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Abstract

This research addresses the implementation of an electronic element,
which emulates the biological synaptic interconnection, in an artificial
electronic neural system. The basic interconnection, or the weight, consists
of an electrically reprogrammable, nonvolatile, analog conductance which
programs at 5V levels. In addition, the fabrication technology for this
synaptic interconnection is compatible with existing CMOS VLSI process.
The attractive features of this synaptic weight will be discussed in this
report. Furthermore, this report examines the material needs, the device
structures, the use of the synaptic weights in a two-tap weight linear
adaptive neural-like circuit and the issue of integrating both the synaptic
weight elements and the peripheral circuit onto a single silicon wafer.

1. Introduction

The current surge of enthusiasm for neural network aims to construct systems that can learn
or modify their behavior according to the environment. There are many similarities which exist
terween this new class of machine and human beings. One of these similarities is the massive
rarallelism in processing information. Parallel processing concepts are in stark contrast to the
operations of modern digital computers that perform large numbers of sequential operations very

rapidly and accurately.

Researchers believe the synaptic junctions in a neural system are the local memory sites
and provide the physiological basis for the distributed parallel systems. 3 These synapses are not
oniy modifiable but also serve the functions of storing and transmitting information from neuron to
neuron. To reduce the complex modelling required for the synaptic interconnection, the
representation of the synapse has been simplified to a single ideal junction between the output of
neurons (axons) and the inputs to neurons (dendrites). Synaptic modification requires information
‘rom the input and the output of the neuron in order to perform complex recognition. Therefore, the
nature of the synaptic junction and the principle or algorithm which controls local organization at

zhe neuron level become two central issues pertaining to neural networks research.

The recent interest in neural networks*?3 is a direct consequence of the programmability
which is an essential feature of learning machines. associative memories. and adaptive signal
crocessors. Programmability requires a modification of the svnaptic strength in the language of
neurobiology. If we seek an efficient hardware impiementation of electronic neural systems. then
:he synapses - as well as the network itseif- should be analog. Several attempts have been made to

realize programmable syvnapses, either digitally® or with temporary storage on the input capacitance
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of a MOS Transistor” 8 to alter the latter’s analog conductance. The former approach stores the
weight information in digital registers and thus suffers from excessive chip area and power
consumption. On the other hand, although the MOS Transistor provides an analog synaptic
strength (weight) in a small chip area, the weight is temporary and requires periodic refresh similar
z0 a DRAM. Thus, this dynamic refresh approach lacks the nonvolatility and storage properties of
an EEPROM cell. Researchers at Intel have reported an electrically trainable artificial neural
network with floating gate device as the synaptic element.? Although floating gate device has the
oroperty of nonvolatility, its high programming voitage requirement prevents it from being

technologically compatible with scaled CMOS process.

In this research report we describe a new approach to obtain an electrically reprogrammable or
modifiatie synaptic weight to be used as a basic functional element in electronic neural systems.

The salient features of this network element are the foilowing:

« Low programming voltages(5-10V) which are compatible with peripheral
CMOS VLSI technology in contrast with Floating Gate approaches.

* Low power dissipation (< 1uW).
¢ Dynamic Range of 1000:1 (60 dB).

¢ Nonvolatile features which mimic biological synapses with respect to memory
loss (e.g. 20% of the information available after 10 years) and reinforced
learning (e.g. successive interrogation enhances memory retention).

¢ Small synaptic area on a VLSI chip (e.g. less then 20um? for 1.25 um feature
sizes).

» Extensive erase/write programming cycles are possible with this synapse (>
10P cycles) in contrast with Floating Gate approaches.

o Inherent radiation damage resistance beyond a total dosage of 1MRad (Co>®
and 10° Rad/sec transient which is not possible with Floating Gate technology.
Thus. if radiation damage resistance of neural networks is an important issue,
then the SONOS devices have demonstrated success in this area.

The basic nonvoiatile device structure. wnich we describe in this report was first introduced as
1 Jigitai nonvoiatile memory ceil in the summer of 1987 at the IEEE Device Research Conrerence-Y
Sv researchers at Lenigh University. We have had a continual invoivement over a 20 year period
arzh nonvolatile memories. beginning in the late 60’s where we had programming voltages or 25V. 0
“e late 30’s with our novel 3V 3CONOS device structures. During this time period we introduced :he
zse of CCD's and nonvolatile memories-= 213 in nonvolatile charge addressed memories

NOVCAM. These ideas have been empioved recently for neural network circuits by researchers at

o
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Lincoin Laboratories.!* Our recent work recognizes the inherent analog conductance aspect of the
nonvolatile SONOS memory device which makes it a perfect candidate for the modifiable synapse in

an electronic neural system.

In addition to the realization of an electronic element to simulate the synaptic interconnections
of a neural network, we must have a method or algorithm to change or reprogram these
interconnections and, thus, alter the connectivity of the neural network. We have had experience
with a particular form of an algorithm, namely, the Widrow-Hoff Least Mean Square (LMS)%® error
aigorithm or in neural network terminology - the so-called 'delta rule’. In the late 70’s we researched
a CCD Adaptive Analog Signal Processor:é: 17 which realizes the ’delta rule’ with CCD analog delay
lines and electrically reprogrammable MNQOS analog conductance weights. These weights were
nonvolatile memory transistors whose analog conductance was programmed with voltages ranging
from 15-25V. Our recent work on ’scaling’ these programmable analog conductances has resulted in
a new device structure, cailed the SONOCS nonvoiatile memory transistor, which can be
reprogrammed with voitages ranging from 5-10V. This work has recently been described at the 1991
11th IEEE Nonvolatile Semiconductor Memory Workshop.*® These voltage levels are compatibie
with "scaled’ CMOS VLSEI technoiogy which has 12-15V breakdown voitages for 1.25um feature sizes.
In this report we describe our recent work on the electrically reprogrammable (modifiabie) SONOS
nonvolatile synapse and a simpie electronic neuron with 2 synaptic weights. We discuss this two-tap
weight linear adaptive neuron in terms of the technology, the electrical characteristics of the

svnapses, and their performance in this simple test vehicle - a ‘delta rule’ adaptive signal processor.

2. Technology and Characterization of SONOS Synaptic Weight

The programmable synapse is the resuit of an ongoing effort at Lehigh University wo scaie the
programming voltages required 0 alter the analog conductance of a nonvelatiie me:nory transistor
with a multi-layer {oxide-nitride-oxide) gate insulator as shown in Fig. 1. Recenc efforts in scaiing
this device have resuited in a SONOS (Silicons/Blocking Oxide:Nitride/Tunneling Oxide Siiicon;
nonvoiatile memory transistor which is electricaily reprogrammable at CMOS voitage levels.
T-pically, the tunneling oxide is 15-25A ., the storage nitride is 30-100A and the blocking >xide is
33-30A . Fig.2 shows the Transmission Electron Microscope  TEM) photograph of the cross sectionai
view of the SONOS transistor. This device is similar to a SNOS transistor except for the addition of

the biocking oxide which is used to inhibit injection of carriers from the poivsilicon gate eiectrode

93]
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and also to improve the memory retention by prohibiting the transfer of stored charge from the
nitride to the gate electrode. As the result, the blocking oxide permits the entire dielectric sandwich

to be scaled to dimensions where the programming voltages ranging from 5-10 V are possible.

When the SONOS device is subjected to a positive (or negative) programming pulse, electrons
(or holes) are injected intc the silicon nitride layer by means of tunneling across the thin tunnel
oxide. The injected charges are trapped by the silicon nitride and thus shift the threshold voltage

positively (or negatively). The threshold voltage of a SONOS transistor can be written as

V. = ¢ __.Q_f+ fﬂﬁ'x“_x Qn+2 .-,,w 1
™ GS Ceﬁ' (eox? &N ) N+ 203 Ceﬂ'

where 0p is the bulk potential, ¢g is the gate to semiconductor workfunction, Q; is the fixed charge
at the tunneling oxide-silicon interface, ¢ , and ey are the dielectric permittivities of the oxide and
nitride, £ is the dielectric permittivity of the bulk silicon, x  is the tunnel oxide thickness, x_; is the
biocking oxide thickness, x, is the nitride thickness, % is the charge centroid in the insulator, and Qy

is the charge stored in the nitride, Ny is the buik doping density, and

€
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)
€ox
Xot + axn + XOb
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We assume that the tunnel oxide and blocking oxide have the same dielectric permittivity; even
though. it is known that the tunnel oxide is silicon rich and the blocking oxide is an oxynitride. The
values of the charge centroid % and the charge stored in the nitride Qy will change as the device is

written or erased. The anaiog conductance of the SONOS synaptic weight may be written as

- W - A

3as = Fair 7 Cor Vg~ V) &)
where O, is the effective carrier mobility, Vg is the read voltage, and V. is the electrically
modifiable threshold voltage given in equation (1). Therefore. there are two ways which the analog

channel conductance can be altered: 1! change the vaiue of V ;g or (2) change the value of V. In

our study, the latter approach is chosen.

The SONOS transistors are characterized for their memory properties by using the test station

described in Anirban Rov's Master's Thesis.-? This test station allows one to take both the




erase/write and retention measurements. To investigate the memory loss/rentention properties of
the synaptic weight element, retention measurements are taken. The retention characteristics are
obtained by applying positive (negative) five volts to the gate for 10 seconds to place the device in the

write (erase) state and then measuring the turn-on voltage after a varying delay time. The turn-on

voitage is related to the threshold voltage by \
20y
Vo = Vg + 5 @
with Ing as the forced drain to source current during measurement and
- W .
B = Hx(T) Cerr &)

where W is the width of the transistor, L is the length of the transistor, and By is the effective
mobility. The =ffective mobility is he bulk mobility reduced by Coulombic and surface scattering of
carriers in the inversion layer. This mobility is influenced by the gate and substrate voitages.?? For
a SONOS transistor retention measurements indicate that zreater than 20 percent of the memory
window remains after a projected 10 year delay time as shown in Fig. 3. The erase/write
measurements indicate the programming speed of the synaptic weight element. To measure the
writing (erasing) speed, negative (positive) five volts are applied to the gate for 10 seconds to place
the device in the erase (write) state. Then. positive (negative) five volts are applied to the gate with
varying pulse widths and the turn-on voltage is measured after each pulse width. The eraseswrite
cnaracteristics of the SONOS memory transistor are shown in Fig. 4. A wide dynamic range is one
of the essential properties for the synaptic weight element, and Fig. 3 illustrates a 60 dB in dvnamic
range after =35V programming for the SONOS synaptic weight. In addition, a recent study in
reiiability has demonstrated the inherent resista.ce of the SONOS memorv transistor o radiation

damage SV = 0.1V, with Ve = = 5V at 1MRad Cob0 radiation).2!
) TH GS

3. Single-level Linear Adaptive Neuron

We have incorporated the SONOS synaptic weights into a singie-level linear neuron-iike
sircuit using a Widrow-HorT's deita learning rule.!5 The circuit is built with a hybrid breadboard of
CMOS components for the control logic and the algorithm implementation and the SONOS
nonvoiatile memory transistors to demonstrate the voltage level compatibility of both SONOS and

MO8 technoiogies. Many researchers believe that the neurai svstem is made up of severai layers’




of neurons and Fig. 6 shows the multi-layer architecture of an artificial neural network. The first
layer of neurons, the input layer, can be best thought as the sensory neurons in a human body. The
weight connections between the input layer and the middle hidden layer are normally considered to
be feedforward and fixed. On the other hand, the weight connections between the middle hidden
layer and the output layer are considered to be feedback in nature. Qur work has concentrated on

the implementation of two neurons in the hidden layer and one output neuron as highlighted in the

figure.

Fig. 7 shows the block diagram of the single-level linear adaptive neuron. A desired response
(or external teacher), d(m), is presented to the neuron as the training signal. If the output of the
linear adaptive neuron is not trained, then there exists a mismatch between the output of the linear

adaptive neuron, vim), and the desired response, d(m).
g(m) = d(m) — y(m) (6)

where c(m) is the error generated. This error is then used by a learning algorithm, namely the
Clipped-data Least Mean Error algorithm, to minimize the error generated and thereby training the
neuron :o the correct response. This singie-level linear adaptive neuron has two tap weights, each
weight is comrosed of two SONOS analog electrically reprogrammable conductances as shown in
Fig. 3. Since the synaptic weight must be either positive or negative in value, we have chosen a
differential weighting scheme. If the analog conductance connecting the positive summing path to
the differential operational amplifier is greater than the analog conductance connecting the negative
summing path to the differential operational amplifier, then the weight is positive in value. On the
other nand, if the opposite case is true, then the weight is negative in value. Positive weight value
corresponds to the excitatory synaptic strength and the negative weight value corresponds to the

inhibitory synaptic strength.

In operation, the input signal x) is passed through a switched capacitor analog delay line
wnere the input signal is sampled and deiayed to create two tapped signal outputs x,(m) and x.{m).
These tapped signals multiply to their corresponding programmable weights W, and W, and the

resuit is summed linearly at the summing amplifier. The output (m) can be expressed as:

m) = ¥ W.imrx, . N

=)




where m is the time index and % is the spatial index. A correlated double sampling technique22is
employed in the circuit to remove the unwanted noise and offset voltages introduced by the summing

amplifiers. The linear adaptive neuron is configured to perform Widrow-Hoff’s delta rule as:

W (m+1) = W(m) + AW, (m) t)

where A W(m) is the incremental weight to be calculated by the clipped-data least mean square error

(C-LMSE) algorithm?3:

AW, (m) = 2ule(m)|-Sgn{e(m)] Sgnlx(m—<)] ®

where u is the convergence factor. Compared to the regular Least Mean Square Error algorithm, the
nput signal ampiitude is clipped in the learning algorithm. This algorithm eliminates the usage of a
‘our quadrant multiplier needed for the LMS error algorithm. The sign multiplication in the
‘ncremental weignt calculation is essentiaily an Exclusive OR operation and the output of the
Zxciusive OR zate controls the path of proper gate programming voltage for the SONOS synaptic
weignt. If the convergence factor is small, then the system will minimize the misadjustment caused
ov the variance of the weights; however, this aiso results in a long convergence time. Conversely, if
we choose to use a larger convergence factor, then the convergence time of the system is shortened
with the penaity of larger misadjustment. The backpropagating error is used to calculate the
adjustments to minimize the system error as shown in equation (9). Once the error is minimized,
the system is said to be in its steady state condition=* where the output of the system, vim, is the

Dest match of the training signal, d(m), or the ‘external teacher’.

The incremental weight update is essentially a cross correlation between the error and the
ciipped ‘nput data vectors. The update stops when the two vectors become orthogonal. Sometimes.
:he network may De overcorrected initiaily, however, the error wiil be quickly minimized by the
‘earning algorithm and the system reaches its desired response. The digital delay line provides the
sign information of che input to the learning algorithm. A special steering network is designed to
switeh the proper programming voltages to the gate terminals of the SONOS transistors once the

‘ncremental weights are caiculated.




4. Experimental Results

There are two main types of characteristics from which the electrical performance of the linear
adaptive neuron can be evaluated. The first characteristic, namely the output and training signals
versus time characteristics, gives the information on how well the output signal approximates the
training signal especially in the phase relationship between these two signals. The second
characteristic, namely the error signal versus time characteristics, shows how fast the linear
adaptive neuron adapts before it reaches its minimum error. A typical output and training signals
versus time characteristic consists of two parts: the initialized and the adapted part. In the
initialized part, the weights are first initialized to a known state (either the fully positive or the fully
negative state) and then the weights are subjected to a reading voltage to read out the weight
information and the output signal and the training signal are compared and recorded. The linear
adaptive neuron is then allowed to adapt itseif to the training signal and the results are shown in
the adapted part of the characteristics. Figure 9 shows the output and training signal versus time

characteristic.

A typical error signal versus time characteristic is obtained with initialized weight values and
monitoring the error signal with time. Our observation indicates the weight initialization scheme
affects the convergence behavior of the linear adaptive neuron. This phenomenon is attributed to
the nonsymmetric erase and write characteristics of the SONOS transistor. Therefore, one weight
initialization scheme may require more erase action taking place than another weight initialization
scheme, causing a difference in convergence characteristics. Figures 10 shows a typical error versus

time characteristic.

5. Technical Progress

During the research period from October 1990 to March 1991, several achievements have been
made under the contract. First of ail, a graduate student supported by the contract has received his
Master's degree in Electrical Engineering in October 1990 and part of his thesis was presented in the
1991 IEEE Nonvolatile Semiconductor Memory Workshop in February 1991. In addition. our
research results will be presented at the Electro International Conference in New York as weil as an
invited presentation at the Wright Patterson Air Force Base in Dayton. Ohio during the month of

April.

The course of optimizing the synaptic weight element has resuited in a new fabrication run




aiming to produce faster devices to improve the linear adaptive neuron performance. The
erase/write characterization of the newly made devices indicate a roughly one order of magnitude
improvement in the programming speed (determined by the cross-over time as mentioned in the
previous section) over the older devices. Figure 11 shows the difference in programming speed
between the newly made devices and the old devices. We have also investigated the programming
voltage dependence on the programming speed for the newly made devices. Figure 11 shows an
improvement of one order of magnitude in programming speed with each one volt increment in the
programming voltage. In order to further aid the investigation in the synaptic weight element
characterization, a fully computer controlled automatic data acguisition system specially designed
for the synaptic weight elements is needed. This system is a natural extension of the test station
currently used in our studies*® and a proposed block diagram of the automatic data acquisition is
shown in figure 12. In the hardware implementation of the linear adaptive neuron, a
reprogrammable controlling ciock generator was built. This ciock generator can supply up to 13
different clocking waveforms with the clocking patterns pre-programmed in an EPROM ceil. In
addition, this generator can house several clocking schemes which can be selected by changing a DIP

switch setting.

Integration of the linear adaptive neuron onto a singie silicon wafer is one of the main goals of
our research efforts. We have acquired a computer aided design software package, developed by the
Mentor Graphics Corporation, and implemented on our SUN workstation. In order to make fuil use
of the newly acquired software, we have developed a technology file which describes the fabrication
capability of our microelectronics laboratory. We have also started laying out small sample buiiding
biocks to become familiar with the methodology of the system. One of the most important buiiding
biocks is the design of the operationai amplifier which is used in the analog delay line chain and the
discrete analog signal processing of the neuron output signai. SPICE simulations have been
pertormed for a number of different designs for possible implementation in the integrated linear

adaptive neuron.

6. Proposed Investigations

To take full advantage of the SONOS synaptic weight eiement. more experiments, anaiysis
and fabrication of the devices are required. Besides device fabrication. automation of device
characterization is of concern in the next phase of our studies. The lavout of the integrated linear

adaptive neuron will be the main focus of our efforts in the next few months. The design wiil be




tested, laid out, extracted and simulated to verify the functionality. We believe the integration of the
signal processing circuitry as well as the synaptic weight element onto a single silicon wafer will be

an important advancement to the Artificial Intelligence Neural Network Technology field.

7. Conclusions

The SONOS nonvolatile memory transistor has been shown to be an ideal electronic element
for the electrically reprogrammable analog conductance in an artificial neural network. We have
demonstrated the attractive features of this synaptic weight for the use of large neural network
systems, for instance, low programming voltage (5-10V), low power dissipation(<1uW / synapse),
small chip area (estimated 20um?/ weight cell for a 1.2 um feature size), a dynamic range of 60 dB,
good memory retention (20 % window at a projected 10 years period), and enduranc. beyond 107
erase/write cycles. In addition, the SONOS synaptic weight has inherent resistance to radiation
damage (AV,,=0.1V. with V, =~5V at 1MRad Co%0 radiation). We have been continuing our efforts in
optimizing the modifiabie synaptic weights to provide better electrical characteristics for neural

network applications.

We have also incorporated the SONOS synaptic weights into a single-level two tap linear
adaptive neuron employing a Widrow-Hoffs deita learning rule. The combination of CMOS control
circuits and SONOS synaptic weights has demonstrated the feasibility of integrating these two
technologies onto a single silicon wafer. The initial results are encouraging and promising and

provide insight and direction intoc the integration of these two technologies to realize large artificial

neural network systems.
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Figure 9. Output and Training Signals versus Time Characteristics ra) Initialized 'b) Adapted
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