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I. Introduction

The global objective of this contract was to construct analytical models of flexible structures

controlled by electromagnetic actuators, to perform active control for vibration suppression

and to experimentally verify the models and control algorithin by illustrating successful

implementation on laboratory structures. Two types of vibration suppression have been

examined: slewing control of beam like structures and transient disturbance rejection in

frame like structures. Several types of control actuators have been considered-as well,

mainly piezoelectric strain actuators, reaction mass actuators and electric motors,

In our efforts to bring modeling and control for vibration suppression into the laboratory,

we have produced numerous results which can be lumped into 7 categories:

1)

2)

3)

4
5)

6)
)

The modeling and experimental verification of closed loop slewing control of
flexible structures which has resulted in a substantial improvement in pointing,@me.
The effects of slewing active structures (smart structures) have been modeled,
experimentally verified and shown to result in an additional improvement in
performance.

The nature of control structure interaction has been modeled and experimentally
verified for vibration suppression in trusses and frames using on-board
electromagnetic actuators.

A Timoshenko model of laycred piczoclectric devices has been developed.

A significant new model correction method has been developed for adjusting
mathematical models based on experimentally obtained data.

A robust system identification algorithm has been developed.

A dynamic analysis and animation of flexible structures has been developed.

3
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Each of these results are summarized in section II. Section III list pertiner;aréferences.
Section IV provides a listing of the personnel, both faculty and ;tudents, supported under
the 3 years of support provided by this contract. Section V list proceedings papers and
journal aruicles that have been published based on the results generated by this support.
Section VI summarizes accomplishments obtained under this contract and. discusses

research issnes illuminated by these results,

II. Summary of Results

II-1. Modeling of Closed Loop Slewing The standard approach to modeling a slewing
beam is to model the dynamics of the beam as a cantilevered structure with clamped free
boundary conditions using a rigid coupling to the drive motor through a gear train,
Through observation of a variety of different slewing apparatus, it was observed that some
drive motion can be excited by structural vibration in the beam and some cannot. This
observation resulted in subtraction modeling and experimental verification of slewing
structure (Garcia (1-2)). The outcome of this exercise was that structural vibration in the
slewing article can be suppressed much more efficiently by allowing the actuator and

structure to interact,

Analytically this amounts 10 modeling the boundary conditions at the peint of connection
between the beam and the motor as somewhere "between" clamped and pinned. A
parameter depending on the motor parameters, gear ratio and beam stiffness has bean
derived which characterizes the motor-beam system and is useful for designing an
appropriate closed loop system. [t was then shown both analytically and experimentaliy
that the proper choice of this parameter can improve the settling time of a slawing maneuver
by up to 65%. This result iflusirates the significance of control strucrure interaction in

slewing maneuvers. This is reported in Garcia, Inman et al. (3,4,5)

)




Specifically this extension of previous modeling of the slewing of a flexible structure
results from the inclusion of torque and torque slope terms in the boundary condition
connecting the flexible beam and the motor. This models the interaction between the
actuator 2nd the beam by including modal participation factors in the slewing equation of
motion, These modal participation factors indicate the degree to which the structure and
actuator interact during slewing, Because of this interaction, large modal damping is
obtained through the use of simple (rate) tachometer feedback. Experiments verify both the

model and the improved performance and are summarized in figure 1.

[1-2. Effects of Slewing Active Structures During the third year of the grant the area of
investigation known as "smart materials and structures" was applied to the slewing
problem. Much work in smart materials and structures had centersd around using
embedded piezoelectric sensors and actuation (see section 1I-4). This use of embedded
sensors and actuators is referred to here as an "active structure.” A large additional increase
in pointing performance over the system of section II-1 is gained by slewing an active

siructure. This has been modeled and predicted analytically as well as experimentally.

The reason why an active structure illustrates such improved performance in slewing
maneuvers can be simply explained by appealing to the concept of full state feedback in
linear control theory. If full state feedback is available, every state can be completely
shaped to have the desired response. For example a pole placement algorithm with fuil
state feedback allows every closed loop eigenvalue to be change to a specified value.
However, in most systems, only output feedback is available. This is especially true for
distributed parameter systems with an infinite number of modes. An active structure ailows
the ideal full state feedback law to be approached by providing a large number of actuator

lecations to be used.

(3}
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The control law implemented here was to embed severa! sensor/actuator pairs into our slewing
structure to create an active beam. The anal; iical model of this system was used to calculate an
LGR solution as:suming full stats feedba~v This "jczal" solution is then implemented by
calculating the output feedback gain matrix associated with the piezoceramic actuators that is
closest, in a least squares sense, to the LQR optimal solution. This type of control is only
obtaine;i by using an active structure, and resu:lts in a substantial increase in performance. The

details can be found in Garcia and Inman (6,7,8) and a comparison is illustrated in figure 2.

It is important to note that several control formulations are possible using active structures (on

smart materials) that are not possible without this emerging new technology.

[1-3. Vibration Suppression Through Control Structures Interaction A x:caction mass actuator
was used to study the effects of control structure interaction on vibration suppression control
law design for vibration suppression in flexible space trusses. A strong theoretical result based
on including actuator dynamics in control law formulation and structural design is provided
which quantifies the nature of control structure interaciion. This result, arrived at by
employing various definiteness conditions, clearly illustrates the high gain instability
experienced by a number of different experimental examples. This result has been applied to
the results of other experimental researchers as well. Two different experimental structures
were considered. The first was a cantilivered frame in the shape of a "T" and the second was a
beam like frame suspended in a “free-free” configuration. Both structures were fitted with

NASA/UB proof mass actuators.

A cantilevered seven bay planer truss in the shape of a "T" was controlled using a space
realizable proof mass actuator. The reaction mass actuator was attached to the truss at
location 8 as indicated in figure 3. The actuator was considered as both a passive and

nctive device. The placement of the actuator was specitied by examining the eigenvalues of




the modified model that included the actuator dynamics, and by examining the frequency
response function of the modified system. The electronic stiffness of the actuator was
specified such that the proof mass actuator system was tuned to the forth structural mode of
the truss by using a traditional vibration absorber design. The active vibration suppression
law was limited to velocity feedback. The two lower modes of the closed loop structure
were placéd farther in the left plane (increased damping). The theoretically predicted
combined passive and active control law was experimentally verified. The details are

given in references (9-10).

Four different feedback control laws were developed to add damping to a 6 bay, 3 meter
free-free truss. A proof mass actuator is used as both a point force source and as a link in a
mechanism that applies bending moments at two locations on the structure, The first
control law uses the actuator as a traditional passive vibration absorber. The second control
law consists of direct feedback of both the relative position (i.e., the difference between the
proof mass position and the structure position) and the structure's velocity at the point of
application. The third control strategy was also direct velocity feedback, but with a
compensator for the position of the proof mass. The compensator is designed according to

an H_, optimization method. The fourth control law uses the actuator as an equivalent

viscous damper connected between two locations on the structure.

A theoretical and experimental comparison shows that direct velocity feedback provides
better vibration suppression that cin be obtained by using passive and/or active vibration
absorbers. Furthermore, the tuning criteria is only restricted to maintaining the actuators
single frequency below all structural frequencies of interest. It is also observed that H,
control design is not appropriate for vibration suppression since it produces a compensator

that relies on pole zero cancellation (Umland (11-12)).
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11.4. Timoshenko Models of Piezoelectric Devices A mathematical model of distributed
actuator/sensor system for vibration suppression of flexible members using piezoelectric
devices has been completed during the reporting period. The dcvelopmert consistesd of
applying Timoshenko theory to beams with multiple layers of piezoelectric material added.
The model is developed using a Hamiltonian approach and includes the external electric
circuits as well as a complete set of boundary conditions. This rigorous sty indicates that
a fully distributed control is not possible, but rather a piece wise distributed control actuator
can be constructed using piezoelectric elements. The piezoelectric material is segmented
and resistors are added to the layers to provide passive damping. A state space model is
developed, discretized (Galerkin Methods) and simulated. This finite dimensional model is
then used to perform open loop and closed loop studies. Velocity feedback is used to study
closed loop control. The resolution vibration suppression is judged based on a
comparison of damping ratios in the open loop system, the passive control system and the
closed loop active system. Large increases in damping ratio result as indicated in figure 4.

The details of these results are presented in references (13-14).

I1.5. Model Correction Methods Finite element models (FEM) often fail to e:-actly agree
with experimentally determined model parameters (i.e., frequencies, damping ratios and
mode shapes). Hence, it has become standard modéling practice to adjust the analytical
model to agree more closely with the test data. The techniques used to adjust the analytical
models are called model correction methods and typically have not been very sophisticated
(see the review in Inman and Minis 1990 for instance). The result obtained under this
contract consists of applying the methods of eigenstructure assignment to the model
correction problem to produce a systematic procedure for corfecting analytical models with

experimentally determined modal data.




The first major use of the model correction technique is to use it to create a non proporti‘onal
damping matrix for a given finite element model of a structure. Finite element models only
yield mass and stiffness matrices Damping is usually included as an ad hoc proportional
matrix. Proportionally damped systems yield real valued mode shapes. Yet the majority of
tested space structures yield complex valued mode shapes. Hence, the FEM cannot
possibly agree with the experimentally determined model parameter. Hence, a technique
based on least squares calculation was developed to produce a non proportionally damped
real valued symmetric positive definite matrix based on experimentally determined mode
shapes, natural frequencies and damping ratios. The results are reported in Minas and

Inman (18).

A more general model correction method was developed by recognizin‘g the similarities
between the eigenstructure assignment theorem from control theory and the model
correction problem from experimental modeling. The eigenstructure assignment algorithm
have been modified to yield symmetric positive definite correction matrices. This provides
a systematic procedure to apply to experimental and analytical data which results in a model

which agrees with experiment. These results are reported in Minas and Inman (10, 17-22).

[1.6. Robust Identification Theory for Flexible Structures During this reporting period,
significant progress was made on our work in robust system identification. This work
combines NASA's Eigensystem realization algorithm (ERA) with the investigators
Minimum Mode Error (MME) method. Previously, our combined ERA/MME technique
had been shown to be considerably more robust than the ERA alone for the realization of
the minimum order model, and subsequent identification of the modal frequencies and
modal damping. We have now demonstrated considerable improvement in robustness of
the identification for the mode shapes. In addition, we are making progress in the direction

of the identification of the physical system properties from time-decay data. This




represents a fundamente! potential iinprovement over direct identification of modes since
the physical properties can tell us exactly what the control-struciure interaction (CSI) is.
Knowledge of the physical properiies themselvas gives us a much better insight into the

design/selection of the appropriate actuator in order to accomplish a specific task.,

The identification algorithm has been implemented on a laboratory P.C. conmected directly
to a vibrating beam system. We are currently able to take data and perform the
identification in a single session which may be as short as just a few minutes. Subsequent
to the identification, a control law can be selecied and implemented on a programmable

controller, also during the same session (23-29).

I1.7. Dynamic Analysis and Animation of Flexible Structures Different types of modes
such as vibration normal modes and static correction modes have been used to model
flexible bodies for dynamic analysis of mechanical systems. Accuracy of using these
modes to model a system under different forcing conditions has not been completely
investigated. It was shown in this study that the loading on a flexible body consists of
applied forces, D'Alembert forces resulting from gross body motion and kinematic joint
reactions. Effectiveness of using different modes or their combinations not only depends
on the choice of modes but also on the spatial distribution and frequency content of the
loading. This work provides a criteria to select the number and types of different modes
that must be included in the model. This estimation can be obtained by performing a rigid

body analysis of the system.

This work also demonstrates that a set of Ritz vectors that accounts for the dynamic loading
on the fiexible bodies must also be included in the model in addition to vibration normal
modes and static correction modes. The Ritz vectors used in the model are generated from

spatial distribution of the loading and are orthogonalized with respect to the vibration

T




normal modes. These results are reported in Wu and Mani (30-33) and include several

numerical examples to demonstrate the need to include different mode shapes in the mode.

Guide lines on the selection of mode shapes to model flexible bedies for dynamic analysis

are also presented.
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Research Issues and Accomplishments

Important research issues identified during this contract are:

¢ aneed to incorporate smart matcrial and structure principles into the structural
control problem.

¢ formulation of definitions, theories and examples for controlling smart struciures.

¢ how much can be achieved by the use of smart structures and what are the
limitations?

¢ can simple academic formulations be used on complex structures

¢ can the use of nonlinear control laws and nonlinear dynamics be made practical by
using smart structures?

Each of theses issues can be addressed by using successively more complicaied

experimental structures. One of the ditliculiies with government laboratory experiments is

that they are too complex for reseaich theories to handle. The difficulty with most

academic laboratories is that they arc too simple to be of significancs to “real” space

structures.  What is needed, is a step by step increased in comwlexity of ground
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experiments unit a comnlex structure is achieved. At each step research theories can be
addressed and understood before the next level of complexity is added. This approach
should provide an experimental bridge between research results in structural control and

practical space structure vibration problems.

Accomplishments under this grant are summarized as follows:

The use of control structure interaction to improve pointing time in slewing
maneuvers has been developed both technically and experimentally, Selectios: rules
for the design of a slewing structure have been provided.

The preliminary results of slewing an active, or "smart" structure have been
established. It has been shown experimentally that these lead to improved
performance, via shorter settling times.

The nature of control structure interaction for vibration suppression in frames and
trusses with onboard electromagnetic actuators has been modeled and
experimentally verified.

A Timoshenko model of multiple layers of piezoelectric beam has been derived.

A significantly new model correction method has been developed for adjusting
mathematically finite element models based on experimental modal test data.

A robust system identification method has been developed and tested.

proposed.

A dynamic analysis and animation methodology for flexible structure has been

proposed.

The attached appendix contains copies of selected papers describing these results.
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ABSTRACT

One problem that exists with using distributed
sensors and actuators is due to the integration of
the property to be measured or controlled, which
leads to cancellation of the sensor signal or re-
l duction of the actuator effectiveness. A method
of segmenting distributed piezoelectric sensors
and actuators is proposed here to avoid this
l problem. This method of segmenting distributed
sensors and actuators is demonstrated using a
model developed for beam structures to which
' multiple layers of piezoelectric materials are at-
tached. A numerical study is performed in which
active and passive damping of a beam is in-

creascd using segmented piezoelectric sensors
l and actuators over uniform sensors and actua-
tors.
| {INTRODUCTION
For the purposes of this paper, it is necessary to
consider two definitions of distributed sensing
l and control. The first definition of distributed

control is represented by Fig. 1, which shows a
beam with point forces or moments applied in
l discrete locations over the surface of the beam.

i

Examples of this type of distributed control
include the use of proof-mass actuators to
provide point forces for controlling transverse
beam vibrations (Zimmerman, et. al., 1988), and
the use of small piezoceramic patches to provide
point moments also for controlling transverse
beam vibrations (Crawley and de Luis, 1987).

The second definition of distributed control de-
scribes situations where the control force is dis-
tributed over the surface of the structure. This is
represented in Fig. 2. An example of this form
of distributed control is the experiments per-
formed by Burke and Hubbard (1988) where
piezoelectric film is used to control transverse
beam vibrations by applying a distributed mo-
ment over the surface of the beam.
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Figure 1, Discrete Force Actuators
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Figure 2. Distributed Force Actuators

A similar difference in definitions of distributed
sensing exist. The first definition is represented
by discrete sensors distributed over the surface of
a structure as shown for strain sensors in Fig. 3.
The second definition of distributed sensing de-
scribes sensing which is distributed over the sur-
face of the structure. This definition is repre-
sented by Fig. 4. An example of this type of
sensor is the fiber optic sensor, configured to
sense the surface strain of a structure (Blake, et.
al., 1987). The resulting sensor signal is influ-
enced by the strain at every point along the sur-
face of the beam to which it is applied.

Figure 3. Discrete Strain Sensors

L
Y(t) = GJ'e (x.) dx
0

Figure 4. Distributed Strain Sensors

The second definition of distributed control and
sensing is examined here. There are several rea-
sons for considering this form of the distributed
control system. First, sensors and actuators have
recently been developed that allow physical im-
plementation of this form of distributed sensing
and control. Examples of these include fiber op-
tic cables used for sensing, shape memory alloys
such as Nitinol used for sensing and actuation,
and piezoelectric materials such as polyvinylidene
film also used for sensing and actuation. The use
cf each of these materials for distributed sensing
and/or distributed control has been demonstrated
experimentally.

Another reason for considering this form of dis-
tributed control is that the problem of where to
place discrste sensors and actuators is avoided.
This is especially critical when experimental
testing methods are not available to confirm the
mathematical models of the structures from
which the control law will be designed. The
proposed large flexible space structures are an
example of this problem: it is increasingly diffi-
cult to accurately predict the on-orbit behavior of
these structures based on their ground tests.

The most significant reason to consider this form
of distributed sensing and actuation is that it al-
lows an essential difference in the solution of
control problems. The sensing signal and control
signal can be represented by continuous func-
tions rather than discrete functions, Two exam-
ples can be cited where this difference is ex-
ploited. In the first example, a distributed sensor
was formed using piezoelectric film (Lee, et. al.,
1989). This sensor was shaped and applied to a
beam such that it sensed the strain resulting from
only the vibration of the first mode: This is not
feasible using only discrete sensors. The second
example involves distributed actuation also using
piezoelectric film distributed over the surface of a
beam (Burke and Hubbard, 1988). A set of
guidelines was produced for deciding the spatial
variation of the piezoelectric film which would
allow al} vibrational modes to be controlled,
eliminating the problem of spillover. Again, this
is not feasible using discrete actuators.

A problem exists with distributed sensors which
sense a physical quantity over a distributed area
and yield one signal representing the integration
of that physical quantity over the area to which
the sensor is applied. This problem is illustrated
in Figure 5, which shows a generic distributed
sensor measuring surface strain in a pinned-
pinned beam. The beam is deflecting in its sec-
ond mode shape. The output of the sensor will
be zero in this case. This full or partial cancella-
tion of the sensing signal reduces the usefulness
of distributed effect sensors. A similar problem
exists with actuators.

Several researchers have proposed solutions to
this problem by spatially weighting the sensors
and actuators. In the work by Burke and Hub-
bard, a linear variation in the width of the actua-
tor bonded to the surface of a beam was found to




avoid complete cancellation of the effectiveness
of the actuator (1988). However, there will still
be some cancellation and the efficiency of the
actuator will be reduced. Inthe work by Lee, et.
al., the sensor was shaped precisely to the first
mode shape of the cantilever bea:n, and there was
no cancellation of the sensor signal. However,
the spatial variation of the sensor is set at the time
of fabrication, which does not allow the sensor to
be reconfigured in cases where the structure un-
dergoes changes.

L
Y() = Gj € (x) dx
0
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Figure 5. Measuring Strain in Second Mode
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Another solution to the problem of cancellation of
the distributed sensor and actuator signale is pro-
posed here. Distributed piezoelectric sensors and
actuators are attached to a structure. To avoid
cancellation, the conducting layers are seg-
mented, and a series of wires, one to a segment,
are attached. As a result, each segment of the
sensor is less likely to span an area where the
physical quantity to be measured has positive and
negative components which cancel. "Another
significant advantage of this approach is that spa-
tial information is available in the sensor signals,
and a spatial variation can be implemented in the
applied actuator forces. This will be shown to
lead to a more effective control system. Note that
the sensors and actuators are fully distributed
over the surface of the structure, while a series of
discrete signals from the distributed sensors, and
a series of discrete control inputs to the dis-
tributed actuators are available. Using the termi-
nology utilized by Bergman and McFarland, this
distributed-discrete system will be termed a
“combined system" (1988).

The objective of this research is to use multiple
layers of distributed and segmented piezoelectric
material to add active damping to ransverse beam
vibrations. The approach is to develop a model
for this configuration and perform a numerical
study of simple feedback control to add damping
to the structure, The analysis is general to in-

clude any piezoelectric material. The model in-
cludes strucrural damping, passive damping cre-
ated by the external circuits connected to the
piezoelectric feedback layers, and uses Ti-
moshenko deformation theory.

Piezoelectric materials such as polyvinylidene
flouride film possess some advantages for the
control of distributed parameter structures, and
partly motivated this research. They are
lightweight, have low power consumption, and
can easily be applied in a distributed manner.
They have no moving parts which increases their
reliability when compared to conventional actua-
tors, and they have a wide bandwidth which al-
lows their use on a variety of structures. Several
researchers have examined the use of piezoelec-
tric materials to implement distributed control
(Hanagud, et. al., 1985a, 1985b, and 1987,
Crawley and de Luis, 1987, Tzou and Tseng,
1988, Lee and Moon, 1988, and Bailey and
Hubbard, 1985).

Several areas have not been addressed in previ-
ous work, First, all the previous models use
Euler-Bernoulli deformation theory rather than
Timoshenko deformation theory. Timoshenko
deformation theory is more accurate for the
higher modes of a structure and can be applied to
a broader class of structures. Secondly, previous
models neglect inherent damping in the structure,
which will lead to disagreements between exper-
iment and theory. Thirdly, the external circuits to
which the piezoelectric materials are connected
are not included in the models, and it will be
shown here that these external circuits influence
the response of the structure. Finally, although
the piezoelectric material is applied in a dis-
tributed manner, it will also be shown here that
discretizing the conducting surfaces will avoid
the the cancellation of the sensor and actuator ef-
fectiveness documented earlier.

The configuration to be analyzed is presented in
the next section. The model developed for this
configuration is presented next. The control law
is then described, Several numerical examples
are presented to show the effectiveness of seg-
menting the piezoelectric layers.

IL_CONFIGURATION DESCRIPTION

The particular structure to be analyzed is presented
in Fig. 6, and consists of a viscoelastic central




layer and four layers of piezoelectric material con-
figured as a multilayered beam. Each layer of
piezoelectric material is coated on both sides with a
conducting material. The innermost two layers are
configured as feedback layers by segmenting the
conducting surface adjacent to the central layer and
connecting each segment to a series circuit consist-
ing of an inductor and resistor. These external cir-
cuits provide both an output voltage which will be
proportional to strain rate, as well as to provide a
mechanism for dissipating energy. The resistors
are used to provide this mechanism, and the induc-
tors are used to give the external circuits tunable
dynamics. This is an extension of an experiment
performed by Forward (1981) where external cir-
cuits were artached to piezoceramic patches bonded
to a structure to add electronic damping.

Due to the ability of the external circuits to add
passive damping to the structure, the innermost
layers can not be termed sensors, because they in-
fluence the response of the structure. Therefore,
they will be called the feedback layers.

Substructure (viscoelastic)
Fiezoaleclric sensor layers

Piszoelectnie actuator layers

Figure 6. Structure to be analyzed

The outermost two layers of piezoelectric material
will provide the actuaton. Note that the conduct-
ing material common to both the feedback and ac-
tuation layers on each side of the beam is con-
nected to ground. This is done to reduce interfer-
ence between the feedback and actuation layers.
Also note that the sensing and control is distributed
over the surface, and by segmenting the outer con-
ducting surfaces a series of sensing signals wuil be
produced which contain spatial information.
Likewise, a control law can be implemented using
spatial information. This configuration is easy to
implement since just the conducting surfaces need

to be segmented. This also allows a simpler anal-
ysis, since the layers which influence the response
of the beam are continuous along the beam length.

UL MODELLING RESULTS

To develop the model, Timoshenko deformation
theory is used in conjunction with Hamilton's
Principle. The contribution to the Lagrangian en-
ergy and non-conservative work is found for each
layer, Taking a layer-by-layer approach allows the
electrical boundary conditions of the different
piezoelectric layers to be specified. Summing up
the contributions from all the layers as well as the
external electric circuits and applying Hamilton's
Principle yields a set of partial differential equa-
tions and boundary conditions.

There were several assumptions made in develop-
ing the model of the structure  First, the layers
were assumed to be perfectly bonded. The bend-
ing strain field was assumed to vary linearly
through the cross section of the multilayered
structure. The internal energy dissipation in the
structure was assumed to be accurately represented
by the Kelvin-Voigt model, and that energy was
also dissipated by air acting on the surface of the
beam, modelled as viscous damping Note that the
model was kept general, for any piezoelectric elas-
tic material used for the feedback and actuation
layers, and for any boundary conditions.

The development of this model is thoroughly doc-
umented in Cudney (1989), and Cudney, et. al.
(1989a, 1989b). The equations of motion derived
for this structure are given as
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where w is the transverse displacement of the
beam and v is the beam bending angle. The terms

pA, pl, GA, and EI are composite terms for the
density, total cross sectional area, total moment of
inertia, shear modulus of elasticity, and Youngs'
modulus of elasticity for the stucture. Cj, Cy,
and C; are the shear and normal strain and air

damping coefficients, respectively. Xy, Ky, K,

and K, are terms used to account for the nonlinear
deformation of the cross section of the structure.

M, and M; are the first moment of area of the
lower actuator and sensor layers about the neutral
axis, respectively. The piezoelectric stress-charge
coefficients for the sensor and actuator layers are
given by hg and h,, while B and B, are the dielec-
tric impermeabilities of the two layers. The b,

term is the width of the con ..cting surface, and A,
is the cross sectional area of the actuator layer. L
is the length of the structure, and x;.; and x; are the

beginning and endpoints of the ith conducting
segment. H represents the Heaviside step func-

tion, Oy is the charge density of the sensor layer, -

and ¢4;(t) is the voltage applied to the ith actuator
segment. There are n conductor segments for the
sensor layers, and m conductor segments for the
actuator luyers. L; and R are the ith inductor and
resistor values, The overdots represent differen-
tiation with respect to time, and Q represents the
mechanical loading and disturbance forces.

The terms set off in boxes are the terms resulting
from the piezoelectric action of both the sensor and
actuator layers. Note that the forces applied by the
piezoelectric actuator layers are represented by the
term on the right hand side of Eq. 2, Also note
that these equations are of a combined system, that
is, the system is composed of both distributed and
discrete elements. Applying Hamilton's Principle
also yields a complete set of boundary conditions
given by,
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where the terms in boxes result from the piezoelec-
tric action of the outer layers.

IV. CONTROL LAW DESCRIPTION

The equations are discretized using the Ritz-
Galerkin procedure, and the resulting ordinary dif-
ferential equations are cast in state space form. A
control law is formulated using the voltage outputs
of the individual sensor segments measured at the
resistor terminals, multiplied by a gain, as inputs
to the corresponding actuator segments. The volt-
age will be proportional to the current through the
resistor, such that the control law will be the elec-
trical analogue of velocity feedback. A schematic
of the control law is presented in Fig. 7.

Figure 7. Schematic of the control law.

The damping mechanisms will be enhanced in the
structure both by the passive energy dissipation
through the resistor and by active feedback of the
strain rate to the piezoelectric actuators. Two
control laws are considered. In the first case,
called the local control case, the sensors and ac-
tuators are collocated. The input to each actuator
is only from the feedback layer segment adjacent
to it. The gains are calculated by finding the
maximum gain that does not cause instability in
the electronic circuit. For the assumed case that
the number of actuators equals the number of
sensors, the feedback gain matrix is then a diag-
onal, square n by n matrix, where n is the num-
ber of actuators and sensors.

In the second case, called global control, each ac-
tuator segment receives information from all the
feedback segments. Note that the structure is as-
sumed to be symmetric, so that the size of the gain

matrix is m by n, where n is the number of sensor
segments, and m is the number of actuator seg-
ments. The gains are calculated after the model is
discretized, using the LQR algorithm, where the Q
and R matrices are adjusted to allow the electronic
degrees of freedom to remain stable.

V. EXAMPLES AND RESULTS

A numerical demonstration of the control law is
performed. The substructure properties are those
of a pultruded quasi-isotropic composite visco-
elastic material shown to have a high strength to
weight ratio, and which has been investigated for
use in manufacturing large space structures
(Wilson and Miserentino, 1986). The dimensions
of the substructure are .25 x .1 x .005 meters.
The impact response of the first four modes of the
state space model for this single layer structure is
simulated. The simulation is for the structure with
pinned-pinned boundary conditions, and the im-
pact is placed at .1L, and the response is measured
at OL. The uncontrolled response of the structure
is shown in Fig. 8, The sampling frequency was
8192 Hz,, and the simulation was performed for
.1 sec., using the MATLAB software package.

3
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Figure 8. Uncontrolled response (Time - sec).

The structure is then modified by adding four lay-
ers of polyvinylidene flouride film to form the
structure represented by Fig. 1. Each layer has a

thickness of 220 x 106 m, and the resistor and in-

ductance values are 10 kQ and 1.0 H, respec-
tively. The conductors are segmented into four
sections, and the gains between the sensor and
actuator layers represented in Fig. 2 are chosen to
give a stable response. A simulation of this con-
trolled structure to the same input that was applied
to the uncontrolled swucture is presented in Fig. 4.
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Figure 9. Case 1:Controlled response (Time,- sec).

The uncontrolled and controlled damping ratios are
presented in Table 1 for the local control case.
Compiling the results of several simulations, it
was observed the control law increases the damp-
ing ratios of all the modes simulated, with the
greatest increases found in the higher modes.
Using segmented the conducting surfaces yields
higher damping ratios when compared to previous
work using non-segmented conducting surfaces
(Bailey and Hubbard, 1985).

Uncontrolled Controlled
Mode Freq. Damping Freq. Dampin
(Hz.) (% Cridcal) (Hz.) (% Critical)
1 143,52  0.15 137.89 1.65
2 537296  0.17  552.66 5.45
3 1285.03 0.32 1251.02 10.15
4  2274.35 0.55 2169.03 38.19

The simulation was repeated for the global control
case, where the signal to each actuator is com-
posed of feedback from each of the feedback
segments. It was found that a higher penalty
needed to be assigned to the lower modes in the Q
matrix during the calculation of the control law
gains. The simulation results are shown in Fig.
10, and the calculated controlled frequencies and
damping ratios are shown in Table 2.

Note that the amount of passive damping using
the polyvinylidene flouride film was negligibie,
even when the inductors were sized such that the
exiernal circuits were tuned to a natural frequency
of the structure. However, when the piezoelectric
layers were given the properties of piezoceramic
materials, the passive damping was significant,

Deflection (m)

™0 002 004 0.6
Figure 10, Global Control Using PVDF (sec).

| __Mode  Frequency Damping Ratio
| (Hz) (% Critical)
1 138.60 10.80
2 568.97 18.71
3 1368.70 34.14
4 2315.86 65.90

Table 2. Natural Frequencies and Damping Ra-
tios for the Global Control Case.

Note that the amount of passive damping using
the polyvinylidene flouride film was negligible,
even when the inductors were sized such that the
external circuits were tuned to a natural frequency
of the structure. However, when the piezoelectric
layers were given the properties of piezoceramic
materials, the passive damping was significant.

YL_CONCLUSIONS

Using a model developed for Leams with multiple
layers of segmented piezoelectric materials at-
tached, a numerical study of passive and active
control of the beam to inczease the damping was
performed. The results showed that by segmeni-
ing the conducting surfaces of the distributed
piezoelectric layers, a number of modes equal to
the number of segments can be controlled. This
avoids the problem of not being able to control
certain modes due to cancellation of the distributed
sensing signal or the distributed actuator effort.
In particular, control of the second mode of a
pinned-pinned beam was demonstrated numeri-
cally, which would not have been possible with-




out segmenting the uniform feedback and actua-
tion layers.
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Abstract

The vibration of an experimental flexible space truss is controlled with intemnal control forces
produced by several proof mass actuators. Four candidate control law strategies are evaluated in
terms of performance and robustness. These control laws are experimentally implemented on a
quasi free-free planar truss. Sensor and actuator dynamics are included in the model such that the
final closed loop system is self-equilibrated. The first two control laws considered are based on
direct output feedback and consist of tuning the actuator feedback gains to the lowest mode
intended to receive damping. The first method feeds back only the proof mass's position and
velocity relative to the structure, this results in a traditional vibration absorber. The second
method includes the same feedback paths as the first plus feedback of the local structural velocity.
The third control law is designed with robust H,, control theory. The fourth control strategy is an
active implementation of a viscous damper, where the actuator is configured to provide a bending
moment at two points on the structure.

The vibration control system is then evaluated in terms of how it would benefit the space
structure's position control system. This assessment is necessary since the additional actuator
dynamics in the model effectively adds two state variables to the system which could lead to
instabilities in the position control system.

1 Introduction

Proof mass actizators (PMA's) have been considered for use in large space structure

vibration control systems!. These control systems are usually configured such that the PMA's
provide a closed loop control force based on the output from a combination of both colocated and

noncolocated sensors2-3. The colocated seasor provides measurements of the position of the
proof mass relative to the structure. A benefit of colocated control is that stable control laws can
be designer' that provide vibration attenuation at the point of actuator attachment. Several
experimental implementations of colocated PMA control have resulted in control laws that are
based on the traditional vibration absorber*3. In an effort to gain increased vibration attenuation,
noncolocated sensors provide actual structural vibration measurements at the point where
performance is desired. The problem of designing a noncolocated control is constrained by the
requirement that the control iaw must provide stable vibration suppression at sensor iocations on
a flexible structure that is not necessarily well modeled.

This paper addresses the issue of the effective use of the proof mass actuator's control effort
towards the robust vibration suppression of a flexible unconstrained planar frame. An
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unconstrained or free-free structure is uscd,‘rather than s constrained or cantilevered structure. It
is observed that in some cases an entire vehicle will vibrate indicating that a constrained analysis is

not appropriate”8. The approach taken is to compare several control law and actuator-sensor
combinations when the actuator provides a point force on the structure. As a counterpoint, the
actuator is ‘also mounted to the structure such that the actuator's control effort provides both an
axial force and a bending moment applied at two points on the structure. A control structure
interaction approach is undertaken in the sense that the actuator, sensor, and controller dynamics
are included or accounted for in the structural control design.

The paper outline is as follows: Section 1 gives an introduction to the control structure
interaction problem undertaken here. The flexible structure control testbed is described in Section
2. The PMA control law designsto be compared are detailed in Section 3. The results of
experimental implementation of these control laws are provided in Section 4. The research is
summarized in the final section.

2 Hardware Description

The experimental flexible structure is constructed such that it exhibits the characteristics
commonly associated with large flexible space structures. The structure is light weight, with most
of its mass concentrated at the joints. There are both colocated and noncolocated sensors and
actuators. The structure displays numerous modes of vibration that have a low natural frequency,
are Lightly damped, and are closely spaced relative to each other. A soft cable suspension system
is used to simulate the free boundary conditions of space, and to minimize the effects of attaching
the structure to ground. .

2.1 Flexible Structure

Figure 1 illustrates the 6-bay, 3 m long plane frame. The width of the structure is 0.5 m,
and the diagonal dimension is 0.707 m. The frame is constructed from aluminum truss links and
joints manufactured by the Mero Corporation. A truss link consists of an aluminum tube, with
nominal cross section dimensions of 22 mm O. D. and 20 mm I. D., terminated in bolt assemblies
which attach to the truss nodes. The truss node is Mero's standard M12 aluminum node. The
links are attached to the nodes and tightened with a torque wrench to 25 in-1h. The total weight of
the structure is 61 N.

The frame is suspended from the ceiling by two soft bungee cables 2 m in length. It was
found necessary to double up the cables to support the total weight of the structure and actuators.
The cables are attached at nodes 2 and 6. These joints were chosen for the suspension points
since they were nearly coincident with the nodes of the first structural mode of vibration, therefore
minimizing the interaction of the structure and its suspension. The electrical cables are suspended
from the ceiling such that they Go not carry the weight of the structure, and the mass loading of the
structure by these cables is minimized.

The dynamic characteristics of this structure are evident in figure 2, which shows an
experimental transfer function of node 1's linear acceleration in the x direction given an impact at
node 1 in the x direction. The modal properties .f the first 8 structural modes of vibration are
given in table 1. The vibration of the frame is characterized by flexural deflection rather than axial
deflection that would occur in a true truss structure. The structure is sufficiently long such that the
low structural vibration modes are not coupled to local member bending modes.

Not all of the dynamic characteristics displayed in figure 2 can be attributed to the structure,
rather the suspension provides a significant portion of the response shown in this test. Three
pendulous modes at approximately 1/3 Hz replaced the three rigid body modes in the x-y plane. A
double pendulum mode at 1.2 Hz repiaced the rigid body rotation about the y -axis. Translation in
the z direction and rotation about the x axis are replaced by two translational vibration modes at
1/2 Hz which are due to stretching of the suspension cables. The cables also have transverse
vibration modes that occur at 12 Hz, 37 Hz, and 55 Hz.




2.1.1 Structural Model

A finite element model of the structure was constructed for use in control design, The frame
links were modeled as uniform aluminum tubes whose dimensicns are the same as the
manufacturer’s nominal specifications. The frame juints were modeled as rigid. The combined
mass of the joints and the link bolt assemblies were modeled as a point mass, with zero rotational
inertia, located at each finite element node. Table 2 gives the structural parameters used in the
finite element analysis. In order to simplify the model, Guyan reduction was used to eliminate
translation in both the z and y directions, and rotaticns about the x axis. Only motion out of the y-
z plane is modeled.

The transverse vibration of the suspension cables was also modeled, since these vibration
modes appear in the control bandwidth. Modeling the suspension gave better agreement between
the pole-zero pairs as shown in figure 2.

2.2 Proof Mass Actuators

The proof mass actuators used are illustrated in figure 3. These actuators were originally
developed at the NASA Langley Research Center!l. The intent of this design is that a magnetic
field is produced by the permanent magnets and the iron in the proof mass that is normal to the

current flowing through conductors in the coil. This electromagnetic coupling is then described
by Eq. 1.

F=nlxB )

I represents the current carried in the conductor, n the number of conductors in the gap, B the
magnetic field across the gap, | the length of the conductor. An average conductor length is found
from the average circumference around the coil. A useful control force oriented along the axis of
the coil results from this coupling. This force is then applied to the conductors in the coil, and
subsequently the structure. The reaction of this force is applied to the proof mass and causes it to
translate upon a linear bearing. Hence, the PMA can be modeled as providing an ideal point force
at the place of attachment on the structure and a reaction force on the proof mass. This force is
taken to be proportional to the current supplied to the coil. The power amplifier for the actuator is
configured as a current amplifier, which provides a means by which the actuator can be controlled
by a voltage signal. The proof mass actuator characteristics are given in table 3.

A complete model of the PMA should also include the dead mass and rotational inertia
associated with the actuator. The motivation behind this is that for lightweight structures the
actuator's dead mass will constitute a significant percentage of the total mass of the structure. The
addition of a relatively large discrete mass to a structure has the tendency to attract the nodes of the
higher modes of vibration of the structure to the point of attachment. This effect minimizes the
ability of a point force to provide a useful control force to higher modes of vibration. The
rotational inertia of the actuator used here cannot be considered negligible compared to the

structure. The high actuator inertia is in part due to the vverall length of actuator measured from
the base.

2.2.1 Actuator Nonlinearities

There are several nonlinearities associated with the actuator, several of these are better

described as saturation limits. The total stroke length of the proof mass is +0.0127 m. The
actuator produces a useful control force only when the proof mass is free to translate. Therefore,
feedback of the proof mass position relative to the structure is used to maintain the proot mass in




the center of its stroke. The finite stroke length is the limiting factor for low frequency, large
amplitude motions.

'The power amplifier used is operated as a voltase controlled current amplifier On the
amplifier there is a current limiter that provides for a saturation limit on the output. The maximum
output current of the amplifier determines the maximum force output of the actuator. An important
design tradeoff here is to determine how much control effort should be used towards the proof
mass centering force and how much should be available for a control force based on a
noncolocated sensor.

The damping in the actuator is primarily due to friction in the linear bearing and steel shaft
interface. This friction has been described by a typical Coulomb friction relation. The normal
load that generates the friction force is a combination of the weight of the proof mass and a
magnetic force between the permanent magnets and the steel shaft and ball bearings. These
frictional effects further limit the effectiveness of the actuator at low frequencies. Secondly, the
source of the damping is important in the sense that previously implemented PMA control laws
have relied upon available actuator damping to obtain closed loop stability. The problem is thata
large portion of this damping would not be available in a zero-g environment.

The electromagnetic coupling between the coil and the proof mass is described by Eq. 1 for
only a portion of the total stroke. This is illustrated in figure 4. This plot shows the static force
produced by the actator for a constant input current. Ideally the actuator should output a constant

force for a constant input current independent of the stroke position. During bench testing of the
actuator, this led to closed loop instability.

2.2.2 Attachment to Structure

The structural equations of motion must be modified to include the actuator dynamics. The
structure is originally described by m degrees of freedom x, and if n actuators are used then n

degrees of freedom represented by the relative displacements 1 are appended to the equations of
motion. Note that the coupling appears in the mass matrix rather than the stiffness matrix.

Mo X +Koix =B fg (2a)
x={Xfem Nact}T (2b)

- Kfem Omxn
Kot = [Onxm Onxn ] (2c)

- [ Mem Omxn [ Mg +Jd+ Mp1  Mp ]

Mot = Onxm Onxn ] + MpzT mplixn (2d)
Mg = my diag(0,..., 0,1,0,0.....,0) (2e)
J4 = jg¢ diag(0,..., 0,0,1,0,....,0) (20
Mpl = mp diag(O,..., 0,1,0,0,--..,0) (2g)
Mp2; =mp(0,..., 0,1,0,0,....,0)T, j = Iin (2h)
_ T Omxn )
B= [gaClInxn] (21)
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2.3 Linear Variable Differential Transformer

A linear variable differential ransformer (I.VDT) is mounted on each PMA to provide a
measurement of the proof mass position relative to the structure. The LVDT used is 2 Schaevitz

Eng. No. 500. The input voltage is selected such that a displacement of +0.375 inch produces 3
Voits. The sensor bandwidth is 0 - 500 Hz. These sensors produce a measurement ihat is
colocated with the control force.

2.4 Accelerometers

The structural sensors are Kistler Piezobeam accelerometers. The calibration is 10 mv/g,
and have a frequency range of 0.5 10 5000 Hz. An approximate integrator is then used to integrate

the acceleration signal to provide a measurement of the structural velocity2, The approximate
integrator is given by the following input/output description

wcls
$2 + W¢s + W2

2s) = )

This approximate integrator is the combination of a critically damped unity gain second order low
pass filter, and a pure differentiator. The low pass filter provides the integrating action, while the
differentiator removes the DC portion of the input signal. The transfer function is strictly proper,
giving a state space realization for either analog or digital implementation. This type of integrator
is used in order to avoid the integration of any DC bias produced by the accelerometer and
associated signal conditioning,

2.5 Digital Controller

The digital controller used is a Systolic Systems Optima 3. The input and output voltage

range is S Volts The input channels are anti-alias filtered and the output channels are smooth
filtered. The digital to analog converters on this system present a practical design issue, since they
do not saturate. Rather, when the control law produces an output that exceeds the output range of
the converter the conversion process wraps the desired signal value around the available output
range. In other words, if the control law produces a desired signal of 6 Volt, the D/A converters
will produce a -4 Volt signal. The solution to tl:is problem used is to place the static controller
gain on the power amplifiers. This is fine for static compensators or direct output feedback of
sensor signals of known and bounded signal strength, such as the LVDT output. For dynamic
compensators this is not necessarily a robust solution. A second solution would be to place logic
statements in the control software that would provide saturation levels. Such logic statements
would lower the achievabie sampling rate.

3 Control Design

The application of a proof mass actuator to the control of a simple flexible structure is
considered in this section. The structure consists of one rigid body mode, and one flexible mode
of vibration. This problem is illustrated in figure 5. This problem has been proposed as a
benchmark robust control problem!4. The difference here is that the control force is produced by

an actuator whose dynamics cannot be ignored. The open loop equations for this system are
given by




Mg 0 0 (X1 [ Ks -Kg 071 0 -1
0 Ms+m +md m X248 4 -Ks Ks 0 Kx2% = {O}f (t)+{ l}d(t) 4)
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The measurement equations are for the relative position, 1,

¥p = KLvpmn = [0 0 KLvDT] X 3)
The following values are used for all calculations in this section.

Ms = 1

0.5 <Kg <2, nominally K¢ =1
mp =02

g =0

gact =1

KLvpr=1

In the following subsections several vibration control strategies are considered. The
effectiveness of each system is then evaluated by giving the system an impact disturbance across
masses 1 and 2, and the response of x5 is measured. This type of disturbance does not excite the
system's rigid body mode.

3.1 Controllability

The controllability of this system is then computed with standard techniques®
rank [B AB A2B ... ASB] =426 6)

Indicating that the system is not completely controllable. The control force produced by the
actuator should be considered as a force intemal to the system, and as such cannot change the
location and motion of the system'’s center of mass. The lack of complete controilability is
because the actuator cannot control the rigid body mode of the system. A further explanation of
this is the actuator configured as a point force cannot produce a force at zero frequency.
Therefore, a statement of the obvious is that the actuator should be only used for vibration conwol.
In other words the actuator should be used to give the structure damping. Itis also evident that a
rigid body control system must be designed for this system. A design goal for the vibration
control system is that it should enhance the rigid body controller.

3.2 Observability
The observability of the system is computed from
rank [C CA CA2 ... CAS|T=4=6 (7)

indicating that the system is also not completely observable. Similar to the previous section the
rigid body modes of the system are not observable.




3.3 Vibration Absorber

The first control law considered is direct feedback of the relative proof mass position, 1, and
velocity, 1. This is considered a colocated design, since the resulting closed loop stiffness and
damping matrices are symmetric. Although the LVDT measures the position 1] only, it is assumed

that 1) is available from a lead network or digital derivative. This type of feedback compensation
is a proportional plus derivative control. Equivalently, this type of control may also be thought of
as designing an actuator spring stiffness, ka, and viscous damper, ca. One criterion for ihe choice
of the feedback gains, k, and ¢, is that used to design a passive vibration absorberl0:.114, The
actuator spring stiffness is found from

2
= Eﬁ. = _9_1_ (8)
Mp  (14pa)2
2 2

Ha= mp(¢ij)2
ka = gactKposKLVDT
Ca = BactKvelKLVDT
w; - frequency of interest, ith mode

¢ij - jth degree of freedom, eigenvector of the ith mode, normalized with respect to the mass
matrix

The resulting closed loop equations of motion are then

Ms 0 0 xl 000 ’Z‘l Ks -Ks 07Xl -1
0 Ms+mp+md mp |¢X2 +[0 0 0} X2b +| -Ks Ksg 0 [KX2} = {l}d(t) (10)

Alternatively, the feedback gains can be calculated from the following quadratic cost function!!

J=E[0f°qe2i dt]=?{szQz dt] (11)

This system is stable provided that the feedback gains, k; and c3, are positive. The constant
gain feedback of sensor signals that are colocated with an actuator does not destabilize the system.
The colocaton of sensors and actuators is evidenced by the symmetric closed loop stiffness and
damping matrices.

The spring stiffness and damping coefficient for this example are calculated to be

ka =(.331




The response of x2 for the given disturbance is shown in figure 7. The responses shown are
calculated for the minimum, maximum and nominal value for the structural spring stiffness, K.
The vibration control system's performance when Kj is increased to its maximum value is
comparable to its performance for the nominal value of K. On the other hand, when Kj is
allowed to decrease to its minimum the performance of the system is diminished.

The performance of this type of control is explained in a control system sense as a pole-zero
cancellation. The second order dynamics of the PMA add a pole and a zero to the system, which
will be less that the structure's pole and zero. The zero associated with the structure will appear in
between the actuator pole and the structural pole. These poles are closely spaced, since the mass
ratio, jla, is usually small. Hence, the structural zero will iend ta cancel either the actuator or the
structural pole, depending on sensor and actuator placement. Because this type of control relies
upon pole zero cancellation its effectiveness for more than one mode of vibration is limited.

3.4 Direct Velocity Feedback

The second control strategy considered consists of direct structural velocity feedback!3. The
idea being that the actuator will provide a force at a given point on the structure that is directly
proportional and opposite in direction to the structure's velocity at that point. It is pointed that the
control force is determined on the basis of both a colocated and a noncolocated sensor. Therefore,
the stability of the closed loop system must be considered. The difficulty here is the design of the
feedback compensator to provide the proof mass centering force. The control force is given as

£g(t)= ¢ X2 - (M) (12)

where f(n) represents the output of the feedback compensator.
In the following subsections the velocity feedback gain, ¢, is held constant and two feedback

compensators for 1) are designed. The value used for the feedback gain ¢ is

c=05

3.4.1 Direct Output Feedback

In this section a proportional plus derivative compensator is designed for the feedback of the

proof mass relative position, 1. Again, this type of control may be thought of as determining an
equivalent actuator spring stiffness, ka, and viscous damper, c3. The control force is

fg(t)=c X2 - kan - caN (13)

The closed loop equations of motion for this system are then

Mg O 0 x1 0 0 01f* Ks -Ks 0 7|X1 -1
I: 0 Ms+mp mp X20+100 0 } X2% + -Ks Ks 0 X2L = {l}d([) (14)
0 mp mpjify 0 -ccalin 0 0 kalln 0

This is a noncolocated control system, and as such its stability is in question. The characteristic
equation for this system is evaluated to be




v

2[4+(M + s 3+(.2_1S$+_kn+%) )

P
(R e o

Applying the Routh-Hurwitz test to portion of the characteristic equation inside the brackets the
following stability relation is obtained, assuming that each individual parameter is positive

(cZ + 2cqc + c2) KImZ + [2(3 + cac)KZ + (-cac - €2) Kgka ]Msmp

-cacKkaM2>0  (16)

When the actuator damping is held at zero, i. ¢. ¢; =0, Eq.13 reduces to

K k
—~5 42
M 17

In other words, the actuator natural frequency should be less than the structure's natural frequency
of vibration. Also, note that the velocity feedback gain, ¢, is not present in Eq. 14. Figure 6
illustrates the stability boundary of k, for a range of both c, and c, for the nominal spring stiffness
K. Actuator spring stiffnesses below this boundary result in a stable system. The smallest stable
ka in figure 6 occurs for ¢, = 0, independent of c. Also, the surface is relatively flat over most of
the range of ¢, and ¢, indicating that in this case stability is insensitive to actuator damping. In
order to ensure stabxhty robustness against the permissible variations in the structural spring
stiffness, K, the minimum permitted value should be used as the nominal of design value.

The feedback gains, ka and c,, are determined by following the same optimization strategy

that was outlined in the previous section!2. For this example k, and c, are found to be

ka =0.105
Ca = -0.0027

The performance of this system is illustrated in figure 8. The system's settling time for both the
nominal and maximum spring stiffnesses is less than that of the vibration absorber design.
Although it is not apparent in this figure, when K is varied to its minimum value the system
becomes unstable.

Following this strategy the actuator spring stiffness is found to be less than the vibration
absorber spring stiffness. Performance is improved with an increased feedback gainc. In
comparison to the vibration absorber system the proof mass here exhibits more relative motion
and does more work on the structure.

3.4.2 Robust Control Design

An attempt to design a compensator for the feedback of the relative position, 7, using an He
robust control design technique was unsuccessful. The system rigid body modes were first
removed from the state space equations of motion by model reduction. The rigid body mode
associated with the proof mass was retained in the system equations, since it is this output that the
compensator is being designed to control. The He design procedure failed because there was a

plant pole on the jw-axis which then produces a closed loop pole also on the jo-axis.

CJ




3.5 Passive Damper

As a counterpoint to the above control designs the actuator is also configured to act as a
passive linear damper which applies a bending moment at two locations on the structure, as

shown in figure 10. Only feedback of the proof mass relative velocity, 1 is used here. In other
words this is direct velocity feedback. A proof mass centering force is not required since this is
provided for by the structure and fixturing. The actuator can be attached at nonadjacent joint
locations to better distribute the control effort to low frequency modes.

4 Experimental Implementation

The experimental implementation of the control laws considered above is addressed in this
section. An impact is given to the structure at node 1 in the x direction and the structure's
acceleration is measured at node 4 also in the x direction, Each response is filtered with a 25 Hz
low pass filter to give a cleaner picture of the actuator’s effect. The resulting settling time for each
test is used as a measure of control law performance. The actuator location is chosen in order to
provide the greatest effect on the first vibration mode. The control laws are implemented digitally,
with the sampling rate for each set at 4000Hz. As a basis for comparison the response of the
uncontrolled structure is shown in figure 10. The settling time for this test is greater than 3.5
seconds. It is also evident that the structure must be considered more complicated than a single
degree of freedom.

The vibration absorber was designed to provide damping to the first mode whose frequency
is shifted to 5.8 Hz when the actuator dead mass and inertia are added. The actator is placed at
node 4. The result of this implementation is illustrated in figure 11, Itis seen here that the settling
time is reduced in comparison to the uncontrolled structure, but is greater than 2.5 seconds.

When the actuator was tuned to the second mode at approximately 12 Hz the actuator was made
unswable. This is a result of the nonlinear electromagnetic coupling of the coil and permanent
magnets.

The effect of adding structural velocity feedback is shown in figure 12. The acceleration of
node 4 is integrated by the approximate integrator given in Eq. 3. The cutoff frequency for the
integrator is | Hz. Following the stability guideline for this case the actuator spring stiffness is
kept low such that the actuator frequency is below that of the first mode of vibration. The settling
time for this case is an improvement from the vibration absorber. Figure 12 displays a signal of
approximately 1 Hz, which is the double pendulum mode of the structure suspension system.
Closed loop instability for this set of feedback paths resulted when the magnitude of the
disturbance impact caused the proof mass to hit the end of its stroke. These resulting impacts
caused the accelerometer to overload which subsequently made the control computer overflow
which induced the more proof mass impacts.

Figure 13 illustrates that the viscous damper implementation has an effect comparable to that
of using structural velocity feedback. Although, there is more second mode behavior for this
case. The actuator was attached at nodes 3 and 5. In comparison to the point force application of

the actuator where the proof mass uses the entire stroke length, the travel of the proof mass here is
at most 0.25 in.

5 Conclusions

Several structural vibration control laws have been considered analytcally and implemented
experimentally. Two of these control strategies are essentially active implementations of passive
control concepts, namely the viscous damper and the vibration absorber. The feedback of the
local structural velocity is an active control idea. A control structure interaction approach was
taken in tiie sense that the actuator dynamics were included in the control design, and that there are
several nonlinearities in the closed loop system that can lead to instability.

W/
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Experimental MSC/PAL
Mode # Natural Damping Natural Mode
1 . . . Ist bending
2 15.1 0.026 15.6 1st torsional
3 17.7 0.010 17.7 2nd bending
4 29.6 0.018 29.9 2nd torsional
5 354 0.025 35.2 3rd bending
6 45.6 0.014 45.2 3rd torsicnal
7 58.0 0.026 55.6 4th bending
8 63.3 0.022 60.8 4th torsional

Table 1: Modal Properties of Flexible Structure




Link O. D. do 22 mm

Link I. D. d; 20 mm

Density p 2.45x103 kg/m3
Elastic modulus E 70 GPa

Shear modulus G 26 GPa

Joint mass m; | 0.0759 kg

Bolt mass mp | 0.0578 kg

Table 2: Structure link and joint characteristics

Proof mass mp [ 0.225 kg
Dead mass mq | 0.730 kg
Dead inertia ia | 0.008 kg-m2
Force constant gact | 2.75 N/A
Friction coefficient m 0.01

Table 3: Linear Proof Mass Actuator Properties

ez

6 - Bay Planar Truss
Total Mass - 6.25 Kg

Meroform Aluminum Tube Elements
Outside Diameter - 22 mm
Inside Diameter - 20 mm

7,

Elastic

‘/-Suspension
Cord

Figure 1: Experimental Flexible Structure
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Linear Proof Mass Actuator
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Figure 3: Linear Proof Mass Actuator
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v



design.

Position x2

0.8
0.6

0.4
0.2
0.0
-0.2
-0.4
-0.6

Ks = 0.5

iy
RHACH N MU A e
AHTRANY; \v/' i

10

Time

30

Figure 7: Xz response to disturbance for minimum, maximum, and nominal K, vibration absorber




cererestey,

o ! o,

Position x2

0 10 20 30
Time

Figure 8:X2 response to disturbance for minimum, maximum, and nominal Ks, with structural
velocity feedback.

Figure 9: Viscous damper configuration
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Abstract

A flexible structure was modelled and actively controlled by using a single space realizable
linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar tmss\
structure at an "optimal” location and it was considered as both passive and active device. The
placement of the actuator was specified by examining the eigenvalues of the modified model that
included the actuator dynamics, and the frequency response functions of the modified system. The
electronic stiffness of the actuator was specified, such that the proof mass actuator system was
tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The
active control law was limited to velocity feedback by integrating of the signals of two
accelerometers attached to the structure. The two lower modes of the closed-loop structure were
placed further in the LHS of the complex plane. Thc theoretically predicted passive and active
control law was experimentally verified.

1. Introduction

Large continuous structures, like space structures tend to have tight restrictions on the
actual response of the structure. A passive or active control design is often necessary for the
structure to satisfy the desired response restrictions. The success of the passive and active control
design is based on the accuracy of the model that describes the dynamic characteristics of the
structure. Flexible distributed parameter systems can be successfully modelled by finite element
analysis 1. This catcgor2y of structures is lightly damped and tends to have most of its mass
concentrated at the joints 4, Their natural frequencies are low and appear in closely spaced groups.
The finite element model of the structure that consists of a mass and a stiffness matrix, can be
reduced by traditional model reduction techniques by eliminating the insignificant displacements at
the nodal points 3. The dissipation energy of the system can be modelled by constructing a system
damping matrix, by assuming a normal mode system ¢, 4 and by using the damping ratios obtained
experimentally from modal parameter estimation mcthods 56,7, In the case where the
discrepancy between the analytical model and the expenmcntally obtained modal model is
significant, the reduced order analytical damped model can be further modified 8, such that it is in
agreement with the experimental natural frequencies, damping ratios and mode shapes
8,9,10,11,12,13, 1t is important to realize that the design of the "optimal” control is based on the
modified reduced order model, but it is actually applied to the real structure. Therefore, the model

improvement mentioned above, becomes very important and its accuracy is vital in the success of
the design of the control law.

The structure used here, is 2 planar truss constructed with space realizable links and joints
in the configuration presented in fig.1. The truss is lightly damped and has the behavior of a large

*Currently with G.E. Corporate Research and Development Center, Advanced Projects
Laboratory, Schenectady, N.Y. 12301,




space structure, with most of its mass concentrated at the joints 2, 1t possesses low resonant
frequencies that appear in closely spaced groups and has both translational and rotational modes of
vibration.

The structure is passively and actively controlled by a single actuator. The actuator used in
this experiment is the NASA/UVA/UB proof mass actuator system. The actuator dynamics are
taken into consideration and a global model is constructed which includes both the structure and the
actuator dynamics 14,15, The location of the actuator is specified 16,17 by examining the
eigenvalues of the uncontrolled global model and the frequency response functions of the global
system. The actuator is considered as both a passive and an active device with two design
variables, its electronic stiffness and the generated force. The electronic stiffness is specified such
that the actuator proof-mass-electronic-spring system is tuned to one of the structural modes of the

truss by using traditional vibration absorber design 18,19,20, The generated force of the actuator
is specified by using output feedback techniques. Here, the active control law was limited to
velocity feedback by integrating the signals of two accelerometers attached to the structure. The
objective is to move the two lower modes of the closed-loop structure further in the LHS of the

complex plane and at the same time maintain stability of the closed-loop system 21,22, The
theoretically predicted passive and active control law are experimentally implemented and the
results are evaluated.

2. Modeling
2.1 Construction of the Finite Element Model

The finite element model of the structure was constructed by using the commercially
available MSC/PAL package for dynamic modeling. The structure weighed 7.335 Kg and was
constructed with links and joints, mainly made of aluminum alloy. The density of the material was
measured experimentally by using standard techniques. The Young’s modulus of aluminum alloy
was used, since the links and joints are mainly constructed with this material. The nodal points of
the finite element model coincide with the location of the joints of the structure. Every nodal point
was allowed to have three degrees of freedom, that is translation in the z-axis and rotations about
the x and y-axis resulting in a 48-degree-of-freedom model (see Fig.1). The boundary conditions
were assumed to be clamped for nodes 15 and 16 and free for the rest of the nodes, since the
structure was supported as illustrated in fig.1. After the boundary conditions were applied the final
model was a 42-degree-of-freedom model.

2.2 Mass Distribution

The mass distribution of a non-uniform structure is a problem, that should by no means be
ignored. Here, two approaches were used. The first approach was to calculate an equivalent
internal diameter of the hollow links, such that the links had the measured mass. The links were
treated as uniform hollow tubes constructed with aluminum alloy with an equivalent length of
0.5m. The joints were modelled as a concentrated mass at the particular location and are treated as
rigid. The natural frequencies of this model were calculated and are presented in table 1. The
results were considered unsatisfactory and one of the links was disassembled for more insight to
the mass distribution of the link. In the second approach, the real internal diameter of the links was
used and the excessive mass was distributed to the nodes accordingly. The resulting natural
frequencies of the model are compared to the experimental results in table 1. The finite element
model was constructed using a finer grid which include more nodal points, specifically an
additional nodal point at the mid-point of each link. The resulting model after the boundary
conditions were applied was a 126-degree-of-freedom model.

It can be concluded that the 45-node(126-dof) model is not significantly better than the 16-
node(42-dof) model in predicting the first fourteen natural frequencies. Therefore, it was found
unnecessary to use the 45-node(126-dof) model in the determination of the control design of the
structure, since the 16-node(42-dof) model was as accurate.




Table 1 : Comparison of the theoretical and experimental natural frequencies of
the structure.

FEM TEST I (rot accel)
Uniform mass distribution Corrected mass distribution
42dof 42dof 126dof 14dof SDOF analysis

Frequency in Hz

1 1.38 1.045 1.048 1.039 1.07

2 4.56 3.467 3.468 3.469 3.54

3 10.88 8.050 8.¢50 8.051 7.94

4 26.98 19.894 19.894 19.902 -

5 29.68 21.746 21.748 21.750 -

6 30.94 22.077 22.074 22.087 22.54

7 42.63 30.468 30.472 30.477 32.61

8 53.79 39.268 39.252 39.326 40.35

9 68.46 48.524 48.521 48.552 -

10 72.61 51.746 51.704 51.842 52.51

11 82.93 58.645 58.629 58.718 61.41

12 101.93 71.169 71.116 71.275 65.62

13 102.88 72.090 72.039 72.285 78.24

14 116.52 80.741 80.610 80.920 91.74

15 236.64 219.856 183.903 - 187.13,

2.3 Model Reduction

Most of the control algorithms are designed for first order systems. Transforming the 16-
node(42-dof) model in the state space results in a 84-dof state space matrix. This matrix is quite
large, and it was found that it is difficult to manipulate in vibration prediction, and control
algorithms. Therefore, it was necessary to reduce the order of the model before performing control
analysis and designing a control law. From the configuration of the model the rotational degrees of
freedom can be considered as less significant than the translational ones, and can be eliminated
from the model by using the Guyan reduction method 3. The resulting reduced order model is a
14-dof model. Eigenvalue analysis of this model showed that this model maintained the first
fourteen natural frequencies of the larger model quite accurately. The damping ratios determined
from the modal test were used in the construction of the system’s damping matrix, by assuming
that the system exhibited normal mode behavior. The damping matrix is calculated by the
following equation:

D= MUFdiag(ZCiwi)UF‘l (1)

where Ugis the eigenvector matrix of M- 1K, and {;are the experimentally obtained damping
ratios. The final reduced order model is described by the following equation:

Mi(t) +Dq(t) + Kq(t) = 0 (2)
This equation describes only the dynamic characteristics of the structure. The actuator dynamics
were considered important and they were included in the dynamic model.

2.4 Actuator Dynamics

The actuator that was used in this experiment was the NASA/UVA/UB proof mass
actuator, presented in fig.2. The actuator system is comprised of a movable proof mass (mp,f =
0.225Kg), a fixed coil that applies an electromagnetic force on the proof mass, an analog interface
board, a power amplifier and a linear variable differential transformer (LVDT) sensor. The LVDT
transducer is an electromechanical transducer that measures the relative position of the proof mass
with respect to the actuatss zousing. The actuator can be modelled as single degree of freedom
mass-spring system, with a variable electronic stiffness and the ability to apply a force on the




structure at the attachment point. An equal and opposite force is applied on the proof mass of the
actuator. The actuator is space-realizable in the sense that it does not have to be attached to the
ground. The equations of motion are written by taking into account the actuator dynamics!9.
Let’s assume that the actuator is attached to the structure at the ith nodal point. The global system
that includes both the structure and the actuator dynamics, is of higher order, equal to the order of
the original system plus the order of the actuator dynamics, and it is described by:

D, 0 . K, 0 0
[ M, 0 ] an, Cat|| A |, kact [ ] = (1) £, (3a)
0 myef| dprr 0 11 b &
“Cact 0 Cac 9prt 0 -Kpet 0 kae -1
where q,,¢ is the displacement of the proof mass (m,,), the scalars k,;,and ¢, are the stiffness and

damping of the electronic spring of the actuator, ar 18 the parasitic mass of the actuator, f; is
force generated by the actuator, and the matrices M, ,D, and K are the following matrices:

M;=M+ mpardiaglo,...,o,1,0,...,0] (3b)
K, =K +k,diag[o0,...,0,1,0,...,0] (3c)
D, =D + c,,diag/o,...,0,1,0,...,0] (3d)

This is referred to as the open-loop system and the mass, damping and stiffness matrices are
denoted by subscript (o ) for convenience. Note that the non-zero elements correspond to the ith
row or/and column of the particular matrix or vector of the previous set of equations. The force f,
is the actuator-generated force applied on the structure. The electronic stiffness of the actuator can
be selected in a variety of ways for various design approaches.

3. Passive Control Design
3.1 Structural Modification Design

The parasitic mass of the actuator housing has the same effect as adding a dead parasitic
mass at the point of attachment. Increasing the mass of the structure is a structural modification,
with the direct effect of reducing the lower natural frequencies of the system. The natural
frequencies of the new model with the dead mass were examined both theoretically and
expenmentally, and the results are tabulated in table 2. The experimental results are presented in
the form of point and transfer inertance (transfer function) plots. The transfer function of nodes 1
and 8, of both the original structure and the modified structure are presented in fig.3 and fig.4
respectively. The effect of attaching the PMA (inactive) was also examined. This configuration is
equivalent of having a dead mass equal to the parasitic mass of the actuator housing plus the proof
mass. However, when the actuator’s electronic stiffness is activated, the proof mass becomes an
additional degree of freedom, and it is not part of the parasitic mass any longer.

The results indicate that the modified structure has lower natural frequencies than the
original structure. This is true for the first five structural modes as indicated in the table above.
The experimental frequency response plots show that the level of the vibration response was
reduced considerably, especially in the lower frequency region.

If the design methodology was limited to structural modification, it will be considered
necessary to examine the effect of adding the dead mass at different nodal points. The results are
presented in table 3. The design criterion that was used to place the actuator was to reduce the
overall vibration level at node 1, because a sensitive device will be attached at that point. The
actuator cannot be placed at node 1 because there is no room. Note that different design criterion
results in different locations of the >ctuator. Placing the actuator at node 10 doesn’t reduce the
vibration at node I at all. Nodes 2, 3, and 4 have the same effect in reducing the vibration level of
node 1. But the first structural mode is shifted at 0.92 Hz. This was considered undesirable
because it is hard to control the low frequencies by active control. Placing the actuator at nodes 6,7
and 8 has the same effect in reducing the vibration level of node 1 and the first structural mode is
not shifted considerably. Therefore, any of nodes 6,7, and 8 can be used as an "optimal” location
of the actuator. The results that follow are for placing the actuator at node 8.




Table 2 : Comparison of the theoretical and experimental natural frequencizcs of
the structure with and without the parasitic mass.

FEM TEST 1
w/0 w w/0 w dead mass w PMA inactive
Frequency in Hz

1 1.04 0.97 1.07 1.01 1.02
2 347 2.94 3.54 3.09 2.96
3 8.05 8.00 7.94 7.69 7.88
4 19.90 16.42 - 17.01 16.03
5 21.75 21.44 - 22.39
6 22.09 22.06 22.54 22.02 23.50
7 30.48 28.53 32.61 30.08 29.50
8 39.33 39.12 40.35 39.78 39.33
9 48.55 46.40 - - -

10 51.84 51.45 52.51 49.31 50.68
11 58.72 58.52 61.41 54.57 57.36
12 71.27 70.71 65.62 65.02 66.29
13 72.28 72.28 78.24 71.73 78.41
14 80.92 80.74 91.74 84.8 -

Table 3 : Comparison of the theoretical natural frequencies of the structure with
the parasitic mass at various nodal points.

FEM

w/o 8 2 3 4 5 6 7 10

Frequency in Hz

1.04 097 093 093 092 098 098 0.98 1.01
347 294 339 240 294 296 341 3.40 342
805 800 7.71 7.6 7.65 795 793 1.95 7.28
19.90 1642 18.25 1841 1747 15.54 19.84 19.88 19.52
2175 2144 21.74 2145 20.17 2L75 20.52 20.24 20.52
22.09 22.06 21.98 22,07 2L77 21.96 21.94 21.75 22.00
30.48 28.53 30.09 30.02 29.60 27.79 30.07 30.43 29.83
39.33  39.12 39.17 38.15 37.87 36.87 39.30 38.92 37.06
48.55 46,40 45.12 46.65 4835 4835 43.27 4540 43.03
10 51.84 5145 S51.67 49.02 49.76 50.89 49.56 51.40 51.83
11 58.72 58.52 54.15 57.71 58.47 58.54 58.60 56.68 56.07
12 71.27 70.71 68.85 6834 70.27 70.62 67.91 68.31 68.53
13 7228 72.28 71.87 7226 72.26 72.09 71.67 72.23 71.34
14 80.92 80.74 80.44 80.13 80.69 80.67 79.27 79.27 71.81
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3.2 Vibration absorber design

There are several criteria for tuning the absorber to a MDOF structure. The simplest
criterion is to tune the natural frequency of the absorber to exactly one of the natural frequencies of
the structurel8, that is:

W, = Wy (43)
The design of the damped absorber results in an optimal tuned frequency given by!8:
w;
W, = —— 4b
"™ T (4b)




where p, is the ratio of the mass of the absorber (here, the proof mass) over the mass of the SDOF

structure (here, the modal mass at mode w). The ratio y; or the modal mass can be calculated ina
trial and error procedure. The difficulty of applying the second method is the fact that it is difficult

to determine the optimai value for p for the higher modes 22,
An optimal tuning criterion for MDOF systems was presented in reference [19]. The

absorber frequency (w,) and damping coefficient (c,) are given by:

1+p,

0.2 =2 — b (52)

* ' (l+pt+ua)2
I+p

cl= 2(°2p —t (Sb)

: lna tFa (l+ut+ua)3
where,
H=m$2 and p= ma(hiz (5¢)

The scalars m, and m, are the parasitic mass and the mass of the absorber, respectively, and the
scalar ¢, is the jth entry of the associated eigenvector of the ith mode, where j is the degree of

freedom corresponding to the location of the absorber. Note that the eigenvectors derived form the
finite element model, are normalized with respect to the mass matrix.

3.2.2 Experimental implementation of the passive controi design

The stiffness of the PMA can be electronically varied, such that the actuator system can be
tuned to different frequencies. The PMA was attached to ground, and the LVDT signal was
examined for random signal input that generates an electromagnetic force on the proof mass. The
LVDT signal gives the relative position of the proof mass with respect to the housing of the
actuator. As it can be clearly seen in the experimental bode plot in fig.5, the PMA system is well
modelled by a SDOF system, with a natural frequency depending on the gain that determines the

electronic stiffness. The stiffness is a function of the external gain (o), and other electromagnetic

constants of the coil and the amplifier (included in the factor K) . The natural frequency of the
system is given by:

w0, =121\ oK/my, ¢ (6)

The damping in the actuator was identified as Coulomb damping due to the friction in the
bearings. An equivalent viscous coefficient was calculated from the frequency response functions
of the LVDT signal at particular tuning frequencies. It was found that the lower the tuning
frequency becomes, the higher the equivalent damping becomes. This is actually due to the fact
that at low frequencies the proof mass of the actuator cannot overcome the friction. As a
consequence, the natural frequency of the SDOF model of the actuator dynamics cannot go lower
than a certain frequency, since the stiffness is electronically determined and it depends on the
relative motion of the proof mass with respect to the housing of the actuator. It was found that the
actuator system behaves like an overdamped system when tuned to frequencies below 8 Hz.
Therefore, it was practically impossible to tune the actuator to frequencies lower than 8 Hz. Note
that, this range includes the three lower natural frequencies of the modified structure. Therefore,
the PMA is tuned to the fourth mode, by using the criteria described above. The results from only
the second criterion are presented here in the top part of fig.6, due to the fact that the plots from the
simple criterion (equation 4a) and the optimal tuning criterion (equation 5) were very similar. It can
be clearly seen that the vibration response is clearly reduced.

4. Active Control design
The active control law is implemented, by using one actuator and two sensors. The force
generator signal of the actuavor was then given by:
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f, = FCy(t) (N

where thhe feedback gain matrix and C the output matrix. The sensors were placed at node 1 and
node 4 as indicated in fig.1. Node 1 was chosen because this is the possible point of attachment of
a sensitive device, where the vibration level is required to be reduced. Node 4 was chosen,
because it moves in the opposite direction of node 1, when the structure is excited at one of its
rotational modes. Here, accelerometers were used and their signals were integrated once by an
analog computer, to give the corresponding velocity signals. The output position matrix was
therefore zero, and the velocity output mairix was of the form:

1 0y4, 4]
= 8
G [le3 0y ®)
The gain matrix is therefore given by:
F=[g,:8,l 9

where g; and g, are the two gains to be determined. Substituting into the previous equation results
in:

I 01x1 4]‘
=F t 10
fe r[olx3 10y 900 (10)
The closed-loop system written in physical coordinate system, is given by the following equation:
Moy (1) +Doq(t) + Kora(t} = Bo FCq(t) (11)

The objective here is to calculate the gain matrix F such that the system has poles at the desired
locations. The right hand side of the previous equation is expanded as:

0 07515

R 1 01x14]7_ 1800 g 0y,
B FC, = [0}[81-32][01” 1 01:11]— Ogurs o2
-1 8100 -g, 0,4y

Note that this is a square sparse asymmetric matrix with only four non-zero elements. This results
ina closed-loop system damping matrix of the form:

D, 0 0007x15 0
-C g g
DCL_-_- 61ct + 1 06x2l5 Ix11 (13)

0-Cot 0 cCye 8100 -g 05y,
where c,,, corresponds to the equivalent viscous damping coefficient of the actuator system.

The objective here, was to decrease the amplitude of the vibration response at the low
modes that have high participation factors. Note that, direct pole placement design could not be
applied since with one actuator and two sensors, oniy one closed-loop pole can be placed. The
gains were determined in an ad hoc design, from an algorithm that covered a broad region of
values, with the main objective to move the lower two poles further in the LHS complex plane.
The results are presented in table 6. It can be clearly seen that the closed-loop system is stable
when the two gains g; and g,, are in the region -10 to 10 and 0 to 15 respectively. A finer grid
that covered the part of the stable region, where the damping of the first two modes was increased
(g, from 0 to 10 and g, from 10 to 20) was also examined 22,

It was discovered that the "optimal ” gain of F=[5 : 15] increases the damping on modes
1,2, 4,5, 6 and decreases the damping at mode 3. Note that, further increase of the gains towards
the “optimal” direction, resulted in an unstable closed-loop system. The experimentally obtained
transfer functions of nodes 1 and 8, are presented in fig.6, and they are compared directly with the
open-loop system, tuned to the fourth structural mode. The results show clearly, a decrease in the
response at modes 1 and 2. The decrease of the vibration response is not very large as desired,
because of the following reasons:

(i) By using only one actuator and two sensors, we can only affect 4 elements of the 15x15 closed-
loop damping matrix.
(ii) Further increase in the gains towards the “optimal " direction drives the third mode unstable.



(iii) We are trying to control a flexible structure with many significant modes that cannot be
ignored.
(iv) We are only using velocity feedback

It was also illustrated experimentally that by increasing the gains at higher values drove the
proof mass system unstable.

Table 6 : Determination of the feedback gain matrix

£ &
5 0

(=
L}
Juah

-20
-15
-10
-5

caununcccc.
cuuunucccce
cuuuccacow
cawucaccaccads
cacaaaaads
cacccaaccy
caccccaacy
cacacaccacy

-1
U
U
U
U
U
S
U
U
U

=
CCcccacaaw
o] of of af of of of of =

U = unstable, S = stable.

5. Closing Remarks

An experimental flexible planar truss structure was modelled and successfully controlied in
a passive and active way by using a space realizable linear proof mass actuator system. The PMA
was attached to the truss at a desired location, and tuned as traditional vibration absorber to one of
the structural modes of the truss by using several criteria. The actuator dynamics were
successfully modelled and taken into consideration in the design of the passive and active control
law. The active control design was adopted in the form of output velocity feedback by integrating
the signals of two accelerometers, attached to the structure. The limitations of this method were
indicated and difficulties of applying output feedback on large flexible structures with several
significant modes are identified and pointed out.
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ABSTRACT

This lecture presents a summary of work on the analysis of the interaction between a structure, an actuator
used to suppress the vibration of the structure, and the control law implemented by the actuator. Two control
applications are considered. First, a proof-mass actuator with experiruentally verified dynamics, capable of
being used in a space structure configuration is examined. This is connected to a cantilevered beam modeled as
a single degree of freedom system. Secondly, an ¢lectric motor, again with experimentally verified dynamics, is
used to slew a beam modeled by a panial differential equation. Both the experimental and numerical
configuration predict the presence of potendal instabilities in system performance if proper consideration is not
given to interactions betwesn the control law, the structure and the actuator, In addition, an understanding of the
interaction is shown to greatly effect performance. In particular it is shown that a judicious choice of actuator
parameters greatly improves closed loop performance. :

INTRODUCTION

The purpose of this paper is to summarize several results expressing the nature of control structure
interacdon, These results pownt to the imponance of modeling actuator dynamics in designing vibration
suppression systems for flextble sauctures. [t is common pracuce for designers of servo control system to
incorporate the dynamics of the servo motor into the closed loop design of the system under consideration. Yet
a majority of the literature on the control of flexible swuctures ignores the actuator dynamics in developing
contol methods (1). This paper illusirates two types of active vibration suppression systems and points out the
effects of considering the dynatnies i the actuators in the closed loop design.

The two systems considered are a linear electromechanical actuator, consisting of a proof-mass actuator (2],
and an elecmc motor, both used to control the ransverse vibrations of an Euler Bernoulli beam. The proof-
mass actuator 1s used to control the transverse vibration of a cantleversd beam. The electric motor is used to
control the wansverse vibration ot a beam dunng a slewing maneuver, Slewing refers to the rotation of the beam
about the motor axis simular to the monon of a door rotating on a hinge.

It 1s 1llustrated here that the interaction between the actuator dynamics, the choice of control law and the

nature of the structural dynamics is critical in both cases, In particular
- the choice of feedback paths through the actuator is cnical
- instabilities result 1f one ignores the 1nteraction, or coupling between the actuators and saucture
dynamics . L
- erformancc of the closed loop system is significantly enhanced if the nature of the interaction is
considered in the choice of the actuator dynamics .
These points are illustrated and verified 1n the remainder of this paper.
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PROOF-MASS ACTUATOR/BEAM MODEL '

Proof-mass actuator systems have been considered by several authors [2-10]. The actuator used here 10
demonstrate the nature of control/structure interaction is a linear actuator. composed of a solenoid-like l
arrangement of a mass moving in an elecrric field. This proof-mass actuator (PMA) is a reaction type force
actuator, which creates a force by reacting against an inertial mass. Such actuators are also called Reaction-Mass
Actuators (RMA). This actuator has been extensively tested (2] and is capable of generating an arbitrary (but
bounded) control force. The actuator consists of a movable "proof-mass,” a fixed coil, two collocated sensors,
a digital microcontroller and a power amplifier as described in detail in Ref. 2, All of the actuator components
are mounted on a single compact fixture. Power lines are are the only external connection required to operate the
actuator unless uncollocated control is used. In the uncollocated case, the actuator accepts signals from sensors
at other locations on the structure. In addition, an optonal analog or digital input can be used as the control law l

for design purposes.

As illustrated in Ref. 6, the PMA's transfer function clearly dictates a second order model of the form of a
single degree of freedom oscillator. Laboratory bench tests and tests with the actuator mounted on a variety of
structures indicate that the model of Figure | provides an accurate description of the actuator dynamics. In the
Figure, m, represents. the internal moving mass, or proof-mass, of the actuator, and x, is the time dependent

Q-.-.-‘-..--‘
' }
structure | actuator ;.
3 :
; \
X '
o] k | ka '
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D e 204 B :
Figure I. Dynamics of a proof-mass acruator, Figure 2, A single degree of freedom system with - l

control actuator attached.

position of the actuator relative to the base. The quantity my is the dead, or non-moving, mass of the actua
(i.c., the housing, wransducers, magnets, control electronics, etc. fixed to the structure), The dampin
coefficient, ¢y, is determned experimentaily and represents an equivalent viscous damping coefficient foe th
wnternal friction of the actuator. Thie quantity k;, also determined experimentally, is the electronic stiffness force
required to keep the proof-mass centered in its housing, This force, as well as the internal damping force, i
required for stavility of the actuator. The control force is generated berween the proof-mass and the stmcnni
and 1s denoted as f;. Reference 6 reponts the dynamic modeling in detail,

The basic phenomena of interest here can be illustrated by treating the beam as a single degree of freedom
system, The extension to larger order models is contained in Ref. 11. To illustrate the basic instabili
problems consider the simple case of velocity feedback which performs vibration suppression by addin
damping to the system, Without actuator dynamics, the single degree of freedom model of the beam widi

velocity feedback 1s:
mX +cx +kx = - gx . (l

Here x = x(1) 1s the nomnal transverse displacement of the beam, m is the mass of th i
' ¢ beam, ¢ is
approximate internal damping and k is the beam stiffness. The quality g is the electronic gai ich i “
adjusted to produce the desired vibration suppression. e e gain which s to
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In the case of the ignonng actuator dynamics one would rearrange Eq. (1) and note that the velocity
coefficient becomes ¢ + g. Hence the desired vibration suppression control law would be to make the gain, g,
as large as possible. Next consider applying this control law, developed without regard for the actuator
dynamics, to a model which includes acruator dynamics. The equadons of motion become (see Figure 2).

m 07| X c+Cy -Cal| X k+ka -ka7 rx fa
IR O | R e MR
0 m, -x-a <Ca Ca X ‘ka ka X, fg
Using the same simple velucity feedback control of the form f, = gx, this becomes
mO0j| X CH+Ca+g -Cal | X k+ka -ka} x
It o | R W
0 ma . 8Ca Ca . 'kg ka X 0
Xa X

Note that the mawrix coefficient of the velocity vector in Eq. (2) is asymmetric. Every matrix can be writien as
the sum of a symmetric matrix and shess symmeiry mairix. In this case the symmetric part of the closed loop

damping matrix becomes

' @

If this matrix becomes indefinue or negative detinite, it is well known that instability results [12]. This matrix
clearly becomes indefinite as the gain g is increased as suggested by the contrel law calculated by omitting the

actuator dynamics.

The high gain instability eiTect 1s also obvious from applying the Routh-Hurwitz test to the characteristic
equation associated with Eq. (3). However, the mamrix approach is applicable to larger order models with a
greater number of actuators. This 1s presented in Ref, 11,

It should be noted that several researchers {7,8,10] involved in using reaction mass actuators for vibration
suppression 1n flexible structures have avoided this nstability problem by using relative velocity feedback of the

form

fg = 9lXa - X) (%)

The use of this feedback path caises the mamx coefficient o the velocity vector to be symmerric and positive
defimte for any value of the gmn ¢ However, relative velocity feedback as given in equation (5) and used in
Refs. 7.3, and 10, reduces the contel aroblem 0 one of parameter optimization similar in performance to a
passive vibrauon absorber. This rovat '~ made 1n more detail in Ref. 9 which compares the response of closed
loop sysiems with the two Jiiteenr s (¢ parag,

Companng the use ot ™« . st tez.idack paths for fixed beam parameters and actuator dynamics
vields that a shorter setthine ++ -+t r overshot is obtainable by using the potentally destabilizing control
faw of Eq. (3) then s obtatin | v aative velocity feedback of the form of Eq. (5). This is illustrated in

Figures Yand 4 There are <. :tdi ¢ 1. that can be leamed from conurolling a single degree of freedom
structure with & PMA thai Lae 7 api e 1o “he vibration conol of both multiple degree of freedom and
distnbuted parameter structuzes  Control laws that 1gnore actuator dynamics may result in closed loop
tnstabithty. The use of only safe or avadestabihizing feedback paths may not yield the best performance.
Furthermore, using only relanve position and velocity teedback results in a control law that is no different than
that of a raditional vibranon absurber  This type of design teads to require low feedback gains, such that the
motion of the proof mass s unimpeded. Finally, better performance is achieved with structural velocity
feedback combined with refauve velovity feedback. In fact, a hugh structural feedback gain can only be tolerated
in the presence of a high relauve velocity feedback gain,
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Inidal condition response systems: (1) and (2)
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Figure 4. Actuator mass response: system (1) vibration absorber _
system (2) active conuol with velocity feedback.
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SUPPRESSION DURING SLEWING

In this section, vibration suppression during slewing of a beam by a simple, armature conaolled, DC electric
motor is preseated. The electric motor model is standard and can be found in Ref. 13, By applying Hamilton's
principle to an Euler Bemoulli beam moving in a horizontal plane driven by the DC motor yields the equation of
moton of the mucture/actuator system. While the conmol structure interaction problem has been considered
previously (14  the effects of a flexible load (bear) have not been generally addressed in the previous literature,
In particular, tl. « modeling approach suggested here focuses on the effective boundary condition of the beam at
tire point of atta.:hment to the motor.

A majority of the previous work in siewing assumes that this arrangement defines a clamp-free beam,
However, the approach taken here is that the point of attachment does not define a clamped end, but rather the
boundary condition for the beam at the point of attachment rotates and depends directly on tiie motor dynamics.

As derived in Ref. 15, the equations of motion for the open loop beam actuator system are:

Fvixd) . Ok L mo
B 35 +p =53 +px6(t) = 1 8'(0,1) (6)
with boundary conditions
_ (0. _ 1 2 3y
700 =0 (Bl 555 = nNy 88

at the point of attachment to the inote: ar

-\ Al »
TR a1 L, devid)
—t—— = (s - b, —t—tem =

. 3]
ox=~ x ox=

El

at the free end, coupled with motor equation:

N v .
r=‘—l§a51ca-lm-.\:§e-(cv+%)6 )

where 8 is the total angular displacement which includes rigid body rotation and the angular displacement due to

flexure. Here E, I and p are the beam elastic modulus, moment of inertia and density per unit length
respectively. The motor constants K, Kb, .Ra, I and Cy denote the motor torque coniisant, back emf constant,
armature resistance, motor inertia and equivalent tearing friction respectively, The gear ratio is denoted by Ng
and ! denotes the length of nie beam. The term of the right hand side of equation (6) represents the direct

transmission of torque into “lexural deflection, y(x.t). The point moment delta operator is denoted by §'(0,t),

8(t) denotes the angular povition of the underflected t2am and e; denotes the applied armature voltage, This
formuladon considers the interacnon between the beam flexgral dynamics and the motor dynamics,

The coupling between tne beam and actuator dynamics highlighted in this model allows the motor parameter,
beam parameters and coarol law to be Lhosen to more afficiently control the higher modes of flexural vibration,
Thus 15 illustated n the tollowing expenmental verification of a servo control implemented based on Egs. (6)-
(7). Tue actuator structure svstem constsis of a DC armature controlled electric motor connected to a .85 meter
aluminum beam 1 a direct drnve contiguration. The direct drive configuration allows significant coupling
between the motor and beam Jvnamies. This allows more of the beam vibrational energy to be dissipated
through the actuator that dnves e svvem,

The expenment consisted ot 33 -iep slew of the aluminum beam. A comparison was made between ‘wo

stmple servo control laws. Fint. 4 standard servo control was implemented (PD control of 8). This control law
does not caputanze on the wteracuon between the structure and actuator as suggested by Eqs. (6)-(7). The
second control implemented was again a PD control, however the tachometer feedback gain was increased to
take advantage of the actuators abiluty to dissipate the energy by of the ransverse vibration of the beam. The
model presented in Eqs. (6(7) predicts this energy dissipation and subsequent improved vibration suppression.
The results of these expenments as dlustrated n rig.5 which consists of the time histories of the top acceleration
for each conwrol law. In additon, a third course indicates the theoretically predicted response use a finite
approximanon of Egs. (6)-(7). Note that the PD controller with increase tach feedback yields approximately
70% decrease 1a the setthing (or pointing) nme of the maneuver as well as a 40% reduction in maximum

vibration amplitude.
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Swucrural Tip Acceleranon. 30 Degree Step Slew Maneuver

i:
|
0.8F .
experiment w/o tach feedback:

0.6} experiment w/ tach feedback: — -
model w/ tach feedback: -

X

volts per g

o] ——— . m—— . s n

0 0.2 . - 8 } 1.2 1.4 1.6 1.8 2

|

ame, sec

Figuie 3. Tip accelerations for a step command to the system. ’
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Abstract

In this work a formulation for the modeling of a single link
flexible structure will be introduced that includes the effects of
dynamic interaction between the actuator and structure. These
effects are the rotational modal participation factors for the
structure's vibratory motion that occurs at the slewing axis. It
will be shown, both theoretically and experimentally, that this
dynamic interaction can be advantageous for vibration
suppression of the flexible modes of the system during slewing
positioning maneuvers.

Introdnction

Research in the control of flexible structures has been carried out
in the fields of robotics[1-6] and spacecraft with flexible
appendages[7-9]. Although a continuous beam is a
simplification of more complicated structures actually used in
these fields[19, 20], studying simple beams often yields insite
into the underlying physics that governs the overall system
behavior. In the area of robotics, light-weight (flexible)
manipulators are seen as a way to reduce energy consumption
and therefore operating cost in industrial robots. In space,
reducing structural mass of space-bound robots and satellite
appendages allows for lighter, and hence, more cost effective
payloads for orbital delivery.

The modeling presented here in an extension of the modeling

done by other researchers[1-3]. This modeling includes the

I effects of actuator-structure interaction via the modal
participation factors of the flexible modes of the system([11].

the horizontal plane are investigated. Servo positioning is often

the goal of many control applications, such as robotic arm

positioning for assembly line applications or the attitude

l orientation of a spacecraft. The response of the beam with a

servo positioning control law will also be investigated to
determine the validity of the proposed model.

' Finally, the dynamics of a experimental flexible beam slewing in

l Modeling

The dynamics of the system will be derived in two parts. First,
l the structural dynamics will be formulated from Hamilton's
principle. The equations of motion for the actuator will then be
derived and combined with the equations of motion for the
structure. Finally, the angular position and velocity matrices for
'a servo feedback control using the driving motor will be derived.

(440 ITmec
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Structural Dynamics

The problem under consideration is the slewing of a flexible

beam in the horizontal plane and is schematically represented in
figure 1.

Y

yx,0) L

X
figure 1. Slewing flexible beam - top view.

In figure 1, XY is an inertial reference frame, and xy is a
rotating reference frame. This rotating reference frame
represents the position of the undeflected beam. It is assumed
that the beam is moving in the horizontal plane and that flexural
vibrations occur only in this plane. It is assumed that gravity has
a uniform effect on the system that is out of plane and therefore
can be ignored. The beam is pinned at the slewing axis, and the
torque is applied at this axis.

A modal summation procedure is applied for the motion of the
structure, e.g.,

n
Y= 3 () 600 M

The eigenfunctions or mode shapes are defined by ¢;(x), and the
time dependent modal displacements are defined by q;(t).

Hamilton's principle for dynamic system's is stated as
follows[14,135].

L
[}

where, 8(1) denotes the first variation and Lg denotes the
system’s Lagrangian. The term, Wy, is the nonconservative

work done by the applied, 7, in figure 1. The nonconservative
work done by the applied torque becomes,

Wi =10+ 200 3)




Accounting for the rotation of the flexible structure, y'(0,t), in

— the nonconservative work term leads to the inclusion of the
modal participation factors in the structure's equations of
motion[11]. Generally modes should be chosen within a
practical bandwidth or frequency range of interest[17]. This
modal summation procedure is also known as the Rayleigh-Ritz
method or the expansion theorem{12]. The following
Lagrangian for this system was found using an assumed-mode
method application of Hamilton's principle[13).

- 1 . L . n . 1 Ln .
Lg=51p62+(px0 T i qidx +5 [ X, 4idj i 9j
2 2
I} l=l 0 1|J

I L n ‘" n
-3JEL ¥ 4iqj¢." ¢; @
o W

where, for convenience, ¢=¢;(x), and 8;=6;(t). Substituting this
into the Euler-Lagrange equation, an expression for the rigid
o body position, 6, is found to be,

.- n L "
b0 + igl Ipx«bidx G =" (5)
=lo

The equation for the ith flexible modes of the structure, q,, is as
follows.

L . n L .
[Px¢idx6 + T [ pdidjdx qi
0 J=lo
nL
+ ‘}Tj [ EI ¢i" ¢j" dx qi = ¢i'(0) = 6
Jo

The term, ¢;'(0) 7, is reflective of the direct transmission of
torque into the modal deflections of the structure.

Actuator Dynamics

The torque applied to the beam is considered here to be
generated by an armature controlled DC electric motor, whose
behavior is represented by the following schematic,

figure 2. Motor armature circuit and gear box schematic.

Here, ¢, is the voltage applied across the armature, i is the
current in the motor circuit, L, is the motor inductance, R; is the
armature resistance, Ny is the gear ratio and Kp is the motor
back-emf. Applying Kirchoff's law and summing the torques
about the motor armature, the following expression for the
torque is found as a function voltage across the motor armature,

N.K 2% n .
v=F-tea TNg 0+ 3 000) @)

. n .
- @R N2 B Z0/0) ) Q

where cy is the viscous damping in the motor-and K is armat!
torque constant. Since the electrical time constant of the moto
much smaller than the mechanical time constant of the system,
the inductance is considered negligible so that it does not app.
in the expression for torque. Before combining the structu
equations of motion with the actuator dynamics we will consi
the eigenanalysis of the structure taking into account the physical
constraints of a motor actuated beam. '

Eigenanalysis

satsfies the boundary conditions imposed by the motor acti
hinge. These boundary conditions for the structure are pinn
with a rotatory inertia at the pinned axis and free at the other
end{or simply, inertia-free). The inertia acting at the beam al

It can be said a motor-actuated beam has an eigensolution tl!

is usually referred to as a constraint[1]. Thus, the inertia-ft]
eigenfunctions are considered to be the constrained modes of
beam, and the pin-free modes are the unconstrained modes of
vibration for the structure. The first mode of a pin-free be
with various degrees of constraining inertia is plotted in ﬁgura
(see also reference[1]). These modes are plotted for a generi

meter structure with varying beam to servo inertia ratios - Iy/Is =

(0.1, 1.0, 10.0). !
The strongly constrained, or clamp-free, cigenfunctions w
used successfully for modeling experimental slewing
apparatus{2,3). However, no verification of a model wj
significant actuator structure interaction (i.e., unconstrained
lightly constrained modes of vibration) has been found in t
literature,

The condition for a flexible beam with a rotatory inertia duc'
the motor acting at the slewing axis is,

L
Midij =15 ¢{(0)0;'(0) + [pdidydx (.
0

where, &;j is the Kronecker delta operator. Since the structur’
operator is self-adjoint, and positive semi-definite the o
diagonal terms of the structure's mass and stiffness submatrices
decouple{11,12].

Combined Motor/Beam Equations '

the beam'’s slewing equations of motion, Eqs. (5) and (5), a
the actuator's dynamnps, Eq. (7), to represent the syste
equations of motion in matrix notation. For n modes of
vibration, we can represent the system as, ’
)

The eigenfunctions of the previous section can now be applied ';'

Mx +Dx +Kx=Bje,

where
Ip+ls  D1+ET1(0) ... In+EsTa(0)
M= h+LEMO0) M, 0

|_1,,+Isr,,(0) 0 ... M,

b,  b,Ty(0) by (0)
p<| BIIO b 02 ... b, T (OT(0)

byT"5(0) by[R(O)[1(0) ... b, IH(0)2



—

>

-

0 01xn
Mlﬂ)?i e 0
K= 0nxl : 2
0 .o Mpoy
BT = Eﬁa& (1.0, T (0), e [n(O)]

L
Ti(0) = ¢{(0), Ti= [px¢i(x) dx
0

and
XT = [9. Q1 eeer q,,]

where, = ImNz , is the effective servo inertia, and by = (cy +
KpKi
RR
bearing friction of the system, cy, and the back emf constant of
the motor. The (T) denotes the transpose of a matrix or vector,

and Mj is a constant of normalization for the eigenfunction, ¢;.

)N: , is equivalent viscous friction due to the the viscous

The modal coordinates, qj, are not coupled to one another in
either the mass or stiffness structural submatrices, except of
course through the viscous dissipation in the actuator as one
would expect.

Closed Loop System

To arrive at a closed loop response for the system, the motor
armature is set equal to various states of the model, e.g.,

ea = - Gpx - Gyk (10)
The matrices Gpand Gy are the position and velocity feedback
row vectors, respectively. Since precise position, or servo
control, is usually the goal of a controlled flexible beam, the
effects of a servo controller will be considered on the open loop
equations of motion. For the closed loop response, the armature
voltage is set proportional to the error signal generated by the

difference between a reference signal, Oref, and the measured
beam position, i.e.,

ay(0.1)

€3 = Kg( Opef- (0 + " )) {an

Tachometer feedback is usually obtained by adding the negative
tachometer signal to ¥4, (11) in order to obtain a control based
on the angular velocity as well as the angular position of the
system, such that,

n . I .
ea = Kg(Brer - (6 + ,ZKI'i(O) qi)) - Kv(@ + i‘2'.11"i(0) q) (12)
1= =

2
where, K, = Emh%_alﬁx_ is the tachometer signal measured at

the motor and Kyach is the tachometer gain. The tachometer
feedback, Ky, has the effect of changing the level of viscous
damping in the motor, and herce, the slewing axis

Combining the position and velocity feedback , Eq. (12) with

the open loop system, Eq. (9), the closed loop system of
equations are found to be,

MR +Dx + K x=BfOef (13)

The closed loop system matrices of Eq (13) are defined as,

M=M

D=

K =K +KpKp

BfT =[ va KpI‘I(O)' vy Kprn(O) ]

and
Kp= | KoT1®  Kpl'1(0)2 - KpT 1 (0)T5(0)

Kpl'n(0) KpT(O)T1(0) ... Kpr;\(O)2

The servo stiffness is defined as,

Ra (14)

where, Kj is the amplification gain. Since the equivalent
viscous damping of the system, by, now includes the damping
due to the tachometer. feedback, it is redefined as,

by = (cy +§.§S.}lbl_;f_ﬁ_.d‘.). )Ngz (15)

The inclusion of the modal participation factors cause the
position and velocity feedback matrices to becomes fully
populated, as opposed to the single element feedback terms.

Experimental Apparatus

This experiment consists of aa 0.0825 cm (1/32") thick by 7.62
cm (3") wide aluminum beam fixed to a 1/4 inch stock shaft - the
slewing axis. The beam is fixed to the slewing axis via a rigid
clamp. The structure used in this had an effective length of .848

* m, measured from the slewing axis to the beam's free end. The

motor was directly linked to the flexible structure through the
slewing axis as indicated in the schematic of figure 4. The
beam's slewing axis is bearing mounted in a rigid aluminum
base which is fixed to ground. A 1/16" square key way
(char}nel) is cut in the shaft, the rigid clamp, and the motor/beam
coupler.

The motor used in the experiment was an armature controlled
DC electric motor manufactured by the Electro-Craft
corporation, model# 586-MGHP, with the following
specifications,

Im - 5.5x1030zins?
La - 23x103H

Ra - LIQ

Ky - 5.8 V/kRPM

Ki - 7.8o0zin/A

An EAI2000 analog computer was used to condition the sensor
signals, as well as to close the servo loop. The amplified servo
signals were fed to a Copley Servo Controller, model# 215, in
the power amplifier mode of operation. This closed loop system
can be represented by the block diagram of figure 5.” The
constants from figure 5 have the following definitions.

Kg -  analog computer gain
Kamp - power amplification gain
Kpot - position feedback

Kuach -  tachometer feedback

A potentiometer was used to generate a position signal for the
motor beam system, and the angular velocity was measured via a
“built in" tachometer in the motor housing. In addition to these
sensors an accelerometer was used to measure the aceeleration




at the beam tip. The mass of the accelerometer was
approximately 5 grams and its effects were not considered in the
modeling of the system.

The physical properties of the beam were found to be,

E = 69x109 Pa
L3
=13 bh

b=3"(7.62cm) h=1/32" (.8 mm)
p =.1698 kg/m
El =.2631 Nm?

The rigid body inertia of the beam about the slew axis is
calculated to be,

3
Ip = .1698‘—'3535)— = 3.45x10-2 kgm?

The effective inertia acting at the root of the beam is, I =

1.94x10-4 kgm?2, which accounts for the servo motor inertia as
well as the system's rigid clamp.

The experimental modes of vibration were found using the open
loop transfer function of the system. The experimental and
theoretical natural frequencies of the motor/beam system are
given in Table 2, The agreement between theory and experiment
diverges for the higher modes of vibration. This is most likely
due to the rigid clamp between the beam and the axis. This
clamp extends from the axis of rotation 7.4% of the beam length
in the x direction from the slewing axis.

System Responses

To verify the proposed model, a closed loop servo controller
was added to the experimental slewing beam as depicted in the
block diagram of figure 5.

Frequency response functions(FRFs) were measured between
the system output signals and a disturbance reference signal for
the closed loop system. Figure 6 shows both the measured
tachometer/disturbance FRF and the acceleration/disturbance
FRF. This model was used to generate the
tachometer/disturbance FRF for the system, figure 7. The first
low frequency peak corresponds to the rigid body position ¢f the
structure while the higher modes of vibration corresponds to the
flexible modes of the structure. The predicted tach/disturbance
FRF agrees reasonably well for the first up to the third natural
frequency of the system.

The time domain response were also measured. A a large angle
slewing manuever was performed for a 30° step command
signal. Figure 8 contains the experimental response with and
without added tachometer feedback. In both cases the system
was expected to have roughly the same performance, ire., a
settling time of approximately 4 seconds, and a time to
maximum overshoot of 1 second. The predicted response of the
model is plotted in figure 9. Because of the interaction between
the beam and the actuator, tachumeter feedback was added to the
system, the flexural vibrations of the structure were damped out
for the slewing maneuver. The effects of the added tachometer
on the structural dynamics can clearly seen in figure 10, this plot
contains the expenmental ap aveeleranon with and without added
tachometer feedback as well as the model's response with added
feedback, The proposed model predicted the effects of this

added damping on the modes of vibration because of the
inclusion of the modal participation factors in our model.

Closing Remarks

The model presented in this paper generalizes other models in
the literature. Here the effects of the motor on the dynamics
the structure are accounted for through the boundary condition
The interaction of the beam and the motor are then coupled
consideration of the rotation due to the modal deflections of the
structure, The experimental result indicates that this modelin
approach describes the physical system behavior fairl'
accurately.

actuator can be advantageous for vioration suppression witho
needing any structural sensors. The interaction allows for t
servo angular position and velocity sensors to measure structure
vibrations directly. When the modal participation factors of tli

The significance here is the :he interaction between structure arﬁ

system are nonzero, feeding back the tachometer sign
generates damping for not only the rigid body position of t
system but also damps the flexible modes of the structure.
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figure 5. Block diagram of the slewing control of a flexible structure.

1.0 10.0 pin-free oo
alL  1.8751 18796 19189 22135 3.1677 3.9256
aal.  4.6941 4.6944 4.6970 4.7234  5.0011 7.0682
a3, 7.8548 7.8548 7.8554 7.8610 7.9190 10.2078
al. 109955 10,9956 10.9958 10.9978 11.0185 13.3492

Table 1. Eigenvalues of an inertia-free beam for various I/,

4,130
4.0

12.345
11.625

Theory

Experiment

22.579
22.813

36.384
39.625

56.763 (Hz)
63.125 (Hz)

Table 2. Theoretical and experimental natural frequencies.

1 Mode |
st
- e ot
) S e
-0'50 0.1 0:2 03 04 0.5 0.6 0.7 038 09 1
length, |
figure 3. Mode 1 with varying inavh constraints, Iy/Te=(.01, 1.0, 10).
— Jotestioneter
4 tuadometer
e RO
p— notor-basm soxpler
vz, o« rigichmy
Z
2 ~—
rigid desa Oaxdla Jsm
figure 4, Schematic of the motor/beam assembly.
.
bl
N
s240pé [T
Bt 8 8
ket O - o = LI A
g C’:... i T $3s45dy I s
Il  {TH)Y Il
ll STV Il




w
1

l TACH/DISTURB
i 0.0 T— * ‘ - 3 !
i PHASE 3 fo. e N |- g
l ~368.2 - —— - 5 !
! l 0.5200 - . 2 . !
AV TF LOG P s
' | CH L/CH 4 3 1 ~. = / 3
i 42-/42- i //1 el N \ i
e wLtSAVLTS Y Ty v \ / S
° 1 I} f . \ "
5.000e-04 1= J t s ge L T
.9 Lin FREQ(HZ} 40.00
~ : TIP ACCEL./DISTURB
8.0y - ~ - .
PHASE P RIS :
~360.0"C = - - : = -
5.000 { * : ‘ : . »
AV TF  LOG 3 ! PN yai
— CH 2/CH 4 M " ~——t— F
wZ=/42- ! L
VLTS/LTS AN i 3
5.000¢-03 . - : v T
> 2.9 Lint FREQ(HZ 4@,00
FREQ(HZ): 3.806 MAG: 2,07172 PHASE: -137.2
1
figure 6. Measured transfer functions of the closed loop system.
— Phave
4 Angular Pasifion Response
! 100F 4
i
—_— 3} ]
¥ oo ]
3 2} p
©-100p 4
+
1k v oo
; 0 s 10 15 20 28 30 35 4 0 N - A
’ [ X 1 LS 2 25 3 38 4 45 [
i 109 Tach/Disturb ume, se¢
i figure 9, Predicted system response to a step command without added feedback.
i
Stucrural Tip Acceleration, 30 Degree Step Slew Maneuver
1
08¢ 1
. : experiment w/o tach feedback: -+
i y 0.6h experiment w/ tach feedback: 3
' 0 s 10 15 20 25 30 35 4 ‘ model w/ tach feedback: -
! frequency, Hr. 0.4 4
i figure 7. Preaicted Transfer function of the closed loop system.
3 -
Angular Position Response §'
FNGULAR DISF K
9.1500 * * " : . L
AV INPUT LIN 1 — L
CH 2 1 [ A ]
Az+ @ . SN —J . [ 06
VLTS T — C
; J " 5 0.8} 1
{ : |
-1
-e.1500 1 1 0 02 04 06 08 1 12 14 16 LB 2
:.,raGULﬁRx DI5P : ‘ . ame, sec
8.1508 { ;
+ figure 10. Tip accelerations for a step command to the system.
AV INPUT LIN i 3
CH 2 . 3
4ze ® 2 N :
VLTS L B 7 S -
VA [
A s/q 3
] b
~9.15@0 1[ . . . — r
9.0 . LIN TINE(SEC) 8.0

anguler gep

8, T measgred
(8) no adde feedback (b)whmedm

1
I
i
I
i
I
I
l
I
!
I
I
i




Distributed Parameter Actuators for Structural Control

H. H. Cudney
D.J. Inman

Department of Mechanical and Aerospace Engineering
University at Buffalo, Buffalo NY 14260

Y. Oshman
Department of Aeronautical Engineering
Tecknion, Haifa Israel 32000

OGN JEE BN GEN O NN AN N N BN W - ..

Abstract

Timoshenko beam theory is applied to beams
with multiple layers of piezoelectric material
attached. The model is developed using a
Hamiltonian approach, and includes the
external electrical circuit as well as a com plete
set of boundary conditions. Resistors are
added to the sensor layers for passive damp -
ing. The resulting model is then formulated in
state space.

Nomenclature
Subscripts a,,s , ¢ actuator, sensor, beam
A Cross sectional area
be width of the conducting surface
Gij _element of “lastic matrix " "
E Youngs modulus
G shear modulus
hg, ha z-coordinate of actuator, sensor
h outer z-coordinate
H; Heaviside step function.
I Second moment of inertia
n number of segments
P Ext. applied normal forces
P, P, exposed normal force dist.
R; ith discrete resistor.
Ui displacement field
E,D(3x1) electric and displacement fields
e (3x6) piezoelectric strain-charge

coeff,

h (3x6) piezoelec. strain-voltage coeff.
C,€ (6x1)  stress and strain fields

£e(3x3) dielectric permittivity coeff.
Be(3x3) dielectric impermeability coeff.
Bx,z,t) shear bending angle

€xx 1 Exz normal strain, shear strain

%*

ul accounts for non-linear cross-
section deformation
o(x,t) voltage
Ce electric charge
P density
y(x,t) beam bending angle
1. Introduction

The problem of controlling the dynamic re -
sponse of large space structures has been the
subject of much research for the last several
years. Several types of control systems have
been investigated. They can be broadly
classified as discrete and distributed control
systems, Examples of discrete control
systems include proof mass actuators [1],
torque wheels [2], thrusters [3], and discrete
piezoelectric ele ments [4]. Distributed control
systems can be broadly classified as passive
and active. The most common exampie of
passive control is constrained layer damping
ireatments, which are compared in [5]. An
example of distributed active control are
layers of piezoelec tric materials.

There are several advantages to implementing
a distributed control scheme. First, as the

" current designs for space structures grow in-

creasingly flexible, the difference between
ground tests of these structures in a strong
gravity field and their actual on-orbit behavior
increases, and determining discrete actuator
and sensor placement becomes more difficult.
This can be avoided using distributed
actuators and sensors. Distributed control
schemes are less sensitive to individual
actuator and sensor failure, Some distributed
control schemes can control all modes for
certain boundary conditions, and thereby
avoid modal truncation and the ac companying
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problems of control and obser vation spillover
[6].

In terms of resulting loss factors, piezoelectric
control can achieve higher damping ratios
than equivalent passive damping treatments
{5,7,8]. Primarily for this reason, several
researchers have been examining different
aspects of the problem of controlling
vibrations with piezoelectric materials.
Hubbard, et. al., have developed a model of a
beam with has both a layer of piezoelectric
sensor material and a layer of piezoelectric
actuator material, using Euler-Bernoulli beam
theory [6,7,9]. Similar models were
developed by Obal and Hanagud [10]. Tzou
developed a model of distributed piezoelectric
materials using Euler-Bernoulli beam theory
[11], while Lee and Moon developed a model
for a plate using Euler-Bernoulli bending
deformation assumptions [12].

The objective of this research is to develop an
electromechanical equations of motion for a
beam with multiple layers of attached piezo -
electric materials. The motivation for using
multiple layers is to provide greater control
authority to the structure to be controlled. The
approach taken is to use Timoshenko beam
theory in conjunction with a Hamiltonian
energy method for each individ ual layer of the
beam. Since one control objective is to add
damping to a structure, a resistor network is
added to the sensor layers to provide both the
sensor output voltage in an explicit form as
well as a mechanism for dissipating energy.

2, Theory

The structure of interest is shown in Fig. 1,
and is considered to have 5 layers: an original
substructure, a top and bottom layer adjacent
to the substructure which will be considered
the sensors, and outer layers on the top and
bottom which are considered to be the
actuators, where the sensors and actuators are
piezoelectrically active material. The

procedure this analysis follows is to analyze
each layer separately as shown in Fig. 2,
which exposes the electrical boundaries as
well as the interlaminar stress distribution,
Hamilton's principle will then be applied to
each layer and electrical network. The layers

can be linked through the exposed
interlaminar stress distribution.

Several assumptions are made about the
configuration to be analyzed. First, the
piezoelectric material is taken to be

polyvinylflouride film (PVDF). While it does
not exhibit the forces that piezoelectric

ceramic materials generate, it is very pliable
and not brittle like the crystals are.
Additionally, it can easily be manufactured in
sheets, and applied in a distributed manner.
The layers are assumed to be perfectly
bonded. This configuration was also chosen
such that the structure is symmetric about the
centroidal axis, hence the neutral axis is
coincident with the centroidal axis, which
allows a clearer analysis of the piezoelectric
effects on the equations of motion. The
mechanical effects of the conducting surfaces
sputtered on the piezoelectric materials can be
neglected since their thickness is on the order
of microns. The mechanical effects of the
bonding layers will also be neglected, at the
appropriate time they can be included in the
model by increasing the number of layers to
be analyzed. As a final assumption, none of
the layers are considered to deform in the
thickness direction.

The assumption about deformation of the
beam follows Timoshenko beam theory, and
is given as,

u=-zn* Y(x,t)
uy=0 ¢))
uz = w(x,t)
where displacement directions u , w, and
correspond to the x, y, and z directions,
respectively, shown in Fig. 1.
The strain displacement relations are given as,

*

oy(x,t)
= ok @

€z = ';'B(x’z’t)
and all other strains are considered zero.
There are two mechanisms by which energy is
considered to be dissipated. Viscous (air)
damping occurs because the structure is
usually vibrating in a fluid, and is represented
by the coefficient C ;. The structural damping
is modelled as Kelvin-Voight damping, and is
proportional to strain rate, therefore there is a
coefficient for the normal strain, C 4, and the
shear strain, G
The constitutive laws for piezoelectric
materials relate the electrical and mechanical
effects. Two versions of the constitutive laws
are presented here, and they can be related to
one another by simple transformations [13]. If
the piezoelectric layer is configured as a
sensor, that is, if the voltage output is of
interest, then the appropriate constitutive law
to use is

o=cEe+e¢E
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D=ee+&E €))
where superscript t represents the transpose.
If the layer to be modelled is configured as an
actuator, then the voltage field is applied, and
is an independent variable, so the appropriate
form of the constitutive law is,

o=c¢ - W'E @
E = -hE <+ BeD
Analysis of the Sensor Layer

The Hamiltonian for the sensor iayer is given

as,
t
Dy - J jS(l)(T-H)dv +
\'
to

_fa Wpe +I wm] )

where T is the kinetic cnergy, W . represents
the energy dissipation due to damping
mechanisms, and W, represents the work
crossing the boundary of the system. This
term accounts for mechanical work in the
form of the applied forces to the beam and the
exposed interlaminar stress distribution, and
electrical energy crossing the boundary. The
integrals are with respect to time, or over the
volume, v, or the surface area, s.
H represents the electric enthalpy, which is the
appropriate term to use for the sensors, since
the sensor voltage distribution, which can be
related to the electric field within the
piezoelectric layer,
ad(x,t

By =2 ©
is the variable of interest [14]. This term can
be derived from the internal energy through a
Legendre transformation, H=U - ED. The
unknowns are the sensor voltage distribution,
interlaminar stress distribution, and beam
displacements.
Developing a Hamiltonian formulation of the
external electric circuit yields,

t)
zs(l)w,,c _[ S(I)Wm]dt (7)
S

55 = [
ext
§

where W, represents the energy dissipated by
the resistor, and W, represents the energy
crossing the boundary from the surface of the
piezoelectric material conductor surface.

Taking the first variation and setting the result
equal to zero yields the resulting equations of
motion. Since the variation of each of the
unknowns is arbitrary, to set the complete
Hamiltonian to zero requires that the terms
modifying each unknown must equal zero.
Thus, each unknown will yield an equation.
For the first variation of the transverse

displacemen: of the beam, &w(x,t), the
resulnng equanon is,

a 3 wix) (AW
s s at2 X' ss 55 s OX
YO g, C A SEHED i)
+Pa(x,t) - Px,t) =0 )

where the first three terms are the same as for
a Timoshenko beam, Pa(x,t) represents the

normal component of the exposed force
distribution between the actuator and sensor
layer, and Ps(x,t) represents the normal

component of the exposed force distribution

between the sensor layer and the sub-
structure.

For the first variation of the bending angle.of

the beam, 8\|I(x t), the resulting equation is, .

& \y(x D, ()
a Cllsls ox )

+lc. CSSSAS(B—Wé"'—‘) Y]

&v( t)
a-f B

+[K C A &(aw(x D

h+h

5'[ L3 " 5]
+vs(x t)hs Va(x,t)ha =0 (10)

The first five terms would result from a
standard Timoshenko beam with damping.
The shear force distribution from the actuator
layer and sub-structure are represented by
va(x,t)ha and vs(x,t)hs, respectively. The term
of interest in this equation is
h +h
fbe, oGOl (D

-pI

W]




where ¢ s(x,t) is the resulting voltage

distribution. It is through this term that the
mechanical deformation of the beam is
directly influenced by the piezoelectric

properties of the sensor laycr. Note that if
none of the quantities in this term vary
spatially, then when the derivative term is
applied the result will be zero, and the most
direct electro-mechanical ccupling mechanism

will be lost. Note that although ¢s(x,t) is

represented as being spatially dependent, the
conducting surface causes the voltage to be
constant along the surface of the beam.

This has been recognized by other researchers.
To keep this term active, Hubbard, et. al.
varied the width of the conducting surface
with respect to the length of the beam [6].
Lee and Moon used that technique in addition

to varying the piezoelectric property

represented by €41 with respect to space by

varying the polarization field during
manufacture of the film [12].

We propose to vary the voltage ¢ S(x,t) by

segmenting the conducting surface in a
manner analogous to finite element analysis of
beams, and can be easily accomplished by
etching the conducting surface. This is
represented in Fig. 3, and for n segments
results in n sensor output voltages. Given this

structure, we will still consider ¢ s(x,t) as a

distributed quantity, and the first variation
yields the equation,

h+h xt). DE
P WL R FY
+ bcose(x,t) =0 (12)

where O is the charge distribution, which

can vary spatially. Note that this is also a
coupled electro-mechanical equation. A
complete set of boundary conditions result
when the first variation is applied, and these
are given as

t

(x,t) 9 OW(x,b)
tif [-CIIsIs ox -CnsIS a-t'( ox )

hs+ha L
+bce,31 3 ¢s(x,t)]8\v Io d =0 (13

and

t

2 ow(x,t)
tJ- l;Kss(:SSSAs( T"W(x’t» +
1

L
2
K dsCssAsaaE D ity ]Sw l dt=0

(14)

The only term different than the usual
boundary conditions for the Timoshenko
beam is the last term in Eq. (13). If none of
the quantities vary spatially, this is the only
term through which electro-mechanical
coupling can be implemented, and leads to a
boundary control problem [6].
The equation describing the external circuit
results from the variation of the current in Eq.
(7), and is given as
Xi+1

d0e(X,t) .
. Ribc—Tdt—¢si(t) fori=1,..n-1 (15)

1

Note that energy dissipation is represented by
the first time derivative of the charge
distribution. Using Heaviside unit step
functions, the discrete sensor output voltages
can be related to the distributed sensor
voltages, and will allow us to view the
structure as a combined distributed and
discrete system. This relation is given as,

n
0% =;[¢si<‘)‘¥1(""‘i>ﬂa(’%+f - @6)

Analysis of the Actuator Layer

The analysis of the outer actuator layer
proceeds in a similar fashion as the sensor
layer, with two important differences. First,
since the electric field is applied, the
dependent variable is the actuator charge
distribution, Therefore, the proper energy
term to use in Eq. (5) is U, the internal energy,
not the electric enthalpy. The most
convenient form of the constitutive law to use
is given by Eq. (4). Secondly, there is no
significant external electric circuit to consider,

the applied voltage ¢a(x,t) is taken to be an
ideal voltage source. The unknowns are the
interlaminar stress distribution, beam
displacements, and the actuator charge
distribution.

3. State Space Formulation

—



A set of equations is obtained for each layer.
They can be combined .through the
interlaminar stress distribution terms, which
will be equal and opposite for adjacent layers.
The resulting combined equations are then
cast in a state space model, given as

x = Ax + bu
y =¢x 17)
where the state variables are given as x= [w,

V, W, ¥, GJ4 y is the output vector of discrete

sensor voltages given as [cl)sl(t),(]) o(Dseees

Q)Sn(t)]'. The inputs to the multilayered beam
are the external forces and the applied voltage

distribution, so that u = [P(x,t), da(x,H)F, and b
is given as

10000
= 00001 (18)
The distributed state space model, A, is given

in operator notation as,

— 0 0 1 0 0
0 0 0 1 0

T R
6 l[('). 9 (1)1 12(‘) 13 'L14

- 15 6

where the operators are presented in Table 1.

(19)

_ The output matrix, .c, is given as

X, 7]
d
0000 & '[Rlbl(-)dt
*o
20)
L
d n
0000 & J’Rnbn(o)dt
e xa_l —
Using the sensor voltages as the control inputs

to the actuators, multiplied by a gain. This is
represented as

[0, 09 ,®.d, O =
- (Gl [9, 00, O, @ O1 @D

where specifying collocated sensors and
actuators will yield a diagonal gain matrix.

The discrete actuator voltages, (bal(t) can be
mapped into the distributed actuator voltage

(l)a(x,t)- using the technique presented in Eq,

16. The energy dissipation taking place in the
external rtesistors connected to the sensor
segments can then be enhanced by feedback to
the actuator layer.

5. Summary

A Hamiltonian approach has been used to
develop the equations of motion for a beam
consisting of a substructure with multiple
layers of piezoelectric material attached.

There are several significant aspzcts to this
model. First, the individual layers of the beam:
are separated to help obtain the proper
electrical and mechanical boundary

conditions, and Timoshenko bending
deformation assumptions are utilized.
Secondly, the conductors of the sensor and
actuator layers are considered segmented to
allow for a spatially varying voltage
distribution. Resistors are added to the sensor
layer to allow for passive damping. Finally, it
is shown that different energy functions are
appropriate to use in the Hamiltonian
formulation of each layer, depending on
whether that particular layer is configured as a
Sensor or as an actuator.

A state space model is then proposed which
will implement the control objective of adding

damping to the beam. Future research will
focus on discretizing this model, and
simulating and evaluating the disturbance
attenuation of the system.
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On the Nature of the Interaction Between Structures and
Proof-Mass Actuators

David C. Zimmerman*
Universite of Flovida, Gainesville. Florida
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“This paper presents an amalysis of he wesac .

of the structure, and the control Gt 10 e eter

"smant

ience, Rhode Istand

vatrueture, an actnator used to control the vibration
actustor. The control hacdware used is a proof-mass

actiator with experimentally serified dvomic gt of cing ased inon spaee structure configuration, A local

rnte-feedbick contral s iv used

he coittol of tan dithoent sunetores is presepfed, "The first structure is a

cantifevered beam constructed of s quantesattope compesite nitennd that o contratled By siogle actustor
forming the experimental component of the snestigation  Tae secomd stz tuee is a finite-clement mdel of » truss
system controlled by u single actuator. Maodels of both structures predict the peesence of potenting instabitities in
system performance if proper consideration is not given ta interactions between the control law, the structure, and

the actuator,

1. Introduction

HE control of large flexible space structurcs by a small
number of control devices acting at a few points along the

structure has sparked intensive research over the last ten
years.!~3 A majority of the work in this area has neglected the
effects of actuator dynamics in modeling the closed-loop
system. Recently, concern has developed over the cffects of
actuator dynamics in the design of control laws for flexible
structures.*~® The emphasis of this paper is to examine the
effects that both actuator dynamics and control forces have
on the performance of the actuatorfstructure system Both
experimental and numecrical results are presented

The control device used in this work is a prool muss
actuator (PMA) developed for the Structural Dynorons
Branch of the NASA Langley Research Center by rescur s
at the University of Virgima’® and the State T o
New York at Buffalo *' This actuator has been v
tested’® and is capable of generating arbitrary contrdd toy <
The onboard mucrocontroller is capable of implementine o
cated control laws or can serve as a local conteth 1
hicrarchical control aschitecture The actuator characton us
arc deseribed 1 See. 11

The first structure used i thus study 1s a simple canblescred
beamn constructed of 4 quasi-isotropic composite nraterial
being considered for use v flexible space structuie construe
tion.!! The material has unusual damping propertes'™ but 1
strong and lightwerght A simple expenment using the PMA
and the composite beam provide a preliminary ook at con-
trol/structure snteraction phenomena. The dctuttor composie
beam system and corresponding experiment and .analisi ks
discussed in detail in Sec. 111

The numerical study consists of usng 4 rediead !
finite-element model of the proposed Cuntrol o8 Fiowihil

Recetved Maurch [6, 1988, revmon recened Sepe -
nght © 1989 Amencan Ishituty of Actonautic
Inc. All nights reserved
*Asstant Protesser 1) RN
chames, and Engincerme sae Mo \t
tProfessor, Diviston of \pp ¢ M s
Mechanmcal and Acrospace |aapcenne Mat. -
York, Buffalo, New douk Aoobey AT

Structures (COFS) 1 flight article.* The control devices
mounted on the COFS I flight article are fundamentally the
same as the PMA described in Sec. 11, The configuration used
in the study is the COFS I flight article controlled in one plane
of vibration using a rate-feedback control law. This model is
described in Sec, IV and analyzed for different actuator
configurations in Sec. V.,

II. Actuator Dynamics
The actuation device chosen for this study is the NASA/
UVA,UB proof-mass actuator.” The actuator system is com-
posed of a movable proof-mass, a fixed coil, two colocated
semsors, a digital microcontroller, and a power amplifier as
described m detald i Refs, 9 and 10, All of the actuator
componenls are mounted as a single unit with power lines
bemy the only external connection required by the actuator
ssatem to uperate. The PMA s a reaction-type force actuator
i that it creates a lorce by reacting against an inertial mass.
Fugure 1 shaws an experimentally verified model of the PMA
attached to o single-degree-of-freedom structural model. The
dynamies ot the PMA can be niodeled as a single-degree-of-
ticedom oseitlator with the addition of a force generator
actng between the proof-mass and the structure. The equa-

tons of moton for this model are given as

e B A
. |t .
0 m, L% -, ¢p JLX2
Koth, -k [/
i l. I p J["'I] - [ ft] (l)

-A A

Here M, s the equivalent lumped mass of the structure and
the parasitic mass ol the actuator (PMA system mass minus
the prool mass). The structure is also assumed to have viscous
dumping coeflicient €, and stiffness K. The mass of the proof
mass 15 denered by my,. The inherent electronic damping of the
PMA e due to the back-emf in the fixed ceil is denoted
vvo dn o ctront stiffness force required to keep the proof
. o m 1t~ howsing is denoted by k,. This centering
otee o wiud me laboratory experiments to overcome the
componcnt of gravity that would cause the proof mass to slide
to one cnd i papact the outer case. Additionally, it will be
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Fig. 1 Dynamic model of proof-mass actuator,
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Fig. 2 Open-loop inertance frequency response function.

shown in Sec, III that the centering force is required for the
closed-loop system to be asymptotically stable. The coordi-
nate x, denotes the displacement of the structure, while x,
denotes the displacement of the proof mass. The overdots
represent time derivatives. The addition of the desired control
law is modeled as £, a force generator that applies equal but
opposite forces onto the structure and the proof mass.

To determine the inherent dynamic properties of the PMA
system, the actuator was attached to a nonmoving structure
(M, locked in Fig. 1). The frequency response function of the
total force applied to the structure (the rcactions of the
spring, damper, and force generator) to the voltage command
to the force generator was measured experimentally. Let F(s)
and V(s) denote the Laplace transform of the total applied
force and the voltage command to the force gencrator, respec-
tively. The experimentally® verified transfer function for the
PMA system is

-I'LS). _ G.szpsz =G\G 8
Vi) myst+GiGoc,s +GiGok, 'S+ X0, + )
G G k G G\('
2 LY2Ry 9 = 1Mty 2
“» m, ’ 2y m, =)

Here, G,(2//A4) is the electromagnetic gain of the PMA's cuil.
and G,(4/V) is the power amplifier gain. The inherent Jy
namics of the PMA are seen to be that of a high-pass filter
whose characteristics are shaped by the spring and damper
rates. The simplest way to characterize the dynamics of the
actuator is by its break frequency w,, which indiates the
frequency at which the Bode magnitude plot of the PMA
breaks flat from a 40 dB/decade rise, and the phasc plot goes
through 90 deg. The break frequency correspunds ruughly tu
the natural frequency of the actuator.

The transfer functicn relaung the total applied furwe f ()
and the output of the force generator f;(s) can be ubtained
from Eqs. (2) by considening a free-body diagram of mass m,

5.000, ' ;
~1 ! ' l
- i
B M —
m : Al ."-I.
3] -
4 3 !
< i
& T ! :
@ ‘ :
z . | :
5000008 o .
5-000e-05 9 FREQUENCY (HZ)  40.00

Fig. 3 Closed-loop inertance frequency response function.

in Fig. | (again with M, locked) and is given by

L), 2ws+ 0]
F(s) ! 52 @)

Equation (3) reveals that as s - 0o, the total force applied to
the structure is equal to the output of the force generator.
Physically, this corresponds to the fact that both the displace-
ment and velocity of the prool mass tend to zero as the
frequency content of the force generator command signal
tends to infinity,

III. Composite Beam System

An expenmental test of the PMA’s ability to control vibra-
lion using a rate-feedback control law was performed using a
test structure made of @ quasi-isotropic composite material®!
vanligared as a cantilevered beam. The PMA system was
attached at the up (fiee end). In addition to the two sensors
contmed within the PMA system, an independent accelerom-
cier was mounted at the up to monitor the vibrations of the
beam  The rate-feedback control law was implemented by
dratally iegrating the accelerometer signal contained within
the PMA system and multiplying by an appropriate gain. In
this experniment, the clectrome centering force gain k, was
sulected such that the break frequency of the actuator was
alightly fower than the fundamental mode of vibration of the
«antilevered beam. A detailed description of the experimental
setup, wontrol law implementation, and experimental methods
s provided in Ref. 10,

The sodal propertics of the unvontrolied and controlled
sttuclure were determined using both time and frequency
dutnai Wdentification techmgues. The uncontrolled, or open-
loup, ayatem consists of the cantilevered beam with the para-
sitic mass of the actuator. The measured inertance
Cavedetation, furee) reyueney response function is shown in
big. 2. Using the circle-fit [denufication technique,' the natu-
1al fivquencies were determined to be 3.49 and 29 Hz, with

N E - AN SN S S N I SN S B D D B T B G .




84 D. C. ZIMMERMAN AND D. J. INMAN

damping ratios of 0.2 and 1.0%, respectively. These values
were aiso confirmed by using the eigensystem realization
algorithm' (ERA) time domain modal identification tech-
nique.

The closcd-loop system consists of the open-loop system
with the proof mass added and the control law turned on.
Although difficult to see from the measured inertance fre-
quency response function of the ~losed-loop system in Fig. 3,
an additional natural frequency appears. These three frequen-
cies and corresponding damping ratios were agam identified
using the circle-fit method and verified using ERA. The
closed-loop system exhibits natural frequencies at 3.19. 4.03,
and 28 Hz, with damping ratios of 0.2, 9.4, and 19« The
appearance of a third mode ol vibration 1s due to the PMA
dynamics, and is referred to as the actuator-domnated mode.
The actuator-dominated mode is the sharp narrow peak at
3.19 Hz in Fig. 3. The first steuctural mode w shalted ap (o
4,03 Hz, in accordance with the first monotonicity prineiple.’”
and is heavily damped by the control Jaw

The cffect of the control system on the structure's response
is best examined in the time domain, Figure 4 illustrates the
open-loop time response of the accelerometer located at the
tip of the beam. Examination of the response indicates that
the open-loop system is very lightly damped, illustrating
substantial oscillation even after 16s have clapsed. The
closed-loop system response iliustrated in Fig. 5, subject to an
equivalent impact, shows a substantial incrcase in damping,
essentially reducing the structural vibration to small levels in
less than 2 s. However, Fig. 5 also illustrates that a very small
amplitude and lightly damped oscillation occurs at 3.19 Hz,
which is the actuator-dominated mode. This oscillation repre-
sents a degradation of the closed-loop system performance
because of the interaction between the structure, the control
law, and the actuator dynamics.

To gain a further understanding of the structure/actuator
dynamics in conjunction with the rate-feedback control law,
consider a two-mode model of the controlled structure con-
sisting of the actuator-dominated mode (3.19 Hz) and the first
structural dominated mode (4.03 Hz). The second structural
dominated mode (28 Hz) is not included in this model because
its contribution to the total time response of Figs. 4 and 5 15
minimal. The equations of motion are then given by Eq (1),
with f, being the rate-feedback control law, £, = —d\,. Sub-
stitution of the control law into Eq. (1) and moving the
control term to the left side of the equation yields a closed-
loop damping matrix of

[C,-i-(',,—d —c,,]

(4
=4 d ¢
The homogeneous equation for the closed-loop system s no
longer symmetric and posiive semudefinie, indicating the
possibility of an unstable response.' The '.outh stabiiity

criteria can be utilized to determine the stable and unstable
regions in the parameter space. The characteristic equation

(=3
o0
]

. " -
t
Y
.P*._.‘..._! LY

,I 3y g 1” 'wn“’ ,"q‘”m; e "I ‘

. v—

o A.Jom HEN [ S o

ACCELERATION (G) ¢

1[{3 1iiil‘|m].mumi fiul ’fll'i it o+t
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0.0 FINME (5FC) 1o bl

Fig. 4 Open-loop free decay tip aceeleration
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for the system is given as

I+ (C M, + ¢, IM, + ¢, /m, —~ d[M,)A>
KM, + kle: + kp/mp + C:cp/(M:m’))}'z
+ (Kc,(Mymy) + Ckep [(Mm,))A + Kk, [(Mm,) =0 (5)

With the aid of MACSYMA,” the inequality relations for the
rate-feedback gain d in terms of the actuator and structural
properties for a stable closed-loop system are given as

d<C,+c,+Mc,im, (6a)

I <MK AC, + ¢,) +k,(C, + ¢,) + 10, (M, c, K,

+ Gy = Cle,) + M (Cyel + M,ckp))/

(MK, +k,) +m(Mk, = Cyc,)) (6b)

ds = Cic,[1/(2K,m,) + 1 [(2k,m))]

+(12)C, + ¢, = Koy Ik, + Myc,fm, -

— M.Ck,/K,m, = Ck, [K, + {4[(K,(C,m,c,k,)?

+ C.Kimic k) M, +m,) + M,C,K,mick)(M, +2m,)
+ Kimic ky(C, +¢,) + C,Km3c ky(my + C,Kic,)

+ CK,m3k,(Cik, + C,mk, — 2M,K,c,k,)]

+ [(Kympcpkp — Csmpk )My + mp) + CKymp(mpk, —c?)
= ey (CEk, + Km,)R10/D/(2K m2k,) (69)

Additionally, inspection of the last term of the characteristic
equation reveals that the electronic centering force k, is a
requirement for the closed- loop system to be asymptoucally
stable. If no centering force is provided, the last term in Eq.
(5) is zero and, thus, the system would exhibit an uncontrol-
lable rigid-body mode. This can also be seen by examining the
stiffness matrix of Eq. (1) for the case of k, = 0. The existence
of this rigid-body mode is mdepcndcm of the choice of
control law implemented by the actuator.

The physical parameters of the two-mode model dezcribed
by Eq. (1) were determined by independent tests of the
actuator’ and the beam.'*'® The constants associated with
the beam dynamics M,, C,, and K, were determined to be
11537 kg, 0.2 N-s/m, and 554.75 N/m, respectively. In deter-
mining these constants, it was assumed that the structure
behaved as an ideal cantilevered beam. The constants associ-
ated with the actuator dynamics m, and ¢, (converted to
mechanical units) were determined to bc 0. 23{ kg and 0.76 N-
s/m, respectively. In the control experiment, the value of &,
converted to mechanical units was 108.27 N/m., Subsututmg
these values into Eq. (6), it is found that Eq. (6¢) is the active

o0

\CCELERATION (G) -

=3
=1
:
]

TIME (SEC) 16.00

Fig. 5 Closed-loop free decay tip acceleration.
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Fig. 6 System root locus.

constraint, and the rate-feedback d for a stable control system
must satisfy the inequality

~1.555d <2145 N-s/m (N

In the active control experiment, the gain « implemented by
the 8751 control program was d = ~1.2 N-s/m, whercas the
gain required to match the model damping ratios experimen-
tally identified and those predicted by Eq. (1) is ¢ = ~1.4
N-s/m. This difference can be accounted for by the relative
error in the identified structural parameters. In cither case, the
rate-feedback gain used in the experiment is relatively close to
the unstable region.

The effect of the rate-feedback gain on the closed-loop
poles can be demonstrated by plotting tlie root locus of the
system transfer function. With x, defined to be the output and
/; the input, the root locus as a function of the rate-feedback
gain d (expressed in mechanical units) is shown in Fig. 6. The
root-locus plot provides information beyond that provided by
Eqgs. (6) for a given set of physical parameters. Specifically,
Fig. 6 reveals that it is the first mode of vibration that goes
unstable when the gain d is less than —1.55, and that the
second mode of vibration goes unstable when the gain
exceeds 2,145, However, inspection of the root-locus plot does
not directly reveal the relationship between the gain « and the
modal damping ratios of the controlled structure.

A plot of the modal damping ratios vs the gain d is shown
in Fig. 7. Like the root-locus plot, Fig. 7 reveals which mude
goes unstable when the gain violates the Routh statuhty
criteria. It also reveals more clearly and quantifiably tha
changing the gain to increase the damping in one of the
inodes results in a decrease in damping of the other mode
This high (in magnitude) gain instability provid-s an explana-
tion of the low frequency, low amplitude, lightly damped
response found in the previously deseribed expermment. as
evidenced in Fig. 5. As the magnitude of the rate-feedback
gain is increased, the damping ratio of the structure-domn-
nated mode is increased. At the same time, the damping rauo
of the actuator-dominated mode decreases. Apparently the
system is adding damping to one mode at the expense of the
electronic damping in the actuator mode. Eventually, the gain
is increased to the point where the uctuator-dominated mode
damping becomes negative, driving the closed-loop system
unstable, The time response shown in Fig. 5 was for the
* .closed-loop system operating at a value of gain just below that
-t which the system goes unstable. A classical contro! design
»  would see this as a system with poor gain margin, In this
- region, the damping ratio 1s very small causing the first-mode
.vibration to persist for a long period of time.

Fig. 7 Modal damping ratio vs feedback gain 4.

IV. Structural Model

In order to investigate more thoroughly the high gain
instability suggested by the simple beam experiment and
analysis described in Sec. 11 in a large space structure appli-
cation, a simplified numerical model of the COFRS I truss flight
article was constructed. This three-mode model consists of a
two-mode approximation of the COFS [ structure with an
additional degree of (reedom for the linear DC motor
(LDCM)* control actuator, The three-mode model allows for
an investigation into the effect of placing the break frequency
of the actuator below, 1n between, and above the modes of
vibration of the uncontrolled structure.

The L.LDCM developed for the COFS flight article has the
same dynamic characteristics as the PMA discussed in Sec,
IL.* Therefore, Eq. (2) is also the transfer function for the
LDCM control actuators. A continuum beam model* of the
truss developed for control law design studies was used, The
equivalent beam characteristics are given as length 60,693 m,
mass per unit length 4.461 kg/m, and flexural rigidity
28.63 x 10° N-m?, The continuum model was then approxi
mated using a statically reduced two-element finite-element
model. Nodes zero, one, and two were located at the base,
mid-point, and tip of the beam, respectively, as shown in Fig.
8. This physical modeling approach was used as an alternate
approach to the more standard modal model because the
wmteraction of the actuator and structural dynamics become
more apparent. A lumped mass (100 kg) was added at the tip
of the beam. The open-loop natural {requencies for this
approximate model are caleulated to be 1.429 and 10.39 rad/s.
Lhe cuations of motion ol the controlled system are given as

Mos 0 okl 0o 0o 0] %

0 1704 o flalTlo o -l |5

0 0 m |, 0 -¢, ¢ Xy
14045 -4395 0% [ © s
~4395 112+k, -k, ||x:| | % )

0 —k,, kp X3 -f;

where x; and x, are the displacements of the two finite-ele-
ment model nodes of the truss at the midpoint and tip, and x,
is the displacement of the proof mass.

V. Actuator Limitation

(n this section several cases of actuator design are consid-
ered to point out control system design limitations and to
investigate the nature of the interaction between the control
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law, the actuator dynamics, and the structural dynamics. The
criteria used to explain the nature of this interaction is to
examine the modal damping ratios of the closed-loop system
as a function of the rate-feedback gain d.

First, consider the common case of control system design
without considering the actuator dynamics. Figure 9 illus-
trates that increasing the control gain d substantially increases
the damping ratio of mode 1. In addition, the sccond-mode
damping ratio is also increased, but to a much lesser extent.
due to placement of the control actuator near the node of the
second mode. This naive modeling approach scems to indicate
that a reasonable design exists for reducing vibration levels in
the first mode. The danger of this modeling approach is
illustrated in the following.

Next, consider the addition of the actuator dynamics 10 the
previous case. The break frequency w, is chosen to be less
than the first structural mode {w, = 0.5 < 143 = @, (rad/s)].
In this case the closed-loop equations become

1408 0 oY%l [0 o 0

0 1704 oflz|+l0 11 wd —1afs

0o o 2% [0 -t1-¢ 1a]l%
14045  ~ 4395 0] [x 0

+ | ~4395 17515 =55| x| =]0] (9
0 =55 55| |x 0

where ¢, = 1.1 (N-s/m) results from assuming that the actua-
tor back-emf damping is 5%. The mass m, used in Eq. (9) is
consistent with the moving mass of the pair of LDCM tip
actuators mounted in one plane on the COFS flight hardware.
The 5% modal damping ratio of the inherent actuator dynam-
ics is representative of measurements of various PMA’s built.

Xa

—ap

FECCTRRTIRRTN

Xy

Fig. 8 Equivalent continuum beam and actuator configuration,
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Fig. 9 Damping vs gain—actuator dynamics ipgnored.
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The undamped (¢, = d = 0) cigenvalues and eigenvectors are
w, = 0.496 rads,
m, = 144 radfs,

oy = 10.39 rad/s,

u, =[0.0051 0.163 1.0)7
u=[03196 —10 —0.1369]"

uy=[1.0 -02640 0.006)" (10)
The first mode of vibration is termed actuator-dominated
because the third coordinate, which corresponds to the actua-
tor displacement, illustrated the largest amplitude, whereas
the other two coordinates are relatively small. By this criteria,
modes 2 and 3 arc structure-dominated, but both have some
actuator tnfluence.

The modal damping ratios for this case are plotted vs the

gun i Fig. 10. Note that, again, the first structure-dominated:

mode (mode 2) shows an increase in damping ratio, from
almost zero for the open-loop system, to as much as 20% for
the lagh-gain closed-loop casc. Again, the other structure-
dominited mode increases in damping as well, However, note
that the damping ratio of the actuator-dominated mode
{maode 1) decreases with increasing gain. In fact, there is some
vilue ol the gain at which the modal damping ratio becomes
negative, driving the closed-loop system unstable, This again
tepresents a high-gain limitation on the local rate-feedback
control faw, the actuator, and the structure.
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Fig. 10 Damping vs gain, 0, <w,.
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Next, consider the case that the break frequency is chosen
to fall in between the two structural frequencies. Specifically.
consider w,=135<w,=6<w,=104]. An eigenvector
analysis of this system reveals that mode | is dominated by
both the structure and the actuator, mode 2 is actuator
dominated, and mode 3 is structure dominated. The modal
damping ratios of each mode are plotted vs the actuator gain
in Fig. 11. Note that in this case, one of the damping ratios is
negative for almost any nonzero value of the gain that
achieves reasonable structural damping. Hence, the ciosed-
loop system is almost always unstable, and selecting the break
frequency of the actuator to lic between two structural modes
is not feasible (without further compensation). This is due 1o
the phase characteristics of the PMA, For the rate-feedback
control law, the voltage command to and force output of the
force generator will have a frequency content equal to the
damped natural frequencies of the closed-loop system. For a
stable closed-loop system, the sign of the rate-feedback gain is
chosen such that the force component at each individual
frequency opposes the corresponding modal velocity of the
structure, At frequencies well below the break frequency of
the actuator, there is an 180-deg phase difference between the
voltage command and the actual applied force, whereas at
frequencies well above the break frequency, there is no phis
difference. Therefore, when the break frequency of the actua-
tor is chosen to lie in between two of the structural modes amd
the voltage command corresponds to a physical velocity (nut
2 known sum of individual modal velocities), the individual
applied force components on one side of the break frequency
will oppose the corresponding modal velocities, thereby re-
moving energy from these modes. However. because of the
180-deg phase difference, the individual applied force compu-
nents on the other side of the break frequency will aid the
modal velocities, thereby adding energy to these modes, 1l il
energy dissipated by the inherent modal damping of thes
modes is not greater than the energy added by the apphed
force components, the closed-loop system will become
unstable,

Some researchers'? have suggested that placing the break
frequency of the actuator above the highest frequency of
interest is a feasible method of reducing the effects of actuator
dynamics on control design. Several problems arise in the
control structure configuration examined here. First, because
the magnitude of the actuator force output breaks down at
40dB/s below the break frequency, the output force level
would be severely limited at low frequencies, typically where
the highest levels of control force are required. Secondly, if
the structure is very flexible, the model approaches a partial

GRIM (M-Sec *1 , -

8.880E+803

0.000E+00 3.188E+82

0.000E+80 ©.500E+81
BACK-EMF DAMPING RATIO (%)

Fig. 13 Modal stability design chast,

differential equation model with an infinite number of fre-
quencies, as pointed out in Ref. 20. Hence, there is always
sume structural frequency larger than the break frequency,
and the unstable closed-loop situation of Fig. 11 results, In
addition, the high-gain instability problem of the previous
case by still present. In practical terms, although a structure
does not exhibit the infinite number of frequencies the partial
differential equation would predict, the question of how one
would pick the highest structural frequency that can be
evetted is not yet answered.

With e, > m,, cigenvector analysis reveals that the actuator
clfect 15 strongly present in each mode with the third mode
being clearly actuator dominated. Figure 12 illustrates the
modal damping ratio vs gain plots for each of the modes,
Note that increasing the feedback gain increases the modal
damping, but to a much smaller extent than for the case with
the break frequency below the first structural frequency indi-
cated in Fig. 10. In fact, for the casc considered, the highest
achicvable closed-loop damping ratio is less than 1%, This
happens because the actuator is force-output limited in this
condition, us described in the previous paragraph. Again, the
system goes unstable at kigher values of the gain. At-least for
the system configuration presented here, placing the actuator
break frequency above the highest structural frequency offers
no apparent advantage.

Returmng to the case with the break frequency chosen to be
smaller than the lowest structural natural frequency, the
gh-gain himitation can be represented in terms of the modal
dustign chiant of Fig. 13, This is also used to illustrate the
snportance of back-eml” damping in actuator design, The
wlinl lime of Fig. 13 divides the plot into stable and unstable
wawony - Far a given back-emf actuator damping ratio
wdediond by 3,)0 the sobid line yields the largest feedback gain
butaie e satem becomes unstable, This curve represents the
wetenis figa-gam ot The dashed line indicates the maxi-
st achicnable damping ratio for the second mode (which is
tie uit structural mode) betore the high-gain instability

[SINH 1] A8

V1. Summary

The wnteraction between a structure, an actuator used to
conial the structure, and the control law used to drive the
system has been examined for two different systems. The first
system conswdered consisted of a simple cantilevered beam
controlled using a rate-feedback control law implemented by
a prool-mass actuator. The second system consisted of con-
trolling the vibrations of the COFS 1 flight article using a
rate-feedback control law implemented by a Linear DC
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Motor. A simplified model of the COFS [ structure was used
so that the control/structure intcraction phenomena were
more clearly revealed. In the past, the simple rate-feedback
control law has been viewed as being a stable control law,
because it is equivalent to an increase in the passive damping
level of the structure. However, when proof-mass actuator
dynamics are included, it was shown that a high-gain instabil-
ity prevents arbitrarily high levels of damping from being
added to the system by active control, This high-gain instabil-
ity was investigated using Rouths’ stabilty critersa 1 a gen-
eral sense and through root-locus and modal damping plois
for specific cases.

With added damping to the first (lowest) structural mode s
a design criteria, 1t was shown that the break fiequency of the
actuator should be designed below the first natural {requency
of the structure for best performance. In addition. it was
shown that the closed-loop system exhibits a high-gain limita-
tion, and that this limitation is determined by the amount of
back-emf damping available. It was also shown that as the
high-gain limit of a given structurc/actuator/control law
configuration is approached, system performance degrades
substantially.

Acknowledgments

This work was supported in part by NASA Grants NGT
33183801 and NAG-1985 through the Structural Dynamic
Branch of NASA Langley Research Center, Air Force Office
of Scienti“ic Research Grants 85-0220 and F49620-86-6-0111
through tne Mathematics and Information Sciences Directory,
and National Science Foundation Grant MSM 8351807,
The instrumentation was provided by Equipment Grant
AFOSR 850119, The composite beam and the proof-mass
actuator were provided by the Structural Dynamics Branch of
NASA Langley Research Center through the efforts of R.
Miserentino and G. C. Horner.

References

Juang, J.-H. and Longman, R. W (eds), “Speenal Bwue on
Structural Modeling and System ldentification of Fleable Space
Structures,” Journal of the Astronautical Sciences, Vol 33, No |,
Jan.-March, 1985.

IMeirovitch, L. (ed.), Proceedings of the Sixth VPI&SL Ald.1
Symposiur: on the Dynamics and Control of Large Structures, Vit
ginia Polytechnic Inst, and State Univ., Blacksburg, VA, Tune-luh
1987; also see proceedings of preceding years, 1977, 1979, 1981, 1985

3Balas, M. J., “Trends i Large Space Structure Control Theor
Fondest Hopes, Wildest Dreams,” IEEE Transactions on Automati
Controls, Vol. AC-21, No. 3, June 1982, pp. 522-535

“Wright, R. L. (¢d.). Procecdngs of the Ist NASA DOD Connrol
Structures Interaction Technology Conference, Norfolk, VA, NASA
CP-2447, Pts. | and 2, Nov. 1986

1. GUIDANCE

‘Swanson, A. D. (ed.), NASA/DQD Control/Structures Interaction
Technology— 1987, Colorado Sufings, CO, AFWAL-TR-88-3052,
Nov. 1987.

*Caughey, T. K. and Goh, C. J., “Vibration Suppression in Large
Space Structures,” Proceedings of the Workshop on Applications of
Distributed System Theory to the Control of Large Space Structures,
Jet Propulsion Lab., Pasadena, CA, Pub. 83-46, 1983, pp. 119-142,

"Pilkey, W. D. and Haviland, J. K., “Large Space Structure
Damping Design—Final Report,” Univ, of Virginia, Charlottesville,
VA, 1983,

“Haviland, | K., Lim, T. M., Pilkey, W. D., and Politansky, H.,

The Control of Lincar Dampers for Large Space Structures,” Pro-
ccedings of the 1987 AIAA Guidance and Control Conference, AIAA,
New York, Aug. 1987, pp. 106-116.

Zimmerman, D C., “Dynamic Characterization and Microproces-
sor Control of the NASA/UVA Proof-Mass Actuator,” M.S, Thesis,

Ne nt, of Mechanical and Aarnep\ccc Engu}xnag Stata Univ, c:‘ Naw

York at Buffalo, Buffalo, NY, June 1984,

9Zimmerman, D. C., Horner, G.C., and Inman, D.J,, “Mi.
croprocessor Controlled Force Actuator,’* Journal of Guidance, Con-
nol, and Dynamics, Vol. 11, No. 3, May~June 1988, pp, 230-236,

""Wilson, M. L. and Miserertino, R., “Pertrusion Process Develop-
ment for Long Space Boom Models,” Proceedings of the 41st Annual
Conference of the Society of Plastics Industry, institute paper 60, Jan,
19806,

“ganks, H T, Cudney, H. H,, Inman, D. J, and Wang, Y.,

“Parameter ldentification chhmques for the Estimation of Damping
m Flexible Structure Experiments,” Proceedings of the 26th IEEE
Conference on Decision and Control, Research Studies Press, Letch-
worth, England, UK, Dec. 1987.

YEwins, D. J., Modal Testing: Theory and Expermm. Research
Studies Press, I986

"Juang, J.-N. and Pappa, R. S., “An Eigensystem Realization
,\Igorilhm for Modal Parameter Identification and Model Reduc-
uon,” Journal of Guidance, Control, and Dynamics, Vol. 8, Sept.-Oct.
1984, pp. 620-621.

SWeinberger, H. F., “Variational Methods for Eigenvalue Approx-
mation,” Regional Conference Series in Applied Mathematics, Socisty
of Industrial and Applied Mechanics, Philadelphia, PA, March 1974,

pp. 58=62,

*Inman, D. J.. “"Dynamics of Asymmetric Nonconservative Sys-
tems,” Journal of Applied Mechanics, Vol. 50, No. 1, 1983, pp.
199 20}

TBogen, R., MACSYMA Reference Manual, Version 10, Mathlab
Group, Massachusetts Inst. of Technology, Cambridge, MA, 1983,

»Zimmerman, D. C, and Cudney, H. H., “Practical Implementa.
ton Issues for Active Control of Large Flexible Structures,” ASME
Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol.
L No. 3, July 1989, pp. 283-289,

"Balas, M. J., “Observer Stabilization of Singularly Perturbed
Systems,” Journal of Guidance and Control, Vol. 1, Jan.—Feb. 1978,
pp. 93-95.

*Goh, C. J. and Caughey, T. K., “On the Stability Problem
Camed by Finte Actuator Dynamics in the Colocated Control of
Large Space Structures,” International Journal of Control, Vol. 41,
No 3, March 1985, pp. 787 -802.




Matching Finite Element Models to-

C. Minas

Graduate Research Assistant.

Modal Data

A technique is proposed which systematically adjusts a finite element model of a
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structure (o produce an updated model in agreement with measured modal results.

Professor. The approach suggested here is to consider the desired perturbations in stiffness and
damping matrices as gain matrices in a feedback control algorithm designed to per-
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Jorm eigenstructure assignment, The improved stiffness and damping matrices com-
bined with the analytical mass matrix, more closely predict the modal test results.
The technique is applicahle to undamped, proportionally damped, as well as non-
proportionally damped models, The proposed method assumes that the analytical

mass, damping and stiffness matrices are known and that vibration test data is
avallable in the form of natural frequencies, damping ratios, and mode shapes.

Introduction

The method proposed here addresses the problem of com.
paring an analytical model of a given structure with the ex-
perimentally measured vibration response of the same struc-
ture in the form of modal data. The analytical finite element
model is generally of larger order than the experimentally
determined model and the two seldom yield the same natural
frequencies, damping ratios and mode shapes. Previous work,
see Berman and Nagy (1983), Heylen (1982), Kammer (1987)
and Fuh et al (1984) for instance, have suggested adjusting the
finite element model in the hope of producing a modified
model, more in agreement with the measured response.

The modal data collected in a vibration test can easily be
cast into eigenvalue and ' eigenvector information, if one
assumes that the structure under test can be successfully
modeled by a linear lumped parameter multiple-degree-of-
freedom system. The problem of matching finite element
models with test data can be restated as follows. Given a
dynamical system, and its finite element model, find correc-
tion matrices for the stiffness matrix and damping matrix such
that the corrected system has the measured eigenvalues and
eigenvectors. If one identifies the measured cigenstructure
(i.e., modal data) with the desired eigenstructure, this is ex-
actly the statement of the eigenstructure assignment problem,
using velocity and position feedback common in control
theory.

The method proposed here, capitalizes on these similaritics
and uses an eigenstructure assignment algorithm from controt
theory to calculate corrections in the finite element model (An-
dry et al, 1982.3, Srinathkumar, 1978). The result is a cor-
rected finite element model which agrees with experimental
data, Note that in this proposed method, active control is not
performed, only an algorithm from control theory is used.

The technique of using an eigenstructure assignment
methodology with measured modal data as the desired
eigenstructure works equally well for both real mode shapes
and complex mode shapes. This well known and established
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control theory method is used and adopted to physical coor-
dinates rendering these procedures compatible with ex-
perimental measurements. Several examples are presented to
explain and clarify the procedure,

The proposed technique is applicable where a finite element
model of an existing structure is available in the form of mass,
damping and stiffness matrices. The finite element model can
be undamped, proportionally damped, as well as nonpropor-
tionally damped. In addition, modal testing results for the
same structure consisting of a set of eigenvalues and eigenvec-
tors is assumed to be available, The eigenvalues and eigenvec-
tors can be real as well as complex, As in most test situations,
it is assumed that the number of measured modes is smaller
than the number of analytical modes and that they are not
necessarily of the same order.

Analytical Model

The dynamic structures under consideration are assumed to
be successfully modeled by a linear damped multiple-degree-
ol-freedom system. The free vibration of the model is de-
scribed by the differential equation of the form

Mq(:) +Dq(1) +Kq(t) =0

where, M is the mass matrix and D and K are the damping and
stiffness matrix respectively, The mass and stiffness matrices
arc assumed to be symmetric, positive definite matrices and
the damping matrix is assumed to be symmetric, positive semi-
definite (Shames, 1985, Stasa, 1985). The analytical model is
obtained by finite element structural analysis. As a result, the
damping matrix is proportional to the mass and stiffness
matrices, that is

D=aM+8K

where, & and 8 are constants. This proportionally damped
model usually has complex eigenvalues and real eigenvectors,
The complex eigenvalucs of the system are in complex con-
jugate pairs, siice the matrices, M, D and X consist of real
constant parameters. The eigenvalues and eigenvectors of the
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analytical model are referred to as the open-loop eigenvalués
(\,*) and eigenvectors (v;*) of the system.

Experimental Model

The experimentally obtained modal data can easily be cast
into a set of natural frequencies (w;), damping ratios (,) and
mode shapes by using modal parameter estimation methods,
such as circle-fit (Ewins, 1986), polyreference method and
eigensystem realization algorithm (Allemang and Brown,
1987). These quantities can be further transformed into a set
of eigenvalues ();) and associated eigenvectors (z,). Note that
the eigensystem realization algorithm yields the eigenvalues
and eigenvectors directly (Juang and Pappa, 1985). The eigen-
values are given by the following equation:

N = = £ jwg,
where,
wd] =W N 1= g-i

for the underdamped case. The eigenvalues and eigenvectors
in general, can be real or complex. In the case where some of
the eigenvalues and eigenvectors are complex, they will be in
complex conjugate pairs for the model to be real.

Model Correction

* The proposed technique uses an eigenstructure assignment
algorithm to obtain correction matrices for the damping and

stiffness matrices. Those matrices are considered as gain

matrices in a feedback control algorithm. The first step in the
theoretical formulation of the proposed technique, is to con-
sider a multiple-degree-of-freedom vibrating system of order
n, subject to feedback control of the form:

Mi(t) +Dq(t) + Kq(t) =Byu(!) (N
The output or measurement vector y (/) is given by
y(£)=Coq(t) + Ci4(1) ()

matrices, respectively. Here q is a real valued vector of dimen-
sion nx 1, u is a real valued vector of dimension m, and y is a
real valued vector of dimension r.

The control vector u(¢) is given by:

u(r) =Fy(1) 3)

The quantities M, D, K, C,, C, and q are rearranged such that
the first m coordinates of x(f) correspond to the measured
coordinates, that is

x(1)=Tq(t) @

where T is an n X n transformation matrix. Note that it is im-
portant here for the finite element analyst and the test engineer
to use compatible coordinate systems. This means that ac-
celerometers should be placed at positions on the structure
corresponding to nodes of the finite element model. Since the
{inite element and the modal tests are often performed by dif-
ferent people, (in some cases, by different departments) it is
important to ensure that the test data used in this procedure is
consistent with the finite element code which is being verified.
Note that the number of nodes of the finite element model can
and will be, much larger than the number of accelerometers
used in the modal test.
Substitution of (2), (3) and (4) in (1) yields:

MT=15(0) + DT=" 1) +KT='x(£) = ByFCoT='x(1)

+ ByFC, T~1%(1) 0}
Let, .
M, =MT-' D, =MT-'  K,=KT-!
Co‘ =CoT-l C.‘ =C|T-l (6)

Substitution of (6) 1nto (5) yields:
MX(0) + DX (1) + K x (1) = ByFCo*x (1) + BoFC *x () (7)
where My, Dy, and K, are generally asymmetric nXn

matrices. The closed-loop system described by (7) has 2n
eigenvalues and 2n (nx1) eigenvectors. Given (N},

I G G N o e

where C, and C, are the position and velocity measurement  i=1,2, . .. ., rasthe desired eigenvalues, and v; the eigenvec-
o NOmenclature
B, = full rank constant coeffi-
cient feedback matrix
B = modified constant coeffi-
cient feedback matrix m = wanber ol independent in- y(f) = output vector

C, = position measurement puts (aeitors) ¢, = ith measured eigenvector
matrix M = system mass matrix (sym- 6, = measure of changes of
C, = velocity measurement metric positive definite) damping matrix, i=1, 2
matrix M, = transformed mass matrix 8;x = measure of changes of
C,* = transformed position n = number of degrees of stiffness matrix, i=1, 2
measurement matrix freedom 8D = damping matrix of
C,* = transformed velocity p = number of measured changes
measurement matrix modes 8K = stiffness matrix of changes
D = system damping (sym- q(f) = displacement vector A,* = open-loop system ith
metric positive definite) Q, = partition of R, eigenvalue
D, = transformed damping r = number of independent A\, = closed-loop system ith
matrix outputs (sensors) eigenvalue
= output feedback gain R, = subspace of ith eigenvector A = eigenvalue matrix
matrix T = transformation matrix ¢, = measured damping ratio
G, = partition of R; u(r) = control vector w, = measured undamped
I, = nxn identity matrix v,* = open-loop system ith frequency
J = objective function eigenvector wy = measured damped
K = system stiffness matrix v, = closed-loop system ith ' frequency
(symmetric positive cigenvector .
definite) W = system cigenvector matrix  Suberscripts
K, = transformed stiffness x(f) = transformed displacement T = matrix transpose

' matrix veetor + = time derivative

Journal of Vibration and Acoustics JANUARY 1990, Vol. 112/85




tors corresponding to A,, then the cigenvector equation of the
closed-loop system is given by:

N2+ M T IDON M 7Ky,
= (M, ~'ByFC,*\, + M, ~'BoFCqy")V, (8)
After simple matrix manipulation, this becomes:
Vi= (A2 +M, "' D )\, +M,~'K))~'M, "\ B,F
(C)"N+ Gy, 9

Here it is assumed that none of the assigned cigenvalues A,,
match the system open-loop eigenvalues \;*, therefore, the in-
verse of (I,\2+M,~'D/\; + M, ~'K,) exists.

Next define the mx1 vector m;, as

m,=F(C|°)\,~+C0')V,~ (i(\)
Then (9) becomes
v, = (LN +M, 'DN VM YK M B, (LD

The implication of (11) is of great importance (Srinathhumar,
1978, Andry et al, 1983). It states that the closed-loop
cigenvector v; which is associated with the closed-loop creca-
value A; must lie in the subspace spanned by the voiumt of
the matrix
Ri= (INE+M,'\D\ + M, 'K) "M, B F
(C°N\+Cp*) (12)
This means that there is a constraint on the eigenveetor and
not just any complete cigenvector can be assigned 1o a given
structure, The dimension of this subspace is m, the number of
independent control-inputs to the system. The orientation of
this subspace depends upon the parameters in M, D, K, T and
the desired ecigenvalue A;. Therefore M, D and K must be a
‘‘good’’ representation of the structure for this subspace to be
physically meaningful.
Srinathkumar’s (1978) work has very important implica-
tions for this approach. It implies the following theorem
which uniquely determines the feedback gain matrix F.

Eigenstructure Assignment Theorem. Given a controllable
and observable dynamical system (see Ch *n, 1984, or Inman,
1989, for definition), the elenients of the feedback gain matrix
F, can be specified such that max (m, r) closed-loop eigen-
values can be assigned, max (m, r) eigenvectors can be par-
tially assigned, and min (m, r) entries in each eigenvector can
be partially assigned.

According to this eigenstructure assignment thcorem we can
only assign (m, r) eigenvalues and min (m, r) entries in cach
eigenvector. If m=r, that is the number of sensors is equal to
the number of actuators then, m eigenvalues can be assigned
and m eigenvectors can be partially assigned and /2 entries in
each eigenvector can be arbitrarily assigned. 1t the cigenvee-
tors are of dimension m x 1, then the eigenvectors van be tully
assigned. The measured eigenvectors are assumed to be of
dimension px 1, where p is the number of the measured
modes. The choice of the number of actuators is up (o the user
in this case as no physical device need be present in this ap-
plication. Therefore if p is set equal to m, then all the ex-
perimental modal parameters can be fully assigned. Let the ex-
perimental eigenvalues be {\,}, i=1,2,..... , m and the
experimental eigenvectors {z,},i=1,2,..... , m. The
assigned eigenvectors are of dimension n x 1 and are given by:

tl
v,= [ ] (13)
d,

where d, is an (n-m) x | vector of unspecified components.

Next the vector d, is chosen such that (12) is sausfied, thatis
v, lies in the subspace spanned by the columns of the matrix
R;. Then, R, can be partitioned into G, and Q,
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o)
R; = 14
9

where G, is an mxX m square matrix and Q, is an (v-m) X m
matrix. The matrices G; and Q; can be further partitioned into
column vectors as follows: .
(8::82:830 - - « i8] «(15)
Qi (9::92:95: . . . qp]
Note that the elements of R;, Q, and G, are complex in the
case of complex expcrlmental cigenvalues and eigenvectors.
Here it is assumed that G; is nonsingular, so that the elements
of 2z, can be expressed as a linear combination of g,; ]3,
g ..., Bmthatis

Z;=a18) t Mg+ @83+ . .+ Aplm @16

where the elements a; are constant expansion coefficients.
‘T'his Tast expression can be written in matrix notation as

z,=Ga a”n
where the vector a is given by
a=[ay, a3,ay, ..., a,) . (18)
larly, the vector d; is unspecified and forced to satisfy:
d;=Qa 19)

It equation (17) is multiplied by G;~!, the vector a is cal-
culated to be:

2=G,"'y L@
Substitution into (19) then yields -
4,=0,G,"'y; (1)
Thus, the ith assigned eigenvector is given by
Z
Vl = 1 (22)
0,G;"'z

Equation (22) is a physically meaningful relationshi; be-
tween the unmeasured elements of v; and those elernents
which are measured, However, this relationship is true only
when the analytical model is a ‘“‘good”’ representation of the
structure. The assigned eigenvalues can be arbitrary, but the
assigned eigenvectors must lie in a certain subspace. Further-
more, the orientation of this subspace depends on the
analytical mass, damping and stiffness matrices. This is
equivalent to the equation derived by Berman (1983) relating
the measured and unmeasured components of an eigenvector.

Next the procedure for calculation of the feedback gain
matrix is presented.

Calculation of Feedback Gain Matrix. Equation (8) holds
tor all m closed-loop cigenvalue/eigenvector pairs. In the
wompact form ol matrix notation, the m equations represented
by (8) become

WAt= =M, 'D,WA-M,"'K,W+BFC,*WA+BFC,*W

@23
where,
W={vivaivyi o ooe e Yyl 24)
A=diag(A\, A Ay, 0 v e s Am) (25)
B=M,"'B, (26)

Solving (23) for the matrix Fyields
F=(BTB) " 'BT[WA?+M,~'D,WA+M, 'K, W]
[C*WA+Cy* Wi~} 27)

From a mathematical view, [C,,* WA+ C,* W]~ will exist as
long as the only point of intersection of the nullspace of the
output matrix [C,: Cy), and the space spanned by the columns
of the matrix of the desired eigenvectors W, is the origin.
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The new damping and stiffness matrices can be calculated
as:

D* =D—BoFCl
K =K’—B°FCO

It is noted that the new damping and stiffness matrices are not
symmetric because the matrices BoFC, and B,FC, are gener-
ally not symmetric. This problem is overcome by optimizing
an appropriate objective function.

It is also noted that the original FEM will in general not pro-
duce a model with complex modcs. This is true because the
standard choice for a damping matrix in FEM is to assume it
to be a linear combination of the mass and stiffness matrices
(i.e., proportional damping). The new damping and stiffness
matrix given in equation (28) will in general not be propor-
tional. Hence the adjusted FEM will yield complex modes,
which is what is observed in most structural tests.

(28)

.Cholce of Objective Function. As is noted in the previous
section, the elements of C, and C,, that is the position and
velocity measurement matrices respectively, cannot be deter-
mined analytically if symmetry of the new model is required.

In general, the asymmetric part of a square matrix A, see In-
man (1989) for instance, is given by,

Ay =5(A-AT) (29)

If A is symmetric, the matrix 4,, must be a matrix with zero
s entries, Next define A,, 4,, A;, A, to be the following
i *  matrices:

{3 A|=BoFC| A2=80FCO
e A3=A|"A|r A‘=A2—A2T
An objective function J, is set to be the sum of the squares of
the elements of A, and A,. The objective function J is
minimized over the elements of the measurement matrices C,
and C,. If the final value of J is zero then that the elements of
A, and A, are zero, which implies that matrices A, and A4, are
o symmetric. Therefore the necessary condition for symmetry of
:.  thenewmode

(30)

B,FC,=C,TFTB,T .
BoFCo = Co TFTBOT )

is satisfied,

To express matrices Ay and 4, and finally J, in terms ol ¢,
and C,, the expression for ByF from equation (23) can be used
to yield:

ByF=M,\[WA* + M, ~'\D, WA+ M, - 'K, W}[C,* WA
' +Co* W (12
Then, by transposing (32), the matrix FTB,T is calculated to
Gl XY h
N FTBy T [C, WA+ C,* W1=T [WA? + M, ' D, WA
Bo. +M, K WM, T (33)

L5 Finally this results in the objective function J, in terms of only
g% known quantities and in terms of the independent variable
-%, vector that contains the elements of C, and C,:

" J=|M,[WA2 + M, ='D, WA+ M, =K, W][C,* WA
4Gy W1-1Cy = [C,* WA+ Cy W]~ T[WA2 + M, -1 D, WA
+M, " K\ WITMTC, |+ M [WA2 + M, =D, WA
. +M, K W) C WA+ C,* W]~1C, — [C,* WA
K. +Co WITT[WAZ+ M, - D WA+M, =K, )TM,TC,T |
! (34)

An unconstrained optimization algorithm was used to
minimize the above objective function. Since the gradient vec-
tor and the Hessian matrix of J are not trivial and have to be
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calculated numerically, a canned subroutine from IMSL Math
Library was used (IMSL 10, CONDIR). The optimization
routine uses the conjugate directions technique to minimize
the objective function. A subroutine that provides the func-
tion_ to be minimized in terms of the independent variable vec-
tor is necessary.

Iterative Procedure. After the optimization procedure is
applied, J is not always exactly zero which implies that the new
damping and stiffness matrices are not perfectly symmetric. It
is important to realize that the improved damping and stiff-
ness matrices must be symmetric. Therefore only the sym-
metric parts of D* and K* are taken into consideration in the
calculations. However, by throwing away the asymmetric part
of D* and K*, the new model does not have the exact assigned
(measured) eigenvalues and eigenvectors. An iterative pro-
cedure is then applied to the updated model until the elements
of the gain feedback matrix F are negligibly small, yielding an
almost symmetric system. During the iterative procedure the
cigenvalues and eigenvectors are repeatedly assigned to the up-
dated model, throwing away the asymmetric part of the new
damping and stiffness matrices at each step. After every itera-
tion the model is updated and checked for convergence of the
cigenvalues and eigenvectors of the updated model to the
assigned data.

Summary of Adopted Procedure. The application of the
method is straightforward and is performed in 7 steps, listed
here and illustrated in Fig. 1.

(1} Choose B, ’

(2) Choose initial values for the eJements of C, and C

(3) Use the optimization algorithm to minimize J, Get F and
new Co, C|

Analylical Model Choose
M D K BO
1
Co Ct
y
OPTIMIZATION ALGORITHM
Minimize J . Ge! C0, Ct, F
D' = D - BOFC1
K* = K+ BOFCO
New Mode!
v M
2 ! D* = D-BOFCH
K* « K - BOFCO
No
[ =0 ] Are
avalues &
< No evectors within
dasired

accuracy %

D(+1) = D()) - BOF()C1
K(1+1) = K(1) - BOF(1)CO
1wi¢ed

0* = .5(D + D)
K* « 5K + K)

Flg. 1 Flowchart of adopted procedure
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D*=D~-ByFC,
K' = K- BoFCo
(4) If J is not exactly zero, D* and K* are not symmetric

Set D*=.5 (D*+D*7)
=5(K*+K*7)
(5) The new model M, D*, K* does not have the exact assigned
eigenvalues and eigenvectors.
(6) Iterate procedure, that is,

Dlith = pw ~B,F@C,
D(:H) = _5(D(i+l) +D(i-l)T)
KU+ =z g __BOF(i) CO
K(“') =.5(K“”) +K(I+I)T)

until desired accuracy in eigenvalues/eigenvectors is achieved.,
(7 The improved model M, D, X results.
A flowchart of the method is preseated in Fig, [,

Measures of Changes. The evaluation of changes n the
damping and stiffness matrices is necessary il onc is 10 piss
judgement on the acceptability ol the improved maodel. Mo
single measure of these changes can be completely mcuninglu:.
Therefore, two separate parameters werc calculated 1o assist in
this evaluation, The first, 6,, is the mean square of the element
changes divided by the mean square of the cleents of the
original matrix. Thus &, for the damping and stiffness
matrices are defined as:

n n
Y, D, Y ok,
= I
bp = —— o = ——— (35)
E D02 E Ku’
LY} in]
J=l J=1

where 6D, 6K are defined as the matrices of changes of the
damping and stiffness matrices, respectively, that is:

D=D*-D $K=K'-K (36)

This measure makes no recognition of the relative changes
of the elements. In a sense, the diagonal elements may be con-
sidered to be indicators of the magnitude of the data in the
corresponding rows and columns. Thus, the second measure
of changes was calculated, which is simply the mean square of
the relative changes in the diagonal elements. Thus, &, is de-
fined as:

a7

The above procedure is illustrated in the examples that
follow. The measure of changes in the damping and stiffness
matrices are also shown.

Examples

In this section two examples are shown to illustrate the pro-
posed method. The examples are fictitious and do not corre-
spond to real experiments or structures, However, they do
simulate the standard case for real structures in the sense that
the FEM is larger than the “‘measured”’ modal model. The
first example illustrates an eight-degree-of-freedom, non-
proportionally damped model which is assigned three real
eigenvalues and three (3 X 1) eigenvectors. This simulates three
sets of measured mode shapes, natural frequencies and damp-
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ing ratios. The seconu-example is a four-degree-of-freedom,
nonproportionally damped model which is assigned two
measured complex eigenvalues and two measured complex
eigenvectors. The complex eigénvalues and eigénvectors are in-
complex conjugate pairs. This is necessary if the entries of the
mass, damping and stiffness matrices are required to be real
numbers. S
" '.'H_g.
Example 1 AR

In this example an cxght-degree-of-freedom, nonpropo[-
tionally damped model is assumed, It is also assumed: tlnt
measured model data in the form of three real eizenvaluel
(i.2., an ovcrdampcd response so that the three meas
damping ratios are greater than one) and three (3 x‘i) modc
shapes is available. ' ;_.

Analytical Model, The model is gnven by equation (l) with
the following banded coefficient matrices:

t«’

~ ] :.
\/=diag{3.0,0.5,0.4,1.0,1.0,1.5,1.0,0.5) o
fas O =23 .0 0 0 0 01
; 25 0 -25 0 0 .0 0
2.5 .0 0 0 0 .0
D 2.5 0 0 0 0
2.5 ~2.5 Q0 0
symmetric 105 —-40 -4.0
» 4.0 lo
L 4.0]

0 -3
400 - la
symmetric 8

2
The sixteen eigenvalues of the open-loop (FEM) system are
calculated and presented below for comparison:

{N°7=1,16] = { - 6.7072, - 5.4904, - 0.71£0, ~ 5.8625
43,2734, - 1.6916 + 1.7638i, ~ 0.0462 = 1.8055i,
10,2242+ 1.63617, - 0.0645 £0.4199i - 0,4843 +0.0078{)

—_—_O0O0O0000

&
L}
ccocoocoo.-
cococo~ococo

Measured Results. Next, it is assumed that th> measured
results are available in the form of eigenvalues and associated
eigenvectors, that is:

Eigenvalues:

{AisAzAs ) = { - 7.0000, - 5.0000, — 0.7500}
Associated Eigenvectors:

.0100 ~.2000 2500
2= | 1.0000 | 2= 10500 | z,= | 1.0000
- .0500 1.0000 —.0050

These eigenvalues and eigenvectors are then assigned to the
above model using the proposed method to produce the
following correction factors. Note that only the first three
elements of each eigenvector are available. This simulates the
situation in most structural test, that only partial mode shapes
can be determii..d and only a few of the eigenvalues can be
measured.
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1(a) Results from Optimization Procedure
The resulting measurement matrices C, and C,; become

-177  8.62 9.9 9.3
Cy= 3226 -10.94 -0.78 1396 -5
~291.65  76.99 102.36 -54.17 1.4

0105 —.0447 —.0480 0243
C,=10° ~.0078  .0498 .0569
1783 —4.167 -.4749 2714

-— 0 ~g\)‘\‘(
-3 13
The modal parameters of the new system, that are of intetest,
are the following set of eigenvalues and eigensectors, that 1
Eigenvalues:

[)\.,kz,)\, ’ = l - 7.0654, - 54857, - 00,6864 ‘
Associated Eigenvectors:

-.0272 4037

« ondiiges of the damping and stiffness
Coaae dfe ;.m.unmd and shown in Table 1. Next, this pro-
cedure » tterated to improve the corrected model.,

i6.21  49.03:
no 276 - 17.541
[4.64 280.54)

1650103 = .0918)
doit 0601 0190
POt 1723 -.8831)

ity Results After lterative Procedure

viter 47 erations the modal parameters of the new system,
et e amerest, (i.e., those corresponding to the measured
o, is the tollowing sct of eigenvalues and eigenvec-

N i !
o U oand
Vi

t

-.0309 ‘ -,1562 \ Lo AL 70000, ~ 5.0000, = 0.7500}
l'?g(s)g "“1)83(5) : _‘ |’)(5)(l)(7, ati s Bigenvectors:
XK XXXX |oxxsx 0100 - 2000 .2500
Vi= | XXXX | Va= | XXXX ] Vy= g RRXN L0000 .0500 1.0000
X0 XXXX A {0500 1.0000 ~ 0050
XXxXX XXXX xxax | b ANNX _ XXXX _ XXXX
XXXX XXXX xxxx J L V2= XXXX V= XXXX
The new adjusted model is described by the original mass :::: ;”:x XXXX
?l::ttrxl: and the damping and stiffness matrices that follow, <XXK XXX m:uuu':
[ 2.872 082 -2.478 424 135 -.355 220 .|39"_
2.500 .0 -2.553 0 .0 0 -.034
2.500 ~.183 0 L0 .0 -.004
D*= 2.952 029 -.001 .182 .0
2,500 2,500 .0 232
symmetric lu 500 ~4.000 -2.334
4.000 -1.028
i 1.666
and
[ 6.952 - 1.025 -.988 ~1.382 AR 165 .65 ~.3017
2.000 .0 .1.002 ’ 0 .0 -.012
4.000 028 g\ D0 .0 146
K*= 2.672 B 2852 615 -~.537
. 1 0on 0 -.044
symmetric o L 900 -2.070
300 -.156
i 2.897 ]
« «d by the original mass
*.- natrices that follow,
[ 3.410 942 . ol 110 297 2.1517
2.500 ‘ . 1.024 ] .0 - 1.606
oSty <je 077 0 .0 1.066
D= 1 097 2.579 056 -2.079
2,654 3.255 077 1.572
SYIELC LI 10.500 -4.000 -2.163
4.000 .043
i 5.152
and
[ 7.490 -2.050 -9 11 - 3462 -.778 .165 —~.559 1,442
2.000 ) 500 - 1.024 0 0 - 1.584
4000 98 ~2.923 0 0 1.217
K= 2,073 -.518 -2.852 A17 -.537
1.952 - 1.600 - 1.024 ~-1.616
Symuictric 8.000 - 2.000 -2.070
2.000 -1.727
i 2,897}
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Table 1 Measures of changes

Examplc/case 8‘ D 51 K SQL 5?_t<
% % % %
1a 5.28 3.08 3.34_ ian
ib 20.61 2103 1.37 373
2a 0.80 10.83 1.19 603 _
2b 0.80 10.86 118 5

The measures of changes of the damping and o s
matrices are calculated and the results are shown m {abue !
Note that the eigenvalues and cigenvectors of the taan !
model are much closer to the simulated measured Late "o,
the result obtained by just using equations (28 warthiog
tion. In cither case, thie wmodal atormagion ot 10
model is much closer to the meesured it th

original model,

Example 2
In the last example, 3 1o o0 1t
tionally damped systemi s aused o,

to be two complex eigenvalues i oinder o

with damping ratios less than amily; and e o
eigenvectors (complex mode shapes)., This example ol
because most structures are underdamped and exbing o
plex, or moving, mode shapes. Consider the mode! men
equation (1) with the following, coelTicient matrices
M=diag(2.0,3.0,4.0,2.0]

6 -2 -4 0 (41 3o
-2 2 0 ol oot -t 2-1 w
D=1 4 0 6-2/ K=} <221 5 -2
0 0-2 2 0 0 -2 3

{10

oo

B= 140

01

The eight eigenvalues of the open-loop (FEND <ystem e
calculated and presented below for comparison:

{N*J=1,8) ={~3.2813,~0.7269, ~ 0,761
+1.0158/, ~0.0126 £0.27491, - 0.2986 £ 0,73

Measured Results. Next, it is asswned that th
results, are available in the form of eigens Wues die-
eigenvectors, that is:
Eigenvalues:

{AGA ) = (= L0000 « 1000, 1 ooo0 ¥ o

Associated Eigenvectors:

1.0000 ‘;
L= P ke
- 1.0000-0.0560: :

These eigenvalues and eigenveciors are then awie, o o @ -
above model using the proposed miethod to prode ¢ b
following correction factors.

1 00K

1.OOO0 ¢ oty

2(a) Results from Optimization Procedure
The resulting measurement matrices C,, and ¢

27.4251 - 4.1390 02938 phY
Co=
79.0766 -0.8250 0,106 VA
23,1963  11.86062 s 290 A
C =
-10.7962 1.2258

90/Vol. 112, JANUAS

The modal parameters of the new system, corresponding to
the measured data, are the following set’ of eigénvalues.and
cigenvectors, that is:

Kigenvalues:
N Ay ) = [ = 1.0000 +0.9999i, - 1.0000 — 0.9999;)
Associated Eigenvectors:

1.0000 1.0000
0.9908 0.0868i —-0.9908 +0.0868i
NXXX 2 XXXX
XXXX XXXX

Phe new model is described by the original mass matrix and
the Jamping and stiffness matrices that follow, that is:

f S.R008 20246 39628 17T
2000 2.0000 .0000 0174
b dnels 0000  6.0000 ~2,0287
o 0174 ~2,0287 2.9560)

URBEN ~.9928  ~2,0011 1,5036)
RN 20000 ~1.0000 ~.0098

< &bi o - 10000 5,0000  —2.,0009
1.5034 -,0098 —~2.0009  3.6639)

»  measures of changes of the damping and stiffness
noaseees are caleulated and the results are presented in Table

i Next, this procedure is iterated to improve the corrected
aodel.

2y Results After Iterative Procedure
\fter ten iterations the modal parameters of the new system

coresponding to the measured data are the following set of
cigenvalues and eigenvectors:

Eigenvalues:
{AAa ) = | = 1.0000 + 1,000/, - 1.0000 — 1,0000i}

Associated Eigenvectors:

1.0000 1.0000
V. . - 1.0000-0.0500i - 1,0000 + 0.0500i
! XXNX T XXXX
XXXX XXXX

mal improved model is described by the original mass
s and tie dmmping and stiffness matrices that follow,

S 20246 —=3.9582 ~.1991
2 20000 0126 .0013
LI 0126 6.0034 —-2.0312
, ) -.0013 -2.0312 2.9528)

el
;o 44391 - 1.0016 -1.9994 1.5048)
/- 1.0016 1.9679 -1.0037 -.0114
) ¢ = L9999 ~1.0037 5.0000 —2.0009
{15048 -.0114 -2.0009 3.6639)

b measures of changes of the damping and stiffness
mairices are calculated and the results are presented in Table
I “:ain, the procedure for concerning an analytical model us-

- neasured modal data and an eigenstructure assignment
0~ - Jure produced an improved model with modal data
1 ‘ung experimental observation.

ssston of Results

LI CNRATS o

. the above examples, the proposed tech-
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nique successfully assigned a complete set vt e
ly obtained (simulated in this case) eigens aiues and
tors, This provides a systematic method 1o u .
analytical models by experimentally obsered data. 1. |
posed method is limited to updating or impioving the st.ii..os
matrix and the damping matrix. Some FEM practitiouiess
believe that the mass matrix is actually a larger source oi .+ it
in modeling and hence should also be changed. The i
method does not allow the mass matrix to be changed but =
believed that the feedback algorithn used here cou'.
altered to accommodate mass changes and represent iw.uv
research, The proposed method does, however, addren i
important issue of constructing a damping matein tor the 11 M
which yields complex mode shapes (Inman and Jha, 186
This represents an important improvement on standard * '\
practice as the standard FEM damping miarix is proportosal
(yielding real mode shapes) and most measured data coutains
complex mode shapes. [n the case where the mode shapes
not available, other pole placement techniques (lnman,  +
Chen, 1984, Kimura, 1975, Davison, 1970, 1973, 1975)
used for eigenvalue assignment and modet wuprasemer

The procedure described here produces « v.mmeitic g
definite stiffness and positive semi-definit. Laping
adjust to an existing FEM. It does not, however, gt .
that the resulting modified stiffnes, and damping mat:s
the same physical significance iney had from the «
modeling. The procedure only guarantees that the g
model yields the natural frequencies, damping ratic~ !
mode shapes obtained from an experimental modai anady. «1
the modeled structures.

For a gyroscopic system described by:

A\G(0)+Aq(0) +A3q(1) =Byu(r)

where A;, A,, and A, are real, asymmetric matrices, the pro-
posed techniyue is a one iteration method. The optimization
algorithm is skipped, since symmetry of the improved modet 16
not required.

The proposed method does not use the orthogonality 1.ia-
tions for normal modes (Berman, 1983, Heylen, 1v...)
Therefore, it can be applied to undamped, proportivi. v
damped, as well as non-proportionally damped modelbs.

A disadvantage of the proposed technique is the Fact 1.
additional coupling is introduced in the damping and stil 1.,
matrices. This problem can be avoided by uptimizing th.
jective function, using a constrained optinnization atew .
and setting as constraints the coupling ‘erme 1o
originally zero. This will potentialiy leatt: . -
curate result and improvement ol the nunt

It should also be noted that it she . .
analysis and the finite element mode' » > 00
the same or very close, then the aanes o0 vy
not exist. This problem » avowdesdt by wor o 4 e
measured eigenvalues that are alicady i w=icomenr ws
analytical model (FEM). Note that the nuaiber ot e
eigenvalues and eigenvectors assigned by the above pro..
is arbitrary and up to the user. Therelore, modal data »
low confidence factor need not be assigned. Lihe ...
measured modal data that matches the analytical data e
need not be assigned. Those familiar with pole placemen: .int
eigenstructure assignment methods will recognize the passi-
bility that the analytical eigenvalues (that matched the ev-
perimental ones) left unassigned will probably move. In trat
event the procedure is repeated until all those measured m .
assigned high confidence are assigned to the finite element
model. An introduction to using feedback contro! in vibrati.
and measurement problems can be found in laman (198v)

As a final remark, it was shown that tie eigenstructa .
assignment method can be used to link analysis with expuis
ment in a systematic way. Previously, the modal testing .ot
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1. .

nute ad hoe and less systematic
+sutionwe wiitia Ll and experimental models, It

105y that wany strectures and machinés ex-
T e mode siapes, However, the common approach
s icasig damping i tinite element procedures is to assume
tat the damiping is proportional leading to real mode shapes,
e jaoposed approach at correcting the analytical model
woe e corrected model o have complex modes as

1]
ot

chied e sang Bistsumumarizes this paper.

the Vedhnique is developed which assigns measured modal
terraiion to e given finite clement model of an existing
citchie by asing: cigenstructure assignment methods com-
<1 owonol theory,
w1 the approach taken is 10 consider the desired perturba-
C oo st lness and damping matrices as gain matrices in
ok caontrol wigorithms.,
< L perrurbation matnces obtained by the cigenstruc-
v oecment lechnigue are gol necessanily symmetric, This
»overcome Iy using an optimization algorithm
coaes the elements of the position and velocity
sadttriees such that the symmetry of the new model is
FRTRER
A osetative procedure is then applied to the improved
'oeoensure that the assigned modal test results are
toothansened. Convergence of the iterative procedure is
wit atlways guaranteed,
t3) The developed technique is applicable to undamped,
1 eporonally damped, as well as non-proportionally damped
muodels
(6) butther improvement of the algorithm and optimization
ot the objective function under coupling constraints will lead
1o more accurate and physically meaningful results,
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ABSTRACT

A mode! for slewing motor-beam systems is described in this
paper based on a finite element beam representation modified to
include a dynamic model of a DC motor as the actuator, The ays-
tem model is in state equation form and by including the effect of
actuator-load interaction, can closely represent the physical
system. The beam model is placed in moving coordinates to elimi-
nate the rigid body mode and is connected to the motor drive by a
clamped boundary condition in its local coordinates, The overall
response of the system shows that the effective beam boundary
conditions in a global sense depend on the motor parameters and
can vary from pinned-free to clamped-free. The overall system
damping also depends on various motor-beam interaction, Several
examples are presented 10 illustrate the varying nature of the sys-
tem modes and to show that with proper selection of motor parim-
eters, damping of the first few system modes may be incieased by
motor-beam interaction,

INTRODUCTION .

Slewing structures are used in a wide vaniety of industrial
applications and in space structures. Due to the angular motion
involved, the dynamic behavior is more complicated than that vl
similartranslational systems and, for a flexible structure attached
to an actuator, it is important to take actuator-structure interaction
into consideration when constructing the mathematical model, This
model, either continuous or discrete, may then closely represent
the actual physical system, However, if the interaction is not con-
sidered, the dynamic response of the mathematical model may be
biased, and will be accurate only when actuator interiaction i»
negligible or weak.

The most popular approach i slewing sttucture modeling i
the modal model approach (Juang, 1986, Hasung, 1987, Tubicda,
1985, Cannon, 1984). With this approach, the crgenstiucture of i
structural system must be obtained prior to consulering actisann
interaction, Certain difficultics may artse with tus approach. Fist,
for complex structures, for instance a three dumcnstomi truss, e
analytical eigenvalues and eigenvectors are almost impossible to
obtain, Thus, a discrete method such as the finiie element picthod
is more appropriate to determine the mode shapes and naturad fre
quencies of the system. Second, the eigenstructure of i flexible

structure is obtained for given boundary conditions. With the
structure attached to ar actuator, the boundary conditions become
unclear. Some researchers have noted the typical clamped bound-
ary condition at the base of the slewing structure and have assumed
clamped-free modes for the analysis, However, unless the actuator
is powerful enough to dominate the slewing motion with negligible
beam interaction, this assumption is not generally appropriate. An
improved modal model considering the modal gmicspauon factor
for the actuating torque has been proposed by Garcia (1989). This
represeatation can include past of the aciuator-structure imeraction,
but still is restricted to very basic flexible structures, for example, a
simple beam,

Slewing structcre modeting by the finite element method
(FEM), wiilizes a physical coordinate system throughout the mod-
cling process (Bayo, 1987, Usoro, 1985). However, FEM is not
naturally capable of modeling generalized active elements and the
metual interactions between active and passive system elements.
Rieud boty motions also compticate FEM modeling and require
<1 aad considerations, In this paper, a modified FEM model is
< rgested tor a DC motor-simple beam system. This idea can be
~wtended 1o any type of structure, as long as it ¢an be expressed in
an FEM madel, and any sctuator that can be expressed in state
«wpuitton format, The coupling of the two sub-systems i8 congid-
vl when the mathemancal model for the overall sysiem iz cane
siruted. This approach has the following advantages, (a) it stays in
physical coordinates, (b) it can be applied to any structure and
actntor, (c) it implicitly matches the boundary conditions of the
structure to the actuator, (d) the effects of actuator-Joad interac-
Loy are included and (e) the mathematical model is in 2 simple
wate equation format, Since the system js represented in state
<squstion form (first order differentiz! equations) which are
«paaded fom the FEM model (secand order differential squa-
nossa combined with the actuator representation, the matix size
ey 1o deseribe the system s appreximaiely doublied. This
s kot be o severe problem for imany apptications,

Nunetieal results using a DT awotor and a simple beam with
iltaent gear rattos are prosented in the discussion below. The
topsient tesponse of (s systeny 15 studied to understand the role
ik interaciion piays in the overadt system character. Eigen-
wuily sis uf various motor-beam slewing sysiems has been per-
foaned wed results are presented here which show systems
hasadensties bounded by clamped-free and pinned-frez beam
bihanawr, Rosults for transient response and eigenvalue aralysis of




the motor-beartysystem also show that dampng.can be provided by
natufal interagtion ol the structuré and actuator without ielying on
sttuctural damping.

MATHEMATICAL MODEL

Consider a flexible beam driven by a DC motor through a gea
set with speed ratio 7 as shown in Figure 1.
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Figure |

Motor-Beam System Schematic Diagram

Two coordinate systems are used in the model, The first is the
coozdinate system for the DC motor, which is an angular coordi-
nate system, The second is the beam's nodal coordinates which are
definsd with respect to the rigid body motion of the beam and are
aligned with the motor’s angular coordinate. The coordinate sys-
em élescribing the motion of the motor and beam is shown in Fig-
ure 2.

v [slewing structure |

factugzor Sha

Ingwe 2
Coordinates UJsad in the Motor-Beaun System

By defining the coordinate sysiens s desevibed i bagur, 2, e
rigid body motion of the beam w axtricted. The bonmday congs
sions of the beam in itx local covrdinaie system can be tegitamiiedy
specified as “clampcd” on the motor shaft. It should be noied thi
the “clamped.free” boundary condition is viewed feoit the logat
ccordinaies, i.e,, if a camera is mounted rigidly os the wotor shalt
znd polmed toward the beam tip, clemped-lree morion wiil be
observed. Howevcer, in a global sense, the beam does not have
clamped-free mode shapes.

A DC motor is ap elecao-mechamcal device thit can be
expressed by a linearized state cquation vet iscluding o elechn af
aad mechanical componenty i (Kuo, 1987}

de ., ,
L‘I— Vel & i
dw ” )
. J,Er- Ka=8 o= 2

where L, ard R, arcthe electrical inductance and resistanse

&, isthe back EMF coefficiem

K, isthe torque constant
J,, amd B, are the inertia and friction of the rotor
I(ry s the reaction torque or load due to the vibration of the beam

Assuming that there is no structural damping, the FEM repre-
sentation for the beamt with n elements is described in Figure 3 and
the governing equations are

MY +KY =F (3)
where M and K are (2n+2)x(2n+2) inertia and stiffness matrices,
and the excitation vector F is (2n+2)x1. The forcing functions can
be split into two parts. The first part is due to the angular accelera-
tion of the motor and the inertia of the beam, and may be called an
implicit forcing function, Other externally applied forces and

trques not related to the motor would be explicit forcing functions
but are not specificatly considered in this discussion,

“The boundary conditions of the beam in beam's local coordi-
nates are

y(,0)=y,(n0)=0
or, in the FEM representation,
N =y=0 @

Beeause of the boundary conditions, we can reduce the size of the
model by partitioning the M and K matrices as

Mrl Mt) KI’ KDZ
M= K= S)
[M:I M:Z] [Kal KJI (
where M,; and X, are 2x2 matrices while M,; and K, are 2nx2n
matrices. ¥ is also partitioned as ¥ = (v’ yr ]r where

Yozly, wland?,=(ys Yo Va2 Since ¥, is defined by

the bouadmy conditions (4), only Y, is unknown and the dynamic
cquations for the beam reduce to

Ml?f;l’*'Klzyl =FJ (6)
where F, is the corresponding sub-vector of F,

‘The 1eaction force R; snd torque R, on rode 1 are obtained by
AREJTIH

Ry .

R =Mv!Y1+KJZY: (7)
S g ~lewtng nntion is considered, only the torque will react
Wk fie motor and

R=MY,+K}Y, ®

where M, and K, are subematrices of M,; and K, correspending o
v, The effective torque transmitted to the motor through the gears

~

T(y=r-R,(1) ©)

i,
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Figure 3
Coordinie Sysyee “ir Finite Element Beam Model
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Substituting (9) into (2) yields

J,%:Kmi-B,‘(o-r(M,)"',+K,Y,) (10)
Also, rearranging (6) results in
Y, =M3F,~M3K,Y, (1

It was assumed that only the implicit forcing function due to
angular acceleration exists in this system, and such forcing func-
tions are proportional to the angular acceleration of the motor.

Thus the implicit force F, =~rF, 5" where £, depends only on

beam dimensions and material properties. This can be obtained
directly from the beam description without any knowledge of the
DC motor. Combining (10) and (11) yields

K. B,
£9=_i——w-§<-M,M;'K,z+K,)V. (12)
where J, =J, ~r*M,MJE,.

Defining the state variables for the beamas X, = ¥, and
X, =X, =Y, and substituting these definitions and (12) into (11),
the derivative equation (11) becomes

. ap K, a8
X;=- :ZF:T‘+M:2F:_I"(') (13)
¢ e

J

Comtining (1), (12) and (13) along with X, = X,, we can repre-
sent the system in the state equation format

2
+[“M:-21Kn T MAE (MMIK 4 K,)]X.
[

X=AX+RU (14)
where
X=lo i X Y
=y,
8. K. ’
—— - O VAT I SN 0y,
T, 7, g A |
-f.l ..E: 1] [
A= L, L,
0 0 0 ¥
K, ? .
AI:;ﬁl% -A’I;"[?IZJ_- -‘"ﬁ'Kﬁ P3‘'\’-ern("”ﬂ‘"l."‘&',.' ¢ K,l U’
< L] n
%)
and

0

1
8 =11, t1o)

0

0

The above equations represent the dynmmic characterstics o
an interacting slev4ng motor-beam system, In systems contanung
different type of actuators or more complex structures. i sinnlar
approach may be applied 1o the model. The beam and motor
parameters are scattered shrough matrix A, these tenns represe's
the interactions between the motor and beam. Several trarsient and
frequency responsa results for a motor-beam vy stem with didterent
gear ratios are presented below. These examples show that the
iateraction beiween the motor and team chunges the boundary
conditions of the beam and affects dampag of the vieradl sy stem

NUMERICAL RESULTS

Numerical evaluations of a motor-beam system cau be carried
out by integrating (14) numerically for transient response, or by
finding the eigenvalues of A in (15) for frequency analysis. In this
section, an open-loop system with an Electro-Craft ES86 DC servo
motor and an aluminum beam is considered. Their specifications
are listed in Table I and Table 2,

K, 5.5158x10" NeM/A
K, 5.8 V/krpm
R, 110 Table 1
A 3.889x10° KgeM? Motor Parameters
i 23 mH
By | 7.071x10* N-Mfiopm
Length 09144 M
Width 3.81x10? Table 2
Thickness 1.5875x10°M | Beam Parameters
Density 2700 K%M’
Elastic Modulus | 7.2568x10™ N/M?

The DC motor and the aluminum beam are connected through
a set of gears, and the system is assumed to have zero initial condi-
tions. A unit step voltage drives the DC motor for ¢ 2 0. Two state
variables are monitored, angular velocity of the motor and
displacement of the beam with respect to the rigid body motion,
Figures 4(a) and (b) show the response of the system for unity gear
ratio. Figure 4(a) shows the plot of motor angu{'ar velocity vs. ime.
Apparently at ¢ = 5s the system has not reached steady state veloc-
ity. The oscillations on the curve indicate that the vibration of the
beam is interacting with the motor. Also, from Figure 4(b), there
are signs that the motor has influence on the beam. First, the tip
displacement of the beam is negative for the time period shown.
This results because the motor is accelerating and the inertis of the
beam produces an overall beam deflection during the accel:ration.
“T'he second observation is that even without structural damping in
the FEM representation, damping occurs in the motor-beam system
since the peak-to-peak amplitude of tip displacement is decaying.
"This suggests that the structure can gain damping through the
structure-actuator interaction.

In order to further explore the interactions between the motor
and the beam, different gear ratios are convidered for the system.
In Figure 4, with a gear ratio equal to unity we motor provides
only modest torque to drive the beam, thus the response is slow.
With a decreased gear ratio, driving torque for the slewing beam is
increased by 1/r and this increases the dynamic response speed.
Figures 5 and 6 present the transient response of the system with
r=0.1 and r=0.01 respectively subject to the same unit step input.
In Figure 5(a), it can be seen that the speed of response has been
ncreased significantly, with settling time' ¢ = 0.5s. The influence
of the vibration of the beam can still be seen in the transient for £ <
1.5s. Figure 5(b) shows the tip displacement of the beam. Notice-
able differences Petween r=1 and r=0.1 can be observad. The max-
imum tip displacement for r=0.1 in Figure 5(b) is larger than that
of r=1 because the siarting torque is 10 times larger. The first
system mode in the r=0.1 case possesses more damping than the
r=1 case, as the peak-to-peak amplijude decays faster. This also
yiclds a faster setiling time for the tip motion with 7=0.1, Also, the
system’s natural frequencies are different for the two gear ratios,
ths can be further considered by looking at the eigenvalues of each
system.

1 seuling time defined here is 5% of steady state value
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In the two previous examples, it can be secn that a gear rauo
reduction can yield a faster, better-damped dynamic system. In
Figure 6, the same motor and beam are considered with the further
gear ratio reduction to =0.01, which again intensifies the driving
torque as it reduces the driving speed. The angular velocity in Fig-
ure 6(a) shows that the settling time has been further reduced, how-
ever, the first system mode is no longer well damped and tire
system is not in steady state at the end of the simulation. The motor
response is generally complete before 7 = 0.5s but oscillations in
the shaft speed persist because of the continuning beam vibration,
In Figure 6(b), it is clear that the initial acceleration of the motor
initiates the beam vibration. Due to the low gear ratio the starting
angular acceleration of the beam is lower and this reduces the mag-
nitude of the tip displacement. The beam vibration is only lightly
damped and causes the motor angular velocity to oscillate slightly
about its steady-state. This system has the petential for a fast tran-
sient response but has light damping because of limited motor-
beam interaction.

The fact that different gear ratios on the same motor/beam sys-
tem will yield different dynamic behavior can ulso be seen in the
frequency domain, Eigenvalues, natural frequencies and damping
ratios are listed in Table 3 for the various gear ratios.

* mode A o, (H2) | &%)
1 -0.3320£43.0297i| 6.8486 0771
2 -1.2615 % 135.87774] 21.6265 | 0.928
3 -3.2642 £ 271.6337 i| 43,2349 1.202
Table 3 (a)
Eigenvalues, Natural Frequencics and Damping Ratios
for r=1
i* mods A, o (lz) | & @
1 49,7357 £ 6.8014 i 18902 81977
2 -5.9619 % 6394791 10.5387 9.004
J 21,3345 £ 17932174 285407 | 0.4
Table 3 (b)
Eigenvalues, Natural Frequencies and Damping Ratos
for r=0.1
* mode A, o, MHz) | & @
1 -0.0703 £9.9318¢ | 1.5807 0.708
2 <0.0485 + 62,4264 1] 9.9355 0.078
3 -0.0129 £ 176.3269 ] 28.0633 | 0.007

Table 3 ()
Eigenvalues, Natwral Frequencies and Damping Ratios
far r=0.01

It can be seen that the varistion in gear ratio changes the eigen-
structures of the system, To cxplain this effect, the boundary con-
ditions of the beam should be considered. Pisnned-free and
clamped-free natural frequencics of the buam are shown

Table 4.

With high gear ratio, the motor can give Hule torque to drive the
beam, however, the vibration of the beam can turn the motor shaft
easily, This situation is very sinufar 1o the boundary condition of a
pinned-free beam. On the other hand, when the gear ratio 1s low,
the motor is dominating the slewing motion while the beam’s

i* mode | Clamped-Free Natu- | Pinned-Free Natural
ral Frequeney (11z) | Frequency (Hz)
] 1.5756 6.8934
2 9.8477 22,3811
3 27.5182 46.5526
Table 4

Natural Frequencies of Clamped-Free
and Pinned-Free Bea:n

vibration hardly influences the transient of the motor, This situa-

tion is similar to the clamped-free boundary condition. Comparing

Table 3 and Table 4, it can be found that the system's natural

(requencies lie between the pinned-free and clamped-free natural

g'rrcglucgcics of the beam, depending on the gear ratios, as shown in
able

Mode|Clamped-Free| r=0.01 | r=0.1 | r=l | Pinnied-Free
1 1.5756 1.5807 | 1.8902 | 6.8486 | 6.8934
2 9.8477 9.9355 |10.5387121,6265| 22,3811
3 27,6182 |28.0633|28.5407]43.2349| 46.5526

Table 5 )
Comparisons of Natural Frequencies Between
Different Boundary Conditions

From the examples above, depending upon the motor parame-
ters, a paticular beam can gain various amounts of damping from
motor-beam interaction in open loop. By tuning the gear ratio-
alone in the above system, the first mode damping ratio reaches a
vithie of 81.977% at r=0.10 (Table-3b). Best amgin cffect may
possibly achieved with a more careful selection of r, If further
damping is required, full tuning of the motor parameters and gear
#atio may approach critical damping of the first mode. When a
clesed: fane controller is to be designed, various feedback signals
and feedbackgains may be considered for the control loop. If all
the states are not available for feedback, full eigenstructure assign-
menl becomes impossible. Controlling such a system with avail-
e output feedbick may depend heavily on the open-loop

wiractensies of the system., A well designed open-loop system, in
*ustwanon, can help provide inherent damping and improve the
+*ned-loop system performance.

CONCLUSIONS

“I'his model, in general, demonstrates a precise model for a
motor-beam system and considers the interactions between the
actuator and load. It can be treated as a foundation for designing
closed-toop systems based on traditional control strategies, optimal
vonttol or destgn optimization. Furthermore, many structures with
mteracting actuator dynamics can be modeled by a similar
approach. In this study both the motor and the beam are modeled
s linear systems, the coupled system is also linear, as matrix A is 2
matnx of constants. When modeling non-linear systems, the above
procedures are still vatid with the exception that the coupled sys-
terr should be expressed in the form of X = f(x,u, t). As with all
non-hnear models, frequency domain studies can not be performed
1n general, but the transient responses can still be obtained by inte-
graung the non-linear state equations. Explicit forcing functions,
which are externally applied, can be added to the model by
including appropriate terms in the 2 matrix if the applied for-
ces/moments do not have dynamic interactions with the system.
Otherwise, cach external actuator needs to be considered
separately.

As presented above, appropriate design of the motor may
Jhnge the ergenstructure of the system, and may enhance damping
ol the aystem through motor-beam mteractions. When a more sta-
ble open-toop system is desired, analysis and perhaps optimization




of actuator-load interactions should be considered to sclect the
most suitable motor to drive the beam including dynamic interic-
ticn as well as power and torque requirements. The boundary con-
diticns of the beam also change for the slewing systems as the
meior or gear ratio is changed. This suggests that in many
situations the assumption of clamped-free boundary conditions
may be questionable,

REFERENCES

Juang,J.N., L.G. Horta, H.H. Robertshaw, 1986,"A Slewing
gonérol Experiment tor Flexible Structures” J. of Guidance, Vol.9,
0.5.

Hasting, G.G., W.J. Book, 1987,"A Linear Dynamic Model for
glebxlble Robotic Manipulators" IEEE Control Systems Magazine,
eb,

Fukuda, T "Flexible Control of Elastic Robotic Arms, 1985, "
J. of Robetic Systems Vol.2, No.1.

Cannon, R.H.,Jr., E. Schmitz, 1984, "Initial Expcriments on
the End-Point Control of a Flexible One-Link Robot™ Int’l Journal
of Robotics Research, Vol.3, No.3.

Garcia, E., 1989, "On the Modeling and Control of Slewwng
Flexible Structures” Ph.D. Dissentation, SUNY at Buffalo,

Bayo, E., 1987, "A Finite Element Approach to Control the
End-Point Motion of a Single-Link Flexibie Robot” J. of Robotic
System, Vol 4, No.1.

Usoro, P.B., R.Nadira, S.5. Mahil, 1986, "A Finitc Elc-
ment/Lagrange Approach to Modeling Lightweight Flexible
Manipulators” J. of Dynamic Systems, Measurement and Control,
Vol.108, No.3.

Kuo, B.C., 1987, Automatic Control Systems, Fifth Edition,
Prentice Hall,

Shames, LI, C.L. Dym, 1985, Encigy and Frote g P ot
Methods in Stactral Mechanies, MeGraw Hitt

h-llL------




— N W U B I N B G 0 B I A Ba BT B SEe  an
; -

143
ANV ............-....--...-............-..-.--...-.A«vxo“A*vh
A—v ...-............-..-.....-.........-.-.A*v==+A¥vx<“A— +*v*

uonenbd NWLUAP JUBHIEAUL-DUL JEDUL] OWN-DI0ISIP 24 JIpISUOD)
-unpuoSje sy jo Arewwns e aA13
mou ap "(S861 Suenf pue edded) eiep [ewuswadxo WoIj SAIMINNS [BIIAS
Jo uonesynuUap!/uonezijeal o1 paydde A[[njssadons uRq sey unpuole vid
Y] "UOBZI[eal JOPIO-WNWIUNW JO poyouw € doteasp o3 uontsoduiodap Infea
segnduts sozijun (Vyg) wyuod|y vonezijeay waisAsuadig sy ‘uonezifea
Japao-aunnung jo apdisunid o) pasnponur ogm *(S961) uRtuey pue of] 0

pamgune si 1dadued uojuzizd, sonds-01eis oY) jo wdwdopadp aseq YL

WHLIHOOTY NOLLVZITY3H WILSASNIADNG

soanpaoosd JJNIN Ul vyd aul Juiuiquiod £q podsuryud Apueojiudis
aq s Kew 194 “sopuanbyy [LaMRY JO UONEOYLUDPL uRQl IS10U JUNWDINS
-eow uo Juapuadop 210w YdNW si uoneIYNUIP! adeys-opout eyl [BIA31 SINS
-1 pauquuod ayy, “Sudwep eainds Juipnjdul SIMONNS Jo sadeys apows
Lnuapt 01 Lupge 91 SNRASUOWIP wipuode o osfy KpieiRoor sadreys
PO AJHUDIPT UED PRz AVIOU JUdUDINSENL O DALISUDS SSI] ST INY) “SHUDUNS
AT D W BOHINPIT INI0U A spnoidpe ue doppasp am sanded s ug
SNIDILAS PIIEJIULS I WOL] PIPNIIXD
osie sem Juidweqg -a1modnas a3y Jo sadeys opow {esisdyd ay1 jo uonedyn
-uapt a nodn Suraosdwt o) SHNS Kur 2Aup 01 1dwank 10U Pip £ ‘3943
-MOH "HCHRUIWLISIOP DPIO [JpOW ST [[Im SB sorouonholy [ranied § 2I0ONNS
Ayl J¢ GonEdILUAPt A1 Ut suaaaosdut magudis pmensuowop wipLod e
NN/ VYT PAUIquod J1a) *(YIl Y1 wolj uohriAdp g507) 198 WDWAINS
-eaw Asiou AyS1y € USALD “Yirul SpOW-021Y] B Yilm 2INORNS € JOo uone[nus
a1 uo PIsrQq d19m SI{NSIT ISOUM ‘(B6861) YOO PUB JIWI0Y £q pare3nsoaut
sea wipuode uonezieal wasAsudd oy jo Ananisuas asiou aHpy Sudnpay
-quuawagnseaw jndino oy ug uasaad 2ae S[0AD] astou Yy
udym JsuR KRt SONNDYJIP “JIAIMOH “Jusws(dut 01 d|dwis pue 2LINIIE St
V¥ oY1 pur ‘(0861 gneT pue rwdry) Atjiqess [eoLauInu poo3 Jo 1yaudq oy
sey ‘sisfjeur uonounj 12jsuen o pasoddo se ‘uonisodwooop onjea senduis
10 2mpadoid YL CSIUAWIINSRIU ISIOU-MO] IO 1oyad Suiajoaut sdSED J0J
sonaodoad [epows surkynuopt A[a1endoe Jo ajqeded st anbiuyosl vyg YL
-uoneaynuops adeys
apow apRaaR Jo) dsueuodu weoad jo st ‘uosoad s1 astou Jo dFop ydy
© udym ‘opnnuiinug fjomd aprsdoadde ux jo 104D PNDLEP Y1 IO
-sapott paurids oy jo sdadosd [ppow oyl SaLRUP! A|21ansoe 210 Inq
*(PAITUMI) DI SAPOW [EDI DUIOS) [OPOW JOPIO JIMO] B Ul SINSII JJOINS ydiy e
Fursooyd *419519AU0D -sotuadoid [epouwt payliuapt oyl Jo KorIndoe paonpas ul
SI[ASO1 pUE *19QUINU S1U) dY] VB SIPOW! JIOW SIPN[dUL 1BY) [spoul & s2onpoid
jjon> moj e Juisooyd paynuap! satuadoad {epous ayp Jo £oeIndde A pue
UOHRZI[RAI AN} UL PIUIRIDI SIPOW JO JIQUINY Y SIDIJJE JJOIND In{RA sen3uils
JO 2DLOYD YL WYL MOYS SHNSD YL -yonesuny anea aepnduls jo S350
ap Apnis (9861) vddeg pue 3uenf *yiom [rwiduo 1oy Supusxd soded v uj
*|OpOtit Y} UL JAPIO BNXD O} INP 10U PUR ISIOU 03 INP 5Q O1 PIWNSSE T SN
-[ea Jen3uts Y1 Yolym Mmo[dq ‘SINBA Jenduls jo opniudews jyoInd B 3500Yd
isnut 1asn gy ~Apuanbasuo)) 019z 9q ‘A10941 Ul ‘pNOYS IRY) SIN[EA aen3uts

‘99547 “ON Joded
-a3ed 3od GI'§ + 00" 1$/TZ10-C000/06/1TE1-€680 NSSI *AISVO "0661 ‘Iudv ‘T
‘ON ‘€ "I0A ‘Swpaaniduzg 2odsosry Jo ppuimof o jo ued st saded sy, ‘6861 ‘0t
Ang vo uonwatignd 9]qissod puE MITAD1 10§ PINIUIGNS sem Joded sy 103 wduosnuew
MY, cspuinog jo sadruepy 3OSV AP UM PopIs oq 1xmu sonhds uonnm T Stpuowt

auo a1ep Jusod Y1 PUAIXD 0L ‘U661 | QIS [HUN uddo BOISNONIE IION
‘AN ‘ofejing ‘ojeyng

1 JJOA MIN JO "AlUf) wI§ «-313ug soedsosdy pue ‘YNPW Jo sidaQ ¢1301d ISV,
‘09Z¥1 AN ‘ofeyjnd ‘oejng e 3104

moN JO “alup dms *-3:8ug aoedsorsy pue ‘YW Jo “idag “1ssy sy PRID,
oaozuou saonpoid uonisodwioddp Y “SIUAWANSEIW indino oy ut astou jo
a5u0sasd PHOM [#O1 dY) 0) NP “JOAIMOH -uyontsodwodap xunew [ojueH
wogg pamduiod sangea sendugs oIzion JO JIunt A otj pPANIIIDIOP St
[opoul pIZIIR2s oY) JO JOPIOo Y *£1094} U] “SIUDWIINSEIW UIRWIOP-DWN *DIDID
-sip jo pasodwod ‘xujew [yueH pazijesousd e jo uomsodwioddp angea send
-uts oy1 uo paseq st onbiuyod vid UL *sjopowt diwreukp [eINIONIS JOPIO
-WNWILIY JO UOHEDIJNUIPE PUR UONRZI[RII J43 10] podopoaap sem wy.nd
- oyl "(s861 Suenf pue vddeg tcg61 rdded pue Jueny) vddeg pue fueng

Kq padofaasp sem (V) wpuode uonezijeds wnsAsuado oy *ApuaddY
*sadeys ospows (T)
pur tsonrs Juidwep pur satouanbasy jeameN (1) 01 S19J21 sonuadoid [epow
*SION "SIUDWDINSEIMU DY) UL S[DAD] JSIOU yifiy yum udad sadeys dpow £in
-udp1 JIRISSIIINS 0} UONINPDI JOLD-DPOW Jo poyIat £ yiam onbiugad) uon
wapean fuoneaypuapt padopdaasp APUadDI B SDUIGIIOD WHPLIOTE Y Y, “Saty
_oanseaty Indino woy anmonas v jo sadiggs apow Fuynuopt Ldnunmane w
spte 1eys wiypuode ue sdo[IAdp 1aded 2 ‘woa[qoid sip 3ulssAIppy ‘SIdULLS
-wNdMd Js10u JudWAINsEIW Y3y ut KowIndoe 950] puUe ‘ISIOU JUSWAINSEIW
01 2AnISuss KI9A d1e Spoyidw uoledyludpl adeys-opow *19AOMOH "(£861
Uy IGRG1 SuBjuRp pur weInlEy 1LL61 YDINYIN pur unyeIqp (pR61 SYOUP
-ud}) SN JQIXdY} JO soisadosd rpows Ajnuapt Ajd1iod o) Tunduwiny
-2 UOJJd 2[qesopisuod papuadxd sey Anunwwod fexmonns Y *odwexd
304 “Supssutdud doedsosse pue [ediUBYIIW JO s1oadse [eraads ut aouenoduwt
juedtjiudis Jo S SUdWAINSEIW ndino (£siou) Suisn swasAs Jo/pue SIM

-onns Jo sadeys spow oy Jurknusp! Koanooe jo woiqoad Juunpud ayj,

NOWLONAOHLIN]

+a5¢1 3urpazdxa sones Juidusep

UM SIPOL JOJ PIARANSUOWIP St sadeys spow pue s1nweszd [EPOW Y JO LOIIN
-3p JNINIDY ‘SPOIAL JUIPES| IO UEY) 510U O) IANISUIS $$3] A[qesspisuod st
pogau o *vopesynuops Jurdwep pur *Kauanbazy *I10pI0 MNP UNYD ISIOU TUNUDINS
-POUS O) DAINISUDS DIOI N1 HONEINIUIPE sdeys-spows o) y3noysjy -padwrep Liydiy
aq AP AN M), "adEEs Spo dy) pur tHpott YA Jo Kauanbang pur Jurdwiep
oy “juinasd AdpOUL JO IYUnie MY DU O Japae ul SPUMBIINNEIET M) SNNDY
-03d POYIAW Y] “IUIWNNSEIAW UPWIOP-IW I21ISIP WOl) S|APOW JNUTUAP-|rIM
-amsis *21esndor JuNORIISUOD JOJ POYIAW 1SNQOI ® yuasasd om zaded sugy up SIS
1 Ap w01y S dino (Asiou A[[rsauad) jo uonezinn sasnbas Ppous
Sianose Ue jo uoleUULNIP *Apuanbasuod ~satskyd jo smep oy Sutsn siskjrue
adusts wo3p soMUBUAP WNSAS A JO (POt {eanewdpiEw 2endoe e Jundnas
-u03 2pn(331d 01 paredi(dwod APUILNS UIJO AT SUMINNS [eo1shyq  :20vH1SBY

MOOLY YSasof (1 PUE ‘AISY ‘IIQUISY *IW0Y T PEUANIN £q

SIAON TVIISAHJ 40
NOLLVOIJ1INIA]/NOILVZITVAY GIONVHNYH




set
[apow uswaInseaw | x 4 = 8 7 18 195 JudwaInseaw | x 4 = ()L Aym
AN—V ............................E...-.m = ..\) ._T—Q.A@vnuauﬂévm

‘suonenbs Jo wdss (Fesurjuou Jo resut]) s Aq pajdpouwt
SIUDWIOINSROW DI2IOSIP JO 195 B UdA1d pue ‘suud) Suidio} Jo 101994 | x d
~ 0 suonenbd [Apott JOo MNIDA | X H — § LIOI0A DM | X H = X UM

A——v R I .........-.....-.-..-.-...-.--.-—N.Auv-—Anvnﬁ.‘"M

‘suonenbs jo wshs (reauyy

-uou 10 Jesut]) oY) £q PJoPOW SON*2UAP JOIDIA RIS YIIM WIANSAS B USALD
*smo]]oj anbiuyoa uonewnss 10119 [dpowt
wnwiuiw 9yY) Jo UONBAUIP JAUq V “(S86T NOOW pue subyunf 8861 NOCA
L8611 UIT pur JOOJA}) JOLID JUDWDINSEIW JuUrdijiudis pur JOUD [dpout Jurdijiu
-31s tog Fuajoatn swnpqoad g0y Lorandor yTiy jo srwinss s 2onpoid 0
UMOLS UDDY SR TN Y SSaIpys snotaaad [r10A0s uf “soud v umouyun st
fapowr A aoms wiajgord wasaad o g0 morpudis o vondwinsse siyy Jo
sadeiurape (22119309} 9y ] "uounjos ay jo ued se pajewnss st pue Hnuenb
umoudun ue 9q O} pIwWINSSe SI JOLD [opour Iyl ‘peaisuj °"SIAji) 9y} op se
*90UBLIBAOD UMOUY JO 3SIOU UM B SI JOLID [SPOW Yl JBY) JWNSSE 10U S0P
‘uonewiss (FINJA) JOLI2 [apowr winuIuIr pajjed ‘onbluyse mau ayy (8861
suyung pur Yoop) podojoadp uaaq sey Joua [apowt yuedtiudis jo souasaid

ayr ut uonewnsd s ewndo Suiunopad soy yoeordde mou v ‘Apudday
*pauonuadw 1snf sannoiip Sulopowr [ed2I09Y) ANy
Jo asnedaq yoroxdde siy) pansind j0u dARY OM ‘YY oYl 1Joudq Arwr wiyinl
-03je 1opoows-12)11j © Jo asn snowipnl 1eys aiqissod st 1t oYM *d10JaI9Y L
[DPO SIY) VIO O] ST YoM D2 [0 192[qQ0 DY) ‘UONEDILIIUIPL/UontZI[EDS frIn)
-onas JO 9sed Al up Cjruidis pasnseaw 9yl J0j [opow pawnsse o) ur £oeand
-on annbax Loy e st swiygiuof e soy ruontpen Suiziin yim wojqoad
ofew v (9861 SIMIT pL6l qI9D) pawdwodjdwt pue papmis A[PAISUIIXD
uddq oAy SWYILIOF[L JR[IWIS JOYIO PUR SID){1j UBWIER)] JO SUOISIOA SNOUBA

~anbiun jou Lpneyian < ejep e unnsea wogg asiou Fusmjiy Jo vopt oy,

NOILYWILSZ HOUHT TICON WNNINIYY

",V 1O XIPW 10190AU0810 = A 010ym

Y W o i |
Xinew )
Suisn paemo[es usyl are sadeys opows YL °,V JO SIN[BAUIZID = 2z S1oyMm
(1)
I-A=1 . =5
wyzr = (2) Ul

diysuonejar ay1 Suisn aued s 01 z
wos) uonruojsuen Ja)e *son(eaudadio oYy jo surd AseuiSewny pue [ea1 ayy
wolg pammop e sauonbasy janniu paduiep pur sones Iwmdutep jepows
ayr L,y xR adeds-ams poaziRol Yl jo uonnjosusde oy woiy *A[jeuly

suotsudunp oeudoidde jo xinew
0397 Ayl s1 @ pue "K0anosadsar b pur d Jopio jo sdooummu Qinuospr aue 7p
pur ‘g 2ivym {otpl st g pur tfogl st T4 txuww yoopq aaddn jjop vox u
weE SR O P g o sumnjod 1S ) togp patusog dne *g pue ¥ g a1oym

vzl

J
q
va.-.-.n s heseassecosssseransasennsseoNeso N\—HQ!OA&V=.MAKH\_NA—“1<

AO—V...........-.......-..-..... P I N\-—.ﬂ—tn_.nm

AOV...........-...................................... Q@MON\.“Q

Fuiwog £g podRIISUOD 5q URDd 1 UOISUILIP JO
UOLIEZI[E] JIPIO-PIINPIS Y], "SIPOW JOU pue ISI0U Juas21dar 01 powunsse ose
sonjea Je(n3uis 3y YoIYM Mo[aq dpmitueur §j0Ind 3 Jusooyd £q *o°1 ‘0102
10§ sonfea repnSuts a1 Sunsd Aq pautuuNIp st (Q)H JO ¥ uel YL "sanfea
sepn3uis 9anisod Sy 2Ie SIUIWIS [eUOTeIp UdIYM JOJ ‘Xuew reuo3eip e st
pue “A12an23dsa1 ‘sIoLNBW OLIAWOST ¥ X dS pue ¥ X b4 ore D pue g 2I94m

A\\v.......-..-.................-......................~gn-“AOu—v—

£q paunjop *(0)H 30) uomsodwosdp anfea seniuts Juisn Aq paantop s1 vy
oy "seouew Anjgrijonuod pur KNJIGRAISQO PIZIRIUIT It T\ pur ‘A

m.-::<
: ) _.
: [ 4 M
4
£z
_I¢<O
-<o = >
D
210ym

Acv-.-..-.-......-.....-.-......-...................-.3«<5>"Au\v——
®Y umoys aq ued it G—¢ “sbg wosg *(H £q

pasudas s1 (1 - Y Sk asuodsds Mes-prnut My oy “saadonn
Luempguease (f — s g1 =N'mpue (1 — a7 T L =N punu
= dy *u = bs somenbout oy Juikysnes s10T01u LINIQIT I & pUL 4 ADYM

(w o P e PR T Cu e DA T+ DA

ceemans * . = -Y)
© Cwe+ PR (we e Nx 1+ A (1-H
("~'w 4+ DX (‘w + DX (£2).

xXujew ¥201q § x <4 A Juiunzog

£q swiSaq vy oYL "SUONIPUOD [BHIUL JO 39S YN I SIS (0)'X oYM
AQV csasmascssresamsasscsannanan —AOV.sX...AOV.N...AOVNNAQV-%—.\(U"AQv>
‘asuodsor djeis [eniur ou) pue

Amv-.....--....-..-..-.....................--..... m_!<<U"A.<V>

*asuodsos asgndunt ay) se siojowried AossRg
£q uaa1d oue g pur | ‘sba so) suonnjos Eads om g, “£Pandadsor “saoue
esuod 1 ox bopur td x o w o ) pur gty pue o indine | ox
b oy st K 2301008 ndut | x d OYY S A CIOPDA WIS | # ML ST X dIam

S I b B N ED T N GE G G G OGN B R O B S Ee



22t

SUOHIBIQIA [BIXR Ol JOPISUOD) “J{asit £q VYT snsioa wuode pasodoid ayp
JO saniiqe uoyesiynuapt adeys-apow ayp 1senuod sapdurexs Suimoijoy ayL

SNOLLYINNIS TVdNVYX]

-K1essad2u J1 axnpasosd a1 jeadas pue

AU 2IdTIIANOD Dos Jo) saduygs apotr panznoea {jpmou o sunuexs] g
i “sadeys apotn mou

M AHUIPE/ 21N 0] 29D10 1 SJuaamseaur pajepans oy of vyp Aiddy <
“sowansedsw {euido oyl ueyl Advindde JOY3HY JO SHUDWRNRSEIW pale[nwis e

210 O %iT JS)UT SWILI-912IISIP 18 SIjewiis? atels paonpoird-gINN oy Sjdwres "¢
-sarewins? dels fewndo 2onpoxd o

wyode JWIA U1 Ol SIUSWIINSEIW JYt pUe [opowr pIzijear a1 ndup "7
sodeys spowt yum |9pows UONRZIROS JopIo-wnunutw v sonposd

01 JduuBw qunsn Ay ug sudwasnseaw oy o) ainpasoxd vyg op Addy -}

-sdois Suimorjog oyl ur porzurwns
G URd UONEDIHIUAPL/UONRZIIAL WANSAS 1SNQOS I0] unIod|e uonwrILli. 0t
adugs-apows (astou jo dsuasard oy up £omdoe 1oy 01 pasueyud dyy,

WHLIHODTY NOILYIIAINIQ] 3dYHS IAOM

suonenbd opuqofie teoul] wWoy PoulrRIqQo ¢ UONN|OS
NN O o8 taeougg sAempe st AW O o3 indut o) pasn pur vy oyl Aq
poaanposd japow oy *ased Juasaad oy Ul T(GERGT YOO PUB IDWDOY) JOALOS
uonenba-eauy L Juisn paajos aq Avt yoiym ‘suonenbd oeiqo(e seougg
JO 138 1 0l AL AU sHauod anbuagaar supg, 0z 1 ship £q pagrissop
waqoad anpra Lmpunoq jutod-omy a4l 9A10s 03 pasn og Lews onbiuyon dur
-100us dpdnjnwu B usy) *1eaul] st WO NI Y1 ul [OpOt PIWNSSE N J|

riény )
- H
A1Yym
ACNV ....... .......-....-.....-.--e"A.\hv‘hc -—vU—l—muar‘"A\uvx
A@—v..... ........-.-.a.-.-..—A¢.A\uv«vwlﬁ\uvm——l.\z.M:N+Al\~v,‘"Af\~v4
Aw—v.........-............-......-...°"AIH:V‘.-O ;vﬂumu&wuﬂchv*

) n

Gy - e e SR .1 [P

(L€ 1

X

(o1 e erereeeeee e ()2 2y
. Je -

s pazinnuns (JAHGL Stopgox! anpea Lepamoq jued

-0M) ) 0} SpRI) (HP 01 1wadsas yum g1 by ut £ jo vonuzpwiuie Iyl AL

UDALT © 0. “suoipuod L1ussadou s widednuog poajes-os oyl Jo uoned1jipows
v woly Apdonp smojjoj ¢ b ut £ jo uoneziunuiw 9Y) Joj wytiode uy

‘patjsnes

SEJUIRNSUOD DOURLIAOD OU) IRUS YONS PIUIULIDIOP S *Aq xtarwt 1yJiom oy,

“AA 1O 2210Ud oyl uo spuddap s190530 Supodwod oml dY) uIOMIdq dduR|Pq

Jodoid oY), “JUIEIISUOD JDURLIBAOD JYi £JS1ES O} DIRWINSD Yl ISNED O] JUOLdN)

-jNS 2Q 1SNW 105§J9 PIIOPOWIUN DY) *JDADMOH "paziwiiuiwl 9q pjnoys pappe

T T . —— — —

9ct

2q O} 199Jj0 pIJdpowiun jo jwnoumw Yl 1By uonduwinsse 9yl S102{Jas Yydym
‘uu?) [e1393ur U ST UL ULIDY HU0DIS YL ("f #31e]) swowNSENL JJLINDIE
-ut oy uey A[1Aeay ovs paydom e (fy fjewis) SUSGWIAINSEIW I1LINODE
‘SN $9UBLIBADD JOLD JUDWIAINSEIW PIIBID0SSE Y} JO ISIAUL Oy SI SLLIIL
Kireuad asaw Jo yoed uo | i Bunyiom oy *sjustuDINSEIW [enide 3yl 19ipasd
*[POU JUDWDINSEIUW Y} OJUI PIIMNISANS UDYM JEY) SIN[BA PIEMO) SI)RLNSD
SMIS DY) DALIP O SPUI] ULID) VONRUINAS S JO UONRZRUINEA "SUdIIDINS
<2 enon M) tuodj {(soms papuunso ol uodn —uﬂnscv SIGUNSEDUW PO
-2ad a jo :C_—.u_>9_v "y U\:_":.J: -—um—_; SSULID) DIDIDSIP JO wns —«U-:%-DB IH
s1 15115 9y, "suual Kyjeuad oml Jo wins oYl st G ‘bg wt £ [euondun} oYy,
-pouILLIDIaP 9q O3 XLBW WM ¥ X ¥ = M 250UM
0r 1=l
(1) * e e |+ Q19 ¥12 - (D8}, A3 - (AN L =1

I "
}(D)p 01 192dso1 Yum pazZiiuity S1 {RUOHIDUNY 1SOD Suimolo} o1 ‘IXON
Nv~vlc.lllnlnl-lunnnnlruapnln-t -----..-ANV"*-—NaAhv:;Ahv*“o—"*

-suonenba Juissoaod-owis pagipow ayy sonposd o1 *1y by ‘suon
-enbs [opows ojes [euISLI0 Y JO SIPIS purY-IYILI oYl 01 ()P 101294 JdURGIM
-SIp PIJOpOWIUN PAUNUINIP-3G-0) & Suippe Aq pajudsaidas st Joud [9pON
*SUONON
-105 30035 PPpows asayy donposd o1 pasn ag Anwr poyowr NN YL st
-2INSEOW UDOMIDG PAIRAIIUL §1 [OPOW DI UIYM PIIDDLIOD IQ SIHIID IS
i sonnbor AQraousd JuIRAsueDd DDURLIEAOD JYl 0 UOLHORISURS ‘suonenbo
astneukp s g ug jasoud anz sioud ) paznundo uddG DALY 01 PAIDPISUOD
S1 DIMUNSD DINIS DY) “PILYSHES VNG STY JUIEHSUOD IDURLEAOD N1 udIm
“JUIBNISUOD DOURLIEAOD DY) AQ PIIVJUD ST UONIPUOD iYL, “INI0U JUDWIDINSEIU
Sl ST DJUBLIEAOD OWES Y} JARY PINOYS S[RAPISII DIRWHISI-SOUNU-IUILDING
-eour 3} ‘pealsuj "A[IoLX SUSWDINSEIW 2y 301paxd 01 Jopow YL 9310) O
sreudosdde jou S! 11 *SIUWIAINSBIWI I} UL ISIOU JY) O ANP ‘JIAIMOH 931y
00 2I¢ SIUBWAINSEIU [EN1OE oY) PUEB PIBWIISI I UIIMIDQ S[enplsar oyl
PUR *2RWINSD LIS 1901103 OY PIIIK 10U S0P UONRIFIUL Y *SI0LD SUIRINOD
|opow drweudp walsAs ayi Ji ‘snyy "|pow dtweukp wAsks o jo uonesd
-31u1 UO Paseq S JBWISI LIS JUIWANSEIW-UOMIDQ YL ‘(nx ‘orewnsd
21B)S JUALIND Y UO PISBq St 7 SWN I8 195 IUSWIINSEIW PABWINSD YL
*1951100 9q 10UUED DIBWIISI I *ISIAIIYIO "YINLi Y} 11 Suswssnseous jens
-2% 2} SE 3JUBLIEAOD JoL3 dwes i Apdrewrxoidde yim (‘DL smoawainsvaw
jomop o) 3y 03 pasinbox are [14(N)x]8 swawamsvaw parowisa dy syl

Aﬂ: chesemrnaressarsaacesann .nM- ~ AhﬁQ.A\CM_ﬂ - Asa.mx—su&@v«._w - Axuvmu.v

:poysnes 2q 01 uonvuxosdde

Fumoqioy a1 Sumnbos £q ApeonpiudyIvwl poULIDp S1 IUIRASUOD ddURLIRA

-0D DY . MIELSUOD DIUBLIZAOD, JY) St 0] POLIIII ST UOIHPUOD SKLL X1

-RW 9OURLIEAOD JOMD JINI-SNUL-IUDUWIINSRIW DY) YIIEW ISnw XLiewr ddue

-LIBAOD JOUD DINWIISI-SAUIL-JUIWDINSEOW DY) Iy uondwinsse oy jo siseq
3yl uo pauuLP st djewnsd Kiowsfen awis fewndo sy ‘YWW W Ul

71 = 1 = % earsw swmn payoads swos Jutmp {(2)x Aq paou

-op] ()X 10§ drwnsd (rurndo Y dULIDIdP Iy dourIRAOD Umouy Jo oduonb

-5S WOpURI URISSNRD ‘URdW-010z B S1wdsoados fa asoym pue L0194 JOUD

JuSWAINSEIW | x 4 = ‘A {S19S JUDWDINSEIW JO J2qUINU [BI0) =t suonwnbd




823 40) 6L29°0 LILED
I01L°0~ vH8L 0~ S109°0~
10090 ROSP°0 S109°0
Iy 0~ 162070~ M {
¢ PO ()
P ] SISE0 SI09°0
OREY 0 LiLto LILEO
161170 CEST0 FAYA N
S8 0 LR0T 0 SHm 0
£ MO ()
SOE9°0 690970 SI09°0
MLy o 6r0r 0 LILE™0
018¢°0~ T09¢°0~ LILE 0~
SROS O~ SH6S 0~ S109°0~
T po (9)
168y O TOOLY LILEO
SONY°0 1680 S109°0
ROEOHO £HLS (0 S0
SOLEO * cHOF 0 LILLo
1 dpo (0)
(e) (@ {y)
INN/vH3 auoje yy3 uonnjos 1oex3

1 a|dwex3 Joj uospedwo adeys-apoN ‘Z I19vYL

: g6t = €10°0—~ w8e’1 = L1070~ RgeE'1 = 0
r€9°C = 6700~ €9°C = 0200~ 1629°T = 0
186L°t += v61°0- 1000°0 = 98°¢€— 1819°te = 0
IEre't = 00— 2P0y = SLO00— TP = 0

sanjeauddig (q)
070 oo )]
1L0°0 98’0 0
080°0 8LT°0 0
680°0 90¢°0 0
10£°0 86£°0 692°0
+0T°E e SiT’e
651701 82701 61°01
+$9°LL 69°L1 90LLl
sonjea sendulg (p)
(€) (@ (1)
IWW/vy3 duoje yy3 uoynNos joexy

i ajdwex3 1o} suospedwon uopnios L 371EVL

821

Surdwep [euonodoid sspnpour jopows s, wANsAs Y1 ‘djdwexa puooas oy ug
-100d K1oa
ore sadeys apows pue sanjeausdid 943 JO UOHEIHNUIPI YL ‘IDA0JION “SopoW
Sunedidnred anoy ay jo sonp paynuapt Ajuo wpuodie yvyg oy *Aiuenod
-Un JUSWINSENW 0] NP *210J219Y] ‘dqeynuspiun Lid1aidwos 21om adeys
apowt Fuipuodsonios oy pue sanjeauadio jo sied e ‘sip o) parepas Apoauq
“SHUDWDINSEIW DY) Ur ISIOU POUdSINIdL sanjua aepnduls oxdzuon Tunmeung
o) pue ‘poyNUSP) D1dM SOPOW 92IY) AJUO JRYL DPN[OUOD PINOM DUO ‘SIN|RA
sepn3uis oy Sulunexy ‘g pue | sa|qe L ul pokeidsip osje 91e sjuSWSINSEIW
Ksiou oy Suissososd wypuode uonezifear woisAsuadid ouofe puels ay Jo
s1Nsa1 oy g, “wgiuode yono jo sourwiosad oy JdnNLoAUl 0 SUOWIdINSEINN
1apad atg) o) pappee sy opngda: radis o) Jo 2218 M) JO 2,0]~¢ Kpmrxosd

-de 98100 M PRINGIISIP-URISSENG) 12 CHMOUY UBOHRJOS 1DEXD I UNAA
*POLIUSPL SOpow JO Jdquinu oY) s{enbd songea annduls padead
-A®R O15ZUOU JO JoquInu oYy eyl os Ja1ador paJeroar s1 sanjea senSuls jo
sied gord Andridunts 10§ *39A9MOH “sonqea aeinduis jo sied v yiim pajeioosse
A[euniou St pa1jiIuapl opow yoed eyl pAOU aq pinoys 3 ‘sadeys dpows iy
pue ‘(ones uidurep pue Louonbazj [eanieu s, spows Yoo Junesipur) sanfeausd
-13 oY1 *(poynuops sopows Jo soquinu 9y Jurroass) sonjea senduis oy Jo
SISISUOD UONNJOS DY L, T PUr [ SIQRL Ut paIedIpi st YT Aq udald se uonnj
-08 1oRX0 oY) *djqejirAr v sudwaInseaw fruomsod Auo Junrunssy () =

) [Ppout s wdsks a3 ur papnpout sem Juidwep ou *opdiurxd 1811y Ot S04
‘spmuaInseEnu u—:-:_ se
UONN[OS UIRWOP-oWwIN 10eXx2 oY Suisn v Aq paeindfEd udy e sones Jul
-dwep pue *soouonbaiy feanieu *sadeys opouwt 198X oy "paeindjed st ojdwe
-X2 1JoB3 JO UOHIN[OS UIBLIOP-SWN 198X2 3P ‘jenusuodxd xiew sys Juizinn

€0 0 0 0
0 €0 0 0

: o o g0 o |7
0O 0 0 ¢to

‘inq awes ays Aeis Y pue g ‘o(duexs puoads o1 J0g
o1 - 0 O I 00 0O

s— ot S~ 0\ _ JOo 1 0 o0} _

0 s- o1t s- | oo 1 oW
0 0 s~ ol 0 0 0 1

:01 jenbo ¥y pue W fum @ = 3 ‘ordwexd 38315 oYy 304

OX\/O,..N ¢ MW (Nx

(Nx 7 : 0 x

‘pamnsqns are 1o
-dwep pur *Juuds *ssetu (gors 10) swepsuod sodosd Y pur *SMOJj0J 1Ry ULIO]
J9uds-2ieis oYl OUI POULIOSUEA DIV WIDISAS D12I2SIP AP Jo suonenbd Fuiwsd
-A03 2y "Ssew yomd udamlaq s1ddwep pue sSuuds poziEdpl yYim OSSR
anoj Jo FuUNSISU0 “WNSAS WopodI-j0-02130p-IN0) B 0U1 WRDQ IDADNURD oY)
2Z13013S1p 01 S1 212y udye) ysrosdde ot (G611 YINAOSII) wajqosd onpea
-udd19 [eNUAIDYIP SNONUNUOD Ay SUIA[OS Ul 1y "WEBIq IDADJNULD € JO




(bujdweqg oN) z ‘oN adeys IpoN 'z "OId

NOILISOd
10+3005°0 CLE . " . . .
10+3£€€°0 10+3£91°0 00430000 .o 19$+°0 °E€9°0 h:.m.o
7795°0~ 069L°0— 1090~
1v£9°0 20st°0 1090
SOIE0— 78400~ LILE 0=
p 3po (P)
00+3€£5°0~ ceLl’o SoT1'0~ $109°0
2 98¢+t 00— L1TS0 LILE0-
e ——— Wu £61C°0~ 6£85°0 LILE 0=
HIOYL — m (92240 $675°0 S109°0
e 9 ©)
x|m22\<¢ﬂ =\ 00+3¢€$°0 m £ oon
b8 3] £865°0 ¥$19°0 §109'0
] ST8€°0 Z508°0 LILEO
¥ L9LE O~ OLYE0- LILEO-
vua -/ §919°0~ 2865°0- $109°0~
T WO (P
- v e e e~ L0 0300170
$Y0L 0 LAF O LILE O
++65°0 1L65°0 1090
*sopowr 211 paynudpt Ljuo wpuode €v85°0 €195°0 s109°0
vy o sJurdwep prunmopnns pue AUIRLIoOUN JUSUDINSEIW JO UOHRUIGUIND Y} 106£°0 ’+0F°0 LILeo
0) anp ‘010§210y ] "polnuUap! jou a1om adeys spowr Buipuodsomod ay) pue 1 3poN ()
san[eauddio jo sind dwms Yyl *OS|Y "SIUSWDINSEIW OY) Ul ISIOU PAIUISIIdos © @ m
sanpea Jepnduls 010zuou Suluewdl o) pue WY £q PalRUSpE 219M Sopow
201y1 K[uo 1) £ISNOIAQO St ) ‘sonjrA Jen3uls o1 Jo uoneulwexs Aq ‘urely IWW/vu3 uole Y43 uonnIos 198x3

“ pur ¢ sopqul ur udald e synsas oy, "opdwexa snotaaid oys se uotyse) Z aldwex3 Jo} vospedwo) adeys-apow ‘v I1AVL
awms Al Ul pawnaed d1om sitnsas ayg, tonms Juidwep 9561 v Fuipadoxo

H8EL = 1910~ 1ITLEL = 9L1°O~ wLe'lt = 0510
(6ujdweq oN) 1 -oN adeys spoW "L "OId 19€9°C = 9L1°0— 1€99'C = 1L1°0- $79'T = 0S1°0
1IS6L'E = 18T0— 1000°0 = €6°S1— 1619°¢ = 0S1°0
NOiLISOd wWie't = 66C°0- 16£0'Y = t9¥°0—~ 08Ty = 0S1°0
16700870 . RLIS RO . Jtos3z000 . .oo‘uuwm.wuao_.aa sonpeauddizy ()

69070 6£TO 0

LLO0 0sT0 0

060°0 9T 0

680°0 680 0

09+3555 0~ TETO 9TLO Lo1°0

- €EC'T TEL'T tLec

> RI9°L 1€6'9 €20 L

e R A e e 2] 617°¢l TEUEL 86T°¢1

=] sonep Jrpndng (M)
VI -~ c

- e 5 00+35t5°0 I (€ @ (v

/// /n\ \\ INW/vY3 auote y43 uonn;os 1oex3y
o
|\ \ Z 9idwex3 103 suospediwod uonnios ¢ 378vL
FINW/ VHE
, HINYL
| | 10+2001°0




£el
(Buidweqg yum) Z ‘oN edeys spoy 9 ‘DI

NOILISOd
10+3005°0 10+3££€°0 10+3£91°0 00+3000°0
' 16+3001°0~
HINYL I/

= 00+3££5°0~
v - - w
R S
Q
Z
-
foosacsso 3
(o]
2]

vud
104+3001°0

Aq payunuopl ssoyl pue sadeys spow oy oy ‘ojdwiexs sy Jog -uaredde
os[® s1 sonrAudSId o) Jo Adwinode poaoiduir Sy Y "payuuopt K1astoord alow
a1e sadeys opow 204Y) IS0 Y ‘OSfY “WipuoS[e paUIqUIOd Y1 AQ PIIIA0D
-91 AJd1eandoe st w4 suoje-puels Iy Aq paYNUSIPL J0U IpOW YR ‘OUON
*asiou pajuasardar sanjea remn3uis Sututewas 3y pue ‘unpuoSE pIdweyud
) £Q POLJIIUIPI D10M SIPOW JNOJ JEY) SPNJOUOD PNOM JUO ‘saniea rejnuls
oy Tururwexy -05udTIOAUOD 10} POPIIU D19M POZURWIMINS dInpadosd dy jo
8912£5 om] Kjuo *ojdwexd aepnotued sy 104 “aaded sigy ut pasodosd wnpuo?

(6uidweq yym) | ‘oN odeys apow ‘s ‘Oid

NOILLISOJ
10+3005°0 to+3¢£5°0 10+3291°0 00+3000'0

- 10430010~

00+3££L°0~
X
..................................... o e o o ] >
@
/e
AR ]
00+358€°0 3
Z@E?zm ./ / \\\\m o
TSwgy eee e .&.\.\ o

HLOYL \
. . . _ . oo - -t - et e el 1000170

cel
(Buidweq oN) ¥ ‘ON adeys epoN ¥ ‘Oid

NOILISOd
. 10+35CS" 10+3£91°0 00430000
10+3005°0 0+3§CC°0 3 00°0 10170~
R
ig\
Jx
N 7/
00+38€$°0-
k<4
; 2
N L S ) L Lt g
! A
| nd
=3
c
00+3£8¢°0 O
vua 7/ o
W/vyu3
HINYUL
10+3001°0

-|e uoneoynuap! ddeys-opowW PISURYUD I JO SINSDI DI SIALT T JjquL
*S1[NsS91 J[QEIjI3 DI0W IONP
-01d p{noys sinsa1 Y1 SuISeIAr PUB SIUIWDINSEIW JO SIDS WIDYNIP Ausw
Sunye ‘swoaiqoid pom [eas 3uizA[eue Ul ‘210JoIdYL "SISED [SNplAlpul 1O)
poureiqo 10u Ismiayio ‘sadeys spows sns 3 uodn 5udB19AU0d paonpoad
sisA[eue O[TeD) OO B JO ISN PajedunAl SIYL “JOleIouad Jaquinu wopurl
v JO spaos WaI91p 01 Aq papiaoid syNsas [enpiatpul O Jo dTesoAr ue due
p—] $OIQRL U1 UdAIF SWPLIOTR Y10q JO} SHNSII PARNGE) [RUL) JYL MON

(Buidweq oN) € ‘ON odeys spow 't 'OId

NOILISOd
10+3005°0 10+3€5<°0 10+3£91°0 00+3000°0
_ 10+3001°0—
I/ vuaa
HINYL 4
= 00+3£CE 0~
\ g
>
S L L L e P - s . - D
2
4 Py o]
- [}
Zr co+¢CC 0O
™
v
,
vHi
104+3001°0




sel

URDIIDWN A JOUue))y TP o unpuodipe vonezieas wiasAsuaiio oy £q payn
uapt swapused [Epott uo o Jo ST (9R61) *S Y ‘rddeg pur *-N-1r *Jueng
100="dag *£29~0T9 ‘(S8 *SINRUOIISY PUR SONNRUOIDY JO DINJNSUL uedUIWY

uAC) 0RO TP L TUOHIdAPDS [OPOW pur uoLRLINUSPL Jiawesnd [rpows Joj
(V¥3) wyiodie uonezijeas walsisuadid uy,, (S861) °S "¥ ‘edded pue ..%-.-. ‘Sueng

*dag ‘861

~-€81 ‘“(P)Ly “1ing "qin yooys .-asuodsar 9313 3y woly si1dpwesed uoneIqiA Jo
UoNEIYNUDPL 1901IP Y 10] POYIdW V., “(LL61) "D “H “NPINYIN pue Y °S ‘wiyeq]

6SY=-6bp ‘A0l [ wAnsss

pun 1o uo aouafiio)) uorayy pnuuy pag | ceiep ndino/indur woly sopow
J{QRURA-DINIS JRDUL| JO UONDIMIISUOD 9ANDIIT. (S961) "T ~Y ‘urwir) pue **] g ‘OH

“ady="anpy CSHT—ppT ((T)L ‘SONNRUONSY PUR SHINRUCIDY JO NG

~1ISU] URDLIAWIY UG 040D TP Cf | CSswdlsAs K1oieaqua azout) 93se] 10§ S0
-ew ssauyins pue ‘Surdwep ‘ssew Jo uonedHNUIPY, (HYGI) "8 19 *T 'S *‘SYOUPUSH
'ssepy todpuque) ‘ssoid LI 'P2 ‘QIPD "V (YL61) “wonupwnsy [pundg panddy

T N 9OUII0D SIDIIDIY pUD ‘SOUUDUK(T (DNIINAIS ‘S2AMIONAIS YIpT TSNS
1591 [epow £q uonesynuapl 1adwered [BINIdMIS 199117, (€861) ‘I8 19 D °f ‘udyd)

SIONIUI4IY | XIONIddY

-padpaoimouy
-oe Ajnyoawad ¢t poddns siyj c(aonuown 1oERUOD ‘Juenf UBN-13[) I9UI))
YoIrasay Ao[fue] YSYN PUe {(Joluow 1oenuod ‘sowry Kuoyiuy) yoIeosoy
MNNUIIG JO IO 20104 Ny Y £q pouoddns Ajeiued sem diom sy

SININOTITMONNDY

-as10u udnwdInseaw Yy Jo ooussosd oy ur sadeys opow Jo UOLIRIIIUIPI
/uonezijedl [RIAISNNS dleISUCWIP pue wijiuog|e uonesyyuuapt adeys-spow
paoueyud 2Y3 JO SINJRU 1SNQOI Y] ULIJUOD SINSAI ISIYL "sinsar paaoadurn
aard wyantode uonesijiiudpl adzys-opotu posuryUD SY) SISED [[B Ul ‘JIAIMOH
TPAALISQO DIIM SOPOW PABUIPL JO SUOLUIQUIOD JUDIIINP 9561 Suipdad
-Xd <[0AD] astou 10} ajym C‘sadieys apown anoj v £jnuopt pmod swiynaof
e yoq spnpdwe (pufts oYl JO 94¢ unyl SS9 JO S[OAI[ ISI0U JOJ “OSIY

-1noj Apeapd sem wnjiuo3ie JININ
/Vdd pOouByUd SY) 10J JJOIND I} I[IYm *931yl AIEI]D sem (VYTF) € pue |
<oqu2 0 sonjea Jenduis 2 JoJ (POLHUIPL sapow Jo Jaquinu ot Funesipur)
wiod gy oyl CXuww 91wIs pazijedl A woly pae[nofed sonfea temiuls
Yl Yum 1UISISUOD e sinsar asayl “(Surdwep noynm pue ynm) Ldieind
-O" paynuapl aq pinod sadeys dpow Ino0j [{B ‘SIOURISWINDIID JUWIBS ) JOpun
paIso) sem wipod e uonesyuapt adeys-opow paduUBYUS SY) UIYM “IIADMOH
‘(Buidwep noiim pue yiim) suoje unpuodie uonezijear wAsAsuadia oy
Suisn sjqenuaplun £ja10jdwos sem adeys apour SuO ‘[9AI] ISIOU g,(Q]~GC © O}
p2123(qns 210m saxmonns ajdwexa syl usym ‘sdueisut 104 ‘siudwainsesaw ind
-ino paidnaiiod yia saanons w sadeys opowr uikjnuopt usym sudwdaord
-wip searjuds £aau00 wiyiuodpe pasodosd ay) wogy NS NYSSODINS DYy Y,

SNOISNIINOD

paunqo (s sea sadegs apott anop g jo £19A0008 LN W CIDAD
-MO0y Cuonediuapt adeys-apows ayy 1Ay pip aanpnas oy ul Jurdwep jo
asuasard oy rg—¢ s ur uda1d ose suijiuode yloq Lq paynuspr sadeys
apow 241 Jo suonensnil 9yl "wyiuode paulquuod Yyl Aq paynudpt Ajdreandoe

28
(Budweg yum) ¥ "'oN adeys Ipow '8 ‘Oid

NOILISOd

o . +3000°0
10+3005°0 10+3££€°0 104349170 00 e 0010

00+2(¢s 0=

00+28EE°0

AANLINOVIN

10+300t°0

wiede sem vy ouofR-purls Y1 AG PILIUIPT 10U IpoW Y TVHH Aq payn
-uopi sopow 29141 2y 03 pasoddo s ‘wyuodie pasodosd ayy Aq paynuapt
250Mm % POW JNOJ IRY) [RIADI SON[RA IRNTUIS YL +25u0310AB0D JaJ KRS
-5ou 219m sdais pazuewwns s, unpuode Y jo 59(9K0 om1 Auo ‘ojdwexd
151y o3 oy sepuaig Surdwep Juipnioul o(durexo puodds Ay 1oy wodE
uoneoynuapt adeys-opot PISUBYUS 3Y) JO SINSII AYI MOYS { PUe € so|qel

’ ) *p—1 'sB1g ut pajensn|
-1 DIm (RUINSI) unuodfe padusyud dyr puw ‘(sudaInNSedU) Juoe Y

(Buiduisg yuMm) € ‘ON odeys 8poN °L "Old

NOILISOd
10+3005°0 10+3£55°0 10+3¢91°0 00-30000
HINYUL
P~
fp= = 00+3€£5"0~
/N
°I / N
NS S (SSREPRIEY S -
AWW/YUI A
Y e o e n ~tooerssso g
h J
e _ - ™
Nl .
vud
10+200t°0




9€l

*JOJO3A J}eIS-00

pue £195 JUSIINSBI

‘suowaansesw ndino

301094 ndino

LIODA S

e ANpIgeonued

sy Jupydiom -

L307 DA JOLIY JUMNUDINSLIUD

xuew £niqeasdsqo

10199 Indut ojwreuLp

{95UBIIBAOD 2SIOU JUDWAINSEIW:

‘JAS WOl XLew SLII9WOS!

‘(@AS) uonisodwosdp anfes mBNIULS WOIJ XLIBW OLIIDUIOS!

‘Xwew ssews

‘Xiew ssoupns

‘{JeuonduN) 150

, Xuew [Pyuey
| ‘suopienbo [opows JudWIdINSEOW
‘10109A suonente [spow
| 10119 [5POt UMOUNUN
| ‘xinew reuo3elp sanjea yejnduis
| *xwmew ndino
EE«E:&E

W mna I
E F Salial ket

0N
RN -Eohalll--Aa "5~ T S PAr s

‘xujew a3eds-o1els dlweudp

saadod sy uy pasn a24p spoquiks Suimojjof ay 1

NOILVION ‘)| XIONIddy

ady *fuo) sprvK pup SOIUDUL(T [D4MOMNS 'S2AMMNS YIOF *d04d unpuode
uonieoynuapt ddeys spows paduryud Uy, (46861) ‘[ "A ‘YOO Pue **[ ‘W “Jowd0y
Qo 204 “Juo) 6861 Surdumq . saIny
=S —uann_n—u .—G uMINILNUIPL ISNYOY ., .Aﬂoxmv: f Qg .xccz pur ..—. ‘N ..-u:_ocz
“ny—"Inf ‘OLY-£9 ‘()8 'UNQ@ j04M0D pMD [ S
-onng Iqixaf4 Juneiqrp Jo uonesynuspl. (S861) 1 °f ‘supfunf pue *°g ‘wereley
RN =TURL ‘CE=G[ ‘€€ 1S “mpuossy *f  cwipuodie uonezijess wais{susdio ue
Tuisn vogeatnuopt [epows )rsdddeds odfirn). “(§861) *N-'f ‘Suenf pue *-g Yy ‘vddeyg
INf “vL6-896 “(LILT *'F YVIV
« SWRISAS duwruAp sedUlUoU JO UONEDLIUIPE pue uonewnsy,, (6861) ‘I *d ‘NOOW
‘unf ‘*X3] ‘UOISNOK °*SIIUBRYISN [eIUdW
-uadxg 105 L1100§ Iy ‘Sunaspy Surds 1861 ayr Jo *o04q °SIOLD uONEIUNI)
[PPOW JO UOHELLIISD JOLD Jopows WIAUNUIA. “(L861) "D-'f ‘Ui77 Pue **f *q *NOOW
‘unf-AeN *SLE=L9E *(P)1] ‘SOUNRUOINSY pur sopnru
-0J9Y JO AMNSU] ULdUNUY *"ulq J04180D "pMO *[ , SWINSAS SIWRUAD pajopowt
Kiood 10§ GOLIBWINSD JOUD [SPOUS WNWIUIN., “(8861) " “f ‘SuIyunf pue **[ *(J ‘YOO
A
HOX MON “*OU[ “|HH-MRIOIW “SISGnup uounaqia fo swowd)g (SLet) "1 .:332&2
SMICA MON SUONEINIGRG OUdISIMMY AN “HouDwnsa [pundO *(9861) 1 &_\ﬂ_o‘_
dy ‘9L1-191 *(T)ST-DV *sivutduy oondalg pue [esn
-03[3 JO MMNSU] ‘jonuo) dnvwomy uo ‘suviy suonedtidde swos pue uoneind
-wood s3] :uonisodwoadp anfea re(nduls Y. *(0861) 'f *V ‘que pue **D A ‘eway
‘BA ‘ud1dpyeg
*121ud)) suodeapy SIBLING [RARN SO/ V-6-0-£8-1 609N "ON 12043100 110d3Yy jour.g
Ltuoneunsy apmnme geiddands pasuryuzl. ((SRG1) f " “NOOW pum ** cf suyung
“unf=ARy ‘£OE-P6T (£)6 ‘SONNRUONSY PUr SONNBUOIIY JO dININsuy




DSC-Val. 20

JgoQ

ADVANCES IN DYNAMICS
AND (CONTROL OF
FLEXIBLE SPACECRAFT
AND SPACE-BASED
MANIPULATIONS

PreseNiLe o
THE WINTER ANNULAL MEETING OF

THE AMERICAN SOCHITY OF MECHANICAL ENGINEERS
DALLAS, TEXAS
NOVEMBIR 25-30, 1990

SP(;NSORI-:D iy
THE DYNAMIC SYSTEMS AND CONTROL DIVISION, ASME

1SprEDp py
SURESTH AL JOsHH
NASA-TANGEERY RESEARGH CENTISR

THOMAS . ALBERTS
OLD DOMINFON L NIVERSITY

YOGENDRA £ RARAD
UNIVERSITY OF NORTH GAROLINA

g

THE AMERICAN SOCIETY OF MECHANICAL ENGINBERS
345 Bast 47th Street 7 United Engineering Center (303 New York, N.Y. 10017

O




CONTROL FORMULATIONS FOR VIBRATION SUPPRESSION OF
AN ACTIVE STRUCTURE IN SLEWING MOTIONS

Ephrahim Garcia and Daniel J, Inman
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» vl Aernspace Engineering

'+ Me v York at Buffalo

Suif no, New York

Department of M than.
State Univ oy

ABSTRACT

The slewing control of a flexible structure is cousidered by
examining the equations of motion of an integrated control/structuie
system containing both the actuator and structure dynamics. The
system under consideration is a slewing flexible structure, thin
aluminum beam, torque driven by an armature controlled DC electric
motor and actuated by a piece-wise distributed piezoceramic
actuator. An improvement in performance is gained by a) including
the effects of the motor-actuator and beam dynamic interaction and
b} using a piczoelectric device, layered on the structure, for direct
vibration suppression of the structural dynamics. Various control
3aws are sonsidered Sor the vibration suppression control probiem.
These irclude a standard linear quadratic regulator controller and an
ouiput feedback control scheme. A comparison is made between the
performancs of the cutput feedback control scheme and the tull e
feedback controller,

NOMENCLATURE

- stale space system matrix

- state s&mcc contol mattix .

- control matrix in physical coordinutes

- equivalent viscous damping

- viscous damping in the metor (bearing friction)
- state space cutput matrix i

- voliage applied across the armature ¢ircuit

- damping matrix

- ¢lastic modulus

- flexural rigidity

- cross sectional moment of inertia

- rotatory inertia of the beam about the slewing axis

ST T ERmTS OF FEwWe

- motor inertia
nen - 1 by ridentity matrix
I - effective motor inertia
K - stiffness matrix

Ky - back electro-motor force (emf) constunt
Kp - position feedback gain

K; - moter torque constant

L - beam length

M -inenia matrix

Ng - gearratio

i - ith modal coordinate

q - displacement vector

R,  -armature reststance

W - beam thickness

X - system state vector

y(x,t) - deflection of the beam wrt x

y - medsurement vector

¢i(x) - ith eigenfunction

I - modal participation factor of the ith mode
1 - ptezo layer constant

0 - angular position of the rigid body motion
Oa - angular position of the motor

P - mass density per unit length

t - torque applied to beam

vl matrix transpose

M) - differentiation wrt x
INTRODUCTION

{t has been shown by Garcia (1989) that the dynamic intcractior'

oetween the slewing actuator, the DC motor, and the flexible
stritcture can lead to improved vibration suppression. Traditionally,

single actuator problem. This problem has been studied both b,
researchers in the control of Jarge flexible space structures, Juang
al, (1986), and by researchers in the robotics community, Cannon
and Schmitz (1984), Hastings and Book (1987), and by Yurkovich
and Tzes (1990).

the slewing conwrol of a flexible single link structure has been a

Recently, Park et al. (1990) proposed the use of & "voice-coil"
actuator in addition to the slewing motor, This actuator was rigidly

end. This approach achieved improved structural dynami
performance and reduced peak motor voltages, but at the cost o
adding the mass of the coil actuator and its supporting mechanical
wietlace to the slewing payload. Garcia and Inman (1990b) showed
that wumlar increases in performance can be achieved by slewing a

attached to the slewing hub and actuated the beam near the clampca

G - & G D & S B O B & Eae
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active structure rather than a passive structure. Th.s structurs
consists of a beam layered with piece-wise distributed, or
segmented, piezoceramic crystal. The active beams being considered
here is similar to those considered eartier by Funson and Caughey
(1987) and Burke and Hubbard (1987). They considered
cantilevered flexible beam controlled by a collocated pur of
piezoelectric actuators and strain sensors coupled with a positiye
position feedback contro! law.

A study is performed which examines vanous control law
formulations; in particular, an output feedback controf formufation is
compared to a linear quadratic regulator (LQR), as discussed
Kirk (1970) and Sage and White (1977). Tl goal here s to desgn
.an.output feedback control strategy that performs nicarly and well as
a full state feedback controller. The application of an eutpu!
feedback controller reduces the aumber of teedback paths in the
control loop, which is essential to experimental implementatum o

' the control law. Morce importantly, an output etk g

generates a feedback mattix that iwbased von coar oy 0y
information rather than relying on the aons
nuxdel.

SYSTEM DYNAMICS

The schematic of Figure | is an edge view of a thin beani slewong
the horizontal plane such that gravity does not play a signilicant 1ode
in the uynamics. The driving torque, 1, is applied at the slewing
axis,

The motion «.f the structure is assumed 10 have a modal expansion
given by

n
y(x,t) ’i§l¢i( X) GV Q)

“where 2 is 11e number of modes used in the solution, ¢;(x) is the ith
mode of vibration and qj(t) is the modal amplitude. A detailed
schematic of a experimental piezo-actuated structure is presented in
Figure 2,

Garcia and Inman (1990b) derived the equations of motion for a
piezo-actuated beam in slewing motions. This analysis revealed that
the equation for the rigid body motion of the system is given by

. NnrL
1,0 + .El[;pxmd)t} q=1 @
1=l

.

The flexible motion of the structure 1s governed by thie follow aig set
of n equations of motion

L " noL .

[ jpxmdx]% [_Z ]P‘m,dx}qw

[V} J=lo
L

n L nn az
[2 fE161"%; dx] =010 v+ [ SUROARIOI B (3
Yo ¢ X

where n refecs to the number of modes assumed in the solution
The actuator dynamics - that is, the interaction of motor and beam -
is included in this model. This interaction takes into account the
votation of the structure due to flexure brought about by the applied
torque in the Hamiltonian’s expression for the nonconsen ative
work (Garcia and Inman, 1990a). This interaction appears
Equation (3) as the direct transmission of applicd torjue to the mok
through its modal participation factor. Garcia and Inman (19905

caicdated the moment generated by adding piec. wise distributed
prevo wlitors, The distributed moment term on the right hand side
ot Paquation (3) can be rewriiten as,

H

~

1 OTOAD) 00 de = Vo [ 6L - 6L ()

i motent distribution, 2(x,t), can be calculated by the product
teointant i, and the voltage applied across the segment, Vp®.

voi e s luncton of the geomietry and properties of the
aevm e This analysis follows that of Fanson and Caughey
" and Butke and Hubbard (1987). A more detailed analysis of
© ntlayered iezo actuation of a structure was given by
T Anderson (1990).  Finally, the equations of motion
¢ alrwing metare are assembled in a lumped mass

Hion oy

bl e pat,, (5)

Pl ot coote i = telmed l:ly‘(.|(|)| = |U((). qit)
S e e diping and stif(uess coefficient

Il Il (@) o #1TR(0)

\l= 'I""\'rl«n M| N (6)
YRR (1) S M,
TN S TC) N % o)
D =| B0 BFIO2 . byT()F(0) )

LbyTh(0) byTa(O)1(0) .. b,T(0)2

F () 0|xn
M.mzl e 0
K= Onxi H : ®
0 .. M@

T b = 4(0): thas s the ith torsional modal participation
o Lor the beam. The coefficient by is an equivalent viscous
e oo whieh s a combinaton of the viscous damping in the
i the back emf of the motor, Ky, The term I is ¢qual
-nve mertia of the motor acting through the gear ratio,

o nhinerna tenn is given by

1
I - fp\Q.(\)dx 0))
)

which represents couples the flexible motion of the structure with
the g body stewing motion. The control input vector ut) is the 2
¢ Iyector uT(1) = [eq(1), V(0] and the control coefficient matrix is

Ekir 0

bopfeilaroi(la)] . . puioa(Ly)-tiLa)])

[ngxl Efi& INT(1))
‘1 a
ih ! (10)

“hLt segnent prezoceramic actuator. The system of equation
< o state sprce forn by defining the state vector x as




x-[g] ' (n

and the corresponding state matrix

0 I
A= ] (12)
-M'IK -M-ID

where 0 denotes the matrix of zeros and I denotes the identity i
of appropriate dimension. With this change of coordinai,
Equation (5) becomes

X = Ax + Bu (1
with output measurements defined by
y=Cx (14)

Here the matrix of constants C specifies the relar’ ~~ between the
measursments and the state vector x(t).

VIBRATION SUPPRESSION CON )L

Presented will be an LQR controller design where the focus of the
design will be for the vibration suppression of the structure, While
the solutions to such problems are analytically convenient, full stne
feedback controllers are not easily implemented in actual hardware
without the aid of an on-line full state estimator, Since estinors

only approximate plant behavior, the prediction of sysiem
performance requires that estimator dynamics be included in the
overall system models. Although this type of controller is a
standard formulation in control technology, experimentally
implementing these controllers is not always trivial in the laboratory
Therefore, an investigation into an output feedback contiol
formulation is pursued. An output feedback control strategy reduces
the number of feedback paths and allows these gains to be funcuons
of the instrument measurements. This generates a lower order
controller which is simpler to implement in actual hardware, amd
arguably more reliable than a more complex full state feedback
controller. A comparison of the performance of these contrudlers i
given,

An Quiput Feedback Control Formulation

Some early formulations for LQ type optimal output feedbach weie
made by Levine and Athans (1970) and Kosut (1970). ‘These
algorithms do not guarantee stability, and were found to yield
unsatisfactory results for high order systems, A more recent
algorithm was derived by Moerder and Calise (1985). Ths
approach yielded a stable algorithm for finding optimal outpui
feedback solution by adding to the cost functional a penalty on the
feedback gains. Sah (1990) considered a simplitied approach for a
single actuator slewing problem which comprised of a least squares
solution between an LQR controller and an output feedback
controller. This approach is presenied here as follows. Let u° be
the solution to the infinite time, linear quadratic regulator (1.QR)
problem, such that

u*(t) = -K*x*(1) (15)
where K* is the optimal feedback gain matrix, and x*(1) is the

optimal state vector. The LQR control algonthm then calculates the
value of the gain matrix K* such that the cost functional

I= J(xTQx + uTRu)dt (o;

is minimized. The matrices Q and R are chosen to provide a desired
and system performance. Now let ug be a controller which is a
function of the measurements of the system, i.e.,

uo=Koy1t) an

Now define the function

9 = [ug)-u*()] Tug)-u* () (18)
anit sunimize ¢ with respect to the gain matrix, Ko,

U ., 0
Substituting for uy, setting 3-'%— = (), and solving for K,, the
€]

n

following expression is obtained,

Kozly Ty 1y 0)Tu* @) (19)

This obtains a least squares approximation for the solution of the
output feedback _ain matrix, Ko.

Control and Simulations of an Active B

The example given here is of an experimental slewing beam, as
depicted in Figure 2. This structure is currently housed in the
Mechanical System Laboratory at the State University of New York
at Buffalo. The aluminum beam is 0.8 m long, 0.81 mm thick, and
1.27 cm wide. The actuators of the structure consists of two pairs
of lead zirconate piezoceramic layers (Piezo Electric Products, Inc,
G-1198), and a Electro-Craft 586 DC electric motor. The moment
distrnibution generated for each pair of the piezo actuators is

M(x,) = 4.345x10°5 Vp Nmyvolt (20)

Al m:)(n(:) (():Omple(c description of this system was given by Inman et
al, (1990).

The measurements assumed to be available for this slewing control
sizsabation are strain and angular position transducers, The angular
posion asd angular velocity signals are easily measured ?c‘)lr a
sy st ntthiamg opical encoders, or potentiometers, for position and
4 Lachometer for velocity sensing, With respect to the system of
equaton (5), the angular position signal is the sum of the

undenlected beam position, 8, and the deflection due to the structural
rotaton ot the slewing axis, 1.e.,

i
Juy = o) + _z‘lm'«» qit) Q1)
1=

whete the angular velocity is simply the time rate of change of
Equation (21). The strain of a beam sensed at position Ly is given

by

Pylet) _tp 20%0i(Ly)
ax; -2 igl axz Ql(l) (22)

as presented by Juang et al. (1986). Piezoelectric polymer sensors
yield a titme rate of strain for a given system so that it will be
assumed that such a signal could be included in our control
formulation.

‘The quadratic regulator penalty function was determined by

choosing the weighting matrices as

Q = DIAG{ 100, 4.0, 1.0, 10.0, 4.0, 1.0} (23a)
R = DIAG] 1.0, 0.01] (23b)

- -1
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This yielded a satisfactory response for the structure in terms of the
peak current requiretoents of the motor, the structural 1 » deflection,
angular position respons= 2 the voitage requiremen . of the piezo
actuators. The response £ the system to the LQR cordroller is given
by the solid line in Figures 3-5, while the dashed lines represent the
response of the system to the output feedback ¢ ntroller. The
structural displacement response of Figure 3 appears slightly
smoother than in the LQR. This is due in part to e insensitivity of
the output feedback controller to the higher modes of vibration, as
shown in Figure 5. Figure 4, shows the total angular deflection of
the system during the slewing maneuver.

The performance, as defined by the cost functional Equations (16)
and (23), is J=10.987 for the standard LQR formulation. The cost
for the output feedback controller scheme is J=11.074, and is higher
as one might expect. Overall the performance of the output feedback
controller closely resembled the performance of the LQR.

CLOSING REMARKS

An investigation has been performed into the use of an output
feedback control scheme applied to an active structure. This
controller scheme has been found to yield satisfactory results that

rform nearly as well as a full state feedback, LQR, controller.
ﬁe output feedback controller reduces the number of feedback
paths, and hence, the complexity of the controller. More
importantly, it utilizes censor measurements rather than relying on
state information which may ot always be available,
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Figure 1. Flexible beam in slewing motions.
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tiagure 2. Schematic of the slewing beam showing the location of
embedded piezoceramic actuators.
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Figure 4, Angular position response for an initial displacement error,
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Figure 5, Voltage applied to the piezo segments for an initial
displacement error.
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