
AD-A235 589

US Army Corps
of Engineers
Hydrologic Engineering Center

Predicting Deposition Patterns in
Small Basins

OTIC
Technical Paper No. 133 AyLECT 3 E991

March 1991 SE

Approved for Public Rclcase. Distribulion is inlimited.

91 5 10 048



Papers in this series have resulted from technical activities of

the Hydrologic Engineering Center. Versions of some of these

have been published in technical journals or in conference proceedings.

The purpose of this series is to make the information available for use

In the Center's training program and for distribution within the Corps of

Englneer3.

The findings in this report are not to be construed as an official Department

of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication,

or Dromotinnal purposes. Citation of trade names does not constitute an official

endorsement or approval of the use of such commercial produd:ts.



PREDICTING DEPOSITION PA'ITERNS IN SMALL BASINS'

By D. Michael Gee, R:, search Hydraulic Engineer, Hydrologic Engineering Center. Davis, CA.

ABSTRACT

A technique for estimating sediment depositional patterns bated upon flow patterns is described.
Flow patterns are computcd using a finite element model frr two-dimensionA. vertically averaged
flow. Once the velocity and depth fields are computed, th, b d sho ar stress distribution can be found.
If the annual volume and approximate particle size of the inflowing load is known, anticipated
depositional locations and quantities can then be estimated. Use of this technique to forecast the
temporal development of the deposits by computing the velocity fields for several steady flow
conditions is described. The resulting graphical displays of velocity fields and shear stress contours
are very useful to the design engineer. This procedure avoids the complexity associated with use of a
two-dimensional sediment transport and dispersion modei Application of the techniquie to the dec.mg
Of a baai' i8G ft. (55 .') Wide oy tO ,t. (186 m.) long is described.

INTRODUCTION

Conventional sediment basin design procedures rely on volumetric relationships to determine fl ,
through times, estimated trap efficiency, and average annual deposition rates. Design guidance has
been prepared by USACE (1989). These approaches do not necessarily reflect the interaction betwec n
changes in bed topography due to scour and/or deposition and the influence of these changes on
velocity and shear stress distributions. Some designs have been approached using one-dimensional
numerical modeling of flow and sediment such as HEC-6 (USACE-HEC, 1990). Some concerns with
these approaches are that complex velocity patterns such as rcirculation and short circuiting may not
be properly described. These flow patterns may result in uneven distributions of sediment
concentration and, therefore, an uneven distribution of sediment deposits (Montgomery, et al. 1983).
The use of a fully two-dimensional model for both flow and sediment distribution such as TABS-2
(McAnally et al. 1984) is an attractive approach to improve the prediction of tho distrihution nf
sediment deposits. The use of such a model, however, may involve more effort and data acquisition
than can be justified for small basin design. The technique described herein represents a midway
approach that includes the velocity and shear stress fields in detail, from which the sediment
deposition distribution and rates can be inferred. A brief description of this approach was presented
by Deering and Larock (1989).

MODEL SELECTION

It is assumed that the salient flow features of small basins can be described in the two horizontal
directions and that the variance of velocity in the vertical is the traditional logarithmic velocity
distribution for turbulent flow in open channels /French 1985). A widely used model that is suitable
for this condition is RMA-2 (King & Norton 1978). RMA-2 has been applied to a wide variety of
problems including floodplain analysis (Gee et al. 1990), marsh flooding IMacArthur et al. 1990),
3.diment basin design (Deering & Larock 1989), has been adapted for bridge design (FHWA 1989),
and serves as the hydrodynamic module of the TABS-2 system (McAnally et al. 1984). This model
solves the depth integrated Reynolds equations for two-dimensional free-surface flow in the horizontal
plane using the finite element method for both steady and unsteadv flows The finite element
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formulation of RMA-2 allows boundary roughness and geometric resolution to vary spatially to
accurately depict topography. It also provides a wide variety of boundary conditions. Wetting and
drying of portions of the solution domain is allowed. The two-dimensional approach relieves the
engineer from having to construct cross sections that are perpendicular to the flow for all flows, as is
required in a one-dimensional analysis.

0

100 Feet
Figure 1. Example Finite Element Mesh, Wildcat Creek Basin.

APPROACH

An example finite element mesh is shown in Fig. 1. Note that the elements are both quadrilateral
and triangular. Computational nodes exist at the corners and mid-sides of each element. The bottom
elevation is given at each corner node and linearly interpolated for the mid-side nodes. Bed
roughness and turbulent exchange coefficients are assigned to groups of elements (not necessarily
neighbors) by the user. Solution of the two-dimensional flow equations provides the x- and y-
components of the velocity, and the depth, at each computational node. The local shear stress can be
calculated from these variables if one assumes that the relation for average shear in a cross section
can be applied locally as follows.

=yRS (1)

Where r is the bed shear stress, y is the unit weight of water, R is the hydraulic radius (taken here
as the local nodal depth) and S is the friction slope. Now, rewriting Manning's eauation in terms of
S, we have:
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,n2u2

S = (2)
2.22R4,1

Where u is the resultant of the calculated x and y nodal velocity components, as shown in equation
(3) and n is Manning's roughness coefficient.

U2 
= U

2 + Uy (3)

Combining, we can solve for the shear tiress:

Y-- 2 U2  (4)

2.22R1 f

One must now relate the n-values, which are associated with elements, with the computed values for
u and R (depth) which are located at nodes. For this study, the n-value associated with a node was
computed as the arithmetic average of the n-values for all elements connected to that node. We have
placed these computations in the vector plotting program (VECTOR) which is a post-processor for
RMA-2. VECTOR also prepares files of water surface elevation and velocity magnitude for
contouring.

AN EXAMPLE

Introduction

The Wildcat Creek sediment basin was designed to trap sediment that potentially could cause excess
scour or deposition in a downstream flood control channel. Right-of-way considerations and
environmental concerns dictated the bent alignment shown in Fig. 1 (flow is from right to left).
Based on cross section average velocity and settling lengths computed from the particle fall velocity, it
was estimated that the basin would trap 100% of the sediment larger than fine sand (0.125 mam). A
hydrodynamic analysis was performed to ascertain whether the bent alignment would indeed trap the
size range and volume of sediment needed and whether high velocities would impinge on the banks
requiring some form of bank protection.

Sediment Basin Description

The Wildcat Creek sediment basin was designed to have a maximum width of 180 ft. (55 m.) and
length of 610 ft. (186 m.). The bottom slope is 0.0005 and the side slopes 1V:3H. The maximum
depth is about 12 ft. (3.7 in.).

Hydraulics

As Wildcat Creek is ephemnral, continuous simulation was not necessary. Therefore, several
',vdraulic scenarios were studied t ...rif- *hz: th- v-z"; ' t",& '. A i"L was planr"
that deposits would most likely have to be removed from the basin on an annual basis. This led to
simplification in the number of conditions to be analyzed because the problem was reduced to
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evaluation of the interactions between average annual deposition and the occurrence of the design
(1% exceedance) event. The results presented here are only for the design event; refer to Deering and
Larock (1989) for information on other scenarios. Furthermore, as the basin volume is small relative
to the hydrograph volume, the analysis could be performed assuming steady flow. The 1% chance
exceedance event is 2300 cfs (65 cms). The drainage area is about 7.8 mi2 (2000 heeqres).

Scenario

The situation presented her-in represents the condition of the basin after several years' average
annual deposition (not removed). The flow evaluated is that of the design (1% chance exceedance)
event. The distribution of the deposits shown in Fig. 2 was created based on simulation of the shear
stress distribution in the empty basin and observation of other flood control projects having similar
flow and sediment transport conditions. The bar deposits are formed from flows expanding into open
areas. Initial deposits will form in the lower velocity areas causing the flow to redistribute, expanding
again and reinitiating the bar formation process. This results in bar formation on the left and right
banks, immediately downstream of the entrance, and a central bar further downstream. The
assumed deposition pattern has a volume equivalent to that of the average annual deposits for the
time period selected. The nodal elevations of the finite element mesh that was developed for the
design (empty) basin were modified to reflect this hypothetical deposition pattern.

Modeling parameters

The Manning's n-values were set to 0.03 for most of the basin based on it being maintained as
smooth earth. The values for one portion of the left bank were set to 0.06 based on maintaining the
native heavy vegetation there. The sensitivity of the results to these values, assuming the project is

Figure 2. Bottom Elevations (ft).
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elevation. The turbulent exchange coefficients wure uniforiiy sct to 10 ib-cift' (480 N-sec/m2 ) for
all elements. This was based on prior experiencc with finite element meshes of this scale. The
sensitivity of the results to variation of these values within reasonable ranges was checked and found
to be insignificant.

Boundary conditions

This is a simple 2-D problem in that it is analogous to traditional i-D backwater computations with
ic;:.r to b,,ndarv conditions. A discharge was specified at the upstrea-. (right) end of the model.

in 2D, however, the direction of the discharge must be given wkich . q &'%-ctd to be perpendicular
to the inflow boundary line (see Fig. 3). The downstream boundary conditin was specified as a water
surface elevation appropriate for the discharge being analyzed based on design studies of the
downstream reach. A rating curve could have been used for the downstream boundary if appropriate.
Along all other boundaries, the flow direction is parallel to the boundary.

XS = 100.00 FT/IN
VFLOCITT IF )5 = 100.00 F/IN
VECTOR MODEL TIME = .00 HRS

4.J00 FPS

Figure 3. Velocity Field with Possible Bar Configuration. 0=2300 cfs.

Modeling results

The flow field for the design event is depicted on Figure 3. The flow enters the basin as a plume of
relatively high velocity. Recirculation zones are seen on each side of the inflow plume. This is
obviously not a one-dimensional situation. The hypothetical bar formations do not appear to force the
higher velocity jet against either of the banks as originally suspected. The associated shear stress
field for this flow and bottom condition is shown in Figure 4.

The shear stress is low enough that sediments of the size of interest will e trapped in the basin.
Note particularly the zones of near zero shear that correspond to the recirculation cells near the left
and right banks. The clustering of contours ,aj the banks is an artifact of the contouring process.
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Figure 4. Shear Stress (lb/sq ft).
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CONCLUSIONS

The technique presented herein represents a midway approach to the prediction of spatially complex
sediment transport processes. Much can be inferred from viewing the velocity and shear stress
distributions. Once the velocity field has been computed, the computation of the shear stress
distribution is trivial. If, at this stage, one determines that simulation of the full two-dimensional
transport and dispersion of sediment is necessary, the hydrodynamic analysis already performed can
be used directly in the sediment transport simulation.

COMPUTATIONAL ASPECTS

The finite element mesh used for this study contains about 550 elements and 1370 nodes. This
produces about 2300 simultaneous equations. To solve this system for steady flow using six iterations
takes about 15 minutes on a 25 MHz 386 computer. The system can be run within the DOS 640K
limitation.
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