(&

"ATION PAGE inightis
235 827 OPM No. 0704-0188
Public -A 28t response, including the time for reviewing & ions. ing ing data gathering and % the data
neede ||| donesnmazoovanyo(huaspeddhn Hection of inf ion, including suggestions for redy mlbudon to Washingon
=2 IR == S s s S
i
1. AG " DATE 3. REPORT TYPE AND DATES COVERED

Final 09 Sept 90 to 03 Mar 91

4. TITLE AND SUBTITLE

Meridian Software Systems, Inc., Meridian Ada, Version 4.1, Apple Macintosh |

(Host & Target), 900909W1.11038

5. FUNDING NUMBERS

6. AUTHOR(S)
Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ada Validdtion Facility, Language Control Facility ASD/SCEL
Bldg. 676, Rm 135

Wright-Patterson AFB

Dayton, OH 45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

AVF-VSR-398.0491

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ada Joint Program Office

United States Department of Defense
Pentagon, Rm 3E114

Washington, D.C. 20301-3081

cCTE

10. SPONSORING/MC‘NI"
REPORT NUE

77, SUPPLEMENTARY NOTES

123, DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Meridian Software Systems, Inc., Meridian Ada, Version 4.1, Wright-Patterson AFB, Apple Macintosh If System 6.0.3 (Host

& Target) ACVC 1.11.

14. SUBJECT TERMS

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.

19 SECURITY GLASSIFICATION

|77 SECURITY CLASSIFICATION
OF BEFPCAT
UNCLASSIFIED

UNCLASSIFED

18. SECURITY CLASSIFICATION

15. NUMBER OF PAGES

16. PRICE CODE

OF ABSTRACT
UNCLASSIFICD

20 LIMITATION OF ABSTRACT

NSN 7540-01-280-550

Prescribed by ANS! Std. 239-128

Standard Form 298, (Rev 2-89)

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 09 September 1990.

Compiler Name and Version: Meridian Ada, Version 4.1

Host Computer System: Apple Macintosh II
System 6.0.3

Target Computer System: Apple Macintosh II
System 6.0.3

Customer Agreement Number: 90-07-23-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900909W1.11038 is awarded to Meridian Software Systems, Inc. This
certificate expires on 1 March 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Accession For
i NTIS GRA&I g
DTIC TAB

Unannounced O
Justification —— —-oH

By.

2 ;VW Organization Distritution/
Director,” Gefiputer & Software Engineering Division Availabil;}yﬁcoggg___d
Institute for Defense Analyses thvaii and/or
Alexandria VA 22311 pist ‘ Special

VAP S4,.. A-1|

Ada”" Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

91-00778

Hﬂ:mﬂMH“w“mPu l”tl
ke
91 5 g9 Iew

AVF Control Number: AVF-VSR-398.0491
8 April 1991
90-07-23-MSS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 900909W1.11038
Meridian Software Systems, Inc.
Meridian Ada, Version 4.1
Apple Macintosh II => Apple Macintosh II

Prepared By:
Ada Validation Facility
ASD/SCEL
Vright-Patterson AFB OH 45433-6503

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on Q9 September 1990.

Compiler Name and Version: Meridian Ada, Version 4.1

Host Computer System: Apple Macintosh II
System 6.0.3

Target Computer System: Apple Macintosh II
System 6.0.3

Customer Agreement Number: 90-07-23-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900909W1.11038 is awarded to Meridian Software Systems, Inc. This
certificate expires on 1 March 1993.

This report has been reviewed and is approved.

/oy V7
\ ’0‘(‘/{0- /l""{}\

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

ion Organization

4 A,/ Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Meridian Software Systems, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: = Meridian Ada, Version 4.1

Host Computer System: Apple Macintosh II
System 6.0.3

Target Computer System: Apple Macintosh 11
System 6.0.3

Customer’s Declaration

I, the undersigned, representing Meridian Software Systems, Inc.. declare that Meridian
Software Systems, Inc. has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this declaration. I declare that
Meridian Software Systems, Inc. is the owner of the above implementation and the certificates
shall be awarded in the name of the owner’s corporate name.

%ﬂk é-,\d Date: z/ﬁﬁ\ﬂ’f ﬁo

Stowe Boyd. Vice Presiden\\of Research and Development
Meridian Software Systems\Inc.

10 Pasteur Street

Irvine, CA 92718

CHAPTER 1

el el e
SN =

CHAPTER 2

CHAPTER

APPENDIX A

APPENDIX B

APPENDIX C

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT

REFERENCES
ACVC TEST CLASSES
DEFINITION OF TERMS
IMPLEMENTATION DEPENDENCIES
WVITHDRAWN TESTS
INAPPLICABLE TESTS .

TEST MODIFICATIONS .
PROCESSING INFORMATION
TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS
TEST EXECUTION . .

MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [AdaB83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]). A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should te
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analvses
1801 North Beauregard Strect
Alexandria VA 22311

1-1

INTRODUCTION
1.2 REFERENCES

[AdaB3] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

{UGB9] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circuivent a test
objective. The package SYPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple., zzr-vratelv compiled units. Errors
are expected at link time. and execution 1= attempted.

In some tests of the ACVC, certain macre strings have to be replaced by
implementation-specific values -- for example. the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications. additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The mndifications required for
this implementation are described in =zertinn ‘

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization ccnsists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see sec*ion 2.1) and,
possibly some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

tne customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consistirz ~f ~ne or more computers and

associated software, that ''zez ~ormmnn storage for all or

part of a program and alzr for all or part of the data
necessary for the executinon ~f the program; executes
user-written or user-designated programs; performs

user-designated data manipulation. including arithmetic
operations and logic operations: and that can execute
programs that modifv themselvez during execution. A
computer system may be a =tand-alone unit or may consist of
several inter-connected wnits.

1-3

INTRODUCTION

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Vithdrawn
test

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
wvhich validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test —-bjective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 VITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
vithdraving each test is available from ei‘.aer the AVO or the AVF. The
publication date for this list of withdrawn tests is 02 September 1990.

E28005C B28006C C34006D B41308FP C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
B83022B RE3022H B83025B B83025D B83026B 830264
C83041A B85001L C971164A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BD1B0O2B BD1BO6A AD1BO8A BD2A02A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B BD8002A BD8004C
CD9005A CD9005B CDAZO1E CE21071I CE2119B CE2205B
CE2405A CE3111C CE31184 CE3411B CE3412B CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by IS0 an< *he AJPO known as Ada
Commentaries and commonly referenced in the frrmat AI ddddd. For this
implementation, the following tests were /determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

)
l
—_

IMPLEMENTATION DEPENDENCIES

The following 201 tzsts have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2 (15 tests) C'.5621L..Z (15 tests)
C45641L..Y (14 te:zts) C46012L..2 (15 tests)

C35702A, C35713B, C45423B, BS86001T, and CB86006H check for the
predefined type SHORT_ FLOAT.

C35702B, C3571.., B86001U, and C86006G check for the predefined
.ype LONG_FLOAT.

C35713D and B8001Z check for a predefined floating-point type
with a name « .ner than FLOAT, LONG_FLOAT, or SHORT FLOAT.

A35801E checks that FLOAT’FIRST..FLCAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation that range exceeds the safe numbeirs and must be
rejected. (See section 2.3)

C45423A, C45523A, and C45622A check that the proper exception is
raised when operations results lie outside of the range of the
base type if MACHINE OVERFLOWS is TRUE for -arious floating-point
types; for this implementation, MACHINE OVERFLOWS is FALSE.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 47 or
greater.

D64005G checks limits of the compiler (the depth of recursion
caused STORAGE ERROR to be raised).

C86001F recompiles package SYSTEM, making package TEXT_ IO, and
hence package REPORT, obsolete. For this implementation, the
package TEXT_IO is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than

DURATION.
CA2009C, CA2009F, BC22n4C. and RO 7.0%D inztantiate generic units
before their bolies are compil-~ “hi- implementation .r2ated a

dependence on generic urifts as allrnved by AI-00408 and AI-00330
such that the ~ompilation of the generi~ unit bodies makes the
instantiating units obsolete. (See sectinn 2.3)

LA3004A..B (2 tests). EAINOAGC..D (7 re-~r=), and CA3NO4E..F che-k
for pragma INLINE for procednre- and fon vynns.

()
i
[

IMPLEMENTATION DEPFNDENCIES

CD1009C uses a representation clause specifying a non-default size
for a floating-point type.

CD2A84A, CD2AB4E, CD2AB4I..J (2 tests), and CD2A840 use
representation clauses specifying non-default sizes for access
types.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

The tests listed in the following table are not applicable because
the given file operations are supported for the given combination
of mode and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL IO
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE2102I CREATE IN FILE DIRECT I0
CE2102J CREATE OUT_FILE DIRECT I0
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL I0
CE2102P OPEN OUT_FILE SEQUENTIAL IO
CE2102Q RESET OUT_FILE SEQUENTIAL_IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT I0
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT 10
CE2102V RESET OUT_FILE DIRECT 10
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEXT 10
CE31026G DELETE = -———-n- TEXT 10
CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT 10
CE3102K OPEN ~"T TILE TEXT_I0

CE2107B..E (4 tests). CEZ1NTL. r+F 1i0F. and CEZ111D attempt to
associate multiple internal 1ile~ ~“ith the same external file when

one or mere files iz writing for zequential files.

[P

L)

IMPLEMENTATION DEPENDENCIES

CE2107G..H (2 tests), CE2110D, and CE2111H attempt to associate
multiple internal files with the same external file when one or
more files is writing for direct files. The proper exception is
raised when multiple access is aitempted.

CE2203A checks that WRITE raises USE_ERROR if the capacity of the
external file is exceeded for SEQUENTIAL IO. This implementation
does not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT I0O. This implementation does
not restrict file capacity.

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A attempt to
associate multiple internal files with the same external file when
one or more files is writing for text files. The proper exception
is raised when multiple access is attempted.

CE3304A checks that USE ERROR is raised if a call to

SET_LINE LENGTH or SET_PAGE LENGTH specifies a value that is
inappropriate for the external file. This implementation does not
have inappropriate values for either line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST. For this implementation, the
value of COUNT’LAST is greater than 150000 making the checking of
this objective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 9 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
vay expected by the original tests.

B22003A B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO; the compiler rejects the use of *"< vange FLOAT'FIRST..FLOAT’LAST
as the range constraint of floating-print tv pe declavation because the
bounds lie outside of the range of safe numher- (of. ARM 3.5.7(12)).

CA2009C, CA2009F, BC3204C, and BC22N5D wevre giaded inapplicable by
Evaluation Modification as directed bv the AV, PRecause this
implementation makes the units with instantiations obsolete (see section
2.2), the Class C tests were rejected at link time and the Class B tests
wvere compiled without error.

IMPLEMENTATION DEPENDENCIES

EA1003B was processed with the option "-fI" so that code would be
generated for all of the legal units of this test file. Without this
option, the entire compilation would have been rejected due to errors
within only some of the units (which is also an acceptable result).

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Technical Support
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

For a point of contact for sales information about this Ada implementation
system, see:

Jim Smith

10 Pasteur Street
Irvine CA 92718
(714) 727-0700

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC rerzion if it processes each test
of the customized test suite in accordance vith the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
othervise, the Ada Implementation fails the ACVC [Pro90].

3-1

PROC£SSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

Total Number of Applicable Tests 3807
Total Number of Withdrawn Tests 74
Processed Inapplicable Tests 88
Non-Processed 1/0 Tests 0
Non-Processed Floating-Point

Precision Tests 201

Total Number of Inapplicable Tests 289

Total Number of Tests for ACVC 1.11 4170

All I/0 tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 289 tests were inapplicable to this
implementation. All inapplicable. tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

Diskettes containing the customized test suite (see section 1.3) were taken
on-site by the validation team for processing. The contents of the
diskettes were transferred to this machine over a serial line from an IBM
PC (or clone) machine (onto which the tests were directly loaded) using a
program called LapLink (Mac version).

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scrip*: r+~ided bv the customer and
reviewved by the validation team. See Appendi- T for a complete listing of
the processing options for this implementarion It also indicates the
default options. The options invoked explizitl. for validation testing
during this test were:

PROCESSING INFORMATION

Switch Effect

-fE Generate error file for the Ada listing utility
(alu).

-fI Ignore compilation errors and continue generating

code for legal units within the same compilation
file (for test EA1003B).

-fqQ Suppress "added to library" and "Generating
code for" information messages.

-fw Suppress informative warning messages.

-c Produce continuous form Ada listings (no page
headers).

-p Obey PRAGMA PAGE directives within the program

even though the -c flag says not to generate
page breaks.

-s Qutput Ada listing to the standard output
file instead of to a disk file.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LTN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input lise
length.

Macro Parameter Macro Value
SBIG_ID1 (1..V-1 => 'A’, V => '17)
SBIG_ID2 (1..V-1 => "A’, V => '2")
$BIG_ID3 (1..V/2 => ’'A') & '3 &
(1..V-1-V/2 => ’A’)
SBIG_ID4 (1..V/2 => 'A’) & '4" &
(1..V-1-v/2 => 'A")
SBIG_INT LIT (1..V-3 => '0") & "298"
SBIG_REAL LIT (1..v-5 => ’0’) & "690.0"
SBIG_STRING1 rero & (1..V/72 => 'A’) & '
SBIG_STRING2 rrog (1..V-1-V/2 => rAT) & 10 & M
SBLANKS (1..v-2n o 0)

$MAX_LEN INT BASED LITERAL
"2iM g (1..V-5 =3 107) & "11:"

$MAX_LEN REAL BASED LITERAL
"16:" & (1..V-7 => 70’) & "F.E:"

$MAX_STRING LITERAL /"' « «1 - =+ "A") §& '"

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
SMAX IN LEN 200
SACC_SIZE 32
SALIGNMENT 2
$COUNT_LAST 2147483646
SDEFAULT_MEM_SIZE 1024

$DEFAULT STOR_UNIT 8

$DEFAULT_SYS_NAME M68000

$DELTA_DOC 2.0%*(-31)
SENTRY_ADDRESS 16404
$ENTRY_ADDRESS1 16414

SENTRY ADDRESS2 16424

$FIELD_LAST 2147483647
$FILE_TERMINATOR o

$FIXED NAME NO_SUCH_FIXED TYPE
$FLOAT_NAME NO_SUCH_FLOAT TYPE

$FORM_STRING o
$FORM_STRING2 "CANNOT RESTRICT FILE CAPACITY"

$GREATER_THAN DURATION
90000.0

SGREATER THAN DURATION BASE 1a~T
-7 100007

SGREATER THAN FLOAT BASE LACT
1.8E+308

SGREATER _THAN FLOAT SAFE LARGE
1.0E308

A-2

SGREATER THAN SHORT FLOAT SAFE_LARGE
1.0E308

SHIGH PRIORITY 20

S$ILLEGAL_EXTERNAL FILE_NAME1
:NODIRECTORY : FILENAME1

SILLEGAL_EXTERNAL FILE NAME2
:NODIRECTORY: FILENAME2

SINAPPROPRIATE LINE LENGTH
-1

$INAPPROPRIATE PAGE_LENGTH
-1

MACRO PARAMETERS

SINCLUDE_PRAGMA1 PRAGMA INCLUDE ("A28006D1.ADA")
SINCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006F1.ADA")
SINTEGER _FIRST -2147483648
SINTEGER_LAST 2147493647

$INTEGER LAST PLUS 1 2147483648
SINTERFACE LANGUAGE C
$LESS_THAN DURATION -90000.0

SLESS_THAN_DURATION_BASE FIRST
-10000000.0

SLINE_TERMINATOR ASCII.CR
SLOW_PRIORITY 1

SMACHINE_CODE_STATEMENT

INSTRUCTION’ (VAL=>16%4E/1%);

SMACHINE_CODE_TYPE INSTRUCTION

SMANTISSA_DOC 31

SMAX_DIGITS 15

SMAX INT 2147482647

SMAX_INT PLUS 1 2147482648

SMIN INT _21474P2A4R
A-3

MACRO PARAMETERS

SNAME BYTE_INTEGER

$NAME_LIST M68000

SNAME _SPECIFICATION1 HD4Q:Ada:acvcl.ll:cea:X2120A
SNAME_SPECIFICATION2 HD40O:Ada:acvecl.1ll:cea:X2120B

SNAME _SPECIFICATION3 HD40:Ada:acvcl.ll:ceb:X3119A

$NEG_BASED_INT 16#FFFFFFFE#
$NEV_MEM_SIZE 1024

$NEW_STOR_UNIT 8

$NEV_SYS_NAME M68000
$PAGE_TERMINATOR ASCII.CR & ASCII.FF

SRECORD_DEFINITION RECORD VAL: SHORT INTEGER; END RECORD;
$RECORD_NAME INSTRUCTION

$TASK_SIZE 32

$TASK_STORAGE_SIZE 2048

$TICK 1.0

$VARIABLE_ADDRESS FCNDECL.VAR_ADDRESS

SVARIABLE_ADDRESS1 FCNDECL.VAR_ADDRESS1

$VARIABLE_ADDRESS2 FCNDECL.VAR_ADDRESS2

$YOUR_PRAGMA NO_SUCH_PRAGMA

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
othervise, references in this appendix are to compiler documentation and
not to this report.

-fD

-fe

-fE

-fI

-fL

MERIDIAN Ada COMPILER OPTIONS

Generate debugging output. The -fD option causes the
compiler to generate the appropriate code and data for
operation with the Meridian Ada Debugger.

Annotate assembly language listing. The -fe option

causes the compiler to annotate an assembly language

output file. The output is supplemented by comments
containing the Ada source statements corresponding to the
assembly language code sections written by the code
generator. To use this option, the -S option must also

be specified; otherwise, the annotated file is not emitted.

Generate error log file. The -fE option causes the
compiler to generate a log file containing all the error
messages and warning messages produced during compilation.
The error log file has the same name as the source file,
with the extension .err. For example, the error log file
for simple.ada is simple.err. The error log file is
placed in the current working dir--*~v:. In the absence
of the -fE option, the error leg informatirn is sent to
the standard output stream.

Ignore compilation errors and continue generating code
for legal units within the same compilation file.

Generate exception location information. The -fL option

causes location information (=zenrre file names and line
numbers) to be maintained for inteinmal - hecls. Thig

B-1

COMPILATION SYSTEM OPTIONS

-fN

-fQ

-fR

-fs

information is useful for debugging in the event that an
"Exception never handled" message appears when an
exception propagates out of the main program. This flag
causes the code to be somewhat larger. If -fL is not
used, exceptions that propagate out of the main program
will behave in the same way, but no location information
will be printed with the "Exception never handled"
message.

Suppress numeric checking. The -fN flag suppresses two
kinds of numeric checks for the entire compilation:
division check and overflow check. These checks are
described in section 11.7 of the LRM. This flag reduces
the size of the code.

Suppress "added to library" and "Generating code for"
information messages normally output by the compiler.

Inhibit static initialization of variables. Although
this option is intended for generating ROMable programs
on other systems, its primary use on the Macintosh is to
enforce a "code-for-data" swap, since global data space
is at a premium on the Macintosh. However, the amount of
global segment space saved by using this option tends to
be small. String literals are always placed in the
global segment, regardless of the setting of -fR. The
-fR option is applicable only in the presence of the -fs
option, which suppresses certain runtime checks.
Normally, the Ada compiler initializes constants or
variables with static data when the following conditions
all occur:

1. Checking is disabled with the -fs option.

2. The initializer expression is static (known at
compile time).

3. The object is a global (in top-level package
specification or body).

If the -fR flag is specified, static initialization is
suppressed for variables (but not for constants);
assignments to each component of a variable are performed
in the code. Note that this alwa~: haprpensz in the
absence of the -fs option.

Suppress all checks. The -fz flag =zuppre s all
automatic checking, including numeric checling. This
flag is equivalent to using pragma zuppresz on all checks.
This flag reduces the size of the cede. and is good for
producing "production qualitv" code ~v for benchmarking
the compiler. Note that there isx a r1els+ed ada option,
-fN to suppress onlv certain kFind- ~f rvwmeric checks.

=33
ck

B-2

COMPILATION SYSTEM OPTIONS

-fu Inhibit library update. The -fU option inhibits library
updates. This is of use in conjunction with the -S
option. Certain restrictions apply to use of this option.

~fv Compile verbosely. The compiler prints the name of each
subprogram, package, or generic as it is compiled.
Information about the symbol table space remaining
following compilation of the named entity is also printed
in the form "[nK]".

—fw Suppress warning messages. With this option, the
compiler does not print warning messages about ignored
pragmas, exceptions that are certain to be raised at
run-time, or other potential problems that the compiler
is othervise forbidden to deem as errors by the LRM.

-g The -g option instructs the compiler to run an additicnal
optimization pass. The optimizer removes common
sub-expressions, dead code and unnecessary jumps. It
also dces loop optimizations.

-help The -help option is usec to invoke the Meridian Ada help
facility. You must have Apple’s HyperCard application
installed. The -help option must be the first option on
the ada command line.

-K Keep internal form file. This option is used in
conjunction with the Optimizer. Without this option, the
compiler deletes internal form files following code
generation.

-lmodifiers

Generate listing file. The -1 option causes the compiler
to create a listing. Optional modifiers can be given to
affect the listing format. You can use none or any
combination of the foilowing modifiers:

c Use continuous listing format. The listing by
default contains a header on each page. Specifying
-1lc suppresses both pagination and header output,
producing a continuous listing.

LN

p Obey pragma page directi—cr. ~ifing -1p is only

meaningful if -lc has alsn heen vroen. Marmally -lc
suppresses all paginatinn. ~her-a- 1op suppresses
all pagination eucept “here e plici*lw zalled for

within the source file vith a pragma page directive.

s Use standard output. The lisring b default is
written to a file with the =ame name 3 the source
file and the extension .1-tr. - »n -mrple.lst from
simple.ada. Specifiring | T e Tiering file

B-2

COMPILATION SYSTEM OPTIONS

to be written to the standard output stream instead.

t Generate relevant text output only. The listing by
default contains the entire source program as well
as interspersed error messages and warning messages.
Specifying -1t causes the compiler to list only the
source lines to which error messages or warning
messages apply, followed by the messages themselves.

The default listing file generated has the same name as
the source file, with the extension .lst. For example,
the default listing file produced for simpie.ada has the
name simple.lst. The listing file is placed in the
current working directory. Note: -1 also causes an
error log file to ve produced, as with the -fE option.

-L library-name

-mbg

Default: ada.lib

Use alternate library. The -L option specifies an
alternative name for the program library.

The -mbg option prepares a compilation unit for use with
the MacsBug (version 6.0 or later) machine-level debugger.
Symbols are truncated to 31 characters.

-mc68020*

The -mc68020 option causes MC68020 processor instructions
to be emitted. WVarning: This renders a program
inoperable on any Macintosh systems but those equipped
with the 68020 or 68030 processor.

-mc68881*

This option causes floating point objects passed/returned
by value to be converted to/from 96-bit IEEE format when
calling C functions. The default is to convert to/from
80-bit SANE format. The -mc68881 option should only be
used when the C funtion or functions called are also
compiled with the -mc68881 option.

No compile. This option causes the ada command to do a
"dry run" of the compilation process. The command
invoked for each processing zstep i- rvinted. This is
similar to the -P option. but n~ ~ rnal procezszing is
performed.

Print compile. This option causes the ada command to
print out the command invoked for each processing step
as it is performed.

COMPILATION SYSTEM OPTIONS

-S Produce assembly code. Causes the code generator to
produce an assembly language source file and to halt
further processing.

LINKER OPTIONS

The linker opticens of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
othervise, references in this appendix are to linker documentation and not
to this report.

MERIDIAN Ada LINKER OPTIONS

- —— ——— ——————

-A Aggressively inline. This option instructs the optimizer
to aggressively inline subprograms when used in addition
to the -G option. Typically, this means that subprograms
that are only called once are inlined. If only the -G
option is used, only subprograms for which pragma inline
has been specified are inlined.

-app Application linkage. The -app option specifies that a
"stand alone" program, one that can be run outside of
MPV, from the Finder, is to be created. Applications by
default have file type "APPL". The full word
-application can be used in place of -app.

-¢ compiler-program-name
Default: (as stored in program library)

Use alternate compiler. The -c option specifies the
complete (non relative) directory path to the Meridian
Ada compiler. This option overrides the compiler
program name stored in the program library. The -c¢
option is intended for use in cross-compiler
configurations, although under such circumstances an
appropriate library configuration - m~rmally used
instead.

-creator creator
The -creator option sets the four-chara-ter output file
creator attribute to creatnr. The defanlt creator is

"AdaV".

-f Suppress main program generation -y The -f option

B-5

COMPILATION SYSTEM QPTIONS

suppresses the creation and additional code generation
steps for the temporary main program file. The -f option
can be used when a simple change has been made to the
body of a compilation unit. If unit elaboration order

is changed, or if the specification of a unit is changed,
or if new units are added, then this option should not be
used.

Use library routines with inline (MC68881) code. If you
use this option, the MC68881 or MC68882 co-processor must
reside on the machine on which you run the program.

Perform global optimization only. The -g option causes
bamp to invoke the global optimizer on your program.
Compilation units to be optimized globally must have been
compiled with the ada -K option.

Perform global and local optimization. The -G option
causes bamp to perform both global and local optimization
on your program. This includes performing pragma inline.
As with the -g option, compilation units to be optimized
must have been compiled with the ada -K option.

Link the program with a version of the tasking run-time
vhich supports pre-emptive task scheduling. This option
produces code which handles interrupts more quickly, but
has a slight negative impact on performance in general.

-L library-name

1%

-la*

_1f*

Default: ada.lib

Use alternate library. The -L option specifies the name
of the program library to be consulted by the bamp
program. This option overrides the default library name.

Link map. This option writes a link map to standard
output.

Anonymous symbols list. This option must be used with
-1. It incorporates the list of anonymous symbols into
the link map.

Offset list. This option muct be «=~4 --ith 1. It
incorporates the byte offset nf ca-h ~hiect module or
entry-point record inteo the linl m-p.

-ma name=alias

Module alias. This option overrides the name of an
unresolved module or an entrw point ~-ith an alias. This
can be used to force resolutinn of in-rmpatible symbo.
name forms at link time.

COMPILATION SYSTEM OPTIONS

-n No link. The -n option suppresses actual object file
linkage, but creates and performs code generation on the
main program file.

-N No operations. The -N option causes the bamp command to
do a "dry run"; it prints out the actions it takes to
generate the executable program, but does not actually
perform those actions. The same kind of information is
printed by the -P option.

-0 output-file-name
Default: file

Use alternate executable file output name. The -o option
specifies the name of the executable program file written
by the bamp command. This option overrides the default
output file name.

-P Print operations. The -P option causes the bamp command
to print out the actions it takes to generate the
executable program as the actions are performed.

-ra [segment=]nn*
Resource attribute. Sets the resource attribute value of
a specified segment (if specified) to nn; if segment is
not specified, sets the resource attribute values of all
but segments O and 1 to nn. This option must occur
before -sn or -sg.

-rn* Suppress resource name settings. Resources are otherwise
given the names of the segments.

-5 Use SANE library routines. Use this option if you don’t
know if you have a co-processor or a co-processor is not
needed.

-sg segment-group[=segmentl,segment2,...]*

Group segments. This option places each segment in the
list into the segment named segment-group instead. If
the segment list is omitted, all segments are placed in
segment-group.

-sn old-name=new-name*
Rename segment. This option rename- s -egment old-name
to have the name new-name.

-ss size*
Segment size. This option overridez the default 32K
maximum code segment size. The size avrgument must be
larger than 32760. Note:

o -ss does not affect the maiim v« f the global

B-7

COMPILAT

-t type*

-tool

-uf file

-V

-V

-x filex*

ION SYSTEM OPTIONS

data segment.

o Specifying a larger segment size can cause link-time
errors in patching short offsets.

o Large segments may not load on Macintoshes with 64K
ROMs.

Specify file type. This option specifies the
four-character executable file type attribute. The
default is file type "MPST" for MPVW tools (an MPV tool is
created by default) or "APPL" for applications (when -app
is given). The full word -type can be used in place of
-t.

Tool linkage. Create an MPW tool. This is the default
behavior of bamp. MPV tools are programs that run only
under MPV. All of the programs in the Meridian Ada
software distribution are MPV tools or MPW scripts. MPVW
tools have file type "MPST".

*

List unreferenced modules. This option lists any
unreferenced modules in the specified file.

Link verbosely. The -v option causes the bamp command to
print out information about what actions it takes in
building the main program.

Suppress warnings. This option allows you to suppress

warnings from the optimizer.

Create linkage cross-reference. This option places a
segment-ordered cross-reference list of module entry
points into file.

B-f

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendizx,
are provided by the customer. Unless specifically noted othervise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 15 range
-1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;
type LONG_INTEGER is range -2147483648 .. 2147483647;
type SHORT_INTEGER is range -32678 .. 32767;

type BYTE INTEGER is range -128 .. 127;

end STANDARD;

C-1

Appendix F Implementation-Dependent Characteristics

This appendix lists implementation—dependent characteristics of Meridian Ada. Note that there are no pre-
ceding appendices. This appendix is called Appendix F in order to comply with the Reference Manual for
the AdaProgramming Language® (LRM) ANSI/MIL-STD-1815A which states that ihis appendix be named
Appendix F.

Implemented Chapter 13 features include length clauses, enumeration representation clauses, record repre-
sentation clauses, address clauses, interrupts, package sy stem, machine code insertions, pragma inter-
face, and unchecked programming.

F.1 Pragmas

The implemented pre—defined pragmas are:

elaborate Seethe LRM section 10.5.
intexface SeesectionF.1.1.

list See the LRM Appendix B.
pack See section F.1.2.
page See the LRM Appendix B.

priority Seethe LRM Appendix B.
suppress See section F.1.3,

inline See the LRM section 6.3.2. This pragma is not actually effective unless you compile/link
your program using the global optimizer.

The remaining pre-defined pragmas are accepted, but presently ignored:

controlled optimize system name
shared storage_unit
memory size

Named parameter notation for pragmas is not supported.

Whenillegal parameter forms are encountered at compile time, the compiler issues a warning message rather
than an error, as required by the Ada language definition. Refer to the LRM Appendix B for additional infor-

mation about the pre—defined pragmas.
F.1.1 Pragma Interface

The form of pragma interface in Meridian Ada is:

pragma interface (language, subprogram [, ”link-name”]):

where:

language is the interface language, onc of the names assembly, builtin, ¢, or internal. The names
builtin and internal are reserved for use by Meridian compiler maintainers in run—time sup-
port packages.

subprogram s the name of a subprogram to which the pragma inter£face applies. If link-name is
omitted, then the Ada subprogram name is also used as the object code symbol name. De-

*All future references to the Reference Manual for the Ada Programming Language appear as the LRM.

185 Meridian Ada Compiler User’s Guide

Appendix F

pending on the language specified, some automatic modifications may be made to the object
code symbol name.

link-name isanoptional string literal specifying the name of the non—Ada subprogram corresponding to
the Ada subprogram named in the second parameter.

It is appropriate to use the optional link—name parameter to pragma inter face only when
the interface subprogram has a name that does not correspond at all to its Ada identifier or
when the interface subprogram name cannot be given using rules forconstructing Adaidenti-
fiers (e.g. if the name contains a ‘$’ character).

The characteristics of object code symbols generated for each interface language are:

assembly The object code symbol is the same as link—name. If no link—name string is specified, thenthe
subprogram name is translated to lowercase.

builtin The object code symbol is the same as link—name, but prefixed with one underscore charac-
ter (“_""), whether or not a link-name string is specified. This language interface is reserved
for special interfaces defined by Meridian Software Systems, Inc. The builtin interface is
presently used to declare certain low-level run—time opsrations whose names must not
conflict with programmer~defined or language system defined names.

c The object code symbol is the same as subprogram name. If no link-name string is speci-
fied, then the subprogram name is translated to lowercase. This is the convention used by the
Macintosh C compiler.

internal No object code symbol is generated for an internal language interface; this language inter-
face is reserved for special interfaces defined by Meridian Software Systems, Inc. The inter-
nal interface is presendy used to declare certain machine-level bit operations.

In no case are the low-level calling conventions changed; no automatic data conversions are performed on

parameters of interface subprograms except MPW C floating point values. Itis up to the programmer to ensure

that calling conventions match and that any necessary data conversions take place when calling interface sub-
programs.

A pragma inter£face may appear within the same declarative part as the subprogram to which the pragma
interface applies, following the subprogram declaration, and prior to the first use of the subprogram. A
pragma inter£ace that applies to a subprogram declared in a package specification must occur within the
same package specification as the subprogram declaration; the pragma inter£ace may not appear in the
package body in this case. A pragma interface declaration for either a private or nonprivate subprogram
declaration may appear in the private part of a package specification.

Pragma inter£face for library units is not supported.
Refer to the LRM section 13.9 for additional information about pragma interface.

F.1.2 Pragma Pack

Pragma pack is implemented for composite types (records and arrays).

Pragma pack is permitted following the composite type declaration to which it applies, provided that the
pragma occurs within the same declarative part as the composite type declaration, before any objects or com-
ponents of the composite type are declared.

Note that the declarative part restriction means that the type declaration and accompanying pragma pack
cannot be split across a package specification and body.

The effect of pragma pack is to minimize storage consumption by discrete component types whose ranges
nermit packing. Use of pragma pack does not defeat allocations of alignment storage gaps for some record

Meridian Ada Compiler User’s Guide 186

Appendix F

types. Pragma pack does not affect the representations of real types, pre—defined integer types, and access
types.

F.1.3 Pragma Suppress

Pragma suppress is implemented as described in the LRM section 11.7, with these differences:

¢ Presently, division_check and overflow_check must be suppressed via a compiler
flag, —£N ; pragma suppress is ignored for these two numeric checks.

¢ Theoptional “ON =>" parameter name notation for pragma suppress is ignored.

¢ Theoptional second parameter to pragma suppress isignored; the pragma always
applies to the entire scope in which it appears.

F.2 Attributes
All attributes described in the LRM Appendix A are supported.

F.3 Standard Types

Additional standard types are defined in Meridian Ada:
® Dbyte_integer
® short_integer
* long_integer
The standard numeric types are defined as:
type byte_integer is range -128 .. 127;
type short_integer is range -32768 .. 32767;
type integer is range -2147483648 .. 2147483647;

type long_integer is range -2147483648 .. 2147483647;

type float is digits 15
range ~2.24711641857789e+307 .. 2.24711641857789e+307;

type duration is delta 0.0001 range -86400.0000 .. 86400.0000;
F.4 Package System

The specification of package systemis:

package system is
type address is new integer:;

type name is (mé68000);

system name : constant name := m68000;
storage_unit : constant := 8;

memory_ size : constant := 1024;

- System-Dependent Named Numbers
min_int : constant := -2147483648;
max_int : constant := 2147483647:;
max_digits : constant := 15;

max mantissa : constant := 31:
fine_delta : constant := 2.0 ** (-31);
tick : constant := 1.0;

187 Meridian Ada Compiler User’s Guide

Appendix F

—— Other System—Dependent Declarations
subtype priority is integer range 1 .. 20:

The value of system.memory_ size is presently meaningless.

F.5 Restrictions on Representation Clauses

F.5.1 Length Clauses

A size specification (£’ size) is rejected if fewer bits are specified than can accommodate the type. The
minimum size of a composite type may be subject to application of pragma pack. It is permitted to specify
precise sizes for unsigned integer ranges, e.g. 8 for the range 0. .255. However, because of requirements
imposed by the Adalanguage definition, a full 32-bit range of unsigned values,i.e. 0. . (2**32) -1, cannot
be defined, even using a size specification.

The specification of collectionsize (t / storage_size)isevaluated at run—time when the scope of the type
to which the length clause applies is entered, and is therefore subject to rejection (via storage_error)
based on available storage at the time the allocation is made. A collection may include storage used for run—
time administration of the collection, and therefore should not be expected to accommodate a specific number
of objects. Furthermore, certain classes of objects such as unconstrained discriminant array components of

records may be allocated outside a given collection, so a collection may accommodate more objects than
might be expected.

The specification of storage for a task activation (¢’ storage_size)is evaluated at run—-time when
atask to which the length clause applies is activated, and is therefore subject to rejection (via storage_exr-
ror) based on available storage at the time the allocation is made. Storage reserved for a task activation is
separate from storage needed for any collections defined within a task body.

The specification of small fora fixed pointtype (£’ small)is subject only to restrictions defined in the LRM
section 13.2.

F.5.2 Enumeration Representation Clauses

The internal code for the literal of an enumeration type named in an enumeration representation clause must
be in the range of standard.integer.

The value of an intemal code may be obtained by applying an appropriate instanuation of un-—
checked_conversion!o an integer type.

F.5.3 Record Representation Clauses

The storage unit offset (the at static_simple_expression part) is given in terms of 8-bit storage units and must
be even.

A bit position (the range part) applied to a discrete type component may be inthe range 0. .15, withQ being
the least significant bit of acomponent. A range specification may not specify a size smaller than can accom-
modate the component. A range specification for a component not accommodating bit packing may have
a higher upper bound as appropriate (e.g. 0. . 31 foradiscriminant stxingcomponent). Referto the inter-
nal data representation of a given component in determining the component size and assigning offsets.

Components of discrete types for which bit positions are specified may not straddle 16-bit word boundaries.

The value of an alignment clause (the optional at mod parn) must evaluate o 1, 2, 4, or 8, and may not be

smaller than the highest alignment required by any component of the record. On Macintosh, this means that
some records may not have alignment clauses smailer than 2.

Meridian Ada Compiler User’s Guide 188

Appendix F

F.5.4 Address Clauses

An address clause may be supplied for an object (whether constant or variable) or a task entry, but not for a
subprogram, package, or task unit. The meaning of an address clause supplied for a task entry is given in sec-
tion ES.S.

An address expression for an object is a 32-bit linear memory address of type system.address.
F.5.5 Interrupts

A task entry’s address clause can be used to associate the entry with a signal similiar to UNIX. Values in the
range 0. .16 may be specified. At present, only signal 2, representing the Command-Dot keyboard interrupt
(or SIGINTsignal), can be activated via the signal mechanism. Value 0 may be specified, but no signal corre-
sponds to value 0, and such an entry is never called via the signal mechanism.

An interrupt entry may not have any parameters.

F.5.6 Change of Representation

There are no restrictions for changes of representation effected by means of type conversion.
F.6 Implementation-Dependent Components

No names are generated by the implementation to denote implementation—dependent components.

E.7 Unchecked Conversions

There are no restrictions on the use of unchecked_conversion Conversions between objects whose
sizes do not conform may result in storage areas with undefined values.

F.8 Input-Output Packages

A summary of the implementation—dependent input—output characteristics is:

¢ Incallsto open and create, the form parameter must be the empty string (the de-
fault value).

* More than one intenal file can be associated with a single external file for reading
only. For writing, only one internal file may be associated with an extemal file; Do
not use reset 1o get around this rule.

e Temporary sequential and direct files are given names. Temporary files are deleted
when they are closed.

¢ File I/O is buffered; text files associated with terminal devices are line-buffered.

¢ Thepackages sequential ioanddirect_iocannotbeinstantiated with un-
constrained composite types or record types with discriminants without defaults.

F.9 Source Line and Identifier Lengths

Source lines and identifiers in Ada source programs are presently limited to 200 characters in length.

. 189 Meridian Ada Compiler User’s Guide

