, but Thomee and Zhang managed. To describe a typical rcsult, assume that the

finite element spaces Sh have optimal approximation order r, r > 2 it.eger, i.e.,

(1.4) min i1v-y 1L2( ) 5 C hr lv1iW r
Sh  2 Mr 1

for v( W2 n H0 . Here r-1 can be thought of as the basic piecewise polynomial degree of

the finite element shape functions and h as the diameter of a typical element. Then,
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assuming that the solution u of (1.1) is smooth enough, it is shown in [10] that

(1.5) 11(uh- u) (t)1iL2(n) < C (T) hr, for 0 < t< T.

I.e., we have an error estimate in L2 of optimal order.

2. RITZ-VOLTERRA PROJECTIONS.

CANNON and LIN [1] proposed an alternative mode of analysis to that in [10]. An

operator Vh(t) into Sh is now introduced via the prescription

(2.1) D (Vh(t)u - u(t), X)= ft B(t,s; Vh(s)u - u(s), X )ds,

for X c Sh,

It turns out that the equation for uh - Vhu is more manageable than that for uh - R hu.

Of course, some more work now has to be done in analyzing the error in Vh u -u, and

typically this is split as V u - u = (V1 u - Rhu) + (Rhu - u) and an equation for the first

part on the right is derived and analyzed. It is fair to say that the introduction of Vh

splits the analysis into more "balanced" and manageable parts than that of merely

considering Rh.

This technique just outlined is applied e.g. to deriving optimal order pointwise error

estimates in LIN, THOMEE and WAHLBIN [7]. (This paper also introduced the name

Ritz-Volterra projection for Vh; the original paper [1] called it a "nonclassical H I"

projection.)

There are few changes in applying the technique to a, "hyperbolic"

integro-Aifferential equation.

utt- Au= ft B(t.s)u(s)ds+ f.

(2.2) u(t) =o on Ml,

u(o) = v, ut(o) =w.
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Again the introduction of the Ritz-Volterra projection cuts the analysis into balanced

parts.

The Ritz-Volterra projection can in some cases in itself be viewed as the finite

element solution of the Sobolev (aka pseudoparabolic) equation. For, assume that

B(t,s;.,.) in (2.1) actually does not depend on t. Differentiating (2.1) with respect to t,

(2.3) D((Vhu)t-utX) = B(t; VhU - u, X), for XfSh.

In this way we see the connection with finite element approximation of the typical Sobolev

equation

A~u = B(t)u, t>o, yfl

(2.4) u(t) oonO,

u(o) = v.

For an early analysis of finite element methods in such problems, see FORD [6].

In CHEN, THOMEE and WAHLBIN [2] the Ritz-Volterra technique is applied to

a problem with a singular kernel,

(2.5) ut - Au = t K(t-s) Bu(s) ds + f
t 0

where I k(t) I- t - 0., o<a<l. Results matching provable regularity for the solution u are

derived.

3. DISCRETIZATION IN TIME.

So far we have been considering the semidiscrete (time-continuous) approximation

given by the system of Volterra ordinary integro-differential equations (1.2). This is
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clearly an intermediate step in the analysis since that system needs to be further

discretized in time to arrive at a practical method.

To outline some issues, let us assume that we have in mind as a "basic"

time-stepping method the backward Euler method (for simplicity in writing). Then write,

as a preliminary step, with Un - uh (nk), k the (uniform) timestep,

(U n  Un - 1 X) +D(U n , X)

(3.1)
t B( ts;uh(s) , X) ds + (f(nk), X), for fXSh.

The integral in time on the right needs to be further discretized. It seems natural to let

that discretization involve only time levels t= - jk. However, note that in general all time

levels used in the quadrature of the integral need to be stored. With each time level

involving perhaps 104 _ 106 degrees of freedom (in many space dimenisions) it may be

prudent not to involve all previous levels. Rather, use a quadrature rule which is of higher

order than the basic backward Euler rule. This being first order, O(k), use, as an example,

Simpson's rule for the quadrature of the integral. This in turn being second order, O(k,) in

the step k1 used, it is natural to try to match kL- k1 / 2 . Of course, if nk is not an integral

multiple of k1 , something special has to be done for a short ( k 1 / 2 ) last segment of the

integral.

It is easy to see that the storage requirements for such a combination is O(k- 1/ 2.

as opposed to 0 (k- ') if all previous time-levels were used in the quadrature.

The hard part is now to show that the resulting method is of O(hr + k) accuracy, of

SLOAN and THOMEE [9].

Various other combinations of basic time-stepping methods and "thinned"

quadrature formulae are given in ZHANG [13].

In [2] the quadrature of the singular kernel in (2.5) is accomplished by a product
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integration rule.

In the speciai case of B(t,s) = A in (1.1), differentiation with respect to time leads

to the strongly damped wave equation,

(3.2) utt - Aut = Au + f.

A study of finite element approximations for this can be found in LARSSON,THOMEE

and WAHLBIN [6]. An interesting point is that while the corresponding semigroup is

analytic in time, it is only mildly smoothing in space (and then only with respect to

compatibility conditions, not with respect to regularity). The consequences of this for

space and time discretizations are elucidated.

4. CONCLUSION.

The partial integro-differential equation (1.1), although called of "parabolic" type

by "analogy", has several differences with the heat eeriation, B =0 . A satisfactory

mathematical theory for its numerical approximation has to proceed along lines specific to

such equations. The introduction of Ritz-Volterra projections as an intermediate step in

the analysis appears promising.

In practice, questions of storage limitations will have to be addressed by the theory

for numerical solution of partial integro-differential equations.
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On Solving Cauchy Singular Integral Equatinns
by Using General Quadrature-Collocation Nodes

R. P. SRIVASTAV AND FENGGANG ZHANG

Department of Applied Mathematics and Statistics,
SUNY at Stony Brook. Stony Brook, New York 11794

Abstract. We show that the specific nodes are not necessary for solving Cauchy slinglar integral equations
by using quadrature-collocation methods. The solvability of the discrete system is proved for arbitrary

selection of quadrature and collocation nodes. We also propose several special choices of these nodes.

Especially, a weighted minimum norm-least square method is discussed.

1. INTRODUCTION

The classical theory for solving Cauchy Singular Integral Equations (CSIE) is based on the prop-
erties of sectionally holomorphic functions, which enable us to reduce the singular equation to a
Fredholm equation of the second kind. (See N. I. Muskhelishvili [11 and F. D. Gakhov [2].) In
many physical problems, when numerical solution is necessary, direct methods are often preferable.
A method is called direct if the singular integral is replaced by a numerical approximation without
resorting to regularization. Such methods initiated by F. Erdogan (3] and F. Erdogan and G. D.
Gupta [41 have been developed subsequently by F. Erdogan, G. D. Gupta and T. S. Cook [5], P. S.
Theocaris and N. I. Loakimidis [6].

Suppose the CSIE has the form

( + x -F --- + k(t,z)g()dt = f(z), -1 < x < 1.

All these numerical methods use Gauss-type formulae after expressing the unknown singular function
as the product of a weight function (1 - z)2-'(1 + z)O - ' and a smooth function to be computed. a
and 0 are determined by Noether's index theorems.

Let Pn(0a-)(z) be the Jacobi polynomial of degree n orthogonal with respect to the weight function

(1 - z)*-t(l + z)9 - 1. The zeros of Pa0)(z) are used as quadrature nodes in the Gauss-Jacobi
integral formula and the zeros of another related Jacobi polynomial are used as the corresponding

collocation points. For example, when a = 0 = 1, the Jacobi polynomial p(aO) is T,,(z), the

Chebyshev polynomial of the first kind, and the related polynomial is U,,-I(x), the Chebyshev
polynomial of the second kind.

There are three factors, which influence the size of the error in the computed solution: (a) ac-
curacy of the quadrature formula, (b) choice of the collocation nodes, (c) "condition" of the linear
algebraic system. The rate of convergence depends on the "Lebesgue constants" of the collocation
and quadrature nodes, and the smoothness of the functions. Certain sets of quadrature-collocation
nodes are inadequate to represent the intrinsic features of the problems, especially of the problems
arising from the oscillatory behavior of f(z) or the kernel k(t, z)), or th& problems due to large
derivatives of these functions. For example, for the function

(z - 0
2 . a2

Research supported in part by NSF Grant No.DMS-8901 I3 and US Army Research Office Grant No.DAAL03-90-G-
0019.
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for very small values of a, a collocation point in the immediate vicinity of c is essential. As discussed
by Gerasoulis and Srivastav in [7], the methods based on orthogonal polynomials will require the
quadrature rules of an excessively high degree, leading to extremely large systems of linear algebraic
equations.

The paper by Tsamysphyros and Theocaris [11] appears to be the first to ask the rhetoric question
"Are special collocation nodes necessary for the numerical solution of singular integral equations?".
The examples are given showing that it is not so for the Gauss-Chebyshev quadrature and collo-
cation. Our objective in this paper is to analyse the linear algebraic systems for solvability. The
approximation characteristics of the computed solution will be discussed in a subsequent paper.

In order to make the paper self-sufficient, some wellknown results are included here. We organize
the sections as follows:

Section 2 is used to construct the theory of orthogonal polynomials. The similar results can be
found in S. Welstead's Ph.D thesis [121.

In Section 3 we prove the solvability of the system of equations derived from general quadrature-
collocation nodes.

Section 4 is to discuss several optional selections of these nodes.
The paper is concluded with a numerical example in section 5.

2. Two RELATED SEQUENCES OF ORTHOGONAL POLYNOMIALS

Consider the dominant part of the Cauchy singular integral operator U:

(2.1) Ug(z) := ag(z) + b 51 dt,

where a and b are assumed constants and I a 1# b 1. For the general case of variable a(z) and b(z),
Welstead has discussed in [121. Here, we only rehearse some related results.

The operator U is defined on the space of H61der continuous functions. By using the sectionally
holomophic functions, we introduce

where z - z + ir, z and y are real numbers. Let

46+Z r 40(Z + iv),= lm 0(T + iy).+= y-ti 0 + , - --

We have
g(z) -i (z) (),

and Ifg.. i_, (a, -4 ib)(,+ (z) - (a - ib)O,- (-).

Denote
a - ib a' - b2 - i2ab -00
a + ib a + V
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we have
IG I= 1, tanO= 0 - 0 <1 0 IS 1 10

a' 4"

Let
F(x) 0 l 1 -x-log-'

7 1 + X

Z(z) = (1 - x)AI(1 + z)"-e '(-) = (1 - x)A-L-(l + X)N- , + - .

If a > 0 and b > 0, then 0 < < .. A, and A-1 can be chosen as following so that both Z(z) and
Z-'(x) are integrable on (-1, 1).

(1) A, = 0 and A-, = -1;
(2) Al = 0 and A.- = 0 or A,= 1and A 1 =--1;

(3) Al = 1 and A-1 = 0.
The index of the operator U is defined as X = -(A, + A-,).
In the case of 1-index,

(2.2) Z()=(I1-X)!(1+x)fI+ 1 (l-X)-I.

Let {pn(x)}- be a sequence of monic orthogonal polynomials with respect to the weight function
Z(z) on the interval (-1, 1), i.e.

(2.3) Z(x)pn(Z)pm(x)dx = enbnm,

where cn is a constant, bnm is the Kronecker notation. According to the general properties of
orthogonal polynomials, there is a recursive formulabetween every three consecutive polynomials:

Po(O) = 1,

p,(X) = (X - ao)pO(),

p 2 (X) = (X - 0kl)Pl(.-) - 131PO(.),

P.+I(Z) = (X - On)P.(X) -Onpni(X),

where {.k} and {,3 k}In are two sequences of numbers. Now, we can construct a new sequence of
monic polynomials {q,(x)} ° by using the {a}o and {3n}:

qo(x) = 1,

ql(a:) = (x: - ai)qo(z),

q2(X) = (X - a2)ql(x) - 132qo(x),

qn+l(x) = (x - an+x)qn(x) - I3 +Iq,-l(x)-

Our main arguments are
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PROPOSITION 2.1.

U(Z(-r)po(x)) = 0,
U(Z(z-)pL.(z)) = pqk- I(z), for k = 1, 2,~.

where

(2.4) p = V/a2+-b2_

PROPOSITION 2.2. {q,,(x)) is a sequence of orthogonal polynomials with respect to the weight
function Z-I(z) on (-1, 1).

Consider the adjoint operator V of U:

bi P g(t)dt
(2.5) Vg(z) := ag(z) - b ' g _-I-

We have a similar result of V as the Proposition 2.1.

PROPOSITION 2.3. For k = 1,2,-.-

( l= ) ) = ,Up k( x).- ())

3.THE DISCRETE SCHEME OF GENERAL QUADRATURE NODES AND COLLOCATION POINTS

For the problem with 1-index, we shall find the solution g(x) satisfying

(3.1) f ag(x) + f = ,(3.1)
f I' g(z)dz =C.

Let g(x) = Z(z)O(z). We choose x, < x 2 < .-. < z,, as quadrature nodes and Yl, Y2,"" ,Yn-1 as
collocation points. The {x,}j and the {Y k~n-' are independent of the weight function Z(x).

Denote

n
(3.-2) X(X) = fJ(x - xi),

j=1

n-I

(3.3) Y(y) = J(y- y).
k=1

The quadrature coefficients are defined as

(3.4) Wj = x)X(x)'
.(x - xj)x'(Xj)'

(3-5 Vk f Y(y)dy
3V Z(y)(y- y)y'(yk)
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We can construct the system of equations as following:

(3.6) A =,

where

f 0(1), f(Y2)," f(Yn 1),eC)
T

and
A = (atj).x,

= " (AW - IU(Z(x)X(x))l.=yk), for 1 < k < n - 1, 1 < j n,(3-7) aV X.i(Z -
anj=-!Wj, for 1 <j <n.

We can also construct the corresponding matrix B,

B = (bh#).x,

(38 LV= + y4VQ({'Y()l y=x), forl<k<n, 1< j< n-1,(38) -Th = j - .. ..

bkn=Pb, for l<k<n.

In order to prove the solvability of (3.6) and to find the inverse of (3.7), we introduce two general
lemmas first.

LEMMA 3.1. If A = (akj) is an n x n matrix satisfying
TI

1 akj0(Xj) = U(Z(x)(x))I,=k, k = 1,2,.. ,n- 1,
j=

n= 1L"

for any polynomial O(x) of degree < n - 1, then A is invertible.

LEMMA 3.2. If B = (bkj) is an n x n matrix satisfying

bkj(Yj) = V" )l , k=1,2,...,n

j=1

bkn = ub,

for any polynomial 0(y) of degree < n - 2 and A is an n x n matrix satisfying the conditions of
Lemma 3.1, then

AB = 21.

That is
A - ' = -- B .

Next, we need to check that the matrix of (3.7) satisfies the conditions of Lemma 3.1 and the
matrix of (3.8) satisfies the conditions of Lemma 3.2.

PROPOSITION 3.3. The matrix A in (3.7) satisfies the conditions of Lemma 3.1. A is invertible.

PROPOSITION 3.4. The matrix B in (3.8) satisfies the conditions of Lemma 3.2. The inverse of the
matrix A in (3.7) has a closed form as AB.
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4. SEVERAL SPECIAL CHOICES OF THE QUADRATURE AND COLLOCATION NODES

Sometime we ne i a simpler form of the system of equations, or we require higher accurate
quadrature rule and or we want the two groups of nodes to be the same. We can make various
options about the quadrature and the collocation nodes. In this sections we provide four different
choices of these nodes.

1. Gauss-Jacobi Scheme. Let {f 1,z 2 ,... ,z} = {6, 2,-'" } and {Yl,Y2,'",Yn-l} -
171,772,", 1n-i}, where {} and {r}} - ' are the zeros of the pn(x) and qn-1(y) respectvely.

We have X(x) = pn(z) and Y(y) = qn-l(Y).
Denote

(4.1) j fl Z(x)p,,(,j)d(4.1) W -- -1(Z - Ws'pn,(f i) '

l. qn- l(y)dy
(4.2) j"-- - Z(y)(y- j)q'- (j)

The matrix A in (3.7) will become the form

(4.3) A = (a'j)nxn,

where

j 77k 7r P.(

1 b , 1

qk ' p,(4)qn- l (?k))= -----"-' for <k<n -1 1 j 17n.

The matrix B in (3.8) has also a simpler form,

(4.4) B = (b*kj).x. ,

where
b1 b 1 (AV(qn-(Y),, ,

1 b . [1 ,v( )  b V
1-b V'_ + _ 1.* Pn( = b , for l< k <, 1<j n-i1.

Tk 7jI ' qn- 1 (17j) i 7

Similar to Proposition 3.3 , we have

PROPOSITION 4.1. For any polynomial 0(t) of degree < 2n, the matrix A in (4.3) satisfies

I'

,a'kjo( j) = U(Z(.)0(X))J:= ,, for 1 < k < n -
j=1

n • 1 f t

Eaj0(j) = -- ] Z()0(x)dz.
j=i f

Similar to Proposition 3.4 we have
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PROPOSITION 4.2. For any polynomial 0(t) of degree < 2n - 2, the matrix B in (4.4) satisfies

n-1

E = V( I fork = 1,2,.. ,n.
j=1 Z(X)

Since the Gauss quadrature formulae have higher algebraic accuracy. This scheme may have higher

approximation rate of convergence.

2. Lobatto-Jacobi Scheme. Let {-1, -?n-i,-77-2,.. -1, 1} be quadrature nodes and let

{-4%, -'n-i,"", - } be collocation points. We have

(4.5) X(x) = (X + 1)(X - 1) H(X + 77)
j=1

n-1
=(-l)n(1 - x)(1 +I X) ri(-z - 77j)

j=1

= (-1)n(1 - z)(1 + X)qn-(-X),

n

(4.6) Y(Y) = (-(Y+ ) 1 (-)"P(Y)-
j=1

Considering our assumption of a > 0, b > 0 and 0 > 0 in the definition of Z(x) = (1 - z) (1 +
x)- '+ i , we can represent the quadrature coefficients Wj and 1' by using the Wj" and Vt'.

J) Z (x)X( x) dx
(4.7) W0  ( + 1)X'(-1)

t __ _ [1(1 -x)--( + x)-'+!(1 - x)(1 + x)qn,-(-z)dz

2qn- 1(1) 1Xi + 1

2q. x )- 1 -j -
I ((1 +

1 f q,-i(x)dx

2q._:(:)J._ (x - )Z(x)

I _ aq._ (I)2q._,1) b"Z(1) PPn(1))
b Z(1)

~rpp,( 1)
2bq.-_1(1)'

where we use the fact that = 0 because ofO > 0. For j = 1,2, n - 1, we have

(4.8) Z(.)X(x)dx

( +
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Q x-(1 + xn)q +I(l - x)(1 +-~,-Ix

17T)-j J-I ( -

l-v2

and

(4.9) W. [ Z(x )X(x)dx
J(x 1 )X'(')

1 1 _1 ________________1_________________

x -

2q.- I(- 1) J- 1 Z(x)(z + 1)

rj pq,-(-l)

where we also use =0beaseo 90
For j 1, 2w ,wehliave

(4.10) V: Y(y)dy

= ft p.(-y)dy

_(I + y)!(l - y)1-fp(y)dy

= j Z(y)(I y2)p, 1 (y)dy

2 1. Z(Y)Pn(Y)(Y + -,+1 )dy

We can construct the system of equations as following:
Let

f=(C,f(M.), f(- n-Al. f. ,)
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We have

(4.11) A=

where

(4.11) A = 0 < k < n, 0 < j < n.

akj= .. forl<k<n, 1<j<n-1,
= " 1 - rt2_ ,-k+i .-

7r 1)

ako = -j'n-(1) 1 for 1 < k < n,

p.(-1) 1

(4.12) - - q-I(-1) 1 + Gn-k+1 for 1 < k < n
1 V _

a0i=- , for 1<j<n- 1,

a o - 2 b q I- l ) 'JA pn(1)

aon - Y P(-l)

2b q.-(-l)"

Similar to Proposition 4.1, we have

PROPOSITION 4.3. For any polynomial 0(t) of degree < 2n - 3 ,the matrix A in (4.12) satisfies

n-1

ak0 $0(-1) + E akjO(-l7n-J) + aknq(l) = U(Z(X)O(X))I-=-c.-+,, for 1 < k < n,
j=1

n-1 1 /1

aooO(- 1 ) + E aoj0(-rn-j) + ao.0(1) = Z(xz)O()dx.
j=i 1

Similar to Proposition 4.2, we introduce a matrix

B = (bkj)(n+l)x(n+l), 0 < k < n, 0 < j < n,

where

=b(1- "-,+t)WT -J 1  for 1 <k<n, 1<j<n,
b ( n-1+1 - 1Rn--i

b (1 -

(4.13) boj= + for I < j < n,
6(1 -j~

Sb ( j)Wn-j+1 for 1<j!<n,Tr n-~+l - 1

bko = bp, for 0 < k < n.
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PROPOSITION 4.4. For any polynomial 0(t) of degree < 2n - 1 , the matrix B in (4.13) satisfying

( ~ for k= 0,

Sbkj ~(-Cn-j + 1) = 1L)j=- ., for 1 < k < n - 1
= V(z(1)j=, for k= n.

By using the same way as that in proof of Lemma 3.1 and Lemma 3.2, we can show that the
coefficient matrix A of Gauss-Jacobi scheme in (4.3) and the coefficient matrix A of Lobatto-Jacobi
scheme in (4.12) are invertible and that the their inverses are of the closed form -rB, B is given in

(4.4) and (4.13) respectively.
These two schemes can approximate the singular integral operator in higher algebraic accuracy.

Are there other groups of quadrature nodes or collocation nodes which have similar properties? For
example, can we construct Radau-Jacobi scheme? In the case of a = 0 and b = 1, we found four
different choices of the nodes (see [9]).

3.Coincidence of Quadrature Nodes and Collocation Points.
If we choose the n - 1 collocation points the same as the first n - 1 quadrature nodes, we also can

construct an invertible linear system of equations.
Let y=z, for l<j<n-l, wehave

X(X) = MIX - Xj),
j=1

n-1

Y(y) = MlY -z).
j=1

The discrete system of equations has the form

A =f.

where

0 = ,I), (X2),
f -- (f (XI), f (X2)," f f(Xn, c)T ,

A = (aj),x,, I < k < n, 1< j n,

b WjX'(xj)-WkX'(xk)
a= ',for1<k~n-1, 1 <j !Sn, ,k 96

a 7-- rX'(xj) Xj - Xk

(4.14) a = aZ(Xk) + b f' Z(t)X(t)dt fo<k< 1
rX'(xk) '' (t - 1,

1
, = -W/1 , for 1 < j <

PROPOSITION 4.5. For any polynomial b(t) of degree < n - 1, the matrix A in (4.14) satisfies

ajo(x))= U(Z(x)k(x))I=.,. for 1 < k < n -1,
,=1
n 1f

- f Z(x)¢(z)dx,a"J( b =7r 1
j=43
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By Lemma 3.1, the matrix A in (4.14) is nonsingular. Next, we introduce a matrix B,

B = (bkj),x 1 < k < n, I < j! _n,

- b V'Y'(zj)-VkY'(xk), for 1 < k < n, 1 < j:<n - 1, k = j,

irY,(xi) Xj - zk

(4.15) btk = a b fI Y(t)dt
Z(z&) rY'(xk) L Z(t) (t - X) 2 for 1 <k<n-1,

b pnbiA, for 1 < k < n.

PROPOSITION 4.6. For any polynomial 0(t) of degree < n - 2, the matrix B in (4.15) satisfies

E bij O(x1 ) = V(z()(z,,, for 1 < k < n.
j=1

By using Lemma 3.2 , we know that the inverse of A in (4.14) is -sB.
Note: The collocation points are not necessary the FIRST n - 1 quadrature nodes. In fact, they

can be arbitrary n - 1 nodes. If we take n collocation points, we will obtain a system of n + I
equations of n unknowns. The rank of the coefficient matrix is n. We can use the regularization
method to find it's solution.

4.Minimum Norm-Least Square Scheme.
Let {Xl,z2,'' ,X n} = {Y1,Y2," "" ,Yn} = 1 " ,}, then X(z) = Y(x) = pn(Z). We can

construct a system of n equations of n unknowns only from the integral equation U(Z(x)O(x)) = f(x)

without considering the additional condition - f", Z(x)O(z) = c. We are going to show that the
rank of the coefficient matrix is n - 1 and to find a closed form of it's generalized inverse.

Denote the discrete system as

where
= (k(1), (2)," , ))

T ,

S=(f(6x), f(62),' " n •,f )) T ,

A = (akj),,

b 1 Z(t)pn(t)dt

a - f( (tpj(t)' for I <k,j<n, k $ j,

(4.16) 71 P.((7 ) I-1 (t - )(t - k)'(4.16)b Z~ Zt Vn(t)dt
akk = aZ(,Gk) + IrP',(G) 11 Z(t--t- for 1 < k < n.

Similarly, we introduce a matrix B,
B = (bki)..,

bj b [_ p,(t)dt _ for I < kj < n, k i4 j,

(4,= a b 1 p,,(t)dt for < k <.
Z(Gk) irp,(G) Zt(t k)2
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PROPOSITION 4.7. For any polynomial 0(t) of degree < 2n, the matrix A in (4.16) satisfies

n

E aLkj(j) = U(Z(x)0(x)),==f., for 1 < k <n.
j=1

PROPOSITION 4.8. For any polynomial 0(t) of degree < 2n, the matrix B in (4.17) satisfies

kjqO(--) = V(05)_ .)== , for 1 < k < n.
=1Z()

The proofs are the same as that of Proposition 4.5, however, we can not use the general Lemma
3.1 and Lemma 3.2 anymore.

Denote
p = po(2) Pi(') ... Pn-1(2)1

P0(6) Pi(6n) P -(6)

and
Q= 0 qo(f2) ... q,,-2(fi).

0 qo(6) ... qn-2(6)

We have

AP = pQ.

Since P is nonsingular, rank(A) = rank(Q) = n - 1.
Denote

= pl( 2) P2(62) ... N.-1(VO 0

( l , ) P 2 ( ) ... N - 1(6 , 0

and /qo(Wl q1(I) ... qn-1(6)\
qo() qj(6) ... 1q0(- -) "I-n).. qn--,(W)

We have

Since Q is nonsingular, rank(A) = rank(p) = n - 1.
Introduce

-1

= B,

we have
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PROPOSITION 4.9. B is the M - N generalized inverse of A in (4.16), that is Band A satisfy

(4.18.1) AbA = A,

(4.18.2) bAb =b,

(4.18.3) (AB)TM = M(AB?),

(4.18.4) (3A )T N =N(BA),

where M =(1QQT)-l and N = (ppT)-l

Proof. Let

j =(0 1.-,i

where I,,-, is an identity matrix of order n - 1. It is obvious that jT and J satisfy

(4.19-1) jjTj =j

(4.19-2) jTjjT = jT'

(4.19-3) (jjT)T = jjT'

(4.19A4) (JTj)T = jTj.

Since P5 = pjT and Q = QJ, we have
A = pQJP',

B3= IpjTQ-1.

The refore
ABA = p(Qjp-i)(pjT0-1)(0jp-1) =P(QjjTjp-l = A,

bAb = (pjT QI)(Qjp-i)(pjT -1) = ILpjTjjT( -1 = b

(Ai3) T M = (Qjp-ipj T 0-1)-1(( 0T)-i = O- T jj T QT (Q T Q'1)
= Q - T jjTQ-1 = (Q .T -)(Ojj T y-') = M(AB),

(iA)TN = (pjTQ -i jp-1)T(ppT)-1 =(p-TjTjpT)(p-T p-i)
=p-TjTjp-1 = (ppT)-I(pjTjp-1) = N(bA)T.

According to C. R. Rao and S. K. Mitra [13] (pp. 52), b is the M - N generalized inverse of A.
Q.E.D.

PROPOSITION 4.10. i = Hfi is the minimum N-norm Mf- least square solution of the n x n system
of equations Ab f That is, the i satisfies

where makes 1 I=mn19IN

The 11 i JIM and 11,i 11k are defined as Vrx-T Mi and VTM respectively.
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5. NUMERICAL EXAMPLE

We have considered a numerical example for the equation (1.1) with a = 0, b = 1 , k = 0 and
f (z) - 1-. As c is quite small (e.g. c = 0.01), f(z) has a peak value 104 at x = c. The exact
solution

(1 + 4c') -c) cos+
c (X -C)2 + C2  '

where
tan0 = 2c2 .

It has also a pair of maximum and minimum at the vicinity of 0. Since the unusual behavior, the
values of f(z) at Chebyshev collocation points {sj } can not represent the feature of f(z) and the
classical Gauss-Chebyshev scheme failes to provide a satisfactory approximate solution. The curve
(dot line) in the following figure shows unacceptable errors.

Another way is to choose collocation points flexibly. For example, if we take z = -0.01 as
collocation point instead of z = Sfracn2 = 0, we obtain a general quadrature colloaction scheme.
The curve (dash line ) in the figure shows that it gives a much better approximation to the exact
solution (points labeled by small triangles in the figure) than the Gauss-Chebyshev scheme does.

As n increases, Chebyshev nodes become dense. Since the Lebesgue constant of the interpolation
at Chebyshev nodes are bounded, a more satisfying approximation may be obtained. However,
under the restriction of the number n, the flexible choice of collocation nodes can lead to a better
result at a lower computational cost.
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On a Hyperbolic Tangent Quadrature Rule
for Solving Singular Integral Equations
with Hadamard Finite Part Integrals

FENGGANG ZHANG

Department of Applied Mathematics and Statistics
SUNY at Stony Brook.

Abstract. Stenger's formula is adapted for singular integrals defined as Hadamard finite part. Conver-
gence of the revised quadrature rule is studied. A scheme, for solving singular integral equations with
Hadamard finite part integrals, is proposed based on the revised hyperbolic tangent quadrature rule.
The integral equation is reduced to a system of linear equations, by taking the same points as quadrature
nodes and collocation points. The coefficient matrix of the system is shown to be nonsingular.

1. INTRODUCTION

Many physical problems from diverse areas such as aerodynamics, hydrodynamics and elasticity
may be reduced to integral equations of the form

f f f(t) dt 1
(1.1)L (t -2a + J k(, t)f(t)dt = F(z), -1 < x < 1,

The first term denotes the lladamard finite part integral (I. lladamard [7]).

(1.2) j dt = F.P. lir( +-1_1 (t - X)2-0 f.( } -

where the initial "F.P." means extracting only the terms which remain finite as c go.., to zero. The
second term on the left side of (1.1) is the Fredholm integral.

The Hadamard finite part integral also can be regarded as a distribution defined on C,(-oo, oo)
A. Zemanian [8]), where C'(-oo,oc) is a set of infinitely differentiable functions with compact

support. Therefore, we have

(1.3) j dt =f (0 d

The right side of (1.3) is the distributional derivative of the Cauchy principal value integral, which
is often regular.

The numerical methods for solving (1.1) have been discussed by Kutt [1], loakimidis [21, Kaya
[31 and Golberg [4]. In [5] Venturino has proposed a technique for solving Cauchy singular integral
equations. Venturino's scheme utilized the quadrature formulas which were proposed by F. Stenger[6]
and were called the "hyperbolic tangent (Iuadrature rule". Although there is a close r.,lation between
the two types of singular equations, the supersingularity of the lladamard finite part. iiuegral prevents
direct application of the original hyperbolic tangent qiuadrature rule. Stenger's fort . a in favorable

This research was completed under the guidance of Professor R. Srivastav. The author thanks kim f.,r his significant
advice and very helpful continents. Research supported ini part by NSF Grant No.DMS-89018." and US Army
Research Office Grant No.DAAL03-90-G-0019
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cases has exponential convergence. It seems to be of interest to modify it so that it can be used for
supersingular integrals.

In this paper, we first generalize the trapezoid quadrature rule to the Hadamard finite part integral
on (-oo, oo). Then, we propose the revised scheme of the hyperbolic tangent quadrature rule and
estimate the error bound of this scheme. In section 4, we introduce the concept of the generalized
Cauchy matrix and prove the coefficient matrix of the discrete system is invertible. Finally, we give
two numerical examples to check how well the revised scheme works

For the sake of brevity, we only discuss the canonical equation of the form

(1.4) at = F(x),-I <x <11 (t - X),
2. HADAMARD FINITE PART INTEGRAL ON (-00,00)
AND THE REVISED TRAPEZOID QUADRATURE RULE

According to [6], the trapezoid quadrature rule can be introduced by using the Whittaker Cardinal
function.

Let f2 d be a strip in the complex plane:

(2.1) d:= {x + iy, y 1< d},
where d > 0.

Let Bd be a family of functions f(z), that are analytic in Qd, satisfying
d

(2.2) I J f(z + iy) I dy - 0, as z -- ±o

and

(2.3) N(f, fd) := lir (I f(z + iY) I + I f(z - iy) J)dx < 0.

Denote

(2.4) 77(f) = f(t)dt - h _ f(kh),

f oo-oo

(2.5) rt'(f) := f f(t)dt - h E f (kh).
• ~o k=-Af

In [6], it is proved that if f E Bd, then

(2.6) II /(f) ICU< esn ~f 2)
n d N(f, Qd)-

If also

(2.7) I f(X) 1< c p- a 1Xi ,

then

(2.8) 1 '1'(f) 1< c2 eI- 2.dA

by taking h = j, where c, ,c2. , are constants independent of M.

Now, for the lladainard finite part integral on (-,x, x),

(2.9) I(f) ( )2 M d,

there i-. an associatud infinite series, whose partial sums may be used for numerical integration. The
error of this approximation is easy to estimate. The main result in this section is
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THEOREM 2.1. If f(X) E Bd, I f(A) Is ce- ' 141, 11 I" II.-- C2 and

(2.10) h O f(x + kh)
h o (k - 0.5)(k + 0.5)h 2 '

(2.11) I(f) ( f) - ,( )

(2.12) r(f) := r(f) _ h k (k - 0.5)(k + 0.5)h 2 '

then it
I6(f) 1< I + CA

a sinh -

1 CM(f) 1: c3(e - *Mh + h)

by taking M - .h4, where c, ci, c2 and c3 are constants independent of M and h,

(2.13) 4(1+ ct + ad2 )

4c , Crc)
(2.14) C3 = max (-c 2 + -)

ar 4rd

We prove the theorem through several kimma.s.

LEMMA 2.2. If f(t) E Bd and 11 f 11.< c, then the lHadamard finite part integral I(f) can be

represented as 00
11 -- g(t)dt

Wh ere( + 0 + f(x - t) - 2f (x)

2j2 as t 5

f"r --) as t =n.2 '

Here g(i) E Bd and

N(g,Q) <d N(f, ,)+ 8(7, + I) 1 f 11.

Proof.
(f) (t-)dt+ J (t) 2

(t - 2 f . -X2d

Sf(X + t) + f(X t)dt

F. jim f(x + t) + f(x-t - 2f(x)~ ±t + 3 '~dl)

C 0 t2-3 t2
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f j 2g(t)di + f ()F.P. I I dt

= I ,

because f(t) is analytic, 0 is no longer the singular point of g(x), g(t) is even on (-co, oo) and the

second term is equal to zero. Furthermore,

N(g, Qd) = lim (Ig(t + iy) I + I g(t - iy) ))dt
y-d- fo

lira 0 /c( I fP +t + iy) + f(x - t -iy) - 2f(x) I

yd-Jfco I t + iy 1-

+ I f(x + t - iy) + f(x - t + iy) - 2f(x) I )dtI t - iy 12
[( (f f(x + t + iy) J+ If(Z - t- iy) Idt< Ylim (2 f 01Yd

+4f(x)( . -dt + -dt)

2 2

2 N(f, a) + 4 11 f I1. (1- + 2). Q.E.D.

LEMMA 2.3. If f E Bd and I f(x) J< ce-O'1x1,

t ( O f(x + kh) + f(x - kh) - 2f(x)
(g) :-1-( k2h2 + f"(x)),k=-oo,k fO

then cl e -'
149() 1<

a sinh "'

where c1 is defined in (2.13).

Proof. Since

N(f, Q,1) < 2c e'ldt - ±-,

by using (2.6) and the Lemma 2.2, we obtain

f ((g) 1:5 N(9 , 0 )

2sinh. "

4ce-
< ",, (I + a + odd2 ). Q.E.D.

rvd 2 sinh !

440



LAMMA 2.4. If f E Bd, I f"(z) < C2 and

h 0 fIx + kh) + f(z- kh)- 2f(z)
( := E (k - 0.5)h(k + 0.5)h

then

I (*(9) I9 (g) 1+c 2h.

Proof. Using the mean value theorem and the identity

Z-k 2 -0.25
k=1

we find that
c(g)_-(g) h0 f(z+kh)+f(x- kh)-2f(x)( 1 1 h h

h2  (k - 0.5)(k + 0.5) - 2

k=1

k=IC O ~ 1 . ) = C hQ E D
C ( k2 ~ - -0.25 - +

k=1

The proof of the Theorem 2.1:
By the Lemma 2.2, the Lemma 2.3 ,the Lemma 2.4 and the identity

00 ~ 11

=- (k - 0.5)(k + 0.5)

we find that
c(f) = I(f) - 0(f) = 11 - a(f)

h 0 f(x + kh) + f(x - kh) - 2f(x)
= ) + - (x - 0.5h)(x + 0.5h) - o(f)

I *O f (X)h(g) - F- (k - O.5h)(k + 0.5h) = '(g)

and

(1%1(f) :5 CfM I + h ( f( + kh)

-2 I ) (k - 0.5)(k + 0.5)h2

51 f(() 1 +4(M + 0.5)h

ce -  C
< j-z + c~h+

- i'h +ch(21f + 1)h"

Since M= j, for If large

s hll

we have

OfM) 1: 4C1e- "h + (C2+ Ca )h
a 4rd

< ca(e- '*A h + h). Q.E.D.
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3. HADAMARD FINITE PART INTEGRAL ON THE INTERVAL (-1,1)
AND THE REVISED HYPERBOLIC TANGENT QUADRATURE RULE

In [6] the hyperbolic tangent quadrature rule is introduced to approximate the regular and the
Cauchy principal value integrals on (-1, 1). Let us recall the main results of (6] before we discuss
its modification.

Let fl be the open unit disk in the complex plane:

Q := (ZI I z j< 1}

and Bd be a family of functions f(z), which are analytic in 0 and satisfy

(3.1) N(f, Q) := lir I f(re') I dO < oo.

If f(x) E Bd and

(3.2) xk = tanh kh = ekh-1
2 ek h + 1'

then

h 002

(3.3) 117(f) [=* f(x)dx - 7 (1 - x)f(xk) e -sinh1- 2=o 2sinh ,M - f )

k=-00 2h

also, if jf(z) 1 c(1 -x 2 )"- l on (-1,1) ane h= then

(3.4) M(f) I:=1 f(x)dx -- Z (1 - x')f(xk) 15 'e--
(34 7 f 1 f --dx - li T

Let

(3.5) I(f) )2 d -1 < X < 1,

and

00 f_(_.+

(3.6) r(f) ._ 2(1 - £2) Z k-o5sk+o 5

4. =-00 -, 5S+

where

khz
(3.7) 

sk = sinh 2 .
2

Similar to the section 2, let

h (8 f( f

2(1 - X 2 ) =-Sk-_.s+0.5
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'(f) := 1(f)- 0Y),

f(f) I(f) - 0,M(f).

A fractional linear transform of the complex variable defined by

_s+x t-z
(3.9) t = 1+ or s -

I +_s I -tX:

is introduced. It is a one-to-one analytic mapping from the open unit disk onto itself and leaves
-1,1 unchanged. We obtain

_fI +.xI ds:)(3.10) I(f)=j s'(1- 2 )ds "

Let

p S+ _+.. f(-'+f- 2f 2(x)
-', + ,I + -,q if s 36 0

(3.11) g(s,x)= 2s2  ifs 0(1 -x 2 )f"(az) ifs =0.

2

Our main result in this section is

THEOREM 3.1. If f(x) E Bd, 11 f 11o.< co and

(3.12) 1 g(s,X)(1 - s2) 1 <c 2(X), for -< x < 1, -1 <s< 1,

then

((f) I: cI(x)(e -  + h 2 )

and by taking M we have

I CM(f) IS c3 ()(2e - h + h2 ).

where ci(x), c 2(x) and C3(x) are functions of x, but independent on s, h and M,

(3.13) cI(z) = max (2,rco( - + I-), (Ic,(X) + Ico) I )- ,(P2 X T-X 2  S8 1-2 1 -x 2

(3.14) (,3d(x) = iix (cI(x). _C- )

and

d(x) = min (1 - x, 1 + x).

We prove this theorem through several lemmas.
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LEMMA3.2. If f(t) E Bd, then the Hadamard finite part integral I(f) can be represented as the
sum of I, and 12,

(3.15) 1 X2  g(s, x)ds,

(3.16) 2= -2f(z)
1- X

2 "

Here I1 is a regular integral, g(s, z) E Bd and

N(g(s,),d) 2(1 X2) N(f, d) + 4 I f(x) I.
d2 (x)

Proof. From the [8] (page 62), the Hadamard finite part integral can be regarded as a pseud-
ofunction or a functional defined on the test space C' (-oo, Xo), that is, for any function 0(s) ECO(-0,0),

fO(s) ds ifo 01'(r)(s - r)dr s-0)

f_ O(s) - 0(0) - 0'(O)Sds -

0 S
2

and

O(S) ds =j' (S) ds +j w ds

(S) - O ) - S '( ) - 0 0 ) + (- ) 8s0'( ds - (0)

1 (s) + 0(-s) - 20(0)d s
= 2s2  d ~()

This functional can be generalized to any continuous function with finite support in (-oo,oo).
Particularly,

1 7 = -2.

In fact, let
1lif I S < I + 0,

A~S) = 0, if I s 1 I + 2a,
+s} ,if - I - 2a < s -- a,

- 0, if l+a<s< +2a.

We can construct a sequence { 0,,(s)'} ¢,(.) E "-., .) anl

() 1, O( ) -0, ,(s) - 0 uniformly on [-1,1] as n - ,

where

(S)= f(r),s - r)dr,
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(nt)

and
0 0, if ft 1:_ 1,C(t) =  -.-
en-', if It < 1.

Therefore,
ds = lim ds

foo0 S- n-ooI,

jf_' f 1k (O(s-r)dr ds - 20n(0)) = -2.n o"r)s

Let O(s) f( we have
=1 f' o(), w

(3.17) l(f) = ) x s2 ds

1 f 4 f( -+r )ds - 2f(x) __f _

1 - z 2 J..-1 2s 2  1 - X2

= II + 12.

Since (3.4) is a fractional linear transform from the open unit disk onto itself, f( is analytic
with respect to s in the I s j< 1 and the g(s, x) is too. Furthermore,

(3.18) N(g(s, X), d) = rim j I g(re'0 , x) I dO
r-l- jo

_<li (2W .rei~ +x ,  f 2  -_e°_+x
m(]2wI f( +±xG ) IdO+ I f( - i dO) + 47I f(x)f,'-1- Jo 1 {' + xr''  1--xr ie

where s = re'e. Let t = pe"', we have

ds 1- t dt

(I-tX)2

and t(- X2) d,6O(t - x)(1 -tx)

and
________+ __, (1l x2)pe' 0

lim 2rIf( ]ei +xIdO= fin, If(pe'o) 11 x2)l o 10

r_1- I+ a,0j9  r--I (pe i0 
- z)(l - xpeO)

1 - x2'
- - N(f72d).

(1'2 X)

We can obtain the same estimation for lim._- f" I ft-l +) [dO. Therefore,

2(1 z '

N(g(s, x), Qd) d 2(- x2) N(f, Qd) + 4r I f(z) I . Q.E.D.
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LEMMA 3.3. If I g(s,x)(1 - s 2 ) 1<_ c2(X) for -1 < x < 1 and

h g(,x)9() (s, x)ds - E s -, X)~s

'- 1 = - . 5 S k + 0 5

then

2hI £() I** 2snh (g(s, z), ad) + c2(x)h2.

Proof. By (3.3), we have

h g(= ,2(l k, 2snh e N(g(s, X), Qd).
9(Xk,~~ -z)< sinh I-

By using the identity

k=-M Sk-o sSk+0.5 sinh A2

we obtain
1 1 - cosh A

X2 ) =S(1 - (1 - 4)ko.ss+o.5 )  2SkO5+0
--0 )$ - .SA+ . Si:-o.5SIk+0.5

2 h -2 h h(- sinh

Therefore,
E ~ ~ g k .)q - Z) E): I< c (x)h.

2 k=-002 k-00Sk-..5Sk+0.5 -8

By using the triangle inequality, we can obtain the estimation of f(g). Q.E.D.
Proof of the Theorem 3.1
Since I f(x) 1< co, by using (3.1) and the Lemma 3.2, we have

N(f, Qd) < 27rco

and

N(g, Qd) X2 d(z) + 1)4-co.

Now, writing the o(f) in the sum of al and t72,

/1 ) f( T-A -§-) + f( -r + ) -2f(x)

(71 - 2(1k - I s -ss 0

I= -':,

2(1 x ) sk-osk+os

) k -0 Sk O.SSk+ O.5

2 (1 - 2)fXE SL-0.5Sk+05
k=-00
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using the Lemma 3.2,

1 f(x) h 0 i

1 X2 e() "- Sk-o.sk+.)

and using the estimation

h 0 1 h 2

=- sZ-o.sS+o.s sinh 1 2

we have

2 1 ) Co h2

e3

1 er 1 1 2

- 12 + 1)4r snh + C2 (x)h) + 1- -1

< cI(x)(e- + h2),

where cl(x) is defined in (3.13). Furthermore

I M(f) 11 C(f) I + :2+)k
Ikl>M sk-o.5s+o.5

51 o(f) I 1 2 + )I -1)
2(1 X2) sinh (tanh(Al + 0.5)A2

< c3 (x)(e- + h2 + e-fh),

where c3 (z) is defined in (3.14). By taking Al' = 1

C M(f) 1< c3 (x)(2e - Mh + h 2). Q.E.D.

Note, the upper bound c2 (X) in the (3.12) is dependent on the behavior of the function f(t). C2(X)
may become unbounded when x goes to ±1.

4. THE SOLVABILITY OF THE DISCRETE SYSTEM OF EQUATIONS

For the finite part integral equation (1.1), if k(x,t) = 0, the discrete functional equation given by
the revised hyperbolic tangent quadrature rule will he

(4.1) 2(I - x2- )  t . - = x)

where :k = tanh .
We can choose x = x: as the collocation points. Since

(4.2) Xk + j=
I + Xk:1
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the collocation points are the same as the quadrature nodes. Let I = k + j, we have

(43) h M+j f(__ ) (I -z )F(xj), for--M,-M+ I,... -1,0,,- ,M.
_= EiI+ 8-j-o.5ss-i+o.5 (

There are 2M + 1 equations. In order to keep the number of the unknowns f(Cg) the same as the
number of equations, we prefer to ignore those quadrature nodes which are too close to the ends -1
or 1. It is reasonable to take the range of x, as from z-M to zM and we have

( .4)=-M sj-o. j+o.S) = (1 - z})F(z), for j = -M,.. -1, 0, 1,-., M.

Let
J, =(f(X-M) f(Z-M+i)" f(XM))T

2 -

and
-- ((1 - Z._M)F(zM), (1 - ZM+I)F(xM+), ( - (M

The discrete linear system of equations is

(4.5) A4 = F,

where
A = (ahl)(2A1+1)x(2A1+1},

j=-Af,-A+ 1, ,-1,0,1,... ,A, I = -m,,-A + 1, ,-1,0,i,. .,M,

1
(4.6) a =

8t-j-o.hst-j+0.5

The following steps are concentrated on proving that A is invertible.
Since

4
aji = (e(I-i-o.5)h/2 - e_(t_jo.5)h/2 )(e(/ij+.)h/2 - e_(Ij+05)h/2)

4p
2

= (pl-1 _0  - )(p1+o. 5 _ ),

where
p=eh >0.

The matrix A can represented as the product of B and D,

D = Ildiag(p - 2
11, P2- t +P 2. M),

B =

1
(4.7) b (p - 5 p=)(p'+O - p)

448



We only need to prove that B is nonsingular.

If B is an n x n matrix, bi, = --- , where all {fx}n and {y,}n are distinct, then

det(B) : 0.

B is called the Cauchy matrix [9]. In fact,

(4.8) det(B) = (-1) 2  Il<i<j<"(z - ) - )

The set of functions {I } is linearly independent, that is, if there are constants cl, c2 ,... ,

such that

(4.9) E =o,j=1 X - yi

thencl=C2=...=Cn=0.
By [10], we can say that the set of functions _. satisfies the Harr condition. Now we

generalize these concepts.

DEFINITION 4.1. If {x,}n and {y,}n' are two groups of numbers, we call the matrix

(4.10) B = (b1 ).x = () _

_ Yj)(Xi _ y,)

the generalized Cauchy matrix.

LEMMA 4.2. If all {x}' and {y,)n' are distinct, then the generalized Cauchy matrix is nonsingular.

Proof. If the B in (4.10) is singular, then there are cl, c2,"" , c,n not all zeros such that

( x i c= 0 , f o r j = 1 , 2 , ...n ._I, _z - - Yj)(x i Yi)

Let

p(t) = 1(X, - t).
i=O

p(t) is a polynomial of degree n + 1. Consider

cip(t)

,=,Z (X,_ - t)( , - t)'

where 0(t) is a polynomial of the degree n - 1. Since o(yj) = 0 for j = 1,2, -. , we have

¢(t) - o

That is

ci0
(i- t)(X i 

- t) 0,
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or I I I I

Zi - zi- (i~ - t zi t

By rearrangement of the summation, we obtain

1O 1 E(c+ i_(4.11)1t +  " c c, ) -c, 1=0.
I - -- 'I t i=1 Xi- Zi Zi - i  t Zn - Xr-1 Zn t

Since the set of functions -} is linearly independent, (it satisfies the Harr condition,) all

c Ci + 1 4 }if- cm
i Cl~ ~~ _ , { il C #=-

X1 - X() Xi+1 Xi Xi -- i-1 Xn - - n-1I

must be zeros, that is
C1 C2 Cn =O. Q.E.D.

Since the matrix B in (4.7) is a generalized Cauchy matrix, the {p'- 0 .s} and the {pj } are two
groups of distinct points. By using this lemma, B must be nonsingular. Hence the following theorem
is obvious.

THEOREM 4.3. The matrix A in (4.6) is invertible.

5. NUMERICAL RESULTS

We give here two applications of the method presented in the preceding sections. Although the
matrix A is a symmetric matrix, we use the general Gaussian elimination algorithm with single
precision.

Example 1. Consider the following Hladamard finite part integral equation,

1Ifl f(t)dt
i -f (t- z)

where F(z) = z + 4x - 0.25. The exact analytic solution is f(t) = - (t2 + 6t - 0.25). We
select M = 16 and h = 0.8. The results are shown in Table 1.

Example 2. Consider the same equation with the right hand side F(z) = *(x- 1 - .ln '=-). The
exact analytic solution is f(t) = I tj2 . We choose M! = 1), h = 1.0 and choose M = 16, h = 0.8.
The results are shown in Table 2 and Table 3. Since the solution is an even function, we only show
the half data.
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Table 1.

Nodes Exact solution Numerical solution Absolute error Relative error
-0.999995 0.005336 0.004071 -0.001265 23.71%
-0.999988 0.008523 0.007710 -0.000814 9.55%
-0.999973 0.012860 0.012462 -0.000397 3.09%
-0.999940 0.019163 0.019203 0.000040 0.21%

-0.999865 0.028797 0.029051 0.000253 0.88%
-0.999699 0.042951 0.043598 0.000647 1.51%
-0.999330 0.064019 0.065190 0.001171 1.83%
-0.998509 0.095427 0.097277 0.001849 1.94%

-0.996683 0.142066 0.144885 0.002819 1.98%
-0.992632 0.210851 0.215146 0.004295 2.04%
-0.983675 0.310984 0.317533 0.006549 2.11%
-0.964028 0.452289 0.462418 0.010129 2.24%

-0.921669 0.637646 0.653708 0.016062 2.52%

-0.833655 0.838912 0.864813 0.025901 3.09%

-0.664037 0.945410 0.984484 0.039074 4.13%

-0.379949 0.735484 0.777139 0.041656 5.66%
-0.000000 0.083333 0.091056 0.007723 9.27%

0.379949 -0.670339 -0.708051 -0.037712 5.63%

0.664037 -1.040588 -1.087179 -0.046591 4.48%

0.833655 -1.002749 -1.036427 -0.033677 3.36%
0.921668 -0.792702 -0.813875 -0.021173 2 C7%

0.964028 -0.572672 -0.585929 -0.013257 2.3'%

0.983675 -0.397081 -0.405581 -0.008500 2.14%

0.992631 -0.270259 -0.275803 -0.005544 2.65%

0.996682 -0. 152,108 -0. 166036 -0.003630 1.99%

0.998508 -0.122649 -0.1250(02 -0.002353 1.92%
0.999.29 -0082330 -0.083799 -0.001469 1.78%
0.999699 -0055227 -0.056053 -0.000826 1.50%
0.999865 -0,037031 -0.037354 -0.000322 0.87%
0.999939 -0.024833 -0.024696 0.000137 0.55%
0.999973 -0,016643 -0.016028 0.000615 3.69%
0.999988 -0.011177 -0.009917 0.001260 11.27%
0.999994 -0.007492 -0.005239 0.002253 30.07%
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Table 2.

Nodes Exact solution Numerical Solution Absolute error Relative error
-0.99991 0.000180 0.000158 -0.000022 12.36%
-0.99975 0.000493 0.000482 -0.000011 2.17%
-0.99933 0.001340 0.001336 -0.000004 0.28%
-0.99818 0.003641 0.003638 -0.000002 0.06%
-0.99505 0.009866 0.009870 0.000004 0.04%
-0.98661 0.026592 0.026631 0.000039 0.14%
-0.96403 0.070650 0.070934 0.000284 0.40%
-0.90515 0.180706 0.182594 0.001888 1.04%
-0.76159 0.419974 0.430501 0.010527 2.50%
-0.46212 0.786448 0.825407 0.038960 4.95%
0.00000 1.000000 1.065347 0.065347 6.53%
0.46212 0.786448 0.825408 0.038960 4.95%
0.76159 0.419974 0.430501 0.010527 2.50%
0.90515 0.180707 0.182594 0.001888 1.04%
0.96403 0.070651 0.070934 0.000283 0.40%
0.98661 0.026592 0.026630 0.000038 0.14%
0.99505 0.009866 0.009868 0.000002 0.02%
0.99818 0.003641 0.003636 -0.000005 0.14%
0.99933 0.001341 0.001332 -0.000009 0.69%
0.99975 0.000494 0.000478 -0.000015 3.11%
0.99991 0.000182 0.000154 -0.000027 15.06%

Table 3.
Nodes Exact solution Niirnerical solution Absolute error

0.0000000 1.0000000 1.0411291 0.0411291
0.3799490 0.8556388 0.8853009 0.0296621
0.6640366 0.5590555 0.5713608 0.0123053
0.8336545 0.3050202 0.3086018 0.0035816
0.9216684 0.1505274 0.1513890 0.0008616
0.9640275 0.0706509 0.0708401 0.0001892
0.9836748 0.0323839 0.0324238 0.0000400
0.9926315 0.0146828 0.0146910 0.0000082
0.9966823 0.0066243 0.0066258 0.0000015
0.9985079 0.0029820 0.0029820 0.0000000
0.9993293 0.0013410 0.0013406 -0.0000005
0.9996985 0.0006029 0.0006021 -0.0000008
0.9998645 0.0002710 0.0002701 -0.0000009
0.9999391 0.0001218 0.0001207 -0.0000012
0.9999726 0.0000547 0.0000535 -0.0000012
0.9999877 0.0000247 0.0000228 -0.0000018
0.9999945 0.0000111 0.0000086 -0.0000025

We can give some final comments on the numerical results. First, since both the collocation points
and the quadrature nodes cluster around the endpoints of the interval, the absolute error in the
middle points seems a little bigger. By increasing the number of nodes, the accuracy can be improved.
Second, although the nodes are very dense around the end points, the relative error at the nodes
of the most extreme positions is large. The reason is that the outside quadrature nodes have been
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neglected when we construct the system of equations. However, the points on the second and the
third nodal positions are so close to the points of the extreme positions that it will not affect the
total figure to discard the evaluated values at the most extreme positions.
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DOMAIN DECOMPOSITION METHODS FOR NONSELFADJOINT
OPERATORS*

ZBIGNIEW LEYKt

Abstract. We consider the problem of solving the system of equations, arising from the discretiza-
tion of nonselfadjoint elliptic boundary value problems via the finite element method. It can be solved
with the aid of exact or approximate solvers for the same equations restricted to subregions. The
interactions between the subregions, to enforce appropriate continuity requirements, are handled by
an iterative method. If we want to use the conjugate gradient method, we must transform the primary
system of equations as to get a symmetric system of equations. We show how this can be done so as to
get a small condition number of the transformed system of equations. We also discuss computational
aspects of the problem.

Key Words. Domain decomposition, additive Schwarz method, nonsymmetric linear equations,
finite elements, elliptic equations

AMS(MOS) subject classifications: 65N30, 65F10.

1. Introduction. Domain decomposition methods have recently become one of

the most powerful methods for solving partial differential equations. Most of them are
different variants of the additive Schwarz method, see [8], which in turn is very simple
and easy to implement on computers (including parallel computers). The additive
Schwarz method was introduced in [6] and [9] and subsequently studied in [5, 7, 8]. In
those papers only symmetric equations were considered, whereas in [3] nonvmmetric

equations have been analyzed.

The main property of the additive Schwarz method (ASM) is to divide the given
problem into a number of smaller equivalent problems. The interaction between these
smaller problems is handled by an iterative method. We choose a division of the primary
problem such that the condition number of the tranformed (preconditioned) problem
is independent of the number of the smaller problems and of some other parameters
like H (size of a coarse mesh) and h (size of a fine mesh). If the primary problem is

symmetric, then the conjugate gradients method is used. But if it is nonsymmetric, it is
rather difficult to decide on the best iterative method. In [3], where the nonsymmetric

positive definite differential problems have been considered, the GMRES method is used.

Moreover, for symmetric problems of the form Aw = f, the inner product (w, V)A =
(Aw, v) has been used ((., • ) is the usual L2 inner product). This inner product cannot

be applied when A is nonsymmetric and we must use another one. In [3] the (w, v)A, =

This work was supported by the U.S. Army Research Office through the Mathematical Sciences
Institute of Cornell University
t MSI, 409 College Avenue, Cornell University, Ithaca, N.Y. 14853; on leave from University of

Warsaw, Institute of Computer Science, 00-901 Warsaw, PKiN, p. 850, Poland
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Domain Decomposition Methods

(Asw, v) inner product has been used, where As is the symmetric part cf A. We

show in this paper that for A%1 there is another convenient inner product of the form
(w, v)R- = (R-1 w, v), where R is an operator related to the decomposition of the

primary problem.
The outline of this paper is as follows. We present in Sect. 3 an iterative method to

solve nonsymmetric preconditioned problems. It is the CG method with a special inner

product applied to a symmetrized preconditioned problem. The way of transforming
nonsymmetric equations into symmetric ones (symmetrization) is described in [2]. We

prove that the iterative method is convergent and the rate of convergence is given. In

Sect. 4 we show that for the system of linear equations resulting from the finite element

method applied for Dirichlet boundary value problem (a primary problem) the rate

of convergence of this method is independent of the number of smaller problems (or

subregions) and of H and h. Note that we do not impose the condition that the coarse

mesh should be fine enough to get the convergence of the iterative methods as in [3]

(we have no upper bound on H). In Sect. 5 we consider some numerical examples.

2. Preliminaries. Consider a linear equation of the form

(2.1) Aw = f,

where A: W --+ W is a linear operator, w, f E W and W is a finite-dimensional Hilbert

space with an inner product (-,.) and a norm 11" 11. Finite element or finite differences

discretization of an elliptic boundary value problem lead to problems of this type.

Let D : W -- W be a linear, symmetric and positive definite operator. Define the

inner product (w,v)D = (Dzv,v) and the norm IIV11D = (Dvv)_
We assume that the operator A satisfies the following conditions:

(2.2) milwil' <_ (Aw, w) _< AMjwjjl , Vw EW,

(2.3) (D'Aw, Aw) <5 K (Aw, w), Vw E W,

where 0 < m < M, K > 0. Note that A need not be symmetric. We introduce the

norm lVI lD-i defined as

(2.4) IIVIID-1 = SUP

wEW I1w1iD

and hence for any v,w E W

(2.5) I (v, w) 1_ ItVll D-- jjwjlD.

We have the equality HIOIlD-- = ( Note that (2.3) can be rewritten as

llAwllf_, < K (Aw, w).
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Remark 2.1. Condition (2.3) is equivalent to

(D-'w,w) _ K (A-'w,w), Vw E W.

If A is symmetric then K = M (it follows from (2.2)). 0
Remark 2.2. Let AT be the transpose of A with respect to (., -), i.e., (A'u, v) =

(u, Av) for any u, v E W. It is evident that A = As + AN, where As != (A + AT) (the
symmetric part of A) and AN = I(A - AT) (the skew-symmetric part of A). Assume

that

(2.6) (D-ANW,ANW) _ K(Aw,w), Vw E W,

where K1 > 0. We show that K depends on K and M.
First we notice that (Asw, w) = (Aw, w) for any w E W. We have

(2.7) (D-1Aw, Aw) = (D-1Asw, Asw) + 2(D-1Asw, ANW) + (D-1ANw, ANW).

It is easy to show that (Asv, v) 5 M(Dv, v) is equivalent to (D-iv, v) < M(A-Xv, v)
for any v E W. Hence

(2.8) (D-Asw,Asw) _ M(As'Asw,Asw) = M(Aw,w).

Further

(2.9) (D-1 Asw, ANW) < (D-1 Asw, Asw)' 12(D-1 ANW, ANw)1/2.

Combining (2.7) with (2.6), (2.8) and (2.9) we get

(D-'Aw, Aw) :_ M(Aw, w) + 2V MK(Aw, w) + K,(Aw, w) = (J/M+ K) 2 (Aw, w).

From the above it follows that we can set K (V'M + V/?1) 2. 0
Remark 2.3. If we have the following estimates

(2.10) mIlwll' < (Aw,w), Vw E V

and

(2.11) I(Aw. u) IK AIIW IIDIIVIID., Vw, VE w.

then we can take m = nin, .l = Al and K = m- 1 M' in (2.2) and (2.3). We show that
the inequalities (2.10) and (2.11) imply (2.3). Taking v = D'Aw in (2.11) we get

I(Aw, D'Aw)I_ MfI WIID]ID-,4wIID.

But, jIl' AwIlD = IIAwlID-i and hence

I ( 4w, D-7 Aw) 1 A I ,WI
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Since 1Iwil' < m-'(Aw,w), then

I (Aw, D-'Aw) 1:_ m 1 M 2 (Aw, w).

Usually the constant K is smaller then mrIM2.

Tt is also possible to show that (2.2) and (2.3) implies (2.11). We have

(Au, v) <5 ;,AullD-1 llVllv _ I/K-MJJUJlDIJVJJD,

since (D-'Au,Au) < K(Au,u) < KMIIuIIJD. We can take M1 = vIKAM and mi =

m. From the above considerations it follows that the conditions (2.2) and (2.3) are

equivalent to (2.10) and (2.11). The condition (2.3) is important only for nonsymmetric

A. If A is symmetric it follows from (2.2). 0

In order to decompose the space W we choose linear subspaces Wi C W, i -

0,..., k, such that

(2.12) W = W0+... +Wk,

i.e., any w C W can be represented (usually non-uniquely) as w = wo +... + wk, where

w, E Wi. We assume that there exists a constant 6 > 0 such that for any v E W there

exists such a decomposition v = i, vi E Wi, i = 0,. . k, that

k

(2.13) E 11viVD < 6iviID.
i=O

Note that 6 may depend on k and dim Wi, i = 0,..., k.

Let Si, i = 0,... , k, be the orthogonal projectors onto Wi with respect to (.,
that is, for any w E W

(2.14) (SiW,Vi)D = (W,Vi)D, Vvi E Wi.

We assume that there exists a constant -y such that for any v E W

k

(2.15) D- D"
i=0

We consider that -y is the smallest constant sttisfving (2.15) for any I, E I'.

Remark 2.4. Since IISi viID <_ HIJVlD, then Ek 0 H < (; + 1)11t'II2 and we can
always take -y = k + 1. But for some decompositions of W we find that -y does not

depend on k. 0

We now introduce the local decomposition operators R, : W -- WV, i 0. k.

defined for any w E W as follows

(2.16) (R, r,)D = (w.V,), Vv, E I V.
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The global decomposition operator is a linear combination of Ri, i = 0, ... , k, that is

k

R = E iR.
i=O

Notethat R: W --+ W, sinceW isalinearspace. DenotebyQi: W -+ W i - 0,...,k,

the orthogonal projectors onto Wi, i.e., for any w E W

(Qjw,v) = (w, vi), vW, E W.

From (2.16) we get that for any w, v E W

(DRiw, Qv) = (w, Qiv)

and, since Qi is symmetric and Riw = QiRiw, we find that for any v E W

(QiDQiRiw, v) = (Qiw, v).

This implies that

DiRiw = Qiw,

where Di = QiDQi. Hence Riw = D7'Qiw and

k

(2.17) R = D Qi
i=O

Note that !i, i = 0,... , k, is symmetric with respect to (•, •), but it is not a projector

(R' : R,).
We now show that R is equivalent to D - 1, i.e.,

S-(D-w, w) _ (Rw, w) y(D-w, w),

where 6 and -y are defined in (2.13) and (2.15) respectively. From the above it follows

that 1 < -y.
LEMMA 2.1. If (2.13) is satisfied, then for any w E W

(2.18) 6(Rw, w) D- jjwlj 1,

Proof. For any v E W we have a decomposition v = =v, v , E i, satisfying

(2.13). Note that (w, vi) = (Riw, Vi)D, see (2.16). Hence

k k
(2.19) (!(,,, ,) 1= E (w, v,) < 1 (Riw, Vi) DI
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Further,

k k
(2.20) E I(Riw,v,)D 1 ZIRiwIIDjjViIID

i=0 i=0

1=00 k 1/2 )1

Since (Rw, Riw)D = (w, Rjw), see (2.16), then from (2.19), (2.20) and (2.13) we obtain

I (w, v) I< (w, Rw)'I'61/211~V .

We divide the above by JItvID and take the supremum over v E W. Using (2.4) we

obtain

(2.21) IIWIlD-1 < 6/ 2(Rw, w) 1/ 2 ,

which completes the proof. 0

Since D- 1 is positive definite Lemma 2.1 implies

COROLLARY 2.1. R is invertible.
We now obtain the estimate of (Rw, w) from above.

LEMMA 2.2. Let (2.15) be satisfied. Then for any w E W

i (Rw, w) <_ IYlIWIIl _,.

Proof From (2.16) and (2.14) we find that for any vi E Wi, i = 0,..., k,

(R1Dw, vi)D = (Dw, vi) = (Siw, Vi)D.

Hence for any w E W

(2.22) RiDw = Siw.

Since Si = S?

k k k

(RDv, Dv) = Z_(RDv, v)D = Z_(Siv, V)D = -_tISivII < "/tvIDI.
i=O i=O i=O

Taking Dv = w we obtain (Rw, w) < 711wll'_. 0

3. Symmetrization. It is evident that a nonsymmetric equation can be trans-

formed to an equivalent equation with a symmetric operator. See [2], where two kinds

of symmetrization of nonsymmetric equations are described. We shall use one of them.

Consider the following equation

(3.1 Tuw = z,

460



Domain Decomposition Methods

where T = RATRA, z = RATRf and AT is transpose of A with respect to (., .),

i.e., (ATu, v) = (u, Av) for any u, v E W. Notice that T is symmetric with respect to

(', -)i-i, since (Tw, v)R-1 = (RAw, Av) and R is symmetric. We can use the conjugate
gradient method (CG) to solve (3.1), see [2]. It is rather easy to find Rw for any w E W,

but it is hard to compute R-'w. Thus we introduce some changes in CG algorithm.
We use the version of CG studied in [10], see also [1].

We apply the following algorithm to solve (3.1). We assume that we are given an

initial approximation w0 to the solution w of (3.1).

Algorithm S
fo := ATR(f - Awo); p0 RiFo; i := 0;

while error > tolerance do
begin

_i (R i, Fi)
a : (pi, ATRApi)'

(3.2) wi+l wi + aiPi;

Fi+l := Fi - aiAT RApi;

(Ri, i)
Pi2+1 Ri+ 1 + /3ipi;

i := i+1

end.
Here we have introduced Ri, instead of ri used in [10] and we have used the (.,)R-1

inner product instead of the standard (., - ), since T is symmetric with respect to the
(', " )R-1 inner product and our estimates are given in 11 • JR-i norm. Note that R can

be considered as a preconditioner for the equation ATRAw = ATRf. We get the same
algorithm and the same rate of convergence. On each iterative step we use the operator
R twice: to compute ATRApi and Ri+1 .

We now study the rate of convergence of CG applied to (3.1). We have

THEOREM 3.1.

11w - WnIIR-1 __ 2 1 - 2m' + m - TV0II R-i.

where w, is an approximation of w produced by the CG method after n iterative steps.

Proof. We show that

(3.3) 6-2mn2 Jwl -, < (Tw, w)R-1 <_f2 KM 'IIwl-, for all wE W.

We have

(Tw, w)R-1 = (RAw, Aw).
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By Lemma 2.2

IIwIl = (RDw,w)R-1 < (RDw,Dw)"IIjWIR-

_ 'llDwIID-, IIWIIR-1 = 7'llwllDIIWIIR-,.

Hence

(3.4) 11I I'Dl <-_ -YllW 11,-1.

Using Lemma 2.2, (2.3), (2.2) and (3.4) we get

(RAw, Aw) 7IIAwUj-,2 _< -K(Aw, w) < 'yKMIIwj, < _Y2KMIIjwII-,.

Thus we have proved the second inequality in (3.3). We now prove the first inequality.

By Lemma 2.1

(3.5) (RAw, Aw) >! b-'11Aw D}-1.

We now show that iJIMIV > b-6llv1.l,. We have

(R-'v,,v) = (R-',,Dv)D-1 < (R-'v, R-',V)_,' (Dv,V)1/2.

Using Lemma 2.1 (w = R-'v) we find that
(R-Iv, -'v j1/2 < 61/ 2 (R-v, v)1/ 2 .

"R*1 " R-1D-' - R1

Hence

(3.6) (R-'v, v) <_, b(Dr, v).

From (2.4) and (2.2) we get

(3.7) lIAwlID-1 = SUP I(Awv)> l l mIl WjlD.
vEW H 11D - W11D

Using (3.7) and (3.6) we obtain

IIAwilI-, >__ M6-1/'jjWjR-,.

Combining the above and (3.5) we finally have

(RAw, Aw) > , 12mllw1_1.

We conclude that the condition number , of T is bounded by j2 KM/rn2 . It is

well known that for the CG method, see [2, 11],

11w - WllR- ___ 2 VK w - w1O1R-l.

Since x < 62 y2 KM/m 2 , then

V - 1 2 2m- =i- <1-v+ I v+ I - tv-+ M,
0
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4. Application. In this section we apply the theory given in the previous sections
to the Dirichlet boundary value problem.

4.1. Differential problem. Let 1 denote an open bounded polygon in R2 with
a boundary 9Q. Consider the following Dirichlet boundary value problem

(4.1) Lu = f in Q,
tu = 0 on X2f,

where L is the elliptic operator of the form

L,x 2 a (aj(X) ) + 2 au(X)
(a,()(=) +Z bi(x)-- +c4x)u(x),

Xi " i ---

and aij(x) = aji(x) for i,j = 1,2 and any x E S1. We suppose that L is strongly elliptic,
that is, there exists a constant co > 0 such that

2 2

> (X) C V6, 6 E R, Vx E.
,j= 1 i=-I

We will consider the equation (4.1) in the weak form: Find u C H0l(Q) such that

(4.2) (Au,v) = (f,v), Vv E H0l(Q),

where

2 au av 2 9U

(Au, v)= ' f +-- dx+>2 bi _v dx +cuvdxi n _ aj 0i j =

and

(fv) = Jvdx.

Here (., .) means the L2(11) inner product.

We assume that f E L2 (fQ) and the coefficients ai3, b, and c are such that the
operator A is well defined. Moreover, we suppose that the equation (4.2) has the

unique solution u E Hf(Q) for any fixed f.

4.2. The finite element method. We approximate the solution of the equation
(4.2) by means of the finite element method with piecewise linear triangular elements.

We first introduce a two level triangulation of fQ E R 2 and the finite element spaces.

For a given polygonal region Q, we define { i}i=l to be a regular finite element

triangulation of Q, that is, {ji} is a set of non-overlapping triangles such that

k
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and moreover, no vertex of a triangle lies on the edge of another triangle.
Let Hi be the diameter of f and H, be the diameter of the largest inscribed ball in

Q. We assume that the ratio Hi/Hi is uniformly bounded from above, that is, we have
a regular triangulation. Let H = max{ H1,..., Hk}. We call ni the coarse mesh of S.
Note that usually k depends on H (k = cH-2 ), but this fact will not be used further.

Next we divide each S into smaller triangles, denoted by rI, j - 1,...,n,. We
assume that , = 7-Uj r and the triangulation {rj} is regular. We also assume that
no vertex of a smaller triangle lies on the edge of any other smaller triangler. Let h' be
the diameter of ri and

h = maxh'

We call {r} the fine mesh of Q2. We now introduce the piecewise linear finite element

spaces. Let

VH = {vH I continuous on SI, and vHIO, is linear on £2i, vH = 0 on &2 }

and

V h {vIh continuous on £, and Vhl, is linear on rJ, vh = 0 on 9£ }.

Note that VH c V h .

The finite element method is defined as follows: Find Uh E Vh such that

(4.3) (Auh, Vh) = (f, Vh), Vvh E Vh

We assume that the coefficients aij, bi and c are such, that the conditions (2.2)
and (2.3) are satisfied with constants 0 < m < M, K > 0. From the Lax-Milgram
Theorem, see e.g. [4], it follows that the equation (4.3) has a unique solution uh E Vh

for any fixed i.

4.3. The additive Schwarz method. Let Uh be the orihogonal projector from
L2 (Q) onto Vh E Ho(Q) with respect to (., -). We define A = UhAUh and f = Uhf.

Usually we choose D = As, where As is the symmetric part of A, i.e., As = !(A+ AT).

Then we have m = M = 1. Note that the operator A : Vh -- V7h is the finite
dimensional operator and satisfies the conditions (2.2) and (2.3). We have the equation
(2.1). We now define the space W and its decomposition.

We extend each 2, to a larger region O, such that P, C £2,. We assume that there
exists a constant a > 0 such that

dist(,£21 ,,2,) >_ all,, Vi = 1. k.

Moreover, we suppose that the boundary 6£2, does not cut through any h-level elements.
We cut off the parts of !£, that are outside of £2. We define for i = 1. k

W, = Vh n H0(£2,),
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where we extend each function of Wi by zero to the complement of fi. It is known that

this extension is continuous. Thus Wi, i = 1,..., k, are the subspaces of W. We also

define

Wo =VH.

Finally the space W is defined as follows:

W=Wo+W±+...+Wk.

It is clear that W = Vh.

We check now that the conditions (2.13) and (2.15) are satisfied. It can be shown

that -f is independent of k. Also the constant 6 is independent of k, h and H. The

proof of this is given in [5]. As a conclusion we get

THEOREM 4.1. The rate of convergence of the method (3.2) is independent of k,

h and H.

5. Numerical results. Consider the following problem defined on Q = [0, 1] x

[0, 11 C R 2

(5.1) Lu(--9 ay + ba- + - -+ cu+f

with u = 0 on 49Q The function f is defined so that the solution of (5.1) in H'(Q) is

u = xe'y sin(rx) sin(ry). The coefficients are as follows:

(5.2) a, = 1 +x 2 +y2 , a2 =e' y , bl =x+y, b2= 1/(1+x+y) and c=0.5

or

(5.3) a, = a, a2 = a, bi = 1, b2 = 1 and c = 1,

a will be specified later. This test prohem is similar to that in [3]. The stopping

criterion for iterative methods is IIrilIR-1 < 10-31roIR-1. The operator D = As, where

As is the symmetric part of A. The program run in double precision on a Sun SPARC

station machine.
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FIG. 5.1 Coarse mesh of Ql FIG. 5.2 Subregion fi with fine
mesh inside

Let triangles If{li} be the division of Q (coarse mesh), see Fig. 5.1. We extend
each Q, U i+1, i = 1,3,...,2k - 1 to a larger rectangle f2j, i = 1,...,k, such that

each side of ! is parallel to its corresponding axis, see Fig. 5.2. We divide each Qj into

smaller triangles (ane mesh) such that Of, does not cut through any h-level triangles.

The width of the strip !, \ (Q, U !l+.) in h-units will be called the size of overlap. We

do not extend f i outside Q.

Test 1.
We examine the test problem (5.1). For different h and H we will study the effective-

ness of the algorithm and test whether it depends on the mesh sizes h and H. The

overlapping factor a is fixed. We will try to keep a ; 1/3.
Let ite denote the number of iterative steps required by the method (3.1), max

err and L2 denote respectively the maximum error and error in L2-norm between the

numerical solution given by (1.1) and the exact solution. The mark * in the tables

means that the overlapping facLor a is less then 1/3.

h H ite H ite max err L2

1/15 1/3 15" 1/5 18 3.8 x 10-  1.4 x 10-

1/30 1/3 16" 1/5 18 9.2 x 10" 3.8 10'

1/45 1/3 16 1/5 18 5.0 x 10- 4  1.8 x 10-1

1/60 1/3 16 1/5 18 4.0 x 10 1.3 x 10-

TABLE. 5.1 Problem (5.1), (5.2)
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h H ite H ite max err L2

1/15 1/3 15* 1/5 15 9.0 X 10- 3 4.2 x 10 - 3

1/30 1/3 16- 1/5 16 2.3 x 10- 3  1.1 X 10- 3

1/45 1/3 17 1/5 16 1.1 X 10 - 3 4.9 x 10- 4

1/60 1/3 17 1/5 16 7.5 x 10- 4  3.0 x 10- 4

TABLE. 5.2 Problem (5.1), (5.3) with a = v//30

In Tab. 5.1 and Tab. 5.2, respectively, the problem (5.1) with coefficients (5.2) and

the problem (5.1), (5.3) with a = v2-/30 are tested. From these tables it is seen that
the method does not degenerate with h when H is fixed.

Test 2.

We test how the method (3.1) depends on H. We keep h = 1/30 and vary the parameter

H. In Tab. 5.3 results are given for the problem (5.1) with coefficients (5.2). In Tab. 5.4

and Tab. 5.5 we give results for the problem with coefficients (5.3) and with a = V2/30
and a = V/2/100 respectively. It can be seen that ite is in agreement with the theory

where an upper bound on the number of iterative steps is independent of h and H. A
particular number of iterative steps may vary in some range.

H 1/3 1/5 11/6 11/10 11
ite 161 18 18 17 II

TABLE. 5.3 Problem (5.1), (5.2)

H 1/3 1/5 1/6 1/10

ite 16 16 15- 14

TABLE. 5.4 Problem (5.1), (5.3) with a = v/2/30

H 11/3 1/5 1/6 1/10

ite 22- 22 17- 19

TABLE. 5.5 Problem (5.1), (5.3) with a = v2/100

Acknowledgments. The author thanks Professor James H. Bramble for his stim-
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INELASTIC MICROSTRUCTURE IN

RAPID GRANULAR FLOWS OF SMOOTH DISKS

by

Mark A. Hopkins
Thayer School of Engineering

Dartmouth College
Hanover, New Hampshire 03755

and

Michel Y. Louget
Department of Mechanical Engineering
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Ithaca, New York 14853

ABSTRACT

Computer simulations of two-dimensional rapid granular flows of uniform smooth
inelastic disks under simple shear reveal a dynamic microstructure characterized by the
local, spatially anisotropic agglomeration of disks. A spectral analysis of the concentration
field suggests that the formation of this inelastic microstructure is correlated with the
magnitude of the total stresses in the flow. The simulations confirm the theoretical results
of Jenkins and Richman (J. of Fluid Mech. 192, pp. 313-328, 1988) for the kinetic
stresses in the dilute limit and for the collisional stresses in the dense limit, when the size of
the periodic domain used in the simulations is a small multiple of the disk diameter.
However the kinetic and, to a lesser extent, collisional stresses both increase significantly
with the size of the periodic domain, thus departing from the predictions of the theory that
assumes spatial homogeneity and isotropy. The corresponding paper discussing the
simulation technique and the formation of inelastic microstructure is presently under review
by Phys. Fluids A (1990).
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CURVE DESIGN AND ANALYSIS USING SPLINES AND WAVELETS *

Charles K. Chui*
Department of Mathematics

Texas A&M University
College Station, TX 77843

ABSTRACT. While it is well known that spline functions provide a very useful tool
for designing and representing curves, this paper initiates an application of wavelets for
analyzing their shapes. An iterative design and analysis procedure is recommended for
yielding satisfactory results. The local optimal-order interpolatory scheme introduced
in our earlier work provides a moving average algorithm for the design purpose, while
the decomposition formula in wavelets yields a decomposition algorithm. After necessary
modifications are made, a reconstruction algorithm is used to restore a more desirable
curve. This algorithm is a consequence of the two-scale relation of B-splines and that of
the compactly supported B-wavelets we recently constructed.

1. INTRODUCTION. Many curve design schemes are available in the literature. In
particular, when spline functions are used, these schemes are especially efficient and the
resulting spline representations of curves are usually very satisfactory. However, much less
has been studied on the analysis of the "shapes" of these spline curves. This paper initiates
an application of spline wavelets for such an analysis. The decomposition sequences of
splines into splines with fewer knots and the orthogonal spline wavelet complements are
used to yield a wavelet decomposition algorithm, while the pair of two-scale relations give
rise to a reconstruction algorithm.

Let us first recall that for each positive integer m, the mth order B-spline Nm, defined
recursively by

(1) Nm(x) = (Nm-1 * Ni)(x) = Nm-(x - t)dt,

with N 1  [o.1) , generates a multiresolution analysis of L' = L(-oc, o) (cf. M [10.11]).
In particular, if Vlk is the L-closure of the linear span of

(2) Nm;kj(x) :=Nm(2kX j), j E Z,

then { Vk I is a nested sequence of closed subspaces of L2 , whose closure is all of L 2. and
whose intersection is the zero function. For each k E Z, let Wk denote the orthogonal
complementary subspace of Vk+l relative to Vk; that is,

* Supported by SDIO/IST managed by the U.S. Army Research Office under Contract

Numbers DAAL 03-87-K-0025 and DAAL 03-90-G-0091
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Wk-Vk and Vk+l = Vk + Wk,

and we use the standard notation

(3) Vk+I = Vk E Wk.

It is also well known (cf. M [10,11]) ttldt there exists some 4 "unction 0,m in W0 that generates
all the spaces Wk; that is, by sett .g

(4) .'m;k,j(X) = m(2kX -j),

then each Wk is the closure of the linear span of e ;k,j, E Z. Here, 0,m is called a wavelet
corresponding to the B-spline Nm. In M (10,11], kowever, since an orthonormalization
procedure is used to give 0,, this wavelet has to have infinite support. By introducing
a new approach to the construction of wavelts in CW [6,7], we have now a compactly
supported spline wavelet

2m-2
(5) 0.(x)- 1 1 (-1)jN 2m(J + 1)N )(2x-) )"

C9m-1 
2m(2

j=0

Since this wavelet has minimum support (cf. CW [8]), we may call it a B-wavelet of order
m associated with the B-spline Nm (cf. Fig. 1 and Fig. 2). The mth order spline/wavelet
pair

(6) (Nm,tbM),

given in (1) and (5), will be used for the design/analysis of curves.

2. DESIGN, DECOMPOSITION, AND RECONSTRUCTION ALGORITHMS. The de-

sign/analysis scheme is an iterative procedure that requires three "moving-average" algo-
rithms. The first one is an interpolation/approximation moving average algorithm derived
from the optimal order real-time interpolatoin scheme discussed in CD [5] (see also C [2]
and CD [4]). The second algorithm is a so-called decomposition algorithm. It is derived
from the decomposition formula

(7) Nm(2x - e) = I a_2.,N,.(.. - P)_L Z bt- 2n;'m(x - n).
n n

The validity of (7) follows from the decomposition of 1Vi as an orthogonal sum of V0 and
V0 as given by (3). The third algorithm comes from the pair of two-scale relations:
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(8) Nm(x) = ZpN,,(2x - n)
n

and

(9) O,,(x) = EqnN,(2x - n).
n

Here, (8) and (9) are consequences of V C V and W0 C VI, respectively. The four
sequences {a,}, {b.}, {Pn}, and {qn} are easily computed by using the results in CW

[7]. Note that since both Nm and Okn have compact supports, {Pn} and {qn} are finite
sequences. The sequences {an I and {bn } have exponential decay, and by a duality principle
established in CW [7], the two pairs ({an}, {bn}) and ({Pn}, {q,,}) are interchangeable.
Details and generalities can be found in CW [6,7,8].

2.1. DESIGN ALGORITHM. We employ the real-time interpolatory scheme discussed

in CD [5] (see also C [2], and CD [4]). However, since the B-splines must be used for
decomposition purposes, we must change the real-time table-look-up scheme in CD [5] to
a moving average scheme. We emphasize that this interpolation scheme has the optimal
order of approximation. The construction introduced in CD [4] can be summarized as fol-
lows. Quasi-interpolation formulae are constructed using finite blocks of data information.
Next, a completely local interpolation scheme is used, and finally a blending procedure
is employed to yield the desired interpolatory scheme that utilizes only finite blocks of
data information but gives the optimal order of approximation. That is. we have a finite

sequence ( }.- such that

sequenc e .. , AT (2 x , k

(10) (S ) Z C) -j)

satisfies:

(11) (Sif-f)(--. 1,) :0. j E Z.

and

(12) IISkf f- f11. = ( 2 A) If

for all f E C m . Here, wp:= 0 if IpI > k.n; tm is a positive integer depending on the order
in of the splines (e.g. e2 = 1 and (4 = 2, cf. C [2,3]); and M E Z with ./2'! denoting
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the sampling rate. Note that SMf is an mth order spline with knots at 2-MZ. Also, the
length of the "weight" sequence {W!')} =k.,, also depends on m. It is trivial that k2 = 0

(2) - 1 for linear splines. For cubic splines, we have k4  4 (i.e. w 4 = 0 for IjP > 4)
and

(4) (4) 1
W 4 4 -4848

(4) ( 4) 12

12
(4) (4) 1
-2 W /2 8 -

W (4) (4) 7
12

(4) 29

(cf. CD [4]).

2.2. DECOMPOSITION ALGORITHM. From the decomposition formula (7) and the
scale-change notation in (2) and (4), we have

(13) "m;k+J.j I : aj-2nZm;k.n + bj-2nti'm:k.n.

n ni

Suppose that the samples

(14) {f (j)} EZ

are used to design the interpolatory "1th order spline curve with knots at 2-Z. Here, .I
is a sufficiently large positive integer. Set

fm(x) (SMf)(x) = cS'. 1.,,.()

C1" = {c;"). j Z.

Recall from (11) and (12) that fi interpolates f at {j(,, /2"1}, j E Z. and yields the ?7?"

order of approximation to f. Hence, we have

E (s)

where we recall that wp = 0 for Ijp > ki, and ni. is even since we only use even order
splines for interpolation. For k < M, we also set
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= % c kN ,.;k,,(x)

(16) fSc { }, .E Z.

where fk is the projection of fk+i from ik+l to '7k as indicated by (3). Let 9k E Vk be
its orthogonal complement; that is, gk-lfk and fk+1 = A + gk.Vrite

(17)gk(X) d m;k.j(X){ {d)}, j E Z.

Then {ck} and {d k}, k =M- 1,...,M - L (where L is arbitrary) can be computed by
applying the following recursive formula:

k k+l
Cj "= 1 an-23C,

(18) "1 = k+I

1 by ,

Hence, starting from cM in (15), we can easily compute c"-1,d-I:cl- 2 .d" - 2  •

cM-L,dAf- 2 by applying (18). That is, by using (16) and (17), we have a (mutually)
orthogonal decomposition:

(19) fM(x) = gM-I () + + gM-L(X) + f.%I-L(X).

where fm(x) interpolates f(x) at {j0m/2Af }, j E Z, and approximates f((x) with the m'"
order of approximation, and where

(20) Im-LI - L0 L

It will be clear that the orthogonal decomposition (19) has significant information on the
curve y = fM(x). To verify (18), we need the following result.

LEMMA 1. Let E L' nL2 on(-oc, oc) be non-trivial. ThenI {(.-j): j E Z } ist (' -linearly

independent, in the sense that

(21) Za (" -j) =0 a.e.,
jEZ
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where {aj} E e2, implies that a, = 0 for all j.

The proof of this lemma easily follows by using Fourier transform argument. Indeed,
the Fourier transform of the left-hand side of (21) is the product of the symbol (or Fourier
series) of {aj } and the Fourier transform of . Since is nontrivial, then (21) holds if
and only if the symbol of { a.;} identically vanishes, or a, = 0 for all j.

Now, we are ready to verify (18). From (13) and the definitions in (16) and (17). we
observe that fk+(x) = fk() + 9k(x) if and only if

k+ y cl b.-kYf ',,,+k CI')

n 3 a) 3

ZckN,;kJ(X) + Zdimk,, (x).

Now, by Lemma 1, both sets {Nn;kj: j E Z) and {i2m;kj j E Z} are (2 -linearlv in-
dependent. Hence, since these two sets are orthogonal to each other, we have verified
(18).

2.3. RECONSTRUCTION ALGORITHM. Once we have obtainei the orthogonal decom-
positoin (19), we can judge which portion of the curve y = f(.r) needs adjustment. Note
that g(X) contains the information on the portion of fM (x) with slope proportional to 2 .

since

dx
dd- ),,k~~x)= 2k,#m(2k1 _-)

Furthermore. this information is localized, in view of

supp('.;k,3 ) = supp(U'm:k)= k (2i '
- J

Of course, the magnitude of this slope is further multiplied by the coefficients (I in addi-
tion to the 2 k factor. The orthogonality of this decomposition implies that the localized
information is meaningful.

After certain portions of the curve y = f..(x) have been adjusted, say by replacing dk
with alk and cft -t with iAM-L we may reconstruct 01f = { " }. which gives the modified
spline curve

fkI (X)
3

by applying the recursive formula:

-k+l1 ~k "

(22) k I (p ..2nc. + q , )

fl
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n=M-L,...,M-1.

To prove (22), we note from the pair of two-scale relations (8) and (9) that

fNm;k,j(X) = ZPnNm;k+1,2,+n(X) = Pn-2j. m;k+l,n(X)

(23) n n

,; = qnNm;k+1,2)+n(x) = 1 q,-2Nm;k+,n(x).
n n'

Hence, f +I(X) fk(X) + k(X) if and only if

E &I Nj;k+lj(X) = Z(kNmk(X) + d"Vm k ())

Z Z(cPn-2j + dqn-2)Nm;k+1,,(X)
j n

-= { Z( 'Pj-2n + dnq.-2n) Nm;k+l~j(x).

So, (22) follows by an application of Lemma 1.

3. THE RECONSTRUCTION AND DECOMPOSITION SEQUENCES. From (S). (9).
and the definition of the spline wavelet ,,,m(x) in (5), it is easy to derive the reconstrution
sequences {pn} and {qn } for each fixed positive integer m. In fact. we have:

( 2-+' (") for 0< n <rn

( 0 otherwise

and

-1 E () - j +1) for 0<, < 3m -2
(25) { 2 0 0 otherwise.

To verify (25), one simply applies the B-spline identity

( Z(1)( (-m - j)

(cf. [1, chap. 11). To describe the decomposition sequences {a,, } and {b,}, we need the
Euler- Frobenius polynomials
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2m-2
12,.-I(Z) (2m - 1)! E V,.(n + ),n

(which are polynomials of degree 2m - 2). It is well known (cf. S [12]) that 12,- I(z) has

2m - 2 distinct (real) negative roots which are in reciprocal pairs; that is, arranging {r) }
in decreasing order, we have

r2m_ 2 < r2m_ 1 < -''' < r m < -1 < rm-1 < ... < ri < 0

with rlr2m-2.. = = rr-irm = 1. In particular, since f12m-I(Z) j 0 for IzI = 1, its

reciprocal has an absolutely convergent Fourier series expansion:

(26) FI - _(2m _ )! n-m+l 1
nEZn

where

(27) I lan l = 0(Ir. l-Inj), Inl - .

The decomposition sequences (a,,} and {b,), are given by

(28) = 1 f (1 +Z) )= 2 M-,(Z) z2dz2)8 7n - 2"Z 2)
M  

11 -I 1 (Z
2 )

IzI=I

and

(29) bn = -(2 - 1)! (1 - Z)m Zn_2dz.

Hence, in view of (27). we have

Lai
(30) lnI, Ib.I = 0(,'m 2 )- 2-1 -- Y-

Here, the larger the order m of splines we use, the smaller is the exponent Ir,, I (cf. S [11]).

It is possible to interchange the pair ({an}, {b,}) of decomposition sequences and

the pair ({pn }, {qn}) of reconstruction sequences. This is the so-called duality principle
introduced in CW [7]. To do so. w simply replace the B-splines N,,(x - j) and wavelets
q'm(x - j) by (an appropriate shift of) their dual bases. Details are given in CW [7].
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4. FINAL REMARKS. Although we have obtained the same wavelet decomposition (19)
as M [10,11], we have uesd different bases {N,,k.j } land {v,,;k.j}. In M [10.11], in order to
use Fourier methods, the B-splines {Nm:k.} are orthonorialized, and thus orthonormal
wavelets are also obtained. For curve design, however, it is much more efficient to use
the B-spline series in order to keep the local structure. As a bonus, we have two finite
sequences {p} and {q,,} for reconstruction. If the decomposition sequences {a,,} and
{b,} are also required to be finite, then it is proved in CW [8] that we no longer have
spline curves. In fact, it is proved in CW [8] that this requirement is achieved only by
the compactly supported orthonormal wavelets of Daubechies (cf. D [9]) which have no
explicit formulations and are not as smooth as the spline wavelets m,,,,(x) in this paper.
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Multiple Families of Engineering Analyses

Interrogating a Single Geometric Model

Michael John Muue.

U. S. Army Ballistic Research Laboritory
Aberdeen Proving Ground
Maryland 21005-5066 USA

ABSTRACT

As a new product is being designed, there are generally two or more different
kinds of engineering analyses that need to be performed. It is still often the case
that in the course of developing a new product design, several geolnetric models
may have to be constructed, because different engineering analysis software pack-
ages generally require different forms of input. Irrespective of the specific
representation used for a three-dimensional geometry/material database, rarely
does an application code read that database directly. Rather, a specific interroga-
tion method is used to pass particular geometric/material attributes to the appli-
cation code.

In this paper, the strategy used in the BRL-CAD Package is presented. A variety
of procedural interfaces have been provided so that diverse analysis codes can be
driven from a single, central geometric model. These interfaces include the ability
to produce a wireframe representation of the model, intersect rays with the model,
tessellate the model into a 3-D surface mesh, and perform topological feature
extraction. In addition, extensions to the software will be discussed, including the
ability to approximate the model as a 3-D finite-element volume mesh, and con-
verting the model to a homogeneous trimmed B-Spline representation.

June 19, 1990
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Multiple Families of Engineering Analyses
Interrogating a Single Geometric Model

Michael John Afuuaa

U. S. Army Ballistic Research Laboratory
Aberdeen Proving Ground
Maryland 21005-5066 USA

1. Introduction

As a new product is being designed, there are generally two or more different kinds of
engineering analyses that need to be performed. For example, vulnerability analysis, structural
analysis, thermal analysis, and computational fluid dynamics (CFD), as well as predictive radar,
infra-red (IR), and X-ray signatures. At any stage of the design, almost any kind of CAD system
can be used to make engineering drawings. However, drawings are suitable only for interpretation
by human beings, not for automatic computerized analysis. Therefore, computerized drawings can
not be used to provide the geometric input required for these analysis codes.

f........... "... ...

Graphics Geometry Applications I F

Editor Editor Database
Rays Wireframe

.. .. ... ... ....... ......... ... °

Optical Editing

V/L Plots

Radar

jX- Ray S1;hotlines

Analysis 
de

serouput

Figure 1 - The Design Loop

If the product is designed, not on a computer drafting system, but instead on a full 3-1) solid
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modeling system, then in addition to producing drawings, the model can be subjected to numerous
engineering analyses, allowing the effects of varying many parameters to be studied in a controlled
and automatic way. Thus, the real payoff from building a solid geometric model comes when it is
time to analyze it. This capability is so powerful that it ordinarily justifies any extra time or
equipment investments needed to support tile construction of the 3-D solid model.

2. Solid Modeling and the Design Process

For more than twenty years, the Ballistic Research Laboratory (BRL) has been utilizing
solid geometric modeling methods to support vulnerability/lethality and neutron transport studies
of military targets. 1,2 In such item-level studies target geometry and material information are
passed to various application codes to derive certain measures-of-performance. Building on the
general paradigm, the BRL and many others have extended the general techniques to support
many predictive signature models3 including optical, millimeter wave (NIN\V), infra-red (IR).
magnetic and X-ray.

It is important to note that this type of analysis must generally be supported by a solid
geometric model. A solid model4 is a computer description of closed, solid, three-dimensional
shapes represented by an analytical framework within which the three-dimensional material can
be completely and unambiguously defined. Properly utilized, the solid model becomes the central
element in the iterative process of taking a design from idea to prototype design to working design
to optimized design. This iterative process is termed the "design loop". The early form of the
design loop is illustrated in Figure 1.

In a full scale solid modeling system, there is no need for initial drawings: tile designer
expresses the initial structures directly into the modeling system's editor, just as a modern author
creates his "rough draft" directly into a word processor. At the completion of each version of the
design, the model is subjected to a battery of analyses appropriate to the function of the object
being designed. Strength. volume, weight, level of protection, and other similar evaluations can be
reported, along with the production of a variety of images and/or drawings. These automated
analyses help identify weaknesses or deficiencies in a design early in the design process. By detect-
ing flaws early, the designer has the opportunity to correct his plans before having invested too
much time in a bad design, or the designer can switch to an entirely different approach which may
seem more promising than the original one. In this way, the solid modeling system allows tile
designer to concentrate on the important, creative aspects of the design process. Freeing the
designer of routine analysis permits designs to be finished in less time than previously required, or
allows much more rigorously optimized designs to be delivered in comparable tiineframes and at
the same cost as unoptimized designs created using older techniques. 5 Furthermore, the modeling
system allows sweeping design changes to be made quickly and cheaply, allowing great flexibility
in the face of ever changing requirements and markets. The time needed to create a new product
can be further decreased by re-utilizing elements of earlier models and then modifying then Ls
appropriate. If an existing component already in inventory is entirely suitable for use in a new
design, significant nanufacturing and inventory savings will be realized.

Two major fanilies of solid model representations exist., each witi several tin ique :ldvai-
tages. The first is the Combinatorial Solid Geometry Representation (CSG-Rep).'; .ol id models
of this type are expressed as boolean cornbinations of primitive solids which are geomnetric entities
described by some set of parameters and occupying a fixed volume in space. The second is the
Boundary Representation (B-Rep), of which there are two sub-types, explicit, where each solid is
described by an explicit enumeration of the exteit of the surface of the solid. and implicit, where
the surface of the solid is described by an analytic function such Ls a Coons patch, lBezier patch,
B-spline, etc. lybrid systems such as the 1.1?L-C.\I) Package 7 also exist.

The objective of a given application will to a large degree ,termine the most "natural"
form in which the model might be presented. For example, extracting just the edges of the objects
in a model would be suitable for a program attempting to construct a wire-fraire display of the
model. Another family of applications exists which needs to be able to find the intersection of
small object paths (eg. photons) with t Iht model. (;en'rally th'es' alternatives are mlotivated by
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the representation of a physical process being simulated, and each alternative is useful for a whole
family of applications.

Unfortunately, it is not often the case that building only one 3-D model of the product is
enough. Each of the different engineering analysis software packages needed to perform the ana-
lyses usually requires a different form of input. As a result, more than one kind of geometric
model may have to be constructed. However, rarely do these application codes read the three-
dimensional geometry, material data base directly. Rather, each application has a specific interro-
gation method that is invoked to obtain geometric and material attributes from a source or refer-
ence file. The physical simulation techniques used in the application software are therefore con-
strained by the available techniques for extracting geometric information from the model. As a
result, each analysis package often requires a unique form of input. Without a central geometry
database that can drive all the analysis packages, the designer can be forced into having to create
many different representations of each design, one for each distinctly different type of analysis
code. This can be very costly and time consuming; the time needed to create a single model ranges
between 1 week and several man-years, depending on the complexity of the design. Having to
spend the effort to manually create the same design in different formats to drive several analysis
codes is an unfortunate and expensive necessity.

The philosophy adopted at BRL has been to develop a broad set of analyses which are sup-
ported from the ne geometry database. 3 These analyses cover the slpectrum from engineering
decision aids, to design validators, to signature prediction codes, to the generation of wireframe
drawings, to high-resolution image generation for management comprehension and sales advan-
tage. Key analysis capabilities have been developed to assess the strength, weight, protection, and
performance levels offered by the structures represented by a solid model. Using this analysis
information and additional domain-specific applications tools makes it possible to produce highly
detailed designs constructed with a philosophy of systern optiinzatlon right from the start.8 This
facilitates the rapid development of products with the desired levels of performance at the best
attainable price.

To accomplish all these goals, the BRL-CA.D Package7 provides a variety of procedural
interfaces so that the diverse collection of analysis codes can be driven from a single, central
geometric model. These procedural interfaces follow the natural object-oriented programming
interface. An application program retrieves one or more objects from the model database, and
then requests those objects to either interrogate themselves in the desired way, or convert them-
selves into the desired representation. This applications interface is depicted in Figure 2.

3. Wireframe Representation

The interactive model editor mged program primarily employs 3-D wireframe outlines of
the various solid objects, in order to maintain the highest possible speed of user interaction. The
conversion of database objects into wirefranie drawings is the simplest of the application interfaces
provided by librt.

After the user specifies which objects friom the model database should be displayed. mged
retrieves the necessary database records and invokes the ft-plot() interface. ft.plot() pa:sses the
database object to th. appropriate object-specific wireframe converter, which generates a
wireframe outline of that, object.

The wireframe is comprised of a collection of 3-D virtual pen-plottei' move and drawt, opera-
tions, returned to the application as a linked list of vlist structures attached to the application
provided vlhead structure. Each vllAst structure has three elements, vLpnt, the XYZ coordinates
of a point in space, vldraw, a flag which indicates whether the virtual pen should be moved
invisibly from the current position to vl_pnt (vIdraw=VLCMD...LINE.,()\ I .,i moved visibly.
drawing a line from the current position to vlpnt (vldraw=VL_CMD_Ll\I I )I \W). There is
also a vLforw pointer to provide the linkage to the next vlist structure in
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Figure 2 - The Applications Interface
4. Ray Tracing

Many phenomena that are ordinarily difficult to model can be handled simply and elegantly
with ray-tracing. For example, an illumination model based on ray-tracing merely needs to fire a
ray at each light source to determine the total light energy at each point. Ray-tracing also makes
it easy to deal with objects that are partly or entirely reflective, and with transparent objects that
have varying refractive indices. Furthermore, by applying the proper sorts of dither, 9 motion-
blur, shadow penumbra, depth-of-field, translucency, and other effects are easily achieved.

The power of the lighting model code can further extended by making a provision to recoru
the paths of all the rays followed when computing the light intensity for each pixel in an auxiliary
file. This capability allows one to follow the path of the light rays passing through lenses reflect-
ing from mirrors while performing image rendering, with no additional computation. Studying
the paths of light rays as they are repeatedly bent, by passing from air to glass and back again has.
traditionally been a painstaking manual procedure for lens designers. By modeling, it becomes
possible to predict lens behavior, including making a determination of the exact focal length, find-
ing the precise influence of spherical distortions and edge effects, determining the amount of image
distortion due to internal reflection and scattering, and finding the level of reflections from the
lens mounting hardware. Furthermore, experiments can be conducted to determine the effects of
adding or removing baffles, irises, special lens coatings, etc.

Rays begin at a point P, and proceed infinitely in a given direction "6 ..nv point A on a
ray may be expressed as a linear combination of P and D

X=V+ t *

where valid solutions for t are in the range [ 0, oc). (D,,DV,DZ) are the direction cosines for the
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ray, being the cosine of the angle between the ray and the appropriate axis. While not necessary,
in this analysis it is assumed that 6 is of unit length, i.e. F6=I.

The most traditional approach to ray-tracing has been batch-oriented, with the user defining
a set of "viewing angles", turning loose a big batch job to compute all the ray intersections, and
then post-processing all the ray data into some meaningful form. However, the major drawback of
this approach is that the application has no immediate control over ray paths, making another
batch run necessary for each level of reflection, etc.

In order to be successful, applications need: (1) interactive control of ray paths, to naturally
implement reflection, refraction, and fragmenting into multiple subsidiary rays, and (2) the ability
to fire rays in arbitrary directions from arbitrary points. Nearly all non-batch implementations
have closely coupled a specific application (typically a model of illumination) with the ray-tracing
code, allowing efficient and effective control of the ray paths. The most flexible approach of all is
to provide the ray-tracing capability through a general-purpose library, and make the functional-
ity available as needed to any application.

4.1. RT Library Interface

In order to give all applications interactive control over the ray paths, and to allow the rays
to be fired in arbitrary directions from arbitrary points, BRL has implemented its third generation
ray-tracing capability as a set of library routines. The RT library exists to allow application pro-
grams to intersect rays with model geometry. There are two parts to the interface: preparation
routines and the actual ray-tracing routine. Three "preparation" routines exist; the first routine
which must be called is rt-dirbuildo, which opens the database file, and builds the in-core data-
base table of contents. The second routine to be called is rt-gettreeo, which adds a database
sub-tree to the active model space. rt-gettree0 can be called multiple times to load different
parts of the database into the active model space. The third routine is rt-prepo, whiii com-
putes the space partitioning data structures, and does other initialization chores, prior to actual
ray-tracing. Calling this routine is optional, as it will be called by rt-shootray0 if needed.
rt-prep0 is provided as a separate routine to facilitate more accurate timing of the preparation
and ray-tracing phases of applications.

To compute the intersection of a ray with the geometry in the active model space, the appli-
cation must call rt-shootray0 once for each ray. Ray behaviors such as perspective, reflection,
refraction, etc, are entirely determined by the applications program logic, and not by the ray-
tracing library. The ray-path specification determined by the applications program is passed as a
parameter to rt.-shootray 0 in the application structure, which contains five major elements:
the vector a.ray.r-pt M) which is the starting point of the ray to be fired, the vector a. ray.r-dir
(6) which is the unit-length direction vector of the ray, the pointer *a-hit() which is the address
of an application-provided routine to call on those rays where some geometry is hit by the ray, the
pointer *a-miss() which is the address of an application-provided routine to call on those rays
where the ray does not hit any geometry, the flag a.onehit. plus various locations for applications
to store state (recursion level, colors, etc).

When the a._onehit flag is set to zero, the ray exhibits classical behavior, and is traced
through the entire model. Applications such as lighting models may often only be interested in
the first object hit: in this case. a-onehit may be set to the value one to stop ray-tracing as soon
as the ray has intersected at least one piece of geometry. Similarly, if only the first three hits are
required (such as in the routine that refracts light through glass), then aonehit may be given the
value of three. Then, at most three hit points will be returned, an in-hit, an out-hit, and a subse-
quent in-hit. When only a limited number of intersections are required, the use of this flag can
provide a significant savings in run-time.

The return from the application provided a-hit)/amiss() routine is the formal return of the
function rt.shootrayo. The rt-shootray( function is prepared for full recursirn so that. the
application provided a.hito/a.miss() routines can themselves fire additional rays by calling
rtshootray0 recursively before deciding their own return value. In addition, the function
rt-shootray0 is fully prepared to be operating in parallel with other instances of itself in the
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same address space, allowing the application to take advantage of parallel hardware capabilities
where such exist.

4.2. Sample RT Application

A simple application program that fires one ray at a model and prints the result is included
below, to demonstrate the simplicity of the interface to librt.

struct application ap;
struct rti *rtip;
main() {

rtip = rtdirbuild("model.g");
rt-gettree(rtip, "car");
rt-prep(rtip);
VSET( ap.a.point, 100, 0, 0);
VSET( ap.a-dir, -1, 0, 0);
ap.a-hit = &hit-geom;
ap.a-miss = &miss-geom;
ap.a-rt._i = rtip;
rt-shootray( &ap);

}
hit-geom(app, part)
struct application *app;
struct partition *part;
I

printf("Hit %s", part-> pt-forw- > pt.regionp- > reg.name);}
miss-geom0{

printf("Missed");
}

4.3. Ray Intersection Data

If a given ray hits some model geometry, the application provided routine indicated in the
a-hit 0 pointer is called. A pointer to the head of a doubly-linked list of partition structures is
provided. Each partition structure contains information about a line segment along the ray; the
partition has both an "in" and an "out" hit point. Each hit point is characterized by the hit dis-
tance hit-dist, which is the distance t from the starting point r-pt along the ray to the hit point.
The linked list of partition structures is sorted by ascending values of hitdist.

As a result of this definition, the "line-of-sight" distance between any two hit points can be
determined simply by subtracting the two hit-dist values. This will give the distance between
the hit points, in millimeters.

If the flag a..onehit was set non-zero, then only the first a.onehit hit points along the parti-
tion list are guaranteed to be correct; any additional hit points provided should be ignored. This
is usually important only when a-onehit was set to an odd number; the value of pt-outhit in the
last partition structure may not be accurate, and should be ignored.

If the actual 3-space coordinates of the hit point are required, they can be computed into the
hiltpoint element with the macro:

struct xray *rayp;
struct hit *hitp;
VJOINI( hitp- > hit-point, rayp- > r.pt, hitp- > hit-dist, rayp- > r.dir );

which is the C-language version of

-=P+ t
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4.4. Surface Normals

As an efficiency measure, only the hit distances are computed when a ray is intersected with
the model geometry. For any hit point, the surface normal at that point can be easily acquired by
executing the C macro:

struct hit *hitp;
struct soltab *stp;
struct xray *rayp;
RT-IIT..NORM( hitp, stp, rayp);

In addition to providing the unit-length outward-pointing surface normal in hitp->hitnormal,
this macro also automaticly computes the 3-space coordinates of the hit point in hitp-> hit-point.

4.5. Gaussian Curvature

For any hit point, after the surface normal has been computed, the Gaussian surface curva-
ture at that hit point can be acquired by executing the C macro:

struct curvature *curvp;
struct hit *hitp;
struct soltab *stp;
RTCURVE( curvp, hitp, stp);

A curvature structure has three elements, crvpd!.- the principle direction, crvcl the curva-
ture in the principle direction, and crvc2 the curvature in the other direction. The principal
direction vector crv-pdir has unit length. cil <- c2I, i.e. cl is the most nearly flat principle
curvature. A positive curvature indicates that the surface bends toward the (outward pointing)
normal vector at that point. cl and c2 are the inverse radii of curvature. The other principle
direction is implied, and can be found by taking the cross product of the normal with crv-pdir,
ie, pdir2 = normal x pdirl.

4.6. U-V Mapping

Both the U and V coordinates range from 0.0 to 1.0 inclusive. A given (U,V) coordinate may
appear at more than one place on the surface of the object. The (U,V) coordinate of the hit point
is returned in uvcoord structure elements uvu and uvv.

In addition, the approximate "beam coverage" of the ray, in U-V space, is returned in the
structure elements uvdu and uv.dv. These approximate values are based upon the ray's initial
beam radius (a-rbeam) and beam divergence per millimeter (a-diverge) as specified in the applica-
tion structure. These delta-U and delta-V values can be helpful for anti-aliasing or filtering areas
of the original texture map to produce an "area sample" value for the hit point.

For any hit point, after the value of hit-point has been computed, the U-V coordinates of
that point can be acquired by executing the C macro:

struct application *ap;
struct hit *hitp;
struct soltab *stp;
struct uvcoord *uvp;
RT-HITUVCOORD( ap, stp, hitp, uvp);

For some simple lighting-model applications, it is sometimes desirable to create a mapping
between the coordinate system on the surface of an object to the coordinate system of a square,
the so-called "U-V" coordinates. This is generally used to drive simple 2-D texture mapping algo-
rithms. The most common application is to extract a "paint" color from a rectangular RGB
image file at coordinates (U,V), and apply this color to the surface of an object. These parameters
can also be used to simulate the effect of minor surface roughness using the bump mapping tech-
nique. Here, the U and V coordinates index into a rectangular file of perturbation angles; the sur-
face normal returned by RT-HITNORM() is then modified by up to plus or minus 90 degrees
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each in both the U and V directions, according to the stored perturbation.

5. 3-D Surface Mesh

Combinatorial Solid Geometric (CSG) models are formed by the boolean combination of
"primitive" solids. 4 For example, a plate with a hole is most easily modeled as a plate primitive
minus a cylinder primitive. It is important to note that in CSG models, there is no explicit
representation of the surfaces of the solids stored: indeed, for complex boolean combinations of
complex primitives, some of the resultant shapes may have very convoluted topology and surfaces
that may be at best high degree polynomials.

There are many applications that would benefit from being able to express an approximation
of these complex shapes created using CSG modeling as a collection of planar N-gons which
together enclose roughly the same volume of space as the original CSG solid. The most obvious
such application is to drive polygon-based rendering routines (lighting modules) for predictive opt-
ical signatures. On many modern workstations there is direct hardware/firmware support for
high-speed rendering of polygons. In addition, there are whole collections of 2.5-D infra-red
predictive signature programs and 3-D polygon radar codes. The very best predictive radar signa-
tures can be calculated using the Method of Moments, which requires having a 3-D surface tessella-
tion to sub-wavelength resolution of the entire model.

A sensible strategy for converting a CSG model to the equivalent approximate 3-D surface
mesh is to tackle the problem in two parts. First, a routine has to be written to convert each of
the primitive solids into tessellated form. Second, a routine has to be written to take two tessel-
lated objects and combine them according to a boolean operation (union, intersection, or subtrac-
tion) back into a consistent set of solid tessellated objects. Until very recently, it has been this
second step that has proven extremely difficult. 10 The topology of solid tessellated objects has
traditionally been represented using the "winged-edge" data structure. The major breakthrough
is due to Kevin Weiler, 11, 12 who noted that the "winged-edge" data structure was unable to
represent non-3-Manifold conditions that often occur when performing boolean operations. Weiler
proposed changing from the "winged-edge" data structure to the "radial-edge" data structure,
suitable for representing all the Non-Manifold Geometric (NMG) and topological configurations
that boolean operations might produce. Thus, NMG objects are closed under boolean operations.

Employing the NMG representation for faceted solid objects gives rise to the rich set of pos-
sibilities diagramed in Figure 3. From this diagram it should be clear that the final evaluated
NMG solid object can be employed in a variety of ways. The primary use will be for input to
analysis codes that need an approximate 3-D surface mesh of the solid model. In this case, the
NMG objects are sent across the interface, either directly into an application, or via a triangulator
that turns the planar N-gon faces of the NNIG objects into simple triangle lists, and thence to the
application. However, a very powerful second use will be to create new faceted shapes which are
then stored back in the database as new geometric objects, suitable for future editing or analysis.

While a detailed description of the NMG data structures is beyond the scope of this paper.
there are several advantageous propertie.s of the NMGs that are worth mentioning. The NIG
representation maintains full topology information, so that the relationships between vertices.
edges, loops, faces, and shells are continuously available. The geometry information associated
with a planar face is the plane equation (which includes the outward-pointing surface normal): the
plane equation does not have to be re-derived from the vertices. For applications that would
prefer visual realism rather than geometric fidelity, there is room in the vertex geometry structure
to carry around a "phony" normal for each vertex, suitable for use in Gouraud shading 13 algo-
rithms.

One of the most exciting current research projects at BI?. i- the extension of the NMG
framework to permit faces either to be planar N-gons, or trimmc,I ,iun-uniform rational B-splines
("trimmed NURBS"). This will permit many of the tessellation operations to be implemented
exactly, rather than as approximations. This will also permit solids to enjoy the economy of hav-
ing most faces be represented as planar N-gons, which are very compact and efficient to process.
while those few faces that require sculptured surface shape control can be represented as trimmed
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NURBS. This combination provides both efficiency and full shape control in the rich non-
Manifold topological framework; a combination that does not exist in any current commercial
CAD system.

6. Topological Representation

Some predictive radar signature codes, such as the TRACK code of GTRI, 14 do not operate
directly on a geometric representation of an object. Instead, they rely on the fact that large radar
returns occur primarily due to the existence of dihedral and trihedral structures in the object. The
original model is analyzed to locate all instances of the topological features of interest, for exam-
ple, planar face elements, edges where two locally planar elements join to make a dihedral, edges
where three locally planar elements join to make a trihedral, etc. Then this list of topological
features is used as input to the feature-based analysis code.

Due to the rather broad set of possible interpretations of the term "feature", each kind of
topological feature extraction is itself considered an application program, rather than being imple-
mented as a standard part of the interrogation library. The process of topological feature extrac-
tion is currently programmed using the interrogation features described above.

7. Extensions

To date, most BRL-CAD applications programs have been implemented using the ray-
tracing paradigm, because of ray-tracing having a 20-year head start. By choosing the ray sam-
pling density within the Nyquist limit for a given spatial resolution, many applications based on
ray-tracing are well satisfied by extracting ray/geometry intersection information. However, a
mathematical ray has as its cross section a point, while physical objects have significant cross-
sectional area. This lack of cross-sectional area will always lead to some sampling inaccuracies.
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Applications which simulate particles or small rocks approaching the model might benefit from
having a direct cylinder/geometry intersection capability, and applications which shine beams of
light on the model such as spotlights or even highly collimated light such as laser light might bene-
fit from cone/geometry intersection capabilities."15, 8 Applications which are attempting to simu-
late wave effects might be well expressed in terms of plane/geometry intersection curves, and
structural analysis routines would probably prefer to obtain the geometry as a collection of con-
nected hyperpatches.

While very recent research has begun to explore techniques for intersecting cylinders, cones,
and planes with geometry, 17 ray-tracing and polygon-based techniques are by far the most well
developed approaches. However, there are several additional type of interface to the model
geometry that are likely to be of general applicability. These interfaces are candidates for imple-
mentation in a future release of the BRL-CAD Package.

7.1. 3-D Finite-Element Volume Mesh

Many forms of energy flow analysis, such as heat flow, vibrational analysis (acoustic energy
flow), and stress analysis require the use of 3-D Finite-Element Mesh (FEM) techniques. While
there has been some work on using the ray-tracing paradigm to construct finite element and finite
difference meshes 18 it has been difficult to deal with high spatial frequency (fine detail) portions of
the model. In particular, meshing small diameter pipes is problematic; undersampling can cause
the pipe to incorrectly be separated into multiple pieces.

In order to improve on the current state of affairs, it seems necessary to provide support for
the generation of volume meshes directly as part of the application interface. This would provide
the meshing aigorithm to have unrestricted access to the underlying geometry, the space partition-
ing tree, and other internal data in order to perform a better job.

Even more promising still would be a strategy that takes advantage of the NMG support. A
first pass might tessellate the model and evaluate the booleans to produce a surface mesh. The
second pass would then take the surface mesh and fill the interior (or exterior) volumes with
appropriately chosen volume elements. A very good fit could probably be achieved using only
parallelepiped ("brick") elements and 20-node "superelements". The brick elements would be
used to fill interior volume that does not border on a face, and the superelements would be used
for volume that contacts a face. Recourse could be made back to the underlying geometry
(perhaps via firing a few well chosen rays) to get the curvature of the superelement faces to match
the curvature of the underlying primitive, rather than having to relay strictly on the NIG
planar-face approximation.

7.2. 3-D Volume Elements (Voxels)

A representation which is similar to the finite-element mesh is based on Volume Elements
(VOXELS). There are two distinct kinds of voxels. The first kind of voxels can be considered a
special case of volume meshing discussed previously, in which the model is "diced" into a large
collection of homogeneous parallelepiped ("brick") elements. As one example, ER[M has a utility
program which uses ray-tracing to covert BRL CSG-format geometry to this kind of voxel
representation to feed a first-principles IR inodel.19

A distinctly different form of voxel representation is based upon the use of 8-way binary
space subdivision stored using an "oct-tree" data structure. In this technique, the model is
enclosed in a bounding box. The bounding box is evenly split along the X, Y, and Z axes to form
eight smaller boxes. This algorithm is applied recursivwly so that all boxes which are neither
entirely full nor entirely empty are repeatedly split, until the size of the voxels satisfies some ter-
mination condition. In this way, small voxels that lie along the surface of objects can fit arbi-
trarily tightly to the surface, while the interior of an isomorphic region will be contained primarily
in a single large voxel. The oct-tree representation provides the application program with a homo-
geneous geometric representation based entirely on cubes of varying size. Having such a homo-
geneous representation can often greatly ease the task of algorithm development. On the other
hand, achieving a good approximation of curved objects using cubes requires a huge number of
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voxels to be used, resulting in very large voxel datasets, and an exponential increase (order N**6)
in the number of element-to-element equations to be solved. The oct-tree approach to IR signa-
ture generation is employed in the BRL-CAD program, Igt. "°°

7.3. Homogeneous Trimmed B-Splines
When support for trimmed NURB faces has been added to the NMG capability, it will be

possible to represent all existing primitives either with exact rational B-spline versions, or with
very good rational B-spline approximations. This could be done even for faces that were com-
pletely planar.

This offers the hope that it might be possible (albeit memory intensive) to convert an entire
CSG solid model into a homogeneous collection of non-uniform rational B-spline faces organized in
a non-manifold topological data structure. In addition to the conceptual simplicity afforded by
having a uniform representation for shape, this affords the opportunity to create new analysis
codes that can process curved surfaces, yet at least initially only have to deal with one kind of
shape. This would also provide a very direct and natural interface to spline-based 2 l and Bezier-
patch 22 based modeling systems.

7.4. Analytic Analysis

Given a homogeneous geometric representation such as the Trimmed B-Splines just discussed
which also has an analytic representation, a further processing capability arises. Rather than inter-
rogating the data base by means sampling or subdivision techniques, the direct mathematical
manipulation of the source geometry through its parametric representation becomes possible. Cal-
culations of physical properties requiring integration over a surfaces can often be evaluated with
greater accuracy using an explicit analytic calculation than would be provided by numerical
evaluation. While this may be difficult in general due to the complexity of the parametric expres-
sion, some classes of surface representations good candidates. Splines. for example, are piecewise-
polynomial functions which have relatively simple Fourier transform representations. Since 2-D
spatial Fourier transforms arise frequently in far-field electromagnetic scattering calculations,
exploitation of the parametric spline representation is of interest in predictive scattering calcula-
tions. Direct use of spline parameters in a Physical Optics scattering model is part of the metho-
dology used at the Aircraft Division, Northrop Corporation.

With the rapidly developing potential of symbolic calculation, treatment of seemingly impos-
sible formulas resulting from the geometry/physics interaction may become tenable. This could
help to reduce the trend towards employing numerical methods at the onset of a problem and
avoid some of the accompanying instabilities and errors.

8. Summary

Much of the power and flexibility of the BRL-CAD Package comes from the diversity of
shapes that can be represented, and the variety of analysis interfaces that are available. Having a
diversity of interface possibilities has permitted a wide variety of analysis codes to be driven from
a single, central geometric model.
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Abstract

In this report, we present and analyze the results of applying Larallel al-
gorithms to a two dimensional gas dynamics code using front tracking. We
also discuss the ideas to generalize the algoritlrzz to three dimen.;ms. The
main purpose of this paper is to demonstrate that parallel computations can
be applied to complex algorithms. We take front tracking as an example.

A number of computations for two dimensional fluid flow have been success-
ful to simulate chaotic mixing, shock interactions and oil reservoir simulation.
In most of these cases, further progress depends upon three dimensional com-
putations. Performing systematic studies of chaotic mixing in three dimensions
will require the extensive computer resources which parallel computations can
offer.

In order to develop a reliable parallel programming paradigm for three di-

mensional studies, we first parallelize the relatively simpler serial two dimen-
sional gas dynamics code on two representative distributed-memory MIMD
parallel supercomputers, the iPSC/860 and the NCUBE/2.

The main algorithmic issues for front tracking in three dimensions are: (1)
the construction of surface grids, (2) the construction of volume grids which
are adapted to (i.e. which respect, or do not overlap with) specified surfaces.
(3) the efficient computation of interface topology, (4) the resolutin of self
intersections in a tangled interface, and (5) parallel computation. Most of
these issues are important for numerous methods of computation. \Ve present
methods for addressing these issues which are aplpropriate to the front tracking
context.

*Supported by the Applied Mathematics Subprogram of the U.S. Department of Energy DE-
FG02-90ER25084, the National Science Foundation, grant DMS-89018844, and the AFSOR, grant
90-0075.
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1 Introduction

Significant effort has been devoted to developing parallel algorithms for scientific
problems with natural load distribution. We concentrate on exploring parallelization
for problems, where such uniform load distributions do not exist, such as the front
tracking algorithms for fluid interfaces.

Front tracking [3, 7, 9, 10] is an algorithm which preserves, and explicitly recog-
nizes, discontinuity surfaces as computational degrees of freedom. Marker points are
introduced to define the location of an interface between computational domains.

This method has given very high quality solutions; the price to pay is probably
the complexity of its implementation. Indeed, the value of this method has been
demonstrated by a series of computations for two dimensional fluid flow. However, is
it possible to generalize such a method to three dimensions? Is it feasible to introduce
parallel computations to this method?

In order to answer these questions, we have performed a series of timing studies on
three typical different environments for three dimensional front tracking algorithms
[4]. The algorithms studied were interface topology algorithms which arise as a sub-
problem of gas dynamics simulations. To address the issue of feasibility of developing
parallel computations is the main point of this paper in which we report initial results
for the decomposition of a two dimensional fluid interface into sub-inTerfaces located
on computational subdornains.

Techniques of generatilg a surface grid and an unstructured interior volume grid
for three dimensional computational domains are also discussed. Several on-going
aspects of this project will also be mentioned briefly.

It is typical that physical systems involve a number of materials that are separated
by interfaces. Decomposing such a system into disjoint components separated by
lower-dimensional physical objects (curves in two dimensions and surfaces in three
dimensions), specifying, modifying, and moving dynamically such interfaces is the
basis of front tracking or interface methods. The application of these algorithms to
two dimensional hyperbolic systems was described by Glimm and McBryan [III in
1985. The code has since then been used in a number of physical problems [2, 5, 6.
8].

2 The Parallelization Method: Domain Decom-
position

Parallelizing this code is of immediate interest to prove the applicability of parallel
computations in front tracking. Decomposing the self-contained interface data struc-
tures into sub-domains and then mapping tliese sub-domains onto the participating
processors is our first step towards parallclization. Several requirements are imposed
on the decomposition: At initialization, individual processors are activated to gener-
ate correctly positioned sub-interfaces while at re-start from an existing full interface,
individual processors are to pick up the right portion of the interface. The distribu-
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tion of computational load is rarely uniform; a heavier load appears mostly where the
interface occurs. Moreover, a uniform distribution of the interface is not common.
Therefore conventional uniform domain decomposition is not adequate for a good
speedup. To decrease load im-balance, we consider non-uniform subdornains. For a
number of problems in the scientific applications, we are considering interfaces that
frequently cluster in a horizontal (vertical) direction, which leads us to decompose
the interfaces into vertical (horizontal) strip-wise sub-interfaces.

Clipping a sub-interface from a full interface is conceptually straightforward. First.
we determine the border curves that bound the sub-interface and the find all curves
that intersect these border curves. Then, we split these intersected curves into two
pieces, one of which lies within the border, and is inserted into the sub-interface.
Finally, we find the intersection points and insert them as boundary nodes into the
sub-interface. The locally "interior" elements (nodes and curves) are inserted un-
changed.

The following four figures are included to show two typical decompositions we
performed on an interface obtained from a study of bubble growth for Rayleigh-
Taylor unstable interfaces This interface (Figure 1) is generated in a domain with
0 < x < 10 and 0 < y < 20 on a 120 x 240 mesh at the 750th time step. Starting
from this interface, we first use 16 processors to decompose it into 15 sub-interfaces
(one processor idle) with each being on a 40 x 48 mesh. In Figure 2, we draw the
sub-interface clipped by processor 10. Of course, this represents a random choice. In
Figure .3, wve "glue" alI 15 sub-interfaces obtained by the 15 processors in one frame
with size comparable to the original interface for comparison. In Figure 4. we show a
vertically strip-wise decomposition, with each sub-interface lying in a 20 x 2-40 mesh.
As we can see from Figures 3 and 4, gathering the scattered sub-interfaces produces a
perfectly identical interface to the orginal one (Figure 1). A quantitative comparison.
though fairly tedious, also proves exact consistency.

We must realize that an unconventional domain decomposition, which may help
reduce the load imbalance overhead, can cause significant communication penalty. \ke
are currently studying the possibility for a optimal case. The answer, being machine-
dependent, is not meaningful in general. We need to tune for possible opt imizatiois

for a particular machine.
In a message-passing coiputing environment, conununication p ," se is i1)ortat

and interesting. We will report results on communication in a separa. ( paper shortly.
Here, we just outline the main ideas for reducing communication (,)st:,: (1) exchange
minimum boundary information, which is possible clue to the locality of the interface
algorithm, transfer data extended two mesh blocks beyond a subdomain which is
typically about 40 mesh blocks wide in each dimension (as in our example case above).
(2) map, in the hypercube communication logic, the nearest-neighbor subdomains
onto the possible nearest neighbor processors to reduce unnecessary costs due to
crossing processors.

Another issue was software support for portability and ease of progranming. \Ve
have tried to build the code on two representative distril)uted-nlemory IIMD parallel
sul)erconiputers: iPSC/S60 and NCUI3E/2 as well as a cluster of workstations. with
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Figure 1: A full material interface after 750 time steps.
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Figure 2: A representative material interface decomposed from processor 10.
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12 13 14

9 10 1

Figure 3: A material interface is decomposed into 15 subdomairns (box-wise). The
numbers in the sub-interfaces denote the processor ID's.
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0 12 3 4 5

Figure 4: A material interface is decomposed into 6 subdomains (strip-wise). The
numbers in the sub-interfaces denote the processor ID's.
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a home-made, self-contained "interface" library. It appears to be sufficient.
Several deeper computer science issues have also been addressed. For example,

a fairly new idea of dynamically managing the local physical memories with chunks
of objects is implemented in this code to broadcast interfaces among processors. It
would have been a simple matter if this were done on conventional computers or even
shared-memory machines with "flat" memory space. The major operation involved
in communicating objects among distributed memory processors is the packing, in
the source memory, and the unpacking, at the destination processor, of the objects.
On the destination processors, we restore the copied objects by computing their new
pointers.

3 Surface and Volume Grid Generation in 3D

The interface data structures for three dimensions are an extension [12] of those of
two dimensions. It is conceptually easy to understand. The basic data structures
in three dimensions include COMPONENT, POINT, NODE, TRI(ANGLE), BOND,
CURVE, SURFACE, and INTERFACE.

Decomposing an interface system into disjoint components separated by lower-
dimensional physical objects (curves in two dimensions and surfac: ; three dimen-
sions) and specifying, modifying and moving dynamically such interfaces is the basis
of interface methods. A package of routines that provide facilities for defining, build-
ing, and modifying such decompositions and for efficiently solving various physical
problems comprise the main algorithmic issues of the interface methods.

The surfaces are defined as a collection of contiguous triangles. After propagation,
regridding may be needed to achieve triangles of approximately uniform size and
good aspect ratios. Local interface operations of merger or refinement of triangles
c n acconplish this. For volume grids, a frontal construction is more suitable than a
Delaunay triangulation, as the latter does not respect given surfaces unless additional
points are inserted in the surface. Interface topology is computed on the basis of
a precomputation of hashed lists. Self intersections are detected ith the help of
these hashed lists and are resolved by coboundary component information. Interface
topology was addressed in; we discuss here only the ideas of generating a surface grid
and an unstructured interior volume grid.

3.1 Surface Grid Generation

First, let us consider the surface grid generation. In three dimensions, an interface
consists of a set of surfaces. Each surface contains a set of tiiangles and is bounded
by curves. A curve contains a set of doubly linked line segments called bonds. For
a valid interface, there are no intersections between surfaces and no self-intersections
on each surface. Surfaces may connect along boundary curves only. Each triangle
has three pointers. They point to three neighboring triangles connected at its edges.
If any edge of a triangle is on the boundary of the surface, the corresponding pointer
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points to the bond of a boundary curve which coincides with that boundary edge.
We consider surfaces presented parametrically by a mapping onto a planar domain.

We generate the initial surfaces in three steps: (1) approximate each surface by
its parametric plan surface and generate coarse triangles for the plane surface; (2)
repeatedly divide each large triangle into two small ones of same size until all triangles
have size less than the desired value; (3) map the coordinates of the vertices of the
triangles on the planar surface to obtain the desired non-planar surface shape. The
algorithm works for multi-connected surface as well. Due to the coarseness of the
triangles, the time spent in step (1) is less than that in steps (2) or (3). Both steps (2)
and (3) are O(N) operations. Here N is the total number of triangles on the interface
at the end of the surface grid generation. Therefore the overall algorithm is O(N).
For the reason of numerical stability, one prefers to generate triangles with a good
aspect ratio. We achieved this goal by generating the coarse triangles with a good
aspect ratio in step (1) and dividing each triangle at the middle of its longest edge in
step (2). When a divided edge is a boundary edge, we also divided all triangles (on
other surfaces) which are connected to the bond which coincides with the boundary
edge. If the parametric map defining the surface has significant influence on the
aspect ratio or the size of the triangles, one should process step (2) again after the
mapping. The overall operation is still O(N). The algorithm described above applies
to certain classes of interfaces for which a parametric mapping exists. For surfaces
of revolution, we apply a different algorithm. A surface of revolution is defined by a
curve in three dieuslons, an axis of rotation and the angle of revolution. The desired
triangle size determines the bond length on the curve. Then bonds are generated for
the curve. The trace of a bond on the surface is a curved strip. The curved strip
will be covered bv triangles and the vertices of the triangles lie on the edges of the
strip. We calculate the arc length of the curved edges of the strip, i.e.. the arc length
of traces of the end points of the bonds on the surface of revolution. From the arc
length, we determine the positions of the vertices of the triangles. The triangulation
of the strip starts from the bond. The bond will be a (boundary) edge of the first
triangle on the strip. There are two points adjacent to the bond, one from each of the
edge curves of the strip. By choosing an adjacent point, we form orn( of two possible
triangles on the strip. We select the adjacent point which provides t!), better aspect
ratio. In the selected triangle, there is only one edge which cuts through the strip.
That edge will be one of the edges in the next triangle to be generated. Then in the
process of generaing the second triangle, that edge plays the role of the bond in the
first triangle. \\e apply same selection criterion recursivelv to obtain next triangle.
This process is repeated until we reach the end of one the curved edges of the strip.
7'N connect all points left on the other curved edge of the strip to the end point

of the finished edge of the strip to form the rest of the triangles. Then the strip is
completely covered by the triangles. This algorithm is O(N) also. The combination
of these two algorithms is sufficient to generate initial interfaces for many problems
we will consider. The physical quantities are initialized by the analytic solution of
the linearized governing equations in the case of fluid instability problems.
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3.2 Volume Grid Generation

Now let us discuss the unstructured interface fiting volume grid generation. This
is a method to generate an unstructured mesh in three dimensions (i.e., a set of
tetrahedra) in the mesh blocks cut by the interface. The interface is a collection
of outer and inner boundaries. In three dimensions, these boundaries are surfaces
of arbitrary shape, approximated by a set of triangles, which lie inside the regular
Cartesian grid and may divide the computational domain into any number of regions.
Grid generation is intended to fill with tetrahedra those rectangular blocks which are
cut by the interface. Its purpose is to allow interpolation of state values defined on
the interface and those defined on regular Cartesian nodes. In many computational
fluid problems, the state values on these two kinds of nodes are computed separately.
The essential feature of the interpolation algorithm is that interpolation averages only
combine state from a single component, or a single side of the interface.

The whole computational region is divided by grid lines, parallel to the coordinate
axis. One can view the region as being composed of mesh blocks (in two dimensions,
mesh rectangles). Unstructured grid generation takes place in a collection of mesh
blocks through which the interface cuts. Other blocks in the computational domain
are left intact, or more precisely, the grid in this latter case is nothing but the mesh
block itself. The name "hybrid grid" can be used: the unstructured grid (tetrahedra)
in the set of interface-influenced mesh blocks, and the structured grid (cube) in the
complimentary set of blocks.

The major work concerned the unstructured grids. The main difficulty comes
from the fact that the interface can be of an arbitrary shape and that the algorithm
must be designed in such a way that it is independent of the interface. If Delaunay
triangulation [1] is used, more points than those already existing on the interface must
be added to preserve the surface geometrical shape. To achieve this goal, the point
distribution should be dense enough to specify the surface shape. This is theoretically
possible, but technically unattractive and impractical because of tl e arbitrarity of
the interface. Based on this reason, we chose not to use the Dela'ina: triangulation
method. New points are allowed in principle on the interface itself, 3ut not in the
interior, or volume region. This restriction is based on the final usage of the grid
As mentioned before, the grid is used for interpolation of state values between two
sets of states: those defined at points on the interface and those on the regular
Cartesian nodal points. Since the function values are definited only on the above
points, interpolation is needed to determine the value whenever a new point is added.
This is possible within any triangle of the surface. However, additional points would
tend to generate more tetrahedra and complicate the computation thereafter, and we
decide to make full use of the given points and disallow any new point being added.

The general a)proach, rather than a method, qtems from the advancing front
method [13, 14]. As in the advancing front method, we share the same feature of
"advancing" the inner or outer boundaries forward by adding tetrahedra until the
region is filled. A base triangle is chosen from the front, then a vertex .s determined by
some criterion to form a tetrahedra. What is different lies in the vert( : determination
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procedure. As said earlier, a vertex can only be one of the existing points; furthermore,
the tetrahedra thus generated should be valid, i.e., should not cut through other
existing tetrahedra or triangles.

The algorithm flow pattern makes the sense clear. The interface is composed of
surfaces and the surface is composed of triangles. First, two kinds of intersection
points - a surface triangle edge with a mesh block face and a mesh block edge with
a triangle interior - are determined. These are zero dimensional objects. Second,
from them the one dimensional line segments on mesh blocks face and interior are
computed. Then, out come the two dimensional triangles are generated from the
segments and finally, the 3-dimensional tetrahedra from two dimensional triangles.
Here are the main steps of the method:

Step 1. Zero dimensional points are intersections of interfaces and blocks. Since
interfaces are composed of triangles, the points are either the intersections of a triangle
with mesh block edge or or of triangle side with a mesh block face.

Step 2. One dimensional segments are located in two places: on block faces and
in the interior of mesh blocks. On faces are the intersections of a triangle and a
rectangular face. One triangle will produce either one segment on a face, or not at
all. In the interior of a mesh block, if there are any segments from a triangle, those
segments make a convex polygon, lying on the same plane with the triangle.

Step 3. Triangles are generated from the segments. At the start of this step.
the front consists of the sequence of straight line segments which form the convex
polygon or the connection of intersection points in Step I on the mesh block face.
During the generation process, whose detailed description is given later, any straight
line segment which is available to form an element side is termed active and kept in
a list, whereas any segment which is no longer active is removed froi, the list. This
process ceases when the list containing active segments become ernptv.

Step 4. The three dimensional tetrahedra generation strategy is a direct extension
of that presented above for triangles. Instead of segments, now the front is formed by
triangles. The front is updated as each new tetrahedron is generated and the process
terminates when the front is empty.

The grid generation process is sketched below:
For the sake of simplicity, only the generation process in Step 3 is given. This is a

process in two dimensions. The process in three dimensions of Step 4 is essentially the
same, except for two substitutions: segment by triangle and triangle by tetrahedra.

G.0 Initially, all the segnents are put into a list.
GC.1 Select all active side from the list in the front as a base. In order to provent

large elements from overshadowing the region of small elements, the side with the
smallest length in the active side list is chosen.

G.2 Take an existing point as the vertex. If the triangle made by this vertex
and a base is valid, i.e., does not intersect other triangles, this point is denoted as a
'candidate point" for this particular base. Of all such candidate pirts, choose the
one which: 1. will produce smallest number of new sides; 2. under condition 1, have
the shortest distance to the mid-point of base.

G.3 Add new sides (if any) to the list. Delete the old side which has two triangles
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attach to it.
G.4 If there are any sides left in the list, go to G.1.
The algorithm was written for general interface problems. It has been tested on

several simple interfaces. Before it can be integrated in the overall computational
code, further tests are needed as more complicated interfaces become available from
the surface generation procedure and time-dependent interface dynamics.

The volume grid construction is performed every time step. It must satisfy two
somewhat incompatible criteria: efficiency and robustness. Experience with two di-
mensional front tracking indicates that these criteria can be satisfied by use of two
(or more) algorithm. One algorithm must be fast, but is allowed to fail occasionally.
The other may be slow, but is only used when the first algorithm fails. The volume
grid construction proposed here appears to be robust but (relative to speed require-
ment of the application) may be slow. Other volume grid constructions, not reported
here, are under investigation which are intended to be fast but not necessarily robust.
Practical experience with complex dynamically generated fronts will be needed to
assess the success of these algorithms.

4 Conclusions

A previous study justifies the feasibility of performing parallel computations in three
dimensions from the point of view of available hardware and timing s;tudies of rep-
resentative algorithms. This paper re-affirms this possibility from the perspective of
programmability by showing results.
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Interior pressure discontinuities in compressible viscous steady state flow*
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Abstract Two dimensional, steady state, viscous, compressible flows with a streamline along which there is
a jump in the pressure are considered. The evidence for the existence of such flows is reviewed. In the case
of the linearized flow equations, linearized around a smooth ambient flow, detailed information concerning
the form of the discontinuity and its behavior near the left and right hand boundary is presented.

1. Introduction The system of equations governing steady state, compressible, viscous flow is not elliptic,
because the continuity equation is a hyperbolic equation in the density. Hence there arises the possibility
that there are flows with interior discontinuities. The purpose of this note is to review our ongoing work on
the existence and properties of these putative flows.

Although existence of such flows has yet to be rigorously established, a picture of such flows is beginning
to emerge. The picture includes the features that the flows do not appear "spontaneously" in the interior of
the flow field, as do shock waves. Rather, the discontinuities are created by a discontinuity in the pressure on
an inflow portion of the boundary. Also, the curve of discontinuity is the streamline of the flow that emanates
from the boundary point where the boundary pressure is discontinuous, and (at least in the linearized case),
the magnitude of the pressure jump decays as one moves along the streamline into the flow region.

We shall be considering the system

(1.la) LI(U, V, P) -(2p + A)Ur. - pUyy - (p + A)V~Y + (pU 2 ). + (pUV)y + P, = 0,

(1Ib) L 2(U, V, P) -(p + A)Uxy - pV,. - ( 2p + A)Vyy + (pUV)z + (pV 2 )y + Py = 0,
(1.1c) La(U, V, P) (pU)z + (pV)y = 0,

in a region 0 of the xy plane. The quantities U, V are the components of the velocity field, P represents the
pressure, and p represents the density. The latter two quantities are linked by the thermodynamic relations

(1.ld) p = (p), P = p(p).

Thus, we are neglecting the effect of variations in internal energy on the flow. (We believe that including
internal energy as a variable in the problem would not affect the conclusions of this study.) The system (1 1)
must be supplemented by boundary conditions to determine the solution. Let F denote the boundary of Q.
and let n denote the outward pointing unit normal to F. Our boundary conditions are then

(1.2a) U, V given on F,

(1.2b) P given on Fi, := {(,y) E F : [U, V]T . n < 0}.

We note that the boundary region Fin depends on the specified boundary values of U and V. If, for example.
U = V = 0 on F, then F, is empty, and there is no specification of pressure. In such a case, according to
our understanding there will be no discontinuous solutions of (1.1), (1.2).

We shall consider, in addition to the system (1.1), the linearization of this system about a given smooth
ambient flow. Let U, V, P, and p be the ambient flow; that is, suppose these functions satisfy (I.la-d). Let

* Supported in part by the U. S. Army Research Office.
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u,v and p be the linearized dependent variables. We shall regard p as a function of P according to (I.1d),
and we set p' = dp/dP. The linearized equations are

(1.3a) Ll(u, v,p) -(2p + A)u. - mu., - (p + A)vy + pUnx + pVu + pr + A 0,
(1.3b) L(u, Vp) =-(J + \)Uzy - pv.. - (2p + A)vyy + pUv, + pVv, + Py + B 0,
(1.3c) La(u, v,p) S p'Upx + p'Vpy + p(ur + V) + C = O.

In these formulas, p(P) and p'(P) are evaluated at the ambient pressure, and A, B, and C contain undiffer-
entiated terms involving u, v, and p. For example, C = pu + py v + (U, + Vy)p'p. Each term of A, B, or C
contains derivatives of the ambient variables. Thus, in the case of uniform ambient flow, these lowest order
terms all vanish.

The appropriate boundary ., ions for (1.3) are the specification of u, v, and p on F, and the spec-
ification of p on rin. Note that 1,. depends on the ambient flow, the flow about which the linearization is
taken. If the ambient flo, v- .. ihes on r, rin = 0 and there is no specification of pressure. In such a case,
our theory will not give discontinuous solutions; the discontinuities are produced by a discontinuity in the
pressure that is speciFied on rin.

Some results on the existence of solutions to (1.1) are contained in Valli [5], and Veiga [2]. They show
that if the boinidary data is small and smooth, there is a smooth solution to the system. The boundary
condition (1.2) is implicitly contained in the treatment Geymonat [9] of the linearized transient problem. D.
Hoff [3,4] has considered the time dependent, viscous, compressible flow equations in one space dimension.
He shows that there are indeed solutions for which the pressure has a jump discontinuity; however he also
shows that this discontinuity decays as time goes to infinity.

2. Jump conditions Suppose the system (1.1) has a solution that takes a jump across a curve C. Are there
jump conditions, analogous to the Rankine Hugoniot conditions, that must hold on the curve? To answer
this question we must first define a weak solution to the system (1.1) in a domain Q. Let the smooth curve C
divide Q into two subdomains, ill and 22. Suppose (U, V, PJ are smooth functions in each of the subdomains
Qj. We say that (U, V, P] is a weak solution to (1.1) provided that for each 0 E C'(Q2) one has the integral
identities

f 1[-(2pi + A)UOJ., - po,11] - (p + \)VO2 y _ -U0. _pUV(O _ p~k, }dxdy = 0,

J {-(p + A)UOZy + V[-pO.. - (2p + A)Oy- - pUVO. - - Po}dxdy = 0.

J JpUO + pVOdxdy = 0.

Let z(s), y(s) be a parametrization of a curve C of discontinuity, let - d/ds, and let 6 denote the jump in
a quantity across C. As stated in [8], the jump conditions are that C is a streamline of the flow and that

(gl) Ujj = Vi,

(J2) 6U = 6V = 6U = 6W = 0,

(J3) ( 2 p + A)6U, - pi6Uy + (IA + A) 6l', = y6P,

(J4) p W. - (2p + A)ib6V + (p + A) y 6U - i6P.

The condition (JI) means that C is a streamline of the flow. The conditions (J3) and (J4) say that the net
normal fluid stress acting on an infinitesmal element of fluid e that straddles the curve C is balanced by the
net hydrostatic pressure acting on e. Although the width of e is infinitesmal, the jump in pressure creates a
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non-zero net hydrostatic pressure, which in turn requires a non-zero net normal stress, and hence a jump in
the derivatives of U and V.

The conditions (J1) and (J2) imply that Z6U, + y6Uy = 0, z6V, + y6 Vy = 0. These two equations,
together with (J2) and (J3), give 4 equations for the jumps in the 4 first derivatives of U and V. Solving
these equations and setting i = U, y - V, we obtain

b_ = 6V2 1
(2 p + A)(U 2 + V2 )

buy = by, -UV 1
(2u + A)(U 2 + V2 )

U2  6

(2p + A)(U 2 + V 2 )

The jump conditions (J1) - (J4) are derived in [8] for the system (1.1). Similar jump conditions are

derived in [7] for the linearized system (1.3).

3. Nonlinear analysis In [1] we have constructed a simplification of the system (1.1) that still retains the
"elliptic-hyperbolic" character of the original flow equations, and we have constructed an existence theorem
for a discontinuous solution of the simplified system. Here, we briefly describe the results of this analysis.

To obtain the simplified system we set j = -A - 1 and we drop the convective terms in (1.1a.b). More

crucially, we replace the continuity equation by a modified "continuity" equation, Up, + Vp, = 0. Thus.
we have dropped the term pU, + pV from the continuity equation. This modified "continuity" equation

has no physical meaning. Our only justification in considering it is that the elliptic-hyperbolic character of
the system is unchanged, and that we are able to demonstrate the existence of a solution of the modified
system with an interior discontinuity. With the assumption that the system is barotropic, the density
p = p(P) is a function of pressure only and the system can be simplified further. Writing p, = (dp/dP)P-.

py = (dp/dP)Py, we obtain from (1.1c) the equation UP + VPy = 0. We make a further notational change.
The solution that we obtain will be such that the flow is close to uniform flow in the z direction. We therefore
replace the unknown U by 1 + U. This leaves the modified momentum equations unchanged. The modified
compressible flow equations studied in this paper are therefore

(3.1a) -UVr - U + P =0,

(3.1b) -V, - V1 'y + Py =0,

(3.1c) (1 + U)PI + VPY = 0.

The system (3.1) is considered in the strip D = (0, a) x (-c', .xQ The width a is chosen chosen small
enough to satisfy certain inequalities. We impose zero boundary conditions for U and V on the sides of th,
strip D, and we impose the boundary condition for the pressure on the side of the strip D through which
the flow enters. Thus, we are led to the boundary conditions:

(3.2a) U(0, y) = U(a, y) = 0,

(3.2b) V(0, y) = V(a, y) = 0,

(3.2c) P(0,y) = PO(y).

The function Po(y) is chosen to have a simple jump discontinuity at y = 0, to vanish outside [0, a], and to

be smooth for y > 0. We let 6P = P 0(+0) denote the jump in Po(y) at y = 0. We show in [1] that the
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system (3.1), (3.2) has a solution with the property that P(z, y) is discontinuous across a curve C. The curve
C is the characteristic of (3.1c) emanating from the point (0,0), which is the point of discontinuity of P0.
The first derivatives of U and V undergo jump discontinuities across C, and satisfy certain jump conditions
analogous to (Ji) - (J4).

The existence proof reformulates the problem as a fixed point mapping T in a certain Banach space A
and uses the Schauder fixed point theorem. To describe A, let C°(D) be the space of continuous functions
in D. Let

A = {(U, V) : U E C°(D), V E C°(D), IUI + IIVII < o},

where

IIUII= sup IU(X,y)I+ sup IU(z'Y)-U(z, 0I
XYED r,y,PED,y*9 ly - 9l(I In Iy - 9I1 + 1)'

and similarly for IIVII. It is easy to see that A is a Banach space with the norm II(U, V)1I = 11Ul1 + IIVII,
The nonlinear map T is defined as the composition of two maps, T = T2 o T 1, where T and T2 are defined
as follows. Let T1 : (U, V) - P, where P is obtained by solving

(3.3a) (1 + U)P. + VP V = 0, P(0,y) = Po(Y),

and let T2 : P - (0, V), where U, V satisfy

- U, - ryy + P 0, U(0, y) = U(a, y) = 0,
(33)- V.., - l/YY + Py =0, V(0, y) = V(a, y) =0.

The particular form of the norm [lUll reflects the elliptic-hyperbolic character of the system. The
modulus of continuity of U in the y variable is r[I In IrIl + 1]. This modulus of continuity is just enough to
guarantee the solvability of the hyperbolic equation (3.3a) and to provide a priori estimates that arise from
this solution. (The finiteness of 1lull and Ilvil imply that the characteristic equation of (3.3a) satisfies Ihe
Osgood criterion [6, Chapter 1II, Corollary 6.2], and hence is uniquely solvable.) On the other hand. this
modulus of continuity is provided by estimates for the weakly singular integrals that occurs in the solution
of the elliptic equations (3.1b), and it seems that no better modulus of continuity arises from these weakly
singular integrals.

4. Linear analysis - derivation of the transformed equations In [7] we have exhibited a solution to
the linearized system (1.3) for which there is an internal pressure discontinuity. We are at present carrying
this analysis further to give a detailed description of the discontinuity of the linear problem. We shall now
describe this work.

We consider the linearization around a constant ambient flow, U = const > 0, V = const, P =const In
this case the quantities A = B = C = 0. In addition we drop the convective terms in (1.3a,b), and we set
p(P) = p'(P) = 1. As a result we obtain the system

- Au + Pz = 0,

(4.1) - At + py = 0,

."p1 + VpY + ur + vy = 0.

We consider the system (4.1) in the strip 0 < x < a, -oo < y < oo, with the boundary conditions

u(0,y) = uo(y), u(a, y) = u0 (u),
(4.2) v(O,y) = vo(y), v(a,y) =v(y),

p(O,y) = PM(Y).

We suppose that uo, vo, and P0 are smooth functions except possibly at y = 0. Then the line y = xtr'a is
a possible discontinuity of the solution, and the solution satisfies the following jump conditions across this
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line:

6u=O, 6v=O

V 2  -UV
(4.3) 6u, U + P, v - U2 ++ P

U = -LV U2

LJ2 + V 2  U 2 + V2

To solve the problem (4.1), (4.2) we take the Fourier transform with respect to y. For this, we must

recognize that the first derivatives of p and the second derivatives of u and v are defined almost everywhere,

but are not the corresponding derivatives of u, v, and p respectively in the distributional sense. To calculate

the Fourier transforms of these derivatives, we must take into account the jumps across the line y =VU 1 .

We use the following fact, established through an integration by parts: if q(y) is a smooth function for y > Yo

and for y < Yo, and with one sided limits at y = yo, and, letting q'(y) denote the function, defined for all

values of y except yo by the derivative of q, if q and q' decay suitably at y = ± , then

1 ito1
(4.4) (Yq')(t) = it4(t) - -' -"YO[q(y0 + 0) - q(yo - 0)] it4(t) - I e- 6q(yo).

Suppose w(x,y) is smooth everywhere in S except on the line y = VU-'x. Then from (4) we obtain

(4.5) (Fwy)(x, 1) = it i,(z,t) - 3w(x),

where we have set

(bw)(z) = w(z, VU-z + 0) - w(z, VLJ'z - 0), 3=-

A similar formula may be obtained for .- w, in the following way. We write

v u ' x ) e - t y d + 1 0 w ( x , y ) ) e - Y d .
wi(.,t)=. J w(7,y)2rdy+ v/ ,,

Differentiating with respect to x we obtain

(4.6) (Fw 1 )(X,t) = tb,(X,t) + VL-36w(z).

Using (4.5) and (4.6) we obtain the transformed equations

-i%1 + t 2 u + p = 3{VU-u -I6e - VU-thp}.

-, + t + itp = 3{V-- -
6 U + bp},

Up, + itVp+ ?i + iti5 = 0.

Inserting the jump conditions (4.3) we obtain the same transformed equatloiis a;s ii the cars of iio jump

-U 1 1 + t2i + p, = 0,

(4.7) -V,17 + t 2 i) + itp = 0,

Up, + itvp-+ u, + itvl = 0.

with the boundary conditions

u(0, t) = 60(t), fi(a, t) = u, (t),

i4)) ,(O, t) = i!o(t), i,(a, 1) = v,(t),

p(Ot) = p0 (t).
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5. Linear analysis - solution of the transformed equations We seek a solution of the problem (4.7)

with an z dependence of the form e*(t). This leads to the quintic equation for r(t),

(r 2 
- t2 ) 2(rU + itV + 1) = 0,

with roots
I tV.r = +t, +t, - z. -
U -UT

This also leads to the general solution of (4.7) in the form

where the ,ij are given by

= et, i2 -[ e-, i 3 
-  e-(l+1tV)U-'x,

[-12(U + iV)+ [1-2t(U - iV)+ 1 tx
_'4 

= itz etz, Z5 -" " e-tZ

2t 2t

with
-U(p + itv)

1 + 2itV - t 2(U 2 + V 2)'

itU 2

1 + 2itV - t 2(U2 + V2 )

The coefficients are chosen to satisfy the boundary conditions (4.8). Imposing these boundary conditions.

we are led to the linear system

C2 bo
B C3 = /0

C4 ila

where r1 -1 iUVDt - 1  -2(U + iV)t -2(U - iV)t

i -iU 2 D - 1  0 0
B 0 0 1 2t 2t

p -p- IiUVDt-'q [-2(U+iV)t+atlp [-2(U-i')t+at]p- 1

ip ip 1  -iU 2 Dt-'q itap -itap - 1

and where
p = ea , q = e - , -y = (I+itV)U- t , D = (172 + /')-t.

The matrix B is inverted using Malhematzca. Let A = B- 1 = [aiL]. Because of the fundamental importance

of this matrix for the linearized compressible flow equations, we record the following asymptotic forms for

the matrix entries, valid for large values of ItI. For >> 0, we get

all = IUD2qt-lp-(2U - a)(U + iV)

a 1 2 = - UD 2qit-P-'(2U - a)(U + iV)

a 13 = LUDqt-'p-l(2U - a)

a1 4 = .1aDp-(J - iV)
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a15 =-I'iDp-'[2( U 2 + V 2) - a(U - iV)]

a21  U2 D2 t-'I(U + iV)

a22 = i

a23 -U
2 Di-

a24 - .aD(U - iV)p'

a25 = !iD[2( U 2 + V 2 ) - a(U - iV)]
23  ( V

a32 = -D(U + iV)

a33 = I

a34 = - Dp- (a+ 2iV)

a35, = i Dp- 1 (2U - a)

a41 = IUD 2 qp- Ut2 (U + iV)

a42 = -- iUD 2 qp- Ut2 (U + iV)

a3= -LUDqp'tt-

a44 = -.D-'-~ iV)

a45 = -- iDt- Ip'(U -iV)

as, = --IDt-(U +iV)

a52 = 'iDt- (U+ iV)

a53 = -. IUDt -
2

a4= lDUlp-'(Lt + iV + a)

a5 -liDt- I '(U + WV -a)

Similary, for t <<0, we get

all = U2 D2(U _ iV)t-1

a, 2 = -i

a13 = U2DtI

a14 = .laD(U + iV)p

a15 = .!iD[2 (U2 + V2 ) - a(U + iV)]p

a21 = I~UD 2 (2U - a)(U - iV)qtU'p

a22 = .liUD 2 (2U -a)(U - iV)qtFlp

a2 3 = -UD( 2U - a)qt-lp
a4= -- !aD(U +- iV)p

a25 = -- !iD[2( U2 + V2 ) - a(UT + iVl)]p

al= D(U - WV)

a32 =iD(U - iV)

a33 = 1

a34 = D(2iV - a)p

a35 = -iD(2U - a)p

a41 = -. LD(U - i~-

a42 = -. !iD(U - i~-

a43 = IjUDt 2

a4 4 = .1D(U - iV + a)t- lp
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a45 = f'iD(U - iV - a)t-'p

a51 = -. IUD 2(U - iV)qt- 2p

a52 = -PiUD2 (U - iV)qt- 2p

a53 = - UDqt- 2p

a54 = -LD(U + iV)t-'p

as5 = .LiD(U + iV)t-'p.

We illustrate the use of these formulas by considering three special cases.
Case 1: po # O, uo = vo=u = Va =O

In this case, the solution to (4.7), (4.8) is given by

t ={al3et - a23e - t z + oa3ae- ( +itV)U- 'z

- [-1 - 2t(U + iV) + tZla 43e t + [1 - 2t(U - iV) + tzas3 e- t ')}po,

={iale t ' + ia23e - *z + Oaae-(+itV)U ~' + itra43 e" - itzase-tz}po,

={a33e - 
(

+ i t
V)U

-
'l + 2ta4 3e t' + 2tase-tt}po.

Using the above asymptotic formulas, we obtain asymptotic expressions for i, &, and p. These expressions
are arranged into three groups, which we denote the discontinuous part, the left hand part, and the right
hand part. In this way we arrive at the formulas

U = UD + UL + UR + Urem,

V = VD + VL + VR + Vrem,

P = PD + PL + PR + Prem,

where

itD(z, 0 U) it -('+,Vt)u-'z -
t:= VD+ - e P

-L I 2V it )1ie 7 -1 .
UR.(Zt) := o~ 1- + + 12 po1
i4R(X,t 0= -IU DE{(a- z) 1 +2V t+ le-' it i ,vtU-l e- (a , r-)

i'D(Z,t) := _U2 D it e-L1+ivt)U1P

L(Z,t) := 'UD(2U +-x it Pa_ ,- .

,it _isaVtULe_ a~I),/i2-+1

iR(X, ) 1 UDE(2U - a + x) t+ e- e- pa

D(x., t) := -P,

PL(X,t) -TD C P

PR (X , t) :=U D E I.--. e-  ia v - ' e- (a - .r)vr p o
Vt-r- 1

Upon taking an inverse Fourier transform, one obtains for UD, VD, and PD the formulas

U D(x,= - wUVDeU'e(YVU-')/ po(t)etdt
(,5.1a) - -

+ JrUVDe- U-'Ze- (Y- - ' x ) po(t)r'dt,
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V((z,y) =irUVDe-U-Te - (Y - VU- 1z)  j-vv-1z po(t)edt
(5. 1b) .-0

- irUVDe-U-'e-(y-VU-'z) -V_ Ispo(t)e-'dt,

(5.1c) PD(X,y) = 27re- -':p(y - VU-'z).

If p0(y) has a jump discontinuity at y = 0 and is smooth in (-oo,0) and (0,oo), then the formulas (5.1) yield
a discontinuity of PD and the first derivatives of UD and VD on the line y = VU-Iz. It may be verified that
the triple [UD, VD, PD] satisfies the jump conditions (4.3). One can also obtain expressions for the left and
right functions, involving the convolution of p0 with certain kernels. We shall not write down these kernels.
Instead, we note that because of the presence of the factor exp{-xVT 'T} in the Fourier transform of
the left hand functions, these functions are smooth for z > 0, and similarly, because of the presence of
the factor exp{-(a - z)vr'ity'} in the right hand functions, these functions are smooth for z < a. These
functions have the "purpose" of reconciling the the values of the unknowns at the boundary where the jump
discontinuity occurs. An analysis of the remainder terms shows that Pem is continuous and u,em, Vrem are
continuously differentiable in the strip. We conclude that (5.1) displays the discontinuous behavior of the
solution of (4.1), (4.2) caused by a discontinuity in the inflow pressure.
Case 2: uo 0, Vo = Pa u = v = 0.

Again, the asymptotic formulas for the coefficients yield a discontinuous part, a left hand part, a right
hand part, and a smoother remainder. The formulas for the discontinuous part are

(5.2a) fiD = -UVD 2{V I U it (1+Vt2V-- t2 + 1 o

(5.26) )D = U2D2 {V 1 Ut l}e -(+itV)U - '

it _livu l

(5.2c) PD = D{U + V it ) 1 .

The formulas (5.2a) and (5.2b) may be inverted to give for UD and VD the formulas

(5.3a) UD( , y) = Iv2D2e-U-'x K(ly - s - VU-lxl)uo(s)ds

1 u D2e--' sgn(y - s - VU-1x)e-Y-S-vu-T'xuo(s)ds,

VD(X,y) =I u2VD2e-U-'x m Ko(ly - s - VU-xl)uo(s)ds
(5-3b) -r I oo

+(.) u2 VD 2 ..j sgn(y - - VT1 x)eIysA'-rJ uo(s)ds.

The inversion of (5.3) involves a 6 function, and so does not have meaning if uo has a discontinuity. If
u0 is continuous, but u'0 has a discontinuity at y = 0, we obtain for Pa the formula

(5.3c) pD(Z,y) = DUe-U-'1uo(y - VU-1z) - -- _DVe-U j KO(ly - s - VU-'xz),,'(s)ds.
v"2-r f-oo0

Suppose u0 has a jump discontinuity at y = 0 and is smooth elsewhere. Then the functions UD and I'D
have continuous first derivatives, but their second derivatives become infinite on the line y = V'U-ix. and
the function PD is continuous, but the first derivatives of PD become infinite on the line y = VU -x. We
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conclude that a jump in a4 does not produce a pressure discontinuity, but does produce a higher order
singularity in the solution on the line y = VU-'z.
Case 3: u 0, Uo = V0 = po =V. = 0.

In this case, the asymptotic formulas yield only a right hand part. There is no discontinuity in the
interior resulting from a discontinuity in uo.
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AN EXTENSION OF MESH EQUIDISTRIBUTION TO TIME-DEPENDENT
PARTIAL DIFFERENTIAL EQUATIONS

J.M. Coyle

U.S. Army Armament Research, Development, and Engineering Center
Close Combat Armaments Center

Benet Laboratories
Watervliet, NY 12189-4050

ABSTRACT. Mesh equidistribution for static approximation problems is
extended to a domain that admits time dependency. Instead of some quantity
being equidistributed over a static mesh, the change in this quantity is
equidistributed over a dynamic, moving mesh. Applications are for utilization
in numerical methods to solve time-dependent partial differential equations.
This mesh moving scheme is incorporated into a finite element code which
already refines adaptively. Comparisons are made for stationary and moving
meshes.

INTRODUCTION. An equidistributed mesh in one space dimension is a par-
tition of a given domain into subintervals such that some given quantity is uni-
form over each subinterval. More specifically, given an interval (a,b) and a
positive weight function w(x) defined on (a,b), then an equidistributed mesh
is a partition

la = x0 < x, < x2 < ... < xM_ 1 < xM = bi

such that

xj

f x w(x)dx = constant = - f w(x)dx , j = 1,2,...,M (1)
xj_1 M a

The usual application of such a mesh is for approximating functional rela-
tionships to a certain accuracy with a minimum number of mesh points by choosing
w(x) appropriately [1]. Equidistribution strategies have also been used in
numerical methods for solving two-point boundary value problems [2,3]. This is
because it has been shown (4,5] that the task of selecting a mesh to minimize
the discretization error is asymptotically equivalent to equidistributing the
local discretization error.

The successes in the above fields of functional approximation and numerical
ordinary differential equations have led some investigators to consider the use
of equidistribution strategies for generating moving meshes in the field of
numerical partial differential equations (PDEs) [6-8]. The general framework is
to simply reconsider Eq. (1) with a time dependency. That is to say, the
problem is now to determine a dynamic mesh

(a = x0 < x1 (t) < x2 (t) < ... < xM-1(t) < xM = bi

at time t so that
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xj(t) _ ]b wxtd , .. 2
f w(xt)dx = c(t) = w(xt)dx (2)
Xj-l(t) M a

where the positive weight function w(x,t) is usually chosen to be a function of
the solution of the underlying POE. For example, w has been chosen to be pro-
portional to the solution's gradient, curvature, and local discretization error.

When applying Eq. (2) in some numerical scheme, most investigators move a
fixed number of points so as to follow and resolve local nonuniformities in the
solution. In order to guarantee a certain accuracy, they must be sure that this
fixed number is large enough to approximate the solution throughout the entire
spatial domain for the entire temporal "life" of the solution. Some see this as
a limitation since the correct number of fixed points necessary is not generally
known a priori.

Also, this moving mesh is not operating in a vacuum. It is being used in
conjunction with some numerical solution procedure. Since the accuracy of most
such procedures can depend on the shape of the space-time grid, sometimes the
equidistribution law can be too dynamic and deform the grid enough so as to
introduce a new, even larger source of error. This can happen even if the
equidistribution law doesn't demand much moving of its own accord. If a non-
equidistributed mesh is used as the initial mesh, then the grid can deform
drastically as the moving mesh tries to relocate to the proper equidistributed
positions. In order to avoid these difficulties, some investigators have aban-
doned moving altogether and developed local refinement methods [3].

A local refinement method is a procedure where uniform fine grids are added
to coarse grids in regions where the solution is not adequately resolved.
Although they can guarantee a solution to a prescribed accuracy, they can be
costly, as they involve recomputing the solution, and they are not as good as
moving mesh methods at reducing dispersive errors in the vicinity of wavefronts.

The choice here has been to combine local refinement with mesh moving based
on equidistribution. The purpose is twofold. First, the refinement procedure
is incorporated to avoid any drastic deformation of the grid by the moving mesh
as well as guarantee a prescribed accuracy. Second, the mesh moving is applied
in order to obtain as accurate a solution as possible for any given discretiza-
tion so as to put off the need for refinement for as long as possible and thus
to reduce the costs involved.

Equation (2) as it stands, however, is not easily partnered with a refine-
ment scheme. It is too dependent on mesh position and the number of extant mesh
points. Hence, a refinement step can disrupt the nature of the equidistribution
and cause a drastic change in the mesh dynamics similar to that caused by a
"bad" initial mesh.

The attempt to overcome the difficulty reported here was to try to extend
Eq. (2) in such a way that it worked with the refinement procedure rather than
against it. It seemed that the dynamics of Eq. (2) were based on the static
spatial nature of Eq. (1) and an extension was needed that incorporated more of
the time dependency of the domain and solution process.
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In the next section, this extension of Eq. (2) is presented as well as the
algorithm for coupling the refinement and moving procedures. Then, in the
following section, results on a series of test cases are presented for com-
parison. In the Discussion section, the characteristics of the extended
equidistribution law are discussed in light of the results of the previous sec-
tion. Finally, in the last section, some conclusions are presented.

PROCEDURES. The basic principle behind this extension of Eq. (2) is to try
to equidistribute temporal properties as well as spatial. To this end, consider
a typical time interval of interest (O,T) and a discretization

(0 = to < to < tI < t2 < ... < tN_1 < tN = T1

of that interval. Then, given any time level tn_ 1 and any mesh

Ia=n-i n-i n-i n-i
la xo < X1  < x2  < ... < xM b

at that time level, require the new mesh

(a = x0 xi < x2 < ... < xMl < xM =b

at the next time level tn to satisfy

n n-i

w(Xtnn-i (Xtn)dx +  fa w(Xtn)dx fa w(x,tn-I)dx}
xj- xj

j = 1,2,...,M (3)

Note that Eq. (3) is not an equidistribution law in the sense of Eqs. (1)
and (2). No quantity is being held constant over any subinterval by the
enforcement of Eq. (3). Rather, it is the change in the quantity w over each
new subinterval

(xi_1 ,xj )

that is allowed to vary by a constant amount (which is proportional to the total
change in w from tn_ 1 to tn) when compared to its values over the old subinter-
val

n- n-1i

In a sense then, it is the time change of this quantity that is being equidis-
tributed.

Note also that the relationship between old and new meshes is not as
dramatic as in Eq. (2). If
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is a "bad" mesh, e.g., suppose it was readjusted by a refinement procedure, then
Eq. (3) simply requires that

nM
Xjj=O

differs from

{Xj

by a constant amount over each subinterval and does not require any drastic
readjustment to a new equidistributed position.

In order to test the performance of Eq. (3) and its postulated properties,
it was incorporated into a numerical POE solver that already implemented an
automatic refinement strategy. The overall solution algorithm is as follows:

1. Move mesh to next time level according to Eq. (3).

2. Solve POE using finite elements in space and finite differences in
time.

3. Estimate error that occurred in the solution process.

4. If the error is less than or equal to a prescribed tolerance and the
time level is less than T, then go to step 1.

5. If the error is greater than the tolerance, refine in either space or
time or both, then go to step 2.

6. If the time level is greater than or equal to T, then stop.

RESULTS. The following POE was solved numerically for all test cases:

1 1
ut - Ux(1 + u) = 06 Uxx' 0 < x < 1 , t > 0

u(x,O) = tanh 10(x-1) , 0 4 x 4 1

u(O,t) = tanh 1O(-1+t) , t ) 0

u(1,t) = tanh lOt , t ) 0

The exact solution, u(x,t) = tanh lO(x-J+t), is simply a wavefront that moves
through the spatial domain from right to left as time progresses. Optimally,
the mesh should try to follow the front as it moves across the interval (0,1).

For all cases, the L2 norm of the error was prescribed to be less than a
tolerance of 0.01, an initial uniform mesh with 11 points (M = 11) and an ini-
tial time step of 0.05 (At = 0.05) was input, and the solution process was
allowed to proceed for 75 time steps.
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Case 1. For this case, no movement was allowed--only refinement. Mesh
trajectories are shown in Figure 1. At the end of 75 time steps, N = 37 and At

0.00218.

t

x

Figure 1

Mesh Trajectories for Case 1. Stars on x-axis indicate the mesh input
before any moving or refining. Horizontal lines indicate a temporal refinement
has occurred (actual values of At are not shown).
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Case 2. For this case, movement was based on the first time derivative of
the solution (w(x,t) - ut(x,t)l ). Mesh trajectories are shown in Figure 2. At
the end of 75 time steps, N = 40 and At - 0.00579.

Figure 2

Mesh Trajectories for Case 2. Stars on x-axis indicate the mesh input
before any moving or refining. Horizontal lines indicate a temporal refinement
has occurred (actual values of At are not shown).
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Case 3. For this case, movement was based on the second spatial derivative
of the solution (w(xt) = uxx(x,t)l ). Mesh trajectories are shown in Figure 3.
At the end of 75 time steps, N = 23 and at = 0.00201.

t

I /

x

Figure 3

Mesh Trajectories for Case 3. Stars on x-axis indicate the mesh input
before any moving or refining. Horizontal lines indicate a temporal refinement
has occurred (actual values of At are not shown).
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DISCUSSION. Overall, the results are very encouraging. The mesh trajec-
tories flow smoothly with whatever solution characteristic the equidistribution
law is based. This is true even when the initial mesh is unrelated to the
equidistribution rule and when the refinement procedure alters the mesh (see
Figures 2 and 3). This is exactly as desired and postulated.

Furthermore, it seems that mesh moving can decrease the amount of refine-
ment necessary for a given problem as hoped. This is evident when comparing
case 1 with cases 2 and 3.

In case 2, the level of temporal refinement is less than in case 1 for the
same number of time steps and the same tolerance level. This is as expected
since the temporal component of the error is proportional to a time derivative
of the solution. Hence, movement based on equidistributing this error should
reduce the temporal refinement necessary.

Similarly, in case 3, the level of spatial refinement is less than in case
1. Once again, this is as expected since the movement here is based on a quan-
tity proportional to the spatial component of the error.

CONCLUSIONS. Whether or not this new moving scheme will develop into a
robust numerical procedure is still uncertain. There are still stability
questions to be answered as well as some implementation difficulties not
addressed here.

However, the results presented here give credence to the notion that mesh
moving and refinement schemes can be successfully combined. Refinement proce-
dures do not have to interfere with mesh movement and mesh movement can be per-
formed to reduce the levels of refinement necessary to solve a problem to a
given tolerance.
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ABSTRACT. Consider the adaptive solution of two-dimensional vector systems of
hyperbolic and elliptic partial differential equations on shared-memory parallel comput-
ers. Hyperbolic systems are approximated by an explicit finite volume technique and
solved by a recursive local mesh refinement procedure on a tree-structured grid. Local
refinement of the time steps and spatial cells of a coarse base mesh is performed in
regions where a refinement indicator exceeds a prescribed tolerance. Computational
procedures that sequentially traverse the tree while processing solutions on each grid in
parallel, that process solutions at the same tree level in parallel, and that dynamically
assign processors to nodes of the tree have been developed and applied to an example.
Computational results comparing a variety of heuristic processor load balancing tech-
niques and refinement strategies are presented.

For elliptic problems, the spatial domain is discretized using a finite quadtree
mesh generation procedure and the differential system is discretized by a finite
element-Galerkin technique with a hierarchical piecewise polynomial basis. Adaptive
mesh refinement and order enrichment strategies are based on control of estimates of
local and global discretization errors. Resulting linear algebraic systems are solved by
a conjugate gradient technique with a symmetric successive over-relaxation
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preconditioner. Stiffness matrix assembly and linear system solution are processed in
parallel with computations scheduled on noncontiguous quadrants of the tree in order
to minimize process synchronization. Determining noncontiguous regions by coloring
the regular finite quadtree structure is far simpler than coloring elements of the
unstructured mesh that the finite quadtree procedure generates. We describe a linear-
time complexity coloring procedure that uses a maximum of six colors.

1. INTRODUCTION. Partial differential equations that arise in scientific and
engineering applications typically feature solutions that develop, evolve, and decay on
diverse temporal and spatial scales. The Fokker-Plank equation of mathematical phy-
sics may be used to illustrate this phenomena. Perspective renditions of its solution u
as a function of two spatial arguments x and y are shown at four times t in Figure 1
[20]. As time progresses, a single "spike" in the probability density arising from an
initial Maxwell-Boltzmann distribution evolves into the two spikes shown. Conven-
tional fixed-step and fixed-order finite difference and finite element techniques for solv-
ing such problems would either require excessive computing resources or fail to ade-
quately resolve nonuniform behavior. As a result, they are gradually being replaced by
adaptive methods that offer greater efficiency, reliability, and robustness by automati-
cally refining, coarsening, or relocating meshes or by varying the order of numerical
accuracy.

Adaptive software for ordinary differential equations has existed for some time
and procedures that vary both mesh spacing and order of accuracy are in common use
for both initial [171 and boundary [7] value problems. The situation is far more
difficult for partial differential equations due to the greater diversity of phenomena that
can occur;, however, some production-ready adaptive software has appeared for elliptic
problems [12]. The state of the art for transient problems lags that for elliptic systems
but some projects are underway [16]. Adaptive strategies will either have to be
retrofitted into an existing software system for solving partial differential equations or
have to be coupled with pre- and post-processing software tools before widespread use
occurs.

With an adaptive procedure, an initial crude approximate solution generated on a
coarse mesh with a low-order numerical method is enriched until a prescribed accuracy
level is attained. Adaptive strategies in current practice are classified as h-, p-, or r-
refinement when, respectively, computational meshes are refined or coarsened in
regions of the problem domain that require more or less resolution [6, 12], the order of
accuracy is varied in different regions [101, or a fixed-topology mesh is redistributed
[5]. These basic enrichment methods may be used alone or in combination. The par-
ticular combination of h- and p-refinement, for example, has been shown to yield
exponential convergence rates in certain situations [91.

Enrichment indicators, which are frequently estimates of the local discretization
error of the numerical scheme, are used to control the adaptive process. Resources
(finer meshes, higher-order methods, etc.) are introduced in regions having large
enrichment indicators and deleted from regions where indicators are low. Using esti-
mates of the discretization error as enrichment indicators also enables the calculation
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Figure 1. Solution u(xy,t) of the Fokker-Plank equation at times t = 4
(upper left), 10 (upper right), 20 (lower left), and 100 (lower right) obtained
by Moore and Flaherty [20]. Solutions having magnitudes greater than 0.1
have been omitted in order to emphasize fine-scale structure.

of local and global accuracy measures which should become a standard part of every
scientific computation. Estimates of the local discretization error are typically obtained
by using either h- or p-refinement. Thus, one uses the difference between solutions
computed either on two meshes or with two distinct orders of accuracy to furnish an
error estimate. Special "superconvergence" points where solutions converge faster
than they do globally can be used to significantly reduce computational cost [2].

Parallel procedures are becoming increasingly important both as hardware systems
become available and as problem complexity increases. Furthermore, the efficiency
afforded by adaptive strategies, cannot be ignored in a parallel computational
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environment since the demand to model nature more accurately is always beyond
hardware capabilities. Models of parallel computation are based on distributed-
memory and shared-memory architectures. Distributed-memory systems tend to have
large numbers of relatively simple processing elements connected in a network. Avail-
able memory on these fine-grained systems is distributed with the processing elements
at the nodes of the network, so data access is by message passing. Balancing com-
munication and synchronizing processing is extremely important because processing
elements are typically operating in lock-step fashion in order to improve throughput
and processor utilization. Shared-memory systems involve a more coarse-grained level
of parallelism with relatively few processors operating asynchronously and communi-
cating with a global memory, although variations are common. For example, process-
ing elements may have a local cache memory in order to reduce bus contention and
may have vector capabilities; thus, providing a hierarchy of coarse- and fine-grained
parallelism.

Our goal is to develop parallel adaptive methods for partial differential equations.
Fortunately, our adaptive software utilizes hierarchical (tree) data structures that have
many embedded parallel constructs. Transient hyperbolic problems may generally be
solved using explicit numerical techniques which greatly simplify processor communi-
cation. Experiments, reported in Section 2, with a variety of tree traversal strategies
on an adaptive mesh refinement finite difference scheme [6] indicate that the dynamic
load balancing scheme of assigning grid-vertex computations at a given tree level to
processors as they become available provided the best parallel performance. Static
load balancing strategies, that either traverse the tree of grids serially while processing
solutions on each grid in parallel or traverse the tree in parallel while processing solu-
tions on grids at the same tree level are also discussed. These alternatives to dynamic
processor assignment may provide better performance on hierarchical memory comput-
ers.

For elliptic problems, system assembly and solution are processed in parallel with
computations scheduled on noncontiguous tree quadrants in order to minimize process
synchronization. "Coloring" the elements of a mesh so as to avoid memory conten-
tion on a shared-memory computer is far simpler when an underlying tree structure is
present than for more general unstructured grids that the finite quadtree structure gen-
erates. The six-color procedure, described in Section 3, for the finite element solution
scheme on quadtree-structured grids displays a high degree of parallelism when piece-
wise linear approximations are used. Unfortunately, the same procedure does not do
as well with higher-order piecewise polynomial approximations; however, an element
edge coloring procedure may improve performance.

2. HYPERBOLIC SYSTEMS. Consider a system of two-dimensional conservation
laws in m variables on a rectangular domain Q having the form

U1 + f, (x,y,t,u) + gy (x,y,t,u) = 0, (x,y) E K2, t > 0, (la)

subject to the initial conditions

u(x,y,0) = u0(x,y), (x,y)E Qt Q, (I b)
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and appropriate well-posed boundary conditions. The functions u, f, g, and u° are m-
vectors, x and y are spatial coordinates, t denotes time, and M is the boundary of Q.

Our research is based on a serial adaptive hr-refinement algorithm of Arney and
Flaherty [6]. We forego mesh motion at present and briefly describe an h-refinement
procedure that utilizes their strategy. The problem (1) is solved on a coarse rectangu-
lar "base" mesh for a sequence of base-mesh time slices of duration At,,
n = 0, 1, .. , by an explicit finite difference, finite volume, or finite element scheme.
For a base-mesh time step, say from t,, to t., I = t,, + At , , a discrete solution is gen-
erated on the base mesh along with a set of local enrichment indicators which, in this
case, are refinement indicators. Cells of the mesh where refinement indicators at t,+,
fail to satisfy a prescribed tolerance are identified and grouped into rectangular clus-
ters. After ensuring that clusters have an adequate percentage of high-refinement-
indicator cells and subsequently enlarging the clusters by a one-element buffer to pro-
vide a transition between regions of high and low refinement indicators, cells of the
base mesh are bisected in space and time to creatf finer meshes that are associated
with each rectangular cluster. Local problems are s. Ived on the finer meshes and the
refinement procedure is repeated until refinement indicators satisfy the prescribed unit-
step criteria. After finding an acceptable solution on the base mesh, the integration
continues with, possibly, a new base-mesh time step A:,+ I . Data management involves
the use of a tree structure with nodes of the tree corresponding to meshes at each
refinement level for the current base-mesh time step. The base mesh is the root of the
tree and finer grids are regarded as offspring of coarser ones.

With an aim of maintaining generality at the possible expense of accuracy and
performance, we discretize (1) using the Richtmyer two-step version of the Lax-
Wendroff method [23], which we describe for a one-dimensional problem as follows.
Introduce a mesh on 0 having spacing Axj = xj+ I -xj and let the discrete approxima-
tion of u(xi ,tn ) be denoted as UT, Predicted solutions at cell centers are generated by
the Lax-Friedrichs scheme, i.e.,

At,Uf+ = (U"+ + U") - t (ff+l - f')-(aU n+I/2= /Uln(f
+1 j1 2Ax

This provisional solution is then corrected by the leapfrog scheme

U7+1 = Un 2Atn n+1/2 fn+/22b)Uji = i Axj + Axj -1  j +1A -j-12 ).'2b

Following Arney et al. [4, 6], refinement indicators are selected as estimates of the
local discretization error obtained by Richardson's extrapolation (h-refinement) on a
mesh having half the spatial and temporal spacing of the mesh used to generate the
solution. Fine-mesh solutions generated as part of this error estimation process may
subsequently be used on finer meshes when refinement is necessary. Initial and boun-
dary data for refined meshes is determined by piecewise bilinear polynomial interpola-
tion from acceptable solutions on the finest available meshes.
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Parallel procedures are developed for the adaptive h-refinement solution scheme
described above using a P-processor concurrent read exclusive write (CREW) shared-
memory MIMD computer. We consider both static and dynamic strategies for balanc-
ing processor loading. As the names imply, with static load balancing, processors are
assigned tasks a priori with the goal of having them all terminate at approximately the
same time, whereas, with dynamic load balancing, available processors are assigned
tasks from a task queue. Two possible static load balancing techniques come to mind:
(i) serial depth-first traversal of the tree of grids with solutions on each grid being gen-
erated in parallel and (ii) parallel generation of solutions on all grids that are at the
same tree level. With the depth-first traversal procedure, each grid is statically divided
into P subregions and a processor is assigned to each subregion. With the parallel
tree traversal procedure, the P processors are distributed among all grids at a particular
tree level so as to balance loading. Thus, parallelism occurs both within a grid and
across the breadth of the tree with this strategy. In both cases, the parallel solution
process proceeds from one base-mesh time step to the next.

Serial depth-first traversal of the tree leads to a highly structured algorithm that
has a straight-forward design because the same procedure is used on all grids. Balanc-
ing processor loading on rectangular grids is nearly perfect with an explicit finite
difference scheme like (2) and similar behavior could be expected for geometrically
complex regions. Load imbalance occurs due to differences in the time required to
compute initial data. Other than at r = 0, initial data is determined by interpolating
solutions from the finest grid at the end of the previous base-mesh time step to the
present grid. Tree traversal, required to determine the correct solution vertices for the
interpolation, would generally take different times in different regions due to variations
in tree depth. This defect might be remedied by using either a more sophisticated
domain decomposition technique or a more complex data structure to store the tree of
grids.

The serial depth-first traversal procedure becomes inefficient when P is of the
order of the number of elements in a grid. This situation can be avoided by refining
grids by more than a binary factor, thus, maintaining a shallow tree depth. Lowering
the efficiency of clusters by including a greater percentage of low-refinement-indicator
cells will also increase grid size but diminish optimal grid usage. The inefficiency
cited here should not be a factor on dita-parallel computers and the serial tree traversal
procedure might also be viable there.

The parallel tree-traversal procedure requires complex dynamic scheduling to
assign processors to grids. One possibility is to estimate the work remaining to reduce
error estimates to prescribed tolerances and to assign processors to subgrids so as to
balance this load. Were such a heuristic technique successful, the parallel tree traver-
sal procedure would not degrade in efficiency when the number of elements on a grid
is O(P).

Consider a situation where Q processors are used to obtain a solution on a grid at
tree level I - 1 and suppose that refinement indicators dictate the creation of L grids
Gj.j, i = 1, 2, , L, at level I. Further assume that
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i. the prescribed local refinement tolerance at level I - I is 't.-1;

ii. the areas of G1, i are M1,i, i = 1, 2, ..., L;

iii. estimates E1, i of the discretization error are available for G1 i , i = 1, 2, ,

and

iv. the convergence rate of the numerical scheme is known as a function of the local
mesh spacing.

The Richtmyer two-step scheme (2) has a quadratic convergence rate which we use to
illustrate the load balancing technique; however, the approach easily extends to other
convergence rates.

In order to satisfy the prescribed accuracy criterion, Gt,i should be refined by a
factor of (Eti/,_ 1)2. The time step on G1,i must be reduced by a factor of Et.i/r1_1 in
order to satisfy the Courant condition. Hence, the expected work W1,i to find an
acceptable solution on G,.i is

Wt'i = Mt'i Ii.(3)

The Q available processors should be allocated so as to balance the time required to
complete the expected work on each of the L grids at level I. Thus, assign Qi proces-
sors to grid G1j, i = 1, 2, -'-, L, so that

W l,.1 W I2 WJl £ L

= - Qi = Q. (4a,b)
Q1 2i=

The quality of load balancing using this approach will depend on the accuracy of
the discretization error estimate. Previous investigations [4, 6] revealed that error esti-
mates were generally better than 80 percent of the actual error for a wide range of
mesh spacings and problems. Equation (3) can be used to select refinement factors
other than binary and, indeed, to select different refinement levels for different meshes
at a given tree level. This consideration combined with over-refinement to a tolerance
somewhat less than the prescribed tolerance should maintain a shallow tree depth and
enhance parallelism at the expense of grid optimality.

Simple dynamic load balancing can take full advantage of the CREW shared-
memory MIMD environment. One just maintains a queue of mesh points at a given
tree level and compute solutions at these points as processors become available. Load
balancing is perfect except for any inherent system hardware anomalies. Balancing
processor loads on geometrically complex regions is as simple as on rectangular
regions because mesh points are processed on a first-come-first-serve basis indepen-
dently of the grid to which they belong. Nonuniformities in initial data also introduce
no problems and neither does the relationship of P to the number of cells in a grid.
Finally, complex processor scheduling based on accurate error estimates is avoided.
This strategy, however, might not be appropriate for hierarchical or distributed-memory
computers.
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Binary refinement of space-time grids may be optimal in using the fewest mesh
points; however, tree depth tends to be large and this introduces serial overhead into a
parallel procedure. As previously suggested, serial overhead can be reduced by keep-
ing tree depth shallow and to do this we perform M-ary instead of binary refinement.
The value of M is chosen adaptively for different clusters so that the prescribed toler-
ance is satisfied after a single refinement step. Thus, if 'to is the prescribed local
discretization error tolerance, then choose M for grid G ,i as the first even integer
greater than E lj/T0 . Having a good a priori knowledge of the work required on each
cluster, processors can be distributed among the grids according to (4) to effectively
balance loading. Of course, the refinement tolerance may not be satisfied after per-
forming one level of M-ary refinement. Should this occur, we perform additional lev-
els of 2-ary refinement until accuracy requirements are satisfied. The terms "binary"
and "2-ary" refinement have been used to distinguish differences in our methods of
checking the refinement condition. With binary refinement, the refinement condition is
checked after each of the two finer time steps but with 2-ary refinement, the condition
is only checked after the second time step. As a result, the fine grids remain
unchanged for both of the two finer time steps with 2-ary refinement.

The efficiency of this mesh refinement strategy and of the serial depth-first traver-
sal and dynamic balancing techniques are appraised in an example. Performance of
the parallel traversal procedure was not as good as either of these schemes and results
are not presented for it. Computer codes based on these algorithms have been imple-
mented on a 16-processor Sequent Balance 21000 shared-memory parallel computer.
Parallelism on this system is supported through the use of a parallel programming
library that permits the creation of parallel processes and enforces synchronization and
communication using barriers and hardware locks. CPU time and parallel speed up are
used as performance measures.

Example 1. Consider the linear scalar differential equation

ut +2u., +2uy =0, 0<x,y < 1, t >0, (5a)

with initial and Dirichlet boundary data specified so that the exact solution is

u(xy,t) = 1l - tanh(100x - 10y - 180t + 10)). (5b)

The solution (5b) is a relatively steep but smooth wave that moves at an angle of 45
degrees across the square domain as time progresses.

Adaptive refinement is controlled by using an approximation of the local discreti-
zation error in the L norm as a refinement indicator. Exact errors for this scalar prob-
lem are also measured in L1 as

lieL(,,) 1 = ff IPu (x,y,t) - U (x,y,t) I drdy, (6)

where U(x,y,t) is a piecewise constant representation of the discrete solution and
Pu (x ,y,t) is a projection onto the space of piecewise constant functions obtained by
using values at cell centers.
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Our first experiment involves the solution of (5) for 0 < t !5 0.35 on 10 x 10,
25 x 25, and 45 x 45 uniform grids having initial time steps of 0.0 17, 0.007, and 0.004,
respectively. No spatial refinement was performed and the static and dynamic load
balancing strategies were used. CPU times and parallel speed ups for each base mesh
for the two load balancing technique are shown in Figure 2. Speed up with 15 proces-
sors and the static load balancing technique (shown in the upper portion of Figure 2)
are in excess of 51, 75, and 87 percent of ideal with the lOx 10, 25x25, and 45x45
base meshes, respectively. Speed up increases dramatically as the mesh is made finer
due to smaller data granularity. Similar speed up data for the three base meshes with
the dynamic load balancing technique (shown in the lower portion of Figure 2) are 53,
77, and 90 percent of ideal. The static load balancing strategy takes slightly more time
than the dynamic technique, except in the uniprocessor case where they are identical,
because of load imbalances on the P subdomains due to differences in the times
required to generate initial and boundary data.

Our second experiment involves solving (5) for 0 < t < 0.35 on a lOx 10 base
mesh having an initial time step of 0.017 using dynamic load balancing and adaptive
h-refinement with either binary refinement or M-ary followed by 2-ary refinement.
Refinement tolerances of 0.012, 0.006, and 0.003 were selected. The resulting CPU
times and parallel speed ups for each adaptive strategy are presented in Figure 3.
Maximum speed ups shown in the upper portion of Figure 3 for the binary refinement
strategy are in excess of 82, 86, and 72 percent of ideal for tolerances of 0.012, 0.006,
and 0.003, respectively. Initially, parallel performance improves as the tolerance is
decreased due to the finer data granularity; however, the performance ultimately
degrades due to the serial overhead incurred when managing a more complex data
structure. Maximum speed ups for the more sophisticated M-ary followed by 2-ary
refinement strategy shown in the lower portion of Figure 3 are in excess of 88, 82, and
73 percent of ideal for the three decreasing tolerances. Speed ups for this refinement
strategy are only marginally better than those for the binary refinement technique, but
the CPU times for the M-ary strategy are much less than those for the binary
refinement strategy. For example, CPU times with 15 processors and a tolerance of
0.003 were 226.11 and 182:73 for the binary and M-ary strategies, respectively.
Maintaining a shallow tree has clearly increased performance by reducing the serial
overhead associated with its management.

Speed up is not an appropriate measure of the complexity required to solve a
problem to a prescribed level of accuracy. Tradeoffs occur between the higher degree
of parallelism possible with a uniform mesh solution and the greater sequential
efficiency of an adaptive procedure. In order to gage the differential, we generated
uniform mesh and adaptive mesh solutions of (5) on various processor configuratiolis
and to varying levcls of accuracy for both static serial tree traversal and dynamic load
balancing strategies. Computations on uniform grids ranged from a 5 x 5 mesh to a
45 x 45 mesh. All adaptive computations used a 10x 10 base mesh, M -ary followed
by 2-ary refinement, and tolerances ranging from 0.012 to 0.003.

Results for the global L' error as a function of CPU time are presented in Figure
4 for computations performed on 1, 4, 8, and 15 processor systems. Static and
dynamic load balancing strategies are shown in the upper and lower portions of the
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figure, respectively. For each strategy, the upper set of curves, displaying non-adaptive
results, are much less efficient and converging at a much slower rate than the adaptive
solutions shown in the lower set of curves. The adaptive solutions are converging at a
rate of approximately 1.4 relative to CPU time while the non-adaptive solutions are
converging at a rate of approximately 0.4. These results demonstrate a strong prefer-
ence for adaptive methods for all but the largest tolerances. Note that the CPU times
are identical for the two load balancing strategies when only one processor is used for
both non-adaptive and adaptive solutions because the configuration reduces to that of a
uniprocessor system. Also note that the global L 1 error for a particular choice of base
mesh (for non-adaptive methods) or local refinement tolerance (for adaptive methods)
is independent of the number of processors used.

3. ELLIPTIC SYSTEMS. With the goal of describing a strategy for solving linear
algebraic systems resulting from the finite element discretization of elliptic systems, let
us consider a two-dimensional linear elliptic problem in m variables having the form

-[D(x,y)u - [D(xy)uy ]y + Q(x,y)u = f(x,y), (x,y) e 0, (7a)

ui = cf(x,y), (x,y) e alg , (Du) i = cN(x,y), (x,y) e a!i v ,

i = 1, 2, ..- , m. (7b,c)

The diffusion D and source Q are positive definite and positive semi-definite m x m
matrices, respectively, M3 = a019ij Df , i = 1, 2, .,m, and v is a unit outer nor-
mal to aQ.

The Galerkin form of (7) consists of determining u e H1 satisfying
m

a(v,u) + (v,f) = , f vic["ds, for all ve HJ, (8a)
i =I All,

where

A (v,u) = J [v[Du. + vfDuy + vTQuldXdy, (v,u)- fv= udxdy. (8b,c)

As usual, the Sobolev space HI consists of functions having first partial derivatives in
L 2. The subscripts E and 0 further restrict functions to satisfy the essential boundary
conditions (7b) and trivial versions of (7b), respectively. Finite element solutions of
(8) are constructed by approximating H1 by a finite-dimensional subspace SvP and
determining U e S Cj4' such that

A(V,U) + (V,f)= f J Vc[ ds , for all V E S "p. (9)

Selecting SN P as a space of continuous piecewise p th-degree hierarchical polynomi-
als [241 with respect to the partition of Q"2 into triangular finite elements, substituting
these approximations into (9), and evaluating the integrals by quadrature rules yields a
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sparse, symmetric, positive definite, N-dimensional linear system of the form

KX = b, (10)

where X is an N-vector of Galerkin coordinates.

Meshes of triangular or quadrilateral elements are created automatically on Q? by
using the finite quadtree procedure [11 ]. This structure is somewhat different than the
tree of grids described in Section 2. With this technique, Q is embedded in a square
"universe" that may be recursively quartered to create a set of disjoint squares called
quadrants. Data associated with these quadrants is managed by using a hierarchical
tree structure with the original square universe regarded as the root and with smaller
quadrants created by subdivision regarded as offspring of larger ones. Quadrants inter-
secting A2 are recursively quartered until a prescribed spatial resolution of Q2 has been
obtained. At this stage, quadrants that are leaf nodes of the tree and intersect lu M
are further divided into small sets of triangular or quadrilateral elements. Severe mesh
gradation is avoided by imposing a maximal one-level difference between quadrants
sharing a common edge. This implies a maximal two-level difference between qua-
drants sharing a common vertex. A final "smoothing" of the triangular or quadrila-
teral mesh improves element shapes and further reduces mesh gradation near U.

A simple example involving a domain consisting of a rectangle and a quarter cir-
cle, as shown in Figure 5, will illustrate the finite quadtree process. In the upper left
portion of the figure, the square universe containing the problem domain is quarte-d
creating the one-level tree structure shown at the upper right. Were this deemed to :
a satisfactory geometrical resolution, a mesh of five triangles could be created. As
shown, the triangular elements are associated with quadrants of the tree structure. In
the lower portion of Figure 5, the quadrant containing the circular arc is quartered and
the resulting quadrant that intersects the circular arc is quartered again to create the
three-level tree shown in the lower right portion of the figure. A triangular mesh gen-
erated on this tree structure is also shown.

Arbitrarily complex two-dimensional domains may be discretized in this manner
and generally produce unstructured grids; however, the underlying tree of quadrants
remains regular. Adaptive mesh refinement is easily accomplished by subdividing
appropriate leaf-node quadrants and generating a new mesh of triangular or quadrila-
teral elements locally; thus, unifying the mesh generation and adaptive solution phases
of the problem under a common tree data structure.

Preconditioned conjugate gradient (PCG) iteration is an efficient means of solving
the linear algebraic systems (10) that result from the finite element discretization of
self-adjoint elliptic partial differential systems [8]. The key steps in the PCG pro-
cedure [221 involve (i) matrix-vector multiplication of the form

q = Kp (1 la)

and (ii) solving linear systems of the form

Kd = r, (I b)
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0 Boundary quadrant

0 Interior quadrant

-0 Exterior quadrant

A Finite element

Figure 5. Finite quadtree mesh generation for a domain consisting of a rec-

tangle and a quarter circle. One-level and three-level tree structures and
their associated meshes of triangular elements are shown at the top and bot-
tomn of the figure, respectively.

where r and p are the residual vector and conjugate search direction, respectively. The

preconditioning matrix K may be selected to reduce computational cost. The

element- by-element (EBE) and symmetric successive over-relaxation (SSOR) precondi-

tionings are in common use and seem appropriate for use with quadtree- structured

grids. The EBE preconditioning is an approximate factorization of the stiffness matrix

K into a product of elemental matrices. If the grid has been "colored" so as to
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segregate non-contiguous elements, then ( lib) can be solved in parallel on elements
having the same color. Since the matrix-vector multiplication (I Ia) can also be per-
formed in an element-by-element fashion, the entire PCG solution can be done in
parallel on non-contiguous elements. While this simple approach has been used in
several applications [18, 19, 21], we found the SSOR preconditioning to be more
efficient in every instance [13] and, therefore, shall not discuss EBE preconditionings
any further.

SOR and SSOR iteration have been used for the parallel solution of the five-point
difference approximation of Poisson's equation on rectangular meshes by numbering
the discrete equations and unknowns in "checkerboard" order [1]. With this ordering,
unknowns at "red" mesh points are only coupled to those at "black" mesh points and
vice versa; thus, solutions at all red points can proceed in parallel that may be fol-
lowed by a similar solution at all black points. Preserving symmetry, as with the
SSOR iteration, will make the SOR method a suitable preconditioning for the PCG
method. Adams and Ortega [11 describe multicolor orderings on rectangular grids
using several finite element and finite difference stencils. However, multicolor order-
ings for unstructured meshes are more difficult since nodal connectivity and difference
stencils for high-degree polynomial approximations can be quite complex. The com-
putational effort can be reduced when using quadtree-structured grids by considering
multicolor orderings for block SSOR preconditionings at the quadrant level. To be
specific, partition the stiffness matrix K by quadrants as

K = D - L - L T  (12a)

where

K2,2  K2,1 0
D= , L=- . (12b,c)

KQIQ KQI KQ. 2  0

Nontrivial entries in a diagonal block Kij arise from Galerkin coordinates that are
connected through the finite element basis to other unknowns in quadrant i. Nontrivial
contributions to block K jj of the lower triangular matrix L arise when the support of
the basis associated with a Galerkin coordinate in quadrant i intersects quadrant j.

Using an SSOR preconditioning, the solution of (1 lb) would be computed accord-
ing to the two-step procedure

Xn+ 1/ 2 = c(LXn+ 2 + LTXn + r) + (1 - to)X", (13a)

Xn + = c(LTXn+l + LXn+ A + r) + (1 - (o)Xn+ '/, n = 1, 2, -.. , M. (13b)

Thus, each block SSOR iteration consists of two block SOR steps; one having the
reverse ordering of the other. Typically, M = 3 SSOR steps are performed between
,each PCG step.
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Suppose that the Q quadrants of a finite quadtree structure are separated into y
disjoint sets. Then, using the symmetric y-color block SSOR ordering, we would
sweep the quadrants in the order C 1, C2, .- , C , C , C._1, ... , C1, where Ci is the set
of quadrants having color i. Because quadrants rather than nodes are colored, a node
can be connected to other nodes having the same color. Thus, the forward and back-
ward SOR sweeps may differ for a color Ci, i = 1, 2, -.. , y. During an SOR sweep,
unknowns lying on quadrant boundaries are updated as many times as the number of
quadrants containing them.

Coloring the regular quadrants of a finite quadtree is far simpler than coloring the
elements of a mesh. Differences in the small number of elements within quadrants
having the same color may cause some load imbalance and this effect will have to be
investigated. Naturally, coloring procedures that use the fewest colors increase data
granularity and reduce the need for process synchronization. At the same time, the
cost of the coloring algorithm should not be the dominant computational cost. With
these views in mind, we developed an eight-color procec~ure that has linear time com-
plexity [13]. This procedure only required a simple breadth-first traversal of the quad-
tree, but performance never exceeded that of the six-color procedure which is
described in the following paragraphs. Four-color procedures are undoubtedly possi-
ble, but we have not formulated any. Their complexity, unlike the eight- and six-color
procedures, may be nonlinear.

With the aim of constructing a quadtree coloring procedure using a maximum of
six colors, let us define a binary directed graph called a "quasi-binary tree" from the
finite qi .'dtree by using the following recursive assertive algorithm.

i. T1 . root of the quadtree corresponds to the root of the quasi-binary tree.

ii. Every terminal quadrant is associated with a node in the quasi-binary tree; how-
ever, not every quasi-binary tree node must correspond to a quadrant.

iii. In the planar representation of the quadtree, nodes across a common horizontal
edge are connected in the quasi-binary tree.

iv. When a quadrant is divided, its parent node in the quasi-binary tree becomes the
root of a subtree.

Planar representations of simple quadtrees and their quasi-binary tree representa-
tions are illustrated in Figure 6. The leftmost quadtree illustrates root-node and
offspring construction of the quasi-binary tree. Connection of nodes across horizontal
edges is shown with and without quadrant division in all three illustrations. Subtree
definitions according to assertion (iv) are shown in the center and rightmost quadtrees.

From Figure 6, we see that the column-order traversal of a finite quadtree is the
depth-first traversal of its associated quasi-binary tree. Let us define six colors divided
into three sets a, b, and c of two disjoint colors that alternate through the columns in
a column-order traversal of the quadtree. Whenever left and right quasi-binary tree
branches merge, column-order traversal continues using the color set associated with
the left branch. Two of the three color streams, say a and b, are passed to a node of
the quasi-binary tree. At each branching, the color stream a and the third color stream
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Figure 6. Planar representations of three quadtrees and their associated
quasi-binary trees.

c are passed to the left offspring while the streams a and b are passed in reverse
order to the right offspring. Additional details and a correctness proof of this algo-
rithm will appear [15].

Computational experiments of Benantar et al. [13] demonstrate the excellent
parallelism that may be obtained by the six-color SSOR PCG procedure with piecewise
linear finite element approximations. However, higher-order polynomial bases create
additional possibilities for processor load imbalance with coloring at the quadrant
level. Let us illustrate this with a simple problem. As in Section 2, a 16-processor
Sequent Balance 21000 computer was used for the experiment.

Example 2. Consider the Dirichlet problem
U. + uYY = f (x,y), (x~y) e (14a)

U = 0, (x~y) eM, (I14b)

with Q = ((x,y) I-3 < x, y < 3 ). We solved this problem on a 400-element mesh
using piecewise linear, quadratic, and cubic approximations. Adaptive p-refinement
with the polynomial degree p restricted to be 1, 2, or 3 was also performed. Parallel
speed up and processor idle time resulting from the need to synchronize at the comple-
tion of each color are shown in Figure 7.

Parallel performance degrades as polynomial degree increases, with the adaptive
strategy having the poorest performance. Adaptive algorithms typically have serial
logic which limits speed up. Of course, speed up is not the only measure of complex-
ity and an adaptive solution strategy could require less CPU time to solve the problem
to a given level of accuracy. Nevertheless, additional research is necessary to improve
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Figure 7. Parallel speed up (left) and processor idle time (right) for the
finite element solution of Example 2 using piecewise linear, quadratic, and
cubic approximations as well as adaptive p-refinement.

performance with high-order and adaptive strategies.

Using a hierarchical basis, all Galerkin coordinates for polynomial degrees higher
than one are associated with mesh points that are either along element edges or within
elements. Thus, the Galerldn coordinates for continuous piecewise linear approxima-
tions are the only ones associated with element vertices. Parallel performance could,
therefore, be improved by coloring element edges rather than quadrants and we have
designed a three-color procedure having linear time complexity to do this [15]. Since
hierarchical bases add incremental corrections as the polynomial degree is increased,
one could conceive an algorithm where quadrant coloring is used with the piecewise
linear portion of the approximation and edge coloring is used for higher-degree
approximations.

4. DISCUSSION. High-order and hp-refinement strategies have the highest conver-
gence rates on serial processors. Successful use of adaptive strategies in parallel
environments depends heavily on the efficient implementation of these procedures on
shared- and distributed-memory computers. The edge coloring procedure alluded to in
Section 3 should provide some improvement over existing strategies on shared-memory
systems, but no procedure is available for using hp-refinement on data-parallel comput-
ers. High-order and hp-refinement techniques are being added to our collection of
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methods for solving hyperbolic systems using the finite element methods of Cockburn
and Shu [14]. The p-hierarchical Legendre polynomial basis embedded in these
methods should also furnish error estimates similar to those that we have developed for
parabolic systems [3]. These techniques are far more efficient than Richardson's extra-
polation.

Our h-refinement procedure for hyperbolic systems could be improved by begin-
ning each base-mesh time step with an adaptively chosen mesh that utilizes known
nonuniformities in the solution discovered during the previous base-mesh time step.
Processors would still have to be scheduled to balance loads in this case and pro-
cedures for doing this are unavailable. Finally, parallel procedures for distributed
memory systems and procedures for three-dimensional problems are of great interest.
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ABSTRACT

This paper gives a methodology for constructing real time acceptors from
examples of their behavior. The technique involves constructing a behavior graph
and factoring it using Hartmanis-Stearns decomposition theory. It provides a
learning mechanism that can find a general representation of a class given
examples of that class.

INTRODUCTION

This paper describes a method for automatically creating a real time
acceptor P from examples of its behavior B. As an illustration, suppose the
desired acceptor is to accept the strings a!a, aa!aa ab!ba, ba!ab ........ and reject all
others. The methodology begins with these examples and creates a general P
which will enter a final state if and only if the input is a string from the general

set {w!wR I w {a,b}*}.

This research is a project in learning theory and attempts to find
methodologies that generalize from examples to find a representation of the total
class. The paper defines the concepts of data structure and control structure for a
real time acceptor and then shows that the behavior graph for the acceptor is the
product of the data structure and control structure graphs. Synthesis is done by
creating the behavior graph from the examples and factoring it into two graphs,
the data and control structures for the acceptor.

REAL TIME ACCEPTORS

A data structure is defined to be a Moore type deterministic state machine.

D = {SD,Z OD, D do,XD}

where

* SD is a finite or infinite set of states.

" ED is a finite set of symbols called the input alphabet of D, or the instruction set
of D.
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" 8 D: SD x ZD -+ SD is a mapping by which D changes states, called the

transition function of D.

" do e SD is the initial state of D.

" OD is a finite set of output symbols that we interpret as the test values on the
states of D.

" XD: SD -+ OD, is a mapping that assigns to each state of D a test value from OD.

Conceptually, a data structure has a state and receives instructions from
the outside world which modify its state. It is also capable of yielding values
which depend on its state. For example, a pushdown stack might begin in the
empty state and then receive sequentially the inputs a and b. It's output would
then be the item at the top of the stack, b in this case. The state graph of Figure 1
shows the initial part of the infinite graph for a stack.

aaa :baa aba bba aab bab abb bbb

Figure 1. The stack data structure.

A control structure is a finite deterministic state machine

C = (Sc, Yc, Oc, &-, ca AFc}

where

* SC is a finite nonempty set of states.
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" ZC is a finite set of symbols called the input alphabet to C. IC is the cross
product of two alphabets; the finite nonempty input alphabet from the outside
world, E, and the output alphabet of the DS. So we have

Xc= x OD

" OC is a set of instructions that can be issued to D. So Oc = ED.

& C: SC x XC - SC is a mapping by which C changes states called the transition
function of C.

• co is the initial state of C.

A C: Sc x ZC -- ED is a mapping that assigns to each transition of C an
instruction to D called the instruction assignment function.

SFC c SC is a set of final states of C.

The task of the control structure is to receive inputs from the outside world,
make modifications to the data structure, and yield an output indicating
acceptance or rejection of the string. A real time acceptor P operates as shown in
Figure 2 and follows three rules. Suppose the acceptor P has its control structure
C in state c, its data structure D in state d, and receives input a.

1. C changes states from c to some state c' using its transition function 8c. The
next state depends on a and XD(d), so we have

Sc(c,(a, XD(d))) = c'

2. While C is changing states, it sends an instruction to the DS. The instruction
to be sent depends on the current state of C, the input alphabet and the test
value of the current state of D and is given by

Ac(C,(a0AD(d))) = I

3. On receiving the instruction, D will change states from the current state, d,
to some state d' using its transition function

8D(d,1) = d'
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Input Output

instructions

test values

FIGURE 2. The acceptor with its control structure C
and data structure D.

An example control structure which employs the stack data structure and
accepts the set described above, w!wR, is shown in Figure 3. Its operation is easy
to follow. It begins in the top center state with its associated stack empty and
moves left or right depending on whether the first symbol is an a or b. For
example, on the string ab!ba, it moves left without changing the stack after the
first symbol a. When the b arrives, it pushes that on the stack without changing
its control state. On input !, it transitions down one state, and on b and a, it pops
the stack and then (with the stack empty) moves to the final state at the center.

a/ab/pu/ a a/a b/push a
b/ab/push b nomo/e . ba,b/pus-h b

'/a,b/nomove abnmv

a/a/ pop &enq/ofl a/a/pop
b/b/pop a/mp/i/ap/ f b/b/pop

FIGURE 3. Control structure.

SYNTHESIS

A graph cross product operation will be defined in this section for the
control structure and data structure graphs. Then we will observe that the
behavior graph has the same structure as this cross product graph. The
synthesis procedure thus involves creating the behavior graph and then factoring
it into the appropriate control and data structures.

Let control structure C and data structure D be

556



C = {Sc,ol&, ca, AcFc)

and

D = {SD, I, OD,D, dO,AD)

The product CxD is defined to be the Moore type state machine

MCxD = (SCxD, ,L &xD,PpFCxD}

where

SCxD SC X SD.

* VaeX

&x..(c,d), a) = (6,(c(c aAD(d))), 3D(d,I))

* where

I = A2(c,(o; AD(d)))

" po=(co,do).

* (c,d) FCxDifcrFc.

For example, if the graphs of Figures 1 and 3 are combined using this cross
product operati -n, the graph of Figure 4 results. Figure 4 contains no control or
data structure information; it is simply a graph of all possible behaviors for the
automaton with Figures 1 and 3 as its data and control structures.
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Figure 4. The cross product graph MCXD.

All of this is summarized in the following theorem where L(X) is defined to
be the language of X.

Theorem 1. L(B) = L(MCXD)

The proof appears in Fabmy [88].

The next question asks under what conditions such a decomposition of the
behavior graph can occur. The answer is given by an extension to Hartmanis-
Stearns decomposition theory (Hartmanis and Stearns [66]).

First some definitions must be made. Let b=(c,d) represent the behavior
graph node b that comes from composing control structure state c and data
structure state d in the crcss product operation of CxD. If bi=(ci,di) and b2=(c2,d 2 ),
then four partitions 7tC,7tD,PCD, and PDC over the set of states of B can be defined.

b1 6 2 (irC) if and only if clg =c2.

bl-b2 (,rD) if and only if dl = d2 .

b1 b2 (PCD) if and only if Vae 'rjve ODAC (c1,(a,v)) =,, (c2,(a,v)).

bl=-b2(pDc) if and only if .AD(d1) = AD(d2).
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The decomposition theorem is as follows:

Theorem 2. Given a Behavior Graph, B, four partitions nC, RD, PCD and PDC over
the set of states of B, and a data structure D', there exists a program
P = {C,D'} such that L(P) = L(B) and the four partitions are the
associated partitions of program P over the BG B if and only if

I RC. pDC - M (Xc)

2. rD. pCD < M (RD)

3. AiC PCD

4. rD - pDC

5. XC. rD = O

6. The number of blocks of 7ir is finite.

7. KC - :5 F.

8. The machine

D = (SD,XD,OD,8D,do,XD)

defined by

*SD = RD.

*YD = PCD x PDC x.

GOD = PDC.

-do = PrnD(bo).

*)LD(PrxD) = PpDC[PxD].

08D(ND)(b), (PpCD( b),PpDC(b ),x) ) =PnD(8(b,a) ).

is isomorphic to a submachine of D'.
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The M(n) operator is the Hartmanis-Stearns maximum sum operation over
the partitions n' such that (W',x) is a partition pair. The proof of the theorem and
considerable elaboration appears in Fahmy [88].

The synthesis procedure is derived from the decomposition theorem and
follows these steps:

1. Construct as much of the behavior graph as possible from the given
Lxamples.

2. Select a proposed data structure for the computation.

3. Construct a partition iC on the states of B that will define the state
transitions for the target coutroller.

4. Attempt to complete the factorization by building nD which meets the
constraints of Theorem 2.

5. Repeat 4 and 5 until a well-formed factorization is found. The partitions nc

and nD then define the state assignments and transitions for the controller
and data structure.

Fahmy [88] gives a convergence theorem for this learning methodology and
a number of examples of its usage. Thus a programmed version of this approach
;vas able to construct controllers of complexity shown in Figure 3 from behaviors
as illustrated in Figure 4 in a few seconds.
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Abstract
An Automatic Deduction System for NonMonotonic Reasoning in the Modal Quantificational
Logic Z is discussed. This system can deduce nonmonotonic consequences specified by
several other theories of nonmonotonic reasoning, and in the variable free case
provides a decision procedure for each of these theories. These theories include
Moore's autoepistemic logic, nonconstructive default logic, Reiter's default logic,
McCarthy's Parallel Circumscription with both fixed and variable predicates, and the
closed world assumption. The computational properties of these theories are compared.

1. Introduction
A computer program which can prove theorems in several different theories of nonmonotonic
reasoning is described. This is done by implementing a deduction system for the modal
quantificational logic Z [Brown86a], by showing how every (finite) set of nonlogical
axioms and defaults in any of these theories is represented by a sentence of Z which
has essentially the same meaning [Brown89a], and by using an automatic deduction system
to deduce the appropriate consequences of the representation in Z of such axiom sets of
these theories of nonmonotonic reasoning. The proof procedures are briefly introduced
in section 2. Discussions of the solution methods and traces of example proofs are
given in section 3. The results obtained are given in section 4. The implementation is
discussed in section 5 and some conclusions are drawn in section 6.

2. The Proof Procedure
The modal quantificational logic Z consists of the the following symbols: falsity: F,
truth: T, and: A, or: v, forall: V, for some: 3, not: -,, necessary: [], synonymous:
and the following defined symbols:

(a -- 1) =df ((-,a)v3) a implies
(a - ) =df ((a--13)A(13---a)) a iff 1
(<> a) =df (-[](- a)) a is logically possible
(a - P) =df ([](a " )) a is synonymous to
([01]a) =df (](O - a)) 3 entails c
(<13>a) =df (<>( A a)) a is possible with
(WORLD a) =df ((<>a)A(Vy(([a]y)v([t](-,y))))) for y not in a a is a world
(GEN a) =df (vi=l,n (3xli...xmi(a-(ci xli.. .xmi))))

where all the predicates are n... rn a is a generator
(51[=]82) =df [](51=52) 51 necessarily equals 52

The axioms and inference rules of Z include those of first order logic [Mendelson]
plus the following inference rules and axioms about necessity [1:
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RO: from a infer ([ a)
Al: (([]p)-4p)
A2: (([p~q) -* (([]p) -+ ([]q)))

A3: (([]p) v ([]-]p))
A4: ((Vw((WORLD w) -- ([w]p))) --) ([]p))
A5: (WORLD(Vp((GEN p)---(p4[-]a)))) for every expression a
A&: (-,((nl x1l... xn)-=0ir2 yl ... ym)))

where tl and n2 are different predicates.
A7: Witz x1 ... xn)-=0zc yl ... yn))"-(TA(xl[=]yl)^ ... A(xn[=]yn)))

A8: (-,((o1 xl...xn)[=](c2 yl.. .ym)))
where -1 and -2 are different functions

A9: (((- xi ... xn)[=](- yl ... yn))<-4(TA(Xl[=]yl)^...A(xn[=]yn)))

The laws RO, Al, A2 and A3 constitute an S5 modal logic which with the nonmodal laws is
similar to [Carnap46,Bressan]. A4 says that a proposition is logically necessary if it
is entailed by every world proposition. Laws A5, A6, and A7 axiomatize the predicates.
A5 is the key axiom which says that any exhaustive conjunction of negated or unnegated
distinct generators is a world if there is a sentence a expressible in the formal
language of Z which holds when p is an unnegated generator of that conjunction. It
extends the A5 axiom used in [Brown86a] to handling quantifiers over arbitrary domains.
Laws A8 and A9 axiomatize the functions. The axiom scheme A5 which has a recursively
enumerable number of instances, expresses what is logically possible to the extent that
it can be so expressed. What is possible with respect to a knowledgebase K is expressed
by the defined symbol <K>p which means K and p together is logically possible. For
example, the sentence (<>(- 1 ((3x(P x))--(Vx(P x))))) can be derived from axiom A5 and A6 as

follows. Assuming P is one of the predicates and letting a be (p-(P A)) axiom A5 of Z
becomes: (WORLD(Vp(((3x(p-=(P x)))vp)-*(p-- [](p-(P A)))))) where 3 is the rest of the GEN
definition. This gives: (WORLD((Vx((P x)-([]((P x)=(P A)))))A(Vp((5-(p-*[1(p-(P A))))))))
which by axiom A6 and since worlds are logically possible implies (<>(Vx((P x)*-4[1(x[=]A))))
which implies: (<>((P A)A(- (P B)))) for a function B and hence (<>(- ((3x(P x))-e(Vx(P x))))).

Nonrnonotonic reasoning is performed in Z by solving equivalences. Generally, some
variaule such as K represents the meaning of the knowledgebase which is then
axiomatized by asserting that K is synonymous to the conjunction of all the axioms of
the theory and all the reflective statements such as any defaults. Thus the reflective
equivalence: K=a where K may occur within a, axiomatizes the knowledgebase K. Any
equation of the form K-P where K does not occur in 03 and which implies K-a, is a
solution to the original equivalence.

3. Examples
Two partial traces of example deductions performed by our automatic deduction system
are listed below. The traces are intermixed with a discussion of some of the derived
rules of inference of Z which were used. The deductions are carried out by Symeval-like
techniques [Brown86b] of replacing expressions by logically equivalent expressions in
an inner to outer manner similar to LISP evaluation. Each application shows the name of
the rule, the lexical L-rel, the input to the rule: >, the intermediate output of the
rule: -, and the output to the rule after evaluation: <. The number before the lexical
level in some rules is useful only when more than one outputs are produced and could be
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ignored in this exanple as these rules when successfully applied use the cut! symbol to
delete any alternative rules that might also be applicable. The first example is a
propositional reflective equation involving two defaults which states that if a is
possible then not b and that if b is possible then not a:

INPUT: (= k(A(--4(< k > a)(- b)) (--(< k > b)(-, a))))

The first implication is rewritten into a disjunction as follows:

<k>def 1>. (< k > a)
1 1<. (<> (A k a))

-def 1>. (-4 (<> (A k a)) (-, b))
-=<> 2>.. ( (<> (A k a)))

-Ademorgan 3>... (-i (A k a))
5 3<... (v (-- k) (-, a))
4 2<.. (C] (v (- k) (-, a)))
3 1<. (v ([] (v (- k) (-_ a))) (- b))

The second implication is also written as a disjunction and then the rules about are
applied which causes case analysis on the expression ([](v(-, k)(- a))):

Enm[]a 1>. (= k(A(V([] (v(- k)(-_ a)))(-_ b)) (v([] (v(- k)(-_ b))) (-_ a))))

1 1-. .(cut! (let((+exp(A(v $t(-_ b))(v([](v(-. k)(- b)))(-_ a))))
(-exp(A(v nil(-, b))(v([](v(-_ k)(-= b)))(-= a))))
(r(-(v(- a)))))

(v (if(free? k +exp)(A(- k +exp)(-(<>(A k r))))
(A( = k +exp)(- (<>(A +exp r)))))

(if(free? k -exp)(A(= k -exp)(<>(A k r)))
(A(---- k -exp)(<>(A -exp r)))))))

+exp and -exp are the right-hand side of the equation when the default is or is not
the case respectively. The other modal expression ([](v(-, k)(- b))) is now analyzed in
each of the first two cases. The +exp branch is analyzed first:

=nm[]O 2>. .(= k(v (E](v(- k) (- b)))(-_ a)))

2 2-. .(cut!(let((+exp(v $t(- a)))(-exp(v nil(-_ a)))(r(-(v( b))f))
(v(if(free? k +exp)(A(-- k +exp)(-(<>(A k r))))

(A( = k +exp)(-=(<>(A +exp r)))))
(if(free? k -exp)(A(-- k -exp)(<>(A k r)))

(A(-- k -exp)(<>(A -exp r))])))))

2 2<. (= k(-= a))

A-sub 2>.. (A(=- k(-, a))(-(<>(A k a))))

3 2-.. .(cut!(A( =  k(-= a))(=(<>(A(- a) a)))))

3 2<..(- k(-_ a))

The -exp branch of is processed similarly contributing another alternative to the final
two solutions of the original equation:

--nm[]O 2>. .(= k(A(= b) (v([] (v(-, k)(-= b)))(-= a))))

4 2<..(= k(-= b))
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A^Sub 2>. .(A (- k(-- b))(<>(A k a)))
5 2<.. (- k(-, b))
I I1<. (v(- k(- a))( k(- b))

OUTPUT: (v(- k(-, a))(- k(-, b)))
TIME: 17.294 secs., CLOSURES: 61 cls.

The case analysis technique used in the above example can be generalized to provide a
decision procedure for computing all the fixed points of any variable free nonmonotonic
equation in Z as given by Theorem Z5 [Brown89a] below. We define a group of modalized
subexpressions to be a propositional combination of expressions each beginning with a
modal symbol. For example, (MA) and (([]A)A((.cB)v(<>C))) are both groups whereas
((<>A)--B) is not.

Theorem Z5: Decidability of variable free nonmonotonic equations of Z:
The fixed points of any nonmonotonic equation: Kz(f K) containing no variables
(except K) are decidable if every K in (f K) occurs within the scope of a modal symbol.
There are at most 2Tn solutions to such an equation where n is the number of groups of
modalized subexpressions in (f K).

Many equations with universal and existential quantifiers can also be solved by the
equation solver. This is done by splitting the quantified expression into those
instances of it which are true in the theory, and those instances of it which are false
in the theory. This is done in the following example which states that Tweety (i.e. tw)
is a bird and that if it is possible for birds to fly then they do so:

INPUT: (- k(A(bird tw)(V(x)(--(A(bird x)(< k >(fly x)))(fly x)))))
AdiVision 1>.(^(bird tw)(V(x)(v([](v(- k)(- (fly x))))(-(bird x))(fly x))))

1 1-..(cut!(let((y(make-symbol "Y")))

(A(bird tw)
(V nil(v([](v(-, k)(- (fly tw))))(- (bird tw))(fly tw)))
(V(y)(-(-([= y tw))

(v([](v(- k)(-(fly y))))

(-(bird y))(fly y)))))))

This rule factors out of the quantified default an instance of it dealing with the
particular case of Tweety whose being a bird appears in the conjunction.

1 1<.(A(bird tw)(v([](v(-, k)(- (fly tw))))(fly tw))

(V(y)(v([=, y tw)([](v(- k)((fly y))))
(-(bird y))(fly y))))

Next, the case analysis rulR is applied over the unquantified default:

-nm[]O 1>.(=- k(A(bird tw)(v([](v(-_ k)(-(fly tw))))(fly tw))

(V(y)(v([=] y tw)([](v(_ k)(-(fly y ))))

(-(bird y))(fly y)))))

2 1-.. (cut!(let((+exp(A(bird tw)(v $t(fly tw))

(V(y)(v([=] y tw)([](v(- k)(-(fly y))))
(-(bird y))(fly y)))))
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(-exp(A(bird tw)(v nil (fly tw))
(V(y)(v([=] y tw)([](v(-, k)(-,(fly y))))

(-,(bird y))(fly y)))))
(r (-,(v(-,(fly tw))))))

(v (if(free? k +exp)(A(- k +exp)(-(<>(A k r))))
(A(a k +exp)(- (<>(A +exp r)))))

(if(free? k -exp)(^(- k -exp)(<>(A k r)))
(A(-- k -exp)(<>(A -exp r)))))))

Working over the branch corresponding to +exp, the system tries to eliminate
the quantified default:

ak[]elim 2>. .(-- k(A(bird tw) (V(y) (v([=] y tw) ([I](v(-, k) (-,(fly y))))
(-(bird y)) (fly y)))))

3 2-...(define qexp(V(y)(v([=] y tw)(-,(bird y))(fly y))))
3 2-...(if(eq?(k-elim k

(A(bird tw) qexp
(V(y) (v@(extract modal ized?

(([=] y tw)(-(bird y))(fly y)))
(-(v(-(fly y)))))) $t)

(cut!(= k(A(bird tw) qexp)))

$fail)

The elimination rule works in the following way: first it assumes that negation is
factored out of ([](v(- K)(- 1(fly y)))) giving (-,(<>(A K (fly y)))). Then K is
replaced by an expression stronger than itself and its possibility is tested. If
it is possible, as in the present case, then the conjunct is eliminated, leaving an
expression free of defaults, otherwise it fails:

3 2<.. (- k(A(bird tw)(V(y)(v([=] y tw)(-,(bird y))(fly y)))))

Since this is a solution, it is substituted back into the original possibility test:

A---sub 2>. .(A(-k(n(bird tw) (V(y) (v(E=] y tw) (-(bird y)) (fly y)))))

(- (<>(A k(fly tw)))))

The new possibility expression is sent to a heuristic procedure that implements the
axiom A5 of Z Modal Logic based on theorem ZP1 of [Brown89a] which only succeeds if
it can build a world in which the body is the case:

<>axiom5 3>... (<>(A(bird tw)(fly tw)(V(y)(v([=] y tw)((bird y))(fly y)))))
5 3-....(<a5>(A(bird tw)(fly tw)(V(y)(v(E=] y tw)(-(bird y))(fly y)))))

5 3<... $t

Since it is possible, its negation produces $f which in turn prunes the branch
corresponding to this case.

4 2<.. nil

A similar treatment of the default is successfully applied over the other branch:
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a<[]elim 2>..( =- k(A(bird tw)(fly tw)
(V(y)(v([=] y tw)([](v(-_ k)(-,(fly y))))

(-,(bird y))(fly y)))))
6 2<..(- k(A(bird tw)(fly tw)(V(y)(v([=] y tw)(-,(bird y))(fly y)))))

Substituting over the possibility test qualifying this case we get:

2>.. (A(- k(A(bird tw) (fly tw)(V(y)(v([=] y tw)(-,(bird y))(fly y)))))
(<>(8 k(fly tw))))

<>axiom5 3> ... (<>(^(bird tw)(fly tw)(V(y)(v([=] y tw)(--(bird y))(fly y)))))
8 3< ... $t

7 2<..(- k(A(bird tw)(fly tw)(V(y)(v([=] y tw)(-,(bird y))(fly y)))))

This branch is then returned as the only solution of the original problem:

2 1<.(- k(A(bird tw)(fly tw)(V(y)(v([=] y tw)(-,(bird y))(fly y)))))

OUTPUT: (- k(A(bird tw)(fly tw)(V(y)(v([=] y tw)(-,(bird y))(fly y)))))
TIME: 27.117 secs., CLOSURES: 556 cls.

4. Results
The deduction system has been used to produce all the fixed points of sets of axioms
in [Moore]'s Autoepistemic Logic, our Nonconstructive Default Logic, and [Reiter]'s
Default Logic. It also has been used to compute the result of [McCarthy's] parallel
Circumscription with both fixed and variable predicates and the Closed World Assumption.
Results obtained for each of these systems are described in the following subsections.

4.1 Autoepistemic Logic and NonConstructive Default Logic
The fixed point equation of a theory g in Autoepistemic Logic [Moore,Konolige] is:

k=(classical-theorems-of(gu(L a):ack) u{ L a):--,(aFk)}))
If the number of groups of modal statements in g is finite then the meaning of the

intersection of those fixed points entails the meanings of the same sentences
(not containing L) as does: (3K(KA(K=-(G2A(Ai=I,n((([K]Ai)^(Aj=,mi(<K>Bij)))--oCi))))))
where (G2A(Ai=l,n((([K]Ai)A(Aj=l,mi(<K>Bij)))-4Ci))) is the meaning of g written in a
normal form with L replaced by [K], and [K] does not occuring in G2, Ai, Bij, nor Ci.

Autoepistemic fixed points with all sentences containing L eliminated are equivalent
to the fixed points of our Nonconstructive Default Logic. The fixed point equation
of our Nonconstructive Default Logic, called NCD, is:

k =(classical-theorems-of(gu(ci):((ai)ek)A(Aj =1. mi(-((-bj)k))) )

where for each i, the sentences ai,bij, and ci constitute a default. If the number of

defaults n is finite then the meaning of the intersection of the fixed points entails
the meanings of the same sentences as does:

(3K(K^(K=(G ^(^i=l, n((([K]Ai)^( Aj =l,mi(<K>Bij)))-4Ci))))))

where G is the meaning of the sentences in g, and Ai,Bij,Ci respectively are the
meaning of the sentences ai,bij,ci in the defaults. This Z representation can be

generalized to the case where quantified variables cross modal scopes with the

equation: (3K(K^(K(G^(Ai=1,n(Vx1...xmi((([K]Ai)A(Aj=l,mi(<K>Bij)))-*Ci)))))))

Figure 1 gives examples in the Z representation of Autoepistemic Logic and
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Nonconstructive Default Logic. An interesting example given at the bottom of this

figure is the Gelfond-Przymusinska example which has 2 fixed points in &utoepistemnic

Logic, as is computed by our deduction system. It is interesting because it only has 1

fixed point in Reiter's default logic as is computed in figure 3, contradicting the

claim in [Konolige] that the two systems were identical.

Cllornonotonlc tMonconstructiv,-Propos1onflEales)

PRONLEM wa~I.z1( k -C b (. - a) (- 0))) 0' k > a) a) 0-C k ) b) b) I.(< k > e c)0))

SOLUTION, k-C I . a c C-W)) (a k.C b C.a) C- 0)))
T IME, 1.131 sees., CLOSULIES. 195 i.1,

PROSLIM mCo.a.it-..(R k (- (. C k ) 0) (- d)) <*C k ) d) C-e)) k' I. ) e -
SOLUTION- (- k (- - d) (- M))
TIME, .915 ... I., CLOSURES, 153 1i..

PROOLCM NcD.a.i ... z.3.(C k 0 .C'. a) (- bW C k >'I b) C- a))))

SOLUTION. C'- (- kc( a)) (a k.( W)

TIME, .362 ... CLOSURES, 61 Ji..

PROUILEM NCO.R.II.,Z.4,(- k
k. .( c)a )C C (k I. b) (< k. ) c)) c) k-( CI . d a))C k > e)) e)

k.C-( I . c a)) CkI - a)) k'I . d a))f) b C-c ('d a)) .C a c) C el))

SOLUTION. CkI . a b c Ce )))

TIME, 27.579 sees., CLOSUREcS. 3624 .i..

C"O (m C-C( C- (E k 3 a) k' >c (3 (..) (p.- x)))) (3 C(m) (or x'))) ( 'I )a .( c3C ) ))
SOLUTION, (- C" kcC a)) (- k C-a (3 (m.) (or x.)))))
TIME, 2.742 sees., CLOSURES, 449 gci.

PROBLEM MC..It.,3.R,( 11 k. CkI )C a)))
5S0LUTION, nil

TIME, .095 ... ,CLOSURES, 1? *1.,

PRODLEM mc.R.i,.,4.t (a k
C .- C C k I ) C f)) (( k. . a r)) - a f)) k- C E I a) k' I b) b)

CC'CEk )C-a e)) (( kc c)) c) C kCI 'a)Ca)C d) (-,-a b) e) - d)

(I d M')
SOLUTION. t. k" IC- ad f ( b) Ce ))) (k (cC- a b c d e W'))

TIME, 29.515 .. ,,CLOSURES, 24155 ...

PROBLEMC.R~,,. k I
C'-. (Ck (c>a)a - C Ck I. (3 C(. y) (bp x y,))) C'k ) cC)

(-C. CE I ) -Sd ) CC k. > a)) )

CC-(C k. ) (_C. a) (, k. ) (3 (.1 (9 ~)C r . ~.C))
(3 C(.) CV (y)l C.- Upo . Y') Cs ..)))))

(3 Cr2 ) C CV. Cbp . C1 2 ..)))) C.- C- c) d a)(- C) CC )C ))

SOL UTION, C(a Ck (C- a c C-e) (3 Cf2) C(V C(m) (bP x. (f2 x))))))

* C" I. C a e C- C) (3 (f'2) C( C..) (bp . Cf2 ..))))))

* C" I. C.-k c d c C.- a) (3 C. 9 C-C .) CI. (y) CC'p . y)))) (3 Cr2) C(V C.)bo (. r2 Cl)C

TIME. 58. 839. .CLOSURES. 8736 . ..

C-Ci~block bi) C(C'I C- C iblock bll)) C- CisbiOCk bil)

C < C' >. O-Csblock b2))) C- Isbiock b2)))

)(I k. 3 C C4.bC.ck b3)) C -Cisblock b3) ))
SOLUTION: k" (C- CisbIOC.. b)) C-Cibiock b2)) C- 3block b3)CC)

TIMI. .673.-,CLOSURES. 175 .1..

SOLUYIORI C k C r) -Ck ))

71MW. .984 **sCLOSURES, 783

Dyaic Liso Listener 1

Figure 1

Figure 2 gives examples which are not representable in Autoepistemic Logic or

NonConstructive Default logic, but which can be viewed as extensions to these two

systems to the case where variables are allowed to cross modal scopes.
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(ioait~otnic focnstructve-untifiatona-Exanples)

PROBLEM 4 ... II(Yl.
5
1 -.'. Olfl... (a kC (- (3 WN (q 0s) (- (p hi) (V WN k. > (p ix)) (p x)))))

SOLUTION, (a kC (- (-. Co bI)) (W (y) C. f)Y bi) (p y)) ) (3 (xs) (a le)))
TIut. .979 .... , CtOElRtS,.492 NI..

PROBLEM M.C..'ih,'s Wea.ker

(a kC (- (isbilock 61) (isblock b2) (isblock b3 (V (ms) (.'IC k - (Imblock 0s)) (- (13block x))))))
SOLUTION.
(a It (-. (isblock bi) (isblock b2) (isblock b3) (V (Y) ((-I. y bi) (E-) y b2) ([-I y b3) (- (Iihlack y))))))
TIME. 2.126 ...... CLOSURES, 441 .1,.

PROBLEM TW.PIIloa (0 kCC' (bird tucety) (il WN ' (bird )((.k ) (fly, la))) (fly s))
SOLUTION. (a kCC' (bird ts.eety) (fly tueety) (V (y) C- * Yf], tueety) (- (bird y)) (fly y)))))
INwit 2.236 si... CLOSURES, 556 1i..

PROBLEM CW.-f1l.2, (N kC
C'. (bird tueety) (bird chilly) (- (fly chilly)) (W (xiC) C" (bird x.) k( )C (fly ro))) (fly )))

SOLUTION. kaI

(- (bird chilly) (bird twcety) (fly tuetY) (- (fly chilly))
(V (y) (- ([=) y chilly) (E-1 y tucty) C- (bird y0) (fly W))

TIME. 6.085 .. ICLOSURESv 1589 mss.

PROBLEM Dij .'.. i.. 0 .. a..u (it kC C- (- (fly tweety) (fly Chilly)) (V (Is)C (( kC)C (fly 0s))- (fly is))))
SOLUTIONI (a Ck (-C' (fly chilly) (- (fly tweety)) (V (y) (-. (C.] y chilly) (fia) y tucety) C-(fly yi))))))

kU (-C' (fly t-leety) (- (fly chilly)) (V (y) C(f)y chilly) ((-] y twtety) (- (fly y)))))))
TINE, 7.896 S..,CLOSURES, 69e .,..

PROBLEM c..fl.tl.s ti.r..l,, (N.o.,r..,. Pbo. Ea...pl.)s (v IC
(-. (prof fr) (rid fr)
(V W )C ' (prof xs) (( ICk (phd xs))) (ohd is)M

CV(Ws " (nd .) (< kC C (phd i))(-(phd i)))
SOLUTION, '

(-. (rid fr) (phd fr) (prof fri (V (y) r (]i r) (- (prof y)) (phd y)))
(V (y) (.('3y fr) C.(rid y)) C- (phd Y))))

('- (rid fr) (prof fr) C-(phd fr)) (W (y) (.C')y rr) (- (prof y)) (phdl y)))
(V (y) (- ((N=3 y fr) ( (rd V)) ' (phd y)))))))

riuc, 12.400 . Cltosuiess 3486 .1,.

PROBLEM Otilbh-a ,...al,a k I
(- (W (m) C (. (bird x) ( ab x))) (fly xs))) (V (x) ( (ostrich xs) (ab x)))

(V (m) k > (, IC C ab N) -(abN)))
SOLUTION. k*I

(W ( (m) (- (ab N))) (V (N f- C- (ostrich x)) (ab xs))) (V (i)C -(bird N)) (ab N) (fly N)))))
Tielf .497 ... CLOSURES. 87 als.

PROBLEM 6 .. I -- d Nill-. I- (a kC
(-. (bird tweety) C-(ostrich 3arI)) (W (xs) (* (ostrich xs) (bird is)))

(V (x) k.( C ( (bird x))) (- (bird N))))

SOLUTIOW. C '
F'(bird twEety) (- (ostrich 981')) (V (Y)FC) y tueety) (- (bird 1,')
((y) (- ((=.3 y t~eety) (- (ostrich y)) (bird y)))))

ToMt. 1 .314 .- ,CLOSURES. 363 ..

PROBLEM Q ... 4h -. .. 2a (. IC
(-. CV() - (knight .) (person a))(V (N .(knrac , (person N)

(VC (n) (- C(knav.e le) (liar- m))) (3 (N) F - (liar n)) (kn(~rave x)))) (1,a, nor)
(knravie barkC) (V I(.) k. >CI (- (liar i))C(liar )))

SOLUTION, (ft IC
(- (knrave bark) (liar barC) (liar mark-I) (person barkC) (W (x) (kn CIigiht N)(perlsoni W)
(V (Y) F'(1=1 v borkC) F'(knrave 0) (person y)))

( V (y) F (1=1 y bark) (()y maork) C-(Ilr W-f))
(V Cv) C.([=) Y barkC) C y. i, k) F'(knrave y)) (liar y)))
(3 (x) F (- (knave x)) (li((ar N))))))

U TM,6.945 ,*,.cLOSuRES. 1166 all.

Dynamic Liso Listener 1

Figure 2

4.2 Constructive Default Logic
The fixed point equation for [Reiter)'s default logic, which we call Constructive Default
Logic to distinguish it from other default logics, is defined as:

A =(r'i[p:((classica1-theorerns-of p)cp)A(gcP)

For a finite number of defaults, the meaning of the intersection of the fixed points
entails the meanings of the same sentences as does:
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where G is the meaning of the sentences in g, and Ai,Bij,Ci are respectively the
meaning of the sentences ai,bij,ci in the defaults.

Figure 3 gives examples in the Z representation of [Reiteri's Default Logic. It will be
noted that example CD.Reiter2.4 has only 1 fixed point, contrary to the claim in [Reiter)
that it has 3 fixed points in his default logic.

Cflonnontonic R.Re1ler-Conaruct,ve-Deraults)

PROOLEM C0.R.I.,LI,.(R k

(3 (J)
( j CC5]C b 0-C )C ))) <' k >a) C 5 ))C k b) I W )
C'. ( ( k c)([C j I 0)

SOLUTION, ( Is (-k ' a c (- b)) (- k (- b (a)C.c))))
Timis 4.762 vises., CLOSURES, 191 .18.

(3n ~ (I) C. < ' Is ) 0(C i I d)))C.( k ) d) CC 0 -a) .( k 0) C J CI M))
SOLUTION. akC' - )C M))
T imE, 2.784 .. ,,CLOSURES, 429 .1..

PROBLEM cftI.'a( k (3 (J) (- j . ( kc a) (C I (- b)))C (~ kc b) JC I GMC. ))))
SO0LUTION, (.' Ck (c- a) (*I - b ))
T.M, 1.385 s..I., CLOSURES, 153 ci.

PROBLEM CO%.I.,2.4,(. kc

(3 (J)
C- k >.( I a) (( j a)) j I' C b) (k > ) J C IS

(.C" Cf I C d a)) (' k > )) (C j I e))
(' CCf S C c a)) C( <c k a) ) C'( k C) d a)) IC J I M)

(CS (- b c. d -, a)) ' " a 0 C- e))))
SOLUTION, C~k C.a b c C- e))
TimE, 53.955 ,a,,CLOSURES- 9996 -1,.

(3 (5)
C' j C C> fS2a 'I (3 (x) (pr x)))C 2 (3 (m) Cor x)) C < CkI )C a))

(' C< kc (- ) JC Y ( - a)) ))) )
SOLUTION, k C*I - a)) C*k C'a(3 (.) (PP' 0))
T lur, 3.99c., CLOS URIs~ 4 86 .1,.

PR0ULEM Ca.A.1,-. s, kc (3 (J) Cj k C-C I a) (C j C a)))
SO0L UTION . " il
TI ME , .372 .. cCLOSURES, 4)15.

PROILCM kORic41 aI
(3 (J)

j-5C ( jf 5 e f')) (( kc C I)) C j 23C a M')
C Cf I a) k W I b)) ( j a t)) CkC'C ' l 'I l C)) j 1 0)
kc C > (c1- 0)) Cf J W )) C 5 2C. c. d) C ' a b) e)C- e dl)C d f')))

SOLUTION. C m k.IC a d f C- b) C-k) ( cC a bc M I))
TIME, 46.639 . CLOSURES, 7311 -1-.

PROOLEM CO.Rci..3s.iC a k
(3 CS)

C- k -C'I a) (C J2a) C - CfS (3 CY) Cbp m V)) CkI Id C) 5 ) C)
C'C f ' d a)) C' (ca)C 5 ) e))
C-C fj C c e)) C' kc (3 C(.) CV CY) C- fP a Y) C9 a))))

Cfj 2(3 C () C(y) C- (VP . Y) Cs a)))
Cf5j C (3 Cr2) (V Cm) (bp x Cr2 a))) C- C.c) d a) CC-c) C e) C- al ))

SOLUTION. C- Ca(;C aaC T(3 (f2) CV C(m) Cbp a (f 2 1))M)
C*VC- _c -e ( C2) CV Ci) CbP a(1 2 a))))(P (f x

(N kcC' c d e C- a) (3ClC-C ) VU) Cto a y)))) (3 CF2) C a b r .C~)
TimE, 88.066 ...... CLOSURES, 11546 *,

PROBLEM (1.1, k.I (B~kC*I
(3 C0)

C.j Cf 2Clblock bM) C. C< kc > C- Cblock b0)l) (C j 2 CClblock bil)
C k U c C' libloek b2)) Cf j I C'.CIbIock b2)
C- C' IcIC' isblockc b3)) (C J ] C- Cblock b31)M)

SOLUTION,. C k C- CillblocI bi) C- Cisblock b2)) C' Csblackc b3)
TIME, 2.951 . CLOSURElS, 345 -1-.

PROBLEM G4If0c-P#YmVI.,k" Col Cs, k (3 CJ) C-( . c- j r) Cf> s) C CfS r) f r'l))
1;O0LUTION, (- kc s)
TIME, .999 *.a'CLOSURES, 95 -1'-

Figure 3

56c0



Figure 4 gives examples which are not representable in (Reiter]'s default logic but
which can be viewed as an extension of this system to the case where variables are
allowed to cross modal s-opes. Such equations are of the form:
(3K(I(K-(P(P^([P]G) ̂(,il,n(VXI ... XMi((([PlAi)^(,\=l,ni(<K>Bij)))--([P]Ci)))))))))

The "Quantifying over defaults" example is interesting because it contradicts the
suggested solution in [Reiter] for an extension of his logic to allowing quantified
variables across modal scopes.

(Caonotanic Conhtrctive-Ouantir1cationsl-Deaults)

PSOOSLgC Og..iifylJg e.e DataoP~i
(U k (3 (J) (- J (t J 1 C- (3 ) x)) (- (D b)))) (V x) C ( k> (V x)) (I J I (D x)))))))
SOLUTION. (a k ( C- (p I)) (V (y) (- (-W y bl) (p Y))) (3 x) (0 x))))
Timwc 1.694 see... Ctosuntm 225 111.

PNOSLtU MuCart&y** 9I..ks.(C k

(3 (J)
C- J (E J I (- (isblock bl) (isblock b2) (sblock b3)))
(V C) ( C0 k ) (- (iabloek x))) (C 3 C- (ablock M))))))))

SOtUTIONs
C k (- (fsblock bl) (isblock b2) (sblock b3) (V (y) C- CC.] y bl) ([*] y b2) ([*] y b3) (- (ioblock y))))))
TIrWC 1.989 Ias., CLosURES. 491 *e.

PROStE[M Di.J...II.,. OavitfleasI..sC- k C3 CJ) C- i CC J 3 C- (rly tueety) (fly chilly))) (V CW) C- ( k ) C (fly "))) (I J I (- (fly x))))))))
sotuIoN, C- (a k (- (fly chilly) (- (fly cteery)) (V (y) ( (Ca] y chilly) ([a] y tueety) (- (fly y))))))

C, k (- (fly tuecty) (- Cfly chilly)) (V (y) (- ([a3 y chilly) (C-3 y tweety) (- (fly y)))))))
TIME, 5.497 .ct., CLOSURt. 997 .ia.

(3 (0)
CC j ) C- (V Cx) C- C- (bird x) (- (ab mM)) (fly x))) (V (x) (- (ostrich x) (ab x)))))
(V (x) C. ( k ) (- Cab ))) (C J (- (ab x)))))))

SOLUTIONs Cs kSO LTO a ) (- (ab 0)) CV Cx) CV C- (ostrich K)) (ab 0)) (V x) C- (- (bird x)) (ab x) (fly x))))
TiME, .755 ... CLosURES. 116 -15.

pRo4L(m B...,.,.ib (i- li.i. ta C. k
(3 0J)

(C J3 ( -C (bird tucety) (- (ostrich San))))
S (V x) C (ostrich x) (bird 0M)))

(V x) ( ( k C- (bird x)) (C J ] (- (bird x))))))))
SOLUTION .. k

C- (bird tueety) (- (ostrich san)) (V (y) (- (C.) y tueety) (- (bird y))))
(V (y) (- QC.] y tweety) (- (ostrich y)) (bird y)))

Tim, 2.359 sees., CLOSURES, 469 111.

PROW1MO4 .,qbaexi.. .C k
0[)

( CV (P) (- (knight x) (person x))) (V (m) (- (knave X) (person x))
(V () ( (knave x) (liar x)) (3 (m) C- C- (liar 0) (- (knave 9))) (liar nork)
(knave bark)))

(V (m) (" C' k ) (- (liar x j)) (l i 1 C- Clar x)))))))
SOLUTION, Cs k

C (knave bark) (liar bark) (liar ,ork) (person bork) (V Cx) C- C- (knight x)) (person ")))
(C (y) (- C3.] y bark) (- (knave y)) (peraon y)))
(V Cy) (- CC.) y bark) ((a] y nork) (- (liar y))))
(V (y) C- C[.)y bark) ((] y mark) C (knave y)) (Iiar y)))

(3 Cx) (- C- (knave x)) (- (liar x)))))
1 109 7.949 i.*., CLOSURES, 1388 ,.

-- ;amic LIS Listener "

Figure 4

4.3 Parallel Circumscription
The Parallel Circumscription (McCarthySO] of a theory G of first order logic without
equality by n with 3 variable is defined as follows:
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(Circ(G t a)nt a) --df ((G t a)A(Vp,z((G p Z)A(Vi,x((pi x)-4(Ci x))))-4(Vi,x((7ri x)-*(pi x)))))
where t and a are finite sequences of predicates, p and z are sequences of predicate
variables of the same length as 7t and a respectively, the arity of corresponding
predicates and predicate variables is the same, x following a predicate or predicate
variable represents a sequence of variables of that arity, and (G p z) is the
replacement of all unmodalized occurrences of n and a in (G n a). Parallel
Circumscription, with both variable and fixed predicates, is the disjunction of the
solutions of the fixed point equation containing the initial axioms G and defaults
specifying that every proposition formed from a circumscribed predicate is false by
default and every proposition formed from a fixed predicate is both true and false by
default [Brown89a].
(CIRC(G n a)T a)-=(K(KA(K-=((G n a)A(Vi(Vx((<K>(-,6i x)))--(-(i x)))))

A(Vi(Vx((<K>(--(-7Wi x))- (-4('rai x)))))
A(Vi(Vx((<K>(' cdi x))-)(-nai x)))) ))))

where -na is the sequence of all predicates not in t or a. Finite parallel

circumscription is circumscription where (Vx(x[=]8l)v... v(x[=]n)) follows from (G 7t a).

Figure 5 gives examples of Circumscription in the Z representation.

(Monnonotonic Circunscrfption)

PROBLEM O...fifyl.9 ... I O.f..It. ,(3 (k) (" k k (- (3 (m) (Q x)) C- (p bl)l (W (.) C" (( k ) (p x)) (p )))))))
SOLUTION. ( (- (o bl)l (W C') (C C[) ) y bl) (o y))) (3 (x) (a ,)))
TIME, 1.218 .e., CLOsupes. 260 .e,.

PROBLEM M.C.thy's Blesks.

(3 (kS N. k k ( isblock bl) isblock b2) (isblock b3) (V (x) (C (< k C(- (isblock x))) (- isbiock x))
SOLUTIO-' (TiSOsblock bl) (isblock b2) (isblock b3)

(V (y) (" (C=) y bl) ([=] y b2) ((x) Y b3) C- (isblock y)))))
TIME, 2.023 CLOSURES, 587 -1-.

PROLEM Oi.J ... I. ll.lIln l

(3 (k) (" k C. k ( (flly tveety) (fly chilly)) (V (x) (- (< k (-k (fly x))) C-(fly x))))))))
SOLUTION: C- (" Cfly tweety) (- (fly chilly)) (W (y) C" (([=] y chilly) ([=) y t.eety) (- (fly y)l)

( (fly chilly) (- (fl, t.eety)) (V (y) (- ((=] y chilly) (C=] y tveety) (- (fly y)))))

TIME. 4.791 ...... CLOSURES: 1855 €1.

PROBLEM Os . Ael ba l Ab ,* .I,(3 (k)
- k

(k

( ( x Cx) ( (" (bird x) (- (ab x))) (fly x))) (V Cx) C- (ostrich x) (ab 0)))

(Id (x) (C C' k C (Cab x))) (- (ab x)))x)l))
SOLUTION. C" ( ( (x) C- Cab x))) C Cx) (" C- (ostrich x)) (ab x))) (Id (m) C C- (bird x)) ab xl (fly ))))
TIME .89 . CLOSURES. 141 *'..

PROBLEM G..i .d 1 Ih-Wll 1- (3 (k)
C" k

(k

C- (bird tweety) C- (ostrich san)) (W (x) (- (ostrich x) (bird x)))

(W () ( ( k I C- (bird x))) (- (bird x)))))

SOLUTION, C (bird tueety) (C (ostrich san,) ( (y) C" CC") y teety) (- (bird y))))
( Cy) (- ([=) y tveety) (- (ostrich y)) (bird y))))

TIME, 1.772 ..... , CLOSURES, 474 Is.

PAOBLI. G...... Nl-- 21 (3 (k)

C" k
(=k

(V (x) (- (knight x) (person x,)) ( (k () C' Cnave x) (person x)))

(V Cx) (- (knave x) (liar x)) (3 (xC (liar x)) (- (knave x)))) (liar ork)

(knave bo'k) ( Ix) ( (C k ) (- (lian x))) (liar x))))))))

SOLUTION, ( Cknave bork) (liar bork) (lia nork) (person bork) ( (xl C" C" (knight x)) (person x)))

(V (y) C" C[=) y bork) (- (knave v)) (person y)))
(V (y) C" (C=) y bork) (C=) y nork) C- (liar y))))

(V (y) C C y brk) ((--] y nork) (- Cknave y)) (lia Y))) (3 (x) C" C- (knave xl) C- (liar x)))

TIME, 8.523 sees., CLOSURES, 1599 *I.

O nemic Lis Listener "1

Figure 5
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Figure 6 gives examples which are not representable in Circumscription but which can be
viewed as an extensions to this system to the case where more complex defaults are used,
such as in Autoepistemic Logic or in [Reiteris default logic.

(ornonotonic Extensions-to-C1rcunsCrtIption)

P:O*LtM TW.Flli., (3 (k) (- k (ISk (- (bird tuwety) (V (x) (° ( (bird k) ' k) (fly m))) (fly x)))))))
3OLUTIONI (- (bird tuetly) (fly tueety) (V (y) (- (Cc] y tueety) (- (bird y)) (fly y))))
"'Alt, 2.835 s...., CLOIstin 634 *is.

PROL(M CW.-rJI.sS
(3 (k) f- k (a k (- (bird tueety) (bird chilly) (- (fly chilly)) (Y (m) C. (' (bird x) C' k > (fly ))) (fly x))))))
SOLUTION ( (bird chilly) (bird tueety) (fly tuecty) (- (fly chilly))

(W (y) (- (C=3 y chilly) ([a] y tueecty) (- (bird y)) (fly y))))
TIME, 6.349 %.es., CLOSURES' 1787 .I,.
PROSIL[M C-1 11-11.5l O~f.-Its (M.0-lr0l1tII PbO. [I-Rapl0) (3 (k)

(-k
(. k
C" (prof fr) (mid rr)
(V (W) (. (* (prof x) (c k (phd x))) (phd x))
(V (x) C. ( (nd x) 0' k > C- (phd x)))) (- (phd x))))))))

SOLUtIONS U-
T

U (nd fr) (prof fr) (- (phd rr)) (w (y) C' ([m) y fr) (- (prof y)) (phd y)))
(V (y) (- ([-] y fr) (- (,,d y)) (- (phd y)))))

(- (nd fr) (phd fr) (prof fr) (V (y) (- ([=) y fr) (- (prof y)) (phd y)))
(V (y) (- ((-3 y fr) (- (nrd y)) (- (phd y))))))

TIME, 13.0Q9 .... , CLOSURES, 3865 .l..

Dynamic: Lis Listener I

Figure 6

4.4 The Closed World Assumption
The closed world assumption on a theory g is the union of g and the set of negations of
a set of simple sentences formed from predicates ni and sequences of variable free
terms 5 of the appropriate arity which are not deducible from g:

(gufflist "--1ist ni 8)): (-4(list i 5)(cl-th g))))

The closed world assumption on a set of sentences g with respect to n is the meaning
of g anded to the defaults which state that if the negation of a sentence formed from
7z and a sequence of variable free terms 8=51 ... 5ni is possible then that negation is
the case: (G^(Vi(VS((<G>(,(ni 5))--- 5(ti 5)))))) where G is the meaning of g. The
Generalized Closed World Assumption is represented by the expression:

(CWA* G it) =df GA(Vi(Vx((<G>(-,(ni x)))-4(- (ri x)))))
where x=xl . .xni is a sequence of variables whose length is the arity of ni.

Figure 7 gives examples in the Z representation of the closed world assumption.

0: (Nonnonotonic ClTo sed- WorlId-ASIIsunPrt in)

PROILaM cw is (^ a b (< ( a b) C- a)) C- a)) C. U C- a b) f- b) b)) (- U' a b) ) (- c)) - cC)
(! -(< U a b) ( (- d)) (' d)))

SOLU I ON, C , b c' c) (- d))
7 fuf, .262 .... LOSUPIS 16 . I.

PROSL[M CWA FI.I. .0-1 .f EIlets,(" (fsblock bl) ( i (< Cisblock bl) (- (i3block bl))) ( isbiock bl)))
((' (fsblock bl) ) (- (isblock b2))) (- c'block b2)))

(b C" (is block b)) >(- (iblock b3)))
( blo b (sblock b2)) (- (block b3)))b

tYUc. .123 s.... CLOSURIS, 21 .l.

0 nemic Li LI. tener f

Figure 7
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Figure 8 gives examples which are not representable in CWA but which can be viewed as
an extensions to this system to the case where variables are allowed to cross modal
scopes.

(floevonoeonic Extensions-to-CJA)

PAO:L9M 0.~iy~ ic. ofvawa, I(- (3 Ws (Q x) -(p bi) ) (W (Y) C. ('- (3 WN (q 0) - (p bi)) (pC y)) (op ))
SOLUTION. ( o ( bi)) (V (y)Ci) Y bi) (a y/)) (3 WN (Q x))
TIME$ .564 is..CLOSURISs 96 .

PAOm.IM Mo lb'.s.( isblock bl) Cisbiock b2) (isbiock b3)
(W (m) C- C' (- (lablock bi) (labloack b2) (43block W3)PC (isblock 0i))C (isblock st)))))

SOLUTION, (..(lblock bl) Cimblock b2) (isblock b3)
(W (x) (- (N is bl) ([-] s b2) (N' x b3) (- (Iiblock N))

TIME- .569 .-- ,. CLOSURSac, 130 ii..

PfOBLEMu TW.lei., C (bird tweety) (V (m) ( '(bird x) 0' (bird tweety) (fly KM) (fly PO))
SOO., C (bird tsweety) (fly tweety) (V (y) C- (2y tweety) C.(bird y) ) (fly y))))
Thu.. .183 Bass., CLOSURES. 43 at..

PNtooLlm cw..Fjl-,, (- (bird tweety) (bird chilly) C- (fly chilly))
(V (m) C0 (- (bird ma) Ct (- Cbird tweety) Cbird chilly) C- Cfly chilly)))> (fly x))) (fly xs))))

soTuIOta C- (bird chilly) (bird twety) (fly tucety) (- (fly chilly))
(V (y) C- (E-) y chilly) ((-] y tweet:) C- (bird y)) (fly y))))

TIomr. .64? s..., CLOSURES, 151 $t.

pxOULtm olsj ... it. .. iilltil... (- (- (fly tueety) (fly chilly))
(V (N) C.C '(fly tweecy) (fly chilly)) )C(fly 0)) - (fly s))

SOLUTION, nil
TIME* .631 ,..CLOSURS. 164 i.

PROSI.IU Coa.tiI.IIa Defaits (moosra.I:, rho. ExampI.)i
C(prof fr) (nd fr) (V Ws (- (- (prof Nt) C( ( ( (prof fr) (nd fr)) >(Phd N)) (phd X))
(m () U( (nd st) C'C-(prof fr) (nd f,)) > (- (phd x)))) (- (phd N))

SOLTIyON, nil
j TIT w. .487 9 as., C LOSIJN(S, 97 .1,.

PRODLEM Oti,1. h.s .1. Ab ... iUah- (V N C( (bird (.C-Cb xs))) (fly 0d)) (V Ws (- (ostrich x) Cab x.)))

U'C-(W (N) (.((bird N) (- Cab N)) (fly .))) (V (N) (- (ostrich .s) CabN))

C-oCb y)))
C- ab y)))))

SOLUTION. . (V (y) (t- C Y)) (V (Nx)-C (Ostrich N)) (ab X,))) (V (N) CC-(bird N)) Cab N) (fly N))))
WEu, 1 .016 .... CLOSURES, 259 1.

PROSEM .... ,., At M . ,U (bird tweety) C'(ostrich sam)) (V (m) (- (ostrich .)(bird x)))

0-'C (bird tweety) (- (ostrich san)) (V (N) (- (ostrich x) (bird N))))

C(bird y)))
C(bird y)))))

SOLUTION,. C (bird tueety) C- (ostrich San)) (V (X) C-C'(ostrich xs)) (bird N)))
(V Y) (- ((a] y Itweety) (- (bird Y))

TIME, 1.21? i.02LOUNIT, 389 *I..

PAOLEMd C.a.,.ihr &ad 11ii.... 2, (- (V (Ms) (4 (knight N) (person N))(V W(C- (knave N) (person N)))
(V (0, (- (knave x) (liar x))) (3 (m) CC-(liar m)) C- (knave x:))) (liar mark)
(knave bark)

C -(V (xs) C- (knight N) (person N))) (W (N) U. (knave N) (person 0))

(V (^: (- (knave ms) (liar ^M)) (3 Cm)C-- (liar x)) C- (knave .1))) (liar mark)
(knave bork))

(- (liar y)))
C(liar y))

C SOLUTION,. U (knave bork) Cliar bark) (liar nork) (person bork) (V Wi)C-( (knight As)) (person x)))
(V U(y ) y bark) C'(knae, y)) (lidir y))) (V (v) C - (U' y bark) C- (knave y)) (person Y))

* (V (y) C((]y bork) [-I) y nork) I. (iair y)))) (3 (ms) CC-(knave Nt)) C I flar x)))))
TIMt, 6.237 a...CLOSURES, 1194 as..

0 nkl Lisp Listener I

Figure 8

5. Implemenltation
The derived rules of inference of Z used for nonmonotonic reasoning are implemented
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as definitions in the programming language Schemata, which was specifically designed
to express arbitrary deductive operations. Listed below are the Schemata definitions
which implement derived rules of inference needed to manipulate the disjunction symbol:v.

(define v _v)
(defaxioml v (v) Sf)
(defaxiom v-Sort (v . r)(if(null?(set! r(sort<< r vorder)))(cut!(v . r))(cut!(v . r))))

(defaxiom! vEJpp (v *.-I(_[] p)o9-2 p eo*3)(v o1 -oo2 p *-3))
(defaxiom! vAsubsump(v ool0(_A. rl)ooe2(!test(L . r2)(subsume? ri r2))*o05)

(v 00o1(_A . rl)o2 oo,5))

(defaxiomi vAabsld (v 0*01(_A ee.2 x o-o3) oo4 x -o5)(v eol oo-4 x -. 5))
(defaxiom! vabs-, (v ee(- x)9ee2(!both(n x)(!test e(unmodalized-in? x e)))*,-3)

(v oool(_-, x)9992(ic St)-o*3))

(defaxiom! vabs (v 1ool x *oo2(!both(t x)(!test e(unmodalized-in? x e)))ee.3)
(v -e9l x *92(ic $f)o--3))

(defaxiom! vassoc (v oeol(_v 9o2)oe3)(v -el -oo2 *o*3))
(defaxiom! vf (v -el $f ee2)(v osel -..2))
(defaxiom! vt (v oeol St -.2) St)
(defaxiom! v1 (v x) x)

Defaxiom defines a derived rule of inference which causes the subexpressions which
match its second argument to be replaced by the corresponding binding of its third
argument. Defaxiom! is like defaxiom except that it cuts alternative applications
from the search space. The underscore symbol _ in the second argument indicates
that the succeeding symbol is a constant to the matcher and is not a local variable
that may be bound by matching. The **on variables are segment variables which match
0 or more expressions and n is an schemator variable (Morse].

6. Conclusion
Since, in general, each of these 4 nonmonotonic theories compute different things,
it might at first appear that their computational properties cannot be compared.
However, this is not entirely the case, as there are a number of metatheorems which
show that various nonmonotonic theories give identical results when applied to axiom
sets of certain forms.

There are two results comparing Autoepistemic Logic and Nonconstructive Default Logic to
Reiter's Default Logic. The first result [Brown89a) states that these logics give
essentially the same answer if no default in the axiom set has a necessary hypothesis.
This result is not a necessary condition as examples NCD.Reiter2.4 in figure 1 and
CD.Reiter2.4 in figure 3 show. In fact, all the analogous examples except the Gelfond-
Przy-rusinska example in these two figures have the same result. Since the deduction
times for Nonconstructive Default Logic are more than 2 times faster than the analogous
examples for Reiter's Default Logic, there is some evidence in favor of the
nonconstructive default logic. The difference in speed is caused by the more complex
nature of Reiter's fixed point equation which involves an extra quantifier 3j inside.
The second result relating these systems [Konohge] says essentially that the solutions
of Reiters Default Logic are a subset of those of nonconstructive default logic. Given
the relative deduction speeds obtained, the possibility arises of computing the fixed
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points of Reiter's Default logic, by solving for the Z solutions of Nonconstructive
Default logic, and then plugging each such solution back into the Z equation for Reiter's
default logic and eliminating those which do not simplify to true.

One fairly general result [Brown89a] relating Parallel Circumscrigtion to the
quantificationally generalized closed world assumption states that if the generalized
closed world assumption of any set of predicates is logically possible then it is the
same as the circumscription of that set with those predicates regardless of which other
predicates are fixed or variable. Since the generalized closed world assumption of any

set of predicates of a set of Horn clauses is logically possible (i.e. because the
intersection of all the models of such theories is itself a model) this is a fairly
useful relationship. The disjunctive quantification example (figures 5 and 8) show
that it cannot be extended to sets of non-Horn clauses. For Horn clause theories,
deducing the generalized closed world assumption always took less time than deducing the

corresponding circumscription. Thus this provides some evidence in favor of the former

theory.

Since all these theories have been represented in the modal quantificational logic Z and

since it can represent extensions to all these theories (see figures 2, 4, 6, 8), and

since all these problems have been solved with a deduction system consisting of derived
rules of inference of Z, it may be concluded that Z, even though it is a monotonic
logic, is an interesting theory of nonmonotonic reasoning.
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A Logic Programming Approach to Network Flow Algorithms.

Andrew W. Harrell

U.S. Army Engineer Waterways Experiment Station,

Vicksburg, Mississippi

Abstract

The well-known Ford-Fulkerson algorithm and most of the more
recent approaches to solving the network maximal flow and minimal-
cost flow problems use a labeling procedure. Labeling involves
using nodes in the network which have values and are updated by
adding a series of augmenting flows or edges until the optimal
solution is reached. In this paper, an alternative approach is
examined using the full ordered list of flow paths without cycles.
This list is generated by a Prolog-based depth-first search with
backtracking of the type described by Winston [13],[14]. This
approach keeps track of the full queue of partial search paths and
is easier to use to examine the solution for weak-links or critical
nodes. If a modeler is creating a network to represent a real
situation it is reasonable to assume that the number of ingoing and
outgoing edges to a vertex are limited. Time bounds are presented
to demonstrate that the above approach is under these conditions
as efficient as the n-cubed algorithms explained in Tarjan [12]
which use a method of labeled preflows.

Key words - network algorithm, depth-first search, maximal
flow, min-cost flow, logic programming, backtracking.

1. Introduction.

With the development of computer graphics techniques for
displaying digital map information, new ways of representing unit
movement and aircraft or ship routing have been developed. However,
the use of digital map data presents problems as for example
representing the effects of various types of on- and off-road
obstacles, underwater mines, bridge interdiction on the movement
rates, and routing possibilities. Programs must be written to
define and store route movement networks and arrays of obstacles.

This research was supported in part by Headquarters, US Army Corps
of Engineers, Washington, DC 20314-1000.
Author's Address: Dr. Andrew Harrell, US Army Engineer Waterways
Experiment Station, 3909 Halls Ferry Road, Vicksburg, MS 39181-
0631 Internet: h4enaah0@vicksbrg.army.mil
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For this paper, we will assume this already exists along with
avenues of approach or movement corridors and their correspondinq
traverse speeds across the map. Harrell [7], [8], [9] gives a partial
description of some current techniques of doing this. The following
short glossary defines some of the basic terms that will be used:

Backtracking - An algorithmic search scheme which in order to
compute all the ways to satisfy a given goal computes one solution
through following a series of branching points and then retraces
its steps to the last previous decision in order to compute another
possible solution.

Cycle - A path with the same starting and ending node.

Dead end - A node in a network from which no edges proceed.

Edge - The line connecting two nodes in a network. Each edge in a
network usually has associated with it a traverse time, vehicular
speed, or a flow-rate, and represents a given portion of the
overall map.

Flow- An assignment of of flow-rates to some or all of the edges
in a given network. Each flow-rate has to be less than or equal to
the flow-capacity of its edge.

Flow-capacity- The largest allowable flow-rate for a particular
edge.

Flow-rate - The number of vehicles per hour that can pass over a
given edge in the network. As explained in the text this can be
calculated as [1/(time it takes a group of vehicles to traverse the
edge)]*number of vehicles in the group.

Maximal flow problem - The problem of determining what is the
greatest number of vehicles/hour that can travel through a network
at a given time. It is computed by designing an algorithm to
optimize the assignments of flows to edges in the network.

Maximal flow value - The value which is a solution to a Maximal
flow problem. Note, that it is possible for there to be several
different network flows which realize a given maximal flow value.

Min-cost flow network- A flow network with costs (times to
traverse) as well as flows associated with its edges. In this paper
in order to determine the cost associated with a flow the following
procedure is followed: 1) The flow rate on each flow path solution
through the network is multipliel by its time of traversal and the
result summed over all paths in order to obtain a total cost
associated with a given maximum flow solution. This is the measure
of effectiveness which determines the optimality of the solution.
The total cost of the flow can then be divided by the total maximum
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flow to obtain an average cost per vehicle to travel through the
network.

Min-cost flow problem- The problem of determining from all the
possible flows which realize a given network maximal flow value,
those which do it with minimal cost.

Network - A collection of nodes and edges that represent movement
possibilities over a given terrain area.

Node - A point of reference in a network from which edges are drawn
from and into.

Path - An ordered list of edges each of which has the same
starting node as the preceeding edge's ending node.

An artificial intelligence network algorithm is methodology
based on searches for paths from start nodes through a network to
ending goal nodes using the methods of logic programming. The
search mechanism proceeds in an orderly fashion unifying the
variables in the search predicates from one level of search in the
network to another. The algorithm used must save the partial
solutions in an environment list so it can backtrack its way
through the previous variable bindings in order to generate all
possible ways of reaching the goal state. This differs from many
network algorithms that use labels (instead of a list of partial
search paths) at the nodes to store information as the steps in the
algorithm proceed. Thus, after the labeling algorithms are through
generating solutions, information is not kept on "how" the
solutions were reached.

The search algorithm discussed in Section 2 below will print
out ordered lists of shortest paths with and without the presence
of obstacles. These lists reveal the critical nodes or weak links
that most affect the optimal paths in the network. In order to do
this and compute movement possibilities across cross-corridors an
algorithm has to keep track of more information tan can be stored
on just a single label per node in the network or on a single
search tree. One needs to store the same kind of list of partial
solutions that a logic programming unification algorithm does when
it tries to satisfy goal predicates.

Similarly, in developing programs to compute network flow
rates which identify the critical nodis in the solution, it is
important to compute the maximal or r.Ln-cost flows in terms of an
ordered list of paths from the start node (or set of nodes) to the
goal node (or set of nodes). The solution can be displayed just as
a logic programming interpreter displays in turn the list of
predicate variable identifications which satisfy the specified
goal. The question then becomes whether this approach is feasible
in terms of search time bounds and how it is implemented.

These questions are answered in this paper which contains
five sections. In Section 2 the main search algorithm used to
compute shortest paths or maximal flow paths and give the
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derivation of the number of search steps required to generate all
these solutions is presented. In Section 3 an explanation of how
this algorithm can be used to solve the maximum flow problems
associated with certain types of networks is discussed. In section
4 simple modifications to this algorithm are presented that can be
used to solve the corresponding min-cost flow problem. Section 5
contains a short discussion of the appropriateness of these
algorithms for the transportation problem and the assignment
problem, and the next and final section contains the conclusions.
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The Main Search Algorithm

As mentioned above, outputting the full search path allows the
user to determine the effect of weak links or choke points on the
solution. For example, in on- or off-road movement networks based
upons digitized maps, it is important to know the effects of
minefields, anti-tank ditches, abatis, and road craters on the
overall possible vehicular flow rate vehicles traverse across the
terrain. Network path-generating algorithms based upon dynamic
programming, dynamic tree structures, or node labeling do not save
the information on the movement possibilities through cross-
corridors in the terrain. This increases computational speed in
many cases, but important information about the vulnerability or
sensitivity of the solution to degrading factors is lost. The best
algorithm for these purposes is one that provides a way to measure
the effect of changing flow rates and times in certain parts of the
network on the overall solution.

An example of such an algorithm is given below. The search
procedure presented keeps track of the next best choices in a
sorted priority queue. This is necessary so the algorithm can
backtrack quickly to find another solution after it has
determined the shortest path or failed to reach a goal in a
given direction. In order to do this, it was convenient to write
the program in Prolog. An algorithm that does this is
described in the book by Winston (13] . The description of the
algorithm is as follows :

Step I Form a queue of partial paths. Let the initial
queue consist of the zero-length, zero-step path from the
start node to nowhere.
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Step 2 Until the queue is empty or the goal has been reached
determine if the first path in the queue reaches the goal
node.

Step 2a If the first path reaches the goal node,
do nothing.

Step 2b If the first path does not reach the goal
node:

Step 2bl Remove the first path from the queue

Step 2b2 Form new paths from the removed path
by extending them one step

Step 2b3 Add the new paths to the queue

Step 2b4 Sort the queue by cost accumulated so
far, with least cost paths placed in front.

Step 3 If the goal node has been found, announce success;
otherwise, announce failure.

The algorithm as given terminates when the shortest
incomplete path is longer than the shortest complete path. In
this situation there are no further paths needing to be
investigated for optimality. Since the paths which could never be
optimal have been pruned out at an earlier stage, the queue
remaining (which has been sorted at each stage) contains at its
head the optimal path.

The Prolog source code and Pascal source code for one
particular implementation of the algorithm is given in Harrell's
report (9] and it can be implemented in the C language using
essentially the same code. There is a way to implement the
algorithm using a dynamic tree structure to keep the environment
of partial solutions which it is able to backtrack through (see the
book by Bratke). However, as mentioned above, a tree can store
information about only one partial path from its root to each leaf
or subtree node.

The question then becomes whether the list of all partial
paths accumulated using the search algorithm becomes so large that
it is impractical to manipulate. The theorems and the lemmas listed
below prove that under certain restrictions, such as: 1) no dead
ends in the network, 2) the maximum numbers of nodes going in and
out of a vertex bounded above, and 3) the maximum number of nodes
which are critical in the sense defined below is bounded, the time
it takes to finish this type of algorithm is not longer than for
the algorithms which compute shortest paths to create maximal and
min-cost flows according to the approaches of Edmonds and Karp (4].
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Let:
ni - the number of nodes with i edges proceeding from then,
nJ i - the number of nodes with j edges entering them and i

edges proceeding from them,
maxe - the maximum number of edges proceeding from any node

in the network,
emax = the maximum number of edges entering any node in the

network.

Call a node a critical backtracking node if it has more than
1 edge proceeding from it and more than one edge entering it.

Let ncrit = the number of critical bactracking nodes in a
network.

Call a node of the network a q stage ith critical path
backtracking node if it is a critical path backtracking node and
it is preceeded in the network by q levels of backtracking nodes,
each having more than 1 edge entering them. Moreover, there must
be 1 of these backtracking nodes with more than 1 edge at the
preceeding search level to the given node.

Let n 1 Ji = the number of q stage ,lth critical path
backtrackin nodes with j edges proceeding into them and i edges
leaving them.

nlcrit = the number of critical path backtracking nodes which
are not q level lth critical for q or 1 > 1.

Examples of these definitions will be given in the course
of the following discussion.

Theorem 1 Given a connected directed graph with a starting
node and a goal node and no dead ends other than the goal node.
Moreover, if there are at most ncrit critical path backtracking
nodes with at most a q level instance of prior influence, then the
number of different paths (containing no cycles) from the starting
node to the ending node is bounded by the expression

1 + (emax -lI*(n -nl-ncrit) + (maxe*emax -1)*nlcrit
+((maxe*emax) - 1)*(ncrit -nicrit)

Proof: This theorem is proved by following through the steps
of the above algorithm and counting the number of ways new paths
are generated. Step 2b4 which insures the solutions will be
generated in order of shortest length is not necessary if the
algorithm is only being used to generate all possible paths. At
Step 2b, new paths are added to the queue of partial paths each
time the search predicate finds a node following the current node
which does not form a cyclic path. Since 1) the graph is finite,
2) there are no dead ends, 3) the graph is connected, 4)no cycles
are permitted, then each new path will eventually reach the goal
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node.
During the generation of the list of partial paths, nodes with

only one edge proceeding into them and one edge leaving them expand
the current path but do not add any additional combinatorial search
possibilities to keep track of during the backtracking process.

Then, the number of paths which the non-critical backtracking
nodes enter into is:

1 +l*n2 + 2*n3 + 3*n4 +(j-l)*nj +...(emax - 1)*nemax (1)

Using the fact that n = nI + n2 + ... nemax we note that the
above number is bounded by:

(emax - 1)*(n - n1) + 1

The example below (Figure 1) illustrates how equation (1) counts
paths in a network without any critical backtracking nodes.

JH

Figure 1. Example 1

There are 14 nodes,
not counting Z.
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n1 - 6 * n2 = 7

n3- 1

emax = 3

number of paths = (7 + 1)*1 + 2*(1) = 10

path search steps used to generate path
1

ABDIZ 4
ABDGZ 1
ABDGFZ 1
ABEFZ 2
ABENZ 1
ACHMZ 3
ACJLMZ 3
ACJLZ 0
ACJLKZ 1
ACJKZ 1

If the network we are considering has q stage Ith critical
path bactracking nodes but none with q or 1 greater than 1 then the
search algorithm will generate an additional:

3*n1 1 22 + 5*n 1 1 23 + .. 5*n 32 +... (j*i - 1)*npiat
+... (maxe*emax 1)*nlimaxeemax paths.

This number is bounded by:
(maxe*emax - 1)*(nlcrit).

Example 2 - consider the following movement network, having two
starting nodes Al and A2 and three goal nodes El, E2, and E3:

Solution:

1 A search step is defined to be one cycle of search through

the database of edges to determine which nodes are connected to a
given edge. It is assumed the network information is stored in a
vector structure in which each edge along with its starting and
erding node and value are kept. Since in generating the queue of
search paths a new path uses the nodes from the prior search paths,
it is not necessary to search through the database for all the
prior nodes in creating the new paths.
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Ai.

Figure 2 Example 2

To compute all the paths for this network break it up into
six connected components corresponding to each possible combination
of starting node and ending node. Figures 3 through 7 show this.

1) Al - El

ABDZE 8 solutions Z is a 1-stage Ith critical
ABCFGE path backtracking node
ABCDZE
ABCFLGE n2 = 2 n3 = 1 ni1 22= 1
ABDZGE
ABCFZE 8 = 1 + n2*1 + n3*2 + n1122*(2*2 -1)
ABCDZGE = 1 + 2 + 2 + 3
ABCFZGE

2) Al - E2
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ABCFGME 6 solutions n3 = 1 n2 = 3

ABCFLME
ABCFLGME 6 

= 1 + 1*n2 + 2n3 = 1 + 3 + 2

ABDZGME
ABCDZGME
ABCFZGME

3) Al - E3 no solutions

4) A2 - El

AHLGE 3 solutions n2 = 2

AIWHLGE
AIKJHLGE 3 1 + 1n2 = 1 + 2

5) A2 - E2

AHME 9 solutions n2 = 3 n 1 1 32 = 1

AIWHME
AIKJHME
AHL4E 9 = 1 + n2*1 + n. 132*(

3*2 - 1)

AHLGME 1 + 3 + 5

AIWHLME
AIWHLGME
AIKJHLME
AIKJHLGME

6) A2 - E3

AHE 3 solutions n2 = 2

AIWHE 3 = 1 + n2*= 1 + 2

AIKJHE
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Al

E I

Figure 3 Al-El
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Al

Figure 4 Al -E2
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Figure 5 A2 -El
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Figure 6 A2 -E2
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Figure 7 A2 -E3
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24.S. 4.

Fgr.Vehile speeds .b,

If vehicular speeds are added to the edges in the network of
example 2 as shown in Figure 8, the shortest path search algorithm
may be used to produce the full list of non-cyclic paths ordered
by their length in time (minutes to traverse). Figure 9 shows the
one shortest path and the full ordered list is shown below.

SHORTEST PATHS

AHE time(min)= 48.7
AIWHE time(min)= 56.8
AHME time(min)= 63.0
AIKJHE time(min)= 66.2
ABDZE time(min)= 67.2
ABCFGE time(min)= 67.2
AIWHZ4E time(min)= 71.0
ABCFGME time(min)= 74.1
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Mnrt~ pah(n S.

Figure 9. Shortest-path, cross country movement network

ABCDZE time(min)= 74.9
ABCFLGE time(min)= 76.2
ABCFLME time(min)= 78.9
AHLGE time(min)- 79.8
AIKJHME time(min)= 80.5
ABDZGE time(min)= 80.6
ABCFZE time(min)= 81.4
AHLME time(min)=- 82.5
ABCFLGME time(min)= 83.0
AHLGME time(min)= 86.7
ABDZGME time(min)= 87.4
AIWHLGE time(min)= 87.9
ABCDZGE time(min)= 88.4
AIWHLME time(min)= 90.6
AIWHLGME time(min)= 94.7
ABCFZGE time(min)= 94.8
ABCDZGME time(min)= 95.2
AIKJHLGE time(min)= 97.4
AIKJHLME time(min)= 100.0
ABCFZGME time(min)= 101.7
AIKJHLGME time(min)= 104.2

If the network contains q level ith critical path backtracking
nodes with q or 1 greater than 1, then the computation of the
number of possible paths becomes more complex. Given n qlii q level
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the mth among the q levels of that sth node which are proceeded by
backtracking nodes with more than 1 edge entering them and the rth
among the 1 edges entering the node, let PRIOm.r.s be the number
of edges entering that prior critical backtracking node. Then, the
number of new paths generated by these nqlji q level lth critical
backtracking nodes is bounded by:

%nJI q-1 1

E (HJ (fi PRIOR.,.," *i,-l
a-i -1 -i

is = number of paths leaving the sth critical backtracking node
(which is bounded by maxe)

So, the total number
of such additional paths will be bounded by (ncrit - nlcrit)*(emaxq

*maxe) - 1. Note, in this computation, a critical backtracking
node may preceed (by occuring closer to the start node in the
network) more than one other such node a certain number of times.
In this case this formula will overcount the number of paths by
that same factor. See the example below for an illustration of how
this can occur. But whatever the case, these additional paths
exhaust all the ways in which the algorithm can possibly backtrack
to produce solutions. Thus, adding this bound to the previous one
we have the expression given in the statement of the theorem.
Q.E.D.

Example 3) In the network below the node B is a 2 level 2th
critical bactracking node.

ARPMBCG ARPNBCG
ASPMBCG ASPNBCG 24 solutions s 1 , q = 2,
ARPQMBCG ARPTNBCG 1 = 2, i = 3
ASPQMBCG ASPTNBCG 48=p 3 1 .1 1pi 1.1
ARPMBDG ARPNBDG
ASPMBDG ASPNBDG 2.2.1 1 2 i1*3

ARPQMBDG ARPTNBDG =2{2*2 +2*2}*3 >24
ASPQMBDG ASPTNBDG
ARPMBEG ARPNBEG PRIOm.r.s = Pm.r.s
ARPQMBEG ASPNBEG
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ARPMBEG ARPNBEG PRIORm.r.s = Pm.r.s
ARPQMBEG ASPNBEG
ASPNBEG ARPTNBEG
ASPQMBEG ASPTNBEG

In this example B is a two stage 2th critical backtracking
node. This is because the 2 backtracking nodes M and N which
precede B in the network have more than 2 edges entering them and
and there are 2 levels of critical backtracking nodes P and then
M,N which preceed B. Because the node P preceeds the nodes M and
N, the formula overcounts by a factor of 2.

In the applications that these theorems are used we have some
freedom in how many nodes and edges are included in the network.
The network will be a representation or model of some physical
situation or process. In practice it becomes more and more unlikely
in a random physical situation that planar graphs containing many
q level lth critical backtracking nodes where q or 1 >> 1 will
occur. In movement networks based upon digitized maps such nodes
correspond to critical choke points at which the routes diverge to
go around an obstacle and then reconverge.

Theorem 2 Considering the same type of graph as in Theorem 1,
now allow paths to travel in directions opposed to the way the
edges are directed. Then the bound for the number of possible paths
is increased to :

1 + emax*(n - n1 - ncrit) + ((emax + maxe)*maxe - 1)*nlcrit
+ (((emax +maxe)*maxe)q - l)*(ncrit - nicrit)

Proof: Count the number of paths using the algorithm as in theorem
1. For those nodes with only one edge entering them, the new number
of possible edges which proceed outward has been increased by one.
These edges will create :

1 + 2*n2 + 3*n3 + i*ni ...emax*nemax paths.

This number is bounded by 1 +emax*(n - nl -ncrit). For the nodes
with j > 1 edges entering them, the new maximum number of edges
leaving the node is emax + maxe. The rest of the formula follows
from the previous calculations.

Theorem 3 The number of search steps required to compute all
the paths of the type of graphs mentioned in theorem's 1 and 2 is
bounded by:

i + emax *(n -ncrit) +f(emax)(q+l))* ncrit

where q = the maximum level of any q level lth critical path
backtracking nodes in the network,
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Proof: This can be verified by tracing through the algorithm
and adding a marker to a node's count each time a search step is
performed. In following through the algorithm note that since the
network is connected each node is encountered during the searching
and backtracking exactly the sum of the number of times that there
are different edges proceeding into it multiplied by the number of
times the preceding nodes to that edge have already been
encountered. For the nodes which are not critical path backtracking
nodes we have:

l*(in +1) + 2*(2n) + .. emax*(emaxn) search steps,

where in = the number of nodes witn exactly i edges entering into
them. This number is bounded by the number 1 + emax(n - ncrit). For
a node which is a q level lth critical backtracking node, the sum
of the number of times that there are different edges proceeding
into it multiplied by the number of times the preceeding no e$,o
that edge have already been encountered is bounded by (emax)J

Q.E.D.

Example 2 (continued)

In this graph, which has no critical path backtracking nodes,
we have in = 10 and 2n = 3 so the number of search steps should be
(10 +1) + 2*3 = 17. This can be verified by tracing through the
algorithm and keeping a count as below:

node search encounters node search encounters

A I H I
B I M II
D I L I
C I J I
I I K II
G I N I
F II
E I total number of encounters = 17

example 3 (continued)
This graph has a two level 2nd critical backtracking node B.

The number of search encounters for the various nodes is as below:

node search encounters node search encounters
P II B IIIIIIII
Q II C IIIIIIII
T Ii D IIIIIIII
M IIII E IIIIIIII

N IIII total number of encounters = 46

The following theorem holds for the same reasons as the
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preceeding discussions.

Theorem 4 The number of search steps required to compute all
the paths in the case where the paths are allowed to travel in
opposite directions is bounded by:

1 + (emax + maiefln - ncrit) +
{(emax + maxe)q }*(ncrit - nlcrit)

Methodology for Solving Maximal Flow problems

Given that there is a method of generating all the shortest
paths through the network, it is easy to modify the predicates to
generate a list of maximal flow paths through the network. We
now assume that each route segment has an associated maximal flow
capacity. At each stage, simply choose the direction of maximal
flow to expand the paths, and perform a sort on the maximal flow
of the route segments instead of minimum length. Then, write a
predicate that each time we reach the goal node with a route, go
back and subtract that route's flow values from the network
capacities. When the Prolog backtracking search does not generate
any more solutions, all directed paths through the network have at
least one edge which is already filled to capacity. One other way
exists to increase the flow in the network. The paths which
contain edges that point backward along the allowed route segments
can be considered. Then, when the goal node is reached, proceed
back to the source and modify the flow capacities, and add flow
capacity along those segments, instead of subtracting it. As
explained by Sedgewick [10] when the above procedure reaches a
situation in which all paths have either full forward edges or
nonempty back edges, then the Ford Fulkerson theorems says the
maximal flow of the network has been reached. Many of the
algorithms presently in use Goldberg [6] and Tarjan [12] for
solving the maximal flow problem do not save lists of partial paths
but instead use a labeling process to update information at each
node. This increases computational speed, but makes it difficult
to pick in order the main routes that contribute to the optimal
solution. Since it may be desirable to do sensitivity analyses
which locate the points in the network which most affect all the
possible solutions, the above approach gives more information after
the process is completed. Thus, it is possible to print out in
order of flow the paths which contributed to the max-min cut
situation. This then can be used to plan barriers for the defense
or attack routes for the offense. The description of the algorithm
is as given below:
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Step 1. Search for the best(maximal flow) route
from the starting to the ending node. Only search
in directions in which there is either a forward
edge with positive unused flow capacity, or a backward
edge with positive existing flow. If no route exists,
terminate the algorithm.

Step 2. Subtract the value of that flow from the
capacity slots in the route's definition and add
the flows (or subtract the flows if headed
in a backward direction along an edge). Go to step
1.

Further explanation of the algorithm and examples of its use
are given in Harrell's paper (6]. The source code of its
implementation is in the technical report (9]. If flow rates are
added to the edges in Example 2 the above procedure will generate
the maximum vehicular flow across the network and compute the
sensitivity of the solution to changes in flow rates at critical
nodes.

Off-road vehicle flow capacities may be estimated from
vehicular movement formations and speeds in the terrain corridor
that each edge corresponds with. Suppose that the terrain will
support a certain number of units as shown in Figure 11 and the
movement speeds are as in Figure 8. Figure 12 shows the number of
vehicles per square kilometer that correspond to a particular
movement formation. Multiplying [I/(time it takes a group of
vehicles to traverse the edge)]* number of vehicles in the group
determines the flow rate associated with an edge. Then Figure 13
shows a maximum flow solution and Figure 14 shows the changes in
the solution caused by changing the speeds on three edges.
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23

Figure 11. size of movement corridors in standard units
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effective density of 5 vehicles/sq. ki.
Figure 12. Standard cross country movement unit

600



81.0 681.0

FA

Lin vehicle3/hr. 2

Cross Couutry Havboent Ntvorl

27Z. S vonL. /Ur. total 2.

Figure 13. Maximbal flow rates
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The flow paths and their maximum capacities that are

associated with the solutions of Figures 13 and 14 are :

Maximal flows without obstacles

MAXIMAL FLOWS

AIWHE flow veh/hr = 85.5
ABCFZE flow veh/hr = 81.0
AHE flow veh/hr = 78.5
AIKJHE flow veh/hr = 27.5
total flow 272.5 veh./hr.

If:
a. Four anti-tank ditches with corresponding parallel tank

bumps,
b. One standard(conventional) rectangular minefield

Maximal Flows with obstacles,
c. Four scatterable minefields,

are emplaced the maximal flows are reduced.

Maximal flows with obstacles

MAXIMAL FLOWS

ABCFZE flow veh/hr = 81.0
AHE flow veh/hr = 78.5
AIWHE flow veh/hr = 15.5
AIKJHE flow veh/hr = 6.5
total flow 181.5 veh./hr

Theorems 1 through 4 solve the problem of determining how many
steps it takes this algorithm to generate all the paths that create
a max-min cut. As outlined in Example 3, after each search step the
new edges must be placed in a sorted priority queue of current
partial search paths. The maximum number of insertions required
after each search step is emax + maxe. Each insertion requires the
checking of the lengths of at most:

1 + emax*(n - n1 - ncrit) + ((emax + maxe)*maxe - 1)*nlcrit
+ (((emax +maxe)*maxe)q --l)*(ncrit - nicrit)

partial paths {according to Theorem 2} against the lengths of the
new paths created by adding an edge onto the active search path.
Let e* = maxe + emax, and assume e* <= some constant Cl,then the
above expression is less than or equal to:

1 + ncrit* C1 2q + n*2Cl
2
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The total number of steps is then bounded by:

{i + (emax + Ipa l* (n - ncrit) +
(emax + maxe) "*(ncrit - nlcrit)} *2
[emax + maxe] * {1 +ncrit*C1 -q + n*2C12}.

This is less than or equal to:

{C1 + n*C12 +ncrit*Cl(q+2 )}{I +ncrit*C12q +n*2C12 }.

And this expression is of the order:

{n2 }*2*C 4 + ncrit * C1 (3q + 2 ) }

Theorem 5 If in designing the networks which represent the

movement possibilities, we limit ourselves to the case:

(emax +maxe)4 <= n and (emax +maxe) (3q+2) <= n2 , q<=2

then the number of steps needed to solve the maximal flow problem
is of the order of n , the number of vertices cubed.

Also, if we are not interested in generating the saturating
flow paths in priority order of increasing flow, then the partial
paths do not need to be sorted after each search step. By examining
the above expressions we see that this reduces significantly the
time the algorithm takes to compute a maximal flow.

4. Methodology for Solving the Minimal Cost Network Flow Problem

As a further benefit of the above approach, the procedures
developed can be used to solve the minimal cost network flow
problem. The minimal cost network flow problem is a generalization
of the transportation network problem in operations research. In
its formulation each edge is assumed to have a cost as well as a
flow capacity associated. In this paper in order to determine the
cost associated with a flow the following procedure is used: 1) The
flow rate on each flow path solution through the network is
multiplied by its time of traversal and the result summed over all
paths in order to obtain a total. cost associated with a given
maximum flow solution. This is the measure of effectiveness which
determines the optimality of the solution. The total cost of the
flow can then be divided by the total maximum flow to obtain an
average cost per vehicle to travel through the network. The min-
cost flow problem is then the problem of determining from all the
possible flows which realize a given network maximal flow
value,those which do it with minimal cost. This measure of
effectiveness is important in wargaming because it represents the
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amount of target exposure which is required for an offensive force
to reach its objectives. As in the shortest path algorithm
presented earlier, the algorithm that will be used to compute total
cost of the flow expands the paths at each stage in the direction
of shortest time. The resulting expanded pathlist will be sorted
on time of the routes (in the maximal flow algorithm the maximal
flow possibilities were sorted on). Only those directions in which
the maximum flow algorithm says there is either a forward edge
with positive unused flow capacity or a backward edge with
positive existing flow should be chosen. As in the maximum flow
algorithm, when the goal node is reached we proceed back to the
source and subtract the maximum flow that least cost incremental
flow route can handle(in the maximal flow algorithm, the route is
not necesarily the least cost incrementing flow).
The following theorem from Ford and Fulkerson (5], which is also

noted in Deo (3], insures that this process will generate the
optimum solution.

Theorem 6 Let f be the minimal cost flow pattern of value w from
start to finish. The flow pattern f' obtained by adding delta <=
0 to the flow in the forward edges of a minimal cost unsaturated
path, and subtracting delta from the flow in the backward edges
of the path is a minimal cost flow of value w + delta for the
original network.

The same source code predicates can be used to implement this
algorithm:

Step 1: Search for the best(minimal cost) route from
the starting to the ending node. Only search in directions in
which there is either a forward edge with positive unused flow
capacity, or a backward edge with positive existing flow. If no
such route exists, then terminate the algorithm.

Step 2: Subtract the value of that flow from the
capacity slots in the route's definition and add the flows (or
subtract the flows if going in a backward direction) along the
edges. Go to Step 1.

If we again consider the network in Example 2, it is now
possible to solve the problem of determining which of the several
maximum flow solutions costs less in the above sense.
Minimal cost flows for the same network and same vehicle/weather
conditions are shown below in Figure 15. The maximum throughput
for the minimal cost flows is the same as that which results from
the maximal flow algorithm. The paths followed to acheive this
throughput is, however, different in the minimal cost flows from
those which result from running the maximal flow algorithm. This
is to be expected since in the minimal cost case the algorithm
chooses the direction of shortest time to expand the search path.
In the maximal flow case, the algorithm chooses the direction of
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maximum flow to expand the search paths. In the list of the
minimum cost flow paths, we have included an average cost for each
flow. This is defined to be the average of the sum of the amount
of each flow path (vehicles) times the cost of it (minutes). Note
that thi average does not change much with and without the
presence of obstacles. This is because what the obstacles affect
(being employed over only a part of the network) is primarily the
maximum throughput, and not the time through the network.

MINCOST FLOWS
Minimum cost flows without obstacles

AHE flow veh/hr = 78.5 cost time(min)= 48.7
AIWHE flow veh/hr = 85.5 cost time(min)= 56.8
AIKJHE flow veh/hr = 27.5 cost time(min)= 66.2
ABDZE flow veh/hr = 66.5 cost time(min)= 67.2
ABCFGE flow veh/hr = 14.5 cost time(min)= 67.2

total flow = 272.5 veh\hr. total cost = 78.5*48.7 + 85.5*56.8 +
27.5*66.2 + 66.5*67.2 +14.5*67.2. average cost = 58.5 minutes per
vehicle

Explanation of How this Algorithm Can Be Used To Solve the
Transportation Network Problem

By the transportation network problem the following is meant:
Consider n points located on a map as origins of logistical
material. Each point has associated with it a supply of a[i] units
of the material. In addition, there are m destination points, with
each destination point requiring b[i] unit of the material.
Associated with each link in a network between the sources and the
destinations there is a unit cost of transportation and a flow
capacity. The problem is to determine the shipping pattern from
origins to destinations that minimizes the total cost under the
constraints imposed by the flow capacities on each link. By
defining n paths each with a flow capacity equal to a[i] from a
notional starting point, and m paths each with a flow capacity
equal to b[i] from the destinations to a notional ending points,
this problem can be considered as a special case of the minimal
cost network flow problem discussed in the previous section. The
algorithm given to solve that problem will in the process of
computing the maximal flow in the network just defined, produce
the minimal shipping cost solution which satisfies most of the
total requirements at the destinations. With simple modifications
to the starting requirements for the search routines the algorithm
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will produce solutions which satisfy the list of destinations in
any given prioritized sequence.

Conclusions

6. We have given definit .ons and examples of some artificial
intelligence network terminology and discussed several-ways in
which sorted priority queue depth-first searches can be used to
solve shortest path,network maximal flow, and min-cost network flow
problems. We have shown that the time bounds for these algorithms
depend on the number of critical path backtracking nodes in the
following sense: If there are no critical backtracking nodes, and
the network is directed, then there are at most (emax -1)*(n - ni)
+ 1 paths in the whole search space. If there are critical path
backtracking nodes then the number of paths is bounded by:

1 + (emax -1)*(n - nl - ncrit) + (maxe*emax -1)*nlcrit
+((maxe*emax)q -1)*(ncrit -nlcrit)

We obtained similiar expressions for the case in which the paths
can go either forward or backward along edges in the network. We
used these expressions to obtain time bounds for the total number
of steps to solve the maximal flow and min-cost flow problems.

BIBLIOGRAPHY

[1] Borlund Int., Turbo ProloQVersion 2.0.User's Guide, Scotts
Valley, CA,1988.

(2] Bratko, Ivan, Prolog ProgramminQ for Artificial Intelligence,
Addison Wesley Publishing Co, Reading, MA,1986.

[3] Deo,Narsingh, Graph Theory with Applications to Engineering
and Computer Science., Prentice Hall, Englewood Cliffs, NJ, 1974.

[4] Edmonds. J. and Karp, R. M.,"Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems," Journal for the
Association of Computing Machinery, Vol. 19, no. 2, pp.

2 48- 2 64, New
York, N.Y.

(5] Ford, L. R. and Fulkerson, D. R., Flows in Networks, Princeton
University Press, Princeton, N.J.,1962.

(6] Goldberg, A. E. and Tarjan, R. E., "A New Approach to the
Maximum-Flow Problem", Journal for the Association of Computing
Machinery, vol.35,no. 4,pp. 921-940, New York, N.Y.,1988.

608



[7] Harrell, A. W., "The Concept of Individual Vehicular and Unit
Mobility and its Effect on Wargaming", Proceedings 27th Army
Operations Research Symposium,Vol. II,pp. 3-993 to 3-1006,1988.

(8] Harrell, A. W., "The Concept of Individual Vehicular and Unit
Mobility and its Effect on Wargaming", Proceedings 56th Military
Operations Research Symposium, 1989.

[9] Harrell, A. W., "Evaluating the Effect of Off-Road Obstacles
on Unit Movement",Technical Report GL-89-4, Waterways Experiment
Station,Vicksburg, Ms., 1989.

(103 Sedgewick, Robert, Algorithms, Addison-Wesley, Reading, MA.
,1983.

[11] Sterling, Leon and Shapiro, Ehud, The Art of Prolog, The MIT
Press, Cambridge, MA.,1986.

(12] Tarjan, R. E., Data Structures and Network Algorithms, Society
for Industrial and Applied Mathematics, Philadephia, PA,1983.

(13) Winston, Patrick Henry, Artificial Intelligence 2nd ed.,
Addison Wesley, Reading, MA.,1984.

[13] ......., Lisp 2nd ed., Reading, MA.,1984.

6fl9
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ABS IAt. Computer Algebra Systems (CAS) are powerful and efficient tools that can help

with problem solving in research environments. In this paper, we outline some of the

capabilities of one particular CAS, Derive, which runs on IBM personal computers and

compatibles. The discussion includes analysis of symbolic and numeric computation and

graphic displays. Emphasis is placed on the special functions and computational modes most

beneficial to researchers. We present some of the general algorithms used by this software

package and discuss the role of CAS in solving research problems. The limitations of Derive are

presented.

INTRODUCTION. A Computer Algebra System, capable of symbolic manipulation, is a

powerful and efficient tool in a research environment. At the United States Military Academy

(USMA), every student is required to purchase Derive (distributed by Soft Warehouse, Inc) for

their use in all mathematics courses. Also, all the mathematics, science and engineering

faculty have Derive. USMA is an undergraduate institution with a student population of

approximately 4400 cadets, each of whom possesses an IBM-compatible personal computer.

Every graduate fulfills the requirements for a bachelor of science degree, with about 50%

obtaining a major or field of study in a math, science, or engineering discipline. USMA is

certainly not a research institution, but a number of both students and faculty are involved in

a myriad of research areas, often involving interaction with other Department of Defense

agencies. Derive is proving to be an extremely useful tool for both the student or faculty

researcher.

In a research environment, the most popular uses of a computer algebra system are in the

following areas:

" Solving differential equations

" Fourier transforms

" Group theory
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* Laplace transforms

" Number theory

" Calculus (including multivariable and vector)

" Linear algebra

CAPABILITIES ANT) EAMPES. Let us examine a few of these areas to see how Derive

can assist the researcher. Once the program is executed, it is possible to load one or more

utility files into the Derive window. These utility files can contain user built functions, which

can then be used for repetitive calculations. These functions supplement the functions

executed through the Derive menu or the standard in-line functions always available. Derive

itself comes with several of these files, including files for first- and second-order differential

equations, recurrence equations, probability functions and special functions such as Bessel and

Airy functions. Also included is a file containing many common physical constants and unit

conversion factors. Users can create their own files containing functions from the above files or

their own unique functions. For example, the two tables below provide a partial listing of pre-

defined functions available to solve first-order differential equations symbolically.

Function Name Purpose/Form of Equation to be Solved
FUN.LIN-CCF solves y' = q(z, y)(ax + by + k), y(xO) = yO
(q,a,b,c,x,y,x,yO)
LINFRAC solves y' = r(x, y)((ax + by + c)/(sx + ty + d)),
(ra,b,c,s,t,d,x,y,x,y) y(xO)=yO, sa-eb : 0, cd 5 0

INTEGFCTRFREEOF.X solves p(x, y) + q(x, y)y' = 0, when the
(rp,q,x,y,x0,y0) integration test is free of x and gives r
INTEGFCTRREEOFY solves p(x, y) + q(x, y)y' = 0, when the

(r,p,q,x,y,xO,yO) integration test is free of y
(similar to above)

GEN_HOM(r ,k x, yk , x0, y0) solves general homogeneous equation
y= r(x, y) = h(yxk)y/x

ALMOST-LIN solves r(x, y)y' + p(x)h(y) = q(x), y(xO) = yO

(r,h,p,q,x,y,O,yO)

CLAIRAUT helps solve the Clairaut equation
TAYODE1 (r, x, y, xO, yO) finds 4th degree Taylor-series solution to

y'= r(x, y), y(x0) = yO
PICARD(r,yprev,x,y,x0,yO) given approximate solution yprev to y' = r(x, y),

I y(AO) = yO, and finds an improved iterate

The basic commands for solving first-order differential equations
available in the utility file ODE1 and their purpose.
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Function Name Purpose
SEPARABLE(p,q,x,y,xO,yO) solves a separable differential equation,

y = p(x)q(x), y(=0) = yO
EXACT_IF_0(p,q,x,y) checks if equation p + qy' = 0 is exact
EXACT(p,q,x,y,xO,yO) solves the exact equation (above),

with y(xO) = yO
USE.NTEGFCTR solves equation with known integrating
(m,p,q,x,y,x0,y0) factor m
LINEAR1(p,q,x,y,xO,yO) solves linear equation y' + py = q,

with y(x0) = yO
BERNOULLI solves the Bernoulli equation

(p,q,k,x,y,x,yO) y' + py = qyk, with y(xO)=yo
HOMOGENEOUS.IF-FREEOFX if this returns a 0, the equation

(r,x,y) y' = r(z, y) is homogeneous
HOMOGENEOUS (r,x,y,x0 ,y0) solves the homogeneous equation

(shown above)

Other commands available in ODE1 and the form of the equation they solve.

A few practical examples should provide the necessary illumination on how these kinds of

functions can be used. Suppose we wished to solve the initial-value problem

y- - 2y' + y = 10e 2X cos(x), subject to y(O)= I and y'(0) = 2.

This is recognized as a second-order, constant coefficient, nonhomogeneous differential

equation. After loading the ODE2 file, we proceed as follows:

First, classify the nature of the homogeneous solution using the command

LIN2_RED_CCFDISC(-2,1)

The discriminant will be either positive (real, distinct roots), negative (imaginary roots), or

zero (repeated roots). In our example, the 6'zcriminant is zero, indicating repeated roots. Our

next command would then be

LIN2_REDCCF_0(-2,x)
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This would return the homogeneous solution, complete with arbitrary constants, as shown

below

@1 ex + @2 xex.

The particular solution can then be found using tae command

LIN2_COMPLETE(ex,xex,10e - 2 x cosxx)

The particular and homogeneous solutions can then be added together, and initial conditions

applied by using the command

IMPOSE_ IC2( x, f(x), 0, 1,2)

which would then yield the solution

y = lex +4xe x +( 4 cosx - 3sinx ) e - 2 x

5= 5 5

Derive can also plot this solution using either a full or split screen window.

Some other quick examples of the capabilities of Derive include the following:

The command

LAPLACE( f(t), t, s)

yields the Laplace transform of f(t). A piecewise continuous function can be constructed using

built-in functions of Derive, and then its Fourier series found by using the command

FOURIER(f(x), x, a, b, n)

where a and b specify the interval and n is the number of terms desired. Derive can solve

multiple integrals (or derivatives of any order) symbolically, and can approximate definite

integrals with an adaptive quadrature routine. Derive also has built-in commands for such

vector operations as finding the Laplacian, divergence, curl, and potential of a given vector.

Many matrix algebra functions are also included in Derive, such as computing determinants or

inverses, finding eigenvalues, or row-reducing a matrix. In short, the capabilities of Derive can

deliver the researcher from much of the tedium of "number crunching," thereby allowing
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greater time for actual research.

LIMITATIONS. Lest we come to think of Derive as being capable of performing all of our

mathematical manipulations, it is important to realize its limitations. First and foremost, it

has no programming language to do branching or iteration. There is no way to input

superscripted or subscripted variables. Derive is relatively slow at plotting graphs, especially

when plotting "out-of-range." Its three-dimensional plotting is adequate, but would be much

enhanced if contour plots could be generated. Also, there is no way to edit graphs to add such

amenities as axis labels. Perhaps the most significant shortcoming occurs when an impossible

operation is attempted. Sometimes, instead of providing some type of warning or error

message, Derive simply "does nothing," leaving the user wondering why the command was not

executed.

CONCLUSION. Despite Derive's limitations, its user-friendly interface and relatively low cost

make it an excellent aid to any researcher. The researcher with limited computation hardware

can especially appreciate its small size - the entire program, to include utility files, will fit on

a standard 51 inch floppy disk and executes on standard IBM PCs and compatibles. This is

extremely convenient for those researchers that have computers without a hard disk drive.

Finally, for students and faculty here at USMA, the availability of Derive makes it an

extremely effective tool for conducting group research projects.
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ABSTRACT. The United States Military Academy (USMA) is
fortunate to have a computer-rich educational environment.
Every student purchases a personal computer, every faculty
member has one at his or her desk, and all the departments
have mobile computers equipped with an overhead projection
device to bring the computer experience into the classroom.
Additionally, each student purchases standard software
consisting of word processing, spreadsheet, and computer
algebra systems (CAS). The challenge to the faculty is to
effectively use the available resources to enrich the
students and increase their understanding of the concepts
presented. The Department of Mathematical Sciences (D/MS)
relies heavily on CAS to take the drudgery out of the
computations and to put excitement into its courses.

1. INTRODUCTION. Prior to its foray into using CAS, D/MS
had already decided on some of its software requirements.
Minitab and Quattro would be used as statistical and
spreadsheet packages respectively, and some other software
packages, like Calculus Toolkit and the Mathematics Plotting
Program (1.2P) would be available as demonstration packages.
While these last two programs performed well, they were
limited in their scope.

In the spring of 1989, D/MS began a search for a reliable
CAS. It wanted something that was easy to use and could
integrate numerical, graphical, and analytical procedures.
Since all the cadets would be buying a copy for their own
computer, cost was important.

617



Derive, a commercial product from The Soft Warehouse was
selected as the software that best met the requirements. The
D/MS faculty began the following program to integrate CAS
into the classwork.

The first 100 copies arrived in May of 1989 and were
distributed to the math and science faculty. In June,
members of the D/MS presented a demonstration to the math,
science, and engineering faculty to let theN know the state
of CAS and to prepare them to integrate it iiw-c their
courses. As the first purchase was going to r±i the
freshman and sophomore classes, most of the engineering
faculty would have one or two years to validate our
experience and integrate it into their own disciplines.

The students received their copies of Derive in October, two
months into the academic year. Unfortunately, this was too
late in the semester to properly integrate it into the
instruction, but plans were made to do so in the second
semester. During that fall semester, the instructors were
strongly urged to utilize Derive in their classroom sessions
and many did so.

During the second semester, students in the Calculus I
course used Derive extensively in the classroom and on
homework. This was accomplished by utilizing the school's
computer labs in conjunction with pre-planned laboratory
worksheets. Other math courses used Derive on a weekly
basis and included Derive worksheets in some of their lesson
material. The Calculus I students, while not unanimous in
their opinion of CAS, gave the following comments: "Often
in the past, I wouJd give up on homework. Derive is another
alternative." "I finally figured out that Derive could help
me explain things, not just give me results." "I feel with
time I will be able to integrate Derive into my homework
work schedule."

A new core math curriculum was implemented in the fall of
1990. This caused the department to change many course
priorities and objectives to meet the new requirements of
the curriculum. The summer of 1990 was used to restructure
courses not only so that they would complement the new
curriculum, but with the specific purpose of integrating the
CAS into daily lessons.

2. OUR APPROACH. Currently, nine math courses at USMA
utilize CAS as a part of their instruction: Precalculus,
Discrete Dynamical Systems, Calculus I & II, Differential
Equations, Probability and Statistics, Multi-Variable
Calculus, Mathematical Modeling, and Numerical Analysis.
Additionally, Derive is powerful enough to be used by the
students in a variety of other mathematics, science, and
engineering courses. Its ability to evaluate integrals and
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combinations makes it ideal for checking solutions to
probability problems. Multiple integration is a challenging
problem for our students, but Derive enables students to
solve these problems without becoming mired in their
intricacies. It is also useful for checking any kind of
numerical work that involves complex calculations. The
students can do their homework assignment and then rapidly
check their work.

In the classroom, Derive is used to demonstrate ideas, solve
problems, conduct experiments, and explain results. Many
times, this is done as an introduction to the next lesson,
whereby the instructor takes the current subject and
conducts a "What if?" experiment to introduce the next
topic.

In the larger picture, CAS can help cover the entire
spectrum of mathematics; discrete-continuous, linear-
nonlinear, and deterministic-stochastic. In this way, the
CAS allows the student to do mathematical modeling and work
on more realistic problems instead of spending his time
memorizing algorithms. Thus, the student is better able to
internalize the algorithm through repeated use, instead of
memorizing it for a test and then forgetting it through lack
of use. The students are encouraged to conduct their own
numerical experiments. Changing a parameter, introducing
more terms, and exploring limits are some of the things that
a student can readily do to experience the excitement of
mathematics instead of the drudgery of computational
exercises.

Derive's graphing capability helps the student accomplish
these things and many others. Changing an expression and
seeing a different table of numbers is nice, but watching
this change occur on a graph.lets the student actually see
how the changes influence the behavior of the result. Of
equal importance is Derive's capability to use multiple
windows. This allows the student to explore different areas
while keeping the same screen setup.

The following figure shows a screen display of three
different windows; algebra, 2-D graph, and 3-D graph. If a
student wished to explore the cosine function, he or she
would do so merely by entering a new expression in Window 1
and having Derive plot the new expression. The original
cos(x) can be deleted or left on the graph for easy
comparison with the new expression.
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COS (x)

COS (x + y)

Derive is a very capable teaching tool. Students
historically have problems dealing with functions in two
variables. Using Derive, it can be shown that these
functions are accessibl . T~e following graph illustrates
the function f(x,y) = y - x in the upper right and after
cutting it with the plane z = 0 using the MAX function in
Window 3.

2 2
y -x

2 Z
MAX ( , y, - x )-_
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Similarly, the CHI function is used to introduce piecewise
functions and demonstrate discontinuities. Derive allows
the student to visualize the effects of discontinuities.
This allows the student to see what is taking place when an
algorithm indicates that a function has a discontinuity.
Derive's expression and plot for a piecewise continuous
function is shown in the following figure.

2
Ux + 9) CHI (-8, x, -3) + x CHI (-3j x, 2) (2 x- 1) CHI (2, x, 5)

Calculus functions, as are most of Derive's functions, are
reached through the menu system. Besides finding
derivatives and integrals, Derive gives the student ready
access to limits, summations, and Taylor Series. These are
useful, not only to determine numerical results, but also to
explore the functions and to discover the various attributes
of each.

Vector and matrix operations are other types of operations
that Derive will do for the student. Scalar multiples, dot
products and cross products are all at the student's
fingertips. Matrix inverses, addition, multiplication, and
finding eigenvalues are all standard operations in Derive.

The student is encouraged to use Derive in two fashions.
First, the student can perform many operations sequentially.
This helps in understanding the algorithms. Then, the
student can simply use the appropriate Derive function to
determine if the process was correct. In this way, the
students can do larger, more realistic, problems without
worrying about getting lost in the quagmire of the
individual calculations. Students are also encouraged to
use these functions any time that they have homework
assignments.
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The following figure shows the process of finding the
eigenvalues of a 4x4 matrix.

4 16 1

2 38 1

-2 1 2 -3

2 -1 8 5

4 1601

2 3 0 1

EIGE UALUES
-2 1 2 -3

2 -1 0 5

[w = 2, w = 4, w = 6]

No software package is perfect, and we would be remiss if we
did not point out some of Derive's limitations. First and
foremost is its lack of programming. However, this may
actually benefit students who need to perform step-by-step
operations to understand the concept of the algorithm.
Another area in which it falls short is its lack of a mouse
interface. While most of the commands are easy to get to,
editing a previously entered command or moving the cursor
around the 2-D graph is tedious when compared to the rest of
the program's user-friendly implementation. Another
shortcoming is its limited text formatting. All keyboard
entries, unless enclosed by quotes, are treated as variables
and therefore, entering and printing technical notation is
difficult.
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3. IMPACT AND LESSONS LEARNED: D/MS is in the process of
changing from text and algorithm oriented courses to
laboratory and problem solving courses. As these changes
are made, there is no longer an emphasis on the techniques
of mathematics, but on its concepts and applications. Just
as the advent of hand-held calculators removed interpolation
and finding square roots from our curriculum, we see the
rise of CAS replacing the classroom hours spent mastering
algorithms with time spent on the applications and concepts
of mathematics.

From the students' point of view, 55% of those who used it
during the second semester MA101 course felt that Derive was
beneficial to their understanding of the curriculum.
Interestingly, this group of students did better than the
previous year's students on a standard calculus test
administered towards the end of the semester. It takes a
conscious effort on the instructor's part to bring a CAS
into the classroom and, more importantly, to have their
students use it outside the classroom. Failure to do so
magnifies any misgivings that the student has about using
the computer as a learning tool. The solution to this
problem is to include Derive in the testing and evaluation
phase of the course.

4. CONCLUSIONS: The D/MS has made significant progress
integrating CAS in the classroom, but there is still much to
be done. The new course, Discrete Dynamical Systems, which
now begins our core math program, was designed specifically
to employ CAS to the fullest possible extent. The large
number of students taking this course, about 1150, provides
a large student population to test our new teaching
philosophy and the use of CAS in undergraduate mathematics.

623



Domain Decomposition Methods for Problems
with Uniform Local Refinement in Two Dimensions

JAMES H. BRAMBLE, RICHARD E. EWING, ROSSEN R. PARASHKEVOV,

AND JOSEPH E. PASCIAK

Abstract. In this talk, we first present a flexible mesh refinement strategy for the approxima-
tion of solutions of elliptic boundary value problems in two dimensional domains. Coupled
with this approximation scheme, we shall describe preconditioners for the resulting discrete
system of algebraic equations. These techniques lead to efficient computational procedures in
serial as well as parallel computing environments. The preconditioners are based on overlap-
ping domain decomposition and involve solving (or preconditioning) subproblems on regular
subregions. These techniques are analyzed in a forthcoming paper [2]. We present the results
of numerical experiments illustrating the preconditioning algorithms.

INTRODUCTION

To provide the required accuracy in many applications involving large scale scientific

computation, it becomes necessary to use local mesh refinement techniques. These tech-

niques allow the use of finer meshes in regions of the computational domain where the
solution exhibits large gradients. This remains practical only if efficient techniques for the

solution of the resulting discrete systems are available. In this talk, we will give a flexible

scheme for refinement as well as develop effective iterative methods for the solution of the
resulting systems of discrete equations. This was also presented at the Fourth Iternational

Symposium on Domain Decomposition Methods, Moscow, USSR, May, 1990. The analysis

for the methods discussed in this talk is given in [2].
We shall be interested in techniques for problems with refinements which are not quite

local. As an example, one might consider a front passing through a two dimensional

domain. In this case, it might be necessary to refine in the neighborhood of the front.

There are a number of ways of developing preconditioned iterative schemes for the dis-
crete systems resulting from local mesh refinement in the literature. Techniques based on
nested multilevel spaces are given in [1],[I0],[IIJ. Techniques based on domain decomposi-
tion are given in [3],[14],[15]. The analysis presented there implicitly depends on the shape
of the the refinement domain, and hence the resulting algorithms may not be as effective

with irregularly shaped refinement regions. These algorithms also require the solution of
a subproblem or preconditioner on the refinement regions. This talk will provide alterna-
tive preconditioned iterative techniques for these problems based on overlapping domain
decomposition. Our algorithms are simpler and possibly more effective when implemented
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since they often lead to preconditioning subproblems defined on either regular subregions
or topologically 'nice' meshes. The refinement region is the union of the subregions.

The proposed mesh refinement strategy is important in that it provides a basic approach
for implementing dynamic local grid refinement. An example of a refinement strategy
involves starting with a uniform coarse-grid and refining in small subregions associated
with a selected set of coarse-grid vertices. These subregions are allowed to overlap and
there are no theoretical restrictions on the resulting refinement region (the union of the
subregions). Dynamic refinement is achieved by simply dynamically changing the selected
set of coarse-grid vertices.

In addition, the technique can be integrated into existing large scale simulators without
a complete redesign of the code. This is because most of the computation involves tasks
on either the global coarse grid or the refinement grids associated with the refinement sub-
regions. Choosing the coarse and refinement grid structure to be that already used in the
code saves considerable development costs. For example, if one uses regularly structured
meshes in the coarse and refinement grids, a substantial part of the resulting algorithm
only requires operations on regular grids even though the resulting final approximation
space is not regular.

The outline of the remainder of the talk is as follows. In Section 2, we define some
preliminaries and describe the second-order elliptic problems which will be considered.
The overlapping domain decomposition algorithms for grids with partial refinement is
defined in Section 3. The theoretical estimates for the resulting preconditioned systems
(from [21) are also given there. Finally, computational aspects and the results of numerical
experiments using these preconditioning techniques are discussed in Section 4.

2. THE ELLIPTIC PROBLEM AND PRELIMINARIES

We shall be concerned with the efficient solution of discrete equations resulting from
approximation of second-order elliptic boundary value problems in a polygonal domain £1
contained in two dimensional Euclidean space R 2 . We consider the problem of approxi-
mating the solution u of

Lu = f in 1t,
(2.1)Luf n,

u = 0 on f.
Here L is given by

2 8 dv
Lv =- 1

and {a,, (x)} is a uniformly positive definite, bounded, piecewise smooth coefficient matrix
on fl. The corresponding bilinear form is denoted by A(., .) and is given by

(2.2) A(v,w) = 2 dx,
, aj, - x,

i,j j in 49 i4!

and is defined for functions v,w G HI(fl). Here H'(fl) is the Sobolev space of order one
on fl. We denote the L 2(pl) inner product by (., .). The weak solution u of (2.1) is the
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function u E H'(f1) satisfying

A(u,p') (f, ) for all P E H0(fn).

Here, H0 (11) is the subspace of functions in H1 (fl) whose traces vanish on afl.
We consider the above model problem for convenience. Many extensions of the tech-

niques to be presented are possible; for example, one could consider equations with lower-
order terms and different boundary conditions.

In this talk, we shall deal with various domains. These domains will always be open.

3. THE OVERLAPPING ALGORITHMS

In this section, we shall define iterative methods for problems with partial refinement
based on overlapping domain decomposition. We start with a coarse mesh UTr consisting
of triangles of quasi-uniform size H. The associated finite element space M0 is defined
to be the set of continuous piecewise linear functions on the coarse mesh which vanish on
anf. The interior nodes of this mesh will be denoted {xi}, for i = 1,... , Nc. The mesh
refinement is defined in terms of a number of coarse grid subdomains {flS,} for i = I,... , K.
By convention, fl is defined to be the interior of the union of the closures of the coarse
grid triangles. The refinement regions will also be referred to as "the subdomains." We
assume that they have limited overlap in that any point of S1 is contained in at most a fixed
number (not depending on H) of the subdomains. We define the domain of refinement f2"
to be the union of the subdomains, W = UK1= f. There are no theoretical restrictions
concerning the definition of the refinement subregions except that they are defined in terms
of the coarse grid triangles and satisfy the overlap property as described above.

We provide two examples of this construction. For both examples, the subregions are
associated with coarse grid nodes. For the first example, we define the region associated
with a coarse-grid node zi as the subdomain f0i which contains the coarse-grid triangles
having x i as a vertex. For the second example, we consider a mesh which is topologically
equivalent to a regular rectangular mesh (see Figure 3.1). In this case, we define Q, to be
the four quadrilaterals which share the vertex xi. Some reasons for such a choice will be
explained later. In either case, an index set I C [1,... , Nc] is selected and the domains {fli}
with i E I are used to define the refinement region. By possibly changing the numbering of
the coarse grid nodes, we assume, without loss of generality, that I = I1, 2,... , K. There
are no additional restrictions concerning this set I and hence rather complex refinement
regions are possible.

The composite space is defined in terms of a quasi-uniform mesh {r'} on Q of size h < H
which satisfies

uj'a-r c ujar.

The space of continuous piecewise linear functions with respect to this triangulation (which
vanish on afl) will be denoted by M. Note that this space is introduced for the construction
and analysis of the composite grid space. It is not used in actual computation since it has
too many degrees of freedom in n/rn. The subspace Mi associated with the subdomain
Ili is defined by

(3.1) M, = € E MJ I support 6 g Ili}.
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Figure 3.1
A distorted rectangular mesh.

The composite finite element space is then defined to be

K

M=E-'ZM.
i=O

Note that the space M provides finer grid approximation in the refinement region fr.
An illustrative example of a mesh so generated is given in Figure 3.2. The nodes on the
boundary of the refinement region which are not coarse-grid nodes are slave nodes since,
by continuity, the values of functions in M on these points are completely determined by
their values on neighboring coarse-grid nodes. The operator Ai : M, '- M, is defined for
v E M, by

(Aiv, €) = A(v,€) for all € E M,.

Our goal is to efficiently solve the composite grid problem: Given a function f E L 2 (f),
find U E M satisfying

(3.2) A(U, ) = (f, €) for all € E M.

As above, we define A: M -- M by

(Av,4) = A(v, €) for all 0 E M.

Problem (3.2) can then be rewritten as

(3.3) AU = F,
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X- Sclectcd coarse grid ilods

Figure 3.2
A composite grid.

for appropriate F E M. We will develop preconditioners for (3.3) by using overlapping

domain decomposition.

There are basically two classes of these preconditioners, the additive and multiplicative.

The additive version defines the preconditioner Ba for A of (3.3) by

KBa = Z RQ,.

i=O

Here, Q, denotes the L2 (fl) projection operator onto Mi and R, is a symmetric positive

definite operator on Mi. Explicit choices for R will be discussed later; however, we note

that it suffices to take Ri to be a preconditioner for Ai.

The multiplicative version is defined by applying the Ri consecutively. The multiplicative

preconditioner Bm applied to a function W E M is defined as follows:

(1) set Yo = 0.
(2) For i = 1,... , K + 1, define Y by

(3.4) Y, = Yi- 1 + R,-.Q 1,(W - AY-I).

(3) For i = K + 2,... ,2K + 2, define Y by

(3.5) Y, = Y-I + R 2 K+2-iQ2K+2-i(W - AY,-).

(4) Set BmW = Y2K+2.
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It is not difficult to see that Bm is a symmetric linear operator on M.

The operators Ba and B.. defined above will be effective as preconditioners A if they

satisfy the following:

(1) They are relatively inexpensive to evaluate.
(2) They lead to well conditioned linear systems.

The first criterion involves implementation issues and will be discussed later in more de-

tail. The second criterion requires that the condition numbers K(BaA) and K(BmA) be

small. In the case of the additive algorithms, this is equivalent to the existence of positive

constants co, cl satisfying

(3.6) coA(v,v) _ A(BaAv,v) cA(v,v) for all v E M,

with cl/Co small. A similar statement holds for the product algorithm.

The analysis presented in [2] requires the following hypotheses. It is assumed that there

are positive constants Co and w which do not depend on h, H or the subdomains and

satisfy

(3.7) CoA(w,w) _ A(RiAiw,w) :_ wA(w,w) for all w E Mi.

This means that the operators R, are spectrally good preconditioners for A,. For the

product algorithm, we also assume that 0 < w < 2. The following theorem is proved in

[2].
THEOREM 3. 1. Assume that there are no isolated points on the boundary of Qr. Then

the condition numbers K(BaA) and K(BA) remain bounded independently of h, H and

the choice of subdomains {f~j}.

REMARK 3. 1: The analysis given in [21 uses techniques from both the theory of overlap-

ping domain decomposition. [12],[13] as well as the standard domain decomposition theory

[5]-[8] to provide the result for the additive algorithms. The result for the multiplicative
version follows from that for the additive and the application of a general theory given in
[9.

REMARK 3.2: The hypothesis concerning isolated points on the boundary of fl is in-

cluded to provide a uniform estimate for the preconditioned systems. If '9Q' contains
isolated points then it is possible to show (cf. Remark 4.2 of 12]) that the condition num-

ber grows at most on the order of ln 2 (H/h). This sort of decay is actually seen in the last

numerical example in Section 6.

REMARK 3.3: There is very little restriction concerning the way that the domains Q,
are defined. Note that if only one refinement domain is used, then Theorem 3.1 provides

a result for the imbedded space case proposed in [3]. Alternatively, one can consider

the case where 11" is all of fl and hence M = M. In this case, Theorem 3.1 guarantees

uniform bounds for the condition numbers without putting restrictions on the shapes of

the subdomains {[1,}. Thus, for example, the subdomains can be taken to be strips as

long as the coarse problem is included.
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4. COMPUTATIONAL ASPECTS AND NUMERICAL EXAMPLES

In this section, we discuss some of the computational properties associated with the
method. In particular, we shall consider its feasibility for use in dynamic refinement
strategies. We shall also see that with this type of method, it is possible to develop highly
vectorizable and parallelizable code. Finally, we provide the results of numerical examples
illustrating the condition numbers for the preconditioned systems described earlier.

We consider the earlier discussed examples where the domain of refinement is defined by
simply selecting coarse-grid nodes and a rule for defining the refinement region associated
with a coarse node. Specifically, we consider the example where the coarse mesh is defined
from quadrilaterals and the refinement region associated with a coarse-grid vertex is defined
to be the four quadrilaterals which share the vertex. An easy way to implement this
refinement involves using vectors of unknowns with some redundancy. Associated with
each quadrilateral, we associate a vector which contains the fine-grid unknowns in the
quadrilateral and its boundary. The program is designed to operate on a data structure
which contains a coarse-grid vector and a list of fine-grid vectors corresponding to the
quadrilaterals appearing in the refinement regions. This process is controlled by a list of
pointers which connect the location of quadrilateral fine-grid vectors in this data structure
to the coarse grid node refinement regions in which they appear. A simple control structure
is also developed to handle the redundancy in the data vectors. These control structures
can be easily derived from the list of coarse-grid refinement nodes and the coarse mesh
geometry. Thus, a dynamic change in the refinement region only requires a simple (and of
negligible cost) computation of some control pointers associated with the co _:.e grid.

An advantage of the proposed approach is that it can be used to invoke refinement with-
out the use of the general data structures associated with meshes which are not regular.
One assigns a regular mesh topology to the coarse mesh and to the meshes in the refine-
ment subregions. This means that even though the composite mesh is highly irregular,
all of the problems (on M, i E I0) which need to be solved or preconditioned will be on
regular rectangular meshes. Similarly, it is possible to decompose the evaluation of the
composite grid operator into pieces which involve operator evaluation on the topologically
rectangular mesh parts. For these topologically rectangular meshes, highly efficient mod-
ules for preconditioning and operator evaluation are available for both vector and parallel
computing architectures.

We shall consider the model problem

(4.1) -AU f  in Q,

u 0 on 0fl,

where A denote the Laplacian and fl is the unit square [0, 11 x [0, 1]. To define the coarse
mesh, the domain l is first partitioned into m x m square subdomains of side length
H = 1/rn. Each smaller square is then divided into two triangles by one of the diagonals
(e.g. the diagonal which goes from the bottom left to the upper right hand corner of the
square). The coarse-grid approximation space M0 is defined to be the set of functions
which are continuous on (2, are piecewise linear with respect to the triangulation, and
vanish on afl. The space M7 is defined from a similar finer mesh of size h = H/I for some
integer I > 1.
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For our first two examples, we consider an application where it is required to refine
along the diagonal connecting the origin with the point (1, 1). Such a refinement might
be necessary if the function f has large gradients near this diagonal but is well behaved
in the remainder of fl. Accordingly, we select the coarse-grid nodes on the diagonal for
refinement. We define the refinement region associated with a refinement node to be the
four coarse mesh squares which have that node as a corner. Note that the refinement
region is highly irregular even though the coarse problem and the refinement subproblems
involve regular rectangular meshes.

We will illustrate the rate of convergence of preconditioned algorithms for solving (3.2)
where A(., .) is given by the Dirichlet form. To do this, we shall numerically compute the
largest and smallest eigenvalue (A, and A0 respectively) of the preconditioned operator
BaA. As is well known, the rate of convergence of the resulting preconditioned algorithms
can be bounded in terms of the condition number K(BGA) = \ 1/,\o. We shall not report
results for preconditioning with the product operator Bin, although our previous experience
[9] suggests that the product version will converge somewhat faster than the additive.

Table 4.1 gives the largest and smallest eigenvaiue and the condition number of the
system BaA as a function of h. In this example, we took Ri = Ai-1; i.e., we solved
exactly on the subspaces (Mi}. For Table 4.1, m = 4 and there are three refinement
subdomains (0,1/2) x (0, 1/9 (1/4,3/4) x (1/4,3/4), and (1/2,1) x (1/2,1). Note that
both the upper and lower eigen ralues appear to be tending to a limit as the ratio h/H - 0.
Similar behavior is seen in Table 4.2, which corresponds to m = 8 and uses seven smaller
refinement subregions.

Table 4.1

Condition numbers for 3 overlapping subregions

h A1  Ao K(BaA)

1/8 2.44 0.50 4.9
1/16 2.50 0.41 6.1
1/32 2.51 0.38 6.6
1/64 2.52 0.36 6.9

1/128 2.52 0.35 7.1

In almost all realistic applications, the direct solution of subproblems is much more
expensive than the evaluation of a suitable preconditioner. To illustrate the effect on the
convergence rate of the preconditioned iteration, we next consider the previous example but
with the direct solves on the subspaces replaced by multigrid preconditioners. Specifically,
we employ the V-cycle multigrid algorithm (cf. [4]) using one pre- and post-smoothing
Jacobi iteration on each grid level. This leads to a preconditioning operator R, : M, - M,
which satisfies

(4.2) 0.4A(v,v) <_ A(RAiv,v) <_ A(v,v) for all v E M,.
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Table 4.2
Condition numbers for 7 overlapping subregions

h 1  ) 0  K(BA)

1/16 2.46 0.47 5.2
1/32 2.52 0.39 6.5
1/64 2.54 0.35 7.2

1/128 2.54 0.34 7.5

The constant 0.4 above was computed numerically and holds for all of the subspace prob-
lems which are required for this application, including M 0 .

Tables 4.3 and 4.4 provide the eigenvalues and condition numbers for the above examples
when direct solves were replaced by multigrid preconditioners. Note that in all of the
reported runs, the condition number with multigrid preconditioners was at most 5/4 times
as large as that corresponding to exact solves. Such an increase in condition number is
negligible in a preconditioned iteration. In contrast, the computational time required for
the multigrid sweep is considerably less that that needed for a direct solve (especially in
more general problems with variable coefficients).

Table 4.3
Preconditioned subproblems, 8 overlapping subregions

h A, Ao K(BA)

1/8 2.37 0.53 4.5
1/16 2.12 0.33 6.4
1/32 2.07 0.27 7.6
1/64 2.04 0.25 8.2

1/128 2.02 0.24 8.4

Table 4.4
Preconditioned subproblems, 7 overlapping subregions

h AX1  Ao K(BA)

1/16 2.36 0.40 5.9
1/32 2.11 0.28 7.5
1/64 2.06 0.24 8.8

1/128 2.03 0.22 9.4
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As a final example, we consider a case where the isolated point hypothesis of Theorem
3.1 is not satisfied. Specifically, we consider a coarse mesh of size H = 1/4 and select the
four nodes with (x, y) values (1/4,1/2), (3/4,1/2), (1/2,1/4), and (1/2,3/4). The refinement
region is everything but the subsquares [0, 1/4 x [0, 1/4], [0,1/4] x [3/4,1], [3/4, 1] x [0, 1/4],
and [3/4, 1] x [3/4, 1]. Note that, to satisfy the hypotheses of the theorem, it would be
necessary to include a refinement region centered at the coarse-grid node (1/2, 1/2). Table
4.5 gives the smallest eigenvalue for the operator BaA as a function of h. The function
(.32+.361og2 (h- 1))- 2 is also provided for comparison. These results suggest that smallest
eigenvalue Ao decays as predicted by the theoretical bound C/ ln(H/h)2 (see Remark 3.2).

Table 4.5
A "bad" example in two dimensions.

h A0  (.32 + .361og 2 (h- 1))-2

1/8 .50 .51
1/16 .32 .32
1/32 .22 .22
1/64 .16 .16

1/128 .12 .12
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APPLICATIONS OF ALGEBRAIC LOGIC TO
RECURSIVE QUERY OPTIMIZATION

PAUL BROOME
U.S. ARMY BALLISTIC RESEARCH LABORATORY

ABERDEEN PROVING GROUND, MD
21005-5066
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Abstract. The book by Tarski and Givant, A Formalizagion of Set Theory Without Variables, describes
a powerful system of equational logic based on proper binary relations. This simple system is rich enough
to serve either as a specification language for describing interacting systems, a concise and flexible query
language, or a notation for program synthesis.

We consider the problem of program synthesis and introduce an operator to specify single linear recur-
sions. Equations about such recursions are chained together to give a method of query transformation that
collapses loops by rewriting. The equations hold under all interpretations and are appropriate support for
a distributed database in which each node has its own snapshot of the data. These results are part of an
effort to find a mechanism for quickly expressing and efficiently solving complex logical queries.

1. Introduction. One of the most attractive program de, !lopment methods is trans-
formational programming. This report describes the synthesis: d transformation of logical
queries. The assumptions are that

1. Queries are to be initially written as straightforward, high level specifications. More
efficient, but probably less readable, queries are derived through correctness pre-
serving transformations.

2. Functional and relational operators provide an appropriate context for specifica-
tions. They have the algebraic properties required for the transformations.

The central contribution is the application of the relation algebras and Q-systems of
Tarski[llto query optimization. The notation is attractive, as it is a convenient combination
of logic programming and functional programming. This middle ground has the express-
ibility of the former and the manipulability of the latter. Specifically, a key contribution
is an operator for linear recursions over regularly structured objects along with equations
for merging loops and propagating constraints. The objects are terms of a single binary
function symbol.

2. Motivation. Relational queries are typically straightforward, declarative expres-
sions. The nonprocedural quality of such queries is intuitive and leads to easy optimization.
However, query languages are limited in their ability to compute results. The usual repair
is to combine the query language with a procedural language resulting in a large increase
in complexity and error prone programming.

Because of their declarative nature, relational systems are appropriate for quickly and
naively formulating queries. This is important for time critical activities in which machine
efficiency is secondary to overall completion time. On the other hand, the limited power of

relational query languages has meant an inability to handle unpredictable situations or planl
for the unexpected. In other words, all the planning must have been done in the laboratory
instead of in the field.

In order to allow the customer some flexible planning ability, such a system needs
some extensibility and much safety. This extensibility is independent of concerns about
space and time requirements or accounts of storage allocation and reclamation. Freedom

of control over storage is a primary characteristic of declarative programming. Declarative
programming is a problem oriented style of programming.

Finally, software is often developed in an ad hoc fashion. The design of computational
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Symbol Meaning
A - Z variables

a - z constants or function symbols
T set of terms
S set of ground terms
B(S) set of binary relations on S
A logical and

V logical or
-' logical negation
3 existential quantifier

V universal quantifier
if and only if
equivalent to

_ defined as

(-4-) ordered couple
TABLE 1

Simmary of notation

tools usually begins with the hardware, followed by the construction of a generally useful
collection of operations, ending with (often inadequate) attempts at optimization. The
alternative approach taken here is to consider optimization first, that is, to choose the
notation so that optimization is easy. This suggests that program operations will have
many algebraic properties.

3. Preliminaries. The notation is to be interpreted both mathematically and as pro-
gram constructs with the clear understanding that the two are distinct. Within definitions
and arguments for correctness we follow an extended predicate logic £+ [1]. This system
has two important levels: a logic for program specification and an algebra for program
optimization.

Every program is specified as a relation between inputs and outputs and includes subpro-
grams specifying predicates on pairs, or as generators of pairs. Program forming operations
are operations on relations and optimization rules are equations between relations. Control
is assumed to proceed from left to right, top to bottom. Efficiency of query solution is heav-
ily dependent on both data and control. Some operations, such as negations, are delayed
until arguments are available. Transformations collapse redundant computations or reorder
to avoid delaying. The objective is to schedule relations to uniquely and efficiently generate
answers.

The theory of relations is one of the most thoroughly developed branches of logic[1-3]
The algebraic terminology categorizes a portion of the large collection of relation equations.
It also helps describe algorithms abstractly, independently of a model. The most specific
structures are relation algebras and Q-relation algebras as described in [1]. Table I is a
summary of notation.

In particular, the calculus of binary relations follows the well understood laws of Boolean
algebra. A Boolean algebra is defined as a structure (U, +, ) satisfying a set of equations
as axioms. Although there are no implicit assumptions about the underlying universe U, we
are most interested in Boolean algebras defined on B(S), the set of binary relations between
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Relation Symbol Meaning
0 empty relation
1 universal relation
R + S sum of relations
R S product of relations
R3S ordered coupler of relations
R D S relative product or composition
R complement of the relation R
R converse of a relation
R* arbitrary exponentiation of R
[RIS] relational constructor of couples
pi(D, S, C) linear recursion

id identity relation, (also written 1)

di diversity relation, 0
hd first projection, a
ti second projection, b

TABLE 2

Summary of Relations and Relation Operators

terms. The following is a sample axiomatization of a Boolean Algebra.

(1) (X + Y)+ Z- X +(Y + Z),
(2) X + Y Y + X,
(3) X _ (X+ Y) + X + T

A relation algebra (an RA) is a structure (U, +,-, ®,', id). The common language de-
scribes these operations as sum, complementation, composition, converse, and the identity.
A summary of the relation operators appears in Table 2. The following is an axiomatization
for an RA [1,4].

(4) (F +G)+ H -F +(G+ H),

(5) F + G G + F,

(6) F = (F+ G) + (T+G),
(7) F®(Go H) = (F® G)® H,

(8) (F +G)® H - FDH +Go H,
(9) F 0 id- F,

(10) F "- = F,

(11) (F +G)' F- +G-,
(12) (F D G)-" - ® F-,
(13) rDT®F®G+ -_G.

From these fundamental operations we can abstractly define other relations and rela-
tion operators. Positive, logical definitions of product F . G and the universal relation 1 are
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preferred. They are more easily implemented and constructive proofs are more intuitive.
Implementation considerations for negations such as complement and diversity di are dis-
cussed in the next section. The following are further definitions in terms of the fundamental
operations.

(14) F • G - F G,

(15) 1 Y id+' ,

(16) o L9 i

(17) di LyT.

It is easy, but tedious, to check that the following logical definitions for these relation
operators satisfy the properties of an R.A.

(18) VXY{X (F. G) Y -X F Y AX G Y},

(19) VXY{X (F+G) Y X F Y VX G Y},

(20) VXY{X (FoG) Y -3Z{X F ZAZ G Y}},

(21) VXY{X F Y - Y F X},

(22) VX{X id X},

(23) VXY{X 1 Y},
(24) VXY{X T Y - -(X F Y},

(25) VXY{X di Y -. -(X id Y}.

These operators satisfy many equations. For example, some simple properties of sum
and product are

(26) A + 0 E A,

(27) 0 + A - A,

(28) (A. B). C = A. (B.C),

(29) A- 1 = A,

(30) 1 A a A.

For any given RA = (, u, n, 0, 1), two elements a, b are called quasiprojections if
a' a C id, b'®b C id, and a'®b 1. An RA is called a Q-relatzon algebra if its operators
include quasiprojections.

These definitions say nothing about the intended realization, and their abstractness
is what makes them appropriate for describing broadly applicable program operations. In
[11 the intended interpretation is encapsulated into a membership relation E. The laws of
an RA and a Q-relation algebra hold for any definition of E, and E connects the relation
algebras with a particular universe over which the relations are to range. In an application,
the query language is the set of abstract operations and the database is E.

In particular, a Q-relation algebra defined over a nontrivial universe contains ordered
pairs or couples and the quasiprojections suggest that there are operations for selecting
components of these couples. Two such selectors over ordered couples called conjugated
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projections (or just projections) are defined and represented by hd and ti.

(31) VXY{(XIY) hd X},

(32) vxY{(XIY) ai Y}.

Note that they satisfy h&- ( hd - id, tl- U ti - id, and h&' ( tl = 1. Thus they qualify as
quasiprojections. These projections select components of ordered couples. The following
operators construct or perform related functions on couples.
(33) [FIG ] ty_ (F ( hd") - (G o tU),

(34) FOG d_ [hd 0 F1tl (D G].

The following properties hold for construction and coupling operators. They all have similar
proofs.

(35) [F + GIH] [FIHI + [GIH],
(36) (FIG+ HI [FIG]+ (FIH],
(37) [FIG].- [HIK] [(F.- H)I(G - K)],

(38) (FOG) G (H3K) (F ( H)O(G 0 K),
(39) (FO( GO W)) ( (ROS) (FOG) G (RO(W 0 S)),

(40) (F G WOG) (o (ROS) (FOG) 0 (W G ROS),
(41) (FOG)- (F"OG"),

(42) (F + G)OH (FOH + GOH),

(43) FO(G + H) (FOG + FOH),

(44) (FOG) . (HOK) = (F. H)O(G. K).

These prelimaries from the theory of relations have been studied elsewhere. Closely
related are the FP systems of Backus [51 as they also depend upon operators, particularly
composition, to form more complex programs out of simpler ones. Berghammer and Zierer
[6] have given a relation algebra semantics for FP-like languages. Mili, Desharnais, and
Mili [7] have given heuristics for the design of deterministic programs from relational equa-
tions. This paper describes a transformation system based on the operators, relations, and
equations of a Q-relation algebra.

4. A facility for definitions. The logical definitions of +, -, 9,, , hd, t1, 0, [ j], id,
and 1 (18-25) suggest an implementation with an SLDCNF-resolution[8]logic programming
system in the logic of predicates of three variables. For example, the goal 3X, Y(X R Y)
would be represented as : - p(X, R, Y). Goals are solved in left-to-right, top-to-bottom
order. SLDCNF is briefly discussed in the section on negations.

We insist that no definition introduce variables into the relation argument. Thus every
literal in the body of a program clause of the form p(X, R, Y) will contain only variables R
that were named in the clause head. Therefore if a goal is p(X, R, Y) where R is ground,
then every relation argument in every subgoal will be ground.

The expression R d S is to be read as 'R is equivalent to, but should be rewritten
as, S.' But this is represented in a logic program as the clause p(X, R, Y) : - p(X, S, Y)
which is the only clause defining R. Conjunctions are solved from left to right. The intent
is to match control with the order in which variables are bound. Therefore we partition
the arguments of a relation into two structured components, an input' and an 'output.'
Predicates of single arguments are conLeptually extended to two arguments, both of which
are the same value.
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4.1. Negations. The identity X id Y unifies terms X and Y. The diversity relation
depends on an antiunification algorithm[9]and is denoted A di B. If A and B are both
ground constants then A di B will fail or succeed depending on whether they are the same
or different constants. On the other hand, if they contain unbound variables then they are
delayed until arguments are known or output as answers if they are never known.

Terms with structure are solved recursively in a manner similar to unification. If the
two terms A and B have either different principal functors or different numbers of arguments
then antiunification succeeds without new inequality constraints. On the other hand, with
the same principal functor and, say N, arguments, diversity in any argument is enough
for antiunification to succeed. Thus possibly N new choice points are created by recursing
the algorithm on these arguments. If one of the corresponding pairs of arguments can be
determined to be different then no other alternatives need be considered as the algorithm
terminates successfully.

For example, consider the problem f(X, g(a)) di f(u, g(Y)). The two solutions (inequal-
ity constraints) are X A u and Y A a. On the other hand, the subgoal f(X, a) di f(Y, b)
succeeds with no new inequality constraints.

Negation as finite failure cannot compute the complement of a relation. The goal
3XY, X R Y is equivalent to 3XY, -'X R Y but negation by failure instead determines
-'(3XY, X R Y). Although negation as finite failure has the usual logical interpretation for
ground goals [10], in the face of transformation we cannot be assured when a variable will
be ground.

"Constructive negation" is an extension to negation by failure [8] The elements of R are
not necessarily constructed, but instead the resolution procedure is extended with inequality
constraints which are delayed until the arguments are known. If arguments are never known
then these constraints are returned as answers. Thus, solutions to nonground, negative
subgoals are constructed as a set of equations and inequations. Constructive negation has
both a clean semantics and the advantage of speeding up some computations although a
set of solutions must be finite to be complemented.

4.2. Sequences. A convenient way of sharing an input to more than one function is
with Backus' constructor functional[5]. A similar constructor operation on relations can be
defined. The ordered coupling operator creates an ordered couple as an output from a pair
of inputs in a one to one fashion. Both operations are strict. While complex structures are
made with constructors, they are taken apart with hd and tl. These are called selectors by
Backus. Selectors disassemble what the constructors and ordered couplers build.

There is a constant available to represent end of lists. Since terms are finite then hd
cannot always succeed. This implies an indivisiable constant. The symbol () will represent
this constant. A sequence of one element A will be represented as (A), that is (A1B) where
B = (. The function null tests sequences for emptiness and is an identity on (. That is,
null is just the single pair (, 0.

An associated relation to deposit this symbol into a list construction can be defined.
This empty sequencer is a constant function that ignores other domain elements, returning

the object (. This function is indicated a 3. It is defincd as [] - 1 C, null. The following

are some simple properties of null and [].

(45) [AIB] D null - 0,
(46) (AOB) 9 null 0,
(47) null ® (AOB) 0,
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(48) (D null
(49) null ® [AIB] = [null ® AInull ® B].

5. Linear recursion. The exponentiation or closure of a relation R is R repeatedly
composed with itself and is defined as R* = id + R D R*. As an illustration consider finding
the greatest common divisor of two natural numbers using subtract as defined only on that
set. Thus (315) subtract Y would fail but (513) subtract 2 succeeds.

EXAMPLE 1 Greatest common divisor

gcd A ((id + [tllhd) 0 [subtract jtj)* D (hd. tl).

A simple program can be envisioned to start with two numbers and continually subtract
the second number from the first until the numbers are the same. If necessary, it reorders
the numbers so that the largest is first. A trace of the computation on the couple (6118)
is (6118) => (1816) =* (1216) => (616) => 6. Simple exponentiation is not expressive enough
and is naturally oriented to elements without structure. Instead a linear recursion operator
is defined to extend the effect of the ordered coupler to lists and list-like structures. This
operator divides the structure into a couple with D, solves for base cases with S, then
combines the elements of a couple with C.

de]f
(50) pi(D, S, C) = S + D O (idOpi(D, S, C)) 0 C.

Arbitrary exponentiation can be included with pi as R* =_ pi([lIR], id, tl). Also, we can
define map to apply the effect of a relation to each item of a sequence. Thus for example,
the goal (2,3) map(id + subl) Y has four solutions for Y. The solutions would be Y =

{(2, 3), (2, 2), (1,3), (1,2)}. The definition is

(51) map(R) = pi(id, null, ROid).

In our relations we collect inputs into a single structured input. For example, the Prolog
goal append(A, B, C) is written as (A, B) append C. On the other hand, predicates of a
single argument become two argument, subrelations of the identity. An example is 3 odd 3.
These extensions are important because they allow us to use higher order operators with
Boolean valued relations to define new predicate operators.

All recursions that follow will be given in terms of pi. They are preliminary to the
example transformations. The next definition is the function that cumulatively concatenates
a sequence of sequences.

deL
(52) conc = pi(id, null, append).

(53) append V pi([hd 0 hdltloid], (nullOid) C, tl, id).

An item can be coupled to each element of a sequence with either distr or distl as in

[5]. These functions can be simply defined in terms of pi and the definitions expose their
inherent symmetry.

(54)distr =j pi([hdtidjlltidj, hd ® null, id).

(55) disl dTe pi([id~hdlidntl], it 0 null, id).
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To see what is happening here consider, for example, the function distr. It inputs an ordered
couple, a sequence and an item. The result is a sequence of couples each of which has the
given item as a second component. Schematically this is

((AI,-.., AN), C) distr ((A,, C), (A 2, C),", (AN, C)).

Many relations can now be concisely defined in a single expression. For example, we can
define member on a couple, an element and a sequence. Thus member is simply a predicate
(an identity) that tests the element for membership in the sequence. For example both
((3, (2,3,4)) member (3, (2,3,4))) and ((3, (5)) nonmember (3, (5))) are true.

(56) select = pi(id, hd, ti).

(57) member = [hd . (t D select)ItlI.

(58) nonmember = [hdldistl ® map((hd D di) . tl)].

The following equations characterize not only some forms of loop merging but can also
propagate constraints. Sir.ce control is left to right, constraints on search are best performed
as soon as possible. The following equation enables further propagation of constraints.

PROPOSITION I Merging recursions. If (idOid) 0 C D S2 = 0 A S D D2 G (idOid)
0 A (C ® D2 - idOid V C1 D D2 =- id)

pi(DI, S1, C ) 0 pi( D2, S2, C2) - pi(Dt, S1 0 S$2, C2).

The proof is by induction over arguments of relations. The arguments are defined on a
well founded set, ordered by D, and C2 . Each pi-term in the expression pi(DI, S1, Ci)
pi(D 2, S 2 , C 2 ) is unfolded to arrive at

(Si + Di 0 (idOpi(Dt, St, Cj)) (D C) D (S2 + D2 G (idnpi(D2 , S 2 , C2 )) C 2 )

Equations in the hypothesis eliminate the cross terms to give

S1 D S2 + D, (D (idpi(Dj, S1, C)) ® (idpi(D 2 , S 2 , C 2 )) ® C 2.

Now we can apply 38 to bring the two pi-terms together.

S 1 0 S 2 + DI ( (idOpi(D , S 1, C) 0 pi(D 2 , S 2 , C 2 )) ( C 2.

Applying the induction hypothesis we now have

S OS 2 + D, 0 (idOpi(Di,S, D S2 , C2)) ,3 C2.

Folding, we finally conclude that pi(DI, S1, C) (D pi(D 2 , S2 , C2 ) = pi(DI, S, 0 S 2 , C 2 ).
Using equations 46 and 47 we can state a useful corollary as

pi(D, S 0 null, id) O pi(id, null D T, C) - pi(D, S O null (0 T, C).

PROPOSITION 2 Propagation of constraints.
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pi(D, S, (ROid) 0 C) = pi(D 0 (ROid), S, C).

Again D must map a well founded set into lists. By induction and equation 34

pi(D, S, ( ROia) 0 C) E S + D E (idOpi(D, S, (Roid) 0 C)) (Roid) ( C
- S + DO (ROid) 0 (idt3pi(D, S, (ROid) o C)) C
= S + D G (ROid) G (idOpi(D D (ROid), S, C)) 0 C

- pi(D D (ROid), S, C).

The relation R has changed positions. Now ROid tests on the way down, before any large
structure has been built, instead of on the way back up. A simple consequence is the
equation map(F)o map(G) = map(F D G). This follows from the previous two propositions
and the fact that map(R) =- pi(id, null, ROid).

If a concatenation of sequences is required to be empty, we can avoid the concatenation
by requiring that each subsequence of the sequence be empty.

(59) conc ® null = map(null) D [ ].

This rule follows by induction from the definitions of conc, null, and map with equations
8, 49, 39, and 40.

6. Transformations. The equations developed form the foundation for a nontrivial
program synthesis that is interesting for two reasons. Primarily, it relies less on heuristics
than, for example, the Burstall and Darlington fold/unfold technique [11]. Instead it is
directed by the operator definitions and equations between relations. Therefore the method
is easily mechanized. Secondly, unlike Hogger's techniques [12], it is carried out using
relation level reasoning without resorting to object level variables. This saves symbols and
makes the derivation more concise and broadly applicable.

The sample problem has two parts. The first part finds the list intersection of two lists.
This might be an example of a library program. Library programs may well be written
efficiently for the immediate application but combinations are often inefficient. If two pro-
grams are written so that constraints are applied as early as possible, before alternatives
are created, the composition may have some constraints that are applied too late.

A programmer should not expect to be penalized with the inefficiencies of library pro-
grams. The second program exhibits this problem. It is a clear, easy to understand program
that simply tests to see if two sequences are disjoint. Using the rules developed earlier, we
remove the inefficiencies in that program.

6.1. Disjointedness as Pmpty intersection. The first part of this program finds
the intersections of two lists by distributing one list over the elements of the other, then
finding those other elements that are members of the list.

(60) list-intersect d distr D map(meriber D [hd] + nonmember 0 [])® conc.

The program disjoint determines if two lists are disjoint by simply testing for an empty
intersection. If it returns any answer at all then the two lists are disjoint. As defined, this
program is unnecessarily inefficient although it is understandable in terms of its parts.

(61) disjoint dflist-intersect D null.
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The transformation strategy applies relation equations outwards in, from left to right.
After each successful rewrite the enclosing expression is attempted before deeper optimiza-
tion is done to the subexpressions[13]. The first two recursions are within the definition
of list-intersect. Let buildone represent the expression member ® [hd] + nonmember D [].
Then,

list-intersect 0 null a distr 0 map(buildone) ® conc 0 null.

Attention is directed to the two recursions in distr 0 map(buildone) Both distr and map
are defined with pi so they are merged and simplified.

distr (D map(buildone) pi([hdClidltlOidJ, hd® null, id) D map(buildonc),
pi((hd~idltlo'id], hd® null, id) S pi(id, null, buila ne id),

pi([hdfidItlid], hd ® null, buildonenid),
pi([hdC3idltlDid] ® (buildoneOid), hd ® null, id),

pi([hdOid ® buildoneltloid ® id], hd D null, id),
pi([hdOid ® buildoneltloid], hd ® null, id).

Next, onc D null is expanded to map(null) ® [ ] which is pi(id, null, nullOid) 0 (1. Thus
list-intersect 0 null is now two recursions followed by [ 1. This is

pi([hdOid ® buildoneltlOid], hd ® null, id) D pi(id, null, nulltid) 0 [].

Once again we merge recursions and propagate constraints to obtain

list-intersect 0 null pi([hd(3id ® buildoneltlOid], hd ® null, nullOid) , [1]
pi([hdC3id ® buildoneltlOid 9 nullOid, hd ®- null, id) 0 [1]
pi([hdOid 0 buildone 0 nullltlOid C id], hd -, null, id) , [].

Now buildone is a sum, over which we can distribute null to obtain buildone 9 null
member® [hd] D null + nonmember ® [ I ® null. In addition, one branch of the sum goes
away as [hd] 0 null always fails. Therefore, we have

disjoint pi([hdOid 0 (nonmember 0 [® null)jllid ( id], hd® null, id),
pi([hdtid n (nonmember , [ ])ltlnid], hd® null, id) ,0.

This is the order in which the implemented transformation system rewrites the original
program. The mechanically derived program for disjoint tests for nonmembership before
creating large structures. When the two lists differ at their first components, the remaining
components need not be tested. For two lists of 30 elements, this program is approximately
100 times faster than the original.

This is a significant speedup, but we should note that an arbitrary amount of speedup
is possible with the converse operator. For example with sequential, left-to-right AND, the
cost of solving X (parent*)- Y is much greater than the -ost of solving .X (parent-)* for
a large family tree.

6.2. Eliminating intermediate lists. Wadler describes a deforestation method for
avoiding intermediate lists [14]. He applies it to a program to compute the sum of squares of
numbers between I and N. The method uses the unfold-fold method on recursive equations
and applies to deterministic programs. Transformations based on relation algebras extend
these techniques to nondeterministic computations in a verifiable way.

The program performs just three main steps. The program constructs a sequence from
N to 1, squares every number, and sums the sequence. The first interesting observation is
that all of these operations are described by the pi operator.
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pi([idlsubl], eqO D [1, id)®
pi(id, null, sqrOid)®
pi(id, null 0 1 0 eqO, plus).

The realization for a Q-relation algebra requires the extra relations eqO, subl, sqr, and plus.
These have the obvious definitions except that eqO is just the single pair (010).

The first two recursions can be merged, with proposition 1, and the sqr operation can
be brought forward, with proposition 2, to obtain

pi([sqrlsubl], eqO 0 [ ], id) D pi(id, null 0 1 0 eqO, plus).

Once again the two recursions can be merged to obtain the result pi([sqrlsubl], eqO, plus).

7. Conclusion. Programs can be specified as proper binary relations with projections.
Binary relations have an associated algebraic structure useful for program synthesis, verifi-
cation, and optimization. In particular, Tarski's Q-relation algebras offer a concise notation
and a firm foundation for transformational programming. The abstract relation operators
are appropriate for describing the generic constructs that often arise in programming.

This work includes the definition of a general operator pi that describes linear recursions
and gives two broadly applicable equations that merge recursions and propagate constraints.
These equations provide an equational method for reasoning and scheduling specifications
for computation.

The system based on these equations transforms program specifications so that the
result often specifies a different algorithm. This implementation shows that we can in
some cases build new programs on previously constructed ones without the usual efficiency
penalty from the combination.
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TIMES OF THE SIGNS

Moss E. Sweedler
Mathematical Sciences Institute
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Ithaca NY 14853

ABSTRACT: Evaluate a real polynomial f and its derivatives at a real number r and consider
the signs { -, 0, + } of the results. Herein lies new techniques for obtaining information from
the sequence of signs which arise. One techniques assigns a (magic) number to a sign se-
quence. Another assigns a path to a sign sequence.

INTRODUCTION: Say f is a degree n polynomial with real coefficients. We have the deriva-
tive sequence D(f) = (f, f', fw,.... f(n)) for f. For a real number r, D(f)(r) stands for the se-
quence: (f(r), f'(r), f"(r)..., f(n)(r)) and sign D(f)(r) stands for the sign sequence:
(sign f(r), sign f'(r), sign f"(r)..., sign f(n)(r)) where sign 0 is 0. Sich a sign sequence is said
to be derived from f at r. The following will be discussed in greater detail:

1 Given two real numbers r and s, how to tell from the sign sequences: sign D(f)(r) and
sign D(f)(s) if r < s. APPROXIMATE-ANSWER: Multiply adjacent signs and dot
product the result with (1,2 .... ) to obtain the Magic Numbers #sign D(f)(r) and
#sign D(f)(s). Then #sign D(f)(r) < #sign D(f)(s) if and only if r < s.

2 How to form a path through a sign triangle corresponding to a sign sequence.
3 How to tell from the paths of sign D(f)(r) and sign D(f)(s) if r < s ?
4 How the I.F'th condition relates to the [Coste-Roy] algorithm to determine from

sign D (r) and sign D(f)(s) if r < s ?
5 How path, relate to Magic Numbers?
6 How the property of paths not crossing helps determine when sign sequences arise as

sign D(f)(r) and sign D(f)(s) , i.e. from a single polynomial and its derivatives?
7 Generalizations to non-polynomial functions f.
8 Unrealizability of certain sign sequence patterns.

Proofs, further details and additional related results will be published later. Discussions with

and between Dexter Kozen and Jim Renegar got me interested in this area. The excellent arti-
cle [Coste-Roy] finished getting me hooked.

MAGIC NUMBERS: If S is a finite sequence of -'s, O's and +'s we calculate the Magic
Number #S for S as follows. Say S = (sO, s 1 , s 2 ..... Sn) where each si E { -, 0, + }. As with
counting sign changes in Sturm Sequences, the number #S depends on the sign change
transitions from si.1 to s i as i varies from 0 to n. However, how far along the transition oc-
curs, is also taken into account. #S is defined in two stages. First utS is defined as the vec-
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tor: ( s0sI SlS , s2s .... s nls n ) For multiplication purposes, - should be considered
-1 and + should be considered +1. The definition of #S is concluded as the dot product:
#S = g-S(1,2,3, ... n). Notice that the dot product weights later transitions more heavily than
early transitions.

EXAMPLE: Suppose S(r) = sign D(f)(r) where f is the polynomial X2 - 1 . The sign se-
quences derived from f at r and their Magic Numbers are given by:

range of r sign D(f)(r) #sign D(f)(r)
r<-1 (+,-,-+) -3
r=-1 (0,-,+) -2

-1 <r< (-, -, +) -1
r=0 (-,0,+) 0

0 < r < +1 (-,+,+) +1
r = +1 (0,+,-+) +2
+1 <r (+, +, +) +3

The reader might consider what sign sequences are derived from f = X2 and f = X2 + 1.

EXAMPLE: The last sign. For a polynomial f with positive leading coefficient, all sign se-
quences derived from f have + as their last (right most) sign. Similarly, all sign sequences
derived from polynomials with negative leading coefficient have - as their last sign.

EXAMPLE: Extreme left and right. For a polynomial f let sign D(f)(-oo) denote the unique
sign sequence sign D(f)(r) for r << 0 and let sign D(f)(+oo) denote the unique sign sequence
sign D(f)(r) for r >> 0. sign D(f)(-oo) consists of alternating - and + signs. Hence every
transition is (+,-) or (-,+) and #sign D(f)(-oo) reduces to the dot product
(-1, -1, ... -1) - (1,2,...,degree f). Thus #sign D(f)(-oo) = - (degree f) (1 + degree f) / 2.
sign D(f)(+oo) consists of all + signs and #sign D(f)(+oo) = (degree f) (1 + degree f) / 2.

Suppose r and s are real numbers where neither f nor any of its derivatives have a zero be-
tween r and s. Then f and all its derivatives have the same sign at r and s. I.e. sign D(f)(r) =
sign D(f)(s) and so #sign D(f)(r) = #sign D(f)(s). This shows why the hypothesis about r and
s being separated by a zero of f or one of its derivatives is needed in the following theorem. It
is also what was missing from the APPROXIMATE ANSWER at (1).

9 THEOREM: Suppose f is a real polynomial and r < s are real numbers where f or one of its
derivatives has a zero in the closed interval [r, s]. Then #sign D(f)(r) < #sign D(f)(s).

The easy proof will be published later. Impatient readers are encouraged to prove it on their
own. The theorem has a number of immediate corollaries. For flavor, here are three:

• If r < s and f or one of its derivatives has a zero in the closed interval [r, s] then
#sign D(f)(r) cannot equal #sign D(f)(s).
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" There is no real polynomial f and real numbers r and s where sign D(f)(r) does not

equal sign D(f)(s) but #sign D(f)(r) = #sign D(f)(s). (Because "sign D(f)(r) does

not equal sign D(f)(s)", implies that f or one of its derivatives must have a zero in
[r,s] or [s,r] depending whether r < s or s < r and the previous corollary applies.

" If r < s and f or one of its derivatives has a zero in the closed interval [r, s] then

sign D(f)(r) cannot equal sign D(f)(s). (This special case of Thom's theorem fol-

lows immediately from the first corollary.)

10 DERIVABILITY: One aspect of the corollaries is to describe behavior which cannot occur

among sign sequences which arise as sign D(f)(r) and sign D(f)(s). For example, the sec-

ond corollary shows that for the sign sequences (0, 0, +) and (-, 0, +) there is no quadratic

real polynomial f and real numbers r and s where: sign D(f)(r) = (0, 0, +) and sign D(f)(s) =

(-, 0, +). An interesting problem is to develop necessary and sufficient compatibility conditions

for m sign sequences to arise as sign D(f)(r 1 ) ,..., sign D(f)(rm) from a single polynomial f and

its derivatives evaluated at m points. Sets of sign sequences which arise in this fashion are

called derivable.3 We have more to say about derivability in the next section.

SIGN TRIANGLES AND PATHS: To simplify the discussion, we confine ourselves to sign se-

quences without zeros. These will give rise to piecewise linear paths in a sign triangle.4 The

sign triangle and the path corresponding to a sign sequence (rather sign column) is illustrated

below. Start at the bottom and draw a path passing through the signs coming from the sign

column. This is illustrated in:

11 EXAMPLE
sign column sign triangle with path

- + . 4.

3 They are derived from the polynomial f at the points r1 .. rm .

4 Had zeros been present, the paths would have "width". In fact, when zeros are pres-

ent, the paths tend to look like the wakes of ships and are called wakes instead of

paths.
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The illustration not only assumed that the sign column had no zeros but also that the bottom

sign was a . Had the bottom sign been a - , use a sign triangle with +'s and -'s inter-

changed.5 We are interested in paths arising from sign columns which are the transpose of
sign sequences sign D(f)(r). Such a path is simply called the path of sign D(f)(r) , glossing

over the transpose. Modulo the simplifying assumption of sign sequences not containing zero

we have:

12 THEOREM: Suppose f is a real polynomial and r < s are real numbers where f or one of

its derivatives has a zero in the closed interval [r, s]. The path of sign D(f)(r) does not cross
the path of sign D(f)(s) and at some row of the sign triangle the path of sign D(f)(r) lies strict-
ly to the left of the path of sign D(f)(s) .6

EXPLANATION: What does "paths not crossing" mean? All paths touch at the bottom of a

sign triangle and may overlap. We say that two paths cross if at some row Path1 is strictly to

the left of Path2 and at another row Path1 is strictly to the right of Path 2 . It is easy to pro-

duce examples of a real polynomial f together with real numbers r and s where the path of

sign D(f)(r) and the path of sign D(f)(s) touch and diverge at several places.

EXAMPLE: Here are the paths of sign D(X2 -1)(r) for r< -1 ,-1 <r <0,0< r< 1 ,1 <r:

(12) has stronger but similar corollaries to (9). For a while it was hoped that "paths not cross-
ing" gives a necessary and sufficient derivability condition (10). This is true for sign sequences

of length four or less. I.e. coming from polynomials of degree three or less. Bruce Anderson

produced an example of a set of sign sequences of length five whose paths do not cross but

are not derived from any degree four real polynomial. He is working on an example of sign se-

quences of length six whose paths do not cross and yet are not derived from any real valued

function together with five successive derivatives. Carl de Boor has suggested the name
"higher-order Rolle's theorem" for certain theorems which describe collections of sign se-

quences whose paths do not cross - i.e. are allowed by Rolle's Theorem - but are not deriv-

able.

5 Actually, the +'s and -'s in the triangle are not really needed to construct the path

once one observes that the rule is: diagonally up to the right when the sign stays the

same and diagonally up to the left when the sign changes.

6 Carl DeBoor views this as a graphic way to express Rolle's theorem.
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The first algorithm to determine the relative size of r and s from the sign sequences sign D(f)(r)
and sign D(f)(s) appears in [Coste-Roy]. Translated into our path-language their algorithm 7

can be described as follows:

All paths touch at the bottom vertex of the sign triangle and never cross.
To determine which of two paths lies to the left of the other

1. Start from the bottom of both paths and proceed upward row by row of the sign
triangle.

2. At the row where one path diverges to the left, that path corresponds to the
smaller of r and s.

GENERIC BEHAVIOR: Conceptually one may think of zeros between the '-'s and ' 's in each
row of the sign triangle. If rows of sign triangles are numbered from bottom to top the rows are
the generic sign behavior of polynomial functions - with positive leading coefficient - of the cor-
responding degree:

13 EXAMPLE
row generic behavior of function

5 0 + 0 0 + 0 -0

4 + 0 -0 0 -0 +

3 0 + 0 -0.

2 + 0 -0 +

1 0 +

0 +

Not only are we seeing the generic sign behavior of functions of each degree, assuming each
function is the derivative of the one above, the signs are appropriately located left to right. For
functions or derivatives with multiple roots, it is useful to collapse parts of rows of the sign tri-
angle corresponding to the multiple roots.

SURPRISING APPLICATION OF PATHS: One may sometimes determine relative magnitude
of functional values from sign sequences.8 This is true (on the rare occasions) when the paths
of two distinct sign sequences coincide in the top row of the sign triangle and one row below.9

For example, suppose f is a real polynomial, r and s are real numbers and:

sign D(f)(r) = ( +, +, , +, +, +,-, +,-, + ) sign D(f)(s) = ( +, +,-, +,-, +, +, +, +, +

7 In the special case where neither sign sequence has a zero.

8 We ignore the trivial case where two sign sequences begin with different signs.

9 Presumably this is part of a more encompassing theory or technique. Unfortunately,

the big picture is a mystery.
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From paths or Magic Numbers we see that r lies to the left of s. Since both sign sequences
begin with +, we see that both f(r) and f(s) are positive. Surprisingly, one can conclude from
the sign sequences that 1(r) < i(s). The reasoning goes as follows.

Since sign D(f)(r) contains no zeros, one may move r a small amount to the right or left
and keep the same sign sequence but vary the height of f(r) slightly. Thus we may as-
sume that f(r) does not equal f(s). Suppose f(r) > f(s). Choose a constant c where:
f(r) > c > f(s) and let g = f - c. The successive derivatives of g are the same as the suc-
cessive derivatives of f. By choice of c, g(r) > 0 and g(s) < 0. Thus

sign D(g)(r) = ( +, +, +, +, +, +, -, +, -, + ) sign D(g)(s) = ( -, +, -, +, -, +, +, +, +, +

I.e. the sign sequences for f and g agree except the initial + in sign D(f)(s) has been
changed to a -. This is a contradiction, because these paths of sign D(g)(r) and
sign D(g)(s) cross. Hence, f(r) < f(s).

By considering similar but much lower degree examples, one can easily reason - without using
paths - that f(r) < f(s) or vice-verse. Presumably the same type of reasoning on a larger scale
could be applied to the example above.

PATHS and MAGIC NUMBERS: The Magic Number results may be proved directly or from
sign triangles by introducing numbers to accompany the signs within the sign triangle. A path
will give rise to a column or vector of numbers which allows one to translate geometric path
results into Magic Number results. The key idea is numbering sign triangles as indicated in:

+:-6 -:.4 +:-2 -:0 +:2 -:4 +:6

-:-5 +:-3 .:-1 +:1 -:3 +:5

+:-4 -:-2 +:0 -:2 +:4

-:.3 +:-1 -:1 +:3
+:-2 -:0 +:2

:-1 +:1

+:0

BEYOND POLYNOMIALS: Lawrence D. Brown has shown sign sequence and path results
may be applied to non-polynomial functions. See the examples below. This led to an abstract
formulation of the functions which may be used in place of successive derivatives and opened
up the field to rational functions, fractional exponents and other functions. Here is an informal
sketch.

Instead of the sequence of functions (f, f', f", ... ) consider a sequence of real functions

(f f .... I ft ) which are continuous on an open interval (a,b) where:
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14 DEFINITION:
1. Each fi only has a finite number of zeros in (a,b).
2. It has no zeros in (a,b).
3. For p in (a,b), if fi(P) = 0 then

a. fi(P+) and fi+j (p+) have the same sign and
b. fi(P-) and fi+l (p-) have opposite signs.

If you wish to try an example, draw a random ft with no zeros in (a,b). You will see that ft-1

can have at most one zero in (a,b). By induction, ft-i can have at most i zeros on (a,b).

For p in (a,b) the sign sequence at p is: ( sign f0 (p), sign f1 (p), ... , ft( p)) and is denoted

SS(p). Let S be the union of all the zeros of the fi's in (a,b). S is finite and splits up (a,b) into

open intervals. For r and s in the same open interval: SS(r) = SS(s) , as before. In fact, when

you substitute SS(r) for sign D(f)(r) and #SS(r) for #sign D(f)(r), the theory - as pertains to

relative magnitude of r and s - is the same Magic Number-wise and path through sign triangle-

wise. For example, paths do not cross and for r and s which are not in the same open inter-

val: r < s if and only if the path of SS(r) is to the left of the path of SS(s).

15 EXAMPLE: Let f0 = f / g where f is a degree n polynomial and g is continuous. Let (a,b)

be an open interval where g has no roots. Assume g is positive on (a,b). The sequence of

functions: f0 = f/g, fl = f', f2 = f"' ' fn = f(n) satisfy (14).

16 EXAMPLE: On the interval (0, oo) the sequence: f = -X1 3 , fi =3X - 2X 1 6

f2 
= 6X1/6" 2, f3 

= 6 satisfies (14).

The key to (16) is the following. Use "o" for composition of functions. Suppose f0 = fog where

f is a degree n polynomial and g is continuous and increasing on (a,b). The sequence of func-
tions is: f0 = fog '  f'og, f2 = f"og .... fn = f(n)°g Using f=Z 3 -Z2 and g=X1/6 gives

(16).

FINAL REMARKS: The following issues are under consideration.

Generalization of the above work to complex polynomials and generalization to functions from

Rn to Rn. In the complex case, argument replaces sign.

Certain functional transformations do not change the set of sign sequences derived from a

polynomial. More specifically, suppose f(X) is a real polynomial. Replace f by

g(X) = af( bX - c ) for real numbers a, b and c with a, b > 0. Since sign D(g)( (p+c)/b) =

sign D(f)(p) , the same sign sequences are derived from f and g but with different transition

points from one sign sequence to the next. 10 What other functional transformations preserve

sign sequences in this sense? The full set of such transformations forms a group under com-

position.

10 The Magic Numbers of the sign sequences show that if the same sign sequences

are derived from f and g, they occur in the same order.
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It would be interesting to find normal form representatives for sets of sign sequences which
can be derived from a function. Here one is looking for a collection of polynomials (the hf's)
where for each polynomial f there is an hf such that the same sign sequences are derived from
f and hf. Moreover if the same sign sequences are derived from f and g then hf = h.9. hf is
the normal form of (the sign sequences derived from) f. One wants an algorithm to find hf from
f or from the set of sign sequences derived from f.

In the formulation of the Magic Number, (1,2,3, ... n) is dotted with p.S. If (1,2,3, ... n) is re-
placed by a different increasing sequence of positive numbers, #S is changed, but (9) still
holds. This easily comes out of the numbered sign triangles mentioned at (PATHS and
MAGIC NUMBERS) above. Given a derivable set of sign sequences S, can one derive S from
a polynomial f and find an increasing sequence of positive numbers to replace (1,2,3, ... n) so
that for each sign sequence S in S, S is derived from f at #S, i.e.: S = sign D(f)(#S) ?

REFERENCE: M.Coste, M.F.Roy 1988 Thom's lemma, the coding of real algebraic numbers
and the computation of the topology of semi-algebraic sets. J. Sym. Comp. 5 121-129.

656



GEOMETRIC MODELS FOR DEVELOPABLE AND MINIMAL SURFACES

T. F. Chen, G. J. Fix, R. Kannan

Department of Mathematics

University of Texas at Arlington

Arlington, Texas 76019

Abstract.

Computational geometry is a relatively new and unusual subject in the sense that its

orientation is quite applied in nature, yet it makes heavy use of pure mathematics, notably algebraic

and differential geometry. The technological importance of geometric models has increased in recent

years. Indeed, the major bottleneck in developing effective computer aided design (CAD) software has

centered around geometry and a range of issues associated with computer vision. In addition,

computational geometry is finding wide applications in the computer graphics industry. In this paper

we summarize the results for selected problems in this area associated with developable and minimal

surfaces.

I. The Two Curve Problem for Developable Surfaces.

Developable surfaces are defined as regular surfaces with zero Gaussian curvature ([1]-[2]). As

such they are locally isometric to planar regions; i.e., they can be obtained from planes by bending

(which preserves arc length and angles). Their technological importance arises from this property.

Indeed, more surfaces constructed using composite materials will fall into this category ([3]).

A problem of interest in design is in the following. Given two spatial curves 5(-), 3(-) find a

developable surface I connecting these curves. We shall consider solutions within a subclass of all

developable surfaces. In particular, we shall consider surfaces I which consist exclusively of parabolic

points, i.e., surfaces where only one of the two principal curvatures vanish.

It is known ([1], [2], [4]) that such surfaces are ruled, and admit a parameterization of the form

as u, v vary over open sets of the reals R. For a surface of the form (1) t-) be a developable (i.e., have
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zero Gaussian curvature) it is necessary and sufficient that the tangent a to the generating curve 5,

the tangent W4 to the rulings Z:(.), and the ruling itself be coplanar. This condition can be written

where [.,., .] is the standard box product. The two curve problems can be stated in this context as

seeking a function v(u) for which

(3) ((5)+(P

as u varies over its parameter range.

Weiss and Furtner [5] has proposed an interactive searching algorithm to solve this problem.

Their idea was to construct the developable by rulings (lines). The criteria is to connect a point

50--5(uo) on the a - curve to a point 0 =(v 0 ) on the fl-curve if the two tangents 4o=3(vo),

a 0a(u 0 ) and the displacement vector 30-50 are coplanar; i.e.,

(4) D, 5, &o- =0.

Using a graphics terminal, one traces say the a-curve searching at each step for an appropriate

connection to the O-curve.

There are cases where (4) may not hold any point pairs 5(u 0 ), f(v 0 ). This is for example the

case when 5(.) is a circle and 3(.) is a line through the center of the circle. This example also shows

that the two circle problem itself may not have a solution. In other cases, (4) may be very hard to

verify at a large number of points.

To develop an alternative to this approach a dynamical algorithm was developed in reference

[6] for the function v(u). In particular, it was shown that this function satisfied the nonlinear ordinary

differential equation

where 3 and its derivatives are evaluated at v(u) and 5 and its derivatives are evaluated at u. From

this system a number of conclusions can be drawn. First, a condition like (4) is needed at least at one

point pair a 0 , 0 0. This serves are initial conditions for the system. If (4) holds nowhere, then
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obviously a connecting developable does not exist as the line, circle cited above indicates. Also since

(5) is nonlinear local existence and uniqueness is assured only if (4) holds at some point.

T-, illustrate the algorithm for a few cases consider first the problem of connecting a circle and

an ellipse 4', with a developable. In this case u is taken as the arc length of a, and an elementary

analysis shows that a global solution v(u) exists for (4), (5)(u o = 0), and that

(6) 6(L) = 0(0),

where L is the total arc length of &. To construct the associated developable surface, the ordinary

differential equation (5) was integrated from t - 0 to t - L with fourth order explicit Runga-Kutta

rule. The results are shown in Figure 1.

FIGURE 1
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The next example consists of a circle 5 and a three leaf curve 4. Again a periodic solution v(u)

is obtained with the period equal to the total arc length of the circle &. The results are shown in

Figure 2.

'IL

FIGURE 2

The developable joining q and 13 may not in general connect each point of 0 to a point on 5.

Such a situation is shown in Figure 3. In this case the global solution v(u) does not take on the full

parameter range for /(v). Results are shown in Figure 3.
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FIGURE 3

A finite time blow up in (5) could occur. This will happen for example as an inflection point

3(v(ul)) of the 2-curve (i.e. 3=0 at this point), If i{ul) is not an inflection point for the ,-curve

then the dynamical system (5) can be reformulated with ui as a function of v, and continued past the

inflection point in the 3-curve.

Current research is dealing with a rational treatment of singularities which occur in either the

ti-curve or the X-curve. Such situations are common in practice and correspond to edges or corners of

the object to be designed. In reference [6] preliminary results using conic kofting techniques (see also

[71-[8]) are presented.
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II. Grid Refinement and Nonlinear SOR Techniques Applied to the Minimal Surface Problem.

Numerical methods for the Plateau problem have been dealt with by either a combination of

variational and finite difference methods or by a finite element method with appropriate restrictions on

the existence of double points when projected on a plane. In all of these approaches the basic idea is

always to take advantage of the strict convexity of the associated variational formulation in solving the

discrete problem. Some references to these ideas may be seen in [1-4]. However one of the basic

problems that remains to be formally studied is in proper choice of the iterative process to solve the

discrete system of equations and/or proper selection of the grid points. As an example, one of the

common features of all the above referred papers is to use a SOR-type iterative process with an

arbitrary choice of the relaxation parameter. This leads to a trial and error approach to the choice of a

relaxation parameter for the entire iterative process. The second remark that concerns the above

mentioned papers is that not much emphasis is placed on locating the grid points. We have attempted

with considerable success both of these aspects in this paper.

In order to illustrate the ideas we restrict ourselves to a typical example studied by most of the

authors, namely, the catenoid. Thus let Y _1) cosh [a(x-c)], 0 < x < 1. The constants a and c
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are to be determined by the associated boundary conditions. If one rotates the graph of Y=f(x) we

get a catenoid. Let us set Y (0)=Y (1)--A, where A is a constant. Then c=0.5 and the constant

"a" is determined by the equation cosh ( )=aA. The critical value of A such that the equation has

no real solutions for A below this value is 0.75444. In fact, one can see that as A goes from 0.7 to

0.755 in the approach of [2], the number of iterations goes from 462 to 3448.

Before we present some of the numerical results we outline the iterative process used. Thus, if

O:RN -*R be thestrictly convex functional corresponding to the discrete problem the iterative sequence

is defined by:

Given { 1}, j=1, 2,*--, k . Let Yk be such that

i) 4('k )=(x k )
ii) xk =yk,jit, ik is any integer between 1 and N.

'ik '3 ikk

x + l =xk +-"rk (-k t -xkk

where rk E(0, 1). 1k k 1k 1k

Some of the numerical results are presented below. The advantage of grid refinement can be

easily seen by the performance of the algorithm even when we approach the critical value of A.
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TABLE LOR NONLINEAR =O AN REFINEMENT

Table 1. Numerical solution vs. exact solution with relaxation parameter r=0.85 and boundary data

y(O)=y(1)=1.

x 0.20 0.30 0.40 0.50 0.60 0.70 0.80

nite difference(25) 0.90305 0.87294 0.85473 0.84828 0.85363 0.87097 0.90070

finite element(25) 0.90208 0.87222 0.85445 0.84856 0.85445 0.87221 0.90208

(exact 1 0.90194 0.87202 0.85424 0.84834 0.85424 0.87202 0.90194

Table 2. Finite difference solution with relaxation parameter r=0.85, and boundary data

y(O)=y(1)=0.78.

a) uniform grid

x 0.20 0.30 0.40 0.50 0.60 0.70 0.80

ra=0.7 8 (s3) 0.61075 0.55527 0.51888 0.50159 0.50392 0.52723 0.57440

exact 0.60955 0.56005 0.53083 0.52121 0.53083 0.56005 0.60995

b) nonuniform grid

x 0.16216 0.27477 0.38739 0.50000 0.61261 0.72523 0.83784

ra=O. 7 8 (25) 0.63754 0.57542 0.53633 0.52042 0.52864 0.56336 0.62986

exact 0.63458 0.57063 0.53342 0.52121 0.53342 0.57063 0.63456

Table 3. Finite difference solution with relaxation parameter r=0.85, nonuniform grid,

and boundary data y(O)=y(l)=ra.

x 0.11789 0.21695 0.35848 0.50000 0.64152 0.78305 0.88211

ra=0.7 56 (so) 0.61498 0.53693 0.47169 0.44699 0.46675 0.54367 0.62832

ra=0.7 5 5(52) 0.61152 0.53226 0.46594 0.44061 0.46034 0.53846 0.62486

exact(ra=0.756) 0.61658 0.53417 0.46289 0.43993 0.46289 0.53417 0.61658

exact(ra=0.755) 0.61149 0.52692 0.45393 0.43046 0.45393 0.52692 0.61149
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Table 4. Finite element solution with relaxation parameter r=0.85 and boundary data

y(O)=y(l)=ra.

x 0.20 0.30 0.40 0.50 0.60 0.70 0.80

ra=0.7 8(21) 0.61121 0.56166 0.53261 0.52305 0.53262 0.56165 0.61123

ra=0.77(27) 0.59141 0.53926 0.50880 0.49878 0.50879 0.53923 0.59135

ra=0.7 6 (42) 0.56672 0.51084 0.47829 0.46757 0.47827 0.51085 0.56670

ra=0.7 56 (49) 0.55356 0.49532 0.46149 0.45039 0.46145 0.49527 0.55350

ra=0.755(55) 0.54941 0.49035 0.45610 0.44487 0.45608 0.49033 0.54935

Table 5. Exact solution for boundary data y(O)=y(1)=ra.

x 0.20 0.30 0.40 0.50 0.60 0.70 0.80

ra=0. 7 8  0.60995 0.56005 0.53083 0.52120 0.53083 0.56005 0.60995

ra=0.7 7  0.58931 0.53663 0.50586 0.49574 0.50586 0.5363 0.58931

ra=0.7 6  0.56279 0.50588 0.47276 0.46190 0.47276 0.50588 0.56279

ra=0. 7 56  0.54625 0.48618 0.45135 0.43993 0.45135 0.48618 0.54625

ra=0. 7 55  0.53930 0.47776 0.44212 0.43046 0.44212 0.47776 0.53930

Table 6. Finite element solution for boundary data y(O)=y(l)=0.755, r=0.85, nonuniform grid.

x 0.18153 0.28769 0.39384 0.50000 0.60616 0.71231 0.81847

finite element(52) 0.56315 0.49624 0.45751 0.44481 0.45745 0.49614 0.56307

exact 0.55374 0.48389 0.44361 0.43046 0.44361 0.48389 0.55374
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Abstract

In 1985 the author introduced the Functional Binary Decomposition (FBD)
algorithm, FBDR - FBDT. Applied to a raster formatted spatial representation, these
functions generate a set of 8-connected, 1-element regions which are provably robust.
In 1987 the author developed the straight line path algorithm which uses this
representation to solve spatial problems. Recently the author developed a temporal
problem solver which also uses this representation. These algorithms, and others,
have been developed in-house at the CECOM Center for Signals Warfare (C2SW) as
part of an ongoing research effort to develop an automated system which will assist
the U.S. Army Division/CORPS Intelligence Officer (G2) during his preparation of a
tactical situation assessment (TSA).

During the TSA process the G2 attempts to recognize observed, ongoing enemy
tactical plans. Fortunately, finite domain plan theory is well formulated. David
Chapman, however, has shown (1987) that finite domain planning which permits
action-domain modification is, although domain independent and logically
consistent, undecidable. For real-world (infinite) domains, Chapman has relaxed the
domain independence requirement and has conjectured that planners must
instantiate local truth criteria to achieve (piece-wise) global logical consistency.
Chubb (1989), however, has shown that such criteria can not exist and that
furthermore the real-world planner is incapable of reliably recognizing such criteria
if it did exist. Chubb has conjectured that real-world planners make special
circumscription and invariance assumptions while constructing real-world plans. It
is shown that these assumptions form the basis for the FBDR- FBDT representation.
This representation is then generalized to an N-dimensional form capable of
representing conjunctive plans. A conjunctive form (CFBD) of the N-dimensional
representation is next developed and spatial and temporal problem solutions
generated using both the N-dimensional and CFBD representations are shown to be
equivalent. A simple Army logistics problem is developed using two CFBD
representations. Preliminary experimental results suggest that optimal tactical
plans are ones which are maximally robust with minimal associated plan execution
cost.
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Introduction

Since 1984 the U.S. Army CECOM Center for Signals Warfare (C2SW) has been ac-
tively involved in the research and development of a body of mathematics which
would be used to provide automated assistance to the Army division/CORPS Intelli-
gence Officer (G2) during his preparation of a tactical situation assessment (TSA)
4,9,11,121. The Army TSA consists of two major components: an Order of Battle

(OB) and a threat assessment, or threat; the two are closely related. The OB is d de-
scription of WHAT enemy forces and equipment are present within the tactical do-
main of interest and WHERE they are located. The threat assessment describes
WHY the enemy has his OB so configured. Early on in this research effort we noted
that during the preparation of the TSA the G2 is attempting to recognize ongoing en-
emy plans. Since accurate plan generation and plan recognition capabilities form the
basis for effective command and control, albeit military or otherwise, the develop-
ment of accurate and efficient planning algorithms has become a research topic of
considerable interest [1,2,3,4,8,10,13,14,15,161.

Plan generation algorithms may be classified by the rank of the planning domain,
i.e., finite or infinite. Several finite domain plan generation algorithms e <ist
[1,2,8,10,14,15,161 and finite domain planning appears to be well understood. How-
ever, the extensibility of such techniques to infinite domains continues to be a re-
search topic. Recently, D. Chapman [21 proved that nonlinear planning within finite
domains which includes representations for conditional actions, dependency of effects
upon input situations, or derived side effects is undecidable. A paradox central to any
formal theory of infinite domain plan generation and recognition is how humans gen-
erate or recognize real-world plans. hapman and Agre [1,21 have conjectured that
the plan domain independence criteria be relaxed and that plan logical consistency be
assured locally by subsumption of domain specific truth criteria, a type of circum-
scription. Chubb, however, has shown [3,41 that, with the possible exception of finite
domains, the existence of such criteria can not be verified a prior by the planner.
Chapman and others [1,21 have suggested that real-world planners improvise, doing
something easy and observing results. This heuristic, however, begs the question;
what discriminator is used by the planner to discern "easy" from "difficult" plans
since the criteria necessary to demonstrate plan admissibility within infinite do-
mains neither exists nor can be recognized? As a result, Chubb [3,41 has conjectured
that real-world planners must assume the following,

C-1 (circumscription): prior to plan action execution the planner is aware of all of the
domain features and associated values which may effect the desired plan action
execution, and,

C-2 (invariance): during the plan action execution the domain will remain essentially
invariant for a period of time sufficient to realize the expected value of the planner's
executed plan action.

Conjectures C-1 and C-2 are logically equivalent to Rao and Foo's [141 Axiom of Sim-
ple Actions. We will show that C-1 and C-2 form the basis for a semantic spatial re-
presentation called a Functional Binary Decomposition (FBD which is used to solve
spatial and temporal problems similar to those considered by the G2 during his prep-
aration of the TSA. The mathematical foundations for the FBD are introduced in
Section I. A generalized N-dimensional FBD called a Conjunctive FBD (CFBD) is
described in Section II, and an example of its usage is given in Section III.
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I. A Planning Paradigm

A plan, P, is defined as a time-ordered sequence of plan actions, AL, i = 1, .... n, where
each action is executed by a plan actor, AC, within some planning domain context,
Ci. Each actor-action-context expression, {AC, A, Cli, is called a plan tuple. That is,

P = {{AC, A, C}, ...., {AC, A, C}} (1)

where n >0. Each plan tuple is a description of the actor/action/context prior to the
initiation of the action by the actor. Actions are executed by the plan actor within
domain contexts which contain features which makes the initiation of the action
possible. Action execution transforms the domain context expression into a new
context expression wherein a new plan action may be executed.

The plan tuple domain context expression, Ci, is represented by a finite set of feature
tuples, {{fj1 , vf1,x }, ..., {fqr t, vfa r t}}. Each tuple expression contains a feature type
designatoerYeature value vf t Feature subscripts represent
the feature type and spatial location within Ci. For e aurposes of this paper, we as-
sume that Ci is syntactically represented as a raster-formatted matrix of pixels, c.,
x,y = 1, ..., m. The spatial location portion of fq r t refers to the physical location witLh-
in Ci represented by the pixel crt. Successful jfans result in the development of an
Cn + 1 context expression which contains the desired plan goal, G, i.e., G 'Cn + I.

Plan Action Execution

Plan action execution is the actor's reasoned manipulation of domain context and is
described by the plan tuple execution function, E. Let C = {{fg, vfk}lv g,k}, the set of all
possible context feature types and values.

Definition: If P is a plan and {AC,A,C}, E P, for i= 1 .... n, then E is a mapping from (AC,A,C, E P to
the elements of P(C), the power set of C.

By C-1, for each {AC, A, C 1 E P, there exists some subset, P i ( P(C), where (presum-
ably) Pi C C i, such that if {fqr,t, vf ,r,t) E Pi, then {fq,rt, Vfq r t} effects the admissibil-
ity of E{AC, A, Cli. Note that by i-I, E{AC, A, C}i, = E{fAC, A, Pl}. Fortunately,
the tuple {AC, A, P}Li is known and understood for a variety of military contexts. In
particular, for military equipment (e.g., AC = military tank) the elements of P, are
known a priori since during the production and testing of the actor (tank), a variety of
actor actions (movement, target location, firing, etc) are tested under strictly con-
trolled (Pi) environmental conditions. For most military equipment, the relationship
between AC, Ai and P3i has been documented and is readily available(71. Then, giv-
en a {AC, A}i, the value of Pi can be predicted a priori and may be written as a Bool-
ean expression in terms of the feature tuples, {fr, vfr} belonging to each cxy E CL, i.e.,
{{fi, vfj} A -{fg, Vfg} A {{fk, vfk} V {fr, vfr}} .... V - {fp, vfp}}.

Functional Binary Decomposition

This Boolean expression is called a Functional Binary Decomposition
transformation (FBDT). If FBDT is used as a criteria for actor action execution
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admissibility, it is a mapping from C5 to the binary set {0,1}. That is, given some

{AC, A}h,

FBDI(cy) - {0,1} (2)

for every c.y E Ci.

For spatial and temporal problem solving the FBD transformation of Cj is given the
following properties:

1) FBDT(cxy) = 0 = action execution admissible,
2) FBD'(cy) = 1 = action execution not admissible,
3) 0-element pixels are 4-connected, and,
4) 1-element pixels are 8-connected.

An FBD transformed Ci may be represented in terms of it's 1-elements, i.e.,
FBDrcxy) = 1. Every path-connected set of 1 -elements is called an obstacle region or
region and is characterized by the FBD representation (FBDR). Region characteriza-
tion consists of the region's boundary list, adherent list, boundary cut points, and inte-
rior points for simply connected regions. Multiply-connected (MC) regions are also
characterized by their MC-boundary lists, MC-adherent lists, and MC-boundary cut
points, i.e., see Figure 1.

Intr PoWnI

e s os arcPot n

where fbd~ is th ith 1-element eiosprovab robut[].RpesnaioaSo

Cut Points

W8'U Pnts

A multiply-connected region and it's associated FBD characterization.

Figure 1.

The set of domain 1 -elements so characterized,

FBDR o FBDT(Cj) - {fbdi, fbd2 .... fbdkl (3)

where fbdi is the ith 1-element region, is provably robust [6]. Representational ro-
bustness is especially important during tactical situations when spatial features may
change quickly and abruptly.

The FBD7%Ci) binary representation is a semantic representation of action execution
admissibility. This representation, in keeping with C-1 and C-2, represents the cou-
plin between the execution of an action and the action execution domain for a (possi-

ly short) period of time.
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II. Problem Solving Using FBDR 0 FBDICi)

We will assume that for those actions of interest to the G2, E(AC, A, Cli will involve
spatial movement or change. Obviously, temporal change occurs during action ex-
ecution. Even the execution of the "wait" or no-action" action involves temporal
change. The FBD representation in (3) will be used to solve spatial problems, while a
variant of this representation is used to solve temporal problems.

A spatial problem is a hypothesis about the spatial movement required during
E{AC, A, C}h. Action execution begins spatially and temporally at the actor's spatial
location prior to action execution, i.e., some cxy ( Ci. At the conclusion of the action
execution the actor is hypothesized to be spatially located at one or more goal posi-
tions, {grs, ..., gkhl.

Definition: A spatial problem.(c~, grI), is satisfied or solved if and only if there exists a 4-connected,
O-element path. P(c,,,, gs), between the O-element pixels cyand grs such that every element of P(crxy.
gJ is an element of FBDT(C). Pixels cxy. and g, are path-connected in FBDT(C,)

Problem goals may be specified as either disjunctive or conjunctive, e.g., P(cxy, {gkh A
grs}) requires that both P(cxy, gkh) and P(cxy, grs) be satisfied.

If we assume that the time required for action execution is minimal (i.e., C-2), then a
type of spatial problem solving technique is to find one or more paths between 0-
element points. Chubb's Straight Line Path Algorithm (SLPA) [51 makes use of the
fbdi adherent list information to efficiently search for such 0-element, 4-connected

An SLPA solution where two fbd, regions occlude the straight line projection between
start and goal points. Note that four possible paths are generated.

Figure 2.

paths (see Figure 2). This technique, however, only provides satisfied spatial solu-
tions and does not take into consideration the time required to traverse the path. A
satisfied spatial problem implies that action execution is globally admissible. How-
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ever, action execution may result in temporal requirements which are neither practi-
cal nor possible.

Definition: A temporal problem, ((c., gos), Kxy-,) is satisfied or solved if and only if there exists a
spatial solution, P(cy, gs), such that the time required to traverse P(cxy, gr) < Kxy.,, where Kjryr, is
the problem's temporal criteria.

Since, by definition, a temporal solution is a spatial solution but the converse is not
necessarily true, a more general and powerful problem solving methodology is to first
develop a temporal problem solution which is then recursively constrained to produce
a tenable spatial solution. For example, assume that the set A represents a temporal
solution for some ((cxy, gq) , Kxy-ra). Then there exists some a0 such that Kxv-r - 8
represents a temporal solution where (rank A) is minimal. The value of 8 may be de-
veloped by recursively solving for min(rank A) with monotonically increasing values
of S. The algorithm which develops the temporal solution is now described.

Temporal Problem Solving

The time needed to traverse a 4-connected pixel, C.y E Ci, is,

txy=Rxy + (wxy*Vmax) (4)

where Ry is the side length of the (square) location represented by cxy Vnax is the
maximum velocity which the actor can move while executing this action, and wXy is
the coefficient of compliance between the domain and actor action execution where
0<w.,y s1.0. The Wxy coefficient value indicates the percentage compliance between
actor action execution and the domain, i.e., wgt = 1.0 indicates 100% compliance.

Then the time required to traverse PAcxy, gkh) is,

kh kh
Txy-kh = Z ti = (Rxy+Vmax) . (wiYt  (5)

L=xy i=xy

We (safely) assume that Ry is a constant for every cxy E Ci. Vmax is assumed
invariant during action execution. One-element pixels belonging to FBDt4C) are
assigned a coefficient value of zero. Division by zero in (5) is excluded using the
FBDR(Ci) representation for decision checks as follows.

The temporal problem solving (TPS) algorithm is a two pass algorithm. Given start
and goal points cX and gzd, the first pass computes the minimal path time for path
P(cxy, hkh) where hkh is a zero-element point in FBDT(C), and hkh = gzd. The
minimal path time from hkh to gzd is then estimated. The estimated Tkh-zd is
developedby computing the min 4-connected path distance between points, assuming
that there are no 1-element points occluding the path and that every wi has a value
of 1.0. If minTy-kh + estimated Tkh-zd - Kkh-zd the point hkh is considered a
potential temporal solution path point and is saved for second pass processing.

The second pdass consists of computing minT-dkh for every hkh point selected during
pass-one. minTx -kh + minTzd.kh !! Kkh-,d, then the hkh point must belong to at
least one P(cxy, gkh5 which satisfies the temporal constraint Kkh-zd. The set of all
such hkh becomes the TPS solution set. Likewise, a minimal spatial solution is
developed if the wi values are fixed as a positive, non-zero constant for all of the 0-
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element points belonging to FBD(Ci) and the minKkhd is developed during the
problem solving process.

The Conjunctive FBD Representation

The FBDR o FBD7i(Ci) possesses several inherent representational weaknesses,
which arise because the pixel feature information is spatially indiscriminate.
Locational information can be added, however, for essentially point sources, such as
buildings. Extended line objects, such as roads and railroads, which may be
represented by two or more pixels require special representation since inter-pixel
trafficability may vary dramatically depending upon the features represented per
pixel. In addition, pixel spatial resolution is typically less that optimal which tends
to make the image of FBD7(cxy) multi-valued!

An alternative representation methodology is to use an N-dimensional FBD
representation where each FBDR ° FBD (Xjj) planar image considers only a subset
of features present within each Ci, i.e., XijCCi, such that U Xii = Ci,j= 1..., r. For
example, X may represent a road network, whereas Xid may represent bodies of
water. In ah1dition, coupled with each FBDR o FBDT'Xij) is a rule-based system
which is responsible for monitoring/changing the fbdh region binary values based
upon input data normally available to the G2. For example, assume that a major
road has been destroyed during a tactical engagement. This information would be
given to the "road" FBD rule-based system which would create/add to the appropriate
fbdh region(s). In addition, associated with every FBDT function there exists rules
which monitor the associated (r-1) FBDT and adjust the w, values accordingly. An
N-dimensional temporal solution or path has a general form which is based upon an
N-dimensional definition of 4-connectedness.

Definition: A pixel Czyok e FBD,7Xk) is said to be 4N-connected if and only if cx,,k is 4- connected to
the following 0-element neighbors: (cfx.v)yk,k C(x+ ?)y, k, Cx(y-1),k, Cx(y+ 1),k) for all k= 1., N.

Definition: An N-dimensional path, P(cxy, gzk.i), is defined to be the ordered list of 0-element, 4N-
connected pixels which contain no loops and path-connect cj to gzk,, for , = 1,. N.

The N-dimensional coplanar stack of FBDT X- ) and their rules form the basis for a
spatial representation called a conjunctive FB (CFBD). The CFBD is developed as
follows. Let cXYJ be the (xy)th pixel ;r FBI)TtXij) Then for every pixel, '4.r u
CFBD(Ci), set the value of pxpy to

'4Jxy = (Cxy.! ,1, cxy,2 A. Acxy,r) (6)

the conjunctive value. We use the following symbol to show that CFB 1)(C,) is formed
from the conjunct of the FBI)7 Xij) wherej = 1..., r,

r
CFBI)(Ci) = A FBI)R(Xij) (7)

J=l

The following theorem follows immediately.

Theorem: There exists a path P(tJpxy, Tsg) such that every element of Pixv, 1lJsg) is
an element of CFBD(Ci) if and only if there exists an N-dimensional path, P(c.,y,1,
gsg,f)such that 1 i,fs r and CFBD(Ci) = A FBI)r 1 ),j=I._ r.
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Proof- Follows directly from (6), (7), and the last two definitions.

We now examine an Army constraint-based logistics problem using the CFBD
representation and the temporal problem solver.

III. A Logistics Problem Example

In this example we assume that there are three actors: (Army) tanks, (Army) fuel
trucks, and a mountain snow storm. The domain is the northern slope of a mountain
range (see Figure 3). To the north is a large lake. To the east is a large plains area.
Further to the east a battle is about to begin. Two major roads are evident. One goes
through the mountains, the other winds about on the northern slopes and winds
about the lake. Both roads converge to the west of the eastern plains area. At the
beginning of this scenario the fuel trucks are stationed in the northwestern corner of
the plains, the tanks are located in the southwestern corner, to the west of the
mountains, and the snow storm is about to move easterly through the mountains.

The local commander has told the tank commanders to prepare for battle along the
eastern front. Army doctrine demands that the tanks assemble in a staging area
approximately two hours prior to battle and that they be fully fueled at that time.
The tanks will attempt to distribute themselves uniformly within staging area in
preparation for the attack. The fuel trucks should be positioned with the tanks
within the staging area to provide them with fuel. Table 1 gives the actor-Vmax and

Actor: Tank Fueling Trucks Snow Storm
Vmax (m/m) 200 400 0-50
Start Location (30,2) (1,2)

Actors, maximum action execution velocity, and starting positions.

Table 1

start position data. Note that Vmax for the storm is given as a range of values since a
snow storm, though moving, may appear to be stationary to a fixed observer. In
addition, once the storm has passed through an area we assume that the snow
remains. The presence of snow is considered a deterrent to travel. Actor goal
positions are: (4,22), (16,22), and (22, 22) which correspond respectively with the most
northern, midpoint, and most southern staging area positions.

Mobility Considerations

Fueling trucks can only travel on or near the roads; most of the remaining terrain is
far too rough for travel. Off-road travel is slower, depending upon terrain factors.

Tanks can move anywhere except within the mountains and the lake. Tanks can also
travel on the roads however the road surface increases track wear thereby causing
the tanks to move more slowly.
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The domain of the logistics problem. Actors include tanks, fueling trucks, and a snow storm

Figure 3.

A mountain snou lorm is preparing to move southeasterly through the mountains
making the mountain road impassable for both the fueling trucks and tanks.

A Logistics Problem

Assuming that both the tanks and the fuel trucks are ready to move to the staging
area and that no snow is/has fallen, what is the best strategy for the tanks and trucks
to use to minimize the time the tanks must wait within the staging area? How does
the presence or likelihood of a mountain snow storm affect this strategy, if at all?

In order to solve this problem, several FBD's must be developed for this domain: a
road network FBD (Figure A-1), a fuel truck FBD (Figure A-2), and a tank FBD
(Figure A-3). Next, a fuel truck CFBD (Figure A-4) and a tank CFBD (Figure A-5)
are developed. Finally, coefficient values are developed for the fuel truck CFBD and
tank CFBD. The fuel truck coefficients are 1.0 (max weight) for road surfaces and
0.8 for off-road excursions. The tank coefficients are set to 1.0 for off-road surfaces
and 0.75 for on-road surfaces. Note that both the FBD's and the coefficient values
reflect a no-snow, no-traffic, "best-possible-conditions". The constraint-based model
was run for every goal point with both actors (see Figures 4a,b,c, and d) with no snow
present.

Table 2 lists the no-snow, minimum transit times from the tank and truck start
pOints to the the three goal points. In this model trucks always lead the tanks by at
east 2.2 minutes and no logistical problems are foreseen. Note that the minimal
temporal path for the trucks to both(16,22) and (22, 22) is through the mountain
pass. The presence of the third actor, the snow, makes the decision to use the
mountain pass road less than optimal.
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Start to: (22.22) (16,22) (4,22)
Tank: 16.4 19.7 26.5
Truck: 14.2(M) 15.8(M) 18.0

Actor minimum transit times (no snow)
Table 2.

(M) = using the southern, mountain road

. ........-................. : : ...::.::".W

Temporal problem solver results Same as Figure 4a except points are
using Tank CFBD representation. (30 2) and (22 22), the southern most point.

Points (30 2) to (4 22) yield a Min time is 16.4 minutes.
min time of 26.5 minutes.

Figure 4a Figure 4b

U:1

Temporal problem solver results Same as Figure 4c except points are
using Fuel CFBD representation. (1 2) and (4 22). Min time is 18.0 minutes.

Points (1 2) to (22 22) yield a Note that off-road excursion is made by
min time of 14-3 minutes. trucks as part of minimal time solution.

Figure 4c Figure 4d
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Snow Present

Snow was introduced within the mountain region incrementally from no-snow
present (0%) to an impassable amount of snow (100%). Mobility was simply
computed to be: 1.0 - (% snow within the mountain area). Although the effect of snow
upon actor mobility is linear, the presence of snow produces a nonlinear effect upon
the the temporal computation because the spatial component (the percentage of the
total road surface) affected is assumed to be unknown as is the amount of snow
present within that area. Note that as each wi-0, as in equation (5), the FBD
characterization transforms this pixel into a region 1-element which effectively
prevents any further mobility consideration.

T 320

M lea

a 1 0 I 20 S 3 S .0 4 6 so S

Percentage Snow Present

Minimum route time for the fueling truck as a function of % mountain snow present.
Note that the effect upon min time is nonlinear.

Figure 5

The only actor affected by the presence of snow was the fueling truck which used the
most southern route (Table 2) rather than the longer valley route. Figure 5 shows the
relationship between % snow present and transit time for the trucks. Note that the
southern route is always shorter than the valley route until % snow exceeds 60% at
which time the valley route time becomes the shortest temporal route to both (16, 22)
and (22, 22) for the trucks.

Without knowing either the amount of snow present nor the percentage of the route
affected by the snow, the conservative or "worst case" minimum transit times are
given in Table 3.

Start to: (22, 22) (16,22) (4,22)
Tank: 16.4 19.7 26.5
Truck: 20.7(V) 19.2(V) 18.0

Actor worst case minimum transit times (100% snow)

Table 3
(V) = valley route
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Summary and Conclusions

It appears that the conservative logistics will service most of the tanks with fuel as
they arrive in the staging area. However, the importance of this plan is not that it
offers adequate logistics support but that the plan is insensitive to the mountain
snow scenario; the plan is more robust than the other plans. The application of
robust plans which are less likely to be constrained by other domain actors appears to
be a powerful command strategy. We have indicated that the accuracy of a real-world

lanning algorithm depends upon its ability to accurately predict the interaction
etween action execution and the planning domain. However, the author has shown

[3, 41 that for real-world domains this relationship is at best enumerable and
probabilistic. At worst, the relationship appears (to the planner) to be chaotic

ecause the planner is not aware of important domain feature data or, equivalently,
because he lacks experience with similar data to make an accurate prediction. Real-
world assumptions C-I and C-2 suggest that planner experience is the most robust
criteria to employ. As such, perhaps constraint-based problem solving, based upon
actor experience, is best used to develop minimally constrained, maximally robust
strategies as given in Table 3.

Experimental results seem to suggest that whenever two or more plans share the
same goal, G, the preferred plan maximizes plan robustness while minimizing the
cost of plan execution. If P1 and P2 are plans (i.e., P1 = {(AC,A,C)1, ..., (AC,A,C)k},
P2 = {(AC,A,C)j, ... , (AC,A,C)h}) such that GC{C}k + I and GC{C}h + J, then P1 is
preferred to P2 if,

1 Irobustness(ACA,C, -costiE(AC,A,C),II > 1 lrobustnessAC,A,C), -costiE(ACA,CII.
P1 P2

All of the algorithms described herein have been implemented in COMMON LISP on
a Texas Instrument Explorer II Al Workstation. Appendix B contains a copy of the
FBD characterization implementation, i.e., equation (3).
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APPENDIX A

Appendix A includes FBD and CFBD figures which were generated using a Texas
Instrument Explorer II Al Workstation.

Road network FBD Fueling Truck FSD Tank FBD

Figure A- I Figure A-2 Figure A-3

Fueling Truck CFBD Tank CFBD

Figure A-4 Figure A-5
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APPENDIX B

Appendix B contains a copy of the in-house generated Common LISP code used to
produce a set of FBD-characterized regions, i.e., equation (3). Input consists of a
1024 pixels in matrix format (32x32). The top-level function is (MAKE-FBD R) where
0 < R s 1.0. Function output consists of a set of LISP atoms, i.e., (fbdi, fbdi + 1 ... ,
fbdk), each with atomic properties, i.e.,boundary list, adherent list, cut points, mc-
boundary list, mc-adherent list, mc-cut points, and the associated values as described
herein.
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.*.mode:Comox-Lisp; Base:10--

;Title: FED Program to support AISAF Situation Assessmenti Army Effort
* This file contains two major programs:

a) ability to build a random bit array, FED-ARRAY,
*and b) ability to make an FBD representation of the FED-ARRAY.

Call program with (MAKE-FED THRSH).

Programmer: Douglas W J Chubb
; File: RACHMANINOFF :FED-REGION: CREATE-FBD .LISP

Initial Development: 891018 090000
Last Modification: 891122 090000

.. ....................................................................................

(export ' (xdim ydim fbd-array start-x start-y next-x next-y
build-fbd set-display-array) 'USER)

DEFVARS for program

(defvar xdim 32 "fbd-array width") ;fbd-array x-dimensiofl
(defvar ydim 32 "fbd-array heigth") ;fbd-array y-dimensioi

(defvar fbd-array
(mnake-array (Iist xdim ydim)

:type 'art-lb))

(defvar thrsh 0.00) ; create a 1-bit array fbd-array

(defvar start-x) ; boundary start point (x,y)
(defvar start-y)
(defvar next-x) ;successor point
(defvar next-y)
(defvar title 'FED-Array-Data)
(w:mtake-font-purpose fonts :hll2b :flashy)

Fill FED-ARRAY with binary elements (1 or 0) depending upon value
of random number generator.

(defun set-fbd-array (thrsh)
(do ((i 0 (1+ i)))

((> i (1- xdim)))
(do ((j 0 (1+ j)))

((P j (1- ydim)))
(cond ((>- (random 0.99) thrsh)

(setf (aref fbd-array i j) 1))
(T (setf (aref fbd-array i j) 0))

DISPLAY-FED creates the windows which display:
1. FED-ARRAY
2. Boundary List
3. Adherent List
4. Interior Points 693



5. Adherent points if region multiply.-connected
6. Boundary list if region multiply-onnected.

(defun display-fbd (top left results)
(let* Hmag 7) magnification constant

(fbd-window (make-instance 'w window
:top too :left left
:height (* mag ydim)
:width (* mag xdim)
:save-bits nil
:borders I
:font-map ' (:flashy)
:label ti tle
reverse-video-p t
:expose-p t)))

(setf fbd-bitblt (make-array (list (*macr xdim) (* mag ycdim.)
: type ' art-ib))

(array-initialize fbd-bitblt 0)

(do ((x 0 (1+ x))
((> x (I1- xdim))

(do H(y 0 (1+ yM)
((> V (I- vdim))

,:nd t( aref fbd-arrav an.vZ4ir
(do (( ~x mag) I +~ I.))

((=j(* (1+i x) mag))
(do ((j (*y mag) (!+ j)))

( (>= ((1- v) aa)) )
(sett (aref fbd-bitblt -)12) )

(send Thd-window :bitblt w:alu-seta (* mag xdim) m ag yozim) b-ito:0 0 0 0)

(mao (function (lambda (fbd-atom)
(cond ((equal title 'Boundary-List)

(mapo (function (lambda (cpt)
setf opt (car cpt))
(w:make'-blinker rtd-window woaat-O-~(e

:font fonts:tr1l2b
:character *\*
:x-pos n* ag (second cpt((
:y-pos mag (f.Zst =zt)) ~

(get tbd-atom 'cut-points))

((equal title 'M-C-Adb-Boundary-Lists)
(mapc *' (lambda (op-list)
(mapc (function (lambda (opt)

(setf cot (car cot))
(w:make-blinker fbcd-window 'w:character-tlinker

:font fonts:tri2b
:character #\*
:x-pos (* ag (second opt))
:y-pos (* ag (first opt)))(

op-list)
(get fbd-atom 'mo-out-points))

MT)) ) ) results)

MAKE-FBD is the starting routine which creates initial binary array,
boundary list, etc. If thrsh <- 0.0, routine being called by
nouse routine and input data drawn, not using a random number
ienerator.
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(defun MAKE-FBD (thrsh)
(let ((results nil))

(setq add-regions nil) ; add & delete variable used during
(setq delete-regions nil) ; TEST-FBD-ROBUSTNESS function.
(cond ((>- thrsh 0.0) (set-fbd-array thrsh)))
(make-frame)
(setf title ' FBD-Array-Data)
(display-fbd 10 300 nil)
(do ((i 0 (1+ i)))

((> i (1- xdim)))

(do ((j 0 (1+ j)))
((> j (.- ydim)))

(cond ((= (aref fbd-array i j) 1)
(setq start-x i)
(setq start-y j)
(setq next-x nil)
(setq next-y nil)
(setq results (cons (build-fbd i j (1- i) j (gensym 'fbd)) results))) ))

(display-results results)
results ))

; DISPLAY-RESULTS sets up variables and atom properties to display
; using DISPLAY-FBD subroutine.

(defun display-results (results)
(array-initialize fbd-array 0)
(setq title 'Boundary-List)
(set-display-array fbd-array results 'b-list) display boundary points

(display-fbd 250 150 results)

(array-initialize fbd-array 0)
(setq title 'Adherent-List)
(set-display-array fbd-array results 'a-list-out) ; display adherent points
'display-fbd 250 450 nil)

(array-initialize fbd-array 0)
(setq title 'Interior-Points)
(set-display-array fbd-array results 'i-list) display interior points

(display-fbd 510 20 nil)

(array-initialize fbd-array 0)
(setq title 'Mul-Conn-Adherent-Lists)
(set-display-array fbd-array results 'a-list-in) display adherent points

(display-fbd 510 300 nil)

(array-initialize fbd-array 0)
(setq title 'M-C-Adh-Boundary-Lists)
(set-display-array fbd-array results 'mc-list) ; display boundary points
(display-fbd 510 580 results)

SET-DISPLAY-ARRAY sets contents of "PROP" into FBD-ARRAY for display on TV

(defun set-display-array (farray fbd-atom-list prop)
(mapc (function (lambda (fbd-atm)

(mapc (function (lambda (plst)
(cond ((listp (first plst))

(mapc (function (lambda (pix)
(setf (aref farray (first pix) (second pix)) 1))) plst)

(T (setf (aref farray (first plst) (second pist)) 1) )) ))
(get fbd-atm prop) ) )) fbd-atom-ligt))695



BUILD-FBD is the master routine which creates the FBD representation for
each 8-connected, 1-element region in FBD-ARRAY.

(defun build-fbd (xp yp x2 y2 fbd-atom)
(let* ((b-list (list (list xp yp)))

(a-list-out nil)
(a-list-in nil)
(i-list nil)
(1-element nil))

(cond ((and next-x next-y) (setf b-list nil)))
(mapc (function (lambda (pts)

(cond ((and (- (aref fbd-array (first pts) (second pts)) 0)
(null 1-element))

(setf a-list-out (cons pts a-list-out)))
((and (- (aref fbd-array (first pts) (second pts)) 0)

1-element)
(setf a-list-in (cons ots a-list-in)))

((null 1-element)
(setf b-list (cons pts b-list))
(setf 1-element pts)) save successor point

(T (setq i-list (cons pts i-list))))))
(cw-scan-pattern xp yp x2 y2) )

(cond ((null 1-element) a single I-elemenz ncint
(setf (get fbd-atom 'b-list) b-list)
(setf (get fbd-atom 'a-list-out) a-list-out)
(setf (get fbd-atom 'i-list) i-list)

(T (setf (get fbd-atom 'b-list)
(append (get fbd-atom 'b-list) (reverse b-list)))

(setf (get fbd-atom 'a-list-out)
(append (get fbd-atom 'a-list-out) (reverse a-list-out)))

(setf a-list-in
(set-difference a-list-in (get fbd-atom 'a-list-out) :test #'equal))

(setf (get fbd-atom 'a-list-in)
(union (get fbd-atom 'a-list-in) a-list-in :test #'equai))

(setf (get fbd-atom 'i-list)
(set-difference (union i-list (get fbd-atcm 'i-list) :test #'equal)

(get fbd-atom 'b-list) :test #'equal)) ))
(cond (null 1-element)

(remove-region fbd-atom) fbd-atom)
((and (= xp start-x) (= yp start-y) (null next-x) (null next-y))

(setf next-x (first 1-element))
(setf next-y (second 1-element))
(build-fbd next-x next-y xp yp fbd-atom))

((and (= xp start-x)
(= yp start-y)
(= next-x (first 1-element))
{= next-y (second 1-element)))
(setf (get fbd-atom 'b-list) remove last. two pts

(cddr (reverse (get fbd-atom 'b-list)))) from boundary list

(count-cut-points fbd-atom 'b-list 'cut-points)
(setf (get fbd-atom 'a-list-in) compute C-element pts

(remove-duplicates
(set-difference (get fbd-atom 'a-list-in)

(get fbd-atom 'a-list-out)
:test #'equal) :test #'equal))

(build-interior-list fbd-atom)
(parse-4-space fbd-atom)
(rebuild-boundary-list fbd-atom)
(remove-region fbd-atom) fbd-atom)

(T (build-fbd (first 1-element) (second 1-element) xp yp fbd-atom))) ))
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(defun parse-4-space (fbd-atom)
(let ((ain (remove-duplicates (get fbd-atom 'a-list-in) :test #'equal)))
(cond (ain (setf (get fbd-atom 'a-list-in) nil)

(parse-4-space2 fbd-atom (list (first ain)) (cdr ain))
(order-adherent-list fbd-atom)

(T ) ))

; PARSE-4-SPACE2 parses the 4-connected ADHERENT points into a 4-connected
; subspace of 0-elements.

(defun parse-4-space2 (fbd-atom pt 0-elements)
(let* ((4neigh nil) (0-list 0-elements))
(cond ((null 0-elements)

(setf (get fbd-atom 'a-list-in)
(cons pt (get fbd-atom 'a-list-in))))

(T (mapc (function (lambua (sps)
(mapc (function (lambda (4pt)

(cond ((member 4pt 0-elements :test #'equal)
(setf 4neigh (cons 4pt 4neigh))
(setf 0-list (remove 4pt 0-list :test #'equai)))

(T)) )) (4neighbors sps)) )) pt)
(cond ((null 4neigh)

(setf (get fbd-atom 'a-list-in)
(cons pt (get fbd-atom 'a-list-in)))

(parse-4-space2 fbd-atom (list (first 0-list)) (cdr 0-list)
(T (parse-4-space2 fbd-atom (append pt 4neigh) 0-list))) )) )

; ORDER-ADHERENT-LIST orders each 4-connected region of 0-elements
; into elements which represent the ADHERENT LIST for that region.

(defun order-adherent-list (fbd-atom)
(let ((alist nil)(alist-in nil)(1-flag nil))

(mapc (function (lambda (adherent-lint)

(setf alist nil)
(mapc (function (lambda (adherent-point)

(setf 1-flag nil)
(mapc (function (lambda (8neigh)
(cond ((= 1 (aref fbd-array (first 8neigh) (second 8neigh)))

(setf 1-flag T))
(T)) )) (8neighbors adherent-point))

(cond ((null 1-flag) (setf alist (cons adherent-point alist) )
)) adherent-list)

(setf alist-in (cons (remove-duplicates
(set-difference adherent-list aiist :test #'equai)

:test *'equal) alist-in))
)) (get fbd-atom 'a-list-in))

(setf (get fbd-atom 'a-list-in) nil)
(mapc (function (lambda (adherent-list)

(setf (get fbd-atom 'a-list-in) (cons (build-adherent-boundary adherent-list)

(get fbd-atom 'a-list-in)))
alist-in) )

; BUILD-ADHERENT-BOUNDARY is a helper function to ORDER-AD4ERENT-LIST
; function.

(defun build-adherent-boundary (alist)
(let* ((aorder (copy-seq alist)) (aaa nil) (boundary nil))
(cond ((< (length alist) 3) alist) 6 9 7



(T (setf aaa (stable-sort aorder #' (lambda (ptl pt2)
(cond ((< (first ptl) (first pt2)) T)

(T NIL)) ))
(setf aorder (stable-sort aaa #'(lambda (ptl pt2)

(cond ((and (- (first ptl) (first pt2))
(< (second ptl) (second pt2)) T)

(T NIL)) ))

(setf start-x (first (car aorder)))
(setf start-y (second (car aorder) ))
(setf next-x nil)
(setf next-y nil)
(setf boundary (list (list start-x start-y) ))
(build-adherent-b2 start-x start-y (1- start-x) start-y aorder boundary) M!

;BUILD-ADHERENT-B2 is another helper function to BUILD-ADHERENT-BOUNDARY
; functio.fl

(defun build-adherent-b2 (xp yp x2 y2 splist bblist)
(let ((next nil))

(mapc #'(lambda (spot)
(cond ((and (null next) (member spot splist :test 4'equai))

(setf next spot)
(setf bblist (cons spot bbiist))

(T nil)) ) (cw-4-scan xp yp x2 y 2 )

(cond ((null next) (print "error"))
((and (=xp start-x)

(yp start-,)
(null next-x)
(null next-y)) (.setf next-x (first next))

(setf next-y (second next))
(build-adherent-b2 (first next) (second next)

xp yp splist bblist))
((and (=xp start-x)

(yp start-y)
(next-x (first next))
(next-y (second next))) (reverse (cddr bblist)))

(T (build-adherent-b2 (first next) (second next)
xp yp splist bblist) )

CW-4-SCAN generates a 4-connected, clock-wise scan pattern

(defun cw-4-scan (xp yp x2 y2)
(let* ((4pts (4neighbors (list xp yp))

(cwlst (cdr (member (list x2 y2) 4pts :test #'equal))))
(append cwlst (set-difference 4pts cwlst :test *'equal)) )

*4NEIGHBORS generates the 4-connected neighborhood.

(ciefun 4neighbors (el)
(let* ((x (first el)) y (second el)))

(list (list (1- X) y) (list X (1+ y))
(list (1+ X) y) (list x (1- y)) )

*REBUILD-BOUNDARY-LIST is master routine Used to generate the multiply-connected
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; boundary lists. This routine uses the ordered ADHERENT LISTS in property
; "a-list-in" i.e., Adherent-List-inside-region, to generate the boundary lists.

(defun rebuild-boundary-list (fbd-atom)
(cond ((null (get fbd-atom 'a-list-in))

(T (rebuild-boundary-list3 fbd-atom)
(cond ((null (get fbd-atom 'mc-list))

((listp (first (first (get fbd-atom 'Imc-list))))
(T (setf (get fbd-atom 'imc-list)

(list (get fbd-atom 'mc-list))) ))
(count-cut-points fbd-atom 'imc-list 'imc-cut-points)

; REBUILD-BOUNDARY-LIST3 is the "work-horse' function for generating the
; multiply-connected "inner" boundary lists.

(defun rebuild-boundary-list3 (fbd-atom)
(let* ((iblist nil) (ib2 nil) (fpt nil) (pattern nil) (sp-flag nil))
(mapc #' (lambda (adlist)
(setf iblist nil)
(cond ((> (length adlist) 1)

(setf fpt (first adlist))
(mapl #' (lambda (adherent)

(cond ((= 1 (length adherent))
(setf pattern (cw-scan-pattern

(first fpt)
(second fpt)
(first (first adherent))
(second (first adherent))) ))

(T (setf pattern (cw-scan-pattern

(first (second adherent))
(second (second adherent))
(first (first adherent))
(second (first adherent))) ))

(cond ((> (length adherent) 2)
(setf pattern (set-difference pattern

(member (third adherent) pattern :test #'equal)
:test #'equal)) ))

(setf sp-flag nil)
(setf ib2 nil)
(mapc #' (lambda (ng)
(cond ((and (null sp-flag)

(or (member ng (get fbd-atom 'i-list) :test #'equal)
(member ng (get fbd-atom 'b-list) :test *'equal)))

(setf ib2 (cons ng ib2))
((and ib2

(null sp-flag)
(member ng adlist :test #'equal))

(setf sp-flag T))
(T )) ) pattern)

(setf ib2 (reverse ib2))
(cond ((and (> (length iblist) 1)

(equal (first ib2) (second (reverse iblist)))
(equal (second ib2)(first (reverse iblist))))

(setf ib2 (cddr ib2)) ))
(setf iblist (append iblist ib2))
adlist) )

(T (mapc ' (lambda (ng)
(cond ((or (member ng (get fbd-atom 'i-list) :test #'equal)

(member ng (get fbd-atom 'b-list) :test #'equal))
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(seif iblist (cons ng ibolist)))
(T )) ) (Bneighbors (first adlistf) ))

(cond (iblist (setf (get fbd-atom 'inc-list)
(cons (setf ib2 (remove-dups-sequences iblist))

(get fbd-atom inc-list)))
(T (print "ERROR. .Rebuild-Boundary-List2")))

(get fbd-atom 'a-list-in)) )

;When the MC boundaries are first generated there are (possibly) numerous
;duplicates, both point-wise and patterns of points. The following routines
;effectively remove these patterns.

(defun remove-dups-sequences (mclist)
(let ((mc2 inclist) (duup nil))

(cond ((and (> (length inclist) 1)
(equal (first inclist)

(first (reverse inclist))))
(remove-dups-sequences (cdr inclist))

(T

(mapl #' (lambda (mc-mc)
(cond ((- (length mc-mc) 1) (setf duup (cons (first me-inc) duup))

((equal (first mc-mc) (second mc-inc)))
(T (setf duup (cons (first mc-mc) duup))) )mc2)

(cond ((= (length mc2) (length duup))
(remove-many-items (rexove-dup-tails mc2))

(T (remove-dups-sequences (reverse duup)) ) ))

(defun remove-dup-tails (mc2)
(let ((rmc2 (reverse mc2))
(cond ((and (> (length mc2) 3)

(equal (first mc2) (second rmc2))
(equal (second mc2) (first rmc2))

(remove-dup-tails (cddr mc2))
((and (> (length mc2) 5)

(equal (first mc2) (third rmc2))
(equal (second mc2) (second rmc2))
(equal (third mc2) (first rmc2))

(remove-dup-tails (cdddr mc2))
(T mc2)) ))

(defun remove-many-items (mc3)
(let ((duf nil) (skip-flag 0))
(cond ((< (length inc3) 4) mc3)

(T
(mapl #' (lambda (mc22)

(cond ((> skip-flag 0) (setf skip-flag (I- skip-flag))
(T

(cond ((< (length mc22) 4)
(setf duf (cons (first mc22) duf))

((and (< (length mc22) 6)
(equal (first mc22) (third mc22))
(equal (second mc22) (fourth mc22)))

(setf skip-flag 1))
(<(length mc22) 6)
(setf duf (cons (first inc22) duf))

((and (equal (first mc22) (fourth mc22))
(equal (second mc22) (fifth mc22))
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(equal (third mc22) (sixth mc22)))
(setf skip-flag 2))

((and (equal (first mc22) (third mc22))
(equal (second mc22)(fourth mc22)))

(setf skip-flag 1))
(T (setf duf (cons (first mc22) duf))))))) mc3)

(cond ((- (length duf)(length mc3)) mc3)
(T (remove-many-items (reverse duf)))) )) ))

8NEIGHBORS generates the 8-connected neighborhood of points.

(defun 8neighbors (pixel)
(let ((x (first pixel)) (y (second pixel)))

(list (list (1- x) y) (list (1- x) (1+ y))
(list x (1+ y)) (list (1+ x) (I+ y).)
(list (1+ x) y) (list (1+ x) (1- y))
(list x (1- y)) (list (1- x) (1- y))

; BUILD-INTERIOR-LIST is master routine for discovering 1-element region
; interior points. Method used is "region-growing".

(defun build-interior-list (fbd-atom)
(cond ((null (get fbd-atom 'i-list))

(T (interior-hunt fbd-atom (get fbd-atom 'i-list)) )

(defun interior-hunt (fbd-atom intlist)
(let* ((neighborhood nil) (i-flag nil))

(mapc (function (lambda (ipoint)
(setf neighborhood (interior-point-check fbd-atom ipoint))
(cond (neighborhood (setf (get fbd-atom 'i-list)

(union neighborhood (get fbd-atom 'i-list)
:test #'equal))

(setf i-flag (append i-flag neighborhood))
(T)) )) intlist)

(cond (i-flag
(setf i-flag (remove-duplicates i-flag :test #'equal))
(setf (get fbd-atom 'i-list)

(remove-duplicates (get fbd-atom 'i-list) :test #'equal))
(interior-hunt fbd-atom i-flag))

(T )) ))

(defun interior-point-check (fbd-atom ip)
(let* ((scan nil) (neighbor nil))
(setf scan (cw-scan-pattern (first ip) (second ip) (2- (first ip)) (second ip)))
(mapc (function (lambda (bip)

(cond ((and (= (aref fbd-array (first bip) (second bip)) 0)
(not (member bip (get fbd-atom 'a-list-in) :test #'equal))
(not (member bip (get fbd-atom 'a-list-out) :test #'equal)))

(setf (get fbd-atom 'a-list-in) (cons bip (get fbd-atom 'a-list-in)))

((= (aref fbd-array (first bip) (second bip)) 0)
((or (member bip (get fbd-atom 'i-list) :test 'equal)

(member bip (get fbd-atom 'b-list) :test #'equal) )
(T (setf neighbor (cons bip neighbor)) )) s) scan)

neighbor ))

; CW-SCAN-PATTERN returns a cw scan list of 8-neighborhood points about
; point (xl,yl) starting at the first cw-position from point (x2, 2).
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The last point returned is point (x2,y2).

(defun cw-scan-pattern (xl yl x2 y2)
(let ((cw-scan (list (list (1- xl) yl)(list (1- xl)(1+ yl))

(list xl (1+ yl))(list (1+ xl)(l+ yl))
(list (1+ xl) yl)(list (1+ xl)(1- yl))
(list xl (1- yl)) (list (1- xl) (1- yl)))))

(append (cdr (append (member (list x2 y2) cw-scan :test #'equal)
(set-difference cw-scan (member (list x2 y2 ) cw-scan :test #'equal))))

(list (list x2 y2))) ))

; COUNT-CUT-POINTS discovers boundary list cut points. Once found the points are
; annotated with the number of new regions which will be established if that
; 1-element is changed to a 0-element.

(defun count-cut-points (atm prop indicator)
(let* ((c-list (get atm prop)) (c-lister nil) (cut-points nil) (ncuts 0) (rest-cuts nil))

(mapc (function (lambda (pt)
(cond ((listp (first pt))

(setf cut-points nil)
(setf c-lister nil)
(setf rest-cuts (list-cut pt 1))
(mapc (function (lambda (pt2)

(setf ncuts (- (length pt)(length (remove pt2 pt :test #'equal))))
(cond ((and (> ncuts 1)

(not (member pt2 cut-points :test #'equal))
(list-cut (remove pt2 pt :test #'equal)

(+ ncuts
(length (remove pt2 rest-cuts :test #'equal))))!

(setf cut-points (cons pt2 cut-points))
(setf c-lister (cons (cons pt2 ncuts) c-lister)l ))

)) pt)

(cond (rest-cuts
(mapc #' (lambda (rcut)
(cond ((member rcut cut-points :test #'equal)

((and (= 1 (- (length- pt)
(length (remove rcut pt :test #'equal))))

(> (length (member rcut pt :test *'equal)) 1)
(member (second (member rcut (reverse pt) :test #'eq!

ual))

(8neighbors (second (member rcut pt :test #'!
equal)))

:test #'equal))
(setf cut-points

(cons
(second (member rcut (reverse pt) :test #'equal))
cut-points))

(setf c-lister (cons (cons (first cut-points) 2) c-list!er)) )

(T))) rest-cuts)))

(setf (get atm indicator)(cons c-lister (get atm indicator)))

(T (setf ncuts (- (length c-list)(length (remove pt c-list :test #'equal))))
(cond ((and (not (member pt cut-points :test #'equal))(> ncuts 1))

(setf cut-points (cons pt cut-points))
(setf (get atm indicator)(cons (cons pt ncuts)(get atm indicator))) ))

)) c-list)
(setf (get atm indicator) (reverse (get atm indicator))) ))
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; LIST-CUT checks to see if multiple point in boundary list is cut-point
; and if any other points are potential cut points.

(defun list-cut (mcl ncuts)
(let ((cut-flag nil))
(mapl #' (lambda (mc2)

(cond ((and (= (length mc2) 1)
(not (member (first mcl) (8neighbors (first mc2)) :test #'equal)))

(setf cut-flag (cons (first mc2) cut-flag))
((= (length mc2) 1) )
((not (member (second mc2) (8neighbors (first !r22)) :test *'equal))

(setf cut-flag (cons (first mc2) cut-flag))
(T )) ) mcl)

(cond ((>= (length cut-flaq) ncuts) cut-flag)
(T nil)) ))

REMOVE-REGION removes 1-element points from FBD-ARRAY once the region
has been completely characterized by an equivalent FBD expression.

(defun remove-region (atm)
(mapc (function (lambda (pts)

(setf (aref fbi-array (first pts)(second pts)) 0)
)) (get atm 'i-list) )

(mapc (function (lambda (pts)
(setf (aref fbd-array (first pts) (second pts)) 0)

)) (get atm 'b-list)

MAKE-FRAME creates a 0-element frame about the FBD-ARRAY.

(defun make-frame ()
(do ((i 0 (1+ i)))

((> i (1- xdim)))

(do ((j 0 (1+ j)))
((> j (1- ydim)))

(cond ((or (= j 0)(= j (1- ydim)) (= i 0)(= i (1- xdim) )
(setf (aref fbd-array i j) 0))) )))
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GEOMETRIC REASONING FOR RECOGNITION OF
THREE DIMENSIONAL OBJECT FEATURES * t

M. Marefat and R. L. Kashyap
School of Electrical Engineering

Purdue University, West Lafayette, IN

ABSTRACT. A method for extracting manufacturing shape features from the boundary
representation of a polyhedral object is presented. In this approach, the depressions of the part
are represented as cavity graphs which are in turn used as a basis for hypothesis generation-
elimination. The proposed cavity graphs are an extended representation, in which the links
reflect the concavity of the intersection between two faces, and the node labels reflect the rela-
tive orientation of the faces comprising the depression. The hypotheses are generated by
decomposition of the cavity graphs into maximal constituenit. The incorrect hypotheses are
eliminated by rule-based experts which can discard a hypothesis or opportunistically improve
and propose it for reexamination.

Emphasis is put on automatic analysis of depressions which are formed by interactions of
primitive features, because previous methods have limited success in handling interactions. It is
shown that although there is a unique subgraph for each primitive feature, every cavity graph
does not correspond to a unique set of primitive features. Consequently, since the cavity graph
of a depression may not be the union of the representations for the involved primitives, we
introduce the concept of virtual links for the formal analysis of the depressions based on cavity
graphs. Finally a suitable method for automatic determination of the virtual links is presented.
This method is based on combining topologic and geometric evidences, and uses a combination
of Dempster-Shafer decision theory and clustering techniques to reach its conclusions. Experi-
mental results for a number of examples, which are not correctly analyzed by previous systems,
are presented through out the paper, and implementation details are discussed.

1. INTRODUCTION. Understanding the shape of an object is essential in CAD and CAM
to automate the link between design and manufacturing, and is important in computer vision for
recognizing objects based on their properties. The traditional CAD description of the design of
a prismatic part represents its geometry as a data structure involving faces, edges, and vertices.
However to manufacture a part, we need to describe it in terms of the higher level semantic
features such as slots, holes, and pockets because the machining operations create only these
features and not edges, faces or vertices. Thus this higher level feature information should be
extracted from the CAD description. The problem is then to find a useful description of the
object in terms of the shape features given a boundary representation of the object in terms of
face, edge, and vertex entities.

Several approaches have been proposed for recognition of object features from CAD data.
Woo [16] used convex hull techniques to describe the object as alternating sums of volumes.
Kyprianou [9] and Staley [131 applied syntactic pattern recognition methods to classify depres-
sions. Henderson [6] and Kung [8] used logic programming and expert systems to extract shape
features while Joshi [7] developed Attributed Adjacency Graphs for a part. De Floriani 15] uses
connectivity properties to classify features into DP-features (protrusions or depressions) and H-
features(through holes or handles). While most of the above methods use the boundary descrip-
tion of the object as input, Lee and Fu [10] propose algorithms for extraction and unification of
some features from a CSG tree. However, previous methods have very limited success in
recognition of interacting features because:
(i) Interaction between primitives produces different versions of a primitive. There is no

un.que representation for all different occurrences of a primitive feature.

, Supported by the U.S. Army Research Office
f A detailed discussion of the reported research appears in the October 1990 issue of
IEEE Transactions on Pattern Analysis and Machine Intelligence.
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(ii) During the course of interaction between primitives, faces of a primitive feature may be
divided into several disconnected components thus creating new faces. Furthermore, two
intersecting faces of a primitive (when the primitive is isolated) may not be adjacent in a
compound feature containing the interaction of the primitive with another primitive.
In this paper we describe a novel approach for identifying and recognizing the primitive

features in the depressions of a polyhedral machining part. Figure 1 illustrates the overall
approach for our proposed method. It takes advantage of graph matching, expert system, and
reasoning with uncertainty techniques. Briefly the contributions of this work can be summar-
ized as follows:
(i). A new graph representation for the primitive shape features of an object is introduced. In

this representation each face is represented by one face, the node labels determine the rela-
tive orientation of faces of the object in space, and the links determine the non-convexity
between two faces.

(ii). A method for extracting primitive shape features of an object even when these primitives
are interacting is developed. This method uses hypothesis generation-elimination
approach. The hypotheses are generated by decomposing the cavity graphs of the object
into maximal subgraph constituents, and the incorrect hypotheses are eliminated by rule-
based experts which evaluate each hypothesis.

(iii). The concept of virtual links for the graph representation of an object is introduced.
Because the graph of a depression is not necessarily the union of the representations for
the involved primitives, to include the correct hypotheses in the hypothesis space, we show
that unification to merge the nodes of a group of separated faces, and augmenting cavity
graphs with virtual links form powerful shape analysis techniques.

(iv). We develop a method of reasoning with uncertainties to determine the virtual links to be
augmented to a cavity graph. Virtual links can be determined by combining geometric and
topologic evidences. The shape primitives found based on these techniques may be inter-
preted as the primitives most probably comprising the depression.
The remainder of this paper describes the details of our methods and of the prototyped sys-

tem implemented. In the next section we describe the primitive features and methods for
extracting them when they are not interacting. Section three discusses interaction between
primitives. Section four describes generation of hypotheses and the reasoning strategy to select
the correct subset of them. Sections five and six are devoted to presenting the concept of virtual
links, the methods for determining the most probable features in a cavity, and the gathering and
combining processes of topologic and geometric evidences. Section seven discusses
verification. Implementation is briefly presented in section eight, and discussion and experi-
mental results from a prototyped system interfaced to the PADL/2.0 11 solid modeling system
showing the extraction of primitive features from some parts that are not correctly analyzed by
the previous systems are presented in section nine.

2. PRIMITIVE FEATURES. Faces of a part are usually machined in groups. These
groups form primitive machining features, such as pockets, slots, and steps, because chunks of
manufacturing knowledge are associated with each group. A primitive shape feature (or primi-
tive feature) of an object may informally be defined as a connected set of faces from its boun-
dary with semantic meaning for accomplishing a desired task. Figure 2 shows the primitive
features we considered. One may note that each depicted primitive represents a family of shape
features since concave and convex angles may assume any value in the concave or convex
range. Each member of the family is obtained by selecting a different combination of face
intersection angles from the appropriate range such that the combination is physically realizable
in 3D. We selected shape features that are important for machining a part, but the methods we
use may be applied to shape features of interest in other areas.
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Figure 2: Primitive features and their isolated local representations.
Node labels are dominant direction of normal to the face
away from the material. Other consistent permutations of X, Y,
and B also lead to representations for the same primitive.
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2.1 Representing Primitive Features. In order to recognize the primitives in the boundary of an
object, a unique representation for each primitive feature is required. Our representations for
the primitives are similar to the Attributed Adjacency Graphs proposed by Joshi [71 with the
nodes labeled. The representations for primitives are also shown in figure 2. In our approach,
each primitive is represented by a labeled graph. Each face of the primitive corresponds to a
node of this graph, and two nodes are connected by a link if the corresponding faces intersect.
Each node is labeled by a label from the set [B, -B, +X, -X, +Y, -Y}. The node labels show
the orientation of a face in space. The node 3: +Y , for instance, indicates that the dominant
component of the normal to face 3 is in the +Y direction of the local coordinates.

A unique subgraph pattern corresponds to each primitive, but rotating the X, Y, and B
labels in a graph such that the local coordinates follow the right hand rule corresponds to a
graph for an identical feature. Assuming that we keep our local coordinates fixed, replacing
node labels in the template of a primitive corresponds to a rotated version of the primitive
(hence the subgraph pattern is the same but node labelings are different).

2.2 Extracting Isolated Primitive Features. Using the above representation, extracting the primi-
tive features from the boundary of an object whose features are isolated, that is the primitives
are not interacting, becomes a simple task. A global graph of the object is first constructed. A
global graph is a representation for the entire object. The global graph, G, for an object, S, has
the following properties:

(i). Each face fi of the object, S, is represented by a node in G.
(ii). For every edge, eij, of the object shared by two faces f, and fl, there is an edge con-

necting the corresponding nodes in G.

(ii). I (G) is a labeling for the edges of G, which marks an edge in the graph concave if the
faces sharing the corresponding edge of the object are concavely adjacent, and marks
the edge convex otherwise.

To find the graphs representing the cavities in the object, the subgraph of the global graph
consisting of only the concave links is obtained. Each component of this subgraph disconnected
from the other components is a cavity graph of the object. The nodes of each cavity graph are
labeled. To label the nodes, the node with the greatest number of concave edges is selected to
be the base and is labeled B. A pair of X, Y directions are chosen so that together with the nor-
mal to the base they conform to the right hand rule. The other nodes are labeled according to
the direction of the normal to the corresponding face away from the object. The label for the
node corresponding to face f, is denoted by 1'(f).

The above cavity graphs may now be matched to the representations for the primitives.
Each cavity graph corresponds to one primitive's representation because the primitives are iso-
lated. Each match generates one hypothesis stating that the depression in the boundary of the
object corresponds to a primitive of the type matched. The expert rule-based systems check
each hypothesis and approve the correct ones. Figure 3 shows this process of extracting the
primitive features from the boundary of an object when they are isolated. While identifying a
primitive the information describing its instance, such as its base face, its axis, its diameter, etc.
is reconstructed. This information is represented in frames which are stored in the Feature
Knowledge-Base.

3. INTERACTING FEATURES. Primitive features are usually not isolated. In fact the
significance of this research is associated with recognizing interacting features and finding their
constituent primitives. The number of primitive features to be recognized is finite, but the
configurations of features, their intersections, and the types of interactions that may arise in a
compound cavity are unlimited. It is not practical to enumerate all possible interactions of
shape features.

The major hindrance in determining the constituent primitives of an object is nonunique-
ness. The cavity graphs for the depression consisting of interactions may not match the
representation for any of the primitives. In fact the subgraph representing a primitive in an
interaction could be different from the representations shown above for isolated primitives.
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Figure 3: Extraction of Isolated Primitive Features

(a): a part with an isolated pocket and a thru slot primitive.
(bl),(b2): The cavity graphs of the object.
(c): The hypotheses generated from the cavity graphs in (bl),(b2).
(d): The verified primitives extracted by the prototyped system.
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Consider the part shown in figure 4. The subgraph of the global graph of the part c, nsisting of
only the concave links does not match the representation for any of the primitives. 'I ne part has
a pocket (faces 13,14,15,16,20,12) and a prismatic hole (faces 16,17,19,20). The subgraph
induced by nodes 13,14,15,16,20,12 is the subgraph representing the pocket in the interaction.
Clearly this subgraph is not isomorphic to the representation for a pocket primitive.

The problem in the above example is a direct result of the interaction between primitive
features. As a consequence of the intersection of the hole and the pocket, one of the side faces
of the pocket is divided into two smaller disconnected faces, 13 and 14. A group of faces that
have been produced as a result of dividing a large face because of interaction of primitive
features are called unifiable. Faces 13 and 14 in the above example are unifiable. We can unify
the faces in a unifiable group to form a larger conceptual face. The conceptual face produced
by unifying faces 13 and 14 is represented by [13,141. The following Observation expresses the
minimum conditions required for a set of faces to be unifiable.

Observation 1: The set of faces U = [fi ,f2 ....fJ of an object S is unifiable if
(i). every face in the set, U, is embedded on the same plane, i.e. they have the

same equation,
(ii). No face of the part intersects the interior of the face, [f ,f2,...,fl formed by

unifying f1 ,f 2,..... , and
(iii). normals of all elements of U point in the same direction

The notion of unifiability is coupled with the machining of the set of unified faces. Condi-
tions (i) and (iii) of observation 1 indicate that the unificd faces have similar geometry, and con-
dition (ii) guarantees that no other part of the object obstructs the larger face formed by
unification. Therefore, all faces in a unifiable set may be machined by the same group of
machining operations.

In the same manner that the node labeling helps distinguish between representations which
otherwise seem identical (example in figure 9), unification helps in obtaining a unique represen-
tation for a primitive in its interaction with other primitives. Figure 4(c) shows the subgraph of
the global graph 4(b) consisting of concave edges with the faces unified and the nodes labeled.
It is clear that the subgraph of the cavity graph, 4(c), induced by nodes [13,141,15,16,20,12 is
isomorphic to the representation for a pocket. In fact, the cavity graph is the union of the sub-
graphs representing a pocket and a prismatic hole (subgraph induced by 16,17,19,20). Using
I (e) to denote the label for edge e, and l'(f) to denote the label for face f, the cavity graphs can
be defined as follows:

Definition: A Cavity Graph, H, is a subgraph of the global graph , G. of the part
such that H is connected and:

(i). unifiable faces of G are unified,

(ii). l(e) = concave - ee E(H), and

(iii). 1'(f) e [B, -B, +X, -X, +Y, -Y -Vf c F(H).

where E(H) and F(H) are the edges and the faces of the cavity graph, H, respec-
tively.

The cavity graph 4(c), as mentioned above, is composed from the union of the subgraphs
for a pocket primitive and a prismatic hole primitive. Therefore, it seems logical that to obtain
the primitive features of the part we must decompose the cavity graph into the subgraphs for the
constituent primitives. The cavity graphs obtained according to the above definition are, in gen-
eral, a proper subgraph of the union of the representations for the primitives involved in the
interaction, or isomorphic to the union of the representations. Decomposing the cavity graphs
into a set of maximal subgraph patterns representing the primitive features yields a set of
promising hypotheses about the primitive constituents of the depressions in the part.
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Figure 4: Cavity Graph Representation for a Depression

(al) Shows an example part, (a2) shows the depression in
(al), which is a pocket with base-face 5, with a prismatic hole
opening into it. Note that faces 13 and 14 are coplanar.
(b) shows the Cavity graph of depression.
In (b) (15 : +Y) means that the normal to face 15
is in direction +Y. Faces 13 and 14, which meet all criteria for
unification, are unified and denoted by [13,14].
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4. HOW ARE HYPOTHESES GENERATED? Generation and verification of hypotheses
form the core of our method for extracting shape features. The purpose of the hypothesis gen-
eration step is to find a set of promising hypotheses from which the correct hypotheses about
primitives forming the depressions can be selected by the expert consultants. An object typi-
cally consists of several depressions. Each depression is represented by one or more cavity
graphs. To generate hypotheses, the cavity graphs are decomposed into maximal subgraphs
corresponding to the patterns for the primitive features.

Observation 2: There is an ordering HI, H 2, ..., Hj of the local representations of
the primitive features, such that H I z H 2 D ... D Hj.

From the local primitive representations in figure 2:

Hpoct D Hbli, -so D Hprs,,iatci-hwe D Hblin-srep D H,1o1 D Hste,,p

The ordering introduced by observation 2 is used to assure maximality of each primitive in
a decomposition. We first look for subgraphs of a cavity graph isomorphic to Hi , and after all
such subgraphs are found and the corresponding hypotheses are generated, we look for sub-
graphs isomorphic to Hi+,. Two subgraphs representing different hypotheses may have com-
mon vertices and even common edges, but a subgraph is not allowed to represent a hypothesis if
all of its edges (and hence its vertices) are elements of subgraphs for higher order primitives.
This continues until the Cavity Graph is completely decomposed into its maximal constituents.

For the purpose of efficiency, this decomposition is broken down into steps. For each cav-
ity graph, an ordered set of faces is produced such that faces with more concave edges in their
boundary are ranked first. Faces are taken one at a time from this ordered set of faces and all
consistent and acceptable (with respect to primitive structure and node labels) hypotheses for
primitives are generated, such that the face is the base of the primitive. A hypothesis is
removed from the hypothesis set if its graph is a part of the graph of any previously generated
hypothesis. This ensures maximality in the set of hypotheses. This is repeated until all faces
and edges belong to some hypothesis. The process is performed for each cavity graph. thereby
generating hypotheses for the depressions in the complete object.

Figure 5 shows the Cavity Graph of a depression and the set of hypotheses generated on it
using the above outlined algorithm. Hypotheses suggest the existence of specific primitive
features and the faces comprising each one. Each hypothesis is represented as a list. The first
element of the list is a key to the type of primitive being hypothesized. The other elements are
the base of the primitive and a list of its side faces in a predefined order.

Although the algorithm stops when all the faces and edges are in some hypothesis, keeping
track of what faces have been used as a base in the ordered set of faces enables us to follow our
enumeration, and hence to generate new hypothesis sets from where we left off without dupli-
cating the earlier effort.

There are certain properties which are desirable for generators. Winston 1151 describes
these as:

" Good generators are complete. They eventually produce all possible solutions.
" Good generators are nonredundant. They never damage efficiency by proposing

the same solution twice.

" Good generators are informed. They use possibility-limiting information, res-
tricting the solutions they propose accordingly.

The following observation shows that our hypothesis generation scheme has the above proper-
ties:

Observation 3: The hypothesis generation scheme proposed above is (i) complete,
(ii) nonredundant, and (iii) informed.
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1. (Pocket Base: 1 Sides: (5 (2 10) (3 11)4)

2. (Hole Base: 4 Sides: (6 5 7))
3. (Hole Base: 4 Sides: (6 5 8))

4. (Hole Base: 4 Sides: (9 5 8))
5. (Hole Base: 4 Sides: (9 5 7))

(c)

Figure 5: Hypotheses Generated for a Part

(a): An object with a depression formed by interaction of one pocket and
two polyhedral holes opening into it.

(b): Cavity graph of its depression,
Note that the coplanar face-pairs 2,10 and 3,11, are unifiable.
These faces belong to the pocket primitive, and hence in the cavity
graph (b), one node represents both faces of the unified pair [2,10]
and one node represents the unified pair [3,11].

(c): The set of hypotheses generated for the part.
The 3rd and 5th hypotheses are incorrect.
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(i). Completeness is due to the fact that at each face, all primitive templates with
that face as their base are checked, and eventually all faces are used to find
templates based at them.

(ii). The scheme is not redundant because it keeps a history of the hypothesized
primitives, and every new one is checked in step (vi) of the algorithm against
the previous ones, and if a hypothesized primitive's set of edges and faces is a
subset of another primitive's set of edges and faces, the hypothesis
corresponding to the subset is discarded.

(iii). The method is informed for three reasons:

(a) The faces of a depression are ranked.

(b) The order of search for primitive features is that set by observation 2.

(c) At any time it is known what faces and edges are hypothesized about.

The first set of hypotheses generated on a Cavity Graph, G, is not necessarily the only set.
If the subsequent analysis shows that the generated hypotheses represent the primitives involved
incorrectly, subsequent hypotheses are generated using a supergraph of the cavity graph. We
describe later how this supergraph is built in the section on the combination of topologic and
geometric evidences. The hypothesis generation process is recursive. The first set of the
hypotheses is formed by maximal subgraphs of the supergraph. Although seldom needed, later
hypothesis sets are produced by decomposing the supergraph into a new set of subgraphs.
These later subgraphs constitute breaking the supergraph into smaller components which are not
maximal. However, for every generated set of hypotheses, H = [h 1, h 2 .... hi}, we have:

h, U )h 2 U ... k_.)hi = G,

where hj refers to the local representation for the primitive of hypothesis j,
( j i),

and G = the cavity graph on which hypotheses are generated.
The hypothesized features must be checked in detail for correctness by the rule-based consul-
tants. The generated hypotheses are made available on a notice-board to the rule-based experts.

4.1 Elimination of Jnvalid Hypotheses. The objective of the rule-based experts is selection from
the proposed set of hypotheses, H, of the subset of correct hypotheses, V, which accurately
specifies the comprising primitive features of a depression. Rule-based experts examine each
generated hypothesis in detail to decide if the primitive feature suggested by the hypothesis is
valid. Each expert is independent and equipped with knowledge in the form of rules and pro-
cedures. An example rule for a thru-slot looks like this in pseudo lisp:

(thru-slot base: B sides: (sidel, side2)) .-

(concave-adjacent base sidel ),
(, oncave-adjacent base side2),

(opposite (principle-normal-component side I)
(principle-normal-component side2)),

(intersect base side] edgel),
(intersect base side2 edge2),

(no-concave-edge-between edge) edge2),

(not (adjacent side) side2)),
((concave-adjacent side) list]) and (length listl 'I)),
((concave-adjacent side2 list2) and (length list2 'I)).

The above rule says that the three faces (base, side 1, and side2) form a thru-slot if the sides

are concavely adjacent to the base, the sides are almost parallel and have opposing normals.
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there is no face concave to the base between side 1 and side2, and neither side I nor side2 is con-
cavely adjacent to any other face except the base of the slot.

The type field of a hypothesis is used to search for the rules applicable. The matching of
the types triggers a rule. The conjuncts in the condition are evaluated when a rule is fired. If all
the conjuncts succeed, the hypothesis being tested is assumed correct and is tagged to indicate
so. Let us consider the example shown in figure 5 again. There is one depression in the part
and one cavity graph corresponding to it. The depression in the part consists of a pocket with
two holes opening into it. Five hypotheses are generated, one for a pocket and four for holes,
three of which are correct. One of the conjuncts in the if part of the rule for holes states that all
the faces of a hole should be convexly adjacent to the same face. This condition models the fact
that at the open end for a hole there is a loop of edges produced by the intersection of the faces
of the hole with the opening face of the hole. Applying this condition to the four hole
hypotheses of figure 5 it becomes clear that the third and the fifth hypotheses are incorrect
because faces 6 and 8 of the third hypothesis are not adjacent to the same opening face and
similarly faces 9 and 7 of the fifth hypothesis are not adjacent to the same opening face. These
hypotheses are eliminated.

5. VIRTUAL LINKS. In the cases that correct conclusions about the primitive features
constituting a depression can be drawn from the original cavity graph of the depression, the
correct hypotheses are found by the experts and a verification step checks the results. In such
cases, there is no need for virtual links. However, another class of problems that arises in the
analysis of primitive interactions is when the intersection of primitives causes the the adjacency
relationships between the faces of a primitive to be changed. In this case, the representation of a
primitive in the interaction (subgraph of the cavity graph induced by the nodes for the faces of
the primitive) does not match the template for the primitive (shown in figure 2), because some
links of the template are not in the induced subgraph. To clarify the problem, let us consider the
example in figure 6. The object in figure 6(a) has a blind slot (base : 5 sides : (4. 3. 1) and a
thru slot (base : 5 sides : (2. 1)). The shape primitives share the same base, but face 3 of the
blindslot is disconnected from the side face 1. Consequently there is no link between nodes 3
and 1 of the cavity graph, so the subgraph induced by vertices 5,4,3,1 does not match the tem-
plate for a blindslot. In order to generate the correct candidate hypotheses for such parts, it is
necessary to augment the cavity graph with virtual links. For the cavity graph, G, of figure 6(b),
the hypothesis space includes the indicated primitives only if the virtual link, (3 1), between
nodes 3 and 1, is added to G. In general, we don't know how many links are required a priori.
The number of virtual links can be more than one. The most appropriate virtual links are those
whose addition makes the resulting supergraph isomorphic to the union of representations for
the involved primitives.

5.1 Direct Method to Find Virtual Links The appropriate virtual links for a cavity graph may be
found by approaches including enumeration, partial match, expert system, and uncertainty rea-
soning. Enumeration considers each possible supergraph of the cavity graph individually.
Although the desirable results may be obtainable with this approach, it has practical limitations
because the power set of all possible links should be considered.

We refer to the partial match approach as the direct method. In this method, the partial
matches between the maximal subgraphs of the cavity graph of depression and the templates for
primitive features are considered as potential hypotheses, and used for determining which vir-
tuai links to be augmented to the cavity graph. Consider the example of figure 6 again. Node 5
can be chosen as the base to generate the maximal subgraphs of the depression, since it has the
highest number of incident links. Considering different primitives, we observe that if the three
links (4 2), (2 1), and (1 3) are added to the cavity graph it may represent the template for a
pocket, but then the labels do not form a consistent set for a pocket primitive. Next, we observe
that the subgraph induced by nodes 4,5,3 and I partially matches the template for a blind-slot.
For this partial match to be complete, a link between the nodes 3 and I of the cavity graph, G, is
required. Proceeding in this fashion, the direct method may select this link as a strong candi-
date for a virtual link to be augmented to the cavity graph. Obviously, to prove the necessity tor
this link more reasoning and tests must be performed, however, the direct method identifies
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Figure 6: A Compound Feature whose Cavity Graph is not

the union of the template subgraphs for the primitives involved.

The depression of object shown in (a) consists of a
blind slot and a thru-slot sharing base-face 5.
However, face 3 of the blind slot does not
intersect face I as a result of the blind slot's interaction with the thru-slot.
The cavity graph of the depression is G without the dotted link.
Therefore a thru-slot subgraph, G1, and a blind-slot subgraph, G2,
can be obtained from the Cavity Graph, G, only if the shown dotted
virtual link is added to G.
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strong candidates.
The direct method of considering partial matches to find virtual links is useful for reason-

ing with relatively small cavity graphs, but it cannot be effectively used for complicated cavity
graphs, such as the cavity graphs associated with example part of figure 12. There are too many
sufficiently close partial matches in these cavity graphs. A better method should be used to take
into account other supporting information, and automatically generate the most useful virtual
links. We show in the next section that a method based on combining geometric and topologic
evidences can be used to achieve this purpose.

6. DETERMINING VIRTUAL LINKS BY COMBINING TOPOLOGIC AND
GEOMETRIC EVIDENCES.

6.1 Dempster-Shafer Theory and Extraction of Primitive Features. In this section, we introduce
a method to find the virtual links to be augmented to the cavity graph of a depression by com-
bining geometric and topologic evidences, and applying a clustering technique. Figure 7 shows
the basic block diagram for this approach. The approach is based on determining the subset of
the virtual links in a cavity graph that should be reconstructed to obtain the supergraph embed-
ding the most probable primitive features.

As we mentioned earlier, the number of required virtual links are not known in advance.
Let us consider the example object in figure 8(a). Its depression consists of two pockets with
perpendicular axes opening into each other. The base of the first pocket is face 1 (side-faces:
2,4,3,and 5), and the other pocket has face 2 as its base (side-faces: 1,5,6, and 4). The cavity
graph for the depression is shown in figure 8(b). Because there is neither a link between the
nodes 3 and 1, nor a link between nodes 2 and 6, neither the subgraph induced by nodes 1,2,3,4,
and 5, nor the subgraph induced by nodes 1,2,4,5, and 6, matches the template for a pocket. For
the example part of figure 8, two virtual links ( (6 2) and (3 1) ) are needed.

Dempster-Shafer Theory [12 is particularly useful for our purposes, because of its ability
to narrow the set of promising hypotheses with the accumulation of evidence.

Each virtual link to be augmented to the cavity graph can be represented by a tuple (ff)-
The set A ((f1If 12), " " , (fiji2)}, then, is the hypothesis which suggests the set of i links
[(fIIf 12), - , V Ii2)} should be added to the cavity graph of a depression.

The hypothesis that contains the set of all possible virtual links in a cavity graph is the set
that is referred to as the frame of discernment, denoted 8. Let G be the cavity graph of a
depression. The set 8 is obtained by determining the set of all links required to make G a com-
plete graph. (A complete graph is a graph that is simple* and each pair of distinct nodes in it is
joined by an edge.) Hence, the set of links in the frame of discernment, E, is EC(G), the com-
plement of E (G), the set of edges of G with respect to the set of links connecting all distinct
pairs of nodes of G. The set 0 for the example part of figure 8 would be:

19= ((fVf3), (f6fl), (f6f2), (f3fl), (f3f2), tf 4 fh)}.

An underlying assumption of the Dempster-Shafer Theory is that the hypotheses under con-
sideration are mutually exclusive and exhaustive. These assumptions are satisfied by the set of
hypotheses constituting a frame of discernment for a cavity graph.

Different pieces of information, such as whether the planes containing two faces are perpendic-
ular oi not, form evidences helping support or helping exclude a one element subset of E. The
impact of each evidence is represented by a basic probability assignment (bpa). A bpa assigns a
number, m, in the range [0 11 to each subset of 8. Shafer describes a basic probability assign-
ment as:

The quantity m (A) is called A's basic probability number, and it is understood to be
the measure of the belief that is committed exactly to A [ 12].

* A graph is simple if it has no loops and no two of its links join the same pair of nodes.
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This proportion of belief does not imply belief in the subsets of A. The quantity Bel (A), for
some bpa, m, is used to represent the total belief in A, which indicates certainty in A and its sub-
sets. Shafer further explains:

... To obtain the measure of the total belief committed to A, one must add to m (A) the
quantities m (B) for all proper subsets B of A:

Bel(A) = I m(B)
BcA

Evidences and bpas associated with each evidence should be selected such that they confirm or
disconfirm what is implied physically by adding the virtual link to the Cavity Graph. Some
relevant information might be: Are the normals to faces fi and fj almost perpendicular? If the
addition of (fifj) completes the representation for the maximal primitive, P, are there indica-
tions that P is part of the depression? ... Each of these pieces of information forms the basis for
an evidence helping support or helping exclude a one element subset of 8. The bpa, mi,
assigned by evidence i must be chosen such that:

,m/i(A j) = 1 Aj C: 8
i

and m(0) =0.

m (e) is the quantity of belief that remains unassigned after various amounts of belief are
assigned to all proper subsets of 0.

After relevant evidences are gathered and the corresponding bpa assignments are made.
the supports for hypotheses are combined. Given two observations corresponding to hypothesis
sets X and Y, with bpa assignments m I(X) and m 2(Y), we use Dempster's combination rule to
compute a new function that represents the impact of the combined evidence. This function
assigns m I(X)m 2 (Y) to the intersection of X and Y. Since there are typically several subsets of
0 whose intersection is the same as that of X and Y, the bpa assignment of the combined func-
tion, denoted M I(m 2 , for every hypothesis set A, is computed from:

__ 1
M 1n m 2 (A) - - M Mr(Xi)m 2(Yj) ; A #0 (2)

1-K i

mIGm2(A) = 0 A=

where:

K = E ml(Xi)m2 (Yi)

i,j
X,(nY, =0

The result of the combination is independent of the order in which the evidences are gath-
ered and combined, an essential property fulfilled because of the commutativity of multiplica-
tion. Also, the sum of all bpas assigned by m I Mn2 adds up to 1, thus satisfying the definition
of a bpa.

To combine all supporting evidences, equation (2) is applied repeatedly. Assuming there
are j pieces of evidence, m 1, M 2 , ..., m, we use:

M = (.((m lGm2)Q)m3)( ... )Q))

to come up with m, the combined bpa for each singleton. If A is a singleton, Bel (A), the total
belief committed to A, is equal to m (A) since the contribution from the bpa of its only proper
subset, 0, is zero. Therefore, to determine the virtual links to be augmented, the combined bpa
m can be used to rank the i singleton subsets of 8, and cluster the singletons into disjoint
groups.

Each singleton in a cluster has a combined bpa value which is similar to the other single-
tons in its cluster, and the bpas of the singletons in one cluster are notably different from the
bpas of singletons in any other cluster. The hypotheses associated with the cluster containing
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the highest ranked singleton are the hypotheses that correspond to the most probable virtual
links. These links are augmented to the cavity graph of the depression. The resulting super-
graph is then analyzed using the hypothesis generate-verify method described in previous sec-
tions to find its constituting primitive features. The next example clarifies the method:

Example: Consider the part of figure 8(a). The hypotheses generated using the
cavity graph shown in 8(b) do not model the depression; we already determined
the frame of discernment to be:

0=V(f6f3), (f6f 1), (f6f2), (f3f1), (f3f2), (f4f5)).

Evidences: For clarity, let us consider three simple bpa assignments for links in
: If two faces, fi and fi, have orthogonal principle normal components, assign:

m (((f~j)}) = 0.7 , and m (8) = 0.3; if two faces, fi and fj,are convexly adjacent,
assign: m ({(fjfj)}c) = 0.7 , and m (8) = 0.3; and if two fa es, fi and fj, are almost
parallel with normals in the opposite direction, m ((fifj)}c) =0.8, and
m (8) = 0.2. There are seven pieces of information applicable to the links in 9
with the following bpa assignments:

1. mI([(f 6f 3 )}) =0.7 ; m 1(8)=0.3
2. m 2 ([(f6f 3 )}c)=0.7 ; m2 (E)) = 0.3
3. m 3 ([(f6fI)}C)=0.8 ; m3 (8) = 0.2
4. m 4 ([(f 6f 2 )}) =0.7 ; m4 (8) = 0.3
5. m5 ([(f 3fl)}) =0.7 ; m 5(8)=0.3
6. m 6([(f3f 2 )}c) = 0.8 ; m6 (8) = 0.2
7. m 7 ({(f 4f 5 )}C)= 0.8 ; m7 () = 0.2

After combining them, m (A) = m 1 @m 2 ... GM(A) and we get the following
combined bpas for the singleton hypotheses:

m({(f3f i )}) = 0.366 m({(f 6f 2 )}) = 0.366
M({(f6f3)}) = 0.110 m((f 6fl )) = 0.0
m([(ff 2))) = 0.0 m({(f4f )}) = 0.0

Therefore we obtain:
cluster] = {(f f ), (f2f6)}
cluster2 = {(f3f 6)}
cluster3 = {(f3f 2), (f4fs), (f6f1

The links, from the highest ranked cluster are restored. The resulting supergraph
is shown in Figure 8(c). Based on the graph in 8(c) the following primitive con-
stituents of the depression can be identified:

((pocket Base:l sides:(2 4 3 5)) certainty:O.8)
((pocket Base:2 sides:(1 5 6 4)) certainty.O.8)

It is important to note that in assigning the above bpas to the corresponding subsets of .
the actual numbers, e.g. 0.7, do not need to be exact for our purposes because we are not draw-
ing conclusions from the value of the combined bpas. Conclusions as to what links to be aug-
mented to the Cavity Graph are based on the final ranking of the links of E9 obtained from com-
bining evidences.

7. VERIFICATION. Whether the cavity graph or its supergraph is the basis for the gen-
erated hypotheses, the subset of hypotheses selected as the correct primitives modeling the
depression needs to be verified. Selection of a hypothesis by an expert is a temporary accep-
tance for that specific hypothesis. In recognizing interacting features, it is important to analyze
the cavity as a whole. To achieve integrity, a selected set of hypotheses, V, must model the
whole depression. This requires all faces and edges of the underlying cavity graph to be associ-
ated with at least one of the primitive features in V. If there are edges or nodes of Cavity Graph
not associated with any selected hypothesis (dangling edges or nodes), then all hypotheses in V
are disbelieved. This strategy avoids misclassification of a primitive by assigning some of its
topologic entities to a neighboring primitive feature.
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Figure 8: Adding virtual links to the cavity graph.

(a): A part with two interacting pockets.
(b): Cavity graph of the depression

The subgraphs of this cavity graph induced by the fact- for each
pocket do not represent a pocket template because the links (3 1)
and (2 6) do not exist in this cavity graph. Specifically the maximal
decomposition of this cavity graph contains representations for two
holes and one blind slot, any combination of which is incorrect.

(c): The Cavity graph with virtual links added.
This augmented cavity graph is readily decomposed into two maximal
constituents each representing one desired pocket.

(d): The most probable features extracted from (c).
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8. RESULTS AND DISCUSSION. Cavity graphs, one of the representation tools we have
used in this research, are an extension of the attributed adjacency graphs proposed by Joshi [7].
Our cavity graphs not only explicitly represent the convexity-concavity information between
two intersecting faces, but they also explicitly represent the spatial orientation of faces relative
to one another in 3D space. These relative spatial orientations are available in the labels associ-
ated with the cavity graph nodes to directly participate in the matching process. Node labels are
important for the correct classification of primitive features. Their utility can be seen with the
use of a synthetic simple example. Consider the two simple parts shown in figure 9. Their cav-
ity graphs without the node labels and with the node labels are shown in figures 9(bl-b2) and
9(cl-c2) respectively. There is no difference in the graphs for the features without the node
labels, but object (a) contains two steps and object (b) contains a thru-slot. It is clear that using
the graphs without the face-labelings as the basis for recognition would result in classifying
both features in the same class. However, a quick and rough labeling of the nodes reveals that
the two faces concavely adjacent to the base face are almost perpendicular in object (a) and
almost parallel in object (b).

The advantage of this extended representation is not contained to representing certain
depressions uniquely. It is directly accountable for reducing complexity greatly in generation of
hypotheses. This improvement in complexity is achieved in two ways. First, only the template
matches which are supported by an acceptable combination of node labels produce a
hypothesis, and secondly, the node unification of separate faces into one node reduces the
number of nodes and therefore complexity. The next example part illustrates how these two
considerations work to reduce complexity. In figure 10, five slots interact. The coplanar faces
10, 11, 12, and 13 are produced because of the crossing of the three parallel slots on the left into
the thru-slot in the middle. The thru-slot in the middle consists of seven machining faces: Face
16 is the base; faces 10, 11, 12, and 13 form one side of this slot; and faces 14 and 15 form the
other side. In addition to illustrating how all faces of a primitive, even when they are arbitrarily
split in an interaction, are extracted and incorporated in its description, this example serves to
show how the node labeling mechanism prevents the generation of many incorrect hypotheses.
The only cavity graph for the object is shown in figure 10(b). A blind decomposition of the
cvit graph into primitive templates without regard to node labels produces as many as

2 - 45 slot hypotheses, since there are 45 possible pairings of faces within the cavity graph.

'ever, using the face labeling mechanism, only the faces with opposite principle normal
components are used to form hypotheses. Hence, only 17 hypotheses are generated. This is a
much smaller subset which may carefully be examined by the experts. The five slots correctly
constituting the interaction are found and verified from among these 17 hypotheses. The result-
ing primitives are shown in 10(c).

The next example shows the importance of unification for finding machining faces which
have no concave edges. Although these faces are not part of the subgraph of the part induced
by just the concave links, since all of their edges are formed by convex face-intersections, they
must be included in the description of the primitives they are a part of, so that in planning or
recognition tasks correct results are obtained. Figure 1 l(al) shows an example part with four
thru-slots. Two of the slots cross each other while the remaining two open into one of the
former slots and are parallel with each other. (al) and (a2) show magnified views of these two
latter slots. The intersection of the slots causes three of the side faces to break into discon-
nected components forming coplanar face pairs 2,3 and 4,5 and 9,13. Note that faces 5 and 13
are adjacent to all their neighboring faces via convex edges. This example shows is that
although in a cavity graph a link corresponds to a pair of faces being concavely adjacent.
machining faces with no concave edges are properly identified. Faces 5 and 13 are two such
faces. Face 5, for instance, has no concave edges, but it is one of the side faces of the slot hav-
ing base face 14 and side faces: 5,4,13,9. There are three cavity graphs associated with this part
which are shown in figure I I(b). Face 5, as a result of unification, shares the same node with
face 4 in the left cavity graph. Therefore, it is correctly included as a machined surface of the
slot in the surfaces of extracted primitives. The parts giving rise to these types of interactions
can not be properly handled by previous systems such as [7].
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Figure 9
The Need for Face Labeling:

Shown in (al) and (bi) are two simple objects; There is no
difference in their Cavity graphs without face labels, (a2)
and (b2); Cavity graphs including the face labels (cl) and
(c2) capture the difference.
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(b)

Verified Primitive Features:

kverified (thru slot Base •16 Sides:• ((14 15) (10 11 12 13))) Certainty:• 1.0)
(verified (thru_slot Base : 16 Sides : (1 2) Certainty : 1.0)
(verified (thru slot Base : 16 Sides : (3 4) Certainty : 1.0)
(verified (thru_slot Base : 16 Sides : (5 6) Certainty : 1.0)
(verified (thru_slot Base : 16 Sides : (7 8) Certainty : 1.0)

(c)

Figure 10: Limiting the Number of Generated Hypotheses

(a) shows an example object with 5 interacting slots. The group of faces
[10,11,12,131 are unifiable. The pair of coplanar faces 14 and 15 are
produced by splitting a larger conceptual face, and are also unifiable.
(b) shows the cavity graph generated by the system for the object. Blind
graph matching would produce as many as 45 possible slot subgraphs from
this cavity graph, but because only appropriate combination of node labels
are considered, our system generated only 17 hypotheses.
(c) shows the five hypotheses verified to be correct by the system.
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(verified (thruslot Base :14 Sides: ((5 4) (9 13))) Certainty :1.0)

(verified (thru slot Base :14 Sides: (1 (2 3))) Certainty : 1.0)
(verified (thruslot Base : 7 Sides: (8 6)) Certainty : 1.0)
(verified (thruslot Base :11 Sides : (10 12)) Certainty : 1.0)

(c)

Figure 11: Importance of Unification in Finding Machining Faces with no Concave Edges

The part shown in (al) has four thru-slots. Note that the coplanar face
pairs [2,3], [5,4], and [9,13] are unifiable since they have been split
as a result of interaction of slots. (a2) and (a3) show a magnified view of
the two slots which are parallel with each other.
Also note that faces 5 and 13 are adjacent to all their neighboring faces
via convex edges. Although methods such as those in [7] do not classify
these faces as part of shape primitives, the methods proposed in this paper
use unification to capture these faces in the proper shape primitive.
(b) shows the cavity graphs for the part in (al), and (c) shows the
features extracted by the prototyped system.
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In this section we discussed some sample results which will shine light on ii.- ,,',±ntages
obtained using the methods proposed in this work in comparison with the previous existing sys-
tems. The primitives in these test parts are not successfully extracted by previous systems.

9.1 Extension to Non-Perpendicular Face Intersections. In this section ., g'.e a straight-
forward extension of the methods to accommodate identification and extraction of the primi-
tives in parts in which the intersecting faces are not necessarily at right angles to each other. As
we mentioned earlier, the primitive representations of figure 2 each represent a family of primi-
tives which are obtained by varying the face-face intersection angles between all the allowed
values in the respective convex or concave range that are physically realizable. In order to find
the cavity graphs for a part with inclined faces, the nodes must be labeled appropriately. As
before, the node corresponding to the face with the greatest number of concave edges is selected
to be the base and is labeled B. A set of local coordinates, (xt, Yt, Nb), for the depression is con-

structed from the unit normal vector to the base, Nb, together with two other unit vectors, x and
Y7, such that they are mutually orthogonal to each other. For any other non-base node, the unit
normal, Nf, of the corresponding face(s), f, of depression, can be decomposed in to:

Nf = n INb + nx, "Xl + ny,,Y Y

The dominant component of Nf determines the label for the face, f.
After the construction of the cavity graphs, geometric reasoning by hypothesis generation-

elimination and addition of virtual links can be carried on as highlighted in previous sections.
Our next example, shown in figure 12, demonstrates the extraction of shape primitives from a
part with non-perpendicular intersecting faces. It is a little more complicated than the previous
examples, but it illustrates the potential of the proposed methods for handling fairly complex
interactions that arise in machined parts. The part in figure 12(al) has twelve features: five
steps, one blind slot, two thru-slots, three pockets, and one prismatic-hole. To observe some of
the difficulties one may note the following: The coplanar faces 1, 30, and 31 are sharec. - two
thru-slots and one blind slot. The blind-slot and one of the thru-slots (the one formed ',, side
faces 4 and 5) have the same axis so that the end-face 3 of the blind-slot is disconnected from its
side-face 5. The other thru-slot (with side-faces 6 and 7) crosses the blind-slot splitting its side
into coplanar faces 33 and 2. Both side-faces of the blind-slot intersect its base non-
orthogonally. The cavity opened in the middle of the blind-slot is shown separately for clarity in
figure 12(a2). There are two pockets, one with base-face 12, and the other with the base-face 14,
which have the same axis and share the side-faces 8, [10,321, and I1. These two pockets open
into each other. A third pocket, which has an axis perpendicular to the first two pockets, opens
into the bottom of the second one (this pocket has face 8 for its base). Note that the base-face of
none of the pockets intersects all of its sides. In the pocket with base 12, there is no intersec-
tion between base and side-face (10,321, in the pocket with base 14, there is no intersection
between the base and side-face 11, and in the pocket with base 8, there is no intersection
between the base and side-face 15. Therefore, the methods based on topology alone 15.71, or
generic rules [6] cannot capture these classes of interactions. Finally, it is worth noting that the
prismatic-hole in the right with faces 18, 17, 8, and 11 opens at an inclined angle into the pock-
ets. Generally this type of interaction is difficult to handle for subtractive methods.

The depressions in this part are represented by seven cavity graphs. Figures (bl)-(b7)
show the seven cavity graphs finally constructed by our system. Note that each cavity graph has
its own local coordinates and, for example, the local coordinates for cavity graph (b6) are dif-
ferent than those of cavity graph (b7) as shown in the figure. We also observe that the system
automatically constructed the four links (35), (15 8), (12 [10,321), and (14 Il), which are
shown with dotted line segments in figure 12(b). The first added link completes the representa-
tion for the blind-slot primitive, (base: 1,30,31 sides:2,33,3,5), and the other three links are
used to extract the three pockets, one with base-face 12, one with base-face 14, and the other
with face 8 as its base. Without these links, these primitives would not be present in the
hypothesis space of the problem and could not be considered. The result of primitives extracted
and classified by the system is shown in figure 12(c).
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Figure 12: Recognizing Primitives with Inclined Faces

(a) shows a part with inclined faces.
(bl)-(b) show the seven cavity graphs
with added virtual links for its depressions.
(c) shows the primitive features recognized by the system.
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(verified (pocket Base : 12 Sides : (89 [10,32 11)) Certainty :0.8)

(verified (pocket Base : 8 Sides : (14 [10,321 13 15)) Certainty : 0.8)
(verified (prismatic_hole Base :18 Sides : (8 7 11)) Certainty :1.0)
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(c)
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10. CONCLUDING REMARKS. We have described methods and algorithms to extract a wide
range of interacting features and find their constituent primitive machining features. We have
discussed both fundamental concepts and practical implementations. The recognition method is
based on Cavity Graphs, which provide a topologic and geometric description of the depres-
sions in the object boundary. Concepts have also been developed to combine topologic and
geometric evidences to extract the most probable features of a depression. This method enables
us to identify the comprising primitive features when the topologic relationships between the
faces of a primitive in interaction do not include all the relationships found in an isolated primi-
tive. The proposed representations carry more geometric information than other methods, thus
allowing a more accurate machine understanding of the shape of the part.

Although the proposed method successfully analyzes the feature content of many parts,
much work still needs to be done to automate the interpretation of engineering designs. A fun-
damental project would be to keep a record of the design session, and use this incremental infor-
mation together with the CAD representation of the designed part rather than using only the
CAD representation for automatic extraction of the machining features in the part.
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ABSTRACT.
A new class of finite difference scheme, using the multigrid iterative method, is

presented for solving the time-dependent, incompressible Navier-Stokes equations. The
schemes are quite flexible, maintaining second-order accuracy with overlapping grids in
domain decomposition and with irregular grid systems. A variant of this method may be
used to solve the steady-state equations.

The multigrid iteration procedure, although not essential to the method, provides
a dramatic speed-up over the use of iterative methods such as S.O.R. As is typical of
multigrid methods, the work per grid point is essentially independent of the finest grid
spacing.

Results are presented of the application of one of the schemes to the computation of
the two-dimensional flow past a rectangle in a channel. The computation makes use of
overlapping grid domains. Numerical tests are presented demonstrating the second-order
accuracy of the method.

1. INTRODUCTION.
In this paper, a class of finite differences schemes for the time-dependent incompress-

ible Stokes and Navier-Stokes equations are presented. The significant features of these
schemes are that they are second-order accurate, they use standard grids, that is, not
staggered grids, and the schemes retain their second-order accuracy when used with non-
uniform and non-orthogonal grids. In addition, the schemes are unconditionally stable.
Because the schemes are inherently implicit, iterative methods are used to solve for the
solution at the next time level. The method presented here is a multigrid method, but
other methods may also be used.

For ease of exposition the Stokes equations are used to introduce the basic schemes.
Later, in section 4 it is shown how to treat the additional terms of the Navier-Stokes
equations.

* Supported by the U.S. Army Research Office
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2. THE FINITE DIFFERENCE SCHEMES.
The time-dependent Stokes equations are:

u, - V 2 V+ p+ = f (2.1a)

f .- it g (2.1b)

The vector function d" is the velocity, and the scalar function p is the pressure. The
functions f and g are considered to be given data. Notice that the pressure appears only
in (2.1a) and only in terms of its spatial derivatives. In most problems the function g
is identically zero, but we include the general case because it fits in naturally with the
multigrid iteration method.

The equations (2.1) hold in some domain Q, and to specify a unique solution, boundary
conditions must be given. The simplest conditions are to specify the velocity 1q on the
boundary, i.e.,

5'-b on aQ (2.2)

This is called the Dirichlet boundary condition.
The data g in (2.1b) and b in (2.2) must satisfy a constraint in order for a solution to

exist. Using integration by parts we have

jg jV -d=J -5 jb a (2.3)

where 5' is the outer unit normal to Q. For boundary conditions other than (2.2) there
may or may not be a constraint.

Initial data is specified for the velocity and the pressure

i(0 .. r ) = Jo"(x, Y) (2.4)

p(O. ,r. y) = po(r. y)

The initial data should be consistent with the equations (2.1), i.e.,

V. W0 = g(O.x.Y).

and

fj, - v +q ± '0 = Q f
For an introduction to the theory of the Navier-Stokes equations we refer to [61.

The first finite difference scheme is based on the Crank-Nicolson scheme for the heat
equation. We let t, = oAt, and for a ('artesian grid. let x = (Axr and y, mAy. We
first discretize only in time

5"r+1 - a 1 2an+ V_( P + + pn) P + O(At 2 ) (2.3)
At 2 +

S + = .q, (2.3)
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The Laplacian is discretized using the standard five-point Laplacian

727- = Ut+l.m + ULt-1,1 - 2firn, + Ue,,m+i + ft,,-1 - 2 1lt,. + O(AX2 + Ay2) (2.6)
Ax 2  Ay2

The discretization of the gradient of the pressure in (2.1a) and the divergence of the ve-
locity in (2.1b) must be done so as to insure smoothness or regularity of the solution. Since
the theory for regularity of solutions to finite difference schemes for the time-dependent
Stokes equations is not developed, we use the theory for the steady Stokes equations as a
guide. Considering (2.1) on all of R", we may transform equation (2.1) with the Fourier
transform in space and the Laplace transform in time, obtaining for the case of two x
dimensions ( .+ IL12  0 2W 1

. + IL 12 W) (2.7)
iW 1  IW 2  0

where wIw2 = wl2 w. The dual variables are s. for the Laplace transform, and cO = (WI .. "2)

for the Fourier transform.
The regularity, or smoothness properties, of (2.1) depend on the behavior of the inverse

of the matrix, which we call S, on the left of (2.7). The matrix S is the symbol of the
Stokes equation (2.1). In particular. the determinant of S is

det S = -(., + VA';2 )IWI2

and is bounded well away from zero as I"] and Re s become large.
We now consider the symbol of finite difference schemes for the Stokes equations.

see [5]. We begin by considering central difference operations for both the gradient and
divergence operators in (2.5). The symbol is

isin j Ax
q0 a

Ax
S, i sin 2 A Y

Ay
i sin 1 Ax i sin 2 Ay 1

A.). -Y

where

(.¢ -1 it-- (si2 A-. ,x12 sin 2 C2-y/ 2
and a - + 4a +(t - ,t Y~, y2

The determinant of S, is

det S, = (sin Ax + sin 2AY)

The range of &I and &2 are given by I I .r  < 7, and I21IY Note that det S,
vanishes for I&, 1A.r and 1I21Ly equal to 7. The vanishing of the determinant of the symbol
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for certain frequencies implies that these frequencies can not be determined by the data.
This statement applies as well for domains other than R'.

In place of central differences we consider the regularized differences inroduced in [2].
These are:

Op Pe+im - P-i.m nPe+2.m - 3pt+l,m + 3pt,m - Pt-s,m (2.8a)

Ox 2Ar 6Ax

p 'yrP = ,M+- P-n-i _pm+2 - 3 pt,m+l + 3 pt,m - pt,- (2.8b)
-9y - 2Ay 6Ay

9U lr- 6'-l.m t +lr - 3 Utm + 3Ut-lm - Ut-2,m (2.8c)

O -x 2Ax 6Ax
av49 Vt,m+l - Vt.m-1 Vtm+l - 3 vt,. + 3 Vt,m-1 - Vtn-2
- y y,,.V -=em (2.8d)

9Y-2Ay 6Ay

Notice that the additional regularizing terms are third-order divided differences which are
shifted forward for the pressure and shifted backward for the velocity derivatives. At
grid points near the boundaries, where the approximations (2.8) can not be applied, the
third-order difference is shifted the other way.

For the scheme using the regularized differences (2.8) the symbol is

(7 0 1)
S,2 = *0 '7 i~

\ 'La t(O2 0 /

wit h
sin Ax 4 iAr/2sin

3 " Ax/2

Ax 3.

2 - sin 2 Ay + 4 ,,A,/2 sin3 2 Ay/2
_AY 3 Y+

The determinant of S,2 is

(let S2 = -"(1( I2 + 121').

Since , and 2 do not vanish for 0 < i Ar 1 _< and 0 < 1 21Ay ,T we see that the
determinant of S2 does not vanish except for ,c = 2 = 0, the same as for the symbol of

tle Stokes equations (2.1). Thus, it seems likely, based on the theory for finite difference
approxixnations of the steady Stokes equation. that the solutions of the scheme using the
reglarized differences (2,S) will be smooth.

The Crank-Nicholson scheme for the heat equation is not dissipative unless the ra-
tio At/A.r 2 and At/Ay' are bounded. e.g.. [3]. The scheme based on (2.5) is also not
dissipative and this also effects the smoothness of the solutions of the finite difference
scheme, Note that dissipativity is related to the behavior of the symbol as R+s -- 0 with
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Ilm slat <_ r. Thus the determinant of S1 vanishes for sAt =7r, and this is related to the
non-dissipativity of the scheme.

The next two schemes for the Stokes equations are both dissipative schemes. The first
of these uses the second-order backward difference time, and is

3 -4g, + --In
ue'M ,. V2,Tn+l + 7hp,+l + I

2At - h' + V = (2.9)

V h .;n+l =9gn+l

Scheme (2.9) is second-order accurate in both time and space. Using the regularized

differences (2.8), the symbol of the scheme is non-singular for and s nonzero, and in the
ranges ,6IzAX < 7r, 12AY < 7r, and JIrn slAt < 7r.

The third scheme to be considered here may be regarded either as a second-order
accurate discretization about the time level (n + 2/3)At or as a weighted average of the
first two schemes. Taking 2/3 of scheme 1 and 1/3 of scheme 2 we arrive at scheme 3

i-I -Sjl + iin- 1 9-. f.+ _ ' 8f,, M+ -- v2-+I_ _ 2 - 2+ _.+l =1f%+2/
t~m -U'm 2 2'+z :Vhp + -thPn

6At - 33 = (2.10)

Vh. y,+1 = 9+

Symbols for these two schemes do not vanish for Re s > 0 and I11 > 0. Schemes 2 and
3 are both dissipative. that is, tihe values of., for wlhich the symbol vanishes satisfy

(sill 2 IlAx/2 sin2  2Ay 1)le"[ _< I - CAt A. + A 2
ArA

for some positive constant c.

3. THE MULTIGRID ALGORITM.
Each of the three schemes discussed in the previous section are implicit and require

some means to solve the linear system of equations for the velocity and pressure at the
next time level. Each of these svstii, cai he written in the form

i-n+l v-2 i-,,+1 -I +1
_ , _\ ,t ,, + ,- t !, r,, = / (3.1a)

(7' +1.,, = 9 (3.1 h)

We present here an iterative me'thod using multigrid techniques to solve systems of the
forim (3.1). The general nmultigrid mlethlod, see [1], involves using a sequence of grids with a
smoothing operator on each grid and methods for mapping function between neighboring
grids. The smoothing operator should be designed to reduce the amplitude i of those
modes of the error that are of highest frequency on that grid.

For the results reported in this paper the grids had A.r = L 1/2" and \y = L2 /2" for

soiMe integer r on a rectangle with Idvid, ,)f lengti L1 and L2 in th, x and q (lirectiojis.
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respectively. The sequence of coarser grids were defined by Ax = L,/2. and Ay = L2/2j
forj=n-1,n-2,..., 1.

On each grid the basic smoother for the velocity was a Gauss-Seidel iteration on (3.la)
using the checkerboard ordering. At each point the smoothing step is given by

fe.m -h,m - 3( -.,,, _ AtVhe,m + aAPhp.. - flm) (3.2)

where 3 = (1 + 2aZt(1/Ax 2 + 1/A 2 )). Note that 3 - 1 is the coefficient of gm on the
right-hand side of (3.1a).

After the velocity was smoothed once with the Gauss-Seidel iteration, the pressure
was smoothed by the operation

Pf.,m P.m - .(h "fe.m - 9f.m) (3.3)

The parameter y in (3.3) was determined in several ways. this is discussed in more detail
later.

The overall smoother for the solution consisted of two steps, each of which consisted
of a velocity smoothing and a pressure smoothing.

The prolongation from a coarse grid to a finer grid was bi-quadratic interpolation
and the restriction from a fine grid to a coarse grid was the adjoint of the bi-quadratic
interpolation operator.

On the coarsest grid, with Ax = L 1/2 and Ay = L2 /2. there is one equation for each
of the velocity components and the pressure gradients were set to zero.

In analyzing the behaviour of iterative methods for the system (3.1) it must be kept
in mind that the velocity and pressure are coupled in an elliptic system. Thus. modes of
the pressure error affect the velocity error through equation (3.2) and this in turn affects
the pressure via equation (3.3). The overall effect must be to reduce the error in both the
velocity and the pressure.

It was found that the velocity errors were reduced quite rapidly by the multigrid
iterations, taking only a couple of V-cycles to reduce the error below the desired tolerance.
However. the pressure errors were reduced more slowly. Why this is so is the result of
conrtinilng investigation.

The parameter -, in (3.3) wvas chosen to depend on the grid spacing. The formula is
dhrived as follows. A change of _ in th lressure at one grid point contributes a change
to the velocity at neighloring grid 1ointS throigh (3.2) )roportional to i Atz/_r or

.lAh/ Ag. The proportionality depends on the relative locations of the points. but is
independent of the grid spacing. The changes in the velocity result in changes in the
pressure through (3.3) prop ortional tuo (i -Atci I/A.12 + 1/ AY 2 ). This indicates that
should be given by

^, = cuo'' (1 + 2o4t 1/Ax 2 + I /y 2 )) LA/Ax2 + A/A (3.4)

fo" ' o11le value (,f c.
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4. NAVIER-STOKES EQUATIONS.
The incompressible Navier-Stokes equations are

ji Vlil-7ViT + tpf (5.1a)

V.J- 5 (5.1b)

(The superscript T on 5-~ denotes transpose.)
The modifications to the schemes so as to include the nonlinear convection terms can

be done so as to maintain the linearity of the equations that must be solve at each time
step. To show how this is done. consider the first scheme (2.5) with the addition of the
convection terms. We have

-V1t+ + V~iin) + Vi 2 n+ 2jn+/ 2 ,T

1-
+ (t7Pf+1 + 1Vp T 1) = n~+ O(zAt 2 ).

By differencing the convection term as

Vii+j7 n++LT~~-i" i ±_Viin7n+l.T±+O(At 2 )

the second-order accuracy is maintained and the system for it ~ is linear.
Simillarly, scheme 2. i.e.. (2.9). is modified by the approximation

~~n+gn+T -v-n~-.i.T + 7,wwnl , -1 .. vnn.T +L'O(.1L)

to preserve the second-order accuracy and linearity.
Scheine 3. i-., ( 2.10). is niodihied by the approximation

vip+A ~ 2+7., + 1 i-+i,. T ±v ,dnL.T ~nnT±Oz\t 2 ).
3 3 3

5. TEST RESULT.
WVe give the results of a test case. for which the domain is the square given by 0 < xr <1

and 0 < q < 1. The exact solution is givenl by

it= tc cos(Wq

1) f - h COY-Itj) - qit)?-3.

w\her i~ 7 = (ui. r) . At each timec step the finite difference equations were MOl-ed to an

acciiracy of 3 - 1 0 -'. Diriclilet b ouiidarv cond)i(itionls were i15edl. e .. 2.2) where Fb was the
exact data from (4.1).

As shown in Table 1 the solutions were computed to secondl-ordler ac~curacy. For the

results shown in Table 1 the constant co. see ( 3.4) was 0.2.
The method gives a substantial inc(rease in speed over iiethods based on successiVe-

over,-relaxation, see e.g,.. [3). Further inprovement should give more efficienicy.
The finite difference schemes introducedI here can b~e used with domain decompositioni.

,s[41. R~esults of a computation of two-dimensional flow past a rectangular shaped ob-
struction are displayed in Figure 1. The Iomiain is decomposed into four suTdhan e
\-eloocities are interpolated froni one ',iihii o niii to the boundaries of thle ot her stibdoialis.
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Table 1

Errors
M uVp

8 1.3(-5) 1.5(-5) 2.1(-3)
16 9.1(-7) 1.3(-6) 5.8(-4)

32 2.6(-7) 2.3(-7) 1-5(-4)

64 7.2(-8) 3.3(-8) 3.8(-5)
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Figure 1
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1 Abstract

A multigrid Alternating Direction Implicit scheme has been developed to
solve the compressible Navier-Stokes equations for two-dimensional prob-
lems. The scheme is an extension of that developed by Caughey [1] to solve
the Euler equations of inviscid compressible flow.

Spatial discretization of the governing equations is done using a finite
volume approximation to provide flexibility in dealing with complicated ge-
ometries. In order to prevent decoupling of the solution at odd- and even-
numbered points of the grid, and to prevent oscillations of the solution near
shock waves, artificial dissipation is added in the form of an adaptive blend
of second and fourth differences of the solution. The time-linearized implicit
operator is approximated as the product of two one-dimensional factors. In
order to improve computational efficiency, each of the implicit factors is di-
agonalized using a local similarity transformation. This diagonalization is
possible only when the contributions of the viscous terms to the implicit
operator are approximated or eliminated altogether. But it is fairly com-
mon to treat the viscous terms explicitly when using even non-diagonalized
ADI schemes. The resulting scheme requires the solution of four scalar pen-
tadiagonal systems along each line in each of the two mesh directions for
each time step. The implicit scheme is used within the framework of the
multigrid method to further accelerate convergence to a steady state.

The motivation for the development of the method is to improve upon
the convergence rates of explicit multigrid methods on the highly stretched
grids required for high Reynolds number flows. The turbulence model used
here is based on the algebraic model developed by Baldwin and Lomax
[2]. Results are presented for flows past airfoils. Flow field results are
presented to confirm the accuracy of the method, and convergence rates are
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compared with other methods to demonstrate the efficiency of the implicit
ADI multigrid method.

2 Analysis

2.1 The Equations

The Reynolds Averaged Navier-Stokes equations in two dimensions can be
written as

802 of ay af;, a§,t + O O=-

where
= {p, pu, pv, e}T (2)

is the vector of conserved variables,

f = {pu, Pu 2 +p, puv, (e+p)u}T, (3)

= {pv, puv, Pv2 +p, (e+p)v}T, (4)

are the inviscid flux vectors in the x and y directions respectively, and

-= {O, oa, axy, uo'x,+vo,,,-q.} T , (5)

gf = {O, aon, 0 yy, u6,,+vou,-q.}T ,  (6)

are the viscous flux vectors in the x and y directions respectively. The
variables p and p are the fluid density and pressure, u and v are the velocity

components in the x and y directions, and e is the total energy per unit
volume. The equation of state for a calorically perfect gas is used to relate

the pressure to the total energy

p =(-1) e- + V} (7)2

where -y is the ratio of specific heats. For air, -y = 1.4. The viscous stresses

and heat fluxes, with the assumption of Stokes' hypothesis, are given by

= 2a -u 2A (_O + ), (8)

Ou av
C = k1(- - , (9)
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9V 2 U+ .,),
=y 2p A-L + ) (10)

aT
q. (11)

= -k (12)

Here T is the temperature, A is the viscosity and k is the th-.rmal conduc-
tivity of the fluid.

2.2 Turbulence Model

The effects of turbulence are modeled using the eddy diffusivity concept for
the Reynolds stresses and eddy thermal conductivity for the turbulent heat
fluxes. The total diffusivities are given by

11 = MmoI +/At, (13)

k = kmo + kt, (14)

where /tpmol and kmol are the molecular quantities, and /'t and kt are the
turbulent quantities. We obtain closure by modeling At analytically using
a zero equation model and calculating kt from Prt, the turbulent Prandtl
number, which is chosen to be equal to 0.9.

The turbulence model is based on the algebraic model of Baldwin and
Lomax [2]. This is a two-layer zero-equation eddy-viscosity model. The
eddy viscosity At is given by

t Y Ycrossover{(t)oe. Y > Ycossove (15)

where y is the distance normal to the wall and Ycrossover is the smallest value
of y at which the value calculated from the inner formula exceeds the value
from the outer formula. Both the inner and outer formulas have the general
form

At = a K fup, (16)

where e is the length scale and u is the velocity scale prescribed by the
model.

In the inner region the length scale is the Prandtl mixing length modified
by the van Driest damping factor. The velocity scale is calculated as the
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product of the modified mixing length I and the magnitude of the local
vorticity Iwj, according to the Prandtl-van Driest formulation.

= Ky -e-J+/A+) where y+ = Yu . Yr - (17)
KY, ( L, L,

u I W , (18)

a 1.0; K = 1.0, (19)

where r. = 0.4 is the von Karman constant and A+ = 26.0 is an effective
sub-layer thickness.

To determine the scales in the outer region Baldwin and Lomax defined
a function

F(y) = y wl (I - e-Y+/A+). (20)

This function F(y) is used to compute the length and velocity scales in the
outer region acco-ding to

t = 1.6YFmaz, (21)

u = min (Fmax, (UFmax- Umin) 2  (22)

where F,, is the maximum value of F(y) that occurs in a profile, YFmax is

the y-location of that maximum, UFmax is the total velocity at that location
and Ui, is the minimum velocity in the profile. The Clauser constant a
and the Klebanoff intermittency factor K are given by

a = 0.0168, (23)

K [1+ 5.5 (Y-3 ) 6] (24)

The model is modified slightly when applied to the wake. In the wake the
van Driest damping factor is set equal to 1, and the y-distance is measured

from the first coordinate line in the wrap-around direction of the C-grid. i.e.
from the Tj = 0 line.

2.3 Finite Volume Formulation

To facilitate the handling of complex geometries a finite volume formulation
is used. First the equations are transformed from the physical plane to the
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computational plane through a non-singular transformation. In the new
plane the system of equations can be written as

a + af+ aG aF, 9G,(+T 7 = 5(2-97

where
W=huw

is the vector of transformed dependent variables and h = x~y,7 - y~x, is
the determinant of the Jacobian of the transformation. The transformed
inviscid and viscous fluxes are given by

F = fy,-gx,,, (26)

G = -fyt+gx, (27)

Fv = fVY7 - gvX,7 (28)

Gv = -fvyC + g,,x . (29)

The dependent variables axe taken to be the cell average quantities.
Spatial derivatives are approximated by evaluating the fluxes across the
faces of each cell. This requires the values of the velocities on all cell faces,
which are taken to be the average of the cell average values of the two cells
sharing the face.

2.4 Thin Layer Approximation

The thin layer approximation neglects all diffusion processes parallel to the
body surface. In this respect it is similar to the classical boundary layer ap-
proximation, but it is different in that no assumptions are made regarding
the pressure, and the momentum equation normal to the body surface is re-
tained. In the present formulation the -direction is the coordinate direction
approximately parallel to the surface and the il-direction is approximately
normal to the surface. Therefore all -derivatives are neglected while all
rn-derivatives are retained in all the viscous terms and in the evaluation of
the cartesian derivatives in the viscous terms. In particular, the viscous flux
in the q-direction G which involves the calculation of cartesian derivatives
(Eqs. 8 - 12) is modified to a simpler form G' containing only 1j-derivatives.
The system of equations reduces to

01 ' a f cad a , 30-- +  +4 (30)
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In most Navier-Stokes solutions for high Reynolds number turbulent
flows the diffusion terms involving derivatives parallel to the body surface
have not been resolved even when the appropriate terms have been retained
in the equations. This is due to the coarseness of the mesh in that direction.
In other words, if the mesh is not fine enough in the direction parallel to the
body surface to resolve these diffusion terms, it is a wasted effort to try to
calculate them.

2.5 Artificial Dissipation

The finite volume scheme for the Euler equations does not c-ontain any dissi-
pative terms. In order to prevent odd-even point decoupling and oscillations
near shock waves or stagnation points artificial dissipation terms must be
added when solving the Euler equations. The Navier-Stokes equations on the
other hand possess dissipative properties due to the presence of the viscous
terms. However the physical dissipation provided by these terms in regions
away from the shear layer may not be sufficient to guarantee stability. So in
order to maintain the stability and robustness of the numerical procedure
it was necessary to add artificial dissipation. The terms were constructed
as an laptive blend of second and fourth differences with the directional
scalin of the terms suggested by Caughey [1].

The modified set of equations is

o--/- + - - +
alf Of~ C9d ;,

where c(2) and ((
4 ) are as defined in [1].

2.6 Iterative Scheme

To construct an iterative scheme to solve the difference equations, the spa-
tial derivatives are first approximated implicitly and the changes in the flux
vectors are linearized in time. The implicit operator thus obtained is ap-

proximated as the product of two one-dimensional factors. The development
thus far follows that of Briley and McDonald [3] and Beam and Warming
[41]. Since the artificial dissipation terms must be treated implicitly for rapid
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convergence, this scheme would lead to the requirement to solve block pen-
tadiagonal systems for each of the two factors. An alternative suggested by
Pulliam and Chaussee [5] is to diagonalize the implicit factors using a local
similarity transformation. This yields the decoupled set of equations

{I + OAt [AAnb - f(2)b2(11h) + C(4 b4(1/h)]}Q-1

Q~ ; JI{ + OAt[An 6,- E(7 ~11h) + 7 1()~1h)}V

-(--~,I -At + 6b)lg + E4](b4 + b4) V}n.

(32)
Here A and B are the Jacobians of the transformed flux vectors

A = aF ; B = (33)

and AA and A8 are diagonal matrices whose diagonal elements are the eigen-
values of A and B. The modal matrices QA and QB diagonalize A and B
according to

QA1 AQA = AA; QB1 BQB = AB. (34)

The correction AW to the solution in each computational cell is given by

AWj = QBAij. (35)

The elements of the Jacobian matrices, their modal matrices and the diag-
onal matrices have been given by Pulliam and Chaussee [5]. The system
of equations (Eq. 32) are solved at each time step by solving four scalar
pentadiagonal systems along each line in each of the two directions.

2.7 Boundary Conditions

2.7.1 Explicit Boundary Conditions

The solutions computed to date have been for subsonic freestream Mach
numbers. For subsonic inflow the boundary conditions are based on the
Riemann invariants for the one-dimensional problem normal to the bound-
ary. The first Riemann invariant

R x~v - y~u 2c
= 2 + 2(:I)

74 y- 1
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is extrapolated from the interior of the domain, while the second Riemann
invariant

R2 = Xv-yu 2c (37)(37-1

is specified, as are the entropy and the tangential velocity component. At
a subsonic outflow boundary pu, pv and the entropy are extrapolated from
the interior, while pressure is specified to be the freestream value.

On the body surface the no-slip boundary condition is applied, i.e., the
velocity components u and v are set equal to zero. Also, the surface is
assumed to be adiabatic, i.e. OT/On = 0.

2.7.2 Implicit Boundary Conditions

In the fax-field the implicit boundary conditions are treated in a manner con-
sistent with characteristic theory; on the body surface homogeneous Dirich-
let conditions are applied.

2.8 Multigrid Algorithm

The scheme is implemented within the framework of the multigrid algo-
rithm following Jameson [6] and Caughey [1]. The algorithm consists of the
following steps:

1. Form a coarse grid by eliminating every second line of the fine grid in
each coordinate direction.

2. Restrict the flow variables to the coarse mesh using area-weighted
averages of the values on the fine mesh.

3. Drive the corrections on the coarse mesh with the residual computed
on the fine mesh.

4. Continue until the coarsest mesh.

5. Prolong corrections back to the finer meshes using bilinear interpola-
tion.

6. Add corrections on the finest mesh to the solution.

7. Repeat cycle,
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Both the body-surface and the far-field boundary conditions are updated
on coarser meshes. A fixed V-cycle is used in which the solution is advanced
one time step on each mesh as the grid is coarsened and refined. A fixed
coefficient second difference form of the dissipation is used on all but the
finest mesh.

3 Results

The scheme described above has been applied to compute transonic flows
past the NACA 0012 airfoil. The following cases are presented here:

1. Moo = 0.7, a = 1.49, Re, = 9 x 106

2. M,, = 0.799, a = 2.26, Re, = 9 X 106

These are cases Al and A3 of the Viscous Transonic Airfoil Workshop of
1987 [7]. All results were calculated on C-grids containing 192 x 48 cells in
the wrap-around and body-normal directions respectively. Of the 192 points
in the wrap-around direction 120 were on the airfoil. The distance from the
airfoil to the first coordinate line was 5 x 10- of a chord which corresponds
to a y+ less than 4 for the given Reynolds number. The farfield boundaries
were about 7 chord lengths from the airfoil. The cells are highly clustered in
the i7-direction near the surface of the airfoil and have large aspect ratios.
The largest aspect ratio is of the order 103.

The calculations were performed on an IBM 3090/600J. A typical cal-
culation took about 100ps per work-unit per point as compared to 93ps for
an Euler calculation using the same method. A work unit is the amount of
computation required for advancing one time step on the finest mesh.

Airfoil surface pressure distributions for the two cases are presented to
verify the accuracy of the scheme. The results of the two cases are compared
with the experiments of Harris [8] and the computational results from the
VTA Workshop [7]. For case(1) the flow is attached and just slightly super-
sonic near the leading edge upper surface. The measured experimental angle
of attack for this case was 1.860. This was corrected to 1.49' by Harris using
a linear method for accounting for wind tunnel wall effects. Figure 1 shows
that the computed surface pressures are in excellent agreement with exper-
imental data. Table 1 gives a comparison of the force coefficients. The lift
coefficient obtained using the present method is about 2% less than the ex-
perimental value and is wit',in the range of values obtained computationally.
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Drag coefficients are difficult to calculate accurately because the pressure in-
tegration for drag is very sensitive. Even so the value obtained 0.0084 is only
about 6% different from the experimental value, and is within the range of
the VTA Workshop values. Of the total computed drag about 17% is due
to skin friction and the rest due to pressure drag.

Convergence results are presented in Figures 2 and 3. Grid sequencing
is used, i.e. multigrid solutions are first obtained on coarser grids and then
interpolated for use as initial conditions on fine grids. The error is defined
as the residual of the continuity equation averaged over all the grid cells.
The logarithm of this error is plotted against the number of work units
in Figure 2 for a single grid and for 4 levels of multigrid. We see that
with 4 levels of multigrid the error has been reduced 8 orders of magnitude
in )00 work units, whereas for the single grid it has been reduced only
3 cders of magnitude. The asymptotic rate of convergence is clearly much
in. )roved with multigrid. The CFL number for both cases was 24, and local
til-e-stepping was used. Figure 3 shows that the three measures of global
cc-ivergence - the lift coefficient CL, the drag coefficient CD and the number
of cells N,,,p in which the local velocity is supersonic, have converged to

',.hin plottable accuracy of the final values within 50 work units when
u-.ng 4 levels of multigrid.

Figure 4 compares the convergence history of the implicit multigrid
sclheme presented in this paper with the explicit multigrid Runge-Kutta
scaeme of Martinelli and Jameson [9]. The overall convergence rate and the
a- ymptotic rate are improved with the present implicit scheme.

The flow conditions for case(2) are Al, = 0.799,ca = 2.26' and Re, =
9 X 106. The flow field contains a shock on the airfoil upper surface at
al x/c of about 0.5. The shock is strong enough to induce a significant
I ,undary layer separation. The experimental data obtained by Harris [8]
a. e compared with the computational results in Figure 5. The computational
ar:gle of attack (2.260) is obtained from the measured angle of attack (2.86')
using a linear wind tunnel wall co-rection procedure [8]. Our results are
generally in close agreemeit with other computational results [10] that use

the same turbulence model but the shock strength and the shock position
are incorrectly predicted. The computed shock is both stronger and farther
downstream than that measured experimentally. The convergence history is
shown in Figure 6. The rate is comparable to that obtained for the simpler
case( 1).
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4 Conclusions

The multigrid diagonalized Alternating Direction Implicit scheme developed
by Caughey has been extended to solve the thin-layer Navier-Stokes equation

for compressible flow. The Baldwin-Lomax algebraic turbulence model was
used. Results for transonic flows past airfoils were presented. They show
that for attached flow the computed flowfield data are in good agreement
with the experimental data, but for flows with strong shocks and shock-
induced separation the agreement is poor. This can be attributed to the
equilibrium nature of the turbulence model used. The convergence rates
obtained using the implicit method described above are better than those
obtained using the explicit Runge-Kutta method.

5 Acknowledgments

This research has been supported in part by the Independent Research and

Development Program of the McDonnell Douglas Corporation and by the
U. S. Army Research Office through the Mathematical Sciences Institute of
Cornell University. The calculations reported here were performed at the
Cornell National Supercomputer Facility, a resource of the Cornell Theory
Center, which receives major funding from the National Science Foundation
and the IBM Corporation, with additional support from New York State,
and the Corporate Research Institute.

References

(1] Caughey, D. A., Diagonal Implicit Multigrid Algorithm for the Euler
Equations, AIAA Journal, Vol. 26, No.7, July 1988, pp 841-851.

[2] Baldwin, B. S. and H. Lomax, Thin Layer Approximation and Algebraic
Model for Separated Turbulent Flows. AIAA Paper 78-257. 16th
Aerospace Sciences Meeting, Huntsville. Alabama, January 1978.

[3] Briley, W. R. and Ht. McDonald, Solution of the Three-Dimensional
Compressible Navier-Stokes Equations by an Implicit Technique. Pro-
ceedings of the Fourth International Conference on Numerical

Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 35,
Springer-Verlag, New York, 1974, pp 205-110.

751



[4] Beam, R. M. and R. F. Warming, An Implicit Finite-Difference Algo-
rithm for Hyperbolic Systems in Conservation Law Form, Journal of
Computational Physics, Vol. 22, No.1, Sept. 1976, pp 87-110.

[5] Pulliam, T. H. and D. S. Chaussee, A Diagonal Form of an Implicit
Approximate-Factorization Algorithm, Journal of Computational
Physics, Vol. 39,1981, pp 347-363.

[6] Jameson, A., Solution of the Euler Equations by a Multigrid Method,

MAE Report 1613 Mechanical and Aerospace Engineering, Prince-
ton University, Princeton, N.J., June 1983.

[7) Hoist, T. L., Viscous Transonic Airfoil Workshop Compendium of Re-

sults, Journal of Aircraft Vol. 25, No. 12, December 1988, pp 1073-
1087.

[8] Harris, C. D., Two-Dimensional Aerodynamic Characteristics of the

NACA 0012 Airfoil in the Langley 8-Foot Transonic Pressure Tunnel,
NASA TM 81927, 1987.

[9] Martinelli. L. and A. Jameson, Validation ofa Iultigrid Method for the
Reynolds Averaged Equations, AIAA-88-0414 AIAA 26th Aerospace
Sciences Meeting, January 11-14, 1988, Reno, Neva ia.

[10] King, L.S., A Comparison of Turbulence Closure Models for Transonic
Flows about Airfoils, AIAA-87-0418 AlAA 25tii Aerospace Sciences
Meeting, January 12-15. 1987, Reno, Nevada.

Experimental Results FLO53MDI Computational Results
of Harris [1981) (this work) VTA Workshop [1987]

Lift
Coeff. 0.2410 0.2379 0.2350 - 0.2620
(Cl) _____________

Drag
Coeff. 0.0079 0.0084 0.0074 - 0.0100
(Cd)

Table 1: Comparison of Force Coefficients for case( 1)
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Figure 1: Comparison of computed (FLO53MDI) surface pressure coeffi-

cients with values from the Harris experiment
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Multigrid Diagonal Implicit Algorithm for
Compressible Laminar Flows

Thomas L. Tysinger & David A. Caughey
Sibley School of Mechanical and Aerospace Engineering

Cornell University
Ithaca, New York

Abstract

An Alternating Direction Implicit diagonal multigrid algorithm is presented for the solution
of the Navier-Stokes equations of viscous, compressible flow. Attention is focused on the
inclusion of viscous contributions to the implicit factors in a way that will enhance the sta-
bility, yet not disturb the efficiency, of the diagonal algorithm. Flows past two-dimensional
airfoils are computed to demonstrate the stability and efficiency of the scheme.

I. Introduction

In the numerical simulation of viscous flows at high Reynolds numbers, it is neces-
sary to resolve the thin shear regions which develop near solid boundaries. These
thin shear regions require the use of grids with cells of very high aspect ratio, which
are known to hinder convergence for steady problems in explicit schemes. To over-
come such difficulties, Caughey has developed an diagonal implicit algorithm for the
solution of the Euler equations of inviscid, compressible flow [1]. Rapid convergence
is achieved with the use of the implicit scheme within the multigrid framework.

Here, the method is extended to solve the Navier-Stokes equations, and specifically
the thin-layer approximation to those equations. Aspects of the algorithm inicluding
artificial dissipation, boundary conditions, multigrid, and other topics not directly
related to the implementation of the Navier-Stokes equations are not addressed

here in great length; details of those issues can be found in [1]. Instead, emphasis

is directed at methods of adding viscous contributions to the algorithm in a way
which does not disturb the overall stability and efficiency of the implicit scheme.
Since no attempt in the present analysis is made to incorporate a turbulence model.

discussion will be limited to laminar flows.
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II. Governing Equations

Navier-Stokes Equations

The equations which govern compressible viscous flows are the Navier-Stokes equa-
tions. In Cartesian coordinates, the Navier-Stokes equations in two-dimensions can
be written

Ow Ofc O!g O _

=+ - : Lfv + g~

at ax aOy Otl (1)

where w - {p, p pv, e}T is the vector of conserved dependent variables. Here, p
denotes the density, u and v the cartesian velocities, and e the total energy per unit
volume. The convective flux vectors in the x- and y- directions, respectively fC and
,C, and the viscous flux vectors vand are given by

f = {pu,pu+ppuv,(e+p)} ,

= {PV,pv,pv2+p,(e+p)V} T ,
fv = (0,7, (=. j). _ qx T.

1V = {0,r y,ry,(7 i)y- qy}T

The viscous shear stresses and the heat fluxes are of the form

rxx = 2Au. + A(u. +vy) ,

r, = 2pvy+ A(u,+ v),
ry = A (Uy+ v ),
q., - k T. ,
q = -kTy,

where k is the coefficient of thermal conductivity and T is the temperature. The
second coefficient of viscosity A is related to the molecular viscosity ju by Stokes'
hypothesis,

A 2 . (2)
3
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An equation of state is needed to relate the pressure and total energy:

P= (-1) [e- lp(u2 +v2) . (3)

To allow treatment of arbitrary geometries, the equations are transformed into curvi-
linear coordinates and written

ow 9Fz oaQ oFV+ aGv

+ - + (4)

where W - hw is the transformed dependent variable and

phU phV
F~C(W = phuU + y,p ,GcW =PhVu - YCP

phUv - xp phVv + X4p

(e + p)hU (e + p)hV

0

=v(IL,_w) Y " Ix -
I' ,

YnTzy - X,
7
rYJ

y,(urz, + vr,, - qx) - x,(ur7, + vr~, - qy)

0

!2v( LE , = -Y " W -Y 
+

=Z 
'
z

-y.,;, + XCrI
-y(uT' + vry - qx) + x (uT 1, + vry - qy)

are the transformed flux vectors. The contravariant velocities U and V are related
L ) the cartesian velocities by

V = - y~u + zXr '

.vhere h = xy, - xy is the determinant of the Jacobian of the transformation.

Thin-Layer Approximation

Under certain conditions it is possible to neglect viscous diffusion in the mainstream
direction of the flovr without adversely affecting the quality of the solution. The
validity of such a simplification requires that the flow have a predominant direction,

and ik without massive separation. High Reynolds numbtr flws over wings are one

such example. Implementation of such a model necessitates that body surfaces be

mapped onto coordinate surfaces, and there be sufficient clustering normal to the
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shear surface to allow the boundary layer to be resolved. It can be argued that even
if the full Navier-Stokes approximation is used, viscous diffusion in the streamwise
direction cannot be resolved unless the grid is sufficiently fine in that direction [2],
and for many practical flows, current computational limitations prevent the use of
grids with sufficient resolution in both the normal and streamwise directions.

The transformed viscous flux vectors can be decoupled into components which de-
pend only on the vector of dependent variables and its derivative in either the - or
77- direction:

Lv = (WW_",W__,)= _V(__WW_ )+F_ ,,_W__'),

!2v = 2v(WW___,___) = !_ _W_") + C_-v(aWn).

The thin-layer approximation entails retaining only the surface normal- or 77- deriva-
tives from the viscous terms in the Navier-Stokes equations (Eq. 4); that is only the
term 2Gv(W,Wn) is kept when the body surface is a line of i7 = constant. The
thin-layer equations are then written

O( (5)

where

0

6v(W,W-) - ~ -.. + x ttx

~YO frY + X fYY

and

-(211 + A) Y(, + _V

A (2p + A)
f'y= -~ n + (h h ,

k

k
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III. Numerical Method

As with the algorithm for the Euler equations, spatial derivatives are approximated
using a finite-volume formulation equivalent to a centered-difference approxima-
tion [1]. The approximation is second-order accurate when the mesh is smooth.
Artificial dissipation consisting of an adaptive blend of second and fourth differ-
ences of the solution is added to insure convergence to steady state and to enable
accurate shock capturing for transonic flows. Local time stepping is used to increase
the convergence rate for steady problems. To further accelerate convergence, a re-
cursive multigrid algorithm similar to that described by Smith and Caughey [3] is
implemented.

The difference equations have the form

d
dt _ ,j + Cwj - V w w - ,j = 0, (6)

where Cw..,j and Vw,j represent contributions due to convection and viscous dif-
fusion respectively, and Dw j represents the artificial dissipation defined in [1]. To
simplify the expressions, contributions from the artificial dissipation will no longer
be shown; it should be noted, however, that these terms play an important role in
the overall algorithm, and a detailed description of the terms can be found in [1.4].

The first step in developing an ADI scheme is to approximate the spatial derivatives
as weighted averages at new and old time levels. Such an approximation to the thin

layer equation (Eq. 5) can be written

± o -{ (1.) - 6, (C 7 n

where AW = -__'
+ -I__V is the correction added to the solution, and 9 represents

the implicitness of the scheme with 0 < 9 < 1.

The changes in the convective flux vectors can be linearized with a local Taylor

series expansion in time to give

and

2+ , " ( ) (9)
71= Bij t + O At(
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where A = {8t,/89.W_ and B = {8QGc/W1 9 j are the Jacobians of the transformed
convective flux vectors with respect to the solution. Since the transformed viscous
flux vector !.v is a function of both W and W., the appropriate linearization is

V - g = + + o (&t2)

= + 4 1 + (11)

where 1 8 -- {8av/18W} is the Jacobian of the transformed viscous flux vector
with respect to the solution and 1 = {9Gv ,} is the Jacobian with respect to

the derivative of the solution. Recognizing that M4 - f, E 0 if the the transport
coefficients are approximated to be locally constant [5], the linearization reduces to

= rkaw[,) 0 (At 2 ) .  (2

!2v ij - 2vij 7 (2)

The viscous flux Jacobian is

0 0 0 0
n= n~2 n22 n23  0 h-1 (13)

n31 n32 n33 0
n41 n42 n43 n,44

where

n2l = I ( a2V

n22 =

132 = a23

n41 = -02 -2 ( -a( +U )+ C 2 (V)

n32 = n3(, )-2,71(3

n3 = a ()-76

ni = -l (1- -N 2oi (!V 01 i 4 -



nl44 = 0

with

Ty 2+ 2+ 2 hp+

The matrix lN is not to be confused with the viscous flux Jacobian described by
Steger [61 in which the elements of the matrix are differential operators. Introducing
the approximations of Eqs. 8, 9, and 12 into Eq. 7 results in what is commonly called
the "delta" form of the algorithm:

{I + OAt(Aj,6 + Bijbn -
-At{&CE. + b7Gc!j - _'yi' }. (14)

Approximating the left hand side of Eq. 14 as the product two one-dimensional
factors results in a block ADI scheme and is written

{I + 8AtAj3 j x {I + OAt(Bij67 - NTj6n)}WA,

- - t{6tkc1, + 6 'iGc:', - 6,Gv! (15)

With the addition of fourth order artificial dissipation, block pentadiagonal systems
must be solved in each factor of Eq. 15. For the Euler equations, the convective
flux Jacobians can be diagonalized with local similarity transformations as A =

QAAAQA1 and B = QBABQB1 , where AA and AB are diagonal matrices whose
diagonal elements are the eigenvalues of their respective Jacobians, and QA and
QB are the modal matrices whose elements are given in [7]. This allows the block
equations to be decoupled into equations which can be solved as scalar pentadiagonal
systems, greatly reducing the amount of computational labor needed for a solution.

For the Navier-Stokes equations however, it is not possible to both include the vis-
cous terms in the implicit factor and to diagunalize the system, since the convective
and viscous Jacobians are not simultaneously diagonaizable. If viscous contribu-
tions are neglected completely from implicit consideration, a diagonalized system
can be written

{I + OAtAAj6}QAi,
Qx ijfl + #AtA j n}Q_' A-z' (16)

-A t I n + 6 { - 6,7
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Neglecting the viscous terms completely from the implicit factors would jeopardize
the stability of the scheme. It is desirable to maintain the efficiency of the diago-
nalized scheme without degrading its stability properties, so alternate approaches
must be explored.

Method I

The first method consists of using the largest eigenvalue of the viscous Jacobian
to add contributions to the existing implicit factors. This is similar to what was
suggested by Pulliam [81. The eigenvalues of & are

h
A1 =(1 +)( h +Y2 (i))

A3 = , (z + )

A4 = 0,

where P, is the Prandtl number. A scheme is constructed by adding the diagonal
approximation AN s QBIINQB to the appropriate implicit factor:

{I + OtAAij6}QAij

x QBij{I + -t(ABi,6- n (18)

-AtQ-1{,F F - + b - 6, v '}.

The diagonal approximation A; is for example

A ,.1  = A 2 1 = -Y P, , ( + )( I. (19)

The number of additional operations needed to implement this scheme is negligible
since it involves only the calculation of an eigenvalue whose analytical form is known.
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Method II

Another option is to use an additional implicit operator which contains the exclusive

contributions from the viscous terms. Since the eigenvalues of the viscous Jacobian
are distinct (Eqs. 17), a modal matrix QN. exists which diagonalizes SN through a
similarity transformation. This results in the scheme

{I + eAtAAijf6}Qj

x Q 2 ij{I+OAtABijb,jQ-,1  (20)

" Qk,1 {I - -1 AW
-A tA t{ . + Q fli- A2_nj

The modal matrix and its inverse are written

0 0 0 1
R[, 0 R U (21)

RY0 -R,1 -JL

+ U2 + -u -V 1 (22)[k + 0-TT R

1 0 0 0

where P = or 7, and

2+ K2 ~

R=ku + Rv, RI'NV -U.

Although the above methods are developed for the thin-layer approximation. the

schemes can be readily modified to accommodate the fuUl Navier-Stokes approxima-

tion. Analogous terms must be added to account for the viscous contributions in

the c-direction. Also, the stability properties of these methods still remain an issue

and must be further explored.
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IV. Stability Analysis

The stability properties of these schemes are examined using von Neumann (Fourier)
analysis on a scalar model equation. The model equation for the thin-layer approx-
imation contains fourth order artificial dissipation and is written

09U U Ou 3 30 4 U 3A 04U 02 (23)

Substitution of the Fourier term u - Gne'oze'Ovy, into the model and writing it
as the product of one-dimensional operators leads to

(G- 1) {1 + 0t1A.sin + 168DAsin 4
2.~

x {1 + tOA A ?' sin 77 + 160DY A -' sin4  i + 40~vA Re - A sin }

-A i{a(sin + A7 1 sin 77) + 16e(sin 4  4- A-' sin 4 '-)
2(42

+4Re, - 1 A- 2 sin 2 7 (24)

From Eq. 24, the magnitude of G can be calculated,

IGI = f( , 7A, Re., A,,,,OD, 19,

where and q represent the mesh wave numbers. In addition to the Courant number

A. = cAt/Ax and artificial dissipation c, the numerical stability of the implicit
viscous equations is governed primarily by the aspect ratios (A,) of the mesh cells
and the mesh Reynolds numbers (Re.). The expression in Eq. 24 corresponds to
what is done in Method I. Similar expressions representative of Method II can also

be derived.

Using such a model, it is found that when viscous terms are added directly to the
convective operators, analogous to what is dore with Method 1, unconditional sta-
bility is achieved. If the viscous terms are evaluated explicitly without implicit
contributions, a conditionally stable scheme results. This can be seen in Figure 1 in
which the dark areas represent regions in parameter space where von Neumann anal-

ysis predicts an amplification factor greater than unity. This figure represents the
properties of the scheme applied to a model problem using value of the dissipation
parameters characteristic of those used in the computations, and a Courant number
of 16. The possibility, however, of obtaining a converged solution without includ-

ing viscous contributions in the implicit factors cannot be ruled out. If additional
viscous operators are added to the scheme (as is done in Method II), the solution
will remain conditionally stable, although the region of stability is increased slightly
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as shown in Figure 2. The stability analysis indicates that the most promising al-
gorithm would be one similar to Method I. Method II should also be considered,
however, in so far as it represents less of an approximation than Method I.

V. Results

Both methods are implemented in a computer code to calculate transonic flows
in two-dimensions. A number of test cases have been computed for flows past
a two-dimensional NACA 0012 symmetric airfoil. The case presented here is for
subcritical laminar flow (Re = 5000, Mo, = 0.5) past a two-dimensional NACA
0012 symmetric airfoil at zero degrees angle of attack. The calculation is performed
using the thin-layer approximation on a 192 x 48 cell "C"-grid generated using the
GRAPE code elliptic mesh generator [9]. The outer boundary of the mesh is located
about 8 chords from the body. Care is taken to insure sufficient clustering in the
region close to the body surface where viscous effects are significant. Approximately
10 mesh points are included within the boundary layer at the airfoil trailing edge,
and the first point normal to the body surface is located at about .001 chords.

The surface pressure distribution, presented in Figure 3, agrees well with that pre-
sented by Martinelli, Jameson, and Grasso [10]. The flow separates at approximately
85% of the chord, as can be seen from the contour plot of the streamwise component
of mass-flux density in Figure 4; this value is close to the values reported by both
Swanson and Turkel [11] and Jayaram and Jameson [12] for this case.

The iterative process is begun by initializing the solution to free stream values. A
plot of the convergence history is shown in Figure 5. Using five levels of multigrid
and local time stepping, the solution converged to a steady state in approximately
35 work units which corresponds to 20 multigrid cycles. One work unit is defined
as the amount of work required to advance the solution one time step on the finest
mesh level; for the strategy used here, each multigrid cycle requires approximately
1 2/3 work units. Overall, the average residual is reduced by 6 orders of magni-
tude in about 300 work units or 180 multigrid cycles. This represents a significant
improvement over rates reported by other researchers [10.11].

This solution is computed at a Courant number of 16 using Method I. At this
Courant number, both methods I and II produce converged solutions as illustrated
in Figures 5 and 6. However, a converged solution is not attainable if viscous terms
are neglected from the implicit factors as is evident in Figure 7. This demonstrates
the importance of maintaining an implicit viscous contribution to the numerical
scheme. Converged solutions from a completely explicit viscous scheme have also
been obtained, but at the expense of a lower Courant number, hence, a lower rate

of convergence.

The importance of including viscous contributions in the implicit operator has been
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demonstrated. Although several options are available for implicit inclusion, the
addition of approximate terms to the existing operators seems the most effective.

The laminar solutions obtained are in good agreement with results reported by other
researchers [12,10,111, while significant improvements in rates of convergences are
achieved. Work is underway to extend these methods to three dimensions, and
incorporate a turbulence model so that engineering flows can be studied.
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Extremum Control:

The Effects of Artificial Viscosity

Culbert B. Laney, Center for Applied Mathematics
David A. Caughey, Sibley School of Mechanical and Aerospace Engineering

Cornell University, Ithaca, NY 14850

This paper concerns numerical approximation to discontinuous solutions of

conservation laws. First order spatially accurate methods routinely capture dis-
continuities smoothly. The best capture grid-aligned steady shocks with only
one transition point. Unfortunately, formally higher-order accurate methods in-
clude terms which may become large near discontinuities, resulting in spurious
oscillations and overshoots. The goal is to design higher-order methods with the
shock capturing abilities of first order methods. The 1980s saw the introduction
of several successful approaches [1,2,3,4]. We propose to evaluate such numeri-
cal methods in terms of their effect on the growth and creation of extrema. The
model problem is a one-dimensional scalar semidiscrete approximation. The
results for semidiscrete approximations apply immediately to steady state so
lutions, since in this case time discretization affects only convergence rate. We
briefly consider extensions to multidimensional problems.

1 Basic Theory

Consider the following scalar one-dimensional initial value problem on an un-
bounded domain:

ou 81(u)
-Ft - V(1)

ei x

u(xO) =f(u) = a(u).

The solution u is constant along straight-line characteristics given by ault =

a(u). If two characteristics intersect then no continuous solutions exist-'weak'
solutions containing jump discontinuities must be allowed. Weak solutions to
equation (1) have the following interesting properties [2,5]:

El Maxima do not increase in time. Minima do not decrease.
E2 No new extrema are created.
Consider the semidiscrete finite-difference approximation to equation (1):

du=(t) (2__ )

dt A
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Hvk(t) =-- H'[uk+K(t) .... uk-K(t)] (3)

where the difference stencil is 2K + I points wide, K > 1: the grid spacing
is AZk = Zk+1/2 - zk- 1 2; the cell boundaries occur at Zk+1/2; and uk(t) ap-
proximates u(zk, t). When will u(t) inherit properties E1 and E2 of the exact
solution?

Theorem 1: The solution to equation (2) has property El if

Hk(t) < 0 for uk(t) maximum

Hk(t) > 0 for uk(t) minimum

Theorem 2: Property El implies property E2.
The conditions of Theorem 1 are necessary and sufficient if duk/dt exists.

Otherwise, the conditions hold in the limit from the right and/or left. To prove
Theorem 2, note that continuous extrema must start out infinitely small, at
which point El acts to prevent further growth. Otherwise, replace discontinuous
extrema by continuous extrema with slope approaching infinity.

Enforcing El leads to 'clipping' error at moving continuous extrema. For
example, suppose the exact solution contains a maximum M moving to the left.
In general, the maximum falls somewhere between two grid points j and j + 1.
At some time, j should become a maximum on the grid, with a value less than
M. El prevents further increase at j, and the top of the maximum is 'clipped'
off as time progresses. This process limits accuracy at unsteady extrema to
roughly second order, but steeply peaked extrema are obviously more affected
than flattish extrema. As a matter of fact, many methods uniformly reduce
extrema, which affects steady as well as unsteady extrema e. g. [2]. Because of
these problems, one might reasonably wish to enforce only condition E2. While
this is possible for fully-discrete approximations, it is as yet unclear how this
could be accomplished in semidiscrete cases.

Consider the following three forms for H(t):
Conservation Form

Hk = -(hk+ 1/2 - hk-1/2)

where hk+1 /2 = hi(uk-K+1, ... ,Uk+K) is a Lipschitz continuous function consis-

tent with f(u) in the sense that h(u, u,..., u) = f(u).
Viscosity Form

1

Hk = - 1[f(uk+i) - f(uk-) - q+ 1 /2At:+1/2U + q1-11 2A-1/ 2u]
2

where qk+ 1/ 2 = q(uk-K+x,...,uk+K) is Lipschitz continuous and Ak+1/2u-

u +i - uk. Viscosity form is related to conservation form by:
1

hk+1/2 = j[f(uk+1) + f(u,) - qk+/2Ak+l/2u]
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Incremental Form

Hh = C,++/ 2 Ak+l 2u - C;_,/2Ak-1/2u

where C /2 = C'(ukK+1, ... , uk+K) are Lipschitz continuous function such

that the following conservation condition holds:

C;+112 Ck+1/2 = ak+1/2 (4)
= (u,I+)-I(uh) if Uk+1 o UL

ak+1/2 uh.+l-Uh
a(uh) otherwise

Incremental form relates to conservation form via:

hk+1/2 = -k,++l 2 ak+1/ 2U + f(U) = -C;+1I2Ak+1l2U + f(uk+)

Incremental form relates to artificial viscosity form via:

qk+1l2 = C,+tl/ +C;+1/2 (5)

Ck+1/2 = j(qk+1/2 - ak+1/2) (6)

I
Ck+112 = (qk+1/2 + a,+ 112) (7)

Examples of the incremental and viscosity forms include:
Central Differences Hk = -(f (uk+1) - f(uk-1))/2

C+1 1
k+1/2 =1 -ak+1l2, C;+1/ 2 = jak+112, qk+112 = 0

Roe's Method (First order upwind) [6]
(The scalar version is also known as the Cole-Murman method [7].)

k+1/2 - max(O, -ak+1/2), C;+/ 2 = max(0, ak+1/2). qk+1/2 = lak+1/21

Consider the following simple corollary to Theorem 1:
Corollary 3: The incremental form has property El if

Ck+1lAk+lU < 1/2 Ak-/ 2 U for Uk max (Ak+1/ 2 u < 0& Ak,_lU > 0)

C+ 1/ 2Ak+x/2u ? C; _/,Ak_1I2U for uk min (Ak+1/2U > 0 & A.k-1/2U < 0)

This implies that increasing C* tends to enforce El; in particular, El holds if
C 1 > 0. Harten [2] introduced this popular 'positivity' condition; when true,
incremental form becomes a scalar version of flux vector splitting [8]. Clearly,
Roe's method is uniformly positive while the central difference method is not.
We examine the positivity condition further in [9].
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2 Second Order Artificial Viscosity

We may enforce Corollary 3 by adding second order artificial viscosity, thereby
increasing C + and C- at extrema:

H, = (C++1/2 + lfk+1/ 2 )A&+1/ 2u - (Ch_ 1 /2 + 1'k-l/2)Ak-1/2U

where fk+1/2 > 0 is the coefficient of second order artificial viscosity and C "

belongs to some higher-order method. Suppose the higher-order method violates
Corollary 3 at point k. Choose Eh*I/2 > 0 so that:

+ 1 1
(Ck+1 / 2 + jcE+ 1 / 2)Ak+ 1/ 2u = (C;-_1/ 2 + jEk-l/ 2 )Ak-l/ 2U. (8)

Corollary 3 now holds with the least possible deviation from the higher-order
method. If k ± 1 is also an extremum, set fk*1/ 2 large to damp the 2Az
component. If neither k + 1 nor k - 1 is an extremum, equation (8) has one
degree of freedom. Consider the following:

IfC+l <0 and C- 1 / 2 > 0 then:

4+1/2 = 2(-Ct+1 /2 + C;- 1 /2 A,-1/2U C-1/2 =0= -l/:tAk+1/2 U )

" If C+ > 0 and Cl 2 <0 hen:

4-1/2= 2 (-C;- 11 2 + C+l2Ak+1/1l k+l/2 0

Various strategies may be employed when both coefficients are negative,
which occurs only near sonic points (where a(u) = 0). We do not wish to

address the, as yet, undeveloped art of sonic point capturing here.
Increasing the negative incremental coefficient corresponds to reducing +'J'

downwind contribution. In the most extreme case, such as near shocks the

method becomes fully upwind and first order. For example, if the basis !,igher-
order method is central differences:

Ak.-ll/U

ak+1/2 O , ak..1/2 >0 fk+1/2 =a&+I/ 2 + O.1/2 - IO1.U _< ak+1/2

ak+1/2 _0, ak- 1/2 0 k-/22 =-ak//2 -aU_+/2A + l/2 < ak+1/,-ll12U

(If these give f < 0, Corollary 3 is not violated and no viscosity is required.) If

ak±+/2 are non-negative, 4+1/2 = ak+l/2 - akl/ 2 = O(Az) when Ak+l/2U =

-A_ 1 /2 u. Thus, for a symmetric or nearly Jymmetric extremum moving to

the right, Ck+1l2A+1/l U = O(Az 2 ) and ,econd order accuracy is retained.
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Artificial viscosity increases as JA&+1/ 2u grows larger relative to IAk-l/2uI,
but does not exceed ak+1/2, the viscosity of Roe's method. (A similar analysis
holds if ak+1/2 and ak-/ 2 are non-positive. Similar conclusions also hold for
other choices of fk*1/2 in equation (8).)

The above represents a lower bound on artificial viscosity. For a steady
state method to converge stably, one also needs to add viscosity in monotone
regions, and perhaps increase viscosity at extrema. We need to know C* and
the time-stepping method to say anything more specific.

3 Fourth Order Artificial Viscosity

Incremental form plus fourth order artificial viscosity gives:

Hk = -C,+/ 2 A,,+s, 2 U + (Ck,+/ + 2,+/i + 1/ ,- 1 2)Ak+1/ 2u

+Ck-12Ak-312U - (C;-_112 + 2 rk-1/2 + £',+1/ 2)Ak-1/ 2u

where e&+1/ 2 > 0 is the coefficient of fourth order artificial viscosity. Fourth
order artificial viscosity increases the coefficients of Ak+1/ 2u, which tends to
enforce El. However if, for example, Ak+s/ 2 U is very large and negative, the
first term will overwhelm the others, causing uk to overshoot, violating El
or E2. Since uk is too large, uk- 1 will tend to be too small: if uk- is too
small, uk,_., will tend to be too large; etc. In this way, the overshoot at k
causes oscillations to the left. This validates the common wisdom that fourth
order artificial viscosity should not be used near shocks. On the other hand,
fourth order viscosity works quite well in smooth regions, where it will tend to
enforce EI/E2 with less accuracy penalty than second order viscosity. It also
strongly damps 2Ax waves: if uk is a max in a 2Az wave, all terms in Hk are
negative resulting in a decrease in uk (and similarly minima are increased). By
the Nyquist sampling theorem, 2Az waves should be eliminated, since a grid
cannot accurately represent wavelengths shorter than 4Az [91.

It seems sensible to use a blend of second and forth order artificial viscosity.
Consider the 'self-adjusting hybrid method' [101 in conservation form:

hk+l/2 - fk+1/2[Ok+1/2(Uk+l - Uk) -(1 - Ok+1/2)(Uk+2 - 3 Uk+l + 3uk - uk-1)]

where Ok+1/2 varies between 0 and 1: Ok+1/2 should be 1 near shocks and near
0 elsewhere and will formally depend on the choice of hk+l, 2 , the conservative
flux of a higher-order method. In practice, the modified blending

hk+ll 2 -- 2 +ll 2 [Ok+1/ 2 (uk+l -Uk)-max(0, 6-0k+1/2)(u1,+2-3uk+i +3uL.-uk- 1)]

allows greater flexibility in choosing Ok+1/2. The parameter 6 is chosen so that

Ok+1/2 is greater than 6 near shocks. Note that this leads to an adaptive width
stencil of fixed center: near shocks the stencil width shrinks from five points to
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three. (Contrast this with the ENO stencil, which has fixed width and adaptive
centering [4].) Jameson's method, a self-adjusting hybrid, has proven highly
successful for solving the steady Euler equations of a perfect gas (1]. In the
closest scalar equivalent, hk+/ 2 is central differences; ,+1/2 = ocia+i/ 2 1; and
0 is a normalized second difference of u&. (In the original vector version, 0 is
a normalized second difference of pressure; also, replace Ia+i/2I by p(Ah+1/2),
the spectral radius of some average of the Jacobian matrices A(uk+i) and A(uk).
Recall that the spectral radius of a matrix with eigenvalues A(), , = 1..., N,
is defined as max(A0J)). The algorithm is applied to each component of the
vector uk.) If K = 1/2, 6 = 1, and 9 h+1/2 = 1, then the scalar method be-
comes Roe's method, which is optimal near steady shocks. However, usually
one would choose Pc somewhat less than 1/2, trading accuracy at shocks for
accuracy in smooth regions. In general, 6 and oc are chosen by trial-and-error to
yield the best accuracy compromise in each particular situation. Despite its suc-
cess for steady Euler equations, it may not be easy or even possible to discover
a satisfactory 0 for use with other equations or for unsteady problems. Also,
while intuitively appealing, it is unclear how to choose 0 to guarantee rigorously
El/E2, or any other sufficient oscillation control condition.

4 Multi-dimensional Equations

Our theory easily extends to multi-dimensional scalar equations. Consider the
two-dimensional equation:

Ou 8f(u) Og(u)-T0 (9)

When will the semi-discrete, finite-difference approximation uk(t) given by:

duk(t) I 1dt= A-H gk(t)+ yk Gk(t) (10)

have properities El and E2? Theorem 2 is unchanged while Theorem 1 becomes
Theorem 4: Equation (10) has property El if

- H(t) + -ykGk(t) 0 0 for uk(t) maximum
k~

- H1(t) + I- Gk(t) > 0 for uk(t) n inimum

Corollary 5: Equation (10) has property El if

I(t) < 0 and Gk(t) <_ 0 for ut(t) max

Hk(t) > 0 and Gk(t) > 0 for Uk(t) min
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This corollary justifies the common approach of adding artificial viscosity on
a dimension-by-dimension basis, at least in the scalar case. For one-dimensional
hyperbolic systems of conservation laws, the characteristic variables will have
properties El and E2; unfortunately, in more than one dimension, El/E2 may
not hold for all characteristic variables in all regions of flow [9]. For nonlinear
vector problems, the characteristic variables can only be found only approx-
imately; thus, it is not yet clear how one might rigorously guarantee El/E2
when appropriate.

5 Conclusions

Artificial viscosity, TVD, UNO, and ENO, among other recent methods, can
successfully combat the spurious oscillations commonly found in higher-order
approximations to weak solutions of conservation laws. Here we have presented
a new framework for understanding the action of artificial viscosity and, in a
subsequent paper, we use the same approach to elucidate TVD, UNO, and ENO
conditions [9].

We end with a brief discussion of the potential practical implications of this
work. In the common 'method-of-lines' approach, the fully discrete method
derives from a semidiscrete method. Popular time-discretizations include for-
ward Euler, Lax-Wendroff (more generally, Cauchy-Kowalewski), and Runge-

Kutta. The time-discretization may or, more likely, may not fully preserve
extremum control properties. For steady problems, extremurn control at in-
termediate times matters only to the extent that it affects the rate of conver-
gence. For unsteady solutions, one can sometimes tolerate the effects of the
time-discretization with good results, particularly if the semidiscrete method is
overdamped e. g., [11]. However, rigorous enforcement of El/E2 in unsteady
problems requires consideration of the time-discretization along with the spatial
discretization. We currently are engaged in an analysis of the forward Euler and
Lax-Wendroff time-discretizations. We hope that success in the simplest cases
will pave the way to understanding more efficient and accurate time-stepping
algorithms, including Runge-Kutta.
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CRITICAL TInE-STEP OF URRIOUS NUMERICAL SCHEMES FOR TRASIENT HEAT
CONDUCTION

Roo Yalamanchili and S. Yalamanchili*
Light Armament Division

Close Combat Armament Center
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Picatinny Arsenal, NJ 07806-5000

ABSTRACT. An approach to solve a pressing practical problem,
aerodynamic heating of hypervelocity projectiles, is discussed. Since huge
amounts of supercomputer time is needed for simulation, a thorough and
detailed investigation is Initiated on numerical methods for transient
three dimensional heat transfer around hypervelocity projectiles and for
establishing critical time steps. A methodology is established for
comparing various numerical methods, in particular, finite-element, finite
difference and method of weighted-residuals (MWR). Starting with the
variational principle, an equivalent finite - element equation with 27
nodal temperatures of a three - dimensional element is established.
Similar equations are formulated for finite-difference and MWR, in
particular for collocation and Galerkin techniques. The critical time-
steps are derived by Uon Neumann method for various numerical methods and
include 1-0, 2-0, and 3-0 transient heat conduction problems. A
comparison shows a drastic need for robust and efficient codes due to not
only an increase in band width, number of nodes (by several orders of
magnitude), etc. but also a decrease in critical time-step (by more than
order of magnitude) for multi-dimensional problems.

INTRODUCTION. Army Research Office recognized, aerodynamic heating
of hypervelocity projectiles, as a very complicated problem with many
facets, each of which offers formidable challenges. This project is
initiated in FY 90. The motivation for this paper comes from the needs of
this project. Department of Defense prepared a list of twenty-two
critical technologies for Congress. The following are pertinent to this
project: Hypervelocity Projectiles where USSR is ahead; Computational
Fluid Dynamics (CFD), Parallel Computers; Simulation and Modeling;
Software Producibility; and Composite Materials. The ultimate goal, to be

*County College of Morrls/Rutgers University, College of Engineering,

Piscataway, NJ
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accomplished, is to prepare a self contained package of simulation from
the time a weapon Is fired until the time the hypervelocity projectile
reaches the target.

The thermal package Involves convection, conduction and radiation in
addition to other complications such as unsteady, three dimensional and
hypervelocity (vlscous-inviscid Interaction and non-equilibrium flow)
effects. For example, convective heat transfer may be modeled from CFO
package which is governed by full three dimensional Navier Stokes
equations. Typical computer run may take more than 20 hours on a cray
supercomputer in order to simulate one supersonic flow filed around a
projectile: Transient 3-0 havier-Stokes Solver, 500K nodes, 10 seconds
per iteration, 8000 iterations.

The transient three dimensional heat conduction model will provide a
means to determine the temperature distribution as a function of location
(3 dimensions) and time for any given initial and boundary conditions.
The boundary conditions are usually obtained from CFO. There are
occasions where there is a strong compiling between convective flow and
conduction. No matter what method is utilized, all require great computer
storage and large amounts of computer time. The solution process Is not
only subjected to these restrictions but also bound to blow-up, in the
middle, if accuracy, stability, and monoscillation characteristics are not
taken into account by proper selection of numerical techniques. If a
combined convection and conduction problem is attempted ;n one-step, the
failure in one area can lead to a loosing proposition in both areas.
Therefore, a search is initiated to find an accurate, robust and efficient
numerical scheme for the solution of transient three dimensional head
conduction problems.

arious numerical methods are In use today. The most popular methods
are finite-element (FE) finite-difference (FD), and Weighted residuals
(MUR). It is not an easy task to single out the best one. In any case,
one has to bring all these methods into the same format in order to make
any meaningful comparison.

FINITE ELEMENT DIFFERENCE EXPRESSION

Wilson and Nickell, following Gurtin's discussion of variation
principles for linear initial value problems, confirmed that the function
T(x,Y,Z,t) which leads to an extremum of functional
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- 1/2 _' { CpT*T +9T*K* VT - 2?CpTo*T) dU
V

- 5 ini *T dS

Is the solution of the following transient heat-conduction equotion:

(KT, ) - Cp , +?*p *0

with the boundary condition K*T,i - Qi - 0

Where T(x,Yz.t) - temperature at the spatial point (x,U,z) and at time t

To - Initial temperatures

T - Gradient of T with respect to spatial coordinates

K - Thermal conductivity

F = Material density

Cp - Heat capability of the material per unit mass

t

A

Qi (x,y,z,t) . Q. (x,uyz,t-) d'-

0

U • Uolume

* • Convolution symbol defined as:

t
T *T = T (x,Y, z, t-T T (x,Y,z,-,) dT_

0

Divide the three dimensional solid body Into I ixial elements (nodes 0 to
I), J transverse elements (nodes 0 to J) and K normal elements (nodes 0 to
K) such that step sizes are the same in all three directions, This
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restriction is introduced to simplify algebraic manipulations involved in
the analysis. Instead a unit step size can be assumed without any loss of
generality and generalize later.

Consider the nodal point (i,j,k), in the range 0 < i < I, 0 < j < J, 0
< k < K) as shown In Figure 1. The temperature of the nodal point will
vary as a function of time, t. The temperature distribution in a
subregion is a function of spatial coordinates (x,y,z) and surrounding
nodal point temperatures. For simplicity, linearity and the same
functional distribution are assumed for all elements. The functions
fl,f2,f3,f4,f5,f6, f, and f8 are functions of nodal point temperatures.
These are determined by substitution of the coordinates of nodal points
into the equation and by solving the resulting simultaneous equations.
The results for region T are as follows:

Y (0 Z(k) 3-D Element
"T

T i- + k+ T k+

T.

V In T ' i k+

i+ j+ k-
T

i- J+ k - T

T 1 kTIII' ! II ,Tijk

IIl
T" ! 1" ! ! /IIVIII

T - - k- ______"r_____---- __

i- k- y X ,
T i k- T i j- k - T i+ - k -

Figure I
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Similar set of equations can be derived for the remaining seven regions of
the 3 dimensional finite element discussed above. It is now time to
substitute all equations derived into all three terms of functional,
governing equation, and integrate over the volume occupied by region IU
and take the first variation with respect to T. at the new time in order
to obtain the extremum of the functional. Obtain similar results for the
other regions and sum them up. The procedures for the first and third
terms of governing equation are same. However, double convolution symbol
is involved in the second term. Here the evaluation of the second term in
the governing equation involves Integration not only over the volume (and
the use of first variation with respect to the nodal temperature, Ti, at
the new time) but also over the time-step due to the additional
convolution symbol. Towards this goal, a linear nodal point temperature
variation is assumed within each time-step. Summing up the results of all
three terms produces an equivalent finite-element equation in a form
familiar to finite-difference community.

The details of derivation can be found in the Journal of Heat
Transfer, Transactions of RSME, for a two-dimensional case. It is beyond
the scope of this paper to provide all those tedious derivations and long
equations and may be found in a journal to be published soon for a three
dimensional case. The equivalent finite-element equation contains all 27
nodal temperatures of a three-dimensional element, shown above at both old
and new times.

FINITE DIFFERENCE EXPRESSION

There are various versions of finite-difference approximations to the
transient heat conduction problems. However, all these schemes can be
classified as either explicit or implicit type. In the case of explicit
scheme, the unknowns are determined, one at a time, without the
simultaneous solution of the entire set of algebraic equations. This, in
turn, produces tremendous savings in computer time, almost one to three
ratio over the implicit counterparts. However, the explicitl schemes are
usually conditionally stable and demand small time-steps.

If implicit finite-difference scheme is chosen, one equation for each
node is generated In the entire body, and finally simultaneous solution of
all these algebraic equations is required. Numerous difference formulas
can be formulated for first and second order derivatives and also for
three dimensional Laplacian term, depending upon the number of nodes
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those nodes. Usually, the difference formulas are constructed for first
and second order derivatives by the expansion of the function In Taylor's
series and algebraic manipulations. The three dimensional Laplacian is
constructed by use of the central difference formulas for the second order
derivatives.

The simplest 7 point approximation for three dimensional Laplacian can
be written as:

(Ti+jk+TiLjk+Tij+k + Tij- k + Tijk+Tijk_ -6Tijk)/AL2

This is 0 (ALC). You can also write a 19-point approximation which is
O(A L) for three dimensional Laplaclan. Similarly, one can also ppare
a 27 point approximation which is 0 (Al.) for three dimensional
Laplacian. There are many more possibilities for a 3-0 Laplacian,
However, it is suffice to unify or compare various numerical methods for
the time being. Remember, apples can't be compared to oranges or vice-
versa. They all have to be brought to the same format before a meaningful
comparison can be made.

THE METHOD OF EIGHED-RESIDURLS (MR) EXPRESSIONS

The method of weighted-residuals unifies many approximate methods of
the solution of differential equations that are In use today. Uariational
principles proposed by several authors are all applications of the MUR.
In literature, this technique is commonly called the error distribution
principle. The choice of approximating function, in an assumed solution
form, is crucial in applying the MWR. No way presently seems to be
available to select the approximating functions systematically for all
problems. The variation between results obtained by application of
different weighting functions to the same approximating solution is much
less significant than the variations that can result from the choice of
different approximate solution forms. Sometimes, one can obtain the exact
solution by use of the MUR if the right choice is made in the selection of
the approximate solution form.

The objective of applying the method of weighted residuals is to
minimize the error by distribution of it over the interval with the help
of a weighting function In such a way that the net error is zero. There
are many variations In It The most popular ones are the method of
collocation, method of moments, method of Galerkin, and method of least
squares. However, this study is limited to method of collocation and
Golerkin method. The Dirac-delta function is the weighting function in
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method of collocation, The weighting function Is same as the distribution
function (in approximate solution form) In case of Galerkin method.
Mathematically,

R(xY,z) (x,Yz) dxdydz - 0

Where U is the weighting function and R, the residual can be written as

R(x,Y,Z) 6

The parameter 4 allows a weighted overage of three second order spatial
derivatives at two discrete times. For compactness, the commas are
omitted in between subscripts. The algebraic sign following the subscript
or superscript indicates an Increment (+) or decrement (-) in the
corresponding step-size. The linear temperature distribution is assumed
between the adjacent discrete points in order to apply the Galerkin
method. Substituting the residual, weighting functions and 3-0 Laplacian
over 8 regions and performing the integration process yields equations
similar to the finite element and finite difference methods.

CRITICAL TIME STEPS

Uarlous numerical methods are Introduced for transient 3-0 heat
conduction problems from classical to modern approaches. However, all
require some guidelines In order to obtain successful numerical solutions
subjected to various initial and boundary conditions. We are forced to
select finite step sizes, both time and spatial, to satisfy practical
considerations. The temperatures and material properties change
continuously within each time step. However, it is not uncommon to
integrate with respect to time based on the information known only at the
beginning of the time-step (Euler) or by utilization of data equally both
at the beginning and end of the time-step (Crank-Nicolson). Other
variations are possible. Since the techniques vary considerably, the
errors can either grow or decay. The errors also vary not only with
respect to time but also from location to location. It is possible that
less accurate scheme may be more accurate in one location than more
accurate scheme and vice versa.
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Numerous authors discuss accuracy and more or less understood In the
following way: The RMS error and the absolute maxioum error can be
computed from the difference between the analytical and the numerical
solution and include error contributions from every grid point. Double
precision arithmatic is usually used to minimize the effects of roundoff
error. Since the RMS error and the absolute maximum error behaves
similarly, the RMS error is used in determining the accuracy of scheme.

In general, the error is a function of time, time-step, and spatial
step-sizes. If sufficient time is allowed to communicate the Influence of
boundary conditions to the interior points, the error decreases as time
increases thereafter. Therefore, the steady state error is smaller than
transient errors and the selection of numerical scheme may not be that
critical for steady state cases.

It is well known that selection of large time-step can lead to
meaningless oscillatory numerical solution. The largest time-step for
which an Euler Solution will be stable is called the critical time-step.
Of course, if Euler solution is stable, the Crank-Nicoison solution is
nonosillatory for the same critical time-step. The critical time-step can
be derived either by Uon Neumann method or by other techniques. The
following table provides information for selection of critical time-steps
for various numerical methods and heat conduction problems.

MULTI-OIlENSIONRL EFFECTS

FOURIER HUMBER (F) - c Llkl

FOURIER NUMBER
OIMENSION(S) FO FE

1-0 1/2 1/6
2-0 1/4 1/12
3-0 1/8 1/24

CONCLUSIONS. The critical time-steps, shown above, form the guiding light
on use of numerical methods. They help to avoid wastage of precious
supercomputer time. The table also demonstrates that the finite-element
techniques require smaller time-steps over their finite-difference
counterparts. Another Interesting fact is drastic reduction in time-step
sizes as number of dimensions increases. Overall, more than order of
magnitude reduction in tIme-step Is not uncommon depending upon the chosen
numerical method and multidimensional effects. Remember that the number
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of nodes increases by several orders of magnitude for multi-dlmenslonal
problems over their one-dimenslonal problems. R3 far as band-width Is
concernedthe typical one - dimensional problem may contain three non zero
diagonal terms whereas three dimensional one may have 2? non-zero diagonal
terms. RiI these adverse effects point to a drastic need for development
of robust and efficient codes.

In summary, practical hypervelocity projectile heating problem Is
analyzed. The principal subproblem is investigated, in detail, for
solution of transient three-dimensional heat conduction by various
numerical methods. A methodology is established for comparison of several
numerical methods, in particular, finite-element, finite-difference, and
method of weighted residuals. The critical time-steps are derived by Uon
Neumann method for several cases.

A comparison shows a drastic need for robust and efficient codes due
to not only an increase in bond-width and number of nodes by several
orders of magnitude but also a decrease in critical time-steps by more
than order of magnitude for multi-dimensional problems. Even if the time-
step, shown above, is satisfactory for many problems, a further reduction
is in order for problems subjected to convection and radiation boundary
conditions as suggested by Professor Meyers of The University of
Wisconsin-Madison, based on analysis of 1-0 and 2-0 problems.
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Abstract

This paper is a survey on Symbolic Computation. We first propose a new defini-
tion of the term "Symbolic Computation": Symbolic Computation is computation
with objects that are "symbolic" in the sense that they are finite representations
(symbols) for infinite, abstract ojects in the domains of pure mathematics. In the
second part of the paper we summarize the facilities available in modern symbolic
computation software systems. In the third part we give some ezamples of recent
mathematical research results on which improved symbolic computation algorithms
can be based. Finally, we compile the most important literature and software sy-
stems references for encouraging newcomers to access tlhese powerful new problem
solving techniques.

The main message of this paper is twofold:

" Applied mathematicians are encouraged to experiment with the available Sym-
bolic Computation software systems and, by doing so, will experience an enor-
mous expansion of their problem solving potential.

* Pure mathematicians are encouraged to consider the "algorithmization" of
their respective field of interest and will experience the enormous intellectual
and mathematical challenge of such a project that often goes far beyond the
degree of difficulty found in "traditional" pure mathematics.

1 A New Definition of Symbolic Computation

Pragmatically, one could "define" Symbolic Computation (symbolic mathematics, compu-
ter algebra, formula manipulation) to encompass everything that is available in present-
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day symbolic computation systems like MACSYMA, Maple, Mathematica or Scratchpad.
Of course, a definition by characterizing properties of the field is more desirable.

Sometimes, Symbolic Computation is simply characterized as "Non-Numerical Com-
putation". This characterization, however, is too wide. Many non-numerical algorithms,
for example, graph theoretical algorithms are not considered to be symbolic. Similarly,
a definition that characterizes Symbolic Computation simply as "computation with sym-
bols" is too wide because, for example, word processing considers symbols without having
the flavor of symbolic computation.

In an attempt to characterize the flavor of computations in existing "Symbolic Com-
putation" software systems with a view to predict and challenge what should and could be
added to theses systems in the future, we belive that the fundamental feature of Symbolic
Computation is that

Symbolic Computation -
computation with finite (concrete) objects

having infinite (abstract) semantics.

Example: The string "sin(2x)" is a finite object. It represents an infinite object,
namely, a mathematical function consisting, in terms of set theory, of infinitely many
pairs of real numbers. In other words, the symbolic, finite, concrete expression "sin(2x)"
has an infinite semantics (meaning) in an abstract domain of mathematics.

Example: The string "((x,y),(2',3'))" is a finite object that may be considered as
a concise representation of a very complex ("practically infinite") abstract mathematical
object, namely, a finite group with 6912 elements and a 6912 x 6912 multiplication table.

Example: A formula of the theory of real closed fields, for example, Vao, a,, a23y(x 3 +
a2x' + aIx + ao = 0) is a finite string object. It says something about infinitely many
abstract objects, namely, real numbers. If, by finite manipulation on such finite formula
objects, the formula can be proven it says something about an infinite abstract domain,
i.e. the formula has an infinite semantics.

Problem solving in Symbolic Computation, then, proceeds in the following steps:

* We want to solve a problem in a domain of infinite, complex finite, "abstract".
objects (a domain of "pure" mathematics).

e We represent (a subset of) these abstract by finite representations ("symbolic" re-

presentations).

e We try to solve the problem for the abstract domain by solving, by an algorith,,
the corresponding problem for the finite representations.

Example: The famous problem of "symbolic integration" is specified as follows: Given
a symbol string s find a symbol string t such that the function represented by t is the anti-
derivative of the function represented by s. Note that the problem specification necessarily
involves the semantics of the string objects, i.e. the notion "the function represented by

As a pun, we could also say that
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Symbolic Computation =
Pure Computer Mathematics

with two possible parsings: Symbolic Computation is computerization of pure mathe-

matics (i.e. mathematics in abtract domains) and Symbolic Computation is computer
mathematics in its purest form.

It is a common misunderstanding that

Symbolic Computation =

Trivial Mathematics
Repeated in Loops on a Computer

and therefore is the domain of "mathematicians" who want to escape the intrinsic
difficulties of inventing proofs by, instead, "experimenting" with well-known existing ma-

thematics on examples using computers.
I dare to assert that, rather,

Pure Computer Mathematics typically needs more sophisticated mathematics
(i.e. more sophisticated proofs) than Pure Mathematics !

This is so because problem solving in mathematics essentially proceeds by proving
theorems that show how a problem can be reduced to other (hopefully easier) problems.

* In Pure Mathematics the problem reduction (proof of the theorem) may involve
very powerful, non-algorithmic operators (e.g. "choose an x such that P(x)").

* In Pure Computer Mathematics (Symbolic Computation) the problem reduction
must involve only algorithmic operators (e.g. "while P(x) do x := f(x)").

Pure Computer Mathematics, therefore, often is more demanding than Pure Mathema-
tics because fewer tools are available in the algorithmic reduction methods of constructive

proofs (that can be translated, one-to-one, to computer algorithms).
(On the other hand, one can also argue that Pure Mathematics is more demanding

than Pure Computer Mathematics because, by results of algorithm theory, Pure Com-

puter Mathematics can sometimes represent only relatively modest subdomains of the
abstract general domains of Pure Mathematics and, thus, the problem reductions of Pure
Mathematics are more general and therefore sometimes more difficult.)

Summarizing,

" Symbolic Computation is an exciting and challenging future area for pure mathe-
maticians from all areas (because more sophisticated proofs are needed).

" Symbolic Computation becomes more and more powerful for all application areas
(because the more sophisticated proofs result in "better" problem solving methods).

" Symbolic Computation combines the elegance and "insight" of pure mathematics
with the practical efficiency of computer mathematics.
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2 Symbolic Computation at Work

In order to be able to assess the practical problem solving power of recent symbolic
computation software systems it is best to experiment with at least one of them, typically
in interactive mode on a workstation. In the final section of the paper we compile the
information necessary to obtain these systems from the academic or professional vendors.
Also, it may help to read the papers (Arney et al. 1990) and (Wang 1990) in the same
proceedings.

In this section we can only enumerate the most important facilities these systems

typically provide.
Arithmetic in Basic Domains:
Symbolic computation software systems provide

" "long" integers and rationals,

" high precision floating point numbers,

" other number domains (e.g. finite fields, algebraic number fields),

" basic number theoretic functions (e.g. Extended GCD, Moebius function etc.),

" basic combinatorial function (e.g. Stirling numbers, Bernoulli numbers etc.),

" polys and rational functions,

" classes of orthogonal polys (e.g. Legendre etc.),

" elementary transcendental functions and mathematical constants,

* special functions (e.g. Bessel, Gamma, exponential integral etc.),

" simplification of expressions involving all of the above,

" coercion and transformation between different number domains.

Algebraic Systems:
Symbolic computation software systems provide

" exact solution of algebraic equations (with symbolic coefficients, multivariate, higher
degree),

* use of equations as "algebraic rules",

" transformation between various representations of curves and surfaces,

" complete solution to systems of multivariate, non-linear inequalities,

" topologically correct decomposition of n-space w.r.t polynomial inequalities.
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Example: The command Reduce[ a xA2 + b x + c -- 0, x] in Mathematica will
result in a complete symbolic analysis of the various possible solutions dependent on the
values of the parameters a, b, c.

Example: The command AlgebraicRules[ { a == x + y, b == x y}, {x, y, a,

b}l in Mathematica will result in the set of rewrite rules { - y A2 -> b - a y, -x ->

-a + y } that completely rewrites any polynomial in x, y in terms of the polynomials
a and b, if this is possible, or decides that this is not possible at all. This powerful

simplification mechanism is based on the author's Gr6bner bases method, see (Buchberger
1985).

Example: The command gbasis( [ cl * c2 - cf * ct * cp + sf * sp, ... ],

[sp, st, sf, cp, ct, cf, py, s2, sl, c2, ci] ), where [ cl * c2 - cf * ct *

cp + sf * sp, ... ) is the system of algebraic equations that describes the inverse
kinematic of a certain class of robots, produces a fully triangularized version of the system

P 2 -h., z -7]+ls 22 .-2. f-+ = 0,

I -

P2 pz-2.11 .pz-3+.• = 0,

cf2 
- pz2- 2 .1 .pz+px2 - 12 +12,=I pz 2 -2.j*pz-12'+f = 0,

ct = 0,p5 2 -3. 1 p
2 

- .p +3.1 p-+L,.L -

cp + 12.pz2_2.1i.1.tpz+1 2.px -1 +q.L2  Si cf = 0,
pz

2 
-2.1.pz- 1+1l c =0

sf + PX-. p+p2t+ , cl s1 = Cl u

f2 PZ
2 -2.Lip:+pX

2 -j+j2

t + 0f 0

+ pz
4 
-4.1.pz

3 
-2.1 _.pz

2 
+6.l.PZ

2 
+4. z -.1 I"pz+I-2"'1?cf = 0

p12.p pz
2

.-1.1 12.PX- PZ+12.p - cp+
1 

2px

where the dependent quantities cl, c2, si, s2, py, c f, ct, cp, s f, st, sp are decoupled and
expressed in terms of the independent quantities px,pz and symbolic parameters 11,12
(the length of the robot arms). For a detailed description of this example see (Buchberger

1987).
Example: Again, a call to a Gr~bner basis package (which is meanwhile availabe in

most symbolic computation software systems) with a parameter presentation Ex - r t,

y - r tA2, z - rA2] of a surface in 3D space as input, will automatically produce the
implicit presentation xA4 - yA2 z of the same surface, see (Buchberger 19S7).

Computer Analysis
Symbolic computation software systems provide

* limites of symbolic expressions,

* calculations with finite and infinite power series,

* derivatives of symbolic expressions,
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e indefinite and definite integral of symbolic expression,

* decision about existence of integrals in certain domains,

* Laplace transforms et-

* symbolic solution of certain classes of differential equations,

* symbolic simplification of sums and products,

Example: The command powerseries( log(sin(x)/x), x, 0) in MACSYMA will

produce the infinite symbolic sum presentation of the input function:

00 22 ibern(2i)
(2)! )log(x) - log(x)

i=O ( )

Example: Thecommandseql: 3 * 'diff(f(x),x,2) - 2 * 'diff(g(x),x) = sin(x);

andeq2: a * 'diff(g(x),x,2) + 'diff(f(x),x) - a * cos(x); inMACSYMAde-

fine two ordinary second order differential equations eql and eq2. The commands eql:

laplace(eql,x,s) and eq2: laplace(eq2,x,s) then compute the Laplace transform

of eql and eq2. A call of linsolve will solve the linear equations in the unknowns

laplace(f (x) ,x, s) and laplace(g(x) ,x. s) and a call of ilt (inverse Laplace trans-
form) will finally give the symbolic result

27aS/ 2 sin( f5

f(x) = 3(3a-2) a cos(3v', 3 sn(x) + a + f(0)
3a 3a- 2

9a3/2sin( x) 27a2° v -Sx
11-,111 + 0 a (S 71-

g(x) = -- +  6a-4 _(a + 1)cos(x) + 1/2.
3a 3a- 2

See (Fateman 81) for more details on this example.

Linear Algebra, Tensor Calculus
Symbolic computation software systems provide

" operations on matrices with symbolic entries,

" inversion, linear systems, nullspace, eigenvalues.

" operations on tensors.

Numerical Mathematics, Statistics

Symbolic computation software systems provide routines

e for numerical computation (curve fitting, Fourier transform, Newton root finding,

numerical integration, Runge Kutta DE solution.), and
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* for statistics.

Automated Theorem Proving
Symbolic computation software systems provide

* automated proofs of geometrical theorems,

e automated proofs of arbitrary first-order-formulae on the reals,

* proofs of first order equations w.r.t. equational axiom systems,

* general first order theorem proving.

Example: Apollonios' Circle Theorem: "The altitude pedal of the hypotenuse of a
right-angled triangle and the midpoints of the three sides of the triangle lie on a circle."
After introducing coordinates, a possible algebraic formulation of this problem is as fol-
lows:

for all coordinates al,..., ai0 E R:
if hi(ai,...,ajo) = 0,..., h8(al,... ,al 0 ) = 0,
then c(ai,...,alo)=0,

where the hi are the polynomials describing the hypotheses of the theorem and c is

the polynomial describing the conclusion of the theorem. The algebraic formulation is
what is called the radical membership problem "c E Radical({h . h,})?". Arbitrary

such questions can be decided by deciding "1 E Gr6bner-Basis({ hl.... .h, Z.c - I I)?",
where z must be a new indeterminate. More details on this example are contained in
(Buchberger 1987). In the system (Kutzler 1988) and similar systems, proofs of the above

kind can be carried out in a few seconds.

Algebraic Geometry:
Symbolic computation software systems provide

* analysis of and computation in residue class rings modulo polynomial ideals (by

Gr6bner bases),

" free resolution of polynomial ideals (determination of the sequence of syzygy modules
by Gr6bner bases),

" analysis of and computation in commutative and non-commuative associative alge-
bras (Lie, Weyl algebras), group algebras etc.

* analysis of and computation in groups given in various representations.
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Example: In the CAYLEY system the following sequence of interactive commands:
g: free(a,b);

g.relations: aT 8, b T 7, (a * b) T 2, (aT -1 * b) T 3;
h =< a T 2, aT -1 * b >;
i = todd coxeter(g,h);
Print i;

effects the enumeration of all 448 cosets of the subgroup < a2 , a'b > of < a, b

a", b67, (ab) 2, (a-b)3 > by the famous Todd-Coxeter algorithm.

Group Theory Zoomed:
Any of the above areas could be "zoomed" revealing a wealth of problems and so-

lution techniques available in present symbolic computation systems. For example, in

computational group theory the following can be computed:

" test for nilpotency, commutativity, solvability etc.

" coset enumeration

" normalizers

* centralizers

* central chains

" series

" lattice of (normal) subgroups

" classes of conjugacy subgroups

* orbits

* test of imprimitivity

* test of isomorphism

* word problems

* automorphism groups.

Different representations of the group theoretical objects lead to different solution

algorithms for the above problems with drastically different efficiency. Therefore the study

of representations and the conversion between different representations is an important

subarea of computational group theory. The main representation methods are:

* generators and relations

* permutations, block permutations
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" power commutators

" bases

" strong generating sets

" matrices over Z, Galois fields and algebraic number fields,

" Cayley graphs

" character tables.

"Icons" of Other Symbolic Computation Areas
Other important and evolving subareas of Symbolic Computation can only be men-

tioned as "icons" here:

* Symbolic Computation based computational geometry

* automatic programming

e computational number theory

* computational topology

0 ...

Interfaces:
Symbolic computation software systems provide

" advanced 2D and 3D graphics and animation,

" interface to textprocessing,

" output in FORTRAN, C etc. syntax (symbolic computation as preprocessing!)

Programming facilities:
Symbolic computation software systems provide

* functional and procedural programming,

" "generic" programming,

" "rewrite rules" style programming using pattern matching,

Example: Mathematica, for example, provides a convenient style of programming in
the form of "rewrite rules" that is particularly convenient for mathematicians who are
used present mathematical knowledge in the form of problem reduction rules ("theo-
rems"). For example, an "algorithm" for limes computations could be quickly assembled
by formulating Mathematica rules of the following style: Limes[ a- + bi := Limes[
a] + Limes [ b]. For a given symbolic input expression, Mathematica would check in its
rule base whether an expression matching the pattern a- + b- occurs as a subexpression
and would effect the corresponding transformation.
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3 Examples of Recent Theoretical Results

In this section we give some samples of recent theoretical research results in the area of
symbolic computation. These results are taken from papers that appeared or will appear
in one of the special issues of the Journal of Symbolic Computation. A complete list of
all special issues of this journal that appeared in the last five years and will appear in the
next two years is contained in Section 4.8.

These samples of theoretical results should give a flavor of the breadth of ongoing
foundational research in symbolic computation and should also demonstrate the depth
of mathematics necessary to come up with algorithmic solutions to symbolic computa-
tion problems. Each of these results also gives rise to many important and challenging
open problems that could attract the attention of mathematicians who are interested in
embarking on new directions off the beaten track.

3.1 Proofs of Combinatorial Identies

In (Zeilberger, Takayama 1992) a new approach to the automated proof of combinatorial
identities and the determination of definite integrals and sums is developed. It is based
on the notion of "holonomic functions". Roughly, a holonomic function is a function f
for which an ideal A in the Weyl algebra of differential operators exists such that Af = 0
(and A satisfies some other properties). The class of holonomic functions is huge and
includes most of the practically interesting functions like polynomials, rational functions,
algebraic functions, trigonometric functions, exponential and logarithm, hypergeometric
functions, binomial coefficients, Bessel functions, Legendre functions etc.

It is shown how, for an A for f(x,t) an annihilating B for g = f-'-2f(x,t)dt can be
constructed. Hence, the integral g can be obtained as a solution to the equation Bg = 0,

An essential subalgorithm in the construction of B for the elimination of variables and
other purposes is a generalized version of the Gr6bner bases algorithm (Buchberger 1985).

3.2 Automatic Discovery of Geometric Theorems

In (Sturmfels, Whiteley 1991) "Cayley factorization" of expressions in the Cayley algebra
is discussed. The mathematical problem consists in devicing an algorithm that takes
arbitrary expressions in the bracket algebra, for example, an expression of the form

- [abc[ade][bdf][ccf] + [abd][ace][bcf][dtfj (1)

and to generate an equivalent expression in the Cavley algebra, for example. the expression

(ab A de) V (bc A ef) V (cd A fa). (2)

The problem is open for the general case. A solution is given in the above paper for the
multlinear case.

This solution, however, suffices to "automatically generate" a lot, of non-trivial geo
metrical theorems or to automatically prove geometrical conjectures. For example, the
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question of finding a necessary and sufficient condition for 6 points a, b, c, d, e, f in the
plane to lie on a quadric, which is equivalent to the statement that

a1  2~ 3 aja2 aia 3 a2a3

det =0 (3)

f f3 f2f f2 f ff

can be answered by transforming (by the well known "straightening algorithm") condi-
tion ( 3) into the equivalent condition that ( 1) is zero and then, by the new Cayley
factorization algorithm, into the equivalent condition that ( 2) is zero. The latter con-
dition, however, has the immediate geometrical interpretation that the 6 points lie on
a quadric if and only if certain intersection points of connection lines between the lines

lie on one common straight line (Pascal's Theorem). This means that the theorem was
automatically produced.

3.3 Point Location Problems Solved With Cylindrical Alge-
braic Decomposition

In (Chazelle, Sharir 1990) it is shown how a very general class of point location problems
can be solved by using Collins' well known algorithm for producing "cylindrical algebraic
decompositions" of the n-space.

Given n polynomials in m variables, the m-space is naturally partitioned into a finite
set of "cells". Given a point in m-space the point location problem consists in locating
the "cell" in which the point lies. (Collins 1975) showed how the decomposition of the
m-space can effectively be computed by algebraic algorithms. In (Chazelle, Sharir 1990)
it is shown how Collins' decomposition can be used to solve the general point location
problem in O(log n) time after O(n2d) preprocessing operations for building up a suitable
data structure.

3.4 Black Box Algorithms

In (Kaltofen, Trager 1990) a new type of algorithms is introduced: "black box algorithms"
for problems having polynomials as input and output. Their method starts from the ob-
servation that for a polynomial to be "known" it 6uffices to have a method that produces,
for any argument, the corresponding value of the polynomial. It is not actually necessary
that we know the coefficients of the polynomial.

Let us consider, for example, the factorization problem for multivariate polynomials
over the integers. Given a polynomial f (i.e. given some method to compute f(ai . a,)
for arbitrary arguments), the factorization problem is solved if we know a method that, gi-
ven any (Xl,.,,), produces the values h,(x 1 ... x,),...,hn(x..,x,) of the factors

hl,. . . , h, of f. This method may use calls of f for various (a1 , .... a,) as "oracles". In
the paper, such a method is developed for the factorization problem and related problems
and it is shown that polynomial time complexity can be achieved.
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3.5 Polycyclic Quotient Algorithm

In (Sims 1990) an important problem of computational group theory is treated: the
computation of polycylcic quotient groups for a group given by a finite presentation. The
paper starts from an earlier method by Baumslag-Cannonito-Miller that did not fully cover
all the algorithmic subproblems. (Sims 1990) fills the gaps by giving a method how to
completely reveal the structure of two residue class rings that appear in the construction.
This new method is a modification of the Gr6bner basis technique.

3.6 Linear Diophantine Equations and Unification

The problem of unification can be considered to be the most general formulation of the
problem of solving equations in arbitrary first order theories. It is well known that
the unification problem in "AC"-theories (theories involving only equational axioms for
associative-commutative function symbols) can be reduced to the problem of solving sy-
stems of linear diophantine equations over the natural numbers.

Earlier solutions of the linear diophantine equations problems relied on systematic
enumeration. In (Clausen, Fortenbacher 1989) a new method is presented that uses
certain "completion" steps that can be interpreted as "walks" in certain labeled digraphs.
Significant speed-up can be achieved by this new approach.

3.7 Grobner Fans of Ideals

The method of Gr6bner bases has numerous applications in polynomial ideal theory and
related areas (algebraic geometry, geometric modeling). Gr6bner bases depend on an un-
derlying "admissible" ordering of power products. There are infinitely many "admissible"
orderings. In (Mora, Robbiano 1988) it is shown that, for a given polynomial ideal, the
infinitely many admissible orderings fall into finitely many classes. One class corresponds
to exactly one Gr6bner basis. Furthermore, it is possible to compute, for a given poly-
nomial ideal, one "universal" Gr6bner basis, i.e. a set of polynomials that is a Gr6bner
basis for the given ideal under all possible admissible orderings.

3.8 Cluster-Based Cylindrical Algebraic Decomposition

As explained above, Collins' algorithm constructs, for n polynomials in ni variables, a
decomposition of the n-space into "sign-invariant cells", The computation proceeds by,
first, reducing the problem for the n-space to the problem for the (n - 1)-space and then
showing how to construct a solution for the n-space from a solution for the (i - 1)-space.
The latter construction proceeds by building a "'stack" of n-cells over each (n - 1)-cell.

In (Arnon 1988) it is shown how the cells of the (n - 1)-space can be automatically
clustered into bigger sign-invariant blocks. In Collins' algorithm it then suffices to erect
stacks over these bigger, and fewer, blocks. By recursion, this may save enormous time
in the construction of the n-space decomposition.
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4 A Guide to the Literature and Software Systems

4.1 References to Papers Cited in the Text

(Arney et al. 1990) David C. Arney, Jeffrey Misner,
Derive as a Research Tool, this conference.

(Arnon 1988) D.S. Arnon,
A Cluster-Based Cylindrical Algebraic Decomposition Algorithm, Journal of Symbolic
Computation 5/1-2, February/April 1988.

(Buchberger 1985) Bruno Buchberger,
Grdbner Bases: An Algorithmic Method in Polynomial Ideal Theory, Chapter 6, pp. 184-
232 in: N.K. Bose: Multidimensional Systems Theory, D. Reidel Publishing Company.

(Buchberger 1987) Bruno Buchberger,

Proceedings Workshop on Scientific Software, IMA, Minneapolis, USA, March 23-26, 1987,
pp.5 9 -88, IMA Volums in Mathematics and its Applications, Volume 14, Springer.

(Chazelle, Sharir 1990) B. Chazelle, M.Sharir,
An Algorithm for Generalized Point Location and its Applications. Journal of Symbolic
Computation 10/3-4, September 1990.

(Clausen, Fortenbacher 1989) M. Clausen, A. Fortenbacher,
Efficient Solutions of Linear Diophantine Equations, Journal of Symbolic Computation
8/1-2, July/August 1989.

(Collins 1975) G.E. Collins,
Quantifier Elimination for Real Closed Fields by Cylindric Algebraic Decomposition, Pro-
ceedings 2nd G1 Conference on Automata Theory and Formal Languages, Springer Verlag.

LNCS 33, Berlin, 1975, pp. 515-532.

(Fateman 1981) Richard J. Fateman,
Symbolic and Algebraic Computer Programming Systems, ACM SIGSAM Bulletin. Vo-
lume 15, Number 1, 2/81, pp.2 1-3 2 .

(Kaltofen, Trager 1990) E. Kaltofen, B. Trager,
Computing with Polynomials Given by Black Boxes for their Evaluations: Greatest ('om-
mon Divisors, Factorization, Seperation of Numerators and Denominators, Journal of
Symbolic Computation 9/3, March 1990.

(Kutzler 1989) Bernhard Kutzler
Algebraic Approaches to Automated Geometry Theorem Proving, PhD Thesis, RISC-

Institute, University of Linz, Austria, November 1988.
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(Mora, Robbiano 1988) T. Mora, L. Robbiano,
The Grnbner Fan of an Ideal, Journal of Symbolic Computation 6/2-3, October/December
1988.

(Sims 1990) C. Sims,
Implementing the Baumschlag-Cannonito-Miller Polycyclic Quotient Algorithm, Journal
of Symbolic Computation 9/5-6, May/June 1990.

(Sturmfels, Whiteley 1991) B. Sturmfels, W. Whiteley,
On the Synthetic Factorization of Projectively Invariant Polynomials, Journal of Symbolic
Computation 12/4-5, October 1991.

(Wang 1990) Paul S. Wang,
Advances in integrating Symbolic, Numeric and Graphics Computing, this conference.

(Zeilberger, Takayama 1992) D. Zeilberger, N. Takayama
Computerized Proofs of Combinatorial and Special Function Identities, Journal of Sym-
bolic Computation 13/5-6, June 1992.

4.2 Symbolic Computation Software Systems

Some of the more important symbolic computation software systems are listed here in
alphabetic order with some characterizing information in the order

* developed since which year

" address for ordering the system

" available on which machines

* some characteristic features.

CAYLEY V4

" since the early 197 0's, steadily expanded and improved

* Prof. John Cannon
Department of Pure Mathematics
University of Sidney
Sidney NSW 2006

" Workstations of Apollo, DEC, IBM, SUN.

IBM machines running VM/CMS and VAX machines running VMS.
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* Cayley V4 is a system designed for solving problems in algebra, number theory
and algebraic combinatorics, with strong emphasis on structural questions. A user
language based on the concepts of set, mapping and algebraic structure provides a
natural notation for algorithms in this area.

DERIVE

* 1990 (Version 1.62)

* Soft Warehouse, Inc.
3615 Harding Avenue, Suite 505
Honolulu, HI 96816
Phone: (808) 734-5801

* IBM PC compatible machines under MS-DOS: approximately 200 $.

* The computer algebra system Derive is designed for use on microcomputers. A very
compact system. A menu-driven interface makes Derive easy and natural to use.
Derive has great potential as a teaching aid.

MACSYMA

* 1988 (Version 412.6)

* Computer Aided Mathematics Group
Symbolics Inc.
New England Executive Park East
Burlington, MA 01803
Phone: (617) 221-1250
Fax: (617) 221-1099

* 386-based XIS-DOS systems.
Workstations of Apollo, DEC, Symbolics, SUN.

* Macsyma is a general system for numerical, symbolic and graphical computation.
It offers over 1300 documented commands for solving a wide range of mathematical
problems.
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MAPLE

* 1989 (Version 4.3)

* Waterloo Maple Software
160 Columbia Street West
Waterloo, Ontario, Canada
N2L 3L3
Phone: (519) 747-2373
Fax: (519) 747-5284

* 386-based: approximately 680 $. Atari ST, Apple MaclI, MacSE, MacPlus: appro-
ximately 380.00 $.
Workstations of Apollo, DEC, HP, IBM, MIPS, Silicon Graphics, SUN and many
others: approximately 2400 $.

* Maple is a powerful and user-friendly system for numerical, symbolic and graphical
computation that incorporates a high-level programming language. It delivers a
large library of about 2000 mathematical functions. Maple requires remarkably
little memory and is therefore an ideal multi-user system.

MATHEMATICA

* 1989 (Version 1.2)

* Wolfram Research, Inc.
P.O. Box 6059
Champaign, Illinois 61821
Phone: 217-398-0700
Fax: 217-398-0747

* 386-based MS-DOS systems: approx. 695 8.
Apple MaclI, MacSE, NlacPlus: approx.495 $.
Workstations of Apollo, DEC, HP, IBM, MIPS, Silicon Graphics, SUN and many
others: approx. 2,250 $.

* Mathematica is a general system for numerical, symbolic and graphical computation.
The system produces excellent 2D and 3D PostScript graphics and incorporates a
modern high-level programming language with pattern-match and rewriting style
programming. On the Macintosh, Mathematica has a sophisticated user interface
which supports interactive textbooks.
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REDUCE

o 1988 (Version 3.3)

o Dr. A.C. Hearn
The RAND Corporation
P.O. Box 2138
Santa Monica, CA 90406-2138

* Reduce has been implemented on many different computers ranging in power from
the IBM PC to the Cray X-MP.

o Reduce is a general-purpose computer algebra system designed for physicists, ma-
thematicians and engineers. Since, at present, Reduce is the most widely-used
computer algebra system in a number of countries many application packages are
available. Users with access to any of the major research computer networks can
obtain newly released packages and other material from a digital library.

SAC-2

" Since the early 1970'2, continuously expanding and improving.

" Prof. George Collins
Computer Science Department
Ohio State University

Columbus, Ohio

" Available on all machines having a FORTRAN or C compiler.

" SAC-2 is a collection of carefully designed algebraic algorithms mainly for algo-
rithms on polynomials including Collins' decision algorithm for the logical theory of
real closed fields. The algorithms are the basis for many implementations in other
systems. ALDES, the programming language of the system, is compiled into FORT-
RAN or C and, thus, makes the system widely available and fast. All algorithms
are availabe in source code and are scientifically documented.

SCRATCHPAD

o Prototyp

o Richard D. Jenks
Computer Algebra Group
IBM Research Division
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T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

" IBM mainframes under VM/CMS.
RT/PC and PS/2 under AIX.

* Scratchpad is a general computer tool for mathematics. Its design is based upon
abstract datatypes which are organised into programmable algebraic hierarchies.
Scratchpad's modular library has over 200 datatypes. In addition, there is a growing
library of algebraic functions. Scratchpad has an interactive language for easy access
to library facilities and simple programming tasks.

4.3 Text Books and Survey Books on Computer Algebra

Akritas, A.G. (1989).
Elements of Computer Algebra with Applications.
John Wiley and Sons.

Buchberger, B. (ed.) (1985).
Computer Algebra.
Proceedings of EUROCAL 85, Vol. 1 (Invited Lectures). Springer LNCS 203.
(A collection of survey lectures on some main topics in computer algebra.)

Buchberger, B., Collins, (.E., Loos, R. (Eds.) (1982).
Computer Algebra: Symbolic and Algebraic Computation.
Springer Verlag, Wien - New York.
(This is not really a text book but a collection of survey articles on the main subareas
of computer algebra. Some of the articles, in addition, contain details of theorems and
algorithms not available in other text books.)

Davenport, J.H., Siret, Y., Tournier, E. (1988).
Computer Algebra: Systems and Algorithms for Algebraic Computation.
Academic Press, London.
(The first real text book on computer algebra. For some of the subjects treated, no proof
details are given. Instead, references to the original literature are provided.)

Della Dora, .1., Fitch, J. (1989).
Computer Algebra and Parallelism.
Academic Press.

Knuth, D.E. (1981).
The Art of Computer Programming. Vol. 2: Semznumerical Algorithms.
Addison-Wesley, Reading.
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(The algorithms, together with their mathematical foundation, for arithmetic in the most
important algebraic domains are given in this book.)

JanBen, R. (1988).
Trends in Computer Algebra..
Springer.
(A collection of survey lectures at an international sympolsium in Bad Neuenahr, May
1987.)

Lipson, J.D. (1981).
Elements of Algebra and Algebraic Computing.
(This text book is a systematic introduction to basic areas of algebra together with algo-
rithms for the algebraic problems discussed. However, it covers only a part of what today
is computer algebra.)

Mignotte, M. (1989).
Mathematiques pour le calcul formel.
Presses Universitaires de France.

4.4 Survey Articles on Computer Algebra:

Buchberger, B., Kutzler, B. (1986).
Computer-Algebra ffir den Ingenieur.
In: Rechner-Orientierte Verfahren (Buchberger et al. eds.). Teubner, Stuttgart,
pp.11-64.

Caviness, B.F. (1985).
Computer Algebra: Past and Future.
J of Symbolic Computation 2/3, 217-236.

Kaltofen, E. (1987 ).
Computer Algebra Algorithms.
In: Annual Review of Computer Science Vol.2, 91-118 (J.F. Traub ed.), Annual Review
Inc., Palo Alto, California.

Yun, D.Y.Y., Stoutemyer. R.D. (1980).
Symbolic Mathematical Computation.
In: Encyclopedia of Computer Science and Technology ( J. Belzer et al. eds.), Vol. 15,
235-310, M. Dekker, New York - Basel.
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4.5 Books on Subareas of Computer Algebra:

Davenport, J.H. (1981).
On the Integration of Algebraic Functions.
Springer LNCS 102.
(Published version of a Ph.D. thesis.)

Atkinson, M.D. (ed.) (1984).
Computational Group Theory.
Academic Press, London.
(Proceedings of the 1983 LMS Symposium in Durham. There is no text book on com-
putational group theory. These proceedings may serve as a possible starting point for
obtaining an overview on the subject.)

Stauffer, D., Hehi, F.W., Winkelmann, V., Zabolitzky, J.G. (1988).
Computer Simulation and Computer Algebra.
Springer.

Toirnier, E. (1989).
Computer Algebra and Differential Equations.
Academic Press.

4.6 Books on Applications of Computer Algebra:

Caviness, B.F., Gilbert, R.P., Shtokhamer, R. (19??).
An Introduction to Applied Symbolic Computation Using MACSYM.4.
(In preparation).

Howard, J.C. (1979).
Practical Applications of Symbolic Computation.
IPC Science and Technology Press, Guildford, England.
(Some application examples, using FORMAC, are given in much detail. Somewhat out
of date.)

lKlimov, D.M., Rudenko, V.M. (1989).
Computer Algebra I1ethods for 1cchanics Problems.
Nloskva.

Pavelle, R. (Ed.) (1985).
Applications of Computer Algebra.
Kluwer Academic Publisher, Boston - Dordrecht - Lancaster.
(A collection of application papers using MACSYMA).

814



Rand, R.H. (1984).
Computer Algebra in Applied Mathematics: An Introduction to MACSYMA.
Pitman Publishing Inc., Marshfield MA.
(Examples of using MACSYMA. Not so much a primer of MACSYMA.)

Rand, R.H., Armbruster, D. (1987).
Perturbation Methods, Bifurcation Theory and Computer Algebra.
Springer.
(Application of computer algebra in a special area.)

4.7 Books on Specific Computer Algebra Systems:

Rayna, G. (1987).
REDUCE: Software for Algebraic Computation. Springer, New York.
(Introduction to REDUCE with case studies.)

Symbolics Inc. (1987).
MACSYMA User's Guide.
(A primer for getting acquainted with MACSYMA.)

Wooff, C., Hodgkinson, D. (1987).
muMATH: A Microcomputer Algebra System.
Academic Press, London.
(A tutorial on muMATH.)

4.8 Journals on Computer Algebra:

[JSC] Journal of Symbolic Computation (B. Buchberger et al. eds.).
Academic Press london, 1985-
(The first refereed journal on computer algebra and all other areas of symbolic compu-
tation. In addition to the regular issues it frequently publishes special issues on certain
subareas of computer algcbra. For example,

" Vol. 3/1-2 (Feb 1987). Rewriting Techniques and Applications. (J.P. Jouannoud
ed.)

" Vol. 4/1 (August 1987). Algorithmic Methods in .Algebra and Number Theory. (M.
Pohst ed.)

" Vol. 5/1-2 (April 1988). Algorithms in Real Algebraic Geometry. (D. Arnon and B.
Buchberger eds.)

* Vol. 6/2-3 (Oct 1988). Computational Aspects of Commutative Algebra. (L. Rob-
biano ed.)
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" Vol. 7/3-4 (March - April 1989). Unification: Part 1. (C. Kirchner ed.)

" Vol. 8/1-2 (July - Aug. 1989). Unification: Part 2. (C. Kirchner ed.)

" Vol. 9/3 (March 1990). Complexity of Algebraic Algorithms. (E. Kaltofen ed.)

" Vol. 9/5-6 (May - June 1990). Computational Group Theory. (J. Cannon ed.)

* Vol. 10/3-4 (Sept. - Oct. 1990). Computational Geometry. (E. Welzl and R. Seidel
eds.)

" Vol. 11/1-2 (Jan. Feb. 1991). Rewriting Techniques for Theorem Proving. (J.
Hsiang and L. Bachmair eds.)

* Vol. 12/4-5 (Oct. - Nov. 1991). Invariant Theoretic Algorithms in Geometry. (B.
Sturmfels and N. White eds.)

" Vol. ? (June - July 1992). Symbolic Algorithms for Combinatoric Identities. (P.

Paule and D. Zeilberger eds.))

Journal of Applicable Algebra and Error Correcting Codes.
Springer, New York-Heidelberg, 1990- .
(A recent journal emphasizing the application of Computer Algebra to coding theory and
related subjects.)

Journal of Automated Reasoning.

Reidel Publishing Company, 1985-
(This journal specializes in Symbolic Comutation algorithms in the area of automated
theorem proving.)

ACAM SIGSA A Bulletin.
Distributed by the ACM Special Interest Group on Symbolic and Algebraic Manipulation.
(This is a non-refereed informal bulletin for the fast dissemination of papers, implemen-
tation notes, announcements, bibliographies etc. in the area of computer algebra.)

Acknowledgement: This paper was written in the frame of the project "*Gr6bner

Bases" sponsored by the "Osterreichisches Ministerium fdr Wissenschaft und Forschung".
I am grateful to my i;ludent W. Windsteiger who helped in the production of the manus-
cript.
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Phase Transitions and Maximally Dissipative Dynamic Solutions
in the Riessna Problem for Iupact*

Thomas J. Pence**

Dept. of Metallurgy, Mechanics and Materials Science
Michigan State University
East Lansing, MI 48824-1226

Introduction

Nonlinearly elastic materials whose strain energy density is a nonconvex
function of strain can undergo phase transitions in which displacement
gradients are discontinuous across internal surfaces. In a dynamic setting,
this gives rise to both conventional shock waves and travelling phase
boundaries. Physically such phase boundaries separate states which involve
different microstructure, even though they are the same compositionally.
These type of phase transitions can be induced by the mechanical impact of
solid bodies [l]-[4] or even by the shock due to an intense laser pulse [5].

The one-dimensional theory of fully dynamical isothermal phase transitions has
been utilized in the investigation of phase boundary propagation [6]-(8]. In
this setting the material response mirrors the anomalous pressure-volume
relation of a van der Waals fluid and corresponding mathematical issues arise
(9]-[16]. In particular, it is often the case that the equations of
mechanical motion are not sufficient to ensure a unique solution to various
boundary value problems. A number of criteria for selecting physically
admissible solutions have been proposed [9]-[16] and many of their solid
mechanical analogues are discussed in [6].

We consider an impact problem for the case where one material (that of the
target) admits the possibility of phase transitions and the other material
(that of the impactor) does not. The goal is to determine the nature of the
wave packet that is generatid upon impact at the interface of contact for
various values of impact velocity ;. Attention is restricted to longitudinal
compressive waves; interactions with additional surfaces of the target or
impactor are not considered. As this study is motivated by considerations of

high velocity impact, the impact velocity v may be large. Thus a mathematical
treatment can not utilize techniques based on small initial data, as for
example utilized in [12] in the parallel setting of a van der Weals fluid.

The purpose of this communication is to outline a method for treating this
problem. This treatment relies on a mapping from candidate solutions for both

impactor and target to a plane (the (o ,v )-plane) of contact interface

stress a vs. contact interface velocity v . For certain values of impact

velocity v we find that the problem under consideration yields a unique
solution on the basis of the equations of motion alone. However for values of

impact velocity 4 within a finite interval (vlv 2) we find that uniqueness

does not hold. In this case we seek solutions that are maximally dissipative.
The maximum dissipation criterion was proposed by Dafermos [16] for resolving
uniqueness, although in [16] it is called the entropy rate admissibility
criterion. Here we find that this criterion delivers uniqueness for a certain

proper subinterval of (v1,1v2). In addition we find that this uniqueness will

*Supported by the U.S. Army Research Office under DAAL03-89-G-0089.
**The author of this paper presented it at the Seventh Ary Conference
on Applied Mathematics and Computing. 817
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extend to the whole interval, and hence all impact velocities ' > 0, if
certain additional constitutive restrictions are assumed of the two-phase
material.

The purpose of this communication is not to give an exhaustive treatment of
these results. Instead, a number of theorems are presented, many without
proof, which summarize the basic methodology used in arriving at these
conclusions. Some of the proofs rely on fairly elaborate algebraic
calculations, which have been performed with the aid of MACSYMA. A complete
exposition is given in (17].

Prelim-inries

We consider the impact between an initially stationary target (occupying
x > 0), and a moving impactor (which occupies x < 0 at the instant of contact
t - 0). Since impact will give rise to compressive stress it will be
convenient to define compressive strain 7 and compressive stress a as
positive. The constitutive response is given by

[ (7), in x < 0,
TO7). in x > 0, I

where r(), 7(7) are nonlinear elastic (compressive) stress response functions
for the impactor and target respectively. By definition, the compressive
strain I is confined to the interval 0 : 7 < I and diverges as 7 - 1. For the
purpose of the pilot problem presented here it will be convenient to assume
that 7 can take on all values obeying 7 2 0 and that r(7) and r(7) are defined
for all 7 z 0. The modifications to the argument to be given here appropriate
for the case 0 < 7 < I can be found in (171.

In a Lagrangian frame, the one dimensional propagation of longitudinal
compression waves in an isothermal setting are described by the equations:

t + vX - 0, v t+ CO() 7x  0, in x < 0,

(2)
7t + vx - 0, vt + T'(0) Yx - 0, in x > 0,

and discontinuity conditions

; 1171] - lvi] - 0, [lvi] - [0] - 0, in x < 0,

[jvI] - 0, - 7 on x - 0, (3)

S il] - [ivii - 0, hIvI - (I] - 0. in x > 0,

where s represents the time derivative of a generic discontinuity curve
x - s(t), and (I 11 denotes the jump in the enclosed quantity across x - s(t).

Let vr denote the initial velocity of the impactor. Both impactor and target
are assumed to be intially stress free. In view of the absence of length and
time scales in the problem formulation, we introduce the similarity variable
A - x/t and assume that

v(x,t) - v (A), 7(x,t) - A.(4)

The initial conditions then give
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V-®) . , 0( ) .

(5)

- , 7(-) - 0.

In view of (4) the equations of motion (2) now become ordinary differential
equations, while the discontinuity conditions (3) become a set of algebraic
restrictions, across any rays of discontinuity A - Ai.

As is well known, the motion of a discontinuity interface will in general give
rise to a change in the total mechanical energy of the dynamical fields. The
rate of mechanical energy change is given as -Z di where the summation is

over the total number of discontinuity interfaces and di is the dissipation

rate of the i-th discontinuity interface. Consider the i-th discontinuity
interface and let 7- and 7+ obeying 0 : 7- 7+ be the strains adjacent

to this interface. Then

di - D(y-,7+), (6)

where D:[0,-)X[0,)-(-a,) is the dissipation function. If the interface in
question occurs in the target, i.e. x > 0, then this dissipation function D is
given by

D(yz) - JS(y,z)I A(y,z), (7)

where

S(y,z)- (r(z)-r(y))/(z-y)

(8)

A(y,z) - (r(z)-r(y))*(z-y)/2 - r(q) dq.

The function S gives the velocity of the discontinuity interface. If the
interface in question occurs in the impactor, i.e. x < 0, then (7),(8)
continue to hold with r replaced by r. If the interface in quesiton is the
interface of contact x - 0, then D - 0 since this interface is stationary in a
Lagrangian frame.

A pair of piecewise smooth functions (:L(A), iL(A)) defined on A S 0 which

satisfy (2)1. (3)1, (4) and in addition obey (5)1 will be called a candidate

dynamical state for the impacror. A pair of piecewise smooth functions

IVR(A) IR(A)) defined on A 2 0 which satisfy (2)2(3)3' (4) and in 
addition

obey (5) will be called a candidate dynamical state for the target. For each

candidate dynamical state for the impactor, denote the values of strain,

velocity and stress on the interface of contact by 7L, vL and [ , that is

7-L iL(0) v* - ;(0) * ( (9)

For each candidate dynamical state in the target denote the corresponding
contact interface strain, velocity and stress values by

7R R ' (0) vR = VR(O) ( (10)
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A pair of candidate dynamical states. {vL(.N), iL(A))' ( R(A), R(A))} . will

be said to be a dynamical state solution for the impact problem if

vRvL- v, -t-a, (1)

where we have defined common interface values v and a for the velocity and
stress. Condition (11) follows from (3)2 ' A dynamical stat2 solution gives

rise to a pair of functions ((A). i(A)) defined on -- < A < - that satisfy

all the conditions to be a solution to the impact problem.

It shall henceforth be assumed that the target admits the possibility of phase
transitions in compression and that the impactor does not. In particular, the
response function C(7) for the single phase impactor material is assumed to
obey:

HIl) C(O) - 0, and (7) > 0, '(7) > 0, C"(7) < 0 for 7 > 0.

The response function r(7) for the two phase target material is assumed to
obey

HT1) r(O) - 0, and r(7) > 0 for 7 > 0.

In addition it is assumed that there exist two distinguished values of
compressive strain 7M and 7m obeying 0 < 7M < 7m  such that

T'(7 M ) - T'(Tm) - 0, and

HT2) r'(Y) > 0, T"(7) < 0, for 0 < 7 < 7M ,

HT3) r'(Y) < 0, for 7M < 7 < Tm

HT4) T'(7) > 0, r"(7) 2 0, for 7 > 7m .

HT5) lim r'(7) > T'(0).

The strain regions (0,7M) and (7mc) will respectively be called the

low-strain or I-phase and the high-strain or II-phase. The interval (TMTm)

will be called the unstable phase by virtue of the well known instability
properties connected with such an interval in either an equilibrium or a
dynamic setting.

We shall restrict attention to candidate dynamical states and hence dynamical
state solutions which obey two admissibility conditions, both of which involve
additional requirements on discontinuity interfaces. The first admissibility
condition that we require of all discontinuity interfaces is:

Al) D(7-,7+) L 0,

corresponding to the idea that no discontinuity interface should ever be a
source of mechanical energy. The second admissibility condition that we
require pertains only to phase boundaries. It is required that all phase
boundaries connect phase-I to phase-II. This has the physical consequence of
precluding the existence of dynamical states that involve constant strain and
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velocity regions with strains corresponding to the unstable phase. We write
this condition thus:

A2) For phase boundaries, 0 s 7- s 7., and -+ Z -M.

Admissible Candidate Dynamical States for the Iinpactor and the associated
Locus of Contact Values

It can be shown that (Al) forbids discontinuity interfaces in admissible
candidate dynamical states for the impactor. Consequently all such dynamical
states in the (x,t)-quarter plane (x<O, t>O) consist of a continuous
compression wave bounded on each side by a constant strain and velocity*

region. Moreover it is found that the value 7L completely parametrizes all of

these admissible candidate dynamical states in the impactor. The values of*

and vL for this parametrization are given by

* - (L), vL - - f0 WW)d. (12)

Let r denote the locus of (admissible) contact values for the impactor

generated by (12) in a (a ,v )-plane. The following result is immediate from
(12) and (HIl):

Theorem 1: r1 is a connected semi-infinite curve which is concave down and

monotonically decreasing from the initial data point (a ,v ) - (0,v).

Changing the value of v merely translates rI vertically. There is a

one-to-one correspondence between points on this locus and admissible
candidate dynamical states for the impactor.

Ad-issible Candidate Dynamical States for the Target and the associated Locus
of Contact Values

It can be shown that the only candidate dynamical states for the target tnat
obey (Al), (A2) fall into one of two possible families. The first family, the
i-family, involves dynamical states in the (x,t)-quarter plane (x>0, t>0) that
consist of a continuous compression wave bounded on each side by a constant
strain and velocity region, all of which are in the I-phase. This one
parameter family can be parametrized by 7 on the interval [0,7 ] . Let r

R 0'M' 2,1

denote the locus of admissible contact value pairs (r ,vR) generated by the

i-family in the (a* ,v )-plane. The main features of the locus r2j are
summarized in the following theorem.
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Theorem 2: r2,i is a connected curve of finite length that passes through the

initial data point (a*,v*) - (0,0) and which subsequently is monotonically

increasing. Moreover this locus is concave up in the (a ,v )-plane. There is
a one-to-one correspondence between points on r 2J and the i-family of
admissible candidate dynamical states for the target.

The second family, the ii-family, gives rise to dynamical states in the
(x,t)-quarter plane (x>O, t>O) that involve at most five distinct sectors: Si
- a constant strain and velocity region in the I-phase, S2 - a continuous
compression wave in the I-phase, S3 - a constant strain and velocity region in
the I-phase, S4 - a phase boundary separating the I and II-phases, and S5 - a
constant strain and velocity region in the II-phase. The sectors Si and S4
are present in all members of this family, whereas sectors S2, S3 and S5 may
or may not be present. The absence of S5 indicates that the phase boundary is
on the interface of contact x - 0 and hence stationary.

For this family 7 is also the value of the strain adjacent to the phase

boundary in the II-phase. Let 7s denote the value of the strain adjacent to

the phase boundary in the I-phase. It can then be shown that pairs (7sT)

parametrize the ii-family of admissible candidate dynamical states for the
target.

In order to characterize this parametrization we introduce the distinguished
strain values 7q, ' a , 7b , 70 , 7f as follows (see also Figure 1). The value 7q

is given as the unique solution of

r(q) - T(M), -q >-Y m  (13)

Let ya' 7b denote the well known phase-I and phase-II values of Maxwell

strain. That is 7 a' 7b are the unique roots of

T(7 a ) - r(7b), D(-a' 7b )  , 0 < 7Y a < YM < 7fm < 7Yb (14)

Let 7f denote the solution of

r'(O) if - r(f), if > 7m-. (15)

The existence and uniqueness of if is ensured by (HTS). Finally let 70 denote

the unique solution of

D (0,-o) - 0, 10 > m" (16)

It is easily seen that

Yb< 7q < 7f, 7b< 70 < 7f. (17)
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Figure 1: The stress
response function r(7)
for the multi-phase
target material
and the associated
distinguished strain
values.

Ir, 1 r, re?

We shall let T denote the domain of the ordered pairs (-, R) for the

parametrization of the ii-family. It can then be shown that
*,* * S *

T - ,(75. *)I 7R1- Y ,  (7*),A (7)] , (18)

where the functions jsI s are each C : [Ym,w)-[0,7H ] (see also Figure 2).sm

The function s is uniquely determined via:

r( sO)) - r(), for -m -< 7 - 7 q,

'(ts (7)) ( - 's ()) - (y) - r(OS(0)), for 7q : 7 : 7f, (19)

A (Y) - 0, for -y f.

The function ps is uniquely determined via:

rO (-Y)) - r( ), for -m  : 7 : 7b '

D(j s (), Y) - 0, for 7b : 7 5 7o, (20)

As (7) - 0, for 7 70 •

Let r2,ii denote the locus of (admissible) contact value pairs (r ,vR)

generated by ii-family in the (a ,v* ).plane . Then the mapping from T to

2, which takes (7 R) - (r *VR) will be denoted by F - (F ,F2). It is
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given by
F* F(7*) -r7)

(21)

VR - F2 ( 5sTR) J (r'(z)) dz + {r(7R) - r(7s) )  
7

R -fs)

r0

lb 1 IFigure 2: The locus T.

r so The functions 14 (v)a and I s (7) defined in

rM (19) & (20) can each.--- "r be constructed
6, graphically with the

aid of the stress
rresponse function r(7).

pt

'Y?~~ I I'Mr+r

The locus r2,ii will consist of curves for m M 7R 7b and yR Yf. These

curves will be denoted by rC respectively. For -y < 7Y < 7f, the
uriian 2,ii

locus r2 ,ii will consist of a region which will be denoted by 0i The

boundary of this region is given by curves Vs and Vs where

Vs- (( VR)I (r*, v.) - F(ls(7R),7R). TRG (Tfb'7f
(22)

p -((r v
S ( R) (, vR- F( 7R),R Re (b7f)

It will also be convenient to define the following distinguished points in the
(a ,v )-plane:

P F(A(7m) 'M)' P2 " F((yb)'7b)' P3 - F(pS(T q )'fq
(23)

P4 4 F(A (so) o)0 P5 - F((Tf),Tyf)

Salient properties of r2,ii in the (a ,v )-plane are given in the following

theorem.
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Theorem 3: r2,ii is a connected locus consisting of the union of the finite

curve ,i the bounded region 2i and the semi-infinite curve 
C

2,11 2ji2,11-

The former curve is monotonically increasing from P1 to P2. The latter curve

is concave up and monotonically increasing from P5 to (m,0). The boundary of

]2,i is given by v U . Each of the curves and s originate at P and

terminate at P Between these points both vs and p
s are monotonically

5 * *

increasing with vs strictly above V in the (a ,v )-plane. There is a

one-to-one correspondence between points on the locus r2,i and admissible

candidate dynamical states for the target from the ui-family.

We note that this theorem ensures that that F possesses a unique inverse on

r which we shall subsequently denote as F "  It is found that
2ii

r n r - U .s The candidate dynamical states of r2,i 2,ii

corresponding to this intersection involve a phase boundary which is
stationary, i.e. confined to the interface of contact, and thus dissipation
free. Other than this stationary phase boundary, these dynamical states are
identical to the corresponding candidate dynamical state of r2, i. In what

follows these corresponding candidate dynamical states will be regarded as
identical. Thus, with this view, there is a one-co-one correspondence between
(admissible) candidate dynamical states in the target and points in the locus
r2 '

Admissible Dynamical State Solutions of the Riemann Problem for Impact

From the immediately preceding remark, Theorem 1 and (11), it follows that
there is a one-to-one mapping from admissible dynamical state solutions for
the impact problem to the set 1 n r2 R(). The notation H(v) acknowledges

the dependence of this set on the impact velocity v, which in this treatment
enters through r1 (viz Theorem 1). We now turn to examine this dependence in

more detail. Suppose that P is an arbitrary point in the first quadrant of

the (a ,v )-plane. Theorem I then ensures that there is exactly one value of

v such that P E r1. Let 8 denote this mapping, i.e. v - O(P). We shall use

this mapping to define two distinguished values of impact velocity V, and v2:

v1- e(P 2 ), V2 " e(P5). (24)

The significance of these two values for the solution to the impact problem is
given in the following theorem.
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Theorem 4: The set I(,3) consists of a single point for ;z e (Ov 1 ] I ,.

However for ; E (Vv 2) the set f(v) consists of a curve coinciding with Fi

within the region 1 " Thus for v e (0,Vl u [v2,ac) there exists a unique

admissible dynamical state solution for the impact problem, but for

C (vlv 2) there exists a one-parameter family of admissible dynamical state

solutions for the impact problem.
X

ssThe endpoints of H(v) will be denoted by P (~V) - 11(v) n 4 and P ()1(v) n

. Theorem 1 ensures that H(v) is monontonically decreasing and concave down

between these two points (see Figure 3).

V3 "-- Figure 3: The locus of
contact values for the

in C7-, target F 2 showing

intersections with the

locus of contact values
P"s for the impactor

1 r F(v) for various

'Co-) ") F3  impact velocities v.

Maximally Dissipative Admissible Dynamical State Solutions
Since there is no dissipation associated with the dynamical states rI , the

rate of mechanical energy change for an admissible dynamical state solution is
that associated with the travelling phase boundaries (if any) in the dynamical

state from r2. In particular, for v E (O,v 1 l the unique admissible dynamical

state solution to the impact problem involves conservation of mechanical

energy. Whenever v e Iv2,a), the unique admissible dynamical state solution

to the impact problem involves a finite rate of mechanical energy loss

(dissipation). For v E (v1,v2), each of the admissible dynamical state

solutions in 11(v) will have associated with it a finite value of dissipation.

Let D • [0,-) be defined as D*- DOF* Since 1l(v) C ,ii is closed,

and D is bourapd and continuous on the subdomain ,' the function D will
2, ii

assume a finite maximum at one or more points of U(v). For v E (v1,v2) let
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Q(;) C H(v) denote those points at which D assumes this maximum value. In

addition we shall extend the definition of Q(v) to v e (Oo) vin Q(v)-H(v)

whenever v E (O,Vl] u [v2,').

Each dynamical state solution corresponding to a point in 0(v) is a

maximally dissipative solution to the impact problem at impact velocity v. It
is thus immediate from this definition and Theorem 4, that there is a unique
maximally dissipative solution to the impact problem for all impact velocities

obeying v E (OV 1] U [v2,-). We now seek to determine under what

circumstances, if any, there will be a unique maximally dissipative dynamical

solution to the impact problem for impact velocities obeying v e (vlev2).

To determine 0Cv), we define loci of constant dissipation on for each2 ei
dissipation value d a 0 via

* * * * * *2

E(d) - (( ,v) (a*,v )r, D*(a*,v*) - d). (25)
2,11'

One then finds that

=(0) - [P 2 ,P 4]
U s [ r 2 , r 3

] .  (26)

The behavior of D on the remaining portion of the boundary of ,ii is given

in

Theorem 5: D (a ,v ) is monotonically increasing from zero to D(0,Tf) on
* * * * *

91i(p4,p5] as P - (a ,v ) proceeds from P4to P5. D (a ,v ) is monotonically

increasing from zero to D(0,7f) on 9S[p3,pg] as P - (a *v proceeds from

P3 to Pg"

The mathematical dificulty in determining S(d) and hence 0(v) for V E (v1,V 2

stems from the fact that F cannot be inverted explicitly. Thus the funciton

D *M DoF- must be investigated by implicit means. Let us introduce notation
for the derivatives of the functions D and F which are defined for

(7Ys,7 R ) E T:

D DF F F F (2)
a- , r a- ,ar7 r *  s S ,r' a 7f 27 S  2 r

R R R

Expressions for these quantities can be found from (7),(8),(21). It thus

follows that
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DrzO0 Fl,- 0 F, 0, F 2  0, (-Y ,-y) e T (28)Dr 0,F~, Flrz 0 F2,s:5 0 F2, r2_  , -.

The four inequalities in (28) can be shown to be strict for

( ,( *) e interior(T). In addition we introduce notation for the derivative

of the function D which we recall is defined for (a ,v*) J* ii

* a **
Dv D - (29)av a 8

Differentiating (7),(8),(21) yields

D 9F-v

r'(-y) (yR-7 s) - - r( )) A(yYR) -(
( s) (' s )  (TR's)) *((7)-'7s  R2

(30)

while the definition of D gives directly

* [
D a F Dv0F) F2 r Dr / F ,r (31)

for ( s R ) E T. Define

- ((a ,v )I ( ,v*) e ,11' Dv(a*,v*) < 0 ,

+ B** * * R(vm (a ,v) (a ,v r_ ,i D (a*,v*) > 0 I

For the purpose of classifying points P E arI,B1 the boundary of rB , the
2,11' 2,11'

function Dv is defined in terms of limiting values. In a similar fashion, by

replacing Dv(a v) with )a(a ,v in (32), we define a , a and V.

- 0 +

We now turn to examine the loci Vv, 9v and 4v. It can be shown that the

equation

A(.s(y),-y) - (r(y) - r(p()) (0 - s(Y)) - 0, (33)

has a unique root obeying 7 e (7q,^f). This root shall be denoted I W. Let

P6 - F(js (y W)w )
- e(P 6 ), (34)

and note that P6 E P (P5) and V1< v3< v The main properties of the
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0 + **
loci , and ,v in the (a ,v )-plane are now summarized in

Theorem 6: V is a finite connected curve with endpoints P and P Between
v 2 6

these points it is montonically increasing and confined to interior(F2i )
+-

Both Vv and v are simply connected regions. The boundary av of v is

0 S. + +given by q U [ U The boundary av of 4p is given by

0 S,VV U V ( s 2 ,P 6] .

Uniqueness of Maximally Dissipative Solutions within the one-parameter family

of Dynamical State Solutions for e (;3 r 2 )

If (' 2 (Vl,2), theorems 1, 4 and 6 indicate that the curve ff(v) will

intersect vv if and only if v G (VlV3], and moreover that this intersection

is then unique. ..ccordingly we define P0 (V) - H(v) n 9v for v r (V1,V3].

Thus for v e (VlV3) the curve 1(v) is contained in v between Ps (v) and

P (v), and is contained in 'v between Po and P5 (v). However for

C (v3,v2) the curve l(v) is confined to v everywhere between Ps (v) and

Ps(V-).

An immediate consequence of (28) and (31) is that

interior(v) C interior(v,), (35)

and

0 0v n va n interior(rB 0. (36)

~ 2,ii

The latter result precludes the possibility of any locus E(d) containing an

isolated point or a limit point within interior(r-,) These results, in

conjunction with Theorem 5, can be shown to yield
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Theorem 7: For 0 < d < D(0,7f), each locus E(d) consists of a finite curve

with one endpoint on s (p and the other endpoint on .sl(3,P5

Moreover

1iB - u E(d) (37)
2,ii

d e (0,D(0,jE)]

It is convenient to define a slope function Y in the (a ,v )-plane as follows.

If % is any curve in the (a v*)-plane and if P E f, then the slope dv ofdo*

the curve f at P will be denoted by v(C,P). In particular if P e "(d) for
some d e (0 ,D(0 ,7f)) then

D*
v(=(d),P) - (38)

D
V

Hence (35) indicates that the curves 2(d) are monotonically increasing in the

region V v . The following theorem can be established:

Theorem 8: Q(V) - Ps(;), for v E Iv3,v2),

(39)

Q(v) C .p+ n interior(4p), for v e (V,V 3).

Theorem 8 indicates that maximally dissipative solutions are unique for

e [v3 ,v2) and that nonuniqueness of maximally dissipative solutions remains

at issue only for v e (VVV3).

On the uniqueness of Kaximally Dissipative Dynamical Solutions for

v r (VV 3 )

In view of theorem 8 it follows that

v(B(d),P) - v(f(;),P), d - D (a ,v ),
(40)

if P - (0* ,v*) e G(v) and v e (V,V3).

Conditions (40) are necessary, but not sufficient, to establish that a

particular point P - (a ,v ) is a maximally dissipative dynamical solution

when v E (vlv 3). For this range of impact velocity, one must in addition

examine the convexity of the curves 2(d) in the (a ,v )-plane. To this end we
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shall define a "curvature" function vv in the obvious way. Namely if e is

any curve in the (a*,v*)-plane and if P e e, then the "curvature" * of*2 o

do

the curve e at P will be denoted by vv(e,P). It can be shown that points P
obeying (40) will be unique if condition (Ql) is satisfied where

Ql) vv(2(d),P) 2 0, d - D*(a v

for all P - (a ,v ) e V n interior(V ).

Thus (Ql) is sufficient to ensure the uniqueness of maximally dissipative

dynamical state solutions to the impact problem for the range v 6 (VV 3),

and hence for the full range of impact velocities v > 0.

Determining conditions that are necessary and sufficient for (Ql) to hold has
remained an elusive goal. Accordingly we shall here introduce two additional
constitutive hypotheses on the stress response for the target material:

HT6) T'(Tb) 2 T'(0),

HT7) r"(7) - 0 for - r (-b ,Ty-

The calculation of Lv(H(d),P) followed by a fairly elaborate analysis can now
be shown to yield

Theorem 9: The additional constitutive hypotheses (HT6) and (HT7) ensure
(Ql). U

Hence the constitutive hypotheses (HIl) for the impactor, and (HTI)-(HT7) for
the target are sufficient to ensure that the impact problem studied here has a

unique maximally dissipative solution for all impact velocities v > 0.
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Introduction

Phase transitions in solids can be modelled in a continuum mechanical
framework through the consideration of nonlinearly elastic materials whose
strain energy density is a nonconvex function of strain. Different regions in
strain space can then be identified with different material phases. For such
materials, displacement gradients can, in certain situations, become
discontinuous across internal surfaces. These surfaces are viewed as phase
boundaries whenever they separate regions involving strains corresponding to
different material phases. In an earlier paper which also appears in these
proceedings [l]t*the Riemann problem for impact has been investigated for a
case of impact between a target composed of a two phase material and an
impactor composed of a single phase materiEl. As is well known, solutions to
Riemann problems involving phase transitio s lead to nonunique solutions even
after imposition of admissibility conditiot.s due to Lax; and the problem under
study here is no exception. A methodology is outlined in [1] for determining
the families of solutions associated with any such Riemann problem; it
involves mapping candidate dynamical states for both impactor and target to a

(a ,v )-plane of contact interface stress vs. contact interface velocity.
Each intersection of the contact locus for the impactor with the contact locus
for the target corresponds to a solution of the impact problem. For the
materials under study in [1], the target locus consists of a region from which
emanate two curves, while the impactor locus consists of only a curve. There
are two features of this methodology that are quite useful: the technique is
global so that assumptions on the size of the data characterizing the Riemann
problem are not necessary, and admissibility criteria for selecting from among
the possibly nonunique solutions can be studied within this context.

The admissiblility criterion adopted in [1], and to be considered here
as well, is the maximum dissipation (rate) criterion; this criterion was first
introduced by Dafermos [21 under the different name of the entropy rate
criterion. By investigating the dissipation topography associated with the
target locus, conditions on the strain energy density of the two phase target
material have been found which ensure that there is exactly one maximally
dissipative solution to the Riemann problem for impact with any single phase

impactor material at any impact velocity ;.

This gives rise to an inverse problem that can be stated roughly as
follows: "Suppose that a target is composed of such a two phase material. It
is desired to determine whether a given candidate dynamical state in the
associated contact locus can be generated under the the maximum dissipation
criterion by judiciously choosing a simple single phase material for the

impactor as well as the impact velocity v." This type of inverse Riemann
problem, which bears directly on the extent to which dynamical states in phase
transforming materials can be controlled, is the focus of this paper. It will
be shown that only a certain subfamily of candidate dynamical states for the

*Supported by the U.S. Army Research Office under DAAL03-89-G-0089.
**See page 817. 833



target (the maximal dynamical states and the semimaximal dynamical states) can
be generated in this fashion. Finally, the extent to which whole families of

dynamical states can be attained as the impact velocity v is varied will be
addressed.

For the sake of expediency, this paper will be regarded as a
continuation of (1]. Consequently, notation and results will be carried over
from (1] without further elaboration. The reader is also urged to consult [11
for a list of associated references. In addition, equations appearing in [1]
shall be refered to directly by the equation number followed by a superscript

#, e.g. (12) # is to be read as (12) in [1].

For ease of reference, we shall define a simple single phase material

to be one for which (7) obeys (HIl) #; we shall also define a simple two phase

material to be one for which T(7) obeys (HTI) -(HT5)*. In [I] it is shown
that if a simple two phase target material gives rise to a contact locus r2

such that (Ql)# holds, then the Riemann problem for impact will have a unique
maximally dissipative solution (modulo solutions with stationary phase
boundary) irregardless of the choice of simple single phase impactor material
and irregardless as well of the impact velocity v. Let us thus also agree to
define an elementary two phase material to be a simple two phase material for

which the associated r2 obeys (Ql) # . A non-elementary simple two phase

material is then, of course, a simple two phase material for which the

associated r2 does not obey (Qi) . As shown in [1), (HT6) and (HT7) are

sufficient conditions to guarentee that a simple two-phase material is in fact
elementary. However, more general results regarding necessary and sufficient
conditions to distinguish between elementary and non-elementary simple two
phase materials have yet to be determined; in fact the existence of non-
elementary simple two phase materials remains an open question.

Definition of the Inverse Riemann Problem

The purpose of the present work is to explore the following Inverse
Riemann Problem (IRP):

Given a simple two phase target material, choose a candidate

dynamical state for the target (i.e. a point Po - (co'v 0 ) e r 2 ) ,

then we seek to determine whether this dynamical state in the
target can be generated as a (maximally dissipative) solution to
the Riemann problem for impact by judicious choice of either

(IRP)
(Cl) simple single phase impactor material ((7),

and/or

(C2) impact velocity v?

For the remainder of this paper unless otherwise noted, the term "generate" is
to be understood in the above sense, namely to "generate using the maximum
dissipation criterion in the event of multiple solutions." If the simple two
phase material is elementary, then the phrase "a (maximally dissipative)
solution" in (IRP) may be replaced by "the (maximally dissipative) solution".
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The set of all points P which can be so generated by judicious choice
of either (Cl) or (C2) will be said to constitute the well-posed set for

(IRP); this set will be denoted e-P. Two questions are now immediate:2

(Ql) Can the set P be determined precisely?
2

(Q2) Given P o r!, what is the totality of choices for (Cl) and (C2) that
o 2 '

succeed in generating P ?

To discuss these issues, imagine for the moment that one is presented with
both a simple two phase target material and a simple single phase impactor

* * *

material. Let 0 be the locus of points generated in the (a ,v )-plane as the

impact velocity v varies from 0 to ®, hence

aQ - Q(v)j u Q()l . u G(V)I . u Q(v)I
v((v (0,vl] ( e (Vlv3) V E [v3,v21 v E ( 2, )

(1)

where vl, v 3 and v2 depend upon both the simple two phase target material and

the simple single phase impactor material (c.f. (24) , (34)*). Then

() - 2 il(OPv E (0,V 1]2

Q - (l C interior(ma + +v)

(2)

12(v)I- - P
v E [v3,v2] [6' 5

0(v)I -rc
- -l 2,ii"

It is to be noted that (2)2 is a slightly stronger result than (39) 2 To

verify (2)2 observe that

( + n .+) - 0 u v - interior( ) u P u interior( ) u P6 (3)
a VV 'a 'v 4a) U2 a) 1P, 6,'3

since (see Figure 1)

0 n0 0 0 (4)
a n 9 v -

8 9a - v- P2 u P6.

Now, by virtue of (38) , the constant dissipation loci E(.) possess horizontal

tangents on interior(p ) and possess vertical tangents on interior( 0). Since
a V

Theorem I of [1] indicates that the slope of rI is restricted to finite

negative values it follows from (40) and the definition of 11(v) that
candidate dynamical states for the target corresponding to points in either
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interior( 0 ) or interior( 0 ) cannot be associated with a maximally dissipativeVsolution for the Riemann problem under study.

It follows from (2) that the three subloci 0(v)I
ve (0,vl]

(v)_ _ , and 0(v)!. are each a connected curve. In the
v E [v3,v2] v E (v2,0)

event that the simple two phase material is elementary, then the construction

utilizing (40) which determines the sublocus Q(v)I ensures that

this sublocus is also a connected curve initiating at P2 and terminiating at

P6' Thus for an elementary two phase material the complete locus 0 is a

connected curve (Figure 1). We shall comment later on the possibilities for

(v1 ,v3) in the event that the simple two phase material is not

elementary.

It is enlightening to consider how the locus 0 changes as one varies
the associated simple single phase impactor material, while retaining the same

simple two phase target material. Then the values of Vl v 3 and v2 will in

general change, whereas the right hand side of (2) remains the same. Thus the

dynamical states associated with the three subloci 0(v)I-

and Q(v)I _ will remain the same, eventhough the
v e [v 3,v21 V E (v2,-)

value of impact velocity corresponding to each individual dynamical state in
the above list of sets would in general be expected to change. In contrast,

for 0(v) I; E (VlV 3) the dynamical states themselves will in general change.

Hence if the simple two phase target material is elementary, then different
simple single phase impactor materials would be expected to give rise to
different curves connecting P2 to P6"

Maximal, Semi-maximal and Non-maximal Dynamical States

In view of the above discussion it is useful to partition r2 into the

following three distinct sets:

2 2, i(OP 2 ] U -Ps [P 6 ' P51 2,ii'

rsem interior( + n V+),  (5)2

,nn _r _pax Ursem
2 2 2 2 •

It then follows immediately from the consideratrnnq given ahnvr that

e..ax c 1
w , 2on wp (6)

2 2' 2 2 . 6
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Moreover each P E P2ax , is generated for every simple single phase impactor
material provided that the impact velocity for a given simple single phase

impactor material is chosen to be v - @(P ) (c.f. (24) ). For this reason,

points P E p2ax will be said to be maximal dynamical states in the sense that2
(IRP) has a solution for all such points irregardless of the choice of simple

single phase impactor material. On the other hand, points P e - on will be
2

said to be non-maximal dynamical states in the sense that (IRP) has no
solutions for all such points.

V•

ye..

P

Figure 1: The connected

curve 0 for an elementary
two phase target material.

V The determination of 0 at

P E r2 by the

oscullation condition

(40) #is indicated.

P,

The remaining locus rsem will be said to comprise the semi-maximal
2

dynamical states. Notice from (5) and (38)# that 2em consists of points in

r2 through which the associated constant dissipation locus E(.) has negative

slope. One may conclude from the previous discussion that at least some

points in r2em are also contained in r', but that any such points in 2e m

2 2 ' 2
F! will certainly not be generated for every choice of simple single phase
2

impactor material. Now according to (40)# , a necessary condition for a point
_ sem

P E r2 to be generated as a solution to the Riemann problem for a given

simple single phase material and impact velocity v is that H(v) oscullate the
associated constant dissipation locus at P (Figure 1). Furthermore, this

condition is sufficient provided that the simple two phase material is in fact

elementary. Thus in order to determine whether or not a point P E rsem is
0 2

contained in r!, it is necessary to determine the extent Lo which 1(v) and
2'

hence r - r1(v) can be made, through selection of the stress response

function ((7) and impact velocity v, to assume a given form in the (a ,v )-
plane. Now Theorem I of (1] serves to impose certain limitations on any such
form. The following theorem, which is a converse to Theorem 1 of [1], shows
that any form obeying the restrictions set forth in Theorem 1 of [1] is, in
fact, attainable.
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Theorem 1 - On the existence of a simple single phase
material with a given contact locus form:

Let I(.):[0,o)-[O,--) obey I(O)-O, I'(.)<O, I"(-)<O. For v > 0, let 0(v) -* * * I*) *

((a ,v)I v - v + I(a, a 0). Then there exists a stress response function

(7) corresponding to a simple single phase material such that the associated

r1 (v) - 9().

Proof. For s ?: 0 define

H(s) - j ('(z)) 2dz, (7)
o

so that H(O)-O and H'(s)>O. Thus H(s) is invertible with inverse function
H(-I)(.) obeying H')(0) - 0. Let H(7) - W( 1 )(1) for i-O. Then one may

verify directly from (7) and the properties of I(-) that (HI) holds. In
addition, since

- ( - '(z)) 1 dz - - J (H'(H('I) (z))) "  dz
0 0

(8)

jH(_1 0H(0) (1

-- J (H'(y))' dy - I'(y) dy - I(HI))),
0 0

the identification F1 (V) - V(v) follows from (12)

Fix now a point Po - (a ov) E semthen by taking any function

I(.):[0, )-.[0,- ) such that

I(0)-0, I'(.)<0, I"(.)<0, I'(ao) - i,(E(d ),P ), d - D (av), (9)
0 0 0 000

it follows that (j) constructed on the basis of Theorem I will lead to the

satisfaction of (40)# provided that the impact velocity is then taken to be

8(P 0 ). (Notice that an infinity of functions I(.) exist which satisfy (9).)

Consequently it may be concluded that

rsem (10)
2 2'

provided that the simple two phase target material is an elementary two-phase
material. For a non-elementary two phase target material we may only conclude

that the necessary condition (40)# can be met.
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Prescribing the Impact Velocity

Until further notice, let us agree to confine attention to elementary
* e m

two phase target materials. For P - (a IV) E , we shall define
0 0 0 2

* * * * * *

V W v, VM v0 - ao x v(E(do),Po), do - D (ao,Vo). (11)

It then follows from the convexity of the loci r in conjunction with (40)#

that if P is generated as the solution to (IRP), then the impact velocity v

must obey

vm < V < vM (12)

Furthermore, Theorem 1 ensures that for any v obeying (12) there will exist an
infinity of simple single phase impactor materials that will generate P as0

the solution to the impact problem with impact velocity v. A simple single
phase material stress response () which generates P at an impact velocity

near vm must then have a locus r that is essentially horizontal until just

before a where it must radically bend in order meet (40) . Conversely, a

simple single phase material stress response () which generates P at an0

impact velocity near vM must have a locus r1 that is essentially linear from

* * * * * *
(a ,v ) - (0,v) to (a ,v ) - (aVo) (see Figure 2). According to (12) , the

absolute value of the slope v(Fl,(a ,v )) goes like the reciprocol of the

square root of the material stiffness at stress value a Consequently,
generating P near the lower bound impact velocity v requires a simple single0 m
phase impactor material with a very high stiffness (i.e. essentially rigid

response) for all stresses obeying 0 : < a . On the other hand,
0

generating P near the upper bound impact velocity VM requires a material with
*

an essentially linear stress response for all stresses obeying 0 : a 0o
where the stiffness is determined by the slope of the constant dissipation
locus at P

0

One should note that the absence of an oscullation condition like (40)#
* * a

for dynamical states in P - (a *Vo) e ax indicates that the associated
0 o o 21

range of impact velocities v that succeed in generating P E-2 ax (by
o 2

suitable choice of simple single phase impactor material) is simply v > v0
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If we monitor the values of - and ; as P roams within em one

then conclude from (11) and (38) that

vM ifP P e
m 9a (13)

VM ~ if P P E 0

M 0 V

Figure 2: The window of
impact velocities (12)

for Po - (aoVo) rsem.

PS Also shown are contact
loci for two different

WS _simple single phase
impactor materials that
generate this Po. In

both cases the oscullation

z-- condition (40)# must hold.
Here material-i is more
compliant than material-ii

se\ at stresses less than a°
and so requires a greater
impact velocity to generate P0

Let P - * * - (as(v 5 ), so that a2 - and - r(f) (c.f. (14)#

2 2,v2) 5P 5 5 2 7b a5  lf cf

and (15)#). Suppose that a obeys a2 < a* < a5. It can then be shown that if
s

one travels from Vp to q7s along the vertical line segment associated with the

value a , then the corresponding dynamical states involve phase boundaries
with progressively greater phase boundary velocities. Thus, in this sense,

00

points Po near p correspond to dynamical states with a relatively lowphs

boundary velocity while points P near v correspond to dynamical states with

a relatively high phase boundary velocity. It is thus interesting to note
that the window of possible impact velocities (12) is very small for dynamical

states of the former type, and that generating these dynamical states
neccesitates the use of simple single phase impactor materials that are
essentially rigid.

The Riemam Problem for Target Materials that are not Elementary

We now turn to consider in more detail certain aspects of the Riemann

problem for simple two phase target materials that are not elementary.
Perhaps the most interesting aspect of such problems is that the possibility

exists that the locus Q(v) - G will not be connected! To see this,

let d be a value for the dissipation such that the constant dissipation locus

=(d) intersects r2em Assume that a contact locus r associated with impact
v 2o
velocity v a oscullates F(do) at a8_int, say Pa', at which (do ) has positive



curvature. This then assures that the dynamical state associated with Pa

provides a local maximum to the dissipation on the (pre-criterion) solution

locus 1(v a). The question then arises as to whether or not (Va ) might also

oscullate =(d0 ) at some other point, say Paa' at which E(d0 ) also nas positive

curvature. Of course the convexity condition on r embodied in Theorem 1 of

(1] indicates that this is not possible unless vv(E(d0 ),P0 ) < 0 for some point

P0 e (d0 ) between Pa and P aa Now, by definition, a non-elementary simple

two phase material iq one for which there exists a dissipation value d and a
0

point P e em n -=(d ) such that the anomolous convexity condition
o 2 0

vv(=(do),Po) < 0 is met. In fact, given such a d and P Theorem 1 suggests

that a simple single phase impactor material exists such that the associated

r oscullates two points Pa and Paa in the manner described above (Figure 3).

a aa

Figure 3: The anomolous
convexity of the
dissipation loci E(-) for
a non-elementary two
phase target material may

C- give rise to a locus 0
that is disconnected.
The continuations
represent dynamical

~ **O~ ~~4Istates that are locally
, maximally dissipative on

r1(v) but not globally

7 ,a) maximally dissipative.

Consequently, let us assume that we have identified a simple single phase

impactor material () and an impact velocity v', such that the above scenario

obtains. Then the dynamical states associated with P and P provide locala aa

maxima to the dissipation on the solution locus H(v a). In fact, these maxima

each have the same dissipation value d . If, as may well be the case, these

local maxima are in fact global maxima, then the dynamical states associated
with P and P each provide a maximally dissipative solution to the impact

a aa

problem at impact velocity v a. Now within the above scenario the generic case

would have the following features:

(i) P and P will provide the only oscullation points of H(v ) with
a aa a

E(d ),

(ii) as v departs from v , the local maxima that "evolve" from P and Pa'a a a

will not have identical dissipation values.
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Hence the generic case is that the impact problem will have a unique maximally

dissipative solution for each impact velocity near va, with the special impact

velocity va giving rise to two maximally dissipative solutions because ita

induces an exchange in global maxima of dissipation on the v-parametrized

solution sets H(v). For the situation that we that we have just described,

the locus G(v)[ , ~- - will be discontinuous at v - v (Figure 3).
e ( l (,v 3) a

Furthermore, if a norm is placed upon dynamical state solutions to Riemann
problems, then this norm is also likely to suffer a discontinuity on

-(v) at the impact velocity v
V E (vl,v3) a

Extended versions of the Inverse Riemamn Problem

In view of the preceding discussion, we shall henceforth confine

attention to elementary two phase target materials so that the locus a is
guarenteed to be connected. Then the inverse Riemann problem (IPP) can be
regarded as determining whether or not certain choices for the simple single
phase impactor material (Cl) will result in a given point P E r 2 being

contained in the associated connected curve I. If such is indeed the case,

then the associated impact velocity is necessarily given by v = e(P0 ). As

already shown, the choice of (Cl) is crucial only if P E 1 sem
0 2

It is thus natural to consider an extended inverse problem of the
semfollowing type: given n distinct points in r 2 , is it possible to select a

2A

simple single phase material such that the associated 0 will contain i n

points? In fact, one can enquire into the general extent to which the curve a

can be prescribed within the region sem

gin2

Let us agree to denote the inverse Riemann problem in which n points in

in r2 are prescribed as a problem of type (IRP-n). It has already been

shown that a problem of type (IRP-l) is always well posed. For n>l there do,
of course, exist problems of type (IRP-n) that are also well posed (e.g.

choose n points on the 0 associated with some fixed (y)). Conversely, for
any n>l, there exist problems of type (IRP-n) that are not well posed. To
verify this let us suppose that two points in the prescription of such a

* * * * _Sem
problem are Po=(c *,V), Po=(ao ,Voo) E r . Let us first of all assume that

or > a It then follows from (40)# and Theorem 1 of [11 that a necessary

condition for the problem to be well posed is that

&'(Ed oo),P o) < v(=(d ),P ) d - D (a ,v , d - D (a v (14)

Secondly, if we assume that aoo ao, then (14) is to be replaced by

* * * * * *
v(E(d ),Po) - v(E(d ),P d - D (a V) d - D (15)

00 00 0 0 00 00 00 0 0
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as a necessary condition for the well-posedness of (IRP-n). Since it is
certainly possible to chose points P and P violating either (14) or (15),

0 00

this establishes the existence of problems of type (IRP-n) that are not well
posed for each n>2.

Clearly (15) is also a severe restriction on the possibility that

curves 0 are not mapped bijectively to the a -axis. Letting P approach Po

in (15) one may obtain the following necessary condition for a point P e2 rsem
o 2

to be a location of vertical tangency for che curve 0:

D D - D D - 0, (16)
vv a av v 0,(6

* * * * * *
where D vv, D v (and D aa) are second derivitives of D (a ,v ) defined

analogously to Dv and D (c.f. (29) #). It shall be shown shortly that (16) is

also a sufficient condition for any smooth curve 0 to suffer a vertical
sem

tangency at a point Po r P2  . Consequently if 0 is a smooth curve passing

through a point P E 2em obeying (16), then P is necessarily a point of

vertical tangency for 0. Whether or not such points exist, however, remains
an open question.

A problem in which a curve segment within sem is prescribed for an

inverse Riemann problem will be said to be a problem of type (IRP--). Let us
agree to limit attention to such problems for cases in which the prescribed

curve is mapped bijectively to the a -axis so that the curve segment can be

parametrized by v - X(a ) on some a -subinterval of the interval 7(7b) : a 5
#) * * *

r(-Y) (c.f. (34) say a 0< a <a . Then the considerations leading to

(14) in conjunction with (38) indicate that a necessary condition for the
problem to be well posed is that

d - D (a ,x( ))[

dc D( ,x(a )) 0, 0  0 0  
(17)

v

In fact, (17) is also a sufficient condition for the well-posedness of the
problem as can be seen from the following construction for the stress response
function (I) of a simple single phase impactor material which solves the
problem. First let

. D (a ,X(c )) * * *

(a } , 0 < 00, (18)
D*v(O X(O ))o

and then extend this function to the range a e 0 in such a fashion that n(o

< 0, '(c ) < 0. Now define the function I(c ) to be

I(a ) = J (z)dz. (19)
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Finally since the function I(a*) so constructed satisfies the hypotheses of
Theorem 1, the stress response function (7) can be constructed as the inverse
function to H(s) as given in (7).

Since verification of (17) is an easy task (if the function D (a ,v*)
is known), it is a simple matter to determine the well-posedness of any

* * em * * *
problem of type (IRP-o) for a curve (a ,X(a )) em on a * a -a * where

2 o 00

T(7b) S a s a 00 T(W). In particular (17) can be employed as a necessary

and sufficient condition to test well-posedness for the case when this curve

extends all the way from P2 to P6  i.e. a* a -

P " (aoX(a))' P6 - (aoX(a))("

All of the extended versions of the inverse Riemann problems discussed

thus far can be thought of as global inverse Riemann problems in that their

specification is given in terms of properties of the prescribed locus 0 at

more than one point in rsem . In contrast a local inverse Riemann problem

will be one in which only properties at a single point of Q are prescribed.

The most immediate such problem is one in which the curve 0 is required to

pass through a given point P - (a* V*) E rsem with a prescribed slope, say
o o o 2

V 0 Such problems will be said to be of type (IRP-v). In the absence of a

slope specification, the problem, now simply of type (IRP), is well posed
(c.f. (10)) and can be solved by means of the algorithm developed in
connection with Theorem 1. The immediate questions which come to mind are
thus:

s em(Q3) For a given P0 E r2- what values for the prescribed slope V0 give
rise to a well posed problem?

(Q4) Given a : .1 posed problem of type (IRP-P), what is an algorithm for
determining a simple single phase impactor material which solves the
problem?

To address these questions, consider a standard Riemann problem in which the
simple single phase impactor material stress response function (7) is given.

Let the corresponding contact locus F1 be given by rl() - ( (a ,v)I v - v

+ I(r ), a >0 (c.f. Theorem 1). A calculation based upon (38) and (40)#

then yields

D* D -D D + "(a) D

0- 1/(0, - ac v av a 0 v , (20)
0D *D *-D *D*

VV a av V

where all of the derivatives D ..... D are to be evaluated at the point

P E rsem under consideration. In view of Theorem 1, it may be concluded that
o 2
a problem of type (IRP-v) is well posed for and only for those values of V

*

which can be obtained from (20) by chosing finite negative values for I"(o ).

It thus follows that lo0-- gives rise to a well posed problem of type (IRP-)
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at and only at points P0 at which (16) holds; moreover at all such points the

value of I"(a ) has no bearing on the solution to the problem. Thus it only
0*

remains to consider points P0 at which (16) does not hold. Letting I"(a )

approach in turn both zero and negative infinity in (20) one thus finds that
(IRP-v) is well posed if and only if

D D -D D * D* * *

Daa v av a , whenever D D D D > 0,
D D -D D

vv a av v
(21)

D D -D D * * * *
* > aa v av a , whenever D D D D < 0.

D D - D D
vv a av v e

Hence at each point P e re one may sector the (a ,v )-plane according to

(21); all possible curves 0 through P are then confined to the sector (21) in

a neighborhood of P . The algorithm for determining a simple single phase

impactor material which solves a well posed problem of type (IRP-v) is now
essentially the same algorithm used in solving (IRP) given in connection with

Theorem 1; the only difference is that the value of I"(a ) is no longer

allowed to be arbitrary, but instead must be given by the value

I"(a) (D D - ) D (D D * - D* 2 (22)vv o aa v av a V,

_sem it

In vi of (16) and (21) it would be useful to partition r2  into regions

based on the sign of D w D - D D . Although I have not yet examined thisvv av V
issue, an interesting result does follow from the observation that if

do - D (aov ), then a direct calculation gives

v(E(do ) ,Po D D -2 D D D + D* D D. (23)

0 0 a vav a v vv a

Consequently (Ql) allows us to draw

* * * * * * * * * *
S( D -D D)D +(Dvv D -D D) D 0 (24)

sem #
for all Po E . In view of (24) and (38) we may hence augment (21) to

Ll < Dag v D v Da :5 v(E(do),P)' whenever D* D -D D *> 0,
* * * *

D D -D D * * * *

> aD v av a 5 v(S(do),P) whenever D D -D D < 0
0 * ' 0 0 VV C "v

D D D D
vv a av V
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In particular (25) indicates that if P0 appraches a point at which (16) holds,

then the corresponding sector in which 0 must locally lie will collapse onto a

vertical line.

As a closing remark, it may be noted that we have here considered an

extended local inverse Riemann problem in which only the first derivative of^ * * sem
the locus 0 is prescribed at a point Po - (o'vo) E 2. One could certainly

consider an extended local inverse Riemann problem in which the first k

derivatives of the locus 0 are prescribed at a point P - (a' v0) E 2 On

the basis of the above development, one would expect that the solution to any

such problem would involve requiring definite values for the first k+l* * *

derivatives of the function I(a*) at a a
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ABSTRACT

Large time dependent deformations of styrene-butadiene copolymers
(SBR) and polyurethanes show both plastic and viscoelastic effects. Such
materials are also often nearly incompressible and have nonlinear elastic
constitutive laws. The development of finite element methods to analyze
these materials is an active area of research. In this effort a recently
developed finite element algorithm for the analysis of viscoelastic
behavior in rubberlike materials is applied to the inflation and deflation
of a thick walled visco-hyperelastic sphere under internal pressure. The
material is assumed to have been previously worked so that damage effects
do not significantly contribute to the deformations. A one dimensional
finite element analysis is constructed for incompressible materials.
Pressure vs time curves are developed for both the elastic and loss solids
during an inflation and deflation cycle.

INTRODUCTION

In a recent paper Johnson et alI demonstrated that the standard linear
solid could be generalized to a nonlinear solid and used to model large
viscoelastic deformations of elastomers. The model proposed in Ref. 1
consists of a hyperelastic solid in parallel with a nonlinear internal loss
solid. The elastic component of the loss solid has a hyperelastic
constitutive law and the dash pot is proportional to the rate of change of
the shear stresses in the elastic Ccomponent of the loss solid. This paper
extends the nonlinear solid model so that deformations resulting from time
dependent loadings Ican be conveniently computed. First we present some

information needed to define the nonlinear relaxation model. Then the
model is modified and used to simulate the inflation and deflation of a
visco-hyperelastic thick walled sphere. A finite element model for the
thick walled sphere is derived which includes a nonlinear internal solid
and a nonlinear dash pot in parallel with the sphere's hyperelastic model.
The equilibrium equations are coupled in such a way that the creep problem
can be solved using a standard integration method. Numerical tests are
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performed by simulating the inflation and deflation of a visco-hyperelastic
sphere to demonstrate the finite element algorithm.

BACKGROUND

There are numerous papers on the viscoelastic behavior of elastomers.
We highlight Refs. 2-7 as a source of background infgrmation. These papers
indicate that the general theory of Green and Rivlin can be used with only
two or three constitutive parameters to model viscous effects in many
elastomers (typical visco-hyperelastic solids). That result is significant
since it implies that the less general but computationally more attractive
nonlinear solid network model may also be useful. Next, we define a
nonlinear solid, similar to the one presented in Ref. 1, which we later
extend to the case of inflation and deflation of thick walled
visco-hyperelastic spheres.

Consider the network model of a simple visco-hyperelastic solid given
in Figure 1. The energy in the solid is described using total Lagrangian
kinematics. Nodal locations are given by xE for the elastic (storage)
solid and xL for the loss solid. Computation of forces due to the loss
solid is made assuming that the loss solid's current shape, xL(t) , is its
relaxed (unloaded) shape and its deformed shape, xE(t) , is the current
deformed shape of the hyperelastic solid. Rivlin expansions in the strain
invariants are used for the energy density functions, WE (elastic) and WL
(loss), which are given by

iii
W CI m I

( Ii 1  - 3 ) (1 2  -3)( )

ij

where m = E,L i,j = 0,1,2,... ; C0 = 0,

2 2 2
1 1 2 3

2 2 + 2 2 2 2 (strain invariants)
2 1 2 2 3 31

3 12 3

and X, 2, X are the principal stretch ratios determined from the
deformed and undeformed kinematics. At any time, t, the forces deforming
the loss solid are given by

f WhL(X E(t), YO))(2
fL(t) = aw(xEtxL t)(2)

L ax L

Our model assumes that the viscous forces which resist the deformation of
the loss solid are proportional to the time rate of change of the
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deformation forces. That is, the equilibrium equation for the loss solid
(this equation also defines the dash pot) is

d 8WL  32WL  aw L-n ( L - - XL = - (3)

dt 8xL 3  XL
dx

where : = - , 9 = the viscous proportionality constant. If xr(t) is
specified, then equation (3) is a nonlinear differential equation w ich can
be integrated by discretizing xE(t) with a time dependent step function
and then solving a series of relaxation problems by integrating equation(3)
in each of the discretized step function intervals. Both scalar and
axisymmetric finite element versions of this method were formulated and
used to compute uniaxial cyclic deformations in Ref. 1.

THICK WALLED VISCO-HYPERELASTIC SPHERE: SCALAR MODEL

The classical pressure - radius equation for the inflation of a thick
walled incompressible hyperelastic sphere is presented in Ref. 3. The
geometric definitions for this static inflation problem are shown in Figure
2, and the pressure - internal radius relationship can be summarized as
follows.

p = p(r1 , R1) = 2 fQ2[(Q 3 + 1) (D + (Q + -L) T ] dQ (4)
1 Qi Q2

where Q = -- = i =&12; W = W aw
Q 1, ;2 = =2

W = W(Ill 12) = the hyperelastic energy function of the material

and p = internal pressure.

To demonstrate how viscous effects with simple memory can be modeled on
this classical hyperelastic inflation problem, we used the network model
shown in Figure 3. The equilibrium equations are written by balancing
pressure at the internal surface of the sphere in the deformed geometry.
With the first variable in the list of arguments representing the
undeformed geometry and the second being the deformed geometry, we can
write the following equilibrium equations for the network in Figure 3.
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Loss node

41 Elastic node

W E. WL "hyperelastic energy functions. XE

n nonlinear viscous element.

x EP xL unodal location of coordinates.

Figure 1. A simple visco-hyperelastic solid.
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Rr2
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Undeforied Deformed
rP r 2 Ri R 2

p -internal pressure

V 0-initial volume of material -constant (incompressible).

Figure 2. Classical inflation on an incompressible hyperelastic sphere.
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dR1L 1 R )
dt = PRIL'  E

(5)

d =  1 * [p(t) - PE(rI,RlE) + PL(RIL,RIE)]

where P.(rj, Rk) = the pressure at the internal surface of the sphere,

i = E, L ,

p(t) = the applied internal pressure at time t,

n= the damping proportionality constant(see eq. 3),

*= a small damping constant selected so that the
force generated in the dash pot parallel with the
elastic sphere is small when compared to the other
forces in the network.

Equation (5) was integrated for the case of a Neohookean material.
The form of the applied pressure is shown in Figure 4 along with the
resulting forces in the elastic and loss solids.

THICK WALLED HYPERELASTIC SPHERE:
FINITE ELEMENT MODEL

Consider the symmetric deformation of a thick walled sphere and let
X = the radial stretch and A = X = the hoop stretches. To demonstrate
te use of internal hypereiast c solids for rubber viscoelasticity we
construct a potential energy model for the inflation of a thick walled
sphere in which the incompressibility constraint is enforced with a
penalty. The incompressibility constraint requires X2= A3 =1/4 I .
With A = 1 as the only unknown variable, the strain invariants 5ecome

1 2+ 2

(6)

12= 2X + 12

Equation (6) is used in equation (1) to express the internal strain energy
in terms of radial stretch.

Next, we discretize the undeformed, r, and 9d~ormed, R, radial
coordinates and map them both to & C (0,1) as follows
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RL
Loss sphere

Elastic sphere p(t)

Figure 3. Network model for a scalar pressurized visco-hyperelastic sphere
with scalar dash pots.

10

r I.1.0 r 2 a2.0
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In 100.0 . 1.0
S 5 Pressure in elastic solid.

Pressure in loss solid.\

0-K

0 so

Time

Figure 4. Pressure vs time curves for a viscous Neohookean sphere being
inflated and deflated.
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r() (r i ri+l)1 rI 9T

(7)

Then the internal energy is given by

u 4 ly 'w(rR) r 2 d d& (8)
0 d(

Elements

We have, from the geometry and volume constraints,

2

(9)

and X R 1
2 3 r

Then,

W(r,R) W(M) (10)

and the element gradient, with respect to the unknown deformed coordinates

R (where e = element number) for the element becomes,

aUe I1 3W 3X 2 dr
9 - 4a 2dr dr d (ii)

e aRT x A
e e
e =0 e

Then,

= 81 -RX2 (r1- r2) W d& (12)
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Similarly, the element tangent matrix becomes

8W 3 3 W r Td (13)

S81 IX- + 2A (r2- r1)
&=0

The element gradients and tangents were evaluated using three point
numerical integration. We added the square of the volume error times a
penalty number (1000 times C10 ) to enforce incompressibility as follows.

Uv = (3 -R3 (r3 r3 2(4e = 2 (R.+1  R )-(r.+i -r.) 41 )

where X = penalty parameter(1000 * C,)
The terms to be added to the gradienlUand tangent become

gV= ((3 R - (r3  -r) -3R )
e ~i+ 1 +1 )i

(15)

9R4 - 6R.G -9R 2 R 2

i 1 i+1i

and kv =

R 2 2 9R4 +6R G-gi+I i  6Rii+IG

3 _ 3) 3 3
where G = (Ri+ i R. ri~ -ri

i+1 i. i+1 9
Finally, the work done by the internal pressure is

wp -- (R3 - r3) (16)3 ~1

with contributions to the global gradient and tangent of

gP 0 3
(17)

and

= 0 0 . . .

The above model was used to numerically simulate the inflation of a thick
walled sphere and is compared graphically to the exact solution (using
finite elements) in Figure 5.
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C10 = 14.52

rl 1.0 r2 -2.0

30. w c ( I - 3)
p = Pressure r2

20.-

o Finite element (five elements)

- Analytical

10.-

0.-f
1.0 2.0 3.0

Deformed Internal Radius

Figure 5. Finite element solution vs analytical solution for inflation
of a thick walled Neohookean sphere.

INFLATION AND DEFLATION OF A VISCO-HYPERELASTIC SPHERE

Using the network model in Figure 3 with configuration vectors at the
nodes and dashpots proportional to the tangent strain energy matrices, we
can write equilibrium equations for the finite element model as follows.

d 2U L

T 0 Lg
dRL

d 2 U (18)d2U

0 dREdRT RE -gE - gL
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In general, the selection of q and WL should be made by matching
hysteretic or relaxation data after the quasi-static elastic engery
function, W , has been determined. As in the scalar model, we are using n*
here so that equation (18) maintains a form which can be easily integrated
(eg., using the Runge-Kutta method). Obviously, additional internal solids
can be added to increase the accuracy of this method (a generalized
nonlinear Maxwell model). To demonstrate the model, we computed one
inflation and deflation of a visco-NeoHookean sphere. The pressure vs time
curves for the loss and elastic solids are shown in Figure 6.

CONCLUSION

A nonlinear visco-hyperelastic solid model was proposed and used to
simulate the inflation and deflation of a visco-Neohookean sphere. The
method was easy to program and no difficulties were encountered integrating
the differential equations. As pointed out in Ref. I., the Runge-Kutta
updates for the elastic solid consist of Newton-Raphson steps generated
from a potential energy function. These steps must be small to be useful.
Further research is being done to investigate the sensitivity of the
numerical computations to the values of the parameters in the model.
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Figure 6. Pressure vs time curves for a viscous Neohooi.ean sphere being
inflated and deflated - finite element solution with nonlinear
dash pots.
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ABSTRACT

The dynamic overturning response of Army vehicles with shelters and trailers as Well as over-
turn susceptible structures has been of considerable interest to the defense community since critical
structures and internal equipments can be damaged resulting in system malfunction and reduction of
vehicle performance jeopardizing the primary mission objective. To overcome vulnerability of vehicles
and associated equipments to overturning, the Army is actively engaged in a hardening program which
will result in overturn mitigation and increased survivability. Flexible multibody dynamics programs
can be used to predict overturning response of structures due to transient overpressure loading and
facilitate evaluation of mitigation devices such as outriggers, cables and guy wires. However, accuracy
of overturning prediction is dominated by the loading model during the drag phase when the structure
becomes unstable. To assess validity of the loading model, accuracy of drag coefficients as a function
of the roll angle and flow velocity should be evaluated. The current investigation is devoted to a
comparative evaluation of drag coefficients used in loading models in overturning response codes as
well as any experimental data that may be available.

INTRODUCTION

Research in vehicle dynamics started with Olley [1] and Segal [2] in the area of linear vehicle
dynamics which was followed by several others [3-5]. The first vehicle models allowed between two
and four degrees of freedom. Closed form analytical solutions for critical speed were obtained for these
models for certain maneuvers. However, the solution techniques could not be extended to real vehicles
due to complexity of the vehicle models and the transient response characteristics.

With increased computational capabilities, the vehicle models became increasingly complex. Non-
linear tire models replaced linear models to describe the tire forces more accurately [6]. Eventually,
very complex nonlinear vehicle models could be generated to simulate the dynamic response of vehicles
with additional degrees of freedom [7]. An overview of these developments is given by Ellis [8]. How-
ever, these studies were devoted to a rather limited class of vehicles. The equations of motion for these
vehicles were derived manually and then transformed to computer code to be numerically integrated.
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Although a simple vehicle could be simulated in this manner, creating larger representative models
and computation of response are rather difficult and laborious.

Recently, flexible multibody dynamics software have been developed which automatically formu-
late the equations of motion for many types of mechanical systems. These programs require the user to
define the mass and inertial properties of all rigid as well as flexible bodies in the system and the type
of joints that connect each body relative to one another. In addition, force elements can be prescribed
to simulate springs, dampers and actuators between rigid or flexible bodies. This involves defining the
spring mass and suspension system elements connected with ideal joints or bushings. The springs and
shocks are modeled as force elements.

Multibody dynamics programs can be divided into two seperate groups. The first type numerically
formulates the equations of motion at each time step during the numerical integration process. ADAMS
[9] and DADS [10-12] are multibody dynamics programs which numerically formulate and solve the
equations of motion. The second group of programs symbolically formulates the equations of motions
which can then be numerically integrated. NEWEUL (13-151, and MESA VERDE [161 codes belong
to this group. Other differences exist between all of these programs including coordinate selection,
integration method, and output format. Schiehlen et al (14] obtained a good comparison of the
performances of these programs as related to the vehicle dynamics field.

Although many of these programs have a high potential for modeling wheeled vehicle dynamics,
their capabilities are currently limited due to a lack of appropriate forcing functions to which the
vehicle may be subjected in a battlefield. Majority of flexible multibody dynamics codes that are
commercially available addresses the needs of the vehicle industries which are interested primarily in
dynamic response due to sudden change in road friction due to rain, snow and accidental spillage or
the influence of a rough terrain with bumps or -discontinuities upon vehicle stability. Researchers at
the University of Iowa have modeled the ride characteristics of several vehicle combinations [11,121.
Majority of these models did not contain any lateral response dynamics.

Lee, Hobbs and Atkinson [17] have developed a computer program TRUCK 3.1 to find the dynamic
response of a vehicle subjected to different types of loads including such intensive loads as blast waves
from conventional or nuclear explosives. The code yields gross motions of the vehicle body, and of tires,
axles, shelters, and racks relative to the vehicle body. Large motions, including sliding and overturning
of the vehicle, are permitted. However, each individual element like an axle, shelter or rack is treated
as a rigid body. Recently, the governing equations of motion used in the TRUCK code that model the
rigid body motions of the vehicle assembly and its components and modelling of the frictional force
between the tires and the ground has been validated by Batra [18] under Ballistic Research Laboratory
(BRL) sponsorship.

This paper is devoted to an evaluation of drag coefficients in the drag phase loading models
currently installed in the MINITRUCK code as well as the Overturning Code [191 developed at BRL
and validation with respect to some experimental data for two specific Army vehicles obtained by
S-CUBED [20] Inc. under BRL sponsorship. Commercially available flexible multibody dynamics
programs do not include blast overpressure loading at present. However, capability exists in these codes
to interface with user-supplied loading routines. Accurate prediction of vehicle overturning response
from these codes will depend on the development of reliable blast loading models for incorporation
into these codes and response validation using simple generic problems with known solutions.
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STRUCTURAL MODELING

The complexity of the mathematical model selected to represent a structure is necessitated by
the need to obtain accurate information to be derived from the model. Accurate analyses of wheeled
vehicles require adequate representation of tire and suspension systems which dominate vehicle re-
sponse. Additionally, accurate loading functions need to be developed with capability to impose these
loads upon the vehicle model in a realistic manner. Since most multibody dynamics programs do
not currently address these problems in sufficient detail, it is imperative upon the user to produce
loading subroutines and interface them with an existing program. Complex kinematic models suited
for multibody modeling require a large amount of geometric and physical data. Any gains due to
increased model cumplexity may be lost due to lack of accurate input and loading data. In spite of
these drawbacks, flexible multibody dynamics programs have several advantages for vehicle model-
ing applications where large number of kinematically constrained members and complex kinematic
relationships for suspension systems and joints are involved.

CODE DESCRIPTION

The MINITRUCK [211 code is a simplified two-dimensional version of the TRUCK code developed
by Kaman AviDyne to predict the response of a variety of Army vehicles to blast waves. The program
models the five major degrees-of-freedom which include roll, sideslip, heave, and two suspension related
degrees-of-freedom. The vehicle is assumed to be initially at rest on level ground. Only a side-on blast
encounter from the roadside is allowed for the 2-D version. Capabilities include modeling regular or
independent suspension, flexible or rigid outriggers and guy wires. Equivalent properties are used for
characterizing many vehicle components. Thus stiffnesses of a]] ax]e springs on one side of a vehicle are
represented by one equivalent spring In the same manner, masses are represented by equivalent lumped
mass models. This is due to the 2-D MINITRUCK structural model restriction. This representation
can best be visualized by compressing or collapsing a vehicle in the fore-and-aft direction until it is
entirely compressed in a vertical plane, normal to the shock front. During the response, all motions
are confined within this plane. The three-dimensional aerdynamic representation used in the TRUCK
code was retained.

The current MINITRUCK version allows parking the vehicle on a simple horizontal ground which
excludes special positioning of a loaded field vehicle on an iiclined ground at the time of a blast en-
counter. However, such effects of inclined slopes on vehicle overturning due to a blast load is rarely
encountered and require complex ground modeling. The assumption of horizontal ground simplifies
considerably the theoretical formulation. The primary coordinate system is a body axis system at-
tached to the vehicle body with its origin at the center of gravity of the entire system.

The Overturning Code [19] developed at BRL included an airblast loading model for closed
cubical box type structures which were used to model various targets. The targets were subdivided
into a convenient number of closed boxes which were attached to each other to represent the shapes
of the targets. To allow estimation of overturning moments, values of the rolling moment coefficients
measured in the wind tunnel for specific truck-shelter combinations were fitted as a function of the
angle of rotation and incorporated in the code.
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AERODYNAMIC LOADING

The loading on the vehicle results from the blast wave from a nuclear or conventional explosion.
Associated with the blast wave are increased pressure density and material velocity. Blast wave
characteristics for two heights of burst are considered in these codes. The first one corresponds to
a height of burst of zero representing the sea level and the second corresponds to a burst height of
60W'13 m based upon BRL data. The two blast wave characteristics are specified in tabular form for
a 1 KT weapon yield at sea level and the results are applied for other weapon yields and conditions
other than sea level using the built-in modified Sachs scaling laws. The nominal range of the structure
from the burst point or the peak overpressure behind the shock needs to be specified.

The blast wave front is assumed to be normal to the ground surface, and the vehicle is assumed
initially normal to the ground; shock encounter can be from any orientation. As the blast wave envelops
the vehicle, the wave reflects from the vehicle surface and rarefaction waves emanate from free edges
to relieve the reflected pressure. At later times, the loading is essentially a drag type loading, resulting
from the material velocity associated with the blast wave. The development of the aei 3dynamic loading
is seperated into two phases namely, diffraction loading and drag loading.

Diffraction Loading

The diffraction loading phase begins with the shock impinging upon the vehicle. As the vehicle
is enveloped, the shock wave reflects from the vehicle surfaces and rarefaction waves emanate from
free edges to relieve the reflected pressure. The diffraction loading is based upon shock tube experi-
ments in which front and back face pressures on the structural component were measured for a shock
front normally incident on the front face [221. For MINITRUCK only front face normal incidence is
considered and diffraction loadings for arbitrary incidence angles are excluded.

It is assumed that the vehicle moves very little during the diffraction period, so that the shock
wave and the vehicle is expected to remain normal to the ground during this period of time. This
assumption limits the number of configurations that can be addressed.

The basic model for the diffraction loading describes waves emanating from the free edges of
the aerodynamic boxes representing the exposed vehicle surfaces. When the undisturbed shock front
reaches an edge point, a relief wave emanates which leads to an exponential decay in the time-varying
pressure loading applied to the faces.

Drag Loading

When the blast wave first encounters and engulfs the target, the overturning moment due to
shock reflection and diffraction process is large, and drag loading is not considered. After the shock
front traverses the target, the drag loading moment relative to the diffraction loading moment becomes
significant. Thus following the diffraction phase, the pressure loading becomes a drag type of loading.
Drag loading depends primarily on the dynamic pressure associated with the material velocity behind
the shock front. When the drag loading moment becomes equal to or larger than the diffraction
loading moment, the diffraction loading phase is terminated, and only the drag loading moment is
used in calculating further response of the target.
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The pressure loading during the drag phase for a non-decaying shock of strength Po, is given by

p(t) = P. + C'q (1)

where P, and q are the overpressure and the dynamic pressure associated with the blast wave.
The task of estimating the drag-phase loading thus becomes a matter of determining the pressure
coefficient, Cp. The pressure coefficient must be determined for arbitrary vehicle orientations for
various rectangular areas which make up the exterior surfaces of the box-like configuration while the
shock is assumed to be travelling parallel to the ground.

a. MINITRUCK Drag Model

There are many factors which can influence the value of Cp . In addition to alpha, the angle
between the flow velocity and the surface normal, these dependent variables may include Reynolds
number, Mach number, aspect ratio (i.e., ratio of the two dimensions of the rectangular surface), etc.
In MINITRUCK, expressions for the drag coefficient in a generalized form are given as

Cp = dcos(9/Sa) (2)

where, 0 < a < a,. However, if a, < a < ir,then Cp = -0.4 and,

d = (1.00 - 0.15R) + (0.20 + 0.15R)(V,/3) 2  (3)

The above equations account only for the a-variation and R in equation (3) refers to the aspect
ratio. The Mach number M is related to the shock strength ratio i according to the Rankine-Hugoniot
relation

M = 50/ %/(7 + _7)(7 + V)) (4)

At low Mach numbers and aspect ratio of unity the equations are in general agreement with
experimental data of Hankins [23] and Hoerner [24] which results in a drag coefficient of 1.25 for
a cuboid. In MINITRUCK code the generalized drag coefficient model is necessitated by a lack of
extensive pressure distribution data for various surfaces at higher Mach number obtained from wind-
tunnel tests.

b. Overturning Code Drag Load

Drag loading model used in the Overturning Code [18] assumes that the target is a collection
of cuboids. The drag loading on each cuboid is calculated independently of the others, and the total
drag moment is calculated by summing the moments calculated for each cuboid. The drag loading on
a cuboid is assumed to be zero until the shock front arrives at the center line of the cuboid. Loading
is then computed using appropriate areas corresponding to the angle of rotation of the target. The
characteristics of the blast wave are assumed to remain unchanged over the depth of the target, so
that the same free-field blast waveform can be used for all cuboids.
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The drag loading is divided into a horizontal and a vertical component which in turn depends
upon the dynamic pressure, horizontal or vertical area, constants corresponding to drag coefficient of
horizontal or vertical area at zero flow velocity, and the roll angle of rotation. The code multiplies
each component with the corresponding moment arm and the product is summed over all cuboids to
calculate the overturning moment due to drag. The increase in horizontal and vertical drag with Mach
number is based on the approach of Hoerner [241, who describes the drag in subsonic flow of bluff
forms with entirely seperated from the rear in terms of two components. These are a positive front
surface pressure proportional to the incident pressure, and a negative base pressure assumed to be
independent of Mach number. The relation which was obtained by fitting wind tunnel data on block
configurations can be expressed as:

CDg = Co(0.375 + 0.625(1 + 0.25M 2)) (5)

where,C0 = 1.26 for a cube on a ground plane and CO = 1.15 for a rectangular parallelipiped on
a ground plane, with width to height ratios of 2 or 4.

c. Modified Drag Load

It is rather difficult to obtain a generalized drag equation which will accurately predict drag
coefficients as a function of the roll angle and the Mach number for all types of structural configurations
since these coefficients are very sensitive to geometrical configurations, surface smoothness and lateral
dimensions of the target body. Although diffraction loading influences initial response of structures,
the onset of overturning in most cases occurs at a later stage which is largely dominated by loading
during the drag phase. As a result reliable prediction of overturning is directly dependent on accurate
prediction of drag coefficients.

Computational fluid dynamics codes have been developed to reliably predict transient structural
loading due to a propagating wave during the diffraction phase. However, serious numerical difficulties
occur during the drag phase at later times which precludes the use of these codes for drag loading
prediction. A preferred alternative is to generate a scaled mechanical model for each structure or
vehicle and experimentally obtain drag force and moment coefficients from wind tunnel tests at various
orientations along roll, pitch and yaw directions relative to the wave front. This method is expensive
since the experiment has to be repeated several times at various combinations of Mach numbers and
roll, pitch and yaw angles until overturning is ensured. However, it is the only reliable and fully
acceptable technique of drag loading assessment at present.

In the absence of experimental data for most recently developed Army vehicles and equipments, a
modified drag loading equation based on a combination of useful features of the previous two approaches
Can be deployed as shown below:

CDag = CICos(9/8a)[0.375 + 0.625(1 + 0.25M')] (6)

where, C, = 1.2 for a rectangular parallelipiped on a ground plane with width to height ratios of
2-4.

The equation above has a constraint condition on the roll angle (alpha) such that 0 < cr < 77r
/12. However, beyond this range the coefficient is determined to be a constant, CDrag = -0.4 provided
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we have 7r/12 < a < r.

d. Experimental Drag Load

The aerodynamic force and moment coefficients are essential input to the solution of any airblast
loading and response problem. Recently S-CUBED Inc. [20] derived the drag, lift and moment
coefficients from experimental data from a series of wind tunnel tests on scale models of two Army
vehicles.

The roll (or overturn) angle dependency and to a lesser extent, the Mach Number effect can be
seen when the moment coefficients due to side-on exposures to a number of steady state flow field
environments are obtained as a function of the normalized angle of attack for a particular vehicle.

The aerodynamic drag, lift and moment coefficients were shown to be quite sensitive to changes in
both the overturn angle and the aspect ratio. This sensitivity is, to a large extent, introduced artificially
as a consequence of using a body-fixed coordinate system and could be reduced by performing two
operations on the data. First, the dependence on overturn angle is suppressed by transforming the
coefficients to a non-rotating coordinate system. The geometry effects are reduced by normalizing the
overturn angle to an angle defined by the roll position of the system when the projected side-on area
is a maximum.

As shown in Figure 1, the aerodynamic drag coefficient from wind tunnel tests on a 1-1/4 ton
truck scale model subjected to a side-on blast overpressure typically exhibit an initial increase at small
roll angles followed by rapid decrement at higher angles of attack beyond 20 degrees. The drag appears
to decrease with increased Mach number until the roll angle equals or exceeds 60 degrees when Mach
number dependency of the drag coefficient is diminished considerably. For accurate estimation of the
drag coefficient, the experiment has to be repeated for each vehicle model at various flow velocites at
both low and high Mach numbers and roll angles until occurrence of overturning is ensured.

COMPARISON OF DRAG LOADING MODELS

The variation of drag coefficient with roll or overturning angle currently used in the MINITRUCK
code has been compared with the modified drag loading model from the Overturning Code as shown in
Figure 2. Additionally, the dependence of drag on flow velocity and roll angle in the form of desensitized
aerodynamic coefficient data from S-CUBED Inc. obtained by transforming the coefficients to a non-
rotating coordinate system for two specific Army Vehicles has been compared with the MINITRUCK
drag model as shown in Figure 1.

The MINITRUCK drag model in both Figure 1 and 2 has no dependence on flow velocity since
the simplified semi-empirical drag equations described earlier ignores the influence of Mach number on
drag coefficients. In Figure 2 both models describe gradual decrease of drag coefficients from initial
configuration to a roll angle of approximately 80 degrees. Beyond this angle drag coefficients appear
to have small negative values for both models. However, when the roll angle exceeds 100 degrees, the
drag is assumed to be a constant since at these large angles overturning is fully ensured in most cases.

Comparison of numerical values of the drag coefficient at small roll angles shows considerable
difference between the two models. At the initial configuration with a null value for the roll angle,
the coefficient varies from 1.33 to 1.2 due to Mach number variation of .1 to .8 for the modified
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iverturning code drag model while the corresponding MINITRUCK drag value is approximately 0.85.
['his difference is rather large and it can exert significant influence upon the overturning response
)rediction. As a result, the large difference is of concern even though the difference diminishes rapidly
with increasing roll angle until approximately 80 degrees when the data appear to converge at zero
Irag.

Comparison of drag in Figure 1 between the semi-empirical model in the MINITRUCK code and
rhe experimentd data from S-CUBED shows large difference in magnitude of drag coefficients between
he two sets of curves similar to observation in Figure 2. However, comparison of drag between

the experimental data and the modified Overturning Code loading model shows very satisfactory
agreement with an exception that initially the drag data tends to increase with roll angle until the
drag reaches a peak value at an angle of 10 degrees beyond which it decays gradually as expected
while the modified model does not exhibit such a trend. The MINITRUCK drag loading model is in
substantial disagreement with available data and other predictive models indicating a probable lack
of validity and a need for improvement of the currently installed MINITRUCK loading capability.

The agreement between the experimental data and the modified model is rather unexpected
in view of the fact that the data pertains to two specific Army vehicles while the modified model
is a generalized predictive model. Validity of such a model cannot be made without conducting
extensive number of experiments upon various vehicles and structures and comparing the data with
the modified model. Such a study will facilitate evaluation of an experimentally based correlation
factor which can improve the capability of the modified loading model. However, interaction effect
of various components of the structure upon the drag loading cannot be predicted accurately by a
generalized model and experimental drag loading data are deemed to be vital for overturning response
computation of complicated structures and vehicles which can be dominated by such effects.

DISCUSSION AND RECOMMENDATION

Compariqon of various drag loading models with experimental data is necessary to determine
accuracy of prediction of vehicle overturning to airblast loading. In most cases the drag loading
on each rectangular paralleliped or cuboid aerodynamic configuration is calculated independently
of the others and the total drag moment is calculated by summing the moments calculated as a
function of the dynamic pressure, facing area, the moment arm and the angle of rotation for each
block. As a result, the interaction effects of adjacent blocks upon one another are ignored during the
computation. In structural assemblies when some blocks are located behind others along the direction
of wave propagation, significant error in loading calculation will occur due to exclusion of overlapped
regions. The linear summation method of loading assessment can result in rather excessive load
estimation contributing to incorrect overturning prediction. Any proposed improvement in prediction
ot overturning response must include accurate estimation of drag loading that accounts for mutual
interaction effects of adjacent structural components upon the drag coefficient.

In summary, a major shortcoming in computional modeling and accurate prediction of overturning
response is the lack of a reliable drag function to use in flexible multibody dyniamic response programs
currently available. Due to inability of current computational fluid dynamics codes to predict accurate
drag functions of structures subjected to side-on overpressures at late response times, there is a need to
conduct an experimental effort to obtain drag functions of various structures susceptible to overturning.
The effort is expected to include model studies of vulnerable structures from generators to tanks in
wind tunnels at various roll and pitch angles at small as well large flow velocities in the subsonic
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range. The data obtained from such experiments on a variety of structures must be reduced to a
form suitable for direct input to one or more of the currently available flexible body dynamics codes
and may constitute part of a library of standardized drag loading functions for a variety of frequently
encountered structures and vehicle configurations commonly used by the Army.

Additionally, whole body motion of targets in terms of sliding and overturning could be studied
in open-ended shock tubes. This should also include the case where the loading function consists of
a rounded, relatively nonreflecting shock front. It will have very low side-on overpressure component
combined with a very high stagnation pressure component which is of great interest to the Army.
Initially wooden cuboids like those used by Ethridge may be modeled and tested for sliding and
overturning, the data from which could be used to validate prediction from currently available flexible
multibody dynamics codes. The side-on and stagnation overpressure versus time at open end of the
shock tube, at various longitudinal and radial locations can be mapped, for use as data input in
appropriate prediction codes.
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ELASTIC-PLASTIC ANALYSIS OF A STEEL PRESSURE
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ABSTRACT. An elastic-plastic analysis of stresses and strains in -n inter-
nally pressurized, composite-jacketed cylinder is studied here. Each layer is
orthotropic but with different material properties. Analytical expressions are
derived for a steel pressure vessel wrapped with multilayered composites.
Numerical results are obtained for three types of composite jackets. The inter-
face pressure, hoop strains, and stresses in the liner and jacket are presented.

INTRODUCTION. In recent years there has been increasing emphasis on the
use of composite materials in armament structures. A current problem in Army
cannon design is to replace a portion of the steel wall thickness with a lighter
material. The inner portion, steel liner, maintains the tube projectile inter-
face and shields the composite from the extremely hot gases. The outer portion,
composite jacket, is made of single or multilayered graphite-bismaleimide wound
and wrapped on the steel liner. Two subscale models have been fabricated and
tested [1,2]. An analytical elastic-plastic solution for the model with a
single-layered composite jacket has been presented in a recent paper (3]. This
oaper covers an elastic-olastic analysis for the model with a multilaverd com-
posite jacket. Analytical solutions are presented separately for the composite-
jacket and steel liner and then for the compound cylinder problem. Numerical
results are obtained for loading within and beyond the elastic region up to
failure.

COMPOSITE JACKET. The comoosite jacket is made of n layers bounded by
radii (rl,r2,...,rn,rn+1). Each layer is elastically orthotropic but with dif-
ferent material prooerties. The strain-stress relations for the k-th layer in
cylindrical coordinates are given by{ (k ri/Er 'OrE@ 1zr/Ez] (k) ar~ k)()

€o(k) VrO/Er , 1/E 0  -Vzo/Eo {o(k) (1)

(k)rz/Er -oz/Eo I/Ez a,(k)

or

Ci(k )  = Sij(k) aj(k) (i,j = r,0,z) (2)

where Sij(k) are components of the compliance matrix. The superscript k refers
to the k-th layer. In plane-strain conditions, the above strain-stress rela-
tions modify to
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r (k Orr ()Ar k O k
Cr(k) Are(k) Aee(k) ae(k) (3)

where

Arr(k) = (1-vrz(k)vzr(k))/Er(k)

Are(k) = -(per(k)+vez(k)Vzr(k))/Ee(k)

Ae (k) = (1-Vez(k)vze(k))/Ee(k) (4)

The normal traction acting on the interface between (k-I)th and k-th layers is
denoted by qk. Then the general elastic solution for the k-th layer bounded by
radii (rk,rk+1) and subjected to interface pressure (qkqk+l) is given by [4]

ar (k) = (-akqk+ckqk+1)(rk+i/r)gk+l + (akqk-bkqk+1)(r/rk+l )gk-

ae(k) = gk(akqk-ckqk+1)(rk+l/r)gk+l + gk(akqk-bkqk+l)(r/rk 1
)q k - 1

u(k) = r(Ar 6 (k)ar(k)+goO(k)a9(k)) (5)

where

dk = rk+1/rk , gk = (4rr(k)/6
(k ) )%

ck = (dk2 gk-1)- , , bk = Ckdk 2 k , ak = Ckdk g k l  (6)

At the two ends of the k-th layer the expressions for the displacements and hoop

stresses are

uk+ I = (Akqk - Bkqk+l)rk+1

uk = (Ckak - Okqk+l)r k

ao(k) = 2akgkqk - (bk+ck)gkqk+1 at rk+1

a0 (k) = (bk+ck)gkqk - 2akdkgkak+ at rk

where

Ak = 2akgk 00 (k) , Bk =Bro k) + (bk+ck)gJk3)O(k)

Ck = -Are(k) + (bk+ck)gkOO0 (k) Ok = 2akdk2g 000(k) (8)

At the interfaces (rk,k=2,....,n) the displacements should be continuous and

these require

Ak-lqk I - Bk-lqk = Ckq k - Okqk+1 (9)
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Let Qk = qk/qn for all k, then Qn+i = 0, Qn 1, and we can calculate Qk-1
backward for k =n to 2 by

Qk-1 = Ak...f'[(Bk...+Ck)Qk - DkQk+1]

Normalizing by Q1 leads to

qk = qk/ql for k = 1,2,...,n (10)

i.e., the relative values for the interface pressures when q1= 1. We can also
obtain the corresponding displacements ul.....,un, un+1 at rl,...,rn,rn+l.

STEEL LINER. The steel liner of inside radius a and outer radius b is
elastic-plastically isotropic and assumed to obey Tresca's yield criterion, the
associated flow rule, and linear strain-hardening. The elastic solution for the
steel liner subjected to internal pressure p and external pressure q is

= 1(p-q)(b/r)2 + p-q b2/aZI/(b2/a2-l)

u/r = E-1(1+v)((p-q)(b/r)2 + (1-2L')(p-q b2/a2)]/(b 2/a2-1) (11)

When the internal pressure p is large enough, part of the steel liner (a < r <,
p) will become plastic and p is the elastic-plastic interface. The elastic-
plastic solution can be written in the elastic portion (p r (b) as

E u 1+u P2  1 P.' q
- =--- -+ (1-v-20))(- -- --
COr 2 r2  2 b2  00

0/o= -(,. 2 + e2) - 9

clo 2 r2  b? CO

alo= v' p2/b2 - 2v qo (12)

and in the plastic portion (a 4 r 4 p)

Eu=(1-v-2v2) ar + (1.-l2) e2

ar/Go I: 12
T - (1-r0+ng e2) + - e2 - (J-na)fn 2

2 r2 2 b r 2

az'o= v. p2/bz - 2v(J-np3)1n -:- - q/rtj

=P A(p
2/r2-1) , A fg ------- T-----

3 (1-mn)
4 (1-V2')

1-2E m Et P)2 1 j~(3
17 v- o 1-m 'm-E a= O+1C(3
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where ao is the initial tensile yield stress and Et is the tangent modulus in
the plastic range of the stress-strain curve.

When the internal pressure is further increased, the steel liner will
become fully-plastic. Using Tresca's yield criterion, the associated flow rule,
and assuming linear strain-hardening, the fully-plastic solution derived in [3]
is given below.

Subject to ao oz ) or, the analytical expressions for the stresses and
displacement are

r 1 ri b2  b2

a r = -p + a ( -q )In (r 
)  + 2 (1 -_1) [z -

aO = ar + ao(1+rJ-

ru = E-'(1-2)(1+v)raor + P b2  (14)

where

* = ub/b + (1-2v)(+v)E-lq

CP= -[ b2/r2 - (1-v2)ao/E]/[1 + -2 (1-0)nao/E]

COMPOUND CYLINDER. The compound cylinder consists of an inner steel liner
and an outer composite jacket. The steel liner of inside radius a and outer
radius b is wrapped by a multilayered composite jacket. The displacement and
normal traction at the interface between the liner and jacket should be con-
tinuous, i.e., q = q, and ub = ul. From these conditions we can determine the
relations between p and q.

When the internal pressure p is small, an explicit functional relation
exists.

S(b/a 2-1) -Dq2) + (1-u-2u2 )] + 2 (15)

q (I-u) C

where every term in the right-hand side is known. The displacement at the bore
can also be expressed as an explicit function of p,

b 1) ua =b b7 a

-- (+u -+ (I-v-2v2) -2(1-vr -_ (16)
a p pa a2 ap

When the internal pressure is large enough, part of the steel liner will
become plastic. The elastic-plastic solution is given in terms of the parameter
p. The conditions of continuity require

9_ = ... I1- 2}22/b 2  (17)
ao (1-u-2 2 ) + E(C1 -DIq 2 )
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This, together with

2_ = 9- + 1(1 e2 P (-) P(+ 21n~n +j (Mi - ) (18)
%o ao 2 b3) a 2 a2

serves to give an implicit relation between p and q. By letting p = a and b, we
can determine the lower limits p*, q*, ua*, ub* and the upper limits p**, q**,
Ua**, Ub**, respectively.

When the internal pressure p is further increased, i.e., p > p**, ua >

Ua**, ub > Ub**, the conditions of continuity lead to

0 = q((C1 -01 q2 ) + (1-V-2vZ)/E] (19)

and

ea = (1-2()1n -+ 9- (1 + 99(b2/a') [E(C 1 -Dlq 2 ) + (1-v-202)) (20)ao  a ao  2(1-u z ) _

It should be pointed out that the pressure q and the displacement ub at the
interface are linear functions of internal pressure p. The bore displacement ua
can be written as

u -(1-2u)(1+v) P + b- (21)

a E a z

which is also a linear function of internal pressure p.

NUMERICAL RESULTS. Given any value of internal pressure, we can obtain
numerical results for the stresses and strains in the radial and tangential
directions and also for the displacement at any radial position in a steel
pressure vessel wrapped with multilayered composites. The steel liner for the
subscale test specimens (1] had an inner diameter of 2.0 inches and an outer
diameter of 2.34 inches. The steel was 4130 seamless mechanical tubing heat
treated to a hardness of 34 to 36 Rockwell "C." A standard ASTM tensile test
was conducted to determine the 0.1 percent offset yield strength (120 Ksi) and
the ultimate tensile strength (140 Ksi). The composite jacket is a graphite-
bismaleimide produced by Fiberite Corporation. Its cure temperature is 450OF
and it is wound and wrapped on the steel liner in the same manner as the full-
scale gun tube specimen denoted as CTL III. The layup is again approximately
half-scale and made up of two longitudinal layers alternating with two circum-
ferential layers. Sixteen layers are applied in this way. Lamina properties
for this material are given in Table 1. For the purpose of comparison, numeri-
cal results are obtained for four types of composite jackets as shown in Table
2. Cases 3 and 4 represent four hooo-axial and axial-hoop alternating layers,
respectively, while cases 1 and 2 represent eight axial and hoop layers, respec-
tively. The total thickness of each composite jacket is 0.12 inch and the steel
liner is assumed to be linear strain-hardening with a = 1 inch, b = 1.17 inches,
co = 120 Ksi, m = 0.04. In addition to the lower and upper limits (p* and p**)
of internal pressure in the elastic-plastic range, we also show in Table 2 two
other limits (Po.8 and P1. 3 ) which correspond to the internal pressure when ub/b
= 0.8 and 1.3 percent, respectively. It should be noted that ub/b is the maxi-
mum hoop strain in the composite. Brittle failure of the composite material is
assumed to occur at a maximum strain of 0.8 or 1.3 percent. The limits (Po.8 or
P1 .3 ) will be the maximum values of internal pressure these compound tubes can
contain without failure.
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The pressure at the interface between the liner and jacket has been
obtained as a function of internal pressure and the results for the first three
cases are shown in Figure 1. The results of the hoop strains at the bore,
interface between the liner and jacket, and outside surface for three cases are
shown in Figures 2, 3, and 4, respectively, as functions of internal pressure.
The complete (including elastic, elastic-plastic, and fully-plastic) ranges of
loadings up to PO.8 have been considered. These numerical results for the
strains are presented here for future comparisons with exoerimental results.
The results of hoop stresses in the liner at the bore are shown in Figure 5 as
functions of internal pressure. It should be noted that the relation cnanges
drastically when yielding occurs. The results of hoop stresses in the liner at
the interface are shown in Figure 6 as functions of internal pressure. The
relation changes from linear to nonlinear when yielding sets in and more signif-
icant change occurs when the fully-plastic state is reached. The distribution
of hoop stresses in the liner and jacket can be obtained at any given value of
internal pressure. In Figures 7, 8, and 9 we present the numerical results for
three cases of composite jackets at three values of internal pressure, i.e., p =
p*, p** and when half of the liner is plastic. The values of internal pressure
when half of the liner is plastic are p = 18.61, 23.86, 21.41 Ksi for cases 1,
2, 3, respectively. The values of two limits, p* and p**, are given in Table 2
for all four cases. When the composite jacket is made of axial lamina only, the
hoop stresses in the jacket are very small as shown in Figure 7. When the liner
is wrapped by hoop lamina only, the hoop stresses in the jacket become larger as
the internal pressure increases as shown in Figure 8. When the jacket consists
of alternating hoop-axial lamina, the hoop stresses become discontinuous not
only at the interface between the liner and jacket but also at all other inter-
faces between axial and hoop lamina.
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TABLE 1. ELASTIC CONSTANTS OF STEEL AND COMPOSITE MATERIALS

E0Er Ez
Material x106 psi x106 psi xlO' psi v rz 'Ire VZO

Hoop lamina 1m6 21.0 1.0 1.0 0.40 0.02 0.02
Axial lamina G50 1.3 1.3 31.0 0.01 0.39 0.39
Steel 4130 30.8 30.8 30.8 0.30 0.30 0.30

TABLE 2. LIMITS OF INTERNAL PRESSURE FOR FOUR CASES

Case Layup p* p** p0.8  P1.3

1 (90*)8 16.49 19.44 21.26 23.34
2 (0*)8 20.95 25.55 35.20 45.99
3 ( 0090)4 18.87 22.70 28.59 35.25
4 (900,00)4 18.80 22.60 28.3ti 34.90
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Expression Swell Analysis of the Computation of
Matrix Characteristic Polynomials*

Michael Wester'"
Department of Mathematics and Statistics

University of New Mexico
Albuquerque, New Mexico 87131

Abstract

A common problem that occurs when performing exact computations is expres-
sion swell, in which the size of expressions involved in a calculation grow dramatically.
An important special case of this phenomenon is intermediate expression swell where,
during the middle stages of a calculation, intermediate expressions can expand sub-
stantially, but the final results of the calculation are comparatively simple. Computing
the characteristic polynomial of a matrix is a good calculation for examining the ef-
fects of expression swell, which are very striking, even for small matrices. A number
of case studies involving matrices consisting of integer and rational entries have been
performed. In addition, some worst case theoretical analyses have been done and the
results compared with those of the case studies.

1 Introduction

A common phenomenon that occurs when performing exact computations is expression
swell, in which the size of numbers and expressions involved in a calculation grow dramati-

cally as the calculation progresses. A typical example of this phenomenon is the calculation

of the roots of a third or fourth degree univariate polynomial which does not factor over the
rational numbers and so the cubic or quartic formula must be used. As a particular example

*This work is partially sponsored by the Army Research Office and is being done under the direction of
Professor Stanly Steinberg as part of the requirements for a Ph.D.

e ,&uror cf tis 'per prcse.t-' - t i Si/, Army Conferc-.ec
on ,pplied : atheriatics arc, Tri'tirr.
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[Gro87], the characteristic polynomial of the 9 x 9 real symmetric Hankel matrix

-1 1 1 -1 -1 1 1 -1 -1
1 1 -1 -1 1 1 -1 -1 1
1 -i1 -1 1 1 -1 -1 1 1

-1 -1 1 1 -1 -1 1 1 -1
7"/= -1 1 1 -1 -1 1 1 -1 -1

1 1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 1 -1 -1 1 -1

-1 *-1 1 1 -1 -1 1 -1 1
-1 1 1 -1 -1 1 -1 1 1

is
A9 + As - 40A7 - 24A6 + 240A + 144A4

which can be factored over the rational numbers into

A4(A + 6)(A 4 - 5A3 - 10A 2 + 36A + 24).

To complete the solution of the eigenvalue problem, the roots of the last factor must be
extracted using the quartic formula. One of the roots is shown in Figure I. An estimate

of the size of this expression can be obtained by counting the number of operators and
atomic operands involved in its construction. In this case, using the expression's internal

representation in MACSYMA, a size of 300 was computed. The other three roots are of the

same complexity and also have sizes of 300. Of course, if these roots were to be evaluated

numerically, each root would be reduced to a single complex floating point number (which
would have a size of 5).

An important special case of the expression swell phenomenon is intermediate expression

swell. This refers to a condition where, during the middle stages of a calculation, intermediate

expressions can expand substantially, but the final results of the calculation are comparatively

simple. A typical example here is the verification of a trigonometric or tensor identity. As an

example of the latter, Figure 2 presents the results of MACSYMA computing the left-hand

side of the Bianchi identity for a symmetric connection

KJthklp + Kjkplh + KJ tphik

in terms of Christoffel symbols of the second kind. Here, K is the Riemann curvature tensor.
This sum contains 72 terms, each of which is a product of 2 or 3 Christoffel symbols, for a

total of 180 Christoffel symbols. However, upon simplifying this expression by consistently

renaming the dummy indices, the simple result of zero is obtained which verifies the identity.

Expression swell is a major problem in symbolic mathematical computations. As an
expression grows in size, it takes up more and more memory and/or disk space while also
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taking more and more time to be manipulated. A shortage of either of these resources

can cause a computation to fail, even if the final result is known to be relatively simple.

Sometimes a computation can be reorganized so that it uses less resources (or more of one

and less of another) and thus succeeds % here previously it failed. Sometimes nothing will help

but the acquisition of more space (memory, disk, etc.) and/or an increase in the processing

speed (bringing the time of a computation down to a reasonable level).

In the past, discussion of expression swell in symbolic mathematical computations has

often been anecdotal. In this paper, I will present some quantitative results of the effects of

expression swell when computing the characteristic polynomial (and the determinant) of a

matrix. These results will be a combination of case studies involving matrices consisting of

integer and rational entries and some theoretical worst case (and other) analyses. Many of

the findings are quite striking, even for small matrices.
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2 Theoretical Expression Swell Analysis

Since expression swell is such an important problem in symbolic mathematical computa-

tions, a very useful ability is to be able to predict the extent of this phenomenon during the

course of a particular calculation. One way to do this is to set up an algorithm and run an

extensive series of calculations under a variety of initial conditions. An analysis of the rcsults
will provide an idea (perhaps a good one) of the progress of expression growth during the

calculation. In a subsequent section, a statistical survey of determinant and characteristic
polynomial calculations under a limited set of initial conditions is presented. The problem
with this approach to quantitatively assessing the expression swell inherent in a given cal-

culation is that typically, a large number of sample calculations need to be made, which can

be an expensive and time consuming proposition.

Generally, a better way of charting the course of expression growth is to make some kind
of theoretical prediction. A common type of theoretical estimate is a bounding calculation.

For an expression swell analysis of an algorithm, there are two important kinds of bounding

calculations that can be performed. One involves worst case behavior in which the expression

size is maximized for the outcome of each mathematical operation (the resalts of an addition,
of applying a function to its arguments, of applying an operator to a function, etc.), while the

other involves best case behavior in which the expression size is minimized for the outcome

of each mathematical operation. In general, determining worst or best case behavior for

expression swell of a general operation on general operands is extremely difficult. Even just
the notion of expression size is not clearly defined. How is the size of an expression to be
judged? Does it mean the number of terms in the expression, the number of operators and

atomic operands, the number of characters in some representation of the expression or some

other measure? Or perhaps, different measures are appropriate at different times.

Matters are considerably simplified if only the expression swell analysis of algorithms

invol':ing infinite precision integer and rational number expressions is considered. In these

cases, expression size can be well-defined. For an integer, the number of digits in its decimal

representation is a good indicator of its size. (One could also take the absolute value of the

number itself to represent its size but this definition does not provide enough generality to
be useful-it is no easier nor much more informative to do an analysis using this definition

than it is to just do the calculation with the original integers.) This definition of the size of
an integer is essentially a logarithmic measure. Indeed, the number of digits comprising an

integer n, A/(n), can alternatively be defined by

Arn _ llogio I lJ + I ,n 5 0
1~)-0 ,n= 0

where [ J denotes the floor function. (In practice, ;'(n) will be computed directly by

actually counting the number of digits in n.) Similarly, the size of a rational number (which
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need not be in lowest terms) can be defined as the sum of the sizes of its numerator and
denominator (or possibly as the maximum of these two values). For example, the size of

327wolbeM-1.- would be N(-327) + N(1955) = 3 + 4 = 7.
In order to deal only with integer and rational number expressions in an algorithm,

the operations permitted on these quantities must be restricted as well. In particular, the
expression swell analysis of an algorithm with solely integer inputs can proceed in a simple
manner only if all the operations in the algorithm are integer or at least rational number
preserving. Therefore, confining the scope of algorithms studied to only those that just use
rational arithmetic operations (except perhaps at the last stage, such as when computing
a polynomial from its coefficients) will make expression swell analysis manageable for those
problems with such algorithms. Most of the calculations from linear algebra fall into this
category.

In the following subsections, an expression swell arithmetic is developed. This arithmetic
will operate on numbers that represent the number of digits in classes of integers and rational

numbers. Integer preserving operations will be treated separately from rational number
preserving ones. This division is made since exact rational number arithmetic exhibits a
more complex behavior than exact integer arithmetic. After developing this expression swell
arithmetic and discussing an implementation of it in MACSYMA, examples of its use and
comparisons of its predictions with the results of actual calculations will be presented in
later sections.

2.1 Integer Calculations

Here, a worst case expression swell arithmetic will be developed for certain integer pre-
serving operations. These include the rational arithmetic operations of addition, negation,
multiplication, exact division and exponentiation to a nonnegative integer power. Also in-
cluded are absolute values and greatest common divisors (GCDs). Precisely, worst case
behavior under an integer preserving operation means that the result will contain the great-
est number of digits that are possible (GCDs are a special case and will be discussed below).

To begin this development, note that V partitions the integers into an infinite set of
equivalence classes. Each equivalence class can be designated by a nonnegative integer:
0. 1,2. Thus, 3 will represent the set of integers that have exactly n digits. For example,
I = {-9'... ,-,1,...,9} (as a special case, 0 = {0}). The intent behind classifying the
integers in this way is to permit the analysis of algorithms where the inputs have specified
numbers of digits (are members of specified equivalence classes). The analyses will produce
upper bounds on the number of digits in the results for any representatives chosen from the
respective equivalcnce classes that are used as inputs to the algorithms.

Operations on the equivalence classes defined by YA" can yield one of two types of results.
An operation can produce an integer value. An obvious example is AN(TT) =_ n. That is, the
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number of digits in any representative of ff is no greater than n (actually, is exactly n in this

simple usage). This defines the operation of Y on an equivalence class. The other possibility

is that an operation on one or more equivalence classes will itself yield an equivalence class.

For example, suppose
f(YY, j2,... = g(n , n2 ,... .

Then, for worst case expression swell behavior, this will mean that g(n, n2,...) will bound
the number of digits in f(n', n',...) over all possible choices of n', such that (n)

nl,.Af(n') = n 2, . Another way of writing this is

.A/(f(i', 2 ,...)) _ .A(g(n,n 2 ,. .

For example, multiplying the equivalence class 2 with itself (i.e. multiplying together all
possible pairs of 2-digit integers) will produce a set of 3 and 4-digit integers (ranging from

±10. -±10 = ±100 to ±99 • ±99 = ±9801). Therefore, the product of 2 with itself will be

defined to be .4 since no element of the product set will contain more than 4 digits. Note

that the result could have been defined as 5 or 6 or ... but these choices would not have

been as good since they do not yield as strict a bound on the maximum number of digits as

does 4.
The best choice for g in the above formulation will be a function that actually takes on

the value of V(f(71 , f2, ... )) (i.e. that maximizes the number of digits in f(n', n',...) where
N(n') = ni for i = 1,2,...). For unary and binary operations, this is not difficult. Consider

the unary operations first.

Definition 1. The unary operations of integer absolute value and negation when applied

to the equivalence class ff are defined by

Mi Ijl- 7T,
(ii) E 7 7F.

This says that taking the absolute value or the negation of an integer does not change

the number of digits it contains. The ) is a "maximal expression swell" operator. This

notation has been introduced to emphasize the distinction between worst case expression

swell arithmetic and traditional integer arithmetic.

Definition 2. The binary operations of integer addition, subtraction, multiplication and

exact division when applied to the equivalence classes 7F and TT2, where n1 > 0 and n 2 > 0,
are defined by

(i) 7I, @ 72- max(n,n 2) + 1,

(ii) i( ) 2 max(n 1 , n 2) + 1,

(iii) YF ) f2 -nl + n 2 ,
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(iv) if, GW2 - - n2 + 1 >_,_ n2).

If nj = 0 then the right-hand sides of (i) and (ii) become W2 and the right-hand sides of (iii)
and (iv) become 0. If n2 = 0 then the right-hand sides of (i)-(iv) are respectively, 1, ff'l,0
and undefined.

Worst case expression swell addition and subtraction are equivalent since in the worst

case for regular subtraction, the two operands will be of opposite signs and so it will really
be an addition of two terms of the same sign, which is the worst case for regular addition.

Symbolically, this can be stated

Now, to understand the rest of Definition 2, it is best to consider some examples. For
instance, the worst case of adding an ni-digit number to an n 2-digit number occurs when all
the digits in the larger number are 9's. Then adding a smaller or equal sized number of the
same sign will at worst (in this particular case, will always) produce a result with one more

digit than the original integer. For example, the validity of the assertion 'i ( 3 = 8 can be
seen by looking at a worst case calculation like 9999 + 999 = 10998. For multiplication, the
worst case of expression size growth can be exhibited when both numbers consist of all 9's.
In this case, the multiplication becomes (101, -1 )( 10'"2 - 1) = 101 +,2 -( 1'on + 10' 2 ) + 1. The
two middle terms will always bring the final number of digits in the result down to n1 + n2.

Thus, the worst case 9999 - 999 = 9989001 establishes the validity of writing 4 ( ) 3 = 7.
Finally, the worst case for exact division occurs when the ni-digit number is as large as
possible and the n 2-digit number is as small as possible. For instance, to demonstrate that

exact
4 3 = 2, note that the worst situations are 9900 + 100 = 99 and 9999 + 101 = 99.

Like their integer arithmetic counterparts, worst case expression swell addition and mul-
tiplication are commutative. However, the binary operation @ at least is not associative,
unlike ordinary addition. A simple example shows this. (D @ 2) ( 70 = 3 ( 3 = 4 while
I D (2 ( j) = i G® 4 = S. Remember that the motivation behind developing an expression

swell arithmetic is to establish bounds on the rate of expression growth. Therefore, if one
way of ordering operations produces a tighter bound on expression swell than other methods,

then this way is to be preferred. The above example suggests that the optimal arrangement
for adding equivalence classes is to have them ordered in terms of increasing size (i.e. add

fil, f 2 , j73 where n1 <_ n 2 <_ n3 by (ff I ( i 2 ) ® im3). j is associative as can be easily seen
and so needs no further elaboration.

G and (®) can also be thought of as n-ary operators (operators that can be applied to an
indefinite number of operands). @ can be easily extended to handle an arbitrary number of

factors due to its associativity when considered as a binary operator. Extending (D is more
difficult; however, some properties can be stated.

894



Definition 3. The n-ary operations of integer multiplication and addition when applied to
the equivalence classes T~,..., 'k and f, respectively, where ni > 0 V i and n > 0, are defined

by

(i) jnj jT2( '.( k--_ni+ n2 +..+nk (k > 0),
(ii) k@ TT ... n n+.A/'(k -1) (k > 0).

k termn

If any of the n, = 0 then the right-hand side of (i) becomes 0. If n = 0 then the right-hand
side of (ii) is 0.

The left-hand side of (ii) in the above definition defines a shorthand notation for the n-ary
sum on the right. To see the motivation behind this definition of the n-ary sum, consider
what happens in the worst case when the n-digit numbers are composed only of 9's. For
instance, suppose n = 2 then Table 1 will show the results of actual worst case sums for
various values of k as well as, in the last column, the theoretical quantities A'(k ® 2).

k k .99 A/'(k .99) K(k @ 2)

1 99 2 2

2 198 3 3
10 990 3 3
11 1089 4 4
100 9900 4 4
101 9999 4 5
102 10098 5 5

Table 1. Actual versus theoretical worst case n-ary addition.

Notice that eventually AM(k @ 2) will occasionally exceed the actual worst case, but this
occurs only for relatively large values of k (starting at k = 10' + 1 in the general case). In a
similar vein, note that the results of n-ary expression swell multiplication will also eventually
exceed the actual worst cases but again, only for relatively large values of k. For example,
if ni = 2, i = 1,..., k then at least k = 230 factors are needed before the number of digits

predicted exceeds the actual worst case number of digits (by one).
The n-ary (@ operator introduced above is distinct from the binary version, although both

versions do produce the same result of n +1 for the common case of 3 (@ I. For example,

using n-ary (@, T @ i (D = n + 1 while under binary , this becomes (7 ® IT) @ T =

n + 1 @ if = n + 2. Again, the tighter bound is to be preferred when doing expression swell
arithmetic, so when adding like terms, the n-ary definition above will be used. The infix
representation of n-ary @ is somewhat misleading, hence the alternative notation of k () 7
for a sum of k like terms will be adopted whenever possible. This notation has the property

that (k, @ )f)( (k 2 (®)If) = (ki + k2 )(@)f since the parenthesized terms on the left are really
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sums and for estimating bounds, it is best to make the whole expression into a single n-ary
sum.

Two more worst case expression swell operations need to be defined to complete the the-
oretical framework which will allow algorithms involving rational arithmetic to be analyzed.

Definition 4. The binary operation of integer exponentiation to a nonnegative integer
power and the n-ary operation of integer greatest common divisor when applied to the
equivalence classes ff and ff ..1, Yfk, respectively, are defined by

(i f@ 0 1 (n > 0),
(ii) 'f 0k- .. =Tn- (k >0),

k factors

(iii) gcd(,,n2 ,. .. ,fk) = 1 (k > 1).

If n = 0 then the right-hand side of (i) becomes undefined.

The definition for exponentiation follows directly from the definition for n-ary multiplication
and is simply a special case of that operation. The definition of the GCD seems at first incon-
sistent with the other definitions, but it is really quite appropriate for worst case expression
swell behavior. Typically in symbolic mathematical calculations, GCDs are used to find the

common factors of sets of expressions in order to simplify subsequent computations in some
way (e.g. removing the common factors from the numerator and denominator of a rational

number, reducing it to lowest terms). Therefore, expression swell will be maximized if the
quantities involved in a calculation are all relatively prime with respect to one another. This
implies that the GCD is always one. As an example, consider the least common multiple

(LCM) of an ni-digit integer and an n 2-digit integer. In the worst case, the LCM will become

exact exact

1cm(f 1 , 2)- (n, @ ) 2) @ gcd(Y,7 2) = n +n 2 ® i = n, + n2 .

In a manner similar to the above, a best case expression swell arithmetic for integer
preserving operations can be developed. Best case behavior under an integer preserving

operation means that the result will contain the least number of digits that are possible.
Hence, this arithmetic will provide a lower bound on expression growth during a computation.

However, the best case for addition and subtraction of integers with the same number of
digits is zero (catastrophic cancellation) so the results of an analysis may be quite a bit less
interesting than for worst case behavior. In this paper, no analysis of best case expression
swell behavior will be attempted.

2.2 Rational Number Calculations

Worst case expression swell arithmetic can also be developed for rational number opera--

tions. Essentially, rational expression swell arithmetic can be considered as an extension of

896



integer expression swell arithmetic to ordered pairs of integer equivalence classes. These or-
dered pairs will be denoted like =, which represents the set of rational numbers with m-digit

numerators and n-digit denominators. Since this is worst case arithmetic, the components

of the ordered pairs will be assumed to be relatively prime, implying that the corresponding

set of rational numbers are in lowest terms and cannot be reduced in size. This is consistent
with defining integer GCDs to be one as was done in the previous subsection. Note that

a given rational number (e.g. 1 E i) need not actually be in lowest terms but for worst

case arithmetic operations, this assumption will always be made nevertheless. With these

definitions, as with the integers, X can be seen to partition the rational numbers into a
countably infinite set of equivalence classes. K will then be the general notation for one of

these equivalence classes where m and n can take on any integer value satisfying m > 0 and

n > 0 (if m = 0 then n is only allowed to be 1).

Now, worst case rational expression swell arithmetic can be defined by analogy with

ordinary rational arithmetic in terms of the operations of the previously defined worst case

integer expression swell arithmetic. This is done as follows:

Definition 5. The unary operations of rational absolute value and negation when applied
to the equivalence class f are defined by

n

(ii) ( - = m-

Definition 6. The binary operations of rational addition, subtraction, multiplication, divi-

sion, exact division and exponentiation to an integer power when applied to the equivalence
classes , Z and =" where m1 > 0 and m 2 > 0, are defined by

iK i f2 nI l+n

(ii) - G0 -= (Q7FF1@2)(l®T2) = mI+n2@nj+T2
f1l Wl2 W1 IDW2 nl+n2

(ii) fF 0 (E ( '1 ® 2 )e(Ff1 ®f 2) - 721Il
M1 612 "jflI®71 2 _n _ n+r2

6iv ;71 = =T2
ML1 ff f2 - MI M;-;TI n2 W1 @ "!2 nl "n'2

exact exac

(v) f- G Z = ( - mI -m9+I
i1 e lt nl n 2 +1

(v) FT ( 0),
(vii) -_ k = , _ .. (k > 0),

(viii) () k)~ - k>0)(. >0,m>)

If m, = 0 then the right-hand sides of (i) and (ii) become and the right-hand sides of

(iii)-(v) become 6. If m2 = 0 then the right-hand sides of (i)-(v) are respectively, m ,

undefined and undefined.
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A new operation, non-exact division, has been introduced but like the rest of the rational
operations, it is adapted directly from ordinary rational arithmetic and so should come as no

surprise. Finally, n-ary addition and multiplication for rational expression swell arithmetic
are simple extensions of the binary versions.

Definition 7. The n-ary operations of rational multiplication and addition when applied
to the equivalence classes S-, ., (k > 0) where mi > 0 V i are defined by

(i) = ®-r j @... ( n
W2 Wk W1ODW2 i)')k ... +2++fl

(ii) M ) e . = __,____... ,___,___ .-®____.--(f@;T2 .-.
k

n- +m1in-n2+m2 n--nk+. G where n n= -nj.
i=1

If any of them = 0 then the right-hand side of (i) becomes rand those terms with m, =0
are excluded from the sum in (ii).

2.3 MACSYMA Implement'tion

To obtain some practical experience with the above concepts, both integer and rational

number worst case expression swell arithmetic ha.c ke,;, mplemented in MACSYMA. The
top-level interface to expression swell arithmetic operations (there also exists a LISP-level
interface which is accessed slightly differently) is provided by the functions abs_(x), neg_(x).

add_(terml, term2 , ... ), sub_(x,y), mul_(factorl, factor2 , ... ), div_(xy), ediv_(x.y) [Ex-
act DIVision], power_(x,y) and gcd_(z,y) (A" is performed by ndigits(e)). If the global
variable exprswell is false (its default value) then these functions will perform ordinary

arithmetic. However, if exprswell is set to true then these functions will treat their ar-
guments as equivalence classes of XAf (when appropriate) and perform worst case expression
swell arithmetic on them (no mixing of integer and rational number equivalence classes will

be permitted). Thus, an algorithm can be implemented using this set of functions in place
of the normal MACSYMA arithmetic operators except where expression swell operations

are never appropriate, such as index calculations or incrementing loop indices. Then, with
exprswell set to its default value, the algorithm can be run in a normal manner. However,

by simply changing the value of exprswell, an expression swell analysis of the algorithm for
inputs from a given set of equivalence classes can be performed.

The MACSYMA implementation of general integer worst case expression swell n-ary
addition is an extension of the n-ary addition of like terms defined previously. The terms
are first sorted into ascending order, then after eliminating any zeroes, the leading set of like
terms (which may be a single term) is combined using the n-ary addition of Definition 3. The

result is tacked onto the beginning of the list containing the remainder of the terms, which is
then resorted, if necessary, to maintain the terms in ascending order. Next, the leading set
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of li" e terms are combined with perhaps an initial non-like term, once again using the n-ary

addition of Definition 3 (the non-like term, if there is one, will be treated as just another

like term in the n-ary addition). These last two steps will then repeat until the list contains
asingleterm. Forexample, i@ i@2 2@4= 2E2(@2@ 4,= 3(@4D = 5
This algorithm was chosen so as to try to minimize the results of general n-ary addition and
thus provide as tight a bound as possible.

3 Matrix Determinant Computation

There are two major algorithms for computing the determinant of a square matrix that
have been generally implemented in symbolic math systems. The first method is expansion

by cofactors (or expansion by minors). For example, if

A=7 5 1
62 9

then expanding the cofactors along the third column will yield

det A = 2(7.2- 5.6) - 1(4-2- 3.6) + 9(4-5 - 3- 7) = -31

Worst case expression swell analysis can be performed on the above method of computing

the determinant. To simplify this analysis, it is helpful to expand out all the products in
the cofactor expansion. For an n x n matrix (B), this will produce a sum of n! products of
n factors each, half of which are added and the rest subtracted. Therefore, if the entries of
the matrix are all m-digit integers, then

KV(det B) !5 rfc(T~in)] e [l.(! n)

2

YN (n! (7i ( @ n)) :_ ,Y(n! (j 37-7n-) < nm -,Vr(n! - 1). (1)

The other major algorithm generally implemented in symbolic math systems for com-
puting determinants begins with some variant of a fraction free reduction of a matrix to
triangular form (for example, see [Bar66]). This Gaussian elimination algorithm may be
either one-step or multi-step where the number of steps indicates the number of iterations
performed in a single pass through the matrix. The determinant will then be proportional
to the bottom rightmost element of the reduced matrix. For example, a one-step fraction
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free reduction to triangular form of [adapted from Fox65

C= 62 -3 -

proceeds as

(7 9 -1 2 '\ 7 9 -1 2 '~(7 9 -1 2
0 -71 18 -57 0-71 18 -57 0 -71 18 -57
0 33 -20 -30 - 0 0 118 573 0 0 118 573
o -41 -4 -41 0 0 146 82 ] 0 0 0 1042

where, during the kth stage, the elements c(k) in the (n - k) x (n - k + 1) lower right block

are computed by
(k-1) (k-i) (k-I) (k-i)

C(k) Ckk C0  - Cik Ckj
cij (k-1)

(with c } defined to be one). Thus, det C is 1042. In general, some kind of strategy will be

used to choose a "good" pivot at each stage and also to take care of the case of a forced zero
pivot which indicates a singular matrix.

For an n x n matrix (call it D) consisting of m-digit integer elements, worst case expression
swell analysis of the above algorithm reveals that

N/(det D) < nm + (n - 1)2 (2)

This can be seen by performing the elimination on a representative matrix using expression
swell arithmetic. In particular, for a 4 x 4 matrix of m-digit integers, the reduction proceeds
as follows:

m m m 0 2mn+ I 2m+l 2m +1
m m j - 0 2m+1 2m+1 2m+l

m m m 0 2m+ 1 2m+l 2m+l)

2m+ 2m+ I 2m+ 1 0 2m+ 2m+ 1 2m+ I
0 0 3m+4 3m+4 0 0 3m+4 3m+4

0 3m+4 3m+4 0 0 0 4m+9

For more detail, consider the second stage calculation of the (3,4) element:

32)-- = [(d- - ) d(1 )  , @--900
3(4 - 3 '32
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________ ________ ________exact

[(Tm+1@Tm+1)e(2m+1® mi) G M
ex"ct exat _

= m 14+ (4 2 Yf ~= m-+ I Yf I~= m+4.

A comparison of the above two theoretical worst case determinations of the size of the

determinant of an n x n matrix with m-digit integer entries shows that the former yields a

tighter and thus a better bound. This can be seen by examining the difference

Af(det D) -Af(det B) = (n - 1)2 -A(n! - 1)

= (n- 1)2 - logl(n!- 1)J - 1 (n > 1)

The second equality comes from the definition of X and the third line is a result of ap-

proximating n! (and hence n! - 1) for n large by Stirling's formula. Indeed, .(det D) will

strictly dominate Af(det B) for all n > 2. The primary reason for this behavior is that worst

case expression swell analysis is performed one stage at a time while following the Gaussian

elimination algorithm but all at once for the expansion by cofactors. The latter analysis

takes full advantage of the stricter bounds yielded by combining as many n-ary arithmetical

operations as possible at one time and so produces the better estimate. The former analysis

does produce bounds on the size of the matrix elements at each stage of the elimination but

any overestimates from previous stages tend to accumulate.

The determinant of a matrix can also be bounded using Hadamard's inequality. This

relationship states that given an n x n matrix E,

I detE2 H( e 2)

If all the elements of E are m-digit integers, then worst case expression swell analysis gives

N'(IdetEl2 ) < K'([n®(T@2)]@n)<K.,V([n® 21r )

< .V(2m +,,V(n- !)(nn) <_2nm + nV(n- 1)

Hence,

Af(det E) < Inm + -nA(n- 1)] (3)

carefully applying Definition 4(ii) in reverse. This estimate is of about the same asymptotic

order as the one for the cofactor expansion.
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Rational expression swell arithmetic can also be applied fruitfully to Hadamard's in-

equality. Suppose F is an n x n matrix with rational number entries consisting of m-digit

numerators and denominators, then

X(l det FI2 An ®( 2)]®n) 5A( [n®~ ' )
Now,

k termn

k factors k factors

W-  = ff y(f®.®.)"((in® '"® )
m m m

k terms k factors

k ® - km + K(k - 1)
TM_ km

therefore,

Af(Idet F12) A (2nm + (n-1) (K ! (2n2m +n A/ (n 1))

Carefully taking an exact square root once again,

32(detF) ([n n (n-1)/2 1 )<[2n2rm+ InK(n - 1).
-- n2mr --

4 Matrix Characteristic Polynomial Computation

Generally in symbolic math systems, the characteristic polynomial of a matrix A is

calculated by forming the matrix A - AI, where A is a scalar variable, and then computing

its determinant. The determinant will always involve polynomial arithmetic, even for a

purely numerical matrix, so it is difficult to perform expression swell analysis on this method.

However, in the previous section, expression swell analysis was performed on the determinant

calculation of certain integer matrices. Since the determinant is plus or minus the constant

term of the characteristic polynomial, which for nonsingular matrices is typically the largest

coefficient of the polynomial in gross size, these analyses should give a good bound on the

size of the largest coefficient of the characteristic polynomial for integer matrices with entries

of the same size.
A second method, which computes the coefficients of the characteristic polynomial of a

purely numerical matrix using no polynomial arithmetic, involves taking the trace of powers
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of the matrix. The procedure takes advantage of the fact that for an n x n matrix A with

eigenvalues {A,}= 1 . ,,

trace Ak Z Ai.

The coefficients of the characteristic polynomial are then computed from the symimetric

functions of the traces of A, A2,... , A n [Sto72I.

The above method requires O(n 4) operations and so is not practical for large matrices.

Nevertheless, it is instructive to perform worst case expression swell analysis on this algo-

rithm. Initially, consider the first portion of the algorithm, which computes the various

traces. If the entries of A are m-digit integers then the number of digits in the entries of

AA = A 2 will be bounded by 2m + AI(n - 1). For AA 2 = A3, the number of digits in the

entries will be bounded by 3m + 2A/(n - 1) and in general, the number of digits in the entries

of AAk - 1 = Ak will be bounded by km + (k - 1)Af(n - 1). Hence,

K(trace Ak) Y K ai)

<_ K(n® km+(k- 1)A(n- 1)) _ k[m +X(n- 1)].

Now, the coefficient ck of Ak (0 < k < n - 1) in the characteristic polynomial P(A) of A

will be composed of p(n - k) terms, each of which will be proportional to a product of traces

such that the total sum of powers involved is n - k. Here, p(n) is the number of partitions of

the integer n (i.e. the number of ways n can be written as a sum of positive integers where

order does not matter) and is computed by Hardy and Ramanujan's formula

p(n) z 4 V3_ n e

For example, the coefficient of A for A, 4 x 4, is

trace A3  (trace A2)(trace A) (trace A)3

3 2 6

which consists of p(4 - 1) = p(3) = 3 terms. It is easily seen that .V([trace A]') =

Y(trace Ak), therefore,

.w'(Ck) < .(p(n - k) ® (n - k)[m+V(- 1))
< (n - k)[m +,A(n - 1)] +,V(p(n - k) - 1).

In particular,
K(det A) = f(co) _ nm + nAf(n - l) + Af(p(n) - 1) (4)
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hence

K(detA) nm + n(Lloglo(n - 1)j + 1) + og10 (413e'V -1 + 1 (n>1)

, nm +nloglon (n --. oo) .

This estimate compares favorably to the one derived from the cofactor expansion of the
determinant (although it will be seen in the next section that it is somewhat higher).

A third way to compute the characteristic polynomial of a matrix is to transform the
matrix into upper Hessenberg form via a similarity reduction (which will preserve the char-
acteristic polynomial) and then compute the characteristic polynomial of the transformed
matrix using a computationally cheap algorithm. A matrix is upper Hessenberg if all the
entries below the subdiagonal are zero (i.e. H is upper Hessenberg if hij = 0 whenever
i > j + 1). The reduction of a general matrix into upper Hessenberg form proceeds via a
series of elementary similarity transformations. For example, performing the first stage of
the reduction on the matrix C of the previous section yields

(1 0 01000 7 -12
10 1 0 0 4 - 7 0 1 0 0 4 -2- 2-7

0 10 1 6 3 - 01 10 - 75 -

1 404 164-3 0 - 1 -5 0 t 0 1 _5

4~ 4 '10 16

Once an upper Hessenberg matrix, H, similar to the or;ginal matrix, has been con-
structed, the characteristic polynomial of the upper Hessenberg matrix (and thus of the
original matrix) is calculated next. The basic algorithm is to create a triangular system of
equations using H, which can then be easily solved for the coefficients of the characteris-
tic polynomial. In particular, let H be an n x n standard upper Hessenberg matrix (one
with no zero subdiagonal elements). Now, define the vectors wl,..., w, by wj+1 = Hw,
for i = 0,...,n- 1 where wo = (1,0,...,0)T is the n x 1 unit vector el. Then the upper

triangular system
(wol- I. wn-l)a = -wn

will have a unique solution for a = (ao.a..,a,- )T and the characteristic polynomial of
tl will be given by An + a,-1 An-' + ... + aA + a0. If H has subdiagonal elements that
are zero then its characteristic polynomial will simply be the product of the characteristic

polynomials of each standard upper Hessenberg block found along H's diagonal.
Worst case expression swell analysis of the above algorithm is difficult to generalize and so

will not be attempted. In the following section, results from the analyses of specific examples
will be presented. These analyses were performed using the MACSYMA implementation of
worst case expression swell arithmetic.
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5 Results of Case Studies

It is all very well to derive theoretical bounds on the possible expression swell in a

calculation, but when compared to the results of actual computations, how good of an

estimate of real behavior do these bounds really provide? In order to answer this question,

a number of case studies were performed involving matrices of various sizes with initial

integer or rational number entries. Some of these results provide quite striking examples of

intermediate expression swell in action.
To begin with, Table 2 presents the four worst case bounds (relations (3), (1), (4) and (2),

respectively, of Sections 3 and 4), derived for the determinant of an n x n matrix containing

m-digit integer entries, for a variety of values of n with m = 4. Hadamard's inequality yields

the lowest upper estimate on the number of digits in the determinant, although the bounds

derived from the algorithms involving expansion by cofactors and taking sums of powers

of traces fall within the same approximate asymptotic order. As noted before, worst case

bounds derived from the fraction free Gaussian elimination algorithm grow much faster than

for the other methods.

Table 3 presents the results of actual calculations performed on n x n matrices for values

of n ranging from 3 through 10, where the initial matrix elements were 4-digit integers. The

table is divided into three sections. The first section (a) exhibits the greatest number of

digits encountered in the elements of the upper Hessenberg matrix produced by a similarity

transformation of the original matrix using a division free version of the algorithm presented

previously. The column labeled "exprswell" shows the results produced by setting the global

variable exprswell to true in MACSYMA. The next column displays the outcome of using

an initial matrix :omposed of the n 2 largest 4-digit primes. The last three columns in this

table present the results of a statistical sampling in which matrices consisting initially of

random 4-digit integers were used. The first pair of numbers is the mean and standard

deviation obtained from a series of calculations whose number is given by N,, mpi'.. The last

column gives the minimum and maximum values for the largest number of digits attained.
Section (b) of Table 3 shows the number of digits contained in the largest coefficient

of the characteristic polynomial that was computed directly from the corresponding upper

Hessenberg matrix of the previous section. Due to the division free nature of the similarity

reduction to upper Hessenberg form that was used, a straightforward computation of the

chaiacteristic polynomial will produce, in general, a non-monic result. However, the leading

coefficient of this polynomial will exactly divide all the other coefficients, producing a monic

polynomial whose constant term will be plus or minus the determinant of the original matrix.

'In some cases, when a sequence of calculations was performed as here, later calculations were done

fewer times due to time constraints and/or random problems occurring when running large MACSYMA

jobs continuously for days at a time (such as occasional memory corruption resulting from the growth of a

MACSYMA job).
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Essentially, this particular procedure for computing the monic characteristic polynomial of
an integer matrix reserves all divisions until the final step of the calculation. The maxi-

mum number of digits found in a coefficient (nearly always the constant term) of the final,
simplified characteristic polynomial is presented in the final section (c) of Table 3.

The trend displayed in Table 3 is quite typical of calculations involving intermediate
expression swell. Even though the final numbers have relatively few digits, intermediate

computations in this particular algorithm are already creating integers whose size is ap-

proaching 5 digits when n is just 10. It is interesting to note that the matrices with prime

entries pretty much provide the smallest actual results and this seems to be true as well for

the other calculations surveyed here that have started with integer matrices.

The theoretical limits on the size of the determinant, tabulated in Table 2, bound the
results in Table 3(c) nicely. The "exprswell" calculations tend to greatly overestimate the

maximum number of digits actually produced in the first two phases of the computation
except for the lowest values of n. However, after the final exact divisions, these bounds drop
down to much more reasonable estimates. One has to be careful, though, in interpreting the

results of the exprswell computations for this last calculation. The coefficients of the non-

monic characteristic polynomials in Table 3(b) were determined by a series of calculations

that maximized the number of digits at each step. In order to truely maximize the number

of digit in the coefficients of the final monic polynomials, though, the leading coefficients

of the non-monic polynomials (which act as divisors) should really have been minimized in

the course of their calculation (using a best case expression swell arithmetic). This action,

however, could have impacted the results of the worst case expression swell arithmetic in
earlier phases of the calculations. Thus, the occurrence of exact divisions in an algorithm
such as this one can lead to theoretical uncertainties in verifying whether the analysis does

indeed produce a bounding calculation, although in practice, no exceptions have been found

so far.

Table 4 presents the maximum number of digits found in coefficients of the characteristic

polynomials of upper Hessenberg matrices whose initial nonzero entries were 4-digit integers.
The exprswell calculations and the results from the statistical survey for n = 3 through 10

are remarkably similar to those exhibited in Table 3(c). These similarities appear to imply
that the results of computing characteristic polynomials of integer llessenberg matrices will

give a very good indication of the trends to be expected when computing monic character-
istic polynomials of integer general matrices. This is useful since there are no theoretical
uncertainties here as there were above because this algorithm involves no divisions. Also, the

computation of the characteristic polynomial of an integer Hessenberg matrix is reasonably
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fast as well as conservative of memory, so it was possible to perform calculations up through
n = 100.2

The trends of Table 3(c) become more pronounced for n > 10 in Table 4. The worst
case maximums derived from Hadamard's inequality continue to provide good bounds on the
actual results, although they become less good for increasing n. For n > 10, the exprswell
bounds, which are growing arithmetically, begin to leave the real recorded maximums, which
are growing slightly slower than linearly, further and further behind. Generalizing these data

tendencies (as well as those found for m = 5 and 6, the data for which are not presented
here), a good empirical bound on the maximum number of digits in the determinant of an
n x n integer matrix (A) which has entries consisting of no greater than m digits appears to
be given, simply by

A/(det A) < nm .

Table 5 shows what happens when the Hessenberg matrix is initially filled with 4-digit
rational numbers (the numerators and denominators are both 4-digit integers) and the matrix

is first "derationalized." Derationalization is the process of converting a matrix of rational
numbers into a matrix of integers by multiplying the matrix by the least common multiple of
the denominators of its rational number entries. This number (call it d) is an implicit divisor
of the integer matrix and if the matrix is involved in subsequent calculations, d needs to be
taken into account. In this particular example, the characteristic polynomial will again, in
general, be non-monic but in this case, dividing the coefficients by the leading coefficient is
not guaranteed to be exact (since this is really the characteristic polynomial of a rational
number matrix) and so is not performed.

In Table 5, the "prime" rational numbers (rational numbers whose numerators and de-
nominators are prime) provided the worst actual results of expression swell. The observation
that "prime" rational numbers typically generate the greatest expression growth can also be
noted in other calculations that start off with matrices of rational numbers, completely con-
trary to what was observed earlier for calculations that started with integer matrices. A
nice discovery is that the exprswell calculations produced good bounds on the worst case
expression swell. This may be due to a couple of considerations. The prime computations
will be particularly large since the denominators of the initial rational number entries will
all be big and relatively prime to each other so that derationalization will create nearly the

maximum possible integer entries for a matrix of a given size undergoing this transformation.
The exprswell calculations will act as if they are computing the characteristic polynomials
of integer Hessenberg matrices with large effective values of m (essentially, the original m
times the number of nonzero elements in the matrix). Thus, any excesses in the exprswell

2Al1 the calculations in this paper were performed on Sun 3/160 workstations with 4 megabytes of memory
running under a version of the UNIX operating system (Sun OS 3.4).
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computations (which seem to depend only on n) will be overwhelmed (at least, at these
values of n) by the large effective values of m.

In Table 6 is presented the results of another characteristic polynomial computation via
an intermediate Hessenberg transformation. This time, the entries of the initial general
matrices were 4-digit rational numbers and all calculations were done in rational arithmetic.
Note that the numbers in this table represent the number of digits in the maximal rational
number (i.e. the largest value obtained by summing the number of digits in the numerator
and denominator of each rational number under consideration).

Again, the calculations that started off with "prime" rational number matrices produced
the greatest growth in expression size. Also, like the computations whose results were shown
in Table 2, expression swell decreased dramatically between the intermediate results found in
the entries of the Hessenberg matrices and the final numbers that comprised the coefficients
of the characteristic polynomials These latter numbers, upon examination of additional

data for m = 5 and 6 (not n here), appear to be quite nicely bounded by 2n 2m, which
is very similar to the I r derived from Hadamard's inequality. The bounds computed
from the MACSYMA implementation of rational worst case expression swell arithmetic are
huge and provide ",irtually no useful information.

As an experiment to see what effect GCDs have on rational number computations, the
above calcu ations on "prime" rational number matrices were repeated with the GCD func-
tion forced always to return one, thus allowing no cancellation of common factors. These
results are compared with those from Table 6, in which GCDs were taken freely, in Table 7.
It is quite clear from this comparison of maximal numbers of digits that GCDs, which are
taken every time a new rational number is formed in MACSYMA, have important effects in
minimizing expression swell which, in the samples reviewed in Table 7, is growing exponen-

tially for the "no GCDs" cases. The reason that the results for "no GCDs" are complete
only through n = 6 is because the MACSYMA computations for bigger cases ran out of

available memory.
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Hadamard's Cofactor Sums of powers Gaussian

n inequality expansion of traces elimination

14 13 16 16

4 18 18 21 25

5 23 23 26 36

6 27 27 32 49

7 32 32 37 64

8 36 37 42 81

9 41 42 47 100

10 45 47 52 121

20 100 99 123 441

30 150 153 184 961

40 200 208 245 1681

50 250 265 306 2601

60 300 322 367 3721

70 350 381 427 5041

80 400 439 488 6561

90 450 499 548 8281

100 500 558 609 10201

Table 2. Determinant of an integer general matrix (m = 4).
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n 11 exprswell primes 1[ random numbers N-pj., min -max

3 14 13 11.42 ± 0.75 100 9--+ 12

4 43 27 30.73 ± 2.10 100 24-- 35
5 130 59 74.98 ± 2.66 100 68- 81

6 391 98 142.38 ± 4.26 100 130--+ 152
7 1174 155 249.75 ± 6.75 100 2334-* 262

8 3523 240 366.50 ± 9.53 100 343- 388

9 10570 334 585.30 ± 11.79 100 556-- 612
10 31711 469 825.92 ± 14.22 13 797- 844

Table 3(a). Division free transformation of an integer general matrix into Hessenberg form
(m =4).

I I1 exprswell 11 primes 11 random numbers] N.,,l I min - max

3 43 31 30.09 ± 2.28 100 22-. 34

4 172 92 115.60 ± 7.90 100 90-. 128

5 648 277 364.62 ± 13.36 100 331-. 393
6 2341 561 840.63 ± 25.23 100 765--+ 898

7 8209 1058 1731.99 ± 47.74 100 1616- 1824

8 28170 1882 2911.08 ± 77.09 100 2720 -3081
9 95110 2959 5243.04 ± 106.39 100 4977 5483

10 317083 4644 8243.42 ± 147.58 12 7942-.8422

Table 3(b). Characteristic polynomial of the Hessenberg matrix.

n 1 exprswell primes l] random numbers Nsampes min --+max

3 17 7 11.40 ± 0.84 10 10-. 12

4 25 7 15.20 ± 0.63 10 14-4 16
5 34 8 18.70 ± 0.67 10 18-- 20

6 44 8 22.70 ± 0.95 10 21-- 24
7 55 11 26.50 ± 0.97 10 24--. 27

8 67 11 :10.60 ± 0.52 10 30-. :11
9 80 13 34.20 ± 0.63 10 33-- 35

10 94 14 37.90 ± 0.57 10 37-.-- 39

Table 3(c). Above divided by its leading coefficient.
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[n exprswe primes random numbers N,,,pni. min --+ max

3 17 9 11.46 ± 0.54 100 10-. 12

4 25 14 15.27 ± 0.60 100 13--+ 16
5 34 15 19.13 ± 0.68 100 17--+ 20

6 44 21 23.00 ± 0.70 100 21- 24
7 55 23 26.51 ± 0.75 100 24--. 28
8 67 29 30.35 ± 0.73 100 28--. 32

9 80 33 34.12 ± 0.76 100 33--+ 36

10 94 38 37.91 ± 0.79 100 36--. 39

20 289 - 75.40 ± 0.89 5 74--+ 76
30 584 - 113.40 ± 1.14 5 112--. 115
40 979 - 150.60 ± 1.34 5 150-. 153
50 1474 - 187.60 ± 1.14 5 186--- 189
60 2069 - 227.60 ± 1.52 5 226--. 230
70 2764 - 264.40 ± 1.14 5 263--. 266

80 3559 - 301.80 ± 1.30 5 301--. 304

90 4454 - 341.60 ± 1.95 5 339-. 344
100 5449 - 378.00 ± 2.83 5 374-- 380

Table 4. Characteristic polynomial of an integer Hessenberg matrix (m = 4).

n 1 exprswell primes random numbers N,, I min --. max

3 107 93 78.07 ± 5.23 100 65--. 89

4 225 205 162.47 ± 11.43 100 123--. 187
5 404 376 283.81 ± 19.35 100 236--. 331

6 656 620 451.50 ± 30.81 100 346--- 507

7 993 946 657.26 ± 45.02 100 536--. 746

8 1427 1368 934.24 ± 56.08 100 804--- 1066
9 1970 1895 1245.57 ±80.66 100 1080--1426

10 2634 2540 l11612.45 ± 112.96 100 1245-, 1932

Table 5. Characteristic polynomial of a "derationalized" Hessenberg matrix, initially filled
with 4-digit rational numbers.
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n i exprswell primes 11random numbers I N min - max

3 82 61 50.15 ± 4.84 100 36-. 60
4 911 216 176.29 ± 11.92 100 137--+ 202

5 13534 622 504.29 ± 27.15 100 438- 564

6 255497 1369 1096.85 ± 46.77 93 983- 1223

7 5852292 2588 2013.28 ± 98.13 100 1722-*2206

8 157563119 4313 3275.51 ± 130.41 57 3027-- 3584

9 4874278234 6671 4971.33 ± 170.71 12 4730- 5310

10 170327525637 9717 7194.50 ± 198.44 6 6932-. 7488

Table 6(a). Transformation of a general matrix, initially filled with 4-digit rational numbers,
into Hessenberg form.

n jJ exprswell ]primes ] random numbers N., mi- max

3 711 69 60.34 ± 4.05 100 46- 69

4 15812 125 105.24 ± 5.19 100 91-- 117

5 493670 198 163.02 ± 6.45 100 145-- 178

6 19254949 286 231.30 ± 8.34 93 208--. 250

7 898326065 390 309.65 ± 11.57 100 281-- 334

8 48860659874 508 399.82 ± 14.61 57 372-- 440
9 3039845981556 642 498.25 ± 11.41 12 484--- 518

10 213099621017855 791 611.50 ± 11.43 6 596-. 631

Table 6(b). Characteristic polynomial of the Hessenberg matrix.

Hessenberg matrix Characteristic polynomial

n GCDs I no GCDs GCDs no GCDs

3 61 61 69 122

4 216 379 12.5 565
5 622 2360 198 3129
6 1369 1-1203 286 18365
7 2588 82.576 390

Table 7. Transformation of a general matrix, initially filled with .4-digit "prime" rational
numbers, into Hessenberg form and the characteristic polynomial of the Hessenberg

matrix.
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6 Concluding Remarks

Expression swell is a significant and in the long run an inevitable problem of symbolic
computation. Since expression swell is ultimately unavoidable, one goal should be to make
it at least manageable. One way to accomplish this is to develop a collection of procedures
which will allow a user to be able to predict the progress of expression growth for a given
calculation. In this paper, an attempt has been made to develop some tools to pursue the
above goal for a certain class of computations. The application of these tools has had mixed
success.

One tool for charting expression growth is to perform a variety of calculations with varying
initial conditions and measure the sizes of the final and various intermediate results. This
procedure, although tedious, has produced some interesting conclusions about the maximum
size of coefficients in the characteristic polynomials of certain integer and rational number
matrices where the nonzero entries were initially uniform in size.

A second tool is worst case (and best case) expression swell arithmetic. This can be
used both for deriving general bounds on expression swell over a class of calculations and
also for determining such bounds for specific computations. Some of the bounds looked
at above have produced good estimates on real maximal expression size while others have
given outrageous overestimates. At this preliminary stage in the development of a useful
expression swell arithmetic, some observations can be made based on the experience gained
here.

For integer worst case expression swell arithmetic, the best results (the tightest bounds)
have come about when analyses have been performed on algorithms or inequalities that have
minimized the mix of operations needed to obtain an estimate. For example, the analysis
of the Gaussian elimination algorithm of Section 3 and many of the computed bounds in
the previous section required a complex, multi-stage calculation and in many cases, this
resulted in excessive estimates, even for small values of the matrix dimension. On the other
hand, simple formulas like Hadamard's inequality, where the various arithmetical operations

are reasonably consolidated gave good bounds on the expression swell. A major reason for
this behavior is that expression swell arithmetic ignores past history. Thus, if a calculation

produces a worst case oui.come that just barely exceeds n digits (e.g. 11 (4 n- 2), the result
will normally be treated as if it was the largest possible n-digit integer in the very next

calculation, effectively neglecting the number's origin. Thus, the more steps there are in a
computation, the more often these jumps in (interpreted) value can occur. Of course, this
phenomenon also allows the analysis to be greatly simplified.

Defining .A(n) in terms of an arbitrary integer base b instead of 10 (the latter was chosen
only for convenience) could help to soften the effect of jumps in value if a base smaller than
10 was selected. This is because integers having the same number of base b digits will form

more and smaller sets as b decreases, thus producing finer divisions of the integers. Therefore,
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expression swell bounds can be made more precise and jumps in value can be lessened (for

instance, 111 0 would jump to 99991o using a decimal definition of At(n), but it would only
jump to 20471o with a binary definition, where i would now count the number of bits in n).

Another factor in why the expression swell arithmetic developed here sometimes tends
to greatly overestimate expression growth is that no provision has been (or is easily able
to be) made to account for the effects of subtractive cancellation (which can be sigaificant
for procedures such as the solution of a triangular system of equations) and cancellation
of common factors in non-exact quotients. A theorem from number theory due to Ernesto

Ces.ro states that the probability that two integers chosen at random are relatively prime is
6/7r' or about 61% [Knu69]. Performing rational arithmetic operations again and again on
elements of a given matrix involves numbers that are, after a while, far from random and so

GCDs play a significant role, as was seen in Table 7.
The other major reason why the rational worst case expression swell arithmetic did so

poorly is that rational operations involve extensive integer arithmetic so that the jump in
value effect is greatly magnified. Nonetheless, this arithmetic did provide bounds on the size

of other smaller expressions involved in the calculations which were more reasonable, as well
as indicating the relative ranking by size of the various expressions present at a given stage
(e.g. matrix elements or polynomial coefficients). These last remarks also apply to integer

expression swell arithmetic.
Worst case expression swell arithmetic is an attempt to effectively systematize asymptotic

analysis for a certain class of problems while providing a greater flexibility in its usage (e.g.
the elements in a matrix need not be considered initially uniform in size in order to obtain
a bound). In this paper, only numerical calculations were considered, but these or like

techniques could also be applied to the coefficients and exponents of polynomial or other
computations (as has occasionally, asymptotic analysis). One has to be careful with worst
(or best) case analyses for complicated algorithms as what is worst case at one stage may
be best case (or more usually, a mix) at another. Finally, these analyses are also useful for

not only bounding expression swell (and thus computer memory usage) but also for setting
limits on CPU time consumption. For example, the time required to multiply n, by n 2 using
the simplest algorithm is O(AN(n) .Ai(n 2 )) [Akr88].
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A VARIATIONAL METHOD FOR
FINDING HOMOCLINIC ORBITS

IN THE LARGE.

I. EKELAND
CEREMADE, UNIVERSITI DE PARIS-DAUPHINE.

§1. A simple equation.

Let us start form the following one-dimensional equation

(1) -_q+q3 = 0 , q(t) ER

Solving it is a simple task. We know that the total energy is preserved:

4()1 1 q~)+1 t4
2  4  = constant

so that the trajectories of equation (1), in (4, q)-space, are just the level
curves of the function 4 q2 + 1 q'. Figure 1 shows the existence
of two (by symmetry) continuous families of closed level curves, corre-
sponding to periodic solutions of equation (1). The boundary curves
correspond to solutions q(t) with the property that :

q(t) - 0 , 4(t) - 0 as t - +cc

Such solutions are nowadays called homoclinic, although I would pre-
fer to call them doubly asymptotic to the origin, according to Poincar6's
original terminology.
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For future generalization, it will be convenient to rephrase equation
(1) in the Hamiltonian formalism. Introducing the function

12 12 14
H(p,q) = p -q +4q

we rewrite equation (1) as a system

0Hq=P-7-

q _ q' = OH

§2. First extension : more dimensions.

We would like to find homoclinic orbits in higher-dimensional situ-
ations. The preceding argument breaks down because the level sets
H(p,q) = h no longer are trajectories. In fact, no general result was
known until the recent paper by V. Coti Zelati ; I. Ekeland and E. S6r6
(ref. [1]) which I am now proceeding to describe.

Consider a smooth Hamiltonian H : R2" - R of the following form

1
H(x) = (Ax,x)+ R(x)

under the assumptions that

(HI) A* = A and JA is hyperbolic

(no eigenvalue on the unit circle)

(H2) R is strictly convex

(H3) R is superquadratic, that is, for some a > 2

and for suitable constants K > k > 0 we have

R(x) < (R'(x),x)

klxl < R(x) < Klzxa.

Define J E £(R2") by
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T
so that J* = -J = J. We are interested in the Hamiltonian system

(2) x = JH'(x)

It has the constant (equilibrium) solution x - 0. Periodic solutions
can be found by the duality methods described in [2]. We want to find
homoclinic solutions, i.e.

(3) X(t) -* 0 when t -* :oo

One approach is through the classical action principle. Associated
with equation (2) is the action integral

(x) = j [ (J, x) + H(x)] dt

= J[ (++ax, x)+R(x)]dt

and the solutions of the boundary-value problem (2)-(3) are the
extremals of the integral 4(x) over a suitable space of curves. How-
ever, as we already noted in [2], the functional 45 does not readily lend
itself to analysis. Taking advantage of the convexity of R, we will replace
4 by a more tractable functional.

Note first that the equation

J±.+Ax = u

has a unique solution x such that x(t) -- 0 when t -, ±o, for any
u E L". This fact crucially uses the assumption that JA is hyperbolic.
and enables us to define a continuous linear map

f- L'3(R) --* L'(R) nfl"3R

by x = Lu. Henre = = I is the conjugate exponent (1 < 3 < 2) and

W - {=x E Lo I E L} .

It should be noted that £ is not a compact operator (as would happ.n
on any finite interval). This is the reason why the Palais-Smale condi-
tion fails in this problem, as we will see later on.

Introduce the Fenchel conjugate R* of the convex function R

R*(y) = max {xy- R(x) I x E R'}

and define a functional i on L16 by:
r+00

(u) = 0 [(Ct, u) + R*(u) Idt
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PROPOSITION 1. V is well-defined and C1. If u is a critical point of 4.
i.e. if V,'(u) = 0, then x = C(u) is a solution of (2)-(3).

FORMAL PROOF: Write 0 = 0'(u) = Cu + VR*(u). Hence:

VR*(u) = -Cu.

By the Legendre reciprocity formula, this can be rewritten as

u = VR(-Lu)

or, introducing x = -Cu :

-Jx, - Ax = VR(x) El

The question now is to find critical points of ,b. Simple estimates show
that V, has a local minimum at the origin, with (0) = 0, while points

u E LO can be found, with 1lull arbitrarily large, such that V(u) < 0. By
the Ambrosetti-Rabinowitz theorem (see [2]), we conclude that there is

a sequence u,, E L with

(4) V(u.) c > 0

(5) 0'(U,) - 0.

At this stage, one would like to conclude that u,, has a convergent

subsequence, un-k - U with =() 0. This is the so-called Palais-

Smale condition. Unfortunately it does not hold in this problem. The

analytical reason is that the operator C is not compact, the underlying
geometrical reason is the fact that the problem is translation-invariant.
and the symmetry group R is not compact.

To see what could happen, suppose there actually is some critical

point U # 0, corresponding to a homoclinic orbit Y = -2id. Set

(O*u)(t) = u(t+0) , for0E R.

Define a sequence u,, in LO by :

Un = U+*u , l-+ + o.

920



In other words, u,, is the sum of two bumps which split apart. It is
not difficult to see that u(t) -- 0 exponentially fast when t - ±oo, so
that, as n increases there is less and less interaction between u and n* u,
each of which solves ik' 0. In the limit, we get :

0'(u,,) -+ 0 when n--+ +oo.

The concentration-compactness lemma of Pierre-Louis Lions (see [3],
[41) tells us that this is exactly what does happen. In fact, fr--. (4)-(5)
we conclude that there is some subsequence u,,,, finitely many critical
points ul,.., uN of ik, and corresponding sequences pi,... ,pN in Z such
that

N

Unk'ZPi* U -40

i=1

]pk,- P .I - 00 if ij

N

c = O(u'i )

1=1

Any of the u i solves V,' = 0, so that the corresponding x' = -Lu'
solves (2)-(3). We have proved :

THEOREM 1. Under assumptions (Hi) to (H3), the system has at least
one homochnic orbit.

§3. Second extension : non-autonomous case.

Let us now consider the equation

(6) x = JH'(x) = JAx + JR'(t,x)

under assumptions (H1) to (H3). The latter has to hold uniformly with
respect to t

(M) R(t,x) < (R'(t, x),x){lxl _R(t,x) < K xj'
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Assume in addition the R is time-periodic

(H4) 3 T: R(t + T,z) = R(t,x) V (t,x)

We may then introduce the time-map in phase space. This is the map
f :R2" --* R2 which associates x(T) with x(O)

X(O) 0 XI f(XO)
x(T) x,

Because of (H3), the origin is a fixed point for f

f(O) = 0.

Assumption (HI) tells us that 0 is a hyperbolic fixed point. By the
standard theory of dynamical systems, there are two n -dimensional
manifolds branching off from 0, the stable one E" and the unstable one
E u :

E" = x E R 2 1f"(X) 0 when k -o}
E*' = {xER 2, 1f k(x ) ---  w h en k  - oo } .

Any homoclinic orbit '(t) gives us a sequence of homoclinic points
S(nT), n EZ :

V n E Z , "(nT) E Es Eu.

The manifolds E" and E" therefore have infinitely many intersection
points. The first to notice this fact was Poincar6 (see [6]), and the
intricate picture which arises from his analysis its now classical

A ~ w LAG , ek
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It turns out that, if the intersection of E and E' is transversal, there
are many more points in this intersection than the 2(nT). In other
words, if there is one homoclinic orbit, there should be many more.

This argument relies on transversality of the intersection ES n Eu ,

a fact that cannot be checked except in very special situations (e.g.
Melnikov theory, see [5]) and can at best be hoped to be generic. We have
therefore wondered whether we can do better by variational
methods. It turns out to be the case :

THEOREM 2. (Coti-Zelati, Ekeland, Sr6 [1])
Under assumptions (Hi) to (H4), there are at least two homoclinic

orbits xj and Y2 which are geometrically distinct :

V n E Z , (nT) * 1 # x 2  11

THEOREM 3. (Sr6 [7])
Under assumptions (Hi) to (H4) there are infinitely many homoclinic

orbits 7,, n E N, pairwise geometrically distinct

ij V n E , (nT) *, Yi : Yj 0

Clearly theorem 3 contains theorem 2. The proofs, however, are dis-
tinct, betraying the fact (which already arises from a careful investiga-
tion of Poincar s argument) that the second solution is somehow more
fundamental than the remaining ones. The second solution is found by
a min-max argument around level 2c. The other solutions are found by
perturbation arguments around much higher levels.

The main theoretical advance in both situations is the introduction
of a new condition, termed (PSS) (Palais-Smale-Sr6) which goes as
follows.

DEFINITION 4. A function 0 is said to satisfy (PSS) if any sequence u
such that :

-- c , (U-) -. 0 I1u.+ 1 - U11 -. 0

has a convergent subsequence. 0l
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It is remarquable that condition (PSS) (instead of (PS)) is enough for
the deformation lemma to hold.

PROPOSITION 5. Define 0 :L -LO R as above, and assume there are
finitely many critical points of 4) (up to a time translation by some
muliple of T). Then (PSS) holds for 1b. C1

The idea behind the proof is that a splitting such as the one we de-

scribed, with two bumps separating and going away from each other
while 0' goes to zero, cannot occur continuously. In fact, if V)'() = 0,

and if we set :
ue = u+9*u

with 0 -+ oo, we will have V)'(u-T) - 0 as n -+ co, since the equation is

T-periodic, but V'(ue) will remain bounded away from 0 as long as 0 is
bounded away from multiples of T.

We now describe the two min-max procedures that enable us to find

the two first homoclinic orbits.

The first one, already alluded to in the preceding section, consists in
choosing some point v E L13 with Ilvil large such that 0(v) < 0, and
considering all continuous paths connecting 0 and v.

r= {ECo([0,11;L) I7()0,(1)v}

and in defining:

c =inf max{)o,(t)10<t <}.-Yr

Then c > 0 and (PSS) implies that it is a critical value (no splitting
occurs)

3-u : 4'(Ti)=O and V,(T!)=c.

The second one consists in introducing a set of continuous maps from
the square K = [0, 1)2 into LO :

= {aEC(K;LA6) y(0,1)=v=y(1,1)

y(s + 1, t) = T * y(s, t)
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and in defining:

d = inf max {0koa(s,t) I (s,t) E K}
yE E

It can be shown that either d = c (in which case there are infinitely
many critical points on that level) or d > c (in which case, by (PSS),
there is A. critical point F with V,,(U) = d 56 c = V;(U), su -9 5 U). In both
cases there is a second solution.
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