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ABSTRACT (UNCLASSIFIED)

When an electromagnetic wave is scattered by an object its polarization generally changes.
The change depends on the kind of object. It is therefore useful t¢ sludy Lhese changes and
relate them to object features. This is the objective of polarimetry. This report serves as an
introduction to polarimetry with microwaves, i.e., radar polarimetry. The subject deserves
attention nowadays because of the growing number of polarimetric radars. These radars
are able to measure the polarization changes caused by scattering at the earth surface.

The first chapters contains some basic electromagnetic theory relevant to the remainder of
the report. The definition of polarization is the subject of the next chapter. Polarization is
a two parameter quantity for which several representatons exist. Some are given, together
with a few methods to generate a wave with an arbitrary polarization. The polarization
of a wave can be changed by several different physical mechanisms. These are discussed
in chapter 4. The scattering matrix describes the way in which the polarization of a
wave is altered by scattering. Some properties and examples are given. The problem of
minimization and maximization of the power received by a radar illuminating an object
with a given scattering matrix is solved. The scattering matrix describes the scattering by
a single stationary target; it cannot be used to describe the scattering by a time-varying or
distributed target. The Stokes matrix should be used instead. The last chapter is devoted
to the definition and some properties of this matrix.
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¢ SAMENVATTING (ONGERUBRICEERD)

De polarisatie van een elektromagnetische golf verandert in het algemeen door verstrooi-
ing aan een object. De verandering hangt af van het object. Het is daarom nuttig deze
\ veranderingen te bestuderen en ze te relateren aan eigenschappen van het object. Dat is
het uiteindelijke doel van polarimeirie. Wanneer gebruik gemaakt wordt van microgolven
spreekt meu van radar polarimetrie. Dit rapport is bedoeld als een introduktie in de radar
polarimetrie. Dit onderwerp is actueel door het groeiende aantal polarimetrische radars.
Met deze radars kunnen de door verstrooiing aan het aardopperviak veroorzaakte polar-
isatie veranderingen gemeten worden,

Het eerste hoofdstuk bevat enige elementaire elekiromagnetische theorie die gebruikt wordt
in het vervolg van het rapport. De definitie van polarisatie wordt behandeld in het volgende
hoofdstuk. Polarisatie is een twee-parameter grootheid met verschillende representaties.
Enkele representaties worden gegeven. plus een paar methoden om een golf te genereren
met een willekeurige polarisatie. De polarisatie van een golf kan door verschillende fysische
mechanismen veranderen. Deze worden beschreven in hoofdstuk 4. De scaitering matrix
beschrijft hoe de polarisatie verandert door verstrooiing. Enkele voorbeelden en eigenschap-
pen worden gegeven. Het probleem van maximalisatie en minimalisatie van het vermogen
ontvangen door een radar die een object met een gegeven scattering matrix belicht wordt
opgelost. De verstrooiing door een enkelvoudig stationair object wordt beschreven door de
'l scattering matrix. Voor tijdafhankelijke of gedistribueerde doelen moet in plaats van deze
. : matrix de Stokes matrix gebruikt worden. Het laatste hoofdstuk is gewijd aan de definitie
} _ en rnkele eigenschappen van deze matrix.
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Voorwoord

Voor remote sensing van het aardopperviak vanuit vliegtuigen of satellieten wordt gebruik
gemaakt van radarsystemen. Omdat de radar zelf voor de belichting van het opperviak
zorgt is het in principe mogelijk polarimetrisch te meten. Dat wil zeggen dat gemeten wordt
hoe de polarisatie van de verstrooide golven afhangt van de polarisatie van de invallende
golven. Deze afhankelijkheid verschilt per opperviak, en bevat dus informatie over het
verstrooiende oppervlak. Met een polarimetrische radar kan deze informatie worden benut.
Radar polarimetrie is dat dee! van de natuurkunde dat zich hiermee bezighoudt.

Dit rapport moet gezien worden als een eenvoudige inleiding in radar polarimetrie. opge-
bouwd vanaf de basis. Het verschaft de noodzakelijke definities van de gebruikte grootheden
en geeft diverse rekenvoorbeelden. Na bestudering kan de recente literatuur over dit onder-
werp begrepen worden,

Page
10
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1 THE ELECTRIC FIELD CONCEPT

In this chapter the electric field concept is introduced. Readers already familiar with this
concept can skip this chapter harmlessly. Readers having a less rigorous background in
physics are probably more familiar with forces than electric fields. So in order to remove
the perhaps somewhat abstract character of the electric field, the relation between an
electric field and the force it exerts on a charge is emphasized in this chapter.

1.1 The Coulomb force

The electric field is a useful concept for computations involving the Coulomb (electric)
interaction. To 7 .troduce this concept the Coulomb interaction is first discussed. This
leads directly to the definition of the static electric field. The discussion will only deal with
static electric fields. that is, electric fields produced by charges at rest in the observer’s
coordinate system. Therefore the electric field docs not fluctuate in time (chapter 2 deals
with electromagnetic waves, i.e., time-dependent electromagnetic fields).

It is an experimental fact that two cobjects carrviag an electric charge exert a force on
each other. This force is attractive when the two charges differ in sign. and repulsive in
case the charges have equal sign {both negative. or both positive). The force is caused
by the Coulomb interaction, or electric interaction. Force is a veclor quantity so it has a
magnitude and a direction. Its magnitude and direction are given by Coulomb’s law, which
is expressed by a vector equation. because of the vector nature of force.

Consider the Coulomb interaction between two point-charges at rest (= static case) in the
observer’s coordinate system (a point-charge is a certain amount of charge confined to a
very small region of space). The force one charge exerts on the other charge is given by
Coulomb’s law, so ramed after the French engineer C.A. de Coulomb { 1736-1806). He was
the first to state it as follows:

The electrostatic interaction between two charged particles is proportional to
their charges and the inverse of the square of the distance between them, and
its direction is along the line joining the two charges.

In Fig.1.1 two (in this case both pesitive or negative) charges are shown, one carrying a
charge ¢, the other carrying a charge ¢a (in Coulombs). The charges are seperated by a
distance [r1a| (in meters). The vector fiy3 is a unit vector (a vector of length 1 m), pointing
from g, to g2 . Now the force Fy3 (in Newtone) that gy exeris on os is given hy the vector
equation
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Fu= k80, (1.1)

The proportionality constant k is approximately 9 « 10° Nm?. Note that the direction of
Fi3 is given correctly if we use the algebraic signs for ¢; and ¢z : the force is positive {that
is, repulsive} when both charges have the same sign as in Fig.1.1, and it is negative (that is,
attractive} when the signs are different. The force that ¢, eaerts on gy, Fa, equals —Fy,.
So this force is of the same magnitude, but oppositely directed.

Thus far we have treated the Coulomb force between only two interacting point-charges.
Suppose that a charge ¢ is in the presence of two other charges q; and ¢z, as shown in
Fig.1.2. Experiments show that the force on gy is just the vector sum of .he separate forces
on it from ¢ and ¢; . That is, the superposition principle holds for the Coulomb forces.
Said differently, the force between anv two charges is independent of the presence of other
charges: to find the resultant force, we merely add the individual forces as veciors.

Fron 3
Lrd
12

uy
3] z

Figure 1.1: Two charges with equal sign {from [1}}

Figure 1.2: An assembly of three charges (from [1])

12
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1.2 Static electric fields

Now we are ready to define the electric field. Aay region where av electric charge experiences
a force is thought to contain an electric field. The force is due to the presence of other
charges. When these charges are at rest, they produce a static (time-independent) electric
field. For example, a charge g placed in a region where there are other charges ¢;,42,49s,-..
experiences a force

F=F,+F1+Fs+.--, (1.2)

and we say that it is in an electric field produced by the charges q1, ¢z, ¢s, - .. (the charge
g of course also exerts forces on ¢;.¢z.¢s, ..., but we are not concerned with them now).
Eq.(1.2) is nothing else than a mathematical farmulation of the aforementioned force super-
position principle. Since the force that each charge gy,¢3,¢3,- .. produces on the charge ¢
is proportional te ¢ (Eq.(1.1)), the resultant force F is proportional te q. Thus the force on
a particle placed in an electric field is proportional to the charge of the particle. Therefore
1t is meaningful to define the electric field s.rength (or, for short, the electric field} as

r

E= \1.3)

ph
From this equation i* is obvious that the unit in which the electric field is expressed is the
N/C (or, less obvious, the V'/m). Once the electric field E is knuwn, we are able to compute
the force on a cha:ge g, simply by multiplving E by ¢. Note that for positive charges (¢ > 0)
the direction of the force is the same as the electric field direction. For pegative charges
the force is oppositely directed.

The static electric field is for most charge distributions a function of the three space co-
ordinates z,y and z. So E = E(x,y.2). Furthermore it is a vector field: to every point

in space a vector E(z,y, ) is assigned. To compute the electric fierd for one poini charge
rewrite Eq.(1.1) in the form

Fi= g3 k3. (1)

This gives the force produced by the charge g; or the charge 23 placed at a distance r from
g,- We may also say, using Eq.(1.3), that the electric field E at the point where g3 i» placed
iz such that F = 4E. Therefore, by compari.g both expressions of F we ronclude that the
clectric field at a point 2, at a distance r from a point-charge ), is given by

Ep = k%ﬁ,,. (1.5)

13
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An electric field is visualized by drawing the electric field vectors for some space points. In
Fig.1.3 this is done for a positive and a negative charge. Fig.1.3is completely determined

~, S 7
., N, #
\ ~ \ ;s
RSN /e AN e
7’ RTRAY -
LA N e
‘@' )
A .- A ~——
-y -~ 'd S
ST T LT —

a} b)

Figure 1.3: Electric field vecturs of a positive (a) and a negative charge (b) (from [2})

by Eq.(1.5). The length of the electric field vector at a certain point is proportional to the
inverse of the square of the distance between that point and the charge. The direction of
the vectors is radially outward (inward) from the charge for a positive (negative) charge.

Another way to visualize an electric field is by drawing electric field lines. Electric field
line are lines of force, which are lines that, at each point, are tangent to the direction of
the electric field at that point. The direction of the field lines gives the direction of the
force acting on a positive charge placed in the field. Fig.1.4 shows the same electric field
as that of Fig.1.3a, but now using electric field lines. Fig.1.5 presents the electric field for

Figure 1.4: Electric field lines of a postive charge (from [1])

an assembly of two point-charges. At first sight the field line representation (Fig.1.4, 1.5)
is less powerful than the vector representation (Fig.1.3), because there is no indication of
the magnitude of the electric field. In Fig.1.3 the magnitude is given by the length of the
eleciric field vectors. However, the same infurmation is conveyed in Fig.1.4 and 1.5: it can
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Figure 1.5: Electric field lines for an assembly of a postive and a negative charge (from [1])

be proven that the number of electric field lines passing through a small area of fixed size
oriented at right angles to the electric field lines is proportional to the magnitude of the
electric field.

1.3 Summary

It was shown in this introduction that the electric field is a vectar field. This field assigns an
electric field vector to every point in space. The length of an electric field vector is directly
proportional to the force exerted on a point-charge by the electric field. The direction of
an electric field vector equals the direction of the force exerted by the field on a positive
charge. All this information is conveyed in ihe simple equation (1.3). An electric field is
visualized by drawing electric field lines.

15
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2 ELECTROMAGNETIC WAVES

A discussion of electromagnetic wave phenomena usually starts with a discussion of Max-
well’s equations. These equations allow one to compute the electric and magnetic fields
produced by an assembly of electric charges and currents. Because this report is not meant
to be a textbook on electromagnetic theory, some of the results are simply postulated.
Rigorous derivations of these results can be found in [4,8]. §2.1 is devoted to a discussion
of harmonic plane waves. In §2.2 an expression for the average intensity of a plane wave
is given. The energy conservation principle and the results of the first two paragraphs are
used to derive a general expression for a spherical wave in §2.3.

2.1 Harmonic plane waves

A basic feature of Maxwell’s equations for the electromagnetic field is the existence of
traveling wave solutions which Tepresent the transport of energy from one point to another.
A very special, but for our putpose sufficient class of solutions is the class of harmonic
plane waves (what ‘harmonic plane’ means is explained later on). This class is sufficient
beczuse we will deal here with electromagnetic waves produced by a harmonically excited
antenna only, observed far away from the antenna or scatterer. Far away from the antenna
or scatterer the wavefront of the wave is locally fat. A proof of the fact that the wavefront
of a general harmonic wave js locally flat can be found in [9l.

To stress the difference between the electric field of a harmonic plane wave and that of a
general electromagnetic field, the equation for the general case js first given:

E(z,9,2,t) = R Ey(z,y.2,1) + YE(2.y,2,0) 4 3E,{x.y, 2,1). (2.1)

The left side of the equation represents an electric vector field. It assigns an electric field
vector E to each point in space (z,y, z), possibly varying with time ¢, Because a vector can
always be written as a sum of vector components multiplied by unit vectors, this is alsn
possible for an electric field (right side of Eq.(2.1)). In this case the unit vecters are the
Cartesian unit vectors &, § and & (in this report we will always use right-handed coordinate
systems). The components are the space- and time-dependent E,, £y and E,. Note that a
general electromagnetic field of course consists of an electric and a magietic fielld. However,
for a discussion of polarization phenomena it is sufficient to limit the discussion to electric
fields, so this will be done here.

The general form for 2 harmenic plane wave in vacuum, propagating in the +£ direction s

16
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E(z,t) = xE cos(wt — kz + 6.) + §Ey cos(wt — k2 + §). (2.2)

The basic features of this solution of Maxwell’s equations are:

¢ the time- and space dependence of the electric field is conveyed in the factors cos{wt —
kz + b24). So at a fixed point in space, the electric field varies as cos{wt). All
fields exhibiting this time dependence are called harmonic fields. The arguments
of the cosine functions are called phases. 8, and &, are the phases of the z— and
y—component of the electric field forz =t = 0.

o the electric field has no z—component. Therefore Eq.(2.2) represents a transverse
wave: at a fixed point in space the electric field vector is always confined to a flat
plane perpendicular to the direction of propagation. E, and E, are the positive field
amplitudes in the x~ and y—direction.

s the wave of Eq.(2.2) is a plane wave. A wave is called plane, when its wavefront
is a flat plane everywhere. A wavefront is a surface in which the phase is constant
(it could be called an equi-phase surface). For the wave of Eq.(2.2) the phase in a
flai plane perpendicular to the direction of propagation, and at a certain time, is
constant. This is so, because the z-—coordinate is constant for the points in a flat
plane perpendicular to the propagation direction. Hence the phases, which depend
on the z—ccordinate only at a fixed time, are the same everywhere in this flat plane.
This causes the electric field to be constant also throughout the plane.

o the wave propagates in the +: direction. This can be seen from the phases wt ~
k2 + 62 4. Suppose that the phase in a flat plane perpendicular to the propagation
direction is ¢ for a certain z and . When time increases, the z—coordinate of the
plane with phase ¢ increases. Therefore the wave propagates in the +z direction. A
wave propagating in the —z direction would have phases of the form wt + kz + &,

The relation between angular frequency w (rad/s) and frequency f (s~!) is given by w =
2x f. The wave number k (rad/m) is related to the wavelength A (m) by k& = 2x/A. For
electromagnetic waves in vacuum the relation A = ¢/f holds, with ¢ the speed of light in
vacuum (3 « 10® m/s).

2.2 The average intensity of a harmonic plane wave

In the preceding section it was noted that traveling wave solutions represent the transport
of energy from one point to another. So it should be possible to assign an intensity to a
wave. The intensity is the amount of energy flowing through a unit area perpendicular to
the wave's propagation directior, per unit time. It can be shown that the average intensity
of a harmonic plane wave in vacuum is given by

17
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I=ceER, = %«u (B2 + E2). 2.3)

The average is taken, because the electric field varies within one period of the cycle, and
hence the instantaneous intensity also. ¢g is the electric permittivity of the vacuum (8.85+
10-12 C/(Nm?)). The dimension of intensity is J/(m2s), or equivalently, W/m? (power per
square meter).

2.3 Spherical harmonic waves

Suppose an electromagnetic wave is produced by a harmonically excited antenna. The
wavefront in the vicinity of the antenna is not flat. For an antenna with vanishing dimension
the wavefront is spherical. At any point in the far-field of the scatterer or antenna the
radiated wave can be approximated by a plane wave whose electric field strength is the
same as that of the wave and whose direction of propagation is in radial direction from
the antenna. In fact, the definition of the far-field is such that this approximation is
valid. As the radial distance approaches infinity, the radius of curvature of the radiated
wave's wavefront also approaches infinity and thus in any specified direction the wave
appears locally as a plane wave. For antennas whose maximum overall dimension D is
large compared to the wavelength A, the far-field region is commonly taken to exist at
distances greater than 2D?%/A.

So the equation for a spherical wave in the far-field region is also given by Eq.(2.2), possibly
multiplied by a factor. In this case z and y refer to the coordinates in a local coordinate
system at the observation point. The r— and y—axis are contained in a plane nermal to the
propagation direction (Fig.2.1). Our aim is to find the multiplicative factor just mentioned.
To do this, we recall that for a plane wave the energy flow per second through an area A
perpendicular to the direction of propagation at a distance r is given by (Eq.(2.3), Fig.2.1):

Al = %a,, (E2+E}Y). (24)

Because the range r and area A4 are related by 4 = Qr? , where § is the solid angle
subtended by A, this can be rewritten as

Qr?
Al = ——ceo (E+E}). (2.5)

Let the area A’ be defined by the requirement that it subtends the same solid angle as A4,
and is located at a distance r’ > r (shifted along the direction of nropagation). So A’ = Qir2.
The conservation of energy principle requires that the same energy flows through A’ and A,
because they subtend the sume solid angle. Therefore it can be conciuded that the electric

o
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field components E. and E, have to fall off as 1/r. Hence the electric field of a spherical
wave is given by {compare Eq.(2.2))

E(z1) = k—‘r [KE, cos (wi ~ k2 + 85) + § E, cos (wt — kz + &,)] (2.6)

locally, with 2 in the radial direction. The wavenumber k is added in the denominator to
ensure that the equation is dimensionally correct.

The foregoing discussion is not only valid for electromagnetic waves produced by antennas,
but for all electromagnetic waves produced by a source of finite size. Far enough away
from the source (which can be an object scattering an electromagnetir wave) the wave will
appear to be flat locally, while its field amplitude falls of as 1/r.

2.4 Summary

In this chapter we first discussed harmonic plane waves. This special class of travelling waves
is very important, because all waves are locally plane when observed at great distances from
(or equivalent: in the far-field of) the source that produced them. Secondly, an expression
was given for the average intensity of a plane wave. This expression, together with the
conservation of energy principle, was used to show that the electric field amplitude of a
spherical wave has to decrease as 1/r in the far-field.

Figure 2.1: Local coordinate system

Page
19

Wabarhean o




TNO report

Page

3 THE POLARIZATION OF AN
ELECTROMAGNETIC WAVE

In the preceding chapter it was shown that electromagnetic waves are transverse waves. This
means that the electric field (vector) is always perpendicular to the direction of propagation.
As for all transverse waves, this leads to the introduction of the polarization concept. In
§3.1 it is shown that the polarization of a wave is determined by two parameters. The
polarization can also be represented by a camplex vector with two components (§3.2). §3.3
is devoted to the polarization of antennas. To remove the somewhat abstract character of
the polarization concept, §3.4 is devoted to a description of two simple methods to genherate
an arbitrarily polarized wave.

3.1 The polarization ellipse

Ia chapter 2 the equation of the electric field of a plane electromagnetic wave propagating
along the positive z-axis was given as (2.2)

E(z,t) = xE;cos (wt — k2 + 6,) + VE cos(wt — kz + 8,). (3.1)

To gain a better understanding of the behaviour of the electric field it is helpful to graph the
variation of the electric field vector as a function of time. Because an electromagnetic wave
is a transverse wave, the electric field vector is always contained in a plane perpendiculas
to the direction of propagation. Therefore the variation of the electric field as a function of
time is most conveniently graphed in a plane perpendicular to the direction of propagation.
This is done in Fig. 3.1 for one period of oscillation (of duration 27 /). In one oscillation
period the trajectory traversed by the tip of the electric field vector is generally an ellipse,
called the polarization ellipse. The handedness (direction of traversal) is indicated by the
arrow, in this case clockwise or right-handed. The positive amplitude of the electric field in
the z— (y-) direction. is E, (E,). It is important to realize that the same ellipse is traced
out in every plane perpendicular to the propagation direction. The shape of the ellipse
and the handedness (thus not including its dimension) determine the polarization which is
constant throughout the whole of space for a plane wave. The polarization is characterized
by two parameters:

1. the orientation 4. This is the orientation of the longer axis of the ellipse with respect
to the positive r-axis (range: 0 to 180°).

2. the ellipticity x (range: -45 to 45°). The ellipticity is a measure for the ‘fatness’ of
the eliipse. Wheu x equals zero, the ellipse is degenerated to a line. When X equals

i e



£45°, the electric field traces out a circle. The handedness of the ellipse is given by
the sign of the ellipticity. Positive ellipticities correspond to left-handedness, negative
ellipticities to sight-handedness.

These parameters (within the specified ranges) are sufficient to generate any possible ellipse,
including the handedness. Note that th: handedness depends on the look-direction, i.e.,
when the ellipse is observed from the other side (looking towards the approaching wave)
the handedness is opposite (in our case, left- instead of right-handed). The most often used
convention is to look into the direction of propagation (see for exaniple the IEEE standard
[10}). This convention will also be used throughout this report.

Thus the poiarization of a plane wave is in general characterized by two parameters, the
orientation ¢ and ellipticity x. The dimension of the ellipse is not needed, because it is
related to the intensity of the wave. When the polarization ellipse is degenerated to a
straight line (circle) the wave is called linearly (citeunlarly) polarized. Linear polarizations
tesult when x = 0° Special cases of linear polarizations are harizontal (1 = 0°, electric
field aligned along the the z-axis) and vertical (¢ = 90°, electric field aligned along the
y-axis) linear polarization. The condition for circular polarization is that x equals £45°
{see table 3.1).

Up to now we have only studied the curve traced out in fime by the electric field vector
in a fixed plane perpendicular to the direction of propagation. Fig.3.2 shows the curve in
three-dimensional space for a right-handed circularly polarized wave. at a fized instant in
time. In general such a curve is an elliptical helix. Note that right- (left-) handed waves

Figure 3.1: Polarization ellipse
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Figure 3.2: Circular helix

Electric field component




TNO report

Page

trace out a left- (right-) handed helix. At first sight this seems to be in contradiction with
the IEEE definition [10]. But one should remember that the IEEE definition used in this
report is based on the handedness of the polarization ellipse in a fized plane perpendicular
| to the propagation direction, looking in that direction. So to determine the handedness
of the wave of Fig.3.2, we have to ‘push’ the helix in the propagation direction through
a fixed plane perpendicular to the z—axis, and look into the propagation direction. Then
\ it becomes clear that the point of intersection of helix and plane traverses a right-handed
circle.

All possible polarizations can be displayed through a mapping of each polarization ellipse
onto the Poincaré sphere (Fig.3.3). An elliptical polarization with orientation ¢ and el-
lipticity x is mapped onto a point with longitude 2y and latitude 2y on the sphere. The
equator of the sphere thus contains all linear polarizations, the poles circular polarizations
etc. All left-handed (right-handed) polarizations map onto the northern (southern) hemi-
sphere. The distance of a point 10 the origin of the sphere can be used as a measure for

Figure 3.3: Poincaré sphere {from [3])

the intensity of the wave. Waves with the same intensity are then mapped onto the same
sphere. When the polarization of waves and their intensities are displayed in this way it
could be said that the mapping takes place in Poincaré space.

The next problem to address is how the orientation and ellipticity of a ~ave are related to

the parameters of Eq.(3.1). On investigating Eq.(3.1) we can draw the next two conclusions:

1. the relation depends on the phase difference é, - &, only, not on the jndividual absolute
) phascs. This has to be the case, because adding a constant to both absolute phases
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doesn’t change the shape of the eliipse - it only influences the exact location of the
tip of the electric field vector on the ellipse at a certain moment.

2. the relation depends on the quotient E,/ E.. only, not on the individual field compo-
nents. This is so, because on multiplying E1.{3.1) by a constaut the intensity of the
wave changes only, not the shape of the pclarization ellipse.

The deriviation of the relation between the parameters of 2q.(3.1) and the geometrical
parameters ¢ and x is lengthy rather than difficult, so only the results are given here, The
deriviation can be found in [3]. It leads to

. . 2E,E ,
tan{2¢-) = tan(2a)cosé = 72 : ¥i Las ¢ {3.2}
. NPT 2E.E, .
sim2y) = sin{2a)siné = -Ez—i——f%smé (3.3)
where
tana = -g: (0505-’25) (3.4)
§=6, -8, {(0< é < 27). (3.5)

From these equations it is clear that the orientation and ellipticity depend on &, ~ 6, and
E,/E, only, as predicted. Note that |tan \| equals the length of the minar axis divided by
the length of the major axis of the polarization ellipse.

3.2 The polarization vector

In computations it is often easier to charact=rize tlie polarization of a wave by a polarization
vector, than by the orientation and ellipticity. The pularization vector for a wave is found
as follows. First we rewrite Eq.(3.i) in vertor fonin as

( E (“‘ ) i }
E(z,t) = Rey | ™. ot-ba) § 3.6
(Z ) e\k( Evf“' € ( )

‘Re’ means ‘take the real part of’. As is customary with time harmonic problems, we
drop the expozential propagation factor and e “Re' operator. This leads to the complex
two-dimensjonal polarization vector

R T R S I
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E,e%:
p= ( E,t"“' ). (3.7)

The polarization vector depends on the four parameters E,, E,, 6, and é;,. Because the
polarization is determined by only two parameters the number of parameters of Eq.(3.7)
should be reduced to two. As noted in the preceding paragraph, the polarization depends on
&, — b, and E,/F, only. Therefore the polarization represented by Eq.(3.7) is not changed
when the polarization vector is multiplied by a (possibly complex) factor. This factor is
(oot uniquely) determined by demanding that p - p* = 1. The - depotes the standard
vector inner product, * complex conjugation. When this holds for a polarization vector,
the vector is said to be normalized. To indicate that a polarization vector is normalized it
is customary to put a "“on top of it, as in p. A normalized polarization vector can no longer
be used to calculate the wave intensity (see Eq.{2.3}). A normalized vector corresponding
to Eq.(3.7) is

1 E,

p = g . 38
b= e ) o2

When this vector is multiplied by a complex constant with magnitude 1 it is still normalized.
according to the definition.

Siuce the polarization depends on two parameters it is possible to define the polarization

by only one complex number. This complex number is called the polarization factor p, and
is defined as

p= _E_fe.'u,—a,)_

When polarization factors are used derivations sumetimes become surprisingly simple.

Tzble 3.1 presents some common polarizations zlong with the corresponding orientation
and ellipticity, the normalized polarization vector and the polarization factor.

3.3 Antenna polarization

In the far-field region of an antenna the electric field is given by Eq.(2.6). Because the
electric field of a plane and a spherical wave differ by the factor 1/{Ar) only, the theory and
definitions presented in the preceding two paragraphs are also valid for a spherical wave
in the far-field region. The polarization of an antenna is now defined as the polarization
of the far field trapsmitted by this antenna, regandless whether it is used for transmitting
or receiving. In general this polarization depends on the direction of the observation point
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with respect to the antenna. By convention, when the direction is not stated, the antenna
polarization is taken to be the polarization in the direction of maximum gain.

For example, for a vertically oriented dipole (Fig.3.4) the direction of maximum gain is in
the y-axis direction. The normalized polarization vector is

Figure 3.4: Dipole antenna

p:(‘l’). {3.9)

So the electric field is vertically polarized. This complies with what is expected for an
antenna in which carrent can only flow vertically.

1t is obvious that a horizontally polarized wave incident on this vertical dipole will not
produce a voltage at the output terminals of the dipole. It is also intuitively clear that
this voltage is a maximum when a vertically polarized wave is incident. So the voltage
depends on the polarization of the incident wave. An interesting problem is to find the
wave polarization needed to generate maximum power at the terminals of an arbitrarily
polarized antenna (commonly called the maximum polarization). To solve this problem
we proceed as follows: assume we have an arbitrarily polarized antenna at our disposal.
On transmitting an electromagnetic wave is propagated from the antenna towards a point
A. The wave's polarization is characterized by an orientation v and ellipticity x (Fig.3.1).
The ellipse is drawn as if it is observed from the antenna postion. Suppose now that we
reverse time. The wave first emerging from the antenna is now incident on the antenna.
If we want to determine the polarization of this vave, we have to observe it from point A,
" soking towards the antenna. The polarization ellipse observed is given in (Fig.3.5). Its
polarization is given by

CUmatched = ¥ ~ Lanlenna (3.10)

!
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Figure 3.5: Polarization ellipee as observed from point A
A tched = ant . (3]])

The handedness has not changed because jt reversed twice: once because of the change of
observation point (from antenna to peint A), and once because of the time reversal.

The oniy thing left ta proof is that the polarization of Fig.3.5 is ine maximum polarization
we were jooking for. Tte fisst thing to recall is that the reciprocity principle [11] states
that the power needed to generate the transmiited wave equals the power generated in
the antenna load on receive of this very same wavo. Secondly, it is clear this is also the
maximum power that can ever be received, because it is simply not possible to receive more
power than is put in the wave on transmit. So Fo0s.(3.10) and (3.11) indeed represent the
maximum polarization. The wave and antenna are said to be ‘polarization-matched’ in this
case,

We can now also compute the polcrization vector corresponding to Eqs.(3.10) and (3.11).
Substituting taese equations in Eqs.(3.2) and (3.3) reveals that a remains the same, but
Srnstched Decomes x — §. After substitution of these results in £q.(3.8), it follows that an
antenna with polarization vector p delivers maximu:a power into its ioad when a wave with
polarization P is incident on it, wheve

. {1 0.
pm"(o _l)p. (312)
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Another polarization to be used in the remainder of this report is the orthogonal polariza-
tion, Two antennas with polarizations given by 4 and &) are orthogonally polarized when
the relation

a-a =0 (3.13)

holds. I the polarizaiion & has orientation ¥ and ellipticity x, the orientation ¥, and
ellipticity x; of 4, are given by

n
) A
4 1 7

X+ = =\

where ¥; has to be between 0 and 7. When a polarization and its associated orthogonal
polarization are mapped onto the Poincaré sphere, these points are antipodal on the sphere.

3.4 Generation of an arbitrarily polarized wave

An arbitrarily polarized wave can be generated in several ways. In this paragraph we will
investigate two methods. The first uses only one moving point charge. This method is
not very practical, but provides some insight needed to understand the remainder of this

report. For the second, mcre practical method, two identical orthogonal dipole antennas
are needed.

3.4.1 The field produced by a harmonically oscillating point charge

Let the position of a moving point charge as a function of time be given by

W(t) = kzgcos(wt + 6,) + Fyocos(wt + §,).

" So the charge oscillates harmonically in two dimensions in the zy-plane. It follows an

elleptical trajectory in general. This moticn will give rise to an electromagnetic wave. In
[4] it is shown that at sufficient great distances from the charge (in the far-field region), its
time-dependent electric field is given by

Yot
By = T
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for a point on the z-axis with coordinates (0.0, z). g is the charge of the point-charge, ¢
the velocity of light. Thus, since ¥ = —w?¥, we have

2Pt~ £
E(s,1) = vf._z(?__el

Note that this result is in accordance with the deriviation of §2.3: the electric field amplitude
of this wave decreases as 1/r in the far-field region. Aside from a proportionality constant.
the tip of the electric field vector mimics the mavement of the particle. So, when the point-
charge oscillates along the z-axis, the electric field is lirearly polarized along the z-axis. In
general, if the point-charge traverses an ellipse characterized by a certain orientation and
ellipticity, then the far-field produced by the charge is polarized with the same orientation
and ellipticity. Even if an electric field is not really produced by a single charge g, one can
think of the field as being produced by a charge ¢ moving in the proper way (lacking any

explicit knowledge of the source of the field, one cannot tell that it is not produced by the
‘effective’ point charge g).

It is also allowed to reverse the conclusion: when a wave is incident on 2 point-charge,
the oscillation of the charge mimics the movement of the tip of the electric field vector
of the incident wave (when we neglect the fact that the charge radiates because of this

oscillation). In [4] it is shown that this also holds for a bound charge, when damping effects
are neglected.

3.4.2 The field produced by two orthogonal dipoles

Another way to generate an arbitrarily polarized field utilizes two orthogonal dipoles. These
two dipoles are drawn in Fig.3.6. One is oriented horizontally (along the z-axis), the other
vertically (along the y-axis). The distance between the dipoles’ centres is . It is assumed
the dipoles are fed by a source of angular frequency w. Furthermore, the lengthes of the
feeding cables are adapted in such a way that the phases of the signals are equal upon
arrival at the dipoles. We are free to choose these phases to be zero. The signals do not
necessarily have equal amplitudes.

The centres of the two dipoles and the point A (which is in the far-field of both dipoles)
are situated on a straight line. The distance of A to the nearest dipole (aligned with the
z-axis) is 2. When we assume that the field of one dipole is not disturbed by the other
dipole, the electric field produced by the two dipoles at point A is given by

E(2,t) = XE, cos{wt ~ kz) + yEy cos(wt — k(z +1)). (3.14)

So the normalized complex polarization vector is
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Figure 3.6: Two dipole antennas

. 1 E.
-1 e 3.15
P E? +E? ( Eye—t ) (3.15)

Tt is now obvious that any polarization can be produced by such an assembly of two dipoles.
For example, right-handed circular polarization is generated by choosing E, = E, and I,
the distance between the dipoles, A/4. The polarization vector is now

L1 1
p=s ( _'_ ) X (3.16)
3.5 Summary

In tnis chapter the polarization concept was introduced. It was shown that the polarization
depends on two parameters, the orientation and ellipticity of the ellipse, traced out by
the elertric field vector. For computational efficiency it is desired to use (normalized)
polarization veciors. These are vectors determined by two independent parameters after
normalization. The polarization of an antenna was defined as the polarization of the far
field produced by this antenna on transmit. Starting from general considerations we were
able to determine the polarization of a wave that is received ‘best’ by an antenna. In the
last paragraph two methods to geierate an arbitrarily polarized wave were given.
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4 CHANGE OF POLARIZATION

When an electromagnetic wave interacts with matter, it most often happens that its polar-
ization is changed by the interaction. Because polarization is a two parameter quantity, the
pularizaiion change can be accomplished in essentially two different ways, or a combination
of both. The first way is to change the field amplitude ratio E,/E,, the second alteration
of the phase difference 8, — &.. § 4.1 presents some simple examples of the two different
cases. § 4.2 illustrates the combination of both cases, by a discussion of scattering at a
plane interface between two media.

4.1 Simple examples

4.1.1 Alteration of the field amplitude ratio

Consider Fig.4.1. It shows a grid of paraile]l conducting wires stretched along the y-direction.

Ex

Ex

Ey

Figure 4.1: Wire grid absorbs y-component of microwaves (from [4])
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Suppose that an electromagnetic wave (with wavelength in the order of the wire distance)
is incident with non-vanishing z- and y-components E, and E,. We may consider the effect
of the wires on the components separately. First consider the y-cemponent, along the wires.
The free electrons ave driven along the wire by the electric field. The electric field does
work on the electrons; they transfer some of their energy to the copper lattice throvgh
collisions. The electrons also radiate. It turns out that their radiation in the forward
direction interferes destructively with the incident radiation and cancels it to zero. In the
backward direction, the radiation due to motion of the electrons along ¥ gives a reilected
wave (the wire grid behaves like a mirror {or the radiation). Thus the grid eliminates the
y-component E.

Now consider what happens along %. TFor thun wires the electrons are not free to move
in this direction. So they do not absorb energy, nor do they radiate. Consequently the z-
component of the incident wave is unaffected. It can be concluded that the wave emanating
from the wire grid is vertically polarized, independent of the polarization of the incident
radiation.

The well-known polaroid behaves somewhat like a wire grid. In this case a wire is formed
by a long hydrocarbon chain carrying conduction electrons. The electrons are free to move
along the wire, but not perpendicular to it.

4.1.2 Alteration of the phase difference

The phase difference between the z- and y-component of an arbitrarily polarized wave can
simply be altered by traversal of certain anisotropic media. An anisotropic medivm is a
medium in which a physical quantity depends on the direction in which it is measured.
Consider a material for which the index of refraction n for electric fields in the z-direction
exceeds that for fields in the y-direction. Because the velocity v of propagation of an
electromagnetic wave is related to n by v = ¢/n, the velocity v. of the r-component of an
electromagnetic wave propagating along the z-axis is smaller than the velocity v, of the
y-component. Eq.(2.2) should thus be rewritten as

E(z,t) = XE; cos (wt — kg2 + 8;) + FEycos (wt — kyz +6,), {4.1)

where k. exceeds &,. The polarization vector corresponding to this wave is

Eqe':
pP= \ E,e‘l(“:-h)""‘:) ) : (4'2}

The polarization is thus  function of 2.

Cellophane is a material for which the wave velocities in orthogonal directions differ gener-
ally. An interesting difference exists between polaroid and cellophane: polaroid decreases

g S A
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the intensity of a wave passing through it (it appears to be dark}, while cellophane does not
(it is transparent). This is because polarcid changes the fieid amplitude, while cellophane
does not. And the intensity of a wave depends on the field amplitude, not on the phase
difference between orthogonal components.

Another case where the intensity of the wave is not changed, but only its polarization, is
called Faraday rotation {12]. This phenomenon was discovered by Faraday back in 1845.
He discovered that when a magnetic field was applied to a transparent substance (like
glass) the orientation of the polarization was rotated through an angle depending on the
strength of the magnetic field and the distance traversed in the substance. This is also
what happens in the jonosphere. The ionosphere is that region of the earth’s atmosphere
lying approximately between 50 km and one earth radius (6370 km). On traversing the
jonosphere the orientation of the polarization of a microwave is changed. The amount
of rotation is proportional to 1/f? for propagation parallel to the magnetic field, where
f denotes the frequency of the microwaves. For microwaves with frequencies lower than
about 3 GHz the amount of rotation is not negligible. This has to be taken into account
when a low frequency microwave signal should be received properly. Possible solutions are
to use circularly polarized antennas (Faraday rotation obviously does not affect circularly
poiarized waves), or to use two orthogonally linearly polarized receive antennas.

4.2 Scattering at a plane interface

When a plane wave is incident from above at a plane interface between two media, part of
the wave will penetrate refracted into the second medium, and part of it will be reflected.
A sketch of this situation is given in Fig.4.2. Let us assume that the upper medium is air,
having a permeability yp and permittivity almost ¢g. The underlying medium is assumed
to be non-magnetic, so its permeability is also yp. Its complex permittivity is given by

tE(ot,E(o((:,—k:)=(o(d-i$).

€0 is the permittivity of the vacuum and ¢, the relative complex permittivity with real part
¢! (the dielectric constant) and complex part €,. ¢ denotes the conductivity and w the
angular frequency.

By applying Maxwell’s equations to the problem it is possible to derive Snell's well-known
laws of reflection and refraction {3]. In this report we are interested in the polarization
properties of the reflected wave. To analyze this we split the incident and reflected waves
in two linearly polarized components each. The first compunent is parallel to the plane
of incidence, where the plane of incidence is defined as the plane containing the direction
of the incident wave and the normal to the interface. In the figure the piane of incidence
equals the plane of the paper. The electric field of the parallel component is labelled Eyy.
This is a complex number, consisting of the electric field’s amplitude and phase. The second
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Figure 4.2: Reflection at a plane interface between two media

component is perpendicular to the plan. of incidence, It is labelled Ey,. In Fig.4.2 the
paralle] component is indicated by an arrow in the plane of the paper. Its direction is
important. It is simplest to think of the direction as indicating the direction of field vector
during the first half period of a wave train (when the direction is reversed, this will indicate
a phase shift ). The perpendicular component is indicated by a & or @, depending un
whether the field vector is painting into the paper. or out of the paper (during the first half
period of a wave train).

The electric fields Eqy and Ej; of the reflected wave are related to the electric fields of the
incident wave by

E," = R"El“ (4.3)
) Eqy RiEy,, {4.4)

where Rj and R, are complex reflection coefficients (also known as Fresnel reflection co-
] efficients). It can be shown that the respective reflection coefficients R and R, are given
by
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Re = & cosf — Ve, - sin?é (1.5)
t ¢ cos8 + Ve, —sin?8

cos @ — Ve, —sin? @
casf+ Ve, — sin? @

R, = (4.6)

1n this equation @ is the incidence angle (Fig.4.2). The reflection coefficients are generally
complex, because ¢, is complex. From Eqs.(4.3) and (4.4) it follows that the absolute
value of R equals the ratio of the amplitudes of reflected to incident wave, whilst the
l argument equals the phase shift caused by the reflection at the interface. Because the
Fresnel coefficients are generally complex, both the amplitude ratio and the phase difference
of an incident wave are affected.

Fig.4.3 shows the polarization of the reflected wave when a circular wave is incident at the
earth surface for several incidence angles.

| &) e
5//
Y @D LHE
4

ld 3—= Horizonta)

-2 (2> RHE

Ordi \:3

Forward reflection ¥ : Graziag angle )
e esse et ¥,  Brewster angle

Note : RHC ( Right-handed cireular) RHE { Right-handed elliptics!)
LHC (Left-handed circular) LHE (Lefr-handed elliptical)

Figure 4.3: Reflection by the earth surface

An interesting situwation arises if the incidence angle equals 8p = tan~! (/€;). 1t can be eas-
ily seen from Eq.(4.5) that Ry vanishes for this angle 6p, when medjum B is non-conducting
(i.e., its relative permittivity ¢, is real). Therefore the only component remaining is the
perpendicular component, resulting in linear polarization parallel to the earth’s surface
(horizontal polarizativaj}. 6p is calied the Brewsler angle aller lhie discoverer of its signifi-
cance. If the medium is conducting, indicated by a complex permittivity ¢, Ry cannot be
made to vanish, as is also easily checked from Eq.(4.5). However Ry will attain a minimum
for some incidence angle, which is sometimes referred to as the quasi-Brewster angle.
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For a metallic medium the conductivity ¢ approaches infinity. From the equations for the
reflection coefficients it is easily shown that in this case By = +1, while R} = —1. So the
perpendicular component of the incident wave is subject to a phase shift x. This result
will be used later on in this report to derive the scattering matrix for a metallic dihedral
(a device consisting of two metal plates connected at right angles to each other).

4.3 Summary

This chapter focussed on mechanisms abie to change the polarization of a wave. The first
two simple examples involved a wire grid and anisotropic media respectively. The wire grid
absorbed /reflected one of the componesnts of the electric field while the phase difference
between the components remained unchanged. On the other hand, the anisotropic media
considered altered the phase difference only. The polarization change caused by scattering
at an interface between air and a non-magnetic medium was given by the Fresnel reflection
coefficients. Because these coefficients are complex in general. both the phase difference
and amplitude of the incident wave are changed.
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5 THE SCATTERING MATRIX

The previous chapter was devoted to a discussion of mechanisms able to change the polar-
ization of an electromagnetic wave. One of the mechanisms was scattering. The scattering
matrix to be introduced in this chapter is a mathematical quantity describing the polar-
ization change caused by scattering by an object. Besides a description of some general
properties of the scattering matrix, specific examples are given for a flat plate, a dihedral
and a trihedral. The derivation of the scattering matrix of a dihedral utilizes the theory
presented in the preceding chapter.

5.1 Transmission between arbitrarily polarized antennas

Consider a transmit antenna A with polarization given by & and a receive antenna B with
polarization given by b. The voltage at the terminals of B caused by the field transmitted
by A depends on parameters independent of the antenna polarizations, like antenna gains,
wavelength and distance, as well as on the polarizations & and b. In fact, the voltage is
given by

L '.-'—- 0 1 0 h
V=cid:-b;, =ca (0 _l)b. (5.1)

The constant ¢ accounts for all the polarization-independent parameters, like the distance
between the antennas.

Although Eq.(5.1) is simply postulated here, a few pbservations can be made to make its
validity plausible. For example, in chapter 2 it was shown that a2 wave with polarization

is polarization matched to an antenna with polarization 6. So substition of by, for &
in Eq.(5.1) should maximize V. This is indeed the case because it turnsout that V = ¢. V
can never exceed ¢, because the inner product of two normalized polarization vectors is 1
=t most. A second observation to be made is that Eq.(5.1) satisfies the reciprocity principle
{11]. For antennas this principle states that the voltage V is the same whether antenna A
is used for transmitting and B for receiving, or vice versa. So the relation

ch by, =cb &z

should hold. The pruof of this equality is left as an exercise to the reader.

At first sight the voltage ¥ should be maximom when identical antennas A and B are used.
This is not generally s6. Consider two dipoles oriented at 45° with respect to the horizon
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(= 45°, x = 0°). So

V is then given by

(1) (250 5()1(1)

This is a consequence of our polarization definition: whether an antenna is used for receiving
or transmitting, the antenna polarization is always defined as the polarization of the wave
transmitted by the antenna. The above derived resuit is in accordance with the observation
that the receive antenna is oriented normally to the transmitting antenna.

[%a)

(1-141-~1)=0.

~

Finally, it is easily shown that V = ¢ when two identical circularly polarized antennas are
used. So in this case the use of two identical antennas results in madimum voltage at the

terminals of antenna B.

5.2 Scattering matrix introduction

Chapter 4 was devoted to a discussion of the change of polarization accomplished by several
mechanisms. One way to charge the polarization of a wave is to scatter the wave by an
object. Scattering at a plane interface between two media is an exampie. The exact way in
which the polarization changes (transforms) depends on properties of the object. The aim
of radar polarimetry is to utilize the information conveyed in the polarization tranformation
properties of an object. The mathematical quantity describing the polarization tranforma-
tion properties is called the scattering matrir S. This matrix can be defined using the set-up
of Fig.5.1. A wave produced by the transmit antenna with polarization P; illuminates a
certain object A. This wave induces currents in th= object, which give rise to a scattered
wave with polarization p,, generally differing from the polarization of the incident wave.

p, can be related to P, by

{ = s
Po=Sho=| o} P )f». (5.2)

Because the polarization vectors are complex vectors, the elements of the matrix 8¢ (which
is not the scattering matrix S) are also complex in general. 'I'he poiarization vector p,
of the scattered wave is not normalized, because the scattering process can change the
polarization as well as the intensity of the wave.
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Let the scattered wave now be incident on a receive antenna with polarization f,. The
complex voltage induced in this anienna is given by Eq.(5 1; as

v

]

1 o, e 3 0N, _ . 1 o).
cp.-(0 _l)p,._cSp.-(o _1)"'""1’"(0 -l)Sp‘ (5.3)

= cpr-Spe. (5.4)

The complex 2 + 2 matrix S is called the scattering matrix. It enables one to compaute the
complex voltage induced in aa arbitrarily polarized receive antenna when the object with
scattering matrix S is illuminated by an arbitrarily polarized transmit antenna. Obviously.
the scattering matrix depends on the wavelength of the incident wave, the look-direction
with respect to the object etc.

Measurement of the polarization matrix can be done using horizontal and vertical linearly
polarized antennas, and registering both amplitude and phase of the received signal voltage.
For example, suppose we use a horizontal antenna on transmit, and a vertical one to receive
the scattered wave. The received voltage according to Eq.(5.4) is

e oen O Y (oY (Su)_ o _
V = cpy Sp;-..(l) S(O)—c(l) (Sn)-cSn_cs.;,.

It is therefore natural to rename the scattering matrix element Sz to Syu. Analog results
can be derived for the hh, hr and vr cases. So Eq.(5.4) can be rewritten as

, S She )
V=cp,-(s"': S:)p.. (5.5)

1t is clear from this expression that the scattering matrix can be measured by alternately
transmitting a horizontally and a vertically polarized wave, and registering the phase and

Py

Figure 5.1: Set-up used to define the scattering matrix
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amplitude of the signal received by a horizontally and vertically polarized antenna. There-
fore, when the same antennas can be used for transmitting and receiving (called the mono-
siatic case), two antennas (2 horizontal and a vertical one) are sufficient to determine the
scattering matrix. This is the way in which the NASA/JPL airborne polarimetric SAR
measures the scattering matrix [13].

Let us prove that the squares of the amplitudes of the complex scattering matrix elements
are linearly proportional to scattering cross sections. Consider the case of using a hori-
zontally polarized antenna for both transmitting and receiving. According to Eq.(5.5) the
voltage V measured at the terminals of the receiving antenna equals cSp,. Consequently,
the power is proportional to VV* ~ Si 555 = [Sai?. But according to the radar formula
[14], the power is proportional to the radar cross section, in this case op,. Hence we are
led to the conclusion that oas is proportional to [Spal?. Similar arguments can be used
to prove that g, is proportional to }S.|? etc. Armed with this knowledge the scattering
matrix S can be rewritten as

g={ Sw S} _ . \/au,c':"“ N e . (5.6)
Seh S VOeRer [ e

where the phases ¢ of the measured voltages and the radar cross sections are made explicit.
¢’ is just another proportionality constant.

It is now clear that the scattering matrix can be seen as a generalized cross section: for
the cruss section @ it was necessary to indicate the polarization of the transmit and receive
antennas used, while this information is superfluous for the scattering matrix. In fact, once
the scattering mairix is known one is able to compute o, where r and y are labels for
zrbitrary antenna polarizations.

5.3 General properties of the scattering matrix

In the preceding paragraph it was shown that the complex voltage V as measured by a
receive antenna with polarization P, is given by

a L GA o A . ,/aMc‘i‘“ ,/a,.,e"" N -
V = cp, - Sp = P (\/E-Tf"" Jomete | P (5.7)

when a wave with with polarization p; is scattered by an object with scattering matrix S.
In principle the complex constant ¢ can be determined such that the amplitude and phase
of the vuitage V are given correctly by Eq.(5.7). However, several differant conventions are
used in defining the scattering matrix. In some sources the constant c is incorporated iu
the scattering matrix. Other sources do not use normalized polarization vectors in Eq.(5.7).
Still other sources demand, quite arbitrarily, that Sj, is real. This can be done harmlessly
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because the phare of the voltage V can be simply altered by moving the scattering object
along the line of sight. So an overall phase factor (also called absolule phase) of the scattering
matrix is only related to the distance between te radar and the object, not to any other
object feature. The reader just Las to bear in mind that the scattering matrices encountered
in the literature differ usually by a complex constant only. The constant depeads on the
scattering matrix definition used. Knowledge of the phase of the constant allows one to
compute the distance miodulo A to the object. Knowledge of the constant’s amplitude allows
one to compute the absolute cross section of the object. The constant can be determined
by calibration of the system used to measure the scattering matrix. In this report mostly
normalized scattering matrices will be used. A normalized scattering matrix is a matrix
for which the maximum of |, - Sp;| is 1 (the absolute phase is not determined by this
requirement).

We nov: proceed with a proof demonstrating that the scattering matrix is usually symmetric
in the monostatic case (also called the backscatter case). A monostatic radar system is a
system for which the positions of the transmit and receive antennas coincide. For the proof
we need the fact that the vector inner product a - b, where a and b are column vectors,
equals aTh in matrix notation. T indicates the transpose operation. The column vector a
becomes a row vector by transposing it. So we can rewrite Eq.(5.4) as

- - '— - T - - - -
V = cp, - Spe = cbTSpe = ¢ (bTSPy) = BT STh, = cpr- STp..

But, according to the reciprocity principie [11], for a reriprocal system (i.e., the radar and
the medium and the scatterer are reciprocal) the voltage V slould be the same when the
transmit and receive antennas are interchanged. So we may rewrite Eq.(5.4) also as

V = cpe- S,

Because the two preceding derivations are valid for all send and receive polarizations we
conclude that § = ST - the scattering matrix is symmetric in the backscatter case. There-
fore, Spe = Son. When we exclude the unimportant absolute phase the scattering matrix
consists cf 8 — 2 — 1 = 5 independent parameters: three radar cross sections and twe ghase
differences (see Eq.(5.6)).

5.4 Scattering matrix examples

The prrpose of this paragrapk is to find the scattering matrix for a metallic dihedral .
refizctor, Although the introduction of the scattering matrix did not demand that the
positions of the send and receive antennas coincided (that is, the introduction was valid for
both monostatic and bi-static radars), Lhe discussion is resiricied 1o the monostatic case.
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Ir the remainder of this report it is always assumed that a monostatic radar is used. All
remote sensing radars used nowadays are (nearly) monostatic.

Because the derivation of the scattering matrix for a dihedral presents all the features
commonly encountered in this kind of derivations a worked-out example will be given for
this case only. We will use the geometric optics approzimation. This approximation treats
scattering by assuming that each illuminated point of a scatterer reflects the incident wave
as it would be reflected by an infinite plane tangent to the scatterer at that point. So the
results of § 4.2 can be used.

Consider Fig.5.2. A dihedral consists of two metal plates connected at right angles to each

N

X
Figure 5.2: Dihedral

other. In the figure the crease is chosen to be aligned with the horizontal z—axis, while the
two plates are contained in the zy- and zz-plane. The two identical plates have a height
a and a width b. It is well-known that the maximum cross-section op, of such a dihedral
is obtained for incidence along the yz-plane, while the incidence angle is 45° as measured
clockwise from the y-axis. The tross section is then given by

16ra?b?
Ohk = =3 (5.8)

for A small compared to a and b.

The next thing to do is to investigate the change of polarization accomplished by the
dihedral when a wave is incident on it. When the wavelenglh is assumed to be small
compared to the dimensions of the dihedral, we can apply the theory presented in § 4.2 to

[
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this problem. There we found that the Fresnel coefficients were Ry = +1, Ry = -1 fora
metallic medium. This results in Fig.5.3.

Figure 5.3: Polarization chunges caused by scattering at a dihedral

Assume that during the first half period of a wave train the E, and E, fields are directed
along the positive 7— and y—axes. The polarizations of the incident wave, the one time
reflected wave and the outgeing wave can then be deduced from Fig.5.4, which follows from

Fig.5.3.
y y y
z k4 k4
X o X % X =
a b. C.

Figure 5.4: Electric field directions during the first half period of the wave train of the
incident wave (a), the wave after one reflection (b). and the outgoing wave {c)

Therefore the next two relations should hold for the matrix S/ defined in Eq.(5.2).
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() - =().
1t is interesting to note that the two above equations do not depend on the incidence angle

(the angle of the incident wave with respect to the y—axis).

From the preceding two equations it can be concluded that the scattering matrix of a

dihedral is
=1 Oy (1 o\(-1 o\ (-1
(0 3)e-(0 ) (5 )= ()

This is a normalized scattering matrix as is easily verified. To remind the reader of the
relation between the Scattering matrix elements and cross sections, we multiply the former
expressiot by /Gy following from Eq.(5.8), yielding an unnormalized scattering matrix

sz‘l\/j‘-ab(—l 0)-

0 1

Now it is very clear that Onh = Gy, fOr a dihedral. Furthetmore, o), = dyp = 0. Note that
the equation is valid for incidence normal to the crease only.

Derivations similar to the one above reve

flat plate and a trihedral (three flat plat
identical;

al that the normalized scaltering matrices for a
€s connected at right angles (o each other} are

1 e
S‘(o 1)‘

This is independent of the aspect angle. This result show
terers can have the same normalized scattering matrix. S
not the final answer to the inversion problem encountered

s that completely different scat-
o radar polarimetry js definitely
in remote sensing.

5.5 Summary

In the foregoing the scattering matrix was introduced. It was emphasized that each of the
scatiering matrix elements is linearly proportional to the square root of the corresponding
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cross section, for example, 54 is linearly proportional to \/ops. It was shown that the
scattering matrix can be measured using only two linearly polarized antennas, if one is able
to determine the amplitude and phase of the signal induced in the receive antenna by the
backscattered wave. 1 was also noted that several definitions for the scattering matrix
exist. Therefore the matrices encountered in the literature can differ by a complex factor.
A proof was given for the fact that the scattering matrix is symmetric for the backscatter
case when the reciprocity principle is valid. In the last paragraph the scattering matrix for
a dihedral was derived, which turned out to be quite simple.
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6 FURTHER PROPERTIES OF THE SCATTERING
MATRIX

This chapier is devoted to some interesting properties of the scattering matrix. First it
is shown in § 6.1 that the scattering matrix of an object rotated about the line sight can
be determined from the scattering matrix of the un-rotated object and the rotation angle.
§ 6.2 discusses some properties of radar-symmetric objects. The last two paragaphs solve
the problem of minimizing/maximizing the power measured at the terminals of a receiving
arntenna for backscattering by a given object. This can be used to discriminate or enhance
the backscatter of objects with respect to the backscatter of the background.

6.1 Rotational dependence of the scattering matrix

Assume that the scattering matrix S of an object is known for a certain aspect angle,
frequency etc. Wher the object is rotated counter-clockwise about the line of sight (the
imaginary line connecting the radar with the objcct) by an angle 8. the scattering matrix
will be generally different, say Sy. It is maybe rather surprising that Se can be derived
from S and 8. However, a little thought will reveal that it is possible to measure (ccmpute)
Sy also by rotating the measurement antennas clockwise, while keeping the objeci fixed,
Keeping this in mind we proceed as follows.

Let a polarization vector p heen given by L i'he problem is to determine the polariza-

tion vector when this polarization (ellipse) is rotated clockwise by an angle #. The simplest
way to do this is by considerinz the simple cases of p being either liorizontal polarization

( ; ) or vertical polarization 1 ) It is easily seen from Fig.6.1 that these polarizations

become cosd respectively ( :mﬂ ) after clockwise rotation through an angle 6.

-sind os 8
Because the polarization vector p can be rewritten as the sum

_ cosf sind \ _ cosd sin@ ay _
p'_a(-sinﬂ)+b(cos9)_(—sin0 cos@)(b)=ap
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after the clockwise rotation. R is an ordinary rotation matrix.

Suppose now that we measure the voltage at the terminals of a receive arntenna (polarization
Pr) when the wave transmitied by the transmit antenna (polarization ) is backscattered
by the counter-clockwise rotated object (scattering matrix Sg). This voltage should equal
the voltage measured when the object is kept fixed (scattering matrix 8), while the antennas

are rotated clockwise through an equivalent angle. Therefore, using Eq.(5.4), we conclude
that

Py * Sepe = cpr o - SPre = cRp, - SRp;.
But the right-hand side of this equation is equal to
cbTRTSRp: = cp, - (RTSR) p.
Because the preceding two equations are valid for all transmit and receive polarizations it

follows that the scattering matrix of the rotated object is given by

_nT " _ cosf sind o
Se =R"SR with R = ( —sinf cosa)' (6.1)

S denotes the scattering matrix of the un-rotated object, # the counter-clockwise rotation

angle about the line of sight. For 8§ = 0° the rotation matrix R becomes the identity matrix.
So Sge = S as should be the case.

Figure 6.1: Rotation of polarizetion vectors
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The foregoing theory was used in [15] to calculate the orientation of a dihedral. The response
of the dihedral was measured by an airborne polarimetric synthetic aperture radar flying
at a height of about 10 kilometer. The dihedral response was in fact caused by two sides
of an erroneously pointing trihedral.

It is interesting to note that the scattering matrix of a trihedral is independent of rotation
about the line of sight, because Sy = RTSR = RTIR = RTR = S for this case.

6.2 The scattering matrix of objects with one or more symmetry
axes

Let an object have a number of radar symmetry axes of which two are non-orthogonal (a
radar symmetry axis is a geometrical symmetry axis of the two-dimensional projection of
the three-dimensional object onto a plane perpendicular io the line connecting radar and
objact). Label the angle between these axes ¢. Assume that one of the symmetry axes
is aligned with the horizontal. When the object is illuminated by a horizontally polarized
electrical field a scattered field is produced. This field can be considered to be composed
of two contributions, one produced by the upper half, the other produced by the lower half
of the object. Because of the symmetry the vertical components of these fields cancel. So
the scattered field is horizontally polarized. The scattering matrix of the object is therefore

given by the diagonal matrix
S= ( a o ) . (6.2)

When the object is rotated an angle # counterclockwise around the line of sight its scattering
matrix becomes (using Eq.(6.1))

with a and b complex numbers.

$(0) = ( acost 8 + bsin? @ a=b gin 28 ) (63)

'§isin20 asin? @ + beos? 8

Wi.en the angle @ is chosen such that the second symmetry axis is aligned with the hori-
zontal, the scattering should again be symmetrical, So

sin2¢ =0 (6.4)

shoald hold. Therefore a should equal b, or ¢ has to be an integral multiple of /2. Because
the symmetry axes were assuined to be non-orthogonal, a equals . Substitution in Eq.(6.3)
reveals that the normalised scattering matrix is

g
|
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1 0
sz(ﬂ 1). (65)

When a two-dimensional object has n symmetry axes these have to be rotational symmetry
axes, where the angle between two adjacent axes is 180/n degrees. This is sketched in
Fig6.2forn = 1,2,3 and 4.

L\
VAN

n=1 n=2 n=3 n=64

Figure 6.2: Possible configurations for 1, 2, 3 and 4 symmetry axes

It can be concluded that objects with 3 or more symmetry axes have at least ope pair of
non-orthogonal symmetry axes. So an isosceles triangle, a square and a circle (3, 4 and an
inifinite number of symmetry axes respectively) all have a unit scattering matrix.

The simplest examples of objects having 2 number of symmetry axes of which two or more
are non-orthogonal are an isosceles triangle (3 symmetry axes), a square (4 symmet:y axes)
and a circie (infinite number of symmetry axes).

Most operaticnally used radar systems utilize identical antenna polarizations at transmit
and receive, while offering the possibility to switch the polarization between linear and
circular. Uniformly distributed rain can be regarded as a radar target with an infinite
number of symmetry axes. The return from the rain should thus vanish theoretically
when the radar is operated in the circular mode, because for both left and right circular
polarizations

_{1(101_1101_11_
V"c\—-i'\OI )T le ) o)l )=eli )L )=
The return of the object to observe by the radar, for example an airplane, usually does not
; vanish for this polarization. Therefore the signal to clutter ratio is significantly increased.

The fact that the rain echo is, in practice, attenuated by 15 to 30 dB, but not completely .
suppressed, is usually asciibed to the imperfect sphericity of the raindrops.

Further discussions of symmet:y principles and their consequences for the scattering matrix
are given in [16,17).
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6.3 Minimization of the power

The objective of this paragraph is tu find the polarizations which minimize the {absolute)
voltage appearing in Eq.(5.4) (we will soon see that the mirirpum is 0 in fact). This is
the voltage at the terminals of the receiving antenna. Thir problem is very easy to solve
when the polarizations of the send and receive antenna can be independently controlled.
Assume that an object with scattering matrix $ is illuminated by a transmit antenna with

polarizztion p,. Because the receive polarization p, is independent of the send polarization,
it can be chosen to be (§p,)] - But then

V = cp, - Spe = c(Spe), *Spe = 0

according to the definition of orthogonal polarization Eq.{3.13).

A more challenging problem is to minimize the voltage V subject to the constraint that the

send and receive polarizations are equal. It can be seen from Eq.(5.4) that the minimum
voltage is 0 for polarizations satisfying

Sp = ep) (6.6)

where e is a complex constant. This is a kind of medified eigenvalue problem, with eigen-
values e. To solve it one needs two intermediate results, which proofs of validity are left
to the reader. The first is that an un-normalized polarization vector corresponding to the

polarization factor p is :, ) The second result js that the polarization factor of the po-

larization orthogonal to the polarization given by p is —1/p®. Eq.(6.6) can now be rewritten
in terms of the polarization factor p of the polarization vector p:

(& 3)(3)=<(2)

The scattering matrix is assumed to be symmetric, which is generally so for a reciprocal
system. This equation is readily transformed into the cubic equation

S + 25kp + San =0

(6.7)
with solutions
—Sae 2 ‘/S’ ~ 5SS
fla= Sh =, (6.8)
e
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6.3 Minimization of the power

The ohjective of this paragraph is to find the polarizations which minimize the (absolute)
voltage appearing in Eq.(5.4) (we will soon see that the minimum is 0 in fact). This is
the voltage at the terminals of the receiving antenna. This problem is very easy to solve
when the polarizations of the send and receive antenna can be independently controlled.
Assume that an object with scattering matrix S is illuminated by a transmit antenna with
polarization ji;. Because the receive polarization p, is independent of the send polarization,
it can be chosen to be (Sp,)]. But then

Vo= ep, - SPy = ¢ (Spe)] -Spe =0

according to the definition of orthogonal polarization Eq.(3.13).

A more challenging problem is to minimize the voltage V subject to the constraint that the
send and receive polarizations are equal. It can be seen from Eq.(5.4) that the minimum
voltage is 0 for polarizations satisfving

Sp = ep] (6.6)

where ¢ is a complex constant. This is a kind of modified eigenvalue problem, with eigen-
values e. To solve it one needs two intermediate results, which proofs of validity are left
to the reader. The first is that an un-normalized polarization vector corresponding to the

1

polarization factor p is . The second result is that the polarization factor of the po-

larization arthogonal to the polarization given by pis —1/p*. Eq.(6.6) can now be rewritten
in terms of the polarization factor p of the polarization vector p:

(3 :)0)=(2)

The scattering matrix is assumed to be symmetric, which is generally so for a reciprocal
system. This equation is readily transformed into the cubic equation

S’ 4+ 25mp+ S =0 (6.7)

with solutions

—Sa \/Sg. — SikSew

P2 = S (6.8)
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This demonstrates that when the same antenna is used on transmit and receive, it is
nevertheless possible to make the return from a object to vanish. There are in general two
polarizations that will accomplish this. The polarization factors of these two polarizations
are given by Eq.(6.8). These polarizations are called the co-polarized pulls {18].

6.4 Maximization of the power

As a logical continuation of the foregoing this paragraph is devoted to the maximization
problem. The problem is to find the polarizations p¢, pr which maximize

VI = cp. - Shef® {6.9)

It will be proven that the maximum power received can be attained with only one antenna
used for transmitting and receiving, just like in the minimization case of the preceding
paragraph. This polarization is again found as a solution to a kind of eigenvalue praoblem.
The proof uses the theory developed in [18], which solved the problem of maximizing the
power in the backscattered wave. However, here it is also proven that the receive polariza-
tion matching the polarization of the maximized backscattered wave equals the polarization
that maximizes the return ir the backscattered wave.

First assume that p = p; = P, maximizes V'V'*. It is then clear from Eq.(6.9) that p should
satisfy

Sp = ¢p". (6.10)

again a kind of eigenvalue problem (but not in the ordinary form, because of the complex
conjugation in the right-hand side of the equation). Nevertheless, e will be called the
eigenvalue, and P the eigenvector. In general, there are two salutions to this equation:

Sp = af]

8p; = ep;.

Since the matrix § is symmetric, we have

1SB: - Bal = |B1 - Syl

On combining the last three equations we get

i
3
¢
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jeallpy - P2l = leallr - P31

Hence, if |es] # lea,

Pr-p3=0.

But, according to Eq.(3.13), these two eigenvectors are orthogonal. The two eigenvectors
thus form an orthonormal set, because they are orthogonal and both normalized. When
the two eigenvector polarizations are displayed on the Poincaré sphere they are antipodal.

It is pow possible to show that the maximum refurn is obtained when the polarization of
the cigenvector with the absolute largest cigenvalue is used. By the return the power in the
backscattered wave is meant. To prove this we write an arbitrary polarization vector g as
a linear combination of the two eigenvectors:

q = opy + a202 {6.11)

When the object with scattering matrix S is illuminated by a transmit antenna with po-
larization §. the power Pay, in the backscattered wave is proportional to

$'G-5"§" = Sq-5°4".

Note the use of 8’, which is necessary because of the defininition of the scattering matrix
(Eq.(5.4)). On using expression (6.11) one obtains

Pacwe x (@1SPy + a3SPz) - (a1S°P; + a3S°P3) = laPley|? + feallea)®  (6.12)
= Ie,lz - |az|3 (lellz - Ic;I') . {6.13)

Without loss of ;enerality ope may assume that |e;] > |e;|. But then it becomes clear that
the maximum return P e, is attained when a; = 0. The maximum value is |e;|?. while
the polarization for which this maximum is attained is given by the 2igenvector p,. Besides
this, it can also been concluded from Eq.(6.13) that the minimum return is obtained when
laa} = 1. The minimum return le;}? is obtained when the object is illuminated by a wave
with the polarization of the eigenvector p,.

This is not yet the end of the proof, because we now have only shown that the power in the
backscattered wave is maximal, when the cobject is illuminated by a wave with polarization
P1. Now the power at the terminals of the receive antenna with poiarization given by p,
has to be maximized, that is,
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P = icp. -Sh,[*

should be waximized.

When this condition is met, the polarization of the receive antenna is matched to the
polarization of the backscattered wave. But, because Sf, = e;p3, it is clear that p, must
equal py. This completes the proof. The polarization P, is called the co-polarized maximum
polarization.

Now Eq.(6.10) is solved for p. Aralagously to the approach used in the preceding paragraph

we rewrite the polarization vector as ; ) Substitution of this vector in Eq.{6.10) gives

She (1 - IPl’) + pSeu = p"San = 0.

This equation is not as easy 1o solve as the cubic equation (6.7). However, it turns out that
after some algebraic manipulations the equation can be rewritten as the cubic equation

ap? —bp—a” =0, (6.14)
where

@ = SpuSho + SucSh, and b = |5y |2 — |Saal®.

The solutions of this equation in terms of a and b are

_ bt + dal?

= .15
Pa 20 (6.15)

Because pyp3 = -1 the polarization: corresponding to these two solutions are orthogonal,
as predicted.

Transmitting and receiving with the polarization factor corresponding to the largest eigen-
value of the two solutions gives maximum output at the terminals of the receiving antenna.

Fig.6.3 shows the four solutions of Eq.(6.8) and Eq.(6.15) as displayed on the Poincaré
sphere. Huynen [18] praved that the four solutions form a fork contained in a plane when
aisplayed on the sphere. As predicted, the solutions of Eq.(6.15) are situated antipodal on
the sphere. The two prongs of the fork correspond to the co-polarized nulls. The handle
of the fork corresponds to the co-polarized maximum polarization. The angle between the
two co-polarized nulls is bisected by the line connecting the solutions of Eq.(6.15).
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Figure 6.3: Huynen's fork (from [5])

6.5 Summary

When an object s rotated about the line of sight its scattering matrix chauges in general.

The rotational dependence of the scattering matrix was exploted in the first paragraph. It

o turned out that when the ccattering matrix of an obsject is known, the scattering matrix of
' the same object rotated through a certain angle about the line of sight is given by Eq.(6.1).

The scattering matrix ¢f a radar-symmetric object is diagonalized by rotating it about the
line of sight until its symmetry plane is either horizontal or verticzl. Objects with more
than two radar symmetry axes have a unit scattering matrix.

.. In the last two paragraphs the problem of minimizing and maximizing the power al the
ottput terminals of a recejving antenna was solved. It was shown that for the minimization
problem two solutions exist where the receive and transmit antenna polarizations are equal.
The polarizations are called the co-polarized nulls. The minimum power is zero. For
the maximization problem one solution exists with equal send and :eceive polarizations.
This polarization is called the co-pclarized maximum. When these three ‘characteristic’
polarizations are mapped onto the Poincaré sphere, they form a fork.
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7 THE STOKES VECTOR

e ———

In the foregoing the discussion was restricted to completely polarized waves. Kowever, the
waves commonly encountered in nature are most often (if not always) partially polarized.
Partially polarized waves are waves with a time-varying polarization. They are (partially !)
described by the Siokes vector, instead of the polarization vector. This chapter introduces
the Stokes vector and a related quantity, the degree of polarization.

7.1 Partially polarized waves

By definition, a completely polarized wave is a wave for which the polarization vector

—— D

| P= ( ?:e“ ) withé = 6, - &, (7.1}

is independent of time. So E,, E, and §, — §, are constants. The polarization ellipse of a

completely polarized wave has constant orientation, eilipticity and size. This implies that 2

completely polarized wave is represented by a single point on the Poincaré sphere. A radar
. transmits an almost completely polarized wave,

The other extreme is constituted by the completely unpolarized waves. Suppose one mea-
sures the polarization of the light emitted by an ordinary gas-discharge tube. The light
is produced by a great number of decaying atoms. Some time later (» the mean decay
time of the atoms) the light is produced by a completely different set - decaying atomes.
Consequently, the polarization of this light is not related to the polarization measured ear-
lier. The orientation and ellipticity of the polarization ellipse vary wildly i: time. In fact
they are randomly distributed within their respective ranges. The intensity fluctuates also.
Wher the polarizations resulting from a lot of measurements are displayed on tke Poincaré
p sphere, a shell results.

Between these two extremes one finds the partially polarized waves. For partially polarized
waves the polarization ellipse also varies in time, but not completely at 1andom. A more
or less sharply defined mean ellipse can be recognized. Displaying the varying polarization

) of a partially polarized wave on the Poincaré sphere gives a cluster of paints on the sphere.

Because the intensity generally fluctuates also, the distance of the points to the centre of
‘ the sphere i not constant. So in Poincaré space a partially polarized wave is characterized
b by a cloud of voints.

A partially polarized wave is generally obtained when a completely polarized wave is scat-
tered by a target which varies in time. An example is given in Fig.7.1.
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These figures were obtained by illuminating three different objects (rain clutter, ground
clutter and an aircraft) with a horizontally (completely) polarized 5 GHz wave. The inten-
sity and polarization of the backscattered wave were measured at several instances in time.
This resulted for the intensity in the three histograms. The polarizations are displayed or
a certain projection of the Poincaré sphere. Some polarizations are indicated. It can be
seen that the intensity histograms differ for the three different objects. The polarizations of
the backscattered wave cluster on the Poincaré sphere. The positions of the three clusters
differ. The spread differs also: it is biggest for the rain clutter and smallest for the ground
clutter. At first sight it scems strange that the polarization of the wave backscattered by a
fixed object like the aircraft fluctuates in time. However, small changes in the aspect angle
can result in largz variations. So small changes in the orientation of the aircraft, possibly
caused by the wind, can account for the spread.

It is also possible to measure the polarization and intensity of a wave backscattered by
different parts of a homogeneous area. like an agricultural field. When the results are
displayed a¢ in Fig.7.1 simiiar results are obtained.

The mean position of a cluster, its dimensions or other statistical quantities can be used to
discriminate between objects, as is clear from Fig.7.1. The Stokes vector, which measures
the mean position and the overall dimension of the ‘cloud’ for partially polarized waves, is
mostly used.

7.2 The Stokes vector for completely polarized waves

The Stokes vector of a completely polarized wave is defined by

[suasunaantining
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Figure 7.1: Three partially polarized waves (from [6])
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39 E?+ E2
- St - Eg b E:
8= ss | 7 | 2E.E, cos8 |’ (72)
83 2E¢Ey sin é

where the parameters E,, E, and § are those of Eq.(7.1). sg is proportional to the intensity
of the wave (see Eq.(2.3)). It is readily checked that s§ = s} + 3 + si. Consequently,
the four-dimenional Stokes vector of a completely polatized wave consists of only three
independent parameters.

The Stokes vector can also be expressed in terms of the geometrical parameters ¥ and x,
and E? + E? (3 independent parameters !). By using Egs.(3.2) ... (3.5) it is possible to
show that

1
cos{2x) cos{2¢")
cos(2x ) sin{2y")

sin(2y)

s =3 with sg = E2 + E3. (7.3)

This equation reveals the correspondence between the Stokes vactor and the Poincaré sphere
presentations. The components of the Stokes vector are the coordinates in a rectangular
coordinate system, as shown in Fig.3.3. The Stokes vector is often used, because its compo-
nenis are easily measured. In fact. it can be measured by doing powar measurements only.
When we let for example P(horizontal) denote the power resulting from a measurement
with a horizontally polarized antenna, we can write

P(horizontal) + P(vertical)

£ P(horizontal) — P(vertical)
P(linear 45°)  — P(linear 135°%)
P(lefi circular) ~ P(right circular)

To prove this, Eq.(5.1) must be used. An example is given here for sy. P(left circular) is

computed as follows:
E, 0 1
Eye¥ -1 i

= e (E,-iE,e"‘)| (E + E1 + 2E, E, sin 8)

2
P(left circular) o |V(left circular)|? =

Following the same procedure for P{right circularj oue gets
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P(right circular) = |c}? (E: + E} - 2E.E, sin 6) .
Therefore,
s3 o< P(left circular) — P(right circular) & 2EgFysin§,

in accordance with the definition of the Stckes vector of Eq.(7.2).

When the Stokes vector representation is included, we have now four quantities giving the
polarization of a completely polarized wave:

o the orientation ¢ and ellipticity .

¢ the normalized polarization vector p. When the polarization vector is not normalized,
like p, the intensity of the wave can be computed.

o the polarization factor p.

o the Stokes vector s. Component sq is proportional to the intensity of the wave. A
Stokes vector is ‘normalized’ by dividing the four components by sg. It then consists
of only two independent parameters, giving the polarization.

7.3 The Stokes vector for partially polarized waves

The Stokes vector for a partially polarized wave is simply defined as the time average of
the Stokes vector for the completely polarized wave of Eq.(7.2):

). (B e
— S —_ a2l = i _ .
=1, = 2 EuE,cosb) | Where ()= gp Him /_ Lo (1)
2 2{E.E, sin §)

Let us prove that s3 > s3 + 33 4 s3, where the equality holds for completely polarized waves
only. To do this define

A=sh- o} - 5~ 53 = A {(EINED) - (EcEycos6)® - (ELE,sin )}

Becaase | sin 8] and | cos 8| are always less than or equal to one, and greater than or equal
to zero
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{EzE, cos 6} + (E.Eysin §)? < (E,E,)? < (E:)(E:)
holds, where the Schwarz inequality [19] was used for the second step. So A is always
positive or zero. When E;, E, and § are constants A = 0. This completes the proof.

Because the components of the Stokes vector are (averaged) powers, the Stokes vector of
a sum of independent waves is the sum of the Stokes vectors of the individual waves. By
independent is meant that there are no permanent phase relations between the individual
waves.

7.4 Degree of polarization

A completely unpolarized wave has a Stokes vector

[~ - — I~}

where a is a real, positive constant. A proof for this can be found in [3]. Loosely speaking,
one can state that s;, s2 and s are zero, because E;, E, and é flu~tuate so wildly for a
completely unpolarized wave that the three components average to zero.

Any partially polarized wave can be regarded as the sum of a completely unpolarized and
a completely polarized wave, i.e.

So 1-d sod

81 _ Q LJY
S2 =% 1} + Sz ) (75)
s3 0 \ S8

The first term of the sum representz a completely unpolarized wave, the second part a
completely polarized wave. Therefore d must be chosen so that (sd)? = s? + 5% + s, a
necessary condition for complete polarization. But then

s 4 52 4 52
RLELTE) 1)

S0

d is the ratio of the intensity of the completely polarized part and the intensity of the total
wave.
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The Stokes vector of a partially polarized wave has four independent comporents, while the
Stokes vector for a completely polarized wave has only three. Three of the four parameters
of a partially polarized wave are the average position of the cloud of points mentioned in
§1 of this chapter. The fourth parameter is ofien taken to be the degree of polarization.
It is related to the overall dimension of the cloud. The degree of polarization is defined
as the parameter d of Eq.(7.6). From this equation it follows that d is 0 for a completely
unpolarized wave, 1 for a completely polarized wave, and in between these values for a
partially polarized wave.

7.5 Summary

When the varying polarization of a partially polarized wave is displayed in Poincaré space, a
more or less sharply defined cloud of points results. The four-dimensional Stokes vector can
be used to describe some (but not all!) of the features of this cloud. Each of the components
of the vector can be determined by doing power measurements. In fact, the components
are powers. Therefore, additivity holds: the Stokes vector of a sum of independent waves
equals the sum of the Stokes vectors of the individual waves. The degree of polarization,
which can be determined from the Stokes vector, is a measure for the variability of the
polarization in time (or in space, when the Stokes vector is a space average).
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8 THE STOKES MATRIX

The scattering matrix relates the polarization of the wave scattered by a stationary object
to the polarization of the incident wave. It is also possible to compute the voltage induced
in a receive antenna by the backscattered wave. The wave scattered by a time-varying
object is partially polarized, which can be characterized by a Stokes vector. It is therefore
natural to introduce the Stokes matrix which can be used to formulate similar relations, but
now for time-varying objects in terms of Stokes vectors. After development of the Stokes
matrix formulation the polarization signature is introduced. The polarization signature
is a plot of the jnformation contained jn the Stokes matrix. Finally, attention is paid to
minimization/maximization problems similar to those of §6.3 and §6.4.

8.1 The Stokes matrix of a stationary object

To define the Stokes matrix we first have to recall Eq.(5.5):

— e L Sah She | -
V= chr (Svh Sn)p‘. (8.1)

This equation gives the voltage at the terminals of a receive antenna with polarization
Pr,» when an object with scattering matrix S is illuminated by a transmit antenra with
polarization p;. The scattering matrix is symmetric in the backscatter case, when the
positions of the antennas coincide.

The Stokes matrix M is defined completely analogously to Eq.(8.1) by

P = s, - Ms,. (8.2)

This equation gives the power P («x VV*) delivered into a load connected to the terminals
uf @ 1eceive autenna with polarization given by the Stokes vector s,, when an object with
Stokes matrix M is illuminated by a transmit antenna with polarization s;. ¢ is again a
proportionality constant. The Stokes vactors belong to completely polarized waves, because
they represent antenna polarizations. Because a Stokes vector has four real components,
the 4 » 4 square matrix M is real, as is c.

The Stokes matrix for a stationary scatterer can be derived from the scattering matrix of
that scatterer. It turns out that the elements of the symmetric Stokes matrix are related
to the scattering matrix elements by
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3 (19 + 15w + 2(Swel?) (8.3)
% (RN E (8.4)
AR (SiaSh + 530 5h) (85)
%Im(S;,,S;., ~ 525k (8.6)
3 (150al" + Sunf? — 215, I%) (81)
SRe(S7uShe — 520 Sh) (8.8)
%m(s,;,,s,., +52,5m) (8.9)
2 IShef? + 2 Re(SiaSw) (8.10)
%Im(S,'_,.S,.) (8.11)
2 ISwl? ~ JRe(SiaSw) (8.12)

For example, using these equations, the Stokes matrix of a flat plate (unit scattering matrix)

is readily computed to be

1 00 O
1Jo1o0 o
2001 o (8.13)
000 -1

The symmetric scattering matrix contains 5 independent parameters when the absolute
phase is neglected (§5.3). The Stokes matrix, which can be measured by power measure-
ments only, should thus contain also 5 independent parameters (the absolute phase is not
determined by a power measurement). The Stokes matrix is symmetric and therefore con-
tains at most 16 — 6 = 10 independent parameters. It can be seen from Eqs.(8.3) ... (8.12)
that the following 5 independent relations exist between the elements of the Stokes matrix:

M+ M+ MY + M3, = M} - M} (8.14)
Ml - M- M}y + M}, = M- M} (8.15)
MisMas + MigMsqy = Mis(My; ~ Ma) (R1€)
MysMig — My May = Myg(Mas + My) (8.17)

Mgy = Ma+ My + My (8.18)
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This makes the number of independent elements 180 — 5 = 5, as expected.

8.2 The Stokes matrix of a time-varying object

The wave scattered by a time-varying object is partially polarized. The polarization of the
wave thus fluctuates in time. As a consequence, its scattering matrix and corresponding
Stokes matrix are also time-dependent. The proper way to describe 2 time-varying ckjact
is to measure its Stokes matrix repeatedly, ard average the results, This is valid, because
the elements of the matrix result from (possibly indirect) power measurements. Of the
five relations given by Eqgs.(8.14) ... (8.18) only the last one is linear. When a number
of Stokes matrices corresponding to stationary objects is summed, only this relation will
remain to be valid for the sum. The number of indepeadent elements of a Stokes matrix
for a time-varying object is therefore 5 + 4 = 9. The class of time-varying objects is thus
larger than the class of stationary objects. It is clear that there corresponds no scattering
matrix to the averaged Stokes matrix of a time-varying object.

The image resulting from a measurement by a polarimetric imaging radar consists of pixels
for which the scattering matrix is measured. The Stokes matrix of a distributed object, like
an agricuitural field, is determined in two steps. First the scattering matrices of the object
pixels are converted to Stokes matrices using Eq.(3.3) ... (8.12). These Stokes matrices are
then summed to give the Stokes matrix characterizing the distributed object. Note that
the time average is replaced here by a space average.

8.3 Polarization signatures

A problem is to visualize polarimetric data, i.e., Stokes matrices. As can be seen from
Eq.(8.2) the power received depends on the Stokes matrix and the send- and receive po-
larizations. In principle five dimensions (4 for the send and receive polarization and 1 for
the power) are needed to visualize the contents of a given Stokes matrix. Several simpli-
fying approaches have been used to display part of the information [18). In [5] so-called
co-polarization signatures were introduced, defined as follows: assuine the send- and receive
polarizations of a radar to be identical. The co-polarization signature is a three-dimensional
plot of the received power of Eg.{8.2) as a function of the orientation and ellipticity of the
send/receive polarization. Fo: example, the co-polarization signature of a flat plate at
normal incidence is given by

/1 t e o7 1)

Sl 010 a L1 _ 2 2_ 2
P . 091 o0 " =1+s1+s53—5

S3 000 -1 Sy
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= 14 cos?(2x)cos®(2¢) + cos*(2x) sin?(2¢) - sin?(2x) = 1 + cos{4x),

where Eqs.(7.4), (8.2) and (8.13) were used. The signature is shown in Fig.8.1.

NORMALISED ¢

wa ° o ow
“on 5&;-":;\‘:2‘;

Figure 8.1: Co-polarization signature of a flat plate at normal incidence (from [7})

The height of a point on the surface of a signature is proportional to received power, and
consequently to the radar cross section also. It can be seen that all linear polarizations,
characterized by x = 0, give maximum power. The power is zero for all circular polarizations
(x = £45°).

The co-polarization signature has been extensively used to analyze the data obtained for San
Francisco by a polarimetric SAR [7]. Fig.8.2 presents an example. It shows the signature
of an urban area together with the signature of a dihedral. The signature of the urban area
looks like that of the dihedral with an offset added. This suggests that the scattering from
the urban ares js caused by a two-bounce scattering mechanism.

In addition to the co-polarized signature one can define the cross-polarized signature. The
only difference is the fact that the two antennas are cross-polarized in this case.

8.4 Minimization and maximization of the received power

§6.3 and §6.4 handled the minimization and maximization problem for the power scattered
by a stationary object, which can be characterized by a scattering matrix. A time-varying or
distributed object is characterized by an average Stokes matrix for which no corresponding
scattering matrix exists. The minimization/maximization problem is therefore different. In
conirast 1o vhe stationary case, n¢ co-polarized solutjons exist in this case: the extremes
are generally attained for non-equal send and receive polarizations.

Nevertheless, in [20] the problem is solved for the case where the transmit and receive
polarizations are identical. So the extremes of F(s) = s - Ms are determined for a given
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Figure 8.2: Co-polarization signatures of an urban area (a) and a dihedral (b) (from [7})
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Stokes matrix M. This corresponrds to locating the extremes (including saddle-points and
local extremes) of the co-polarized signature. The method used leads to a sixth-order
polynomial. Each of the real roots of the polynomial corresponds to an extreme. It is proven
that there are at least two roots, so there are 2,3...6 extremes. Generally, the minimum
power is not zero because the backscattered wave is partially polarized. Minimum power is
received from a partially polarized wave when the polarization of the receiving antenna is
orhogonal to the polarization of the completely polarized part of the wave (see §7.4). The
minimum power is half of the power contained in the completely unpolarized part of the
wave {21]. It shows up in the co-polarization signature as a ‘pedestal’. All points of the
signature are Jocated above or on this pedestal.

The problem of minimizing/maximizing the power in Eq.(8.2) as a function of the indepen-
dent send and receive polarizations is attacked in [5]. The solution leads to 2 system of two
nou-linear equations which is not easy to solve.

[t is often necessary to optimize the contrast between two different objects with Stokes
matrices M; and Mj. That is, the polarizations s, and s, have to be determined which
minimize or maximize the ratio

H _s-Ms,
P, s, -M;s,

A hybrid solution is given in [22]. By hybrid is meant that the method proposed is half
analytical and half numerical. The analytical part consists of an expression giving the
optimal receive polarization s, for a fixed send polarization s;. The numerical part consists
of computing this s, for several values of s; until the ratio of P; and P, attains its minimum
or maximum. In practice the transmit polarization is varied over a sufficiently dense grid
of orientation and ellipticity angles.

8.5 Summary

In this chapter the Stokes matrix was introduced. While the scattering matrix formulation
uses electric fields (polarization vectors), the Stokes matrix formulation uses Stokes vectors.
The polarization properties of a stationary object are represented by the scattering matrix.
A time-varying or distributed object is represented by an average Stokes matrix. A co-
polarization signature can be used to display (part of) the information contained in the
Stokes matrix. This signature is a three-dimensional plot of the power received by a radar
with identical receive and tranmit antennas, for an object with a given Stokes matrix. An
outline of snme solutions ¢ minimizalion and maximization problems was given in the Jast
paragraph.
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