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Abstract

This research addresses the implementation of an electronic element,
which emulates the biological synaptic interconnection, in an artificial
electronic neural system. The basic interconnection, or the weight, consists
of an electrically reprogrammable, nonvolatile, analog conductance which
programs at 5V levels. In addition, the fabrication technology for this
synaptic interconnection is compatible with existing CMOS VLSI process.
The attractive features of this synaptic weight will be discussed in this
report. Furthermore, this report examines the material needs, the device
structures, the use of the synaptic weights in a two-tap weight linear
adaptive neural-like circuit and the issue of integrating both the synaptic
weight elements and the peripheral circuit onto a single silicon wafer.

1. Introduction

The current surge of enthusiasm for neural network aims to construct systems that can learn

or modify their behavior according to the environment. There are many similarities which exist

between this new class of machine and human beings. One of these similarities is the massive

parallelism in processing information. Parallel processing i concepts are in stark contrast to the

operations of modern digital computers that perform large numbers of sequential operations very

rapidly and accurately.

Researchers believe the synaptic junctions in a neural system are the local memory sites

and provide the physiological basis for the distributed parallel systems. 2' 3 These synapses are not

only modifiable but also serve the functions of storing and transmitting information from neuron to

neuron. To reduce the complex modelling required for the synaptic interconnection, the

reDresentation of the synapse has been simplified to a single ideal junction between the output of

neurons (axons) and the inputs to neurons idendrites). Synaptic modification requires information

from the input and the output of the neuron in order to perform complex recognition. Therefore, the

nature of the synaptic junction and the principle or algorithm which controls local organization at

:he neuron level become two central issues pertaining to neural networks research.

The recent interest in neural networks 4, 5 is a direct consequence of the programmability

which is an essential feature of learning machines, associative memories. and adaptive signal

crocessors. Programmability requires a -nodification of the synaptic strength in the language of

neurobiology. If we seek an etficient hardware implementation of electronic neural systems. then

:ne synapses - as well as the network itself- should be analog. Several attempts have been made to

realize programmable synapses, either ,igitally 6 or with temporary storage on the input capacitance
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of a MOS Transistor 7' to alter the latter's analog conductance. The former approach stores the

weight information in digital registers and thus suffers from excessive chip area and power

consumption. On the other hand, although the MOS Transistor provides an analog synaptic

strength (weight) in a small chip area, the weight is temporary and requires periodic refresh similar

to a DRAM. Thus, this dynamic refresh approach lacks the nonvolatility and storage properties of

an EEPROM cell. Researchers at Intel have reported an electrically trainable artificial neural

network with floating gate device as the synaptic element. 9 Although floating gate device has the

property of nonvolatility, its high programming voltage requirement prevents it from being

technologically compatible with scaled CMOS process.

In this research report we describe a new approach to obtain an electrically reprogrammable or

modifiabie synaptic weight to be used as a basic functional element in electronic neural systems.

The salient features of this network element are the following:

" Low programming voltages(5-10V) which are compatible with peripheral

CMOS VLSI technology in contrast with Floating Gate approaches.

* Low power dissipation (< 1 W.

" Dynamic Range of 1000:1 (60 dB).

" Nonvolatile features which mimic biological synapses with respect to memory
loss (e.g. 20% of the information available after 10 years) and reinforced
learning (e.g. successive interrogation enhances memory retention).

" Small synaptic area on a VLSI chip (e.g. less then 20u.m2 for 1.25 jim feature
sizes).

" Extensive erase/write programming cycles are possible with this synapse (>
103 cycles) in contrast with Floating Gate approaches.

* Inherent radiation damage resistance beyond a total dosage of 1MRad (Co )

and 10P Rad/sec transient which is not possible with Floating Gate technology.
Thus. if radiation damage resistance of neural networks is an important issue.
then the SONOS devices have demonstrated success in this area.

The basic nonvolatile device structure, which we describe in this report was first introduced as

a o -]tai nonvoiatiie memory cell in the summer of 1987 at the IEEE Device Research Conference-0

-v researchers at Lehigh University. We have had a continual involvement over a 20 year period

i:n nonvolatile memores. beginning in the late 60's where we had programming voltages of 25V. to

-e 'atc O's with our novel 5V SONOS device structures. During this time period we introduced the

).fe .j CCD's and nonvolatile memories" ' ' 13 in nonvolatile charge addressed memories

NCVCA These ideas have been employed recently for neural network circuits by researchers at
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Lincoln Laboratories. 14 Our recent work recognizes the inherent analog conductance aspect of the

nonvolatile SONGS memory device which makes it a perfect candidate for the modifiable synapse in

an electronic neural system.

In addition to the realization of an electronic element to simulate the synaptic interconnections

of a neural network, we must have a method or algorithm to change or reprogram these

interconnections and, thus, alter the connectivity of the neural network. We have had experience

with a particular form of an algorithm, namely, the Widrow-Hoff Least Mean Square (LMS)15 error

algorithm or in neural network terminology - the so-called 'delta rule'. In the late 70's we researched

a CCD Adaptive Analog Signal Processor,'1 17 which realizes the 'delta rule' with CCD analog delay

lines and electrically reprogrammable MNOS analog conductance weights. These weights were

nonvolatile memory transistors whose analog conductance was programmed with voltages ranging

from 15-25V. Our recent work on 'scaling' these programmable analog conductances has resulted in

a new device structure, called the SONOS nonvolatile memory transistor, which can be

reprogrammed with voltages ranging from 5-10V. This work has recently been described at the :991

1-th IEEE Nonvolatile Semiconductor Memor; Workshop.18 These voltage levels are compatible

with 'scaled' CMOS VLSI technology which has 12-15V breakdown voltages for 1.25um feature sizes.

In this report we describe our recent work on the electrically reprogrammabile (modifiable) SONOS

nonvolatile synapse and a simple electronic neuron with 2 synaptic weights. We discuss this two-tap

weight linear adaptive neuron in terms of the technology, the electrical characteristics of the

synapses, and their performance in this simple test vehicle - a 'delta rule' adaptive signal processor.

2. Technology and Characterization of SONOS Synaptic Weight

The programmable synapse is the result of an ongoing effort at Lehigh University to scale the

programming voltages required to alter the analog conductance of a nonvolatile me~nory transistor

,ith a multi-layer oxide-nitrde-oxide) gate insulator as shown in Fig. 1. Recent efforts in scaiing

this device have resulted in a SONOS (SiliconBlocking Oxide/NitrideiTunneling O.idaSiiiconi

nonvolatile memory transistor which is electrically reprogrammable at CMOS voltage levels.

T:.-picallv, the tunneling oxide is 15-25A. the storage nitride is 50- i00X and the blocking i-de is
;35-.:-A. Fig.2 shows the Transmission Electron Microscope TEM) photograph of the cross sectonai

•,-'ew of the SONOS transistor. This device is similar to a SNOS transistor except for the addition of

the biocking oxide which is used to inhibit injection of carriers from the poiysilicon gate eiectrode
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and also to improve the memory retention by prohibiting the transfer of stored charge from the

nitride to the gate electrode. As the result, the blocking oxide permits the entire dielectric sandwich

to be scaled to dimensions where the programming voltages ranging from 5-10 V are possible.

When the SONOS device is subjected to a positive (or negative) programming pulse, electrons

(or holes) are injected into the silicon nitride layer by means of tunneling across the thin tunnel

oxide. The injected charges are trapped by the silicon nitride and thus shift the threshold voltage

positively (or negatively). The threshold voltage of a SONOS transistor can be written as

Qf xob n ___i q N] _BO= S + ) QN + 2(B +I
VTH C~~efT o ENCf

where oB is the bulk potential, bGS is the gate to semiconductor workfunction, Qf is the fixed charge

at the tunneling oxide-silicon interface, E., and EN are the dielectric permittivities of the oxide and

nitride, EA is the dielectric permittivity of :he bulk silicon, x., is the tunnel oxide thickness, x., is the

blocking oxide thickness, x. is the nitride thickness, - is the charge centroid in the insulator, and QN

is the charge stored in the nitride, NB is the bulk doping density, and

Eo

Cff Co (2)
Cox

X+ x + Xob

We assume that the tunnel oxide and blocking oxide have the same dielectric permittivity; even

-hough. it is known that the tunnel oxide is silicon rich and the blocking oxide is an oxynitride. The

values of the charge centroid .z and the charge stored in the nitride QN will change as the device is

written or erased. The analog conductance of :he SONOS synaptic weight may be written as

W

where ir is the effective carrier mobility., V is the read voltage, and V7H is the electrically

modifiabie threshold voltage given in equation ,1). Therefore, there are two ways which the analog

channel conductance can be altered: I change the value of VCs or (2) change the value of V.-T. In

our study, the latter approach is chosen.

The SONOS transistors are characterized -or their memory properties by using the test stadon

descnbed in Anirban Roy's Master's Thesis. 9 This test station allows one to take both the
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erase/write and retention measurements. To investigate the memory loss/rentention properties of

the synaptic weight element, retention measurements are taken. The retention characteristics are

obtained by applying positive (negative) five volts to the gate for 10 seconds to place the device in the

write (erase) state and then measuring the turn-on voltage after a varying delay time. The turn-on

voltage is related to the threshold voltage by

21DS
VT = VTH + 4 0 (4)

with IDS as the forced drain to source current during measurement and

= eff(t) Ce (5)

where W is the width of the transistor, L is the length of the transistor, and 4eff is the effective

mobility. The effective mobility is -he bulk mobility reduced by Coulombic and surface scattering of

carriers in the inversion layer. This mobility is influenced by the gate and substrate voltages.2 0 For

a SONOS transistor retention measurements indicate that -eater than 20 percent of the memory

".indow remains after a projected 10 year delay time as shown in Fig. 3. The erase,wrte

measurements indicate the programming speed of the synaptic weight element. To measure the

writing (erasing,, speed, negative (positive) five volts are applied to the gate for 10 seconds to place

the device in the erase (write) state. Then. positive (negative) five volts are applied to the gate with

varying pulse widths and the turn-on voltage is measured after each pulse width. The erasewriLe

characteristics of the SONOS memory transistor are shown in Fig. 4. A wide dynamic range is one

of :he essential properties for the snaptic weight element, and Fig. 5 illustrates a 60 dB in dynamic

range after =5V programming for the SONOS synaptic weight. In addition, a recent study in

re'iabiity has demonstrated the inherent resistaice of the SONOS memory transistor to radiation

damage SVT. = O.IV, with VG= 5V at lMRad Co 6° radiation).2 1

3. Single-level Linear Adaptive Neuron

We have incorporated the SONOS synaptic weights into a single-level linear neuron-dike

.:rcuit using a Widrow-Hoxrs deita learning rule. 15 The circuit is built with a hybrid breadboard of

CMOS components for the control logic and the algorithm implementation and the SONOS

nonvoiatile memory transistors o demonstrate the voltage level compatibility of both SONGS and

CMOS technologies. Many researchers believe that the neural system is made up of several layers'
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of neurons and Fig. 6 shows the multi-layer architecture of an artificial neural network. The first

layer of neurons, the input layer, can be best thought as the sensory neurons in a human body. The

weight connections between the input layer and the middle hidden layer are normally considered to

be feedforward and fixed. On the other hand, the weight connections between the middle hidden

layer and the output layer are considered to be feedback in nature. Our work has concentrated on

the implementation of two neurons in the hidden layer and one output neuron as highlighted in the

figure.

Fig. 7 shows the block diagram of the single-level linear adaptive neuron. A desired response

(or external teacher), d(m), is presented to the neuron as the training signal. If the output of the

linear adaptive neuron is not trained, then there exists a mismatch between the output of the linear

adaptive neuron, v(m), and the desired response, d(m).

E(m)= (m) - y(m, (6)

where Ejm is the error c-ne-ated. This error is then used by a learning algorithm, namely the

Clipped-data Least Mean Error algorithm, to minimize the error generated and thereby training the

neuron to the correct response. This single-level linear adaptive neuron has two tap weights, each

weight is comrosed of two SONOS analog electrically reprogrammable conductances as shown in

Fig. S. Since the synaptic weight must be either positive or negative in value, we have chosen a

differential weighting scheme. If the analog conductance connecting the positive summing path to

.he differential operational amplifier is greater than the analog conductance connecting the negative

summing path to the differential operational amplifier, then the weight is positive in value. On the

other hand, if the opposite case is true, then the weight is negative in value. Positive weight value

corresponds to the excitatory synaptic strength and the negative weight value corresponds to the

inhibitory synaptic strength.

In operation, the input signal x~t) is passed through a switched capacitor analog delay line

where the input signal is sampled and delayed to create two tapped signal outputs xo(m) and x.(m).

These tapped signals multiply to their corresponding programmable weights Wo and W and the

result is summed linearly at the summing amplifier. The output '.inm) can be expressed as:

'l) = Y W,(m-r,,_ (7)
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where m is the time index and k is the spatial index. A correlated double sampling technique 22is

employed in the circuit to remove the unwanted noise and offset voltages introduced by the summing

amplifiers. The linear adaptive neuron is configured to perform Widrow-Hoffs delta rule as:

Wk(m+I) = Wk(m) + A Wk(m) (8)

where A W(m) is the incremental weight to be calculated by the clipped-data least mean square error

(C-LIMSE) algorithm23 :

A W,(m) = 24 le(m) .Sgn(e(m)] Sgn[x(m-k)] (9)

where 4 is the convergence factor. Compared to the regular Least Mean Square Error algorithm, the

input signal amplitude is clipped in the learning algorithm. This algorithm eliminates the usage of a

.our quadrant multipier needed for the LMS error algorithm. The sign multiplication in the

incremental weight calculation is essentially an Exclusive OR operation and the output of the

.xciusive OR gate controls the path of proper gate programming voltage for the SONOS synaptic

weight. If the convergence factor is small, then the system will minimize the misadjustment caused

by -he variance f :he weights; however, this also results in a long convergence time. Conversely, if

we choose to use a larger convergence factor, then the convergence time of the system is shortened

with the penalty of larger misadjustment. The backpropagating error is used to calculate the

adjustments to minimize the system error as shown in equation (9). Once the error is minimized,

the system is said to be in its steady state condition 24 where the output of the system, v(rm, is the

best match of the training signal, d(m), or the 'external teacher'.

The incremental weight update is essentially a cross correlation between the error and the

-loped input Jata vectors. The update stops when the two vectors become orthogonal. Sometimes.

:he network may be overcorrected initially, however, the error will be quickly minimized by the

.earning algorthm and the system reaches its desired response. The digital delay line provides the

sign :nrormation .f -he input to the learning algorithm. A special steering network is designed to

-witch :he proper programming voltages to the gate terminals of the SONOS transistors once the

:ncremental weights are calculated.



4. Experimental Results

There are two main types of characteristics from which the electrical performance of the linear

adaptive neuron can be evaluated. The first characteristic, namely the output and training signals

versus time characteristics, gives the information on how well the output signal approximates the

training signal especially in the phase relationship between these two signals. The second

characteristic, namely the error signal versus time characteristics, shows how fast the linear

adaptive neuron adapts before it reaches its minimum error. A typical output and training signals

versus time characteristic consists of two parts: the initialized and the adapted part. In the

initialized part, the weights are first initialized to a known state (either the fully positive or the fully

negative state) and then the weights are subjected to a reading voltage to read out the weight

information and the output signal and the training signal are compared and recorded. The linear

adaptive neuron is then allowed to adapt itself to the training signal and the results are shown in

the adapted part of the characteristics. Figure 9 shows the output and training signal versus time

characteristic.

A typical error signal versus time characteristic is obtained with initialized weight values and

monitoring the error signal with time. Our observation indicates the weight initialization scheme

affects the convergence behavior of the linear adaptive neuron. This phenomenon is attributed to

the nonsymmetric erase and write characteristics of the SONOS transistor. Therefore, one weight

initialization scheme may require more erase action taking place than another weight initialization

scheme, causing a difference in convergence characteristics. Figures 10 shows a typical error versus

time characteristic.

5. Technical Progress

During the research period from October 1990 to March 1991, several achievements have been

made under the contract. First of all, a graduate student supported by the contract has received his

Master's degree in Electrical Engineering in October 1990 and part of his thesis was presented in the

1991 IEEE Nonvolatile Semiconductor Memory Workshop in February 1991. In addition, our

research results will be presented at the Electro International Conference in New York as well as an

inVited presentation at the Wright Patterson Air Force Base in Dayton. Ohio during the month of

April.

The course of optimizing the synaptic weight element has resulted in a new fabrication run
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aiming to produce faster devices to improve the linear adaptive neuron performance. The

erase/write characterization of the newly made devices indicate a roughly one order of magnitude

improvement in the programming speed (determined by the cross-over time as mentioned in the

previous section) over the older devices. Figure 11 shows the difference in programming speed

between the newly made devices and the old devices. We have also investigated the programming

voltage dependence on the programming speed for the newly made devices. Figure 11 shows an

improvement of one order of magnitude in programming speed with each one volt increment in the

programming voltage. In order to further aid the investigation in the synaptic weight element

characterization, a fully computer controlled automatic data acquisition system specially designed

for the synaptic weight elements is needed. This system is a natural extension of the test station

currently used in our studiesi 9 and a proposed block diagram of the automatic data acquisition is

shown in figure 12. in the hardware implementation of the linear adaptive neuron, a

reprogrammable controlling clock generator was built. This clock generator can supply up to 15

different clocking waveforms with the clocking patterns pre-programmed in an EPROM ceil. In

addition, this generator can house several clocking schemes which can be selected by changing a DIP

switch setting.

Integration of the linear adaptive neuron onto a single silicon wafer is one of the main goals of

our research efforts. We have acquired a computer aided design software package, developed by the

Mentor Graphics Corporation, and implemented on our SUN workstation. In order to make full use

of the newly acquired software, we have developed a technology file which describes the fabrication

capability of our microelectronics laboratory. We have also started laying out small sample building

blocks to become familiar with the methodology of the system. One of the most important building

blocks is the design of the operational amplifier which is used in the analog delay line chain and the

discrete analog signal processing of the neuron output signal. SPICE simulations have been

performed for a number of different designs for possible implementation in the integrated linear

adaptive neuron.

6. Proposed Investigations

To take full advantage af the SONOS synaptic weight element, more experiments, anaivsis

and fabrication of the devices are required. Besides device fabrication, automation of device

characterization is of concern in the next phase of our studies. The layout of the integrated 'inear

adaptive neuron will be the main focus of our efforts in the next few months. The design ;,iil be
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tested, laid out, extracted and simulated to verify the functionality. We believe the integration of the

signal processing circuitry as well as the synaptic weight element onto a single silicon wafer will be

an important advancement to the Artificial Intelligence Neural Network Technology field.

7. Conclusions

The SONOS nonvolatile memory transistor has been shown to be an ideal electronic element

for the electrically reprogrammable analog conductance in an artificial neural network. We have

demonstrated the attractive features of this synaptic weight for the use of large neural network

systems, for instance, low programming voltage (5-10V), low power dissipation(<lj1W / synapse),

small chip area (estimated 20um2/ weight cell for a 1.2 gtm feature size), a dynamic range of 60 dB,

good memory retention (20 % window at a projected 10 years period), and enduranc, beyond 107

erase/write cycles. In addition, the SONOS synaptic weight has inherent resistance to radiation

damage (AVth=O.1V, with V ,=-5.V at 1MRad Co50 radiation). We have been continuing our efforts in

optimizing the modifiable synaptic weights to provide better electrical characteristics for neural

network applications.

We have also incorporated the SONOS synaptic weights into a single-level two tap linear

adaptive neuron employing a Widrow-Hoffs delta learning rule. The combination of CMOS control

circuits and SONOS synaptic weights has demonstrated the feasibility of integrating these two

technologies onto a single silicon wafer. The initial results are encouraging and promising and

provide insight and direction into the integration of these two technologies to realize large artificial

neural network systems.
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