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I. Introduction I
The global objective of this contract was to construct analytical models of flexible structures

controlled by electromagnetic actuators, to perform active control for vibration suppression

and to experimentally verify the models and control algorithm by illustrating successful

implementation on laboratory structures. Two types of vibration suppression have been

examined: slewing control of beam like structures and transient disturbance rejection in

frame like structures. Several types of control actuators have been consideredas well,

mainly piezoelectric strain actuators, reaction mass actuators and electric motors.

In our efforts to bring modeling and control for vibration suppression into the laboratory,

we have produced numerous results which can be lumped into 7 categories:

1) The modeling and experimental verification of closed loop slewing control of,

flexible structures which has resulted in a substantial improvement in pointing~time.

2) The effects of slewing active structures (smart structures) have been modeled,

experimentally verified and shown to result in an additional improvement in

performance.

3) The nature of control structure interaction has been modeled and experimentally

verified for vibration suppression in trusses and frames using on-board

electromagnetic actuators.

4) A Timoshenko model of layered piezoelectric devices has been developed.

5) A significant new model correction method has been developed for adjusting

mathematical models based on experimentally obtained data.

6) A robustsystem identification algorithm has been developed.

7) A dynamic analysis and animation of flexiblestructures has been developed.
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I
Each of these results are summarized in section II. Section III list pertinentrtferences.

Section IV provides a listing of the personnel, both faculty and students, supported under

the 3 yeans of support provided by this contract. Section V list proceedings papers and

journal articles that have been published based on the results generated by this support.

Section VI summarizes accomplishments obtained under this contract and, discusses

research isses illuminated by these results.'I
lI. Summary of Results

I I-1. Modeling of Closed Loop Sleiving The standard approach to modeling a slewing

i beam is to model the dynamics of the beam as a cantilevered structure with clamped free

boundary conditions using a rigid coupling to the drive motor through a gear train,

I Through observation of a variety of different slewing apparatus, it was observed that some

drive motion can be excited by structural vibration in the beam and some cannot. This

I observation resulted in subtraction modeling and experimental verification of slewing

structure (Garcia (1-2)). The outcome of this exercise was that structural vibration in the

slewing article can be suppressed much more efficiently by ollowing the actuator and

structure to interact.

I Analytically this amounts to modeling the boundary conditions at the point of connection

between the beam and the motor as somewhere "between" clamped and pinned. A

parameter depending on the motor parameters, gear ratio and beam stiffness has been

I derived which characterizes the motor-beam system and is useful for designmg an

appropriate closed loop system. It was then shown both analytically and experimentally

that the proper choice of this parameter can improve the settling time of a slewing maneuver

by up to 65%. This result illustrates the significance of control structuite interaction in

slewing maneuvers. This is reported in Garcia, Inman et al. (3,4,5)
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Specifically this extension of previous modeling of the slewing of a. flexible structure

results from the inclusion of torque and torque slope terms in the boundary condition

connecting the flexible beam and the motor. This models the interaction between the

actuator Lnd the beam by including modal participation factors in the slewing equation of

motion. These modal participation factors indicate the degree to which the structure and

actuator interact during slewing. Because of this interaction, large modal damping is

obtained through the use of simple (rate) tachometer feedback. Experiments verify both the

model and the improved performance and are summarized in figure 1.

11-2. Effects of Slewing Active Structures During the third year of the grant the area of

investigation known as "smart materials and structures" was applied to the slewing

problem. Much work in smart materials and structures had centered around using

embedded piezoelectric sensors and actuation (see section 11-4). This use of embedded

sensors and actuators is referred to here as an "active structure." A large additional increase

in pointing performance over the system of section 1I-1 is gained by slewing an active

h.ructure. This has been modeled and predicted analytically as well as experimentally.

The reason why an active structure illustrates such improved performance in slewing

maneuvers can be simply explained by appealing to the concept of full state feedback in

linear control theory, If full state feedback is available, every state can be completely

shaped to have the desired response. For example a pole placement algorithm with full

state feedback allows every closed loop eigenvalue to be change to a specified value.

However, in most systems, only output feedback is available. This is especially true for

distributed parameter systems with an infinite number of modes. An active structure allows

the ideal full state feedback law to be approached by providing a large number of actuator

locations to be used.



The control law implemented here was to embed severa! sensor/actuator pairs into our slewing

i structure to create an active beam. The anal) tical model of this system was used to calculate an

LQR solution assuming full state feedba-L7 This "ideal" solution is then implemented by

calculating the output feedback gain matnx associated with the piezoceramic actuators that is

closest, in a least squares sense, to the LQR optimal solution. This type of control is only

obtained by using an active structure, and resu.lts in a substantial increase in performance. The

details can be found in Garcia and Inman (6,7,8) and a comparison is illustrated in figure 2.

I It is important to note that several control formulations are possible using active structures (on

smart materials) that are not possible without this emerging new technology.

11-3. Vibration Suppression Through Control Structures Interaction A reaction mass actuator

was used to study the effects of control structure interaction on vibration suppression control

I law design for vibration suppression in flexible space trusses. A strong theoretical result based

on including actuator dynamics in control law formulation and structural design is provided

which quantifies the nature of control structure interaction. This result, arrived at by

I employing various definiteness conditions, clearly illustrates the high gain instability

experienced by a number of different experimental examples. This result has been applied to

the results of other experimental researchers as well. Two different experimental structures

were considered. The first was a cantilivered frame in the shape of a "T" and the second was a

beam like frame suspended in a "free-free" configuration. Both structures were fitted with

NASA/UB proof mass actuators.

I A cantilevered seven bay planer truss in the shape of a "T" was controlled using a space

realizable proof mass actuator. The reaction mass actuator was attached to the truss at

location 8 as indicated in figure 3. The actuator was considered as both a passive and

I ,ctive device. The placement of the actuator was specified by examining the eigenvalues of
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the modified model that included the actuator dynamics, and by examining the frequency

response function of the modified system. The electronic stiffness of the actuator was

specified such that the proof mass actuator system was tuned to the forth structural mode of

the truss by using a traditional vibration absorber design. The active vibration suppression

law was limited to velocity feedback. The two lower modes of the closed loop structure

were placed farther in the left plane (increased damping). The theoretically predicted

combined passive and active control law was experimentally verified. The details are

given in references (9-10).

Four different feedback control laws were developed to add damping to a 6 bay, 3 meter

free-free truss. A proof mass actuator is used as both a point force source and as a link in a

mechanism that applies bending moments at two locations on the structure. The first

control law uses the actuator as a traditional passive vibration absorber. The second control

law consists of direct feedback of both the relative position (i.e., the difference between the

proof mass position and the structure position) and the structure's velocity at the point of

application. The third control strategy was also direct velocity feedback, but with a

compensator for the position of the proof mass. The compensator is designed according to

an H.. optimization method, The fourth control law uses the actuator as an equivalent

viscous damper connected between two locations on the structure.

A theoretical and experimental comparison shows that direct velocity feedback provides

better vibration suppression that can be obtained by using passive and/or active vibration

absorbers. Furthermore, the tuning criteria is only restricted to maintaining the actuators

single frequency below all structural frequencies of interest. It is also observed that H,.

control design is not appropriate for vibration suppression since it produces a compensator

that relies on pole zero cancellation (Umland (11-12)).
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11.4. Timoshenko Models of Piezoelectric Devices A mathematical model of distributed

I actuator/sensor system for vibration suppression of flexible members using piezoelectric

devices has been completed during the reporting period. The developmrt consisted of

applying Timoshenko theory to beams with multiple layers of piezoelectric material added.

The model is developed using a Hamiltonian approach and includes the external electric

circuits as well as a complete set of boundary conditions. This rigorous stt,1y indicates that

a fully distributed control is not possible, but rather a piece wise distributed control actuator

can be constructed using piezoelectric elements. The piezoelectric material is segmented

I and resistors are added to the layers to provide passive damping. A state space model is

developed, discretized (Galerkin Methods) and simulated. This finite dimensional model is

then used to perform open loop and closed loop studies. Velocity feedback is used to stu,.y

I closed loop control. The resolution vibration suppression is judged based on a

comparison of damping ratios in the open loop system, the passive control system and the

I closed loop active system. Large increases in damping ratio result as indicated in figure 4.

The details of these results are presented in references (13-14).

11.5. Model Correction Methods Finite element models (FEM) often fail to e:'actly agree

with experimentally determined model parameters (i.e., frequencies, damping ratios and

mode shapes). Hence, it has become standard modeling practice to adjust the analytical

model to agree more closely with the test data. The techniques used to adjust the analytical

models are called model correction methods and typically have not been very sophisticated

(see the review in Inman and Minis 1990 for instance). The result obtained under this

contract consists of applying the methods of eigenstructure assignment to the model

I correction problem to produce a systematic procedure for correcting analytical models with

experimentally determined modal data.
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The first major use of the model correction technique is to use it to create a non proportional

damping matrix for a given finite element model of a structure. Finite element models only

yield mass and stiffness matrices Damping is usually included as an ad hoc proportional

matrix. Proportionally damped systems yield real valued mode shapes. Yet the majority of

tested space structures yield complex valued mode shapes. Hence, the FEM cannot

possibly agree with the experimentally determined model parameter. Hence, a technique

based on least squares calculation was developed to produce a non proportionally damped

real valued symmetric positive definite matrix based on experimentally determined mode

shapes, natural frequencies and damping ratios. The results are reported in Minas and

Inman (18).

A more general model correction method was developed by recognizing the similarities

between the eigenstructure assignment theorem from control theory and the model

correction problem from experimental modeling. The eigenstructure assignment algorithm

have been modified to yield symmetric positive definite correction matrices. This provides

a systematic procedure to apply to experimental and analytical data which results in a model

which agrees with experiment. These results are reported in Minas and Inman (10, 17-22).

11.6. Robust Identification Theory for Flexible Structures During this reporting period,

significant progress was made on our work in robust system identification. This work

combines NASA's Eigensystem realization algorithm (ERA) with the investigators

Minimum Mode Error (MME) method. Previously, our combined ERA/MME technique

had been shown to be considerably more robust than the ERA alone for the realization of

the minimum order model, and subsequent identification of the modal frequencies and I
modal damping. We have now demonstrated considerable improvement in robustness of

the identification for the mode shapes. In addition, we are making progress in the direction

of the identification of the physical system properties from time-decay data. This
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I
represents a fundamented potential i-mprovement over direct identification of modes since

the physical properties can tell us exactly what the control-structure interaction (CSI) is.

Knowledge of the physical properties themselvos gives us a much better insight into the

I design/selection of the appropriate actuator in order to accomplish a specific task.I
The identification algorithm has been implemented on a laboratory P.C. connected directly

to a vibrating beam system. We are currently able to take data and perform the

identification in a single session which may be as short as just a few minutes. Subsequent

I to the identification, a control law can be selected and implemented on a programmable

controller, also during the same session (23-29).

I 11.7. Dynamic Analysis and Animation of Flexible Structures Different types of modes

such as vibration normal modes and static correction modes have been used to model

I flexible bodies for dynamic analysis of mechanical systems. Accuracy of using these

modes to model a system under different forcing conditions has not been completely

investigated. It was shown in this study that the loading on a flexible body consists of

I applied forces, D'Alembert forces resulting from gross body motion and kinematic joint

reactions. Effectiveness of using different modes or their combinations not only depends

I on the choice of modes but also on the spatial distribution and frequency content of the

loading. This work provides a criteria to select the number and types of different modes

that must be included in the model. This estimation can be obtained by performing a rigid

body analysis of the system.

This work also demonstrates that a set of Ritz vectors that accounts for the dynamic loading

on the flexible bodies must also be included in the model in addition to vibration normal

modes and static correction modes. The Ritz vectors used in the model are generated from

spatial distribution of the loading and are orthogonalized with respect to the vibration

* 8



normal modes. These results are reported in Wu and Mani (30-33) and include several

numerical examples to demonstrate the need to include different mode shapes in the mode.

Guide lines on the selection of mode shapes to model flexible bodies for dynamic analysis

are also presented.
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Minas, C., Garcia, E. and Inman, "Control of a Flexible Planar Truss Using a Linear
Proof Actuator, " Proceedings of the 3rd Annual Conference on Aerospace
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Computational Engineering Science, Atlanta, 1988.

Panza, MJ and Mayne,_R.W., "Mathematical Modeling of Actuator - Flexible Beam
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Narayanan and Mayne, R;W., "Automating the Parameter Optimization of Dynamic
Systems," Computational Structural Mechanics and Multi-Disciplinary Optimization,
ASME Winter Annual Meeting, San Francisco, 1989, pp. 51-56.

I Sah, J.-J. and Mayne, R.W., "Modeling of a Slewing Motor-Beam System,"
Computers in Engineering - 1990, ASME Computer in Engineering Conference,
Boston, 1990, pp. 481-486.
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VI. Research Issues and Accomplishmcnts

Important research issues identified during this contract are:

I * a need to incorporate smart material and structure principles into the structara

control problem.

I * formulation of definitions, theories and examples for controlling smrt str, turcs.

* how much can be achieved by the use of smart structures and what are the
limitations?

I can simple academic formulations be used on complex structurea

* can the use of nonlinear control laws and nonlinear dynamics be made pructial by
using smart structures?

Each of theses issLes can be addressed by using successively more complic-ated

experimental strictures. One of the diflictihics with government laboratory cxperimewts is

that they are too complex for rese.u vh theories to handle. The difficulty with most

academic laboratories is that they arc to,, simple to be of signi.ifcanoe to "read' space

structures. What is needed, is a step by step increased in complexity of ground

I
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experiments unit a cownvlex structure is achieved. At each step research theories can be

addressed and understood before the next level of complexity is added. This approach

should provide an experimental bridge between research results in structural control and

practical space structure vibration problems.

Accomplishments under this grant are summarized as follows:

1) The use of control structure interaction to improve pointing time in slewing

maneuvers has been developed both technically and experimentally. Selectiol. rules

for the design of a slewing structure have been provided.

2) The preliminary results of slewing an active, or "smart" structure have been

established. It has been shown experimentally that these lead to improved

performance, via shorter settling times.

3) The nature of control structure interaction for vibration suppression in frames and

trusses with onboard electromagnetic actuators has been modeled and

experimentally verified.

4) A Timoshenko model of multiple layers of piezoelectric beam has been derived.

5) A significantly new model correction method has been developed for adjusting

mathematically finite element models based on experimental modal test data.

6) A robust system identification method has been developed and tested.

proposed.

7) A dynamic analysis and animation methodology for flexible structure has been

proposed.

The attached appendix contains copies of selected papers describing these results.

I
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I Selected Papers Content

1. Garcia, E. and Inman, D.J., "Control Formulations for Vibration Suppression of
Active Structures in Slewing Motions," ASME 1990 Winter Annual Meeting.
(Invited) Advances in Dynamic and Control of Flexible Spacecraft and Space Based
Manipulators, pp. 1-5..

2. Cudney, H.H., Inman, D.J. and Oshman, Y., "Distributed Structural Control Using
Multi Layered Piezoelectric Actuators," Proceedings of the AIAA 31st Structures,
Dynamics and Materials Conference, 1990, pp. 2257-2265.

3. Vibration Suppression of a Frame," Proceedings of the 4th NASA Workshop on
Computation Control of Flexible Aerospace Systems, July 1990, to appear.

4. Minas, C., Garcia, E. and Inman, D.J., "Control of a Flexible Planer Truss UsingProof Mass Actuator," Proceedings of the 3rd Annual Conference on AerospaceComputational Control," Oxnard, CA, August 1990.

I 5. Inman, D.J., Garcia, E., and Umland, J., "On the Nature of the Interaction Between
Structures and Actuators in Vibration Suppression," Proceedings of the International
Congress on Recent Developments in Air and Structure Borne Sound and Vibration,
March 1990, pp. 223-227.

6. Garcia, E. and Inman, D.J., "Modeling and Tachometer Feedback in the Control of
an Experimental Single Link Flexible Manipulator," Proceedings of the 8th
International Modal Analysis Conference, 1990.

7) Cudney, H.H., Inman, D.J. and Oshman, Y., "Distributed Parameter.Actuators for
Structural Control," Proceedings of the American Control Conference, June1989.

8) Garcia, E. and Inman, D.J., "Advantages of Slewing an Active Structure," Journal of
Intelligent Material Systems and Structures, Vol. July 1990, pp. 261-272.

9) Zimmerman, D.C., and Inman, D.J., "On the Nature of Interactions Between
Structures and Actuators," AIAA Journal of Guidance, Control and Dynamics, Vol.
13, No. 1, Jan.-Feb. 1990, pp. 82-88.

10) Minas, C. and Inman, D.J., "Matching Finite Element Models to Modal Data,"
Journal of Vibration and Acoustics, Vol. 112, Jan. 1990, pp. 84-92.

11) Sah, J.-J. and Mayne, R.W., "Modeling of o Slewing Motor-Beam System,"
Computers in Engineering - 1990, ASME Computer in Engineering Conference,
1990, pp. 481-486.

12) Roemer, M.J. and Mook, D.J., "Enhanced RealizationVIdentification of Physical
Modes," ASCE Journal of Aerospace Engineering, Vol. 3, No. 2, 1990, pp. 122-
136.
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SASIRACI Examples of this type of distributed control
include the use of proof-mass actuators to

I One problem that exists with using distributed provide point forces for controlling transverse
sensors and actuators is due to the integration of beam vibrations (Zimmerman, et. al., 1988), and
the property to be measured or controlled, which the use of small piezoceramic patches to provideE leads to cancellation of the sensor signal or re- point moments also for controlling transverse
duction of the actuator effectiveness. A method beam vibrations (Crawley and de Luis, 1987).
of segmenting distributed piezoelectric sensors
and actuators is proposed here to avoid this The second definition of distributed control de-
problem. This method of segmenting distributed scribes situations where the control force is dis-
sensors and actuators is demonstrated using a tributed over the surface of the structure. This is
model developed for beam structures to which represented in Fig. 2. An example of this form

I multiple layers of piezoelectric materials are at- of distributed control is the experiments per-
tached. A numerical study is performed in which formed by Burke and Hubbard (1988) where
active and passive damping of a beam is in- piezoelectric film is used to control transverseI creased using segmented piezoelectric sensors beam vibrations by applying a distributed mo-
and actuators over uniform sensors and actua- ment over the surface of the beam.
tors.

1. INTRODUCTION 2 (t) F3(t) F4 (t)

For the purposes of this paper, it is necessary to
I consider two definitions of distributed sensing

and control. The first definition of distributed
control is represented by Fig. 1, which shows a Figure 1. Discrete Force Actuators
beam with point forces or moments applied in
discrete locations over the surface of the beam.



I

Flxl) t Another reason for considering this form of dis-tributed control is that the problem of where to
place discrete sensors and actuators is avoided.
This is especially critical when experimental
testing methods are not available to confirm the

Figure 2. Distributed Force Actuators mathematical models of the structures from
which the control law will be designed. The I

A similar difference in definitions of distributed proposed large flexible space structures are an
sensing exist. The first definition is represented example of this problem: it is increasingly diffi-
by discrete sensors distributed over the surface of cult to accurately predict the on-orbit behavior of
a structure as shown for strain sensors in Fig. 3. these structures based on their ground tests.
The second definition of distributed sensing de-
scribes sensing which is distributed over the su- The most significant reason to consider this form
face of the structure. This definition is repre- of distributed sensing and actuation is that it al-
sented by Fig. 4. An example of this type of lows an essential difference in the solution of
sensor is the fiber optic sensor, configured to control problems. The sensing signal and control
sense the surface strain of a structure (Blake, et. signal can be represented by continuous func-
al., 1987). The resulting sensor signal is influ- tions rather than discrete functions. Two exam-
enced by the strain at every point along the sur- ples can be cited where this difference is ex-
face of the beam to which it is applied, ploited. In the first example, a distributed sensor

was formed using piezoelectric film (Lee, et. al.,
1989). This sensor was shaped and applied to a
beam such that it sensed the strain resulting from
only the vibration of the first mode, This is not

X [T2xx xx~ feasible using only discrete sensors. The second
2 2 example involves distributed actuation also using

piezoelectric film distributed over the surface of a U
beam (Burke and Hubbard, 1988). A set of

Figure 3. Discrete Strain Sensors guidelines was produced for deciding the spatial
variation of the piezoelectric film which would
allow all vibrational modes to be controlled,

L eliminating the problem of spillover. Again, this( t) = Gf E <x,t) dx is not feasible using discrete actuators.

0 A problem exists with distributed sensors which
sense a physical quantity over a distributed area
and yield one signal representing the integration-7 =of that physical quantity over the area to which

Figure 4. Distributed Strain Sensors the sensor is applied. This problem is illustrated
Fiure second d fistributed in tl nss in Figure 5, which shows a generic distributed

The second definition of distributed control and sensor measuring surface strain in a pinned- I
sensing is examined here. There are several rea- pinned beam. The beam is deflecting in its sec-
sons for considering this form of the distributed ond mode shape. The output of the sensor will
control system. First, sensors and actuators have be zero in this case. This full or partial canceila- Irecently been developed that allow physical im- tion of the sensing signal reduces the usefulness
plementation of this form of distributed sensing of distributed effect sensors. A similar problem
and control. Examples of these include fiber op- exists with actuators.
tic cables used for sensing, shape memory alloys
such as Nitinol used for sensing and actuation, Several researchers have proposed solutions to
and piezoelectric materials such as polyvinylidene this problem by spatially weighting the sensors
film also used for sensing and actuation. The use and actuators. In the work by Burke and Hub-
of each of these materials for distributed sensing bard, a linear variation in the width of the actua-
and/or distributed control has been demonstrated tor bonded to the surface of a beam was found to
experimentally. 3
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I avoid complete cancellation of the effectiveness elude any piezoelectric material. The model in-
of the actuator (1988). However, there will still cludes strucural damping, passive damping cre-
be some cancellation and the efficiency of the ated by the external circuits connected to the
actuator will be reduced. In the work by Lee, et. piezoelectric feedback layers, and uses Ti-
al., the sensor was shaped precisely to the first moshenko deformation theory.
mode shape of the cantilever beam, and there was
no cancellation of the sensor signal. However, Piezoelectric materials such as polyvinylidene
the spatial variation of the sensor is set at the time flouride film possess some advantages for the
of fabrication, which does not allow the sensor to control of distributed parameter structures, and
be reconfigured in cases where the structure un- partly motivated this research. They are
dergoes changes. lightweight, have low power consumption, and

can easily be applied in a distributed manner.
L They have no moving parts which increases their

reliability when compared to conventional actua-
Y(t) =GJ (x,t) dx tors, and they have a wide bandwidth which al-

0lows their use on a variety of structures. Several
researchers have examined the use of piezoelec-
tric materials to implement distributed control
(Hanagud, et. al., 1985a, 1985b, and 1987,
Crawley and de Luis, 1987, Tzou and Tseng,
1988, Lee and Moon, 1988, and Bailey and

Figure 5. Measuring Strain in Second Mode Hubbard, 1985).

Several areas have not been addressed in previ-
Another solution to the problem of cancellation of ous work. First, all the previous models use
the distributed sensor and actuator signal. is pro- Euler-Bernoulli deformation theory rather than
posed here. Distributed piezoelectric sensors and Timoshenko deformation theory. Timoshenko
actuators are attached to a structure. To avoid deformation theory is more accurate for the
cancellation, the conducting layers are seg- higher modes of a structure and can be applied to
mented, and a series of wires, one to a segment, a broader class of structures. Secondly, previous
are attached. As a result, each segment of the models neglect inherent damping in the structure,
sensor is less likely to span an area where the which will lead to disagreements between exper-
physical quantity to be measured has positive and iment and theory. Thirdly, the external circuits to
negative components which cancel. 'Another which the piezoelectric materials are connected
significant advantage of this approach is that spa- are not included in the models, and it will be
tial information is available in the sensor signals, shown here that these external circuits influence
and a spatial variation can be implemented in the the response of the structure. Finally, although
applied actuator forces. This will be shown to the piezoelectric material is applied in a dis-
lead to a more effective control system. Note that tributed manner, it will also be shown here that
the sensors and actuators are fully distributed discretizing the conducting surfaces will avoid
over the surface of the structure, while a series of the the cancellation of the sensor and actuator ef-
discrete signals from the distributed sensors, and fectiveness documented earlier.
a series of discrete control inputs to the dis-

I tributed actuators are available. Using the termi- The configuration to be analyzed is presented in
nology utilized by Bergman and McFarland, this the next section. The model developed for this
distributed-discrete system will be termed a configuration is presented next. The control law
"combined system" (1988). is then described. Several numerical examples

are presented to show the effectiveness of seg-
The objective of this research is to use multiple menting the piezoelectric layers.
layers of distributed and segmented piezoelectric

material to add active damping to transverse beam II. CONFIGURATION DESCRIPTION
vibrations. The approach is to develop a model
for this configuration and perform a numerical The particular structure to be analyzed is presented

I study of simple feedback control to add damping in Fig. 6, and consists of a viscoelastic central
to the structure. The analysis is general to in-
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layer and four layers of piezoelectric material con- to be segmented. This also allows a simpler anal-
figured as a multilayered beam. Each layer of ysis, since the layers which influence the response
piezoelectric material is coated on both sides with a of the beam are continuous along the beam length.
conducting material. The innermost two layers are
configured as feedback layers by segmenting the I1. MODELLING RESULTS
conducting surface adjacent to the central layer and
connecting each segment to a series circuit consist- To develop the model, Timoshenko deformation
ing of an inductor and resistor. These external cir- theory is used in conjunction with Hamilton's
cuits provide both an output voltage which will be Principle. The contribution to the Lagrangian en-
proportional to strain rate, as well as to provide a ergy and non-conservative work is found for each
mechanism for dissipating energy. The resistors layer. Taking a layer-by-layer approach allows the
are used to provide this mechanism, and the induc- electrical boundary conditions of the different
tors are used to give the external circuits tunable piezoelectric layers to be specified. Summing up
dynamics. This is an extension of an experiment the contributions from all the layers as well as the
performed by Forward (1981) where external cir- external electric circuits and applying Hamilton's
cuits were attached to piezoceramic patches bonded Principle yields a set of partial differential equa-
to a structure to add electronic damping. - tions and boundary conditions.

Due to the ability of the external circuits to add There were several assumptions made in develop-
passive damping to the structure, the innermost ing the model of the structure First, the layers
layers can not be termed sensors, because they in- were assumed to be perfectly bonded. The bend-
fluence the response of the structure. Therefore, ing strain field was assumed to vary linearly
they will be called the feedback layers. through the cross section of the multilayered

structure. The internal energy dissipation in the
structure was assumed to be accurately represented
by the Kelvin-Voigt model, and that energy was
also dissipated by air acting on the surface of the
beam, modelled as viscous damping Note that the
model was kept general, for any piezoelectric elas-
tic material used for the feedback and actuation
layers, and for any boundary conditions.

XThe development of this model is thoroughly doc-
umented in Cudney (1989), and Cudney, et. al.

Y (1989a, 1989b). The equations of motion derived
Substruc ure (viscoelastlc) for this structure are given as
Pizo,,ctlric senso laye rs a a

Piezoelect,,e actuator lay,.- pAw + - x2GA (w' - y) +
Figure 6. Structure to be analyzed a

The outermost two layers of piezoelectric material -jK2CsA(w'- C1 v + Q = 0 (1)

will provide the actuation. Note that the conduct-
ing material common to both the feedback and ac-
tuation layers on each side of the beam is con- P .
nected to ground. This is done to reduce interfer- .jtKipI* + 2- KIEI V' + K,2_GA (w' - v)
ence between the feedback and actuation layers. a ax

Also note that the sensing and control is distributed + a gCn * + K2CsA(%V -f)
over the surface, and by segmenting the outer con-
ducting strfaces a series of sensing signals will be
produced which contain spatial information.
Likewise, a control law can be implemented using a
spatial information. This configuration is easy to + F (2csMshsas)
implement since just the conducting surfaces need



I

a (21cMaha) is the cross sectional area of the actuator layer. L
;CX M~a ~vtJ is the length of the structure, and x1.I and xi are the

beginning and endpoints of the ith conducting
segment. H represents the Heaviside step func-

a tiadon, a is the charge density of the sensor layer,
S . abscMaha and Oa.(t) is the voltage applied to the ith actuator

______ segment. There are a conductor segments for the
M. sensor layers, and m conductor segments for the

actuator layers. Li and R1 are the ith inductor and
ai(t) H(x-xi.1) H(xi-x) (2) resistor values. The overdots represent differen-

i = tiation with respect to time, and-Q represents the
mechanical loading and disturbance forces.

The terms set off in boxes are the terms resulting
*-2KAsMshsV'- sAss from the piezoelectric action of both the sensor and

actuator layers. Note that the forces applied by the
n L1 piezoelectric actuator layers are represented by the

2Lb fsH(x-x) Hx-d term on the right hand side of Eq. 2. Also note
'I H.x- .dx that these equations are of a combined system, that

jul is, the system is composed of both distributed and
I discrete elements. Applying Hamilton's Principle

H - also yields a complete set of boundar conditions
given by,2 tj

I *H(x-xi.I)H(xi-x) = 01 ()SwIL d 4

where w is the transverse displacement of the 0

I beam and 41 is the beam bending angle. The terms ti
pA, pl, GA, and EI are composite terms for the f [- KIEI 4' - I:CnI*' 2Ks3Mshss1
density, total cross sectional area, total moment of t
inertia, shear modulus of elasticity, and Youngs' 2
modulus of elasticity for the structure. Cs, Cn, 2
and C1 are the shear and normal strain and air + (2Mah

fl damping coefficients, respectively. IC1 , K2 , Ks, I
and K8 are terms used to account for the nonlinear m

I deformation of the cross section of the structure. + a h al V)H(xi-x)

Ma and Ms are the first moment of area of the aa i = I
lower actuator and sen;or layers about the neutral L
axis, respectively. The piezoelectric stress-charge By dt = 0 (5)
coefficients for the sensor and actuator layers are
given by hs and ha, while 3s and 3a are the dielec- 0

i tric impermeabilities of the two layers. The bc
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where the terms in boxes result from the piezoelec- matrix is m by n, where n is the number of sensor
tric action of the outer layers. segments, and m is the number of actuator seg-

ments. The gains are calculated after the model is
IV. CONTROL LAW DESCRIPTION discretized, using the LQR algorithm, where the Q

and R matrices are adjusted to allow the electronic
The equations are discretized using the Ritz- degrees of freedom to remain stable.
Galerkin procedure, and the resulting ordinary dif-
ferential equations are cast in state space form. A V. EXAMPLES AND RESULTS
control law is formulated using the voltage outputs
of the individual sensor segments measured at the A numerical demonstration of the control law is
resistor terminals, multiplied by a gain, as inputs performed. The substructure properties are those
to the corresponding actuator segments. The volt- of a pultruded quasi-isotropic composite visco-
age will be proportional to the current through the elastic material shown to have a high strength to
resistor, such that the control law will be the elec- weight ratio, and which has been investigated for
trical analogue of velocity feedback. A schematic use in manufacturing large space structures
of the control law is presented in Fig. 7. (Wilson and Miserentino, 1986). The dimensions

- of the substructure are .25 x .1 x .005 meters.
The impact response of the first four modes of the
state space model for this single layer structure is
simulated. The simulation is for the structure with
pinned-pinned boundary conditions, and the im-
pact is placed at. IL, and the response is measured
at .9L. The uncontrolled response of the structure
is shown in Fig. 8. The sampling frequency was

/8192 Hz., and the simulation was performed for
.1 sec., using the MATLAB software package.

3 x107 IMPACT RESPONSE I
2 ...

Figure 7. Schematic of the control law. 0

The damping mechanisms will be enhanced in the .structure both by the passive energy dissipation -2 ........... .........

through the resistor and by active feedback of the -3
strain rate to the piezoelectric actuators. Two "0 0.02 0.04 0.06 0.08 o.
control laws are considered. In the first case,
called the local control case, the sensors and ac- Figure 8. 1)ncoiiriled reslonse (Tinie - sec).
tuators are collocated. The input to each actuator I
is only from the feedback layer segment adjacent The structure is then modified by adding four lay-to it. The gains are calculated by finding the ers of polyvinylidene flouride film to form theto t. he gai s a e alc laed y fnd ng he structure represented by Fig. 1. Each layer has a I
maximum gain that does not cause instability in
the electronic circuit. For the assumed case that thickness of 220 x 10-6 m, and the resistor and in-
the number of actuators equals the number of ductance values are 10 kQ and 1.0 H, respec-
sensors, the feedback gain matrix is then a diag- tively. The conductors are segmented into four
onal, square n by n matrix, where n is the num- sections, and the gains between the sensor and
ber of actuators and sensors. actuator layers represented in Fig. 2 are chosen to

give a stable response. A simulation of this con-
In the second case, called global control, each ac- trolled structure to the same input that was applied
tuator segment receives information from all the to the uncontrolled structure is presented in Fig. 4.
feedback segments. Note that the structure is as-
sumed to be symmetric, so that the size of the gain
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IFigure 10. Global Control UigPVDF (e)

The uncontrolled and controlled dam ping ratios are _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

presented in Table 1 for the local" control case. I Mode Frequency Dam ping Ratio
ICompiling the results of several simulations, it I(Hiz) (% Critical)I ~ was observed the control law increases the damp-

ing ratios of all the modes simulated, with the 1 138.60 10.80
* greatest increases found in the higher modes. I 2 568.97 18.71

* ~Using segmented the conducting surfaces yieldsf 387 41
higher damping ratios when comparedi to previous 3 387I41
work using non-segmented conducting surfaces 4 2315.86 65.90(Bie n ubad 95.Table 2. Natural Frequencies and Damping Ra-

Uncontrolled Controlled tios for the Global Control Case.
I Mode Freq. Damping Freq. Damping Note that the amount of passive damping usingI (Hz.) (% Critical) (Hz.) (% Critical the polyvinylidene flouride fim was negligible,

I1 143.52 0.15 137.89 1.65 even when the inductors were sized such that theI 2 672.96 0. 17 552.66 5.45 external circuits were tuned to a natural frequency
3 1285.03 0.32 1251.02 10.15 of the structure. However, when the piezoelectric

4 2274.35 0.55 2169.03 38.19 layers were given the propertes of piezoceramic

IThe simulation was repeated for the global control _ae_____easiv _ainwsigifcat

case, where the signal to each actuator is comn- VT. CONcLUSIpNg
posed of feedback from each of the feedbackI segments. It was found that a higher pnly Using a model developed for b~am's with mlil
needed to be assigned to the lower modes in the Q layers of segmented piezoelectric materials at-
matrix during the calculation of the control law tached, a numerical study of passive arnd activeI gains. The simulation results are shown in Fig. control of the beam to ncrease the damping was
10, and the calculated controlled frequencies and performed. The results showed that by segment-
damping ratios are shown in Table 2. mng the conducting surfaces of the distributed

i piezoelectric layers, a number of modes equal to
Note that the amount of passive damping using the number of segments can be controlled. This
the polyvinylidene flouridle film was negligible, avoids the problem of not being able to controlIeven when the inductors were sized such that the certain modes due to cancellation of the distributed
external circuits were tuned to a natural feuny sensing signal or the distributed actuator effort.
of the structure. However, when the piezoelectric In particular, control of the second mode of a
layers were given the p,'operties of piezoceramic pinned-pinned beam was demonstrated numeri-I materials, the passive damping was significant. canly, which would not have been possible with-

I



out segmenting the uniform feedback and actua- Dynamics and Control of Large Structures, May 8
tion layers. - 10.
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I Abstract

The vibration of an experimental flexible space truss is controlled with internal control forces
produced by several proof mass actuators. Four candidate control law strategies are evaluated in
terms of performance and robustness. These control laws are experimentally implemented on a
quasi free-free planar truss. Sensor and actuator dynamics are included in the model such that the
final closed loop system is self-equilibrated. The first two control laws considered are based on
direct output feedback and consist of tuning the actuator feedback gains to the lowest mode
intended to receive damping. The first method feeds back only the proof mass's position and
velocity relative to the structure, this results in a traditional vibration absorbei. The second
method includes the same feedback paths as the first plus feedback of the local structural velocity.
The third control law is designed with robust H.. control theory. The fourth control strategy is an
active implementation of a viscous damper, where the actuator is configured to provide a bending
moment at two points on the structure.

The vibration control system is then evaluated in terms of how it would benefit the space
structure's position control system. This assessment is necessary since the additional actuator
dynamics in the model effectively adds two state variables to the system which could lead to
instabilities in the position control system.

1 Introduction

Proof mass actuators (PMA's) have been considered for use in large space structure
vibration control systems1 . These control systems are usually configured such that the PMA's
provide a closed loop control force based on the output from a combination of both colocated and
noncolocated sensors2 ,3. The colocated sensor provides measurements of the position of the
proof mass relative to the structure. A benefit of colocated control is that stable control laws can
be designe, that provide vibration attenuation at the point of actuator attachment. Several
experimental implementations of colocated PMA control have resulted in control laws that are
based on the traditional vibration absorber4 ,5. In an effort to gain increased vibration attenuation,
noncolocated sensors provide actual structural vibration measurements at the point where
performance is desired. The problem of designing a noncolocated control is constrained by the
requirement that the control law must provide stable vibration suppression at sensor locations on
a flexible structure that is not necessarily well modeled.

This paper addresses the issue of the effective use of the proof mass actuator's control effort
towards the robust vibration suppression of a flexible unconstrained planar frame. An
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unconstrained or free-free structure is used, rather than a constrained or cantilevered structure. It I
is observed that in some cases an entire vehicle will vibrate indicating that a constrained analysis is
not appropriate7,8. The approach taken is to compare several control law and actuator-sensor
combinations when the actuator provides a point force on the structure. As a counterpoint, the
actuator is also mounted to the structure such that the actuator's control effort provides both an
axial force and a bending moment applied at two points on the structure. A control structure
interaction approach is undertaken in the sense that the actuator, sensor, and controller dynamics
are included or accounted for in the structural control design.

The paper outline is as follows: Section 1 gives an introduction to the control structure
interaction problem undertaken here. The flexible structure control testbed is described in Section
2. The PMA control law designs-to be compared are detailed in Section 3. The results of
experimental implementation of these control laws are provided in Section 4. The research is
summarized in the final section.

2 Hardware Description

The experimental flexible structure is constructed such that it exhibits the characteristics
commonly associated with large flexible space structures. The structure is light weight, with most
of its mass concentrated at the joints. There are both colocated and noncolocated sensors and
actuators. The structure displays numerous modes of vibration that have a low natural frequency,
are Lightly damped, and are closely spaced relative to each other. A soft cable suspension system I
is used to simulate the free boundary conditions of space, and to minimize the ef..ects of attaching
the structure to ground.

2.1 Flexible Structure

Figure 1 illustrates the 6-bay, 3 m long plane frame. The width of the structure is 0.5 m,
and the diagonal dimension is 0.707 m. The frame is constructed from aluminum truss links and
joints manufactured by the Mero Corporation. A truss link consists of an aluminum tube, with
nominal cross section dimensions of 22 mm 0. D. and 20 mm I. D., terminated in bolt assemblies
which attach to the truss nodes. The truss node is Mero's standard M12 aluminum node. The I
links are attached to the nodes and tightened with a torque wrench to 25 in-lb. The total weight of
the structure is 61 N.

The frame is suspended from the ceiling by two soft bungee cables 2 m in length. It was
found necessary to double up the cables to support the total weight of the structure and actuators.
The cables are attached at nodes 2 and 6. These joints were chosen for the suspension points
since they were nearly coincident with the nodes of the first structural mode of vibration, therefore
minimizing the interaction of the structure and its suspension. The electrical cables are suspended
from the ceiling such that they do not carry the weight of the structure, and the mass loading of the
structure by these cables is minimized.

The dynamic characteristics of this structure are evident in figure 2, which shows an I
experimental transfer function of node l's linear acceleration in the x direction given an impact at
node 1 in the x direction. The modal properties ,.f the first 8 structural modes of vibration aie
given in table 1. The vibration of the frame is characterized by flexural deflection rather than axial
deflection that would occur in a true truss structure. The structure is sufficiently long such that the
low structural vibration modes are not coupled to local member bending modes.

Not all of the dynamic characteristics displayed in figure 2 can be attributed to the structure,
rather the suspension provides a significant portion of the response shown in this test. Three
pendulous modes at approximately 1/3 Hz replaced the three rigid body modes in the x-y plane. A
double pendulum mode at 1.2 Hz replaced the rigid body rotation about the y -axis. Translation in
the z direction and rotation about the x axis are replaced by two translational vibration modes at I
1/2 Hz which are due to stretching of the suspension cables. The cables also have transversevibration modes that occur at 12 Hz, 37 Hz, and 55 Hz. I
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2.1.1 Structural Model

I A finite element model of the struc.ure was constructed for use in control design. The frame
links were modeled as uniform aluminum tubes whose dimensions are the same as the
manufacturer's nominal specifications. The frame joints were modeled as rigid. The combined
mass of the joints and the link bolt assemblies were modeled as a point mass, with zero rotational
inertia, located at each finite element node. Table 2 gives the structural parameters used in the
finite element analysis. In order to simplify the model, Guyan reduction was used to eliminate
translation in both the z and y directions, and rotations about the x axis. Only motion out of the y-
z plane is modeled.

The transverse vibration of the suspension cables was also modeled, since these vibration
modes appear in the control bandwidth. Modeling the suspension gave better agreement between
the pole-zero pairs as shown in figure 2.

2.2 Proof Mass Actuators

The proof mass actuators used are illustrated in figure 3. These actuators were originally
developed at the NASA Langley Research Center1. The intent of this design is that a magnetic
field is produced by the permanent magnets and the iron in the proof mass that is normal to the
current flowing through conductors in the coil. This electromagnetic coupling is then described
by Eq. 1.

I F = nlI x B (1)

I represents the current carried in the conductor, n the number of conductors in the gap, B the
magnetic field across the gap, 1 the length of the conductor. An average conductor length is found
from the average circumference around the coil. A useful control force oriented along the axis of
the coil results from this coupling. This force is then applied to the conductors in the coil, and
subsequently the structure. The reaction of this force is applied to the proof mass and causes it to
translate upon a linear bearing. Hence, the PMA can be modeled as providing an ideal point force
at the place of attachment on the structure and a reaction force on the proof mass. This force is
taken to be proportional to the current supplied to the coil. The power amplifier for the actuator is
configured as a current amplifier, which provides a means by which the actuator can be controlled
by a voltage signal. The proof mass actuator characteristics are given in table 3.

A complete model of the PMA should 'also include the dead mass and rotational inertia
associated with the actuator. The motivation behind this is that for lightweight structures the
actuator's dead mass will constitute a significant percentage of the total mass of the structure. The
addition of a relatively large discrete mass to a structure has the tendency to attract the nodes of the
higher modes of vibration of the structure to the point of attachment. This effect minimizes the
ability of a point force to provide a useful control force to higher modes of vibration. The
rotational inertia of the actuator used here cannot be considered negligible compared to the
structure. The high actuator inertia is in part due to the overall length of actuator measured from
the base.

2.2.1 Actuator Nonlinearities

There are several nonlinearities associated with the actuator, several of these are better
described as saturation limits. The total stroke length of the proof mass is ±0.0127 m. The
actuator produces a useful control force only when the proof mass is free to translate. Therefore,
feedback of the proof mass position relative to the structure is used to maintain the proof mass inI
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the center of its stroke. The finite stroke length is the limiting factor for low frequency, large
amplitude motions.

The power amplifier used is operated as a voltage controlled current amplifier On the
amplifier there is a current limiter that provides for a saturation limit on the output. The maximum
output currint of the amplifier determines the maximum force output of the actuator. An important
design tradeoff here is to determine how much control effort should be used towards the proof
mass centering force and how much should be available for a control force based on a
noncolocated sensor.

The damping in the actuator is primarily due to friction in the linear bearing and steel shaft
interface. This friction has been described by a typical Coulomb friction relation. The normal
load that generates the friction force is a combination of the weight of the proof mass and a
magnetic force between the permanent magnets and the steel shaft and ball bearings. These
frictional effects further limit the effectiveness of the actuator at low frequencies. Secondly, thesource of the damping is important in the sense that previously implemented PMA control laws
have relied upon available actuator damping to obtain closed loop stability. The problem is that a
large portion of this damping would not be available in a zero-g environment.

The electromagnetic coupling between the coil and the proof mass is described by Eq. I for
only a portion of the total stroke. This is illustrated in figure 4. This plot shows the static force
produced by the acnator for a constant input current. Ideally the actuator should output a constant
force for a constant input current independent of the stroke position. During bench testing of the
actuator, this led to closed loop instability.

2.2.2 Attachment to Structure

The structural equations of motion must be modified to include the actuator dynamics. The
structure is originally described by m degrees of freedom x, and if n actuators are used then n
degrees of freedom represented by the relative displacements Tl are appended to the equations of
motion. Note that the coupling appears in the mass matrix rather than the stiffness matrix.

M01 k + Kol x = B fg (2a)

X= {Xfem TlactIT (2b)

K01 Kfem 0 mxn (2c)
0nxm 0 nxn I I

Ml-[M fem Omxn] + [ Md+Jd+MpI Mp2 (2d)

Md = md diag(0,..., 0,1,0,0 ...... 0) (2e)

Jd = Jd diag(0,..., 0,0,1,0 ..... 0) (20
= mp diag(0,..., 0,1,0,0 ..... 0) (2g)

Mp2j =rap(0,..., 0,1,0,0 ...... 0)T, j = 1:n (2h)

B Omxn 1iB = Lg nJ (2 i)
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2.3 Linear Variable Differential Transformer

A linear variable differential transformer (LVIDT) is mounted on each PMA to provide

measuremdnt of the proof mass position relative to the structure. The LVDT used is a Schaevitz
Eng. No. 500. The input voltage is selected such that a displacement of ±0.375 inch produces ±5
Volts. The sensor bandwidth is 0 - 500 Hz. These sensors produce a measurement hat is
colocated with the control force.

1 2.4 Accelerometers

The structural sensors are Kistler Piezobeam accelerometers. The calibration is 10 mv/g,
and have a frequency range of 0.5 to 5000 Hz. An approximate integrator is then used to integrate
the acceleration signal to provide a measurement of the structural velocity2 . The approximate
integrator is given by the following input/output description

0 (O25
S(s) = 2 s (3)

This approximate integrator is the combination of a critically damped unity gain second order low
pass filter, and a pure differentiator. The low pass filter provides the integrating action, while the
differentiator removes the DC portion of the input signal. The transfer function is strictly proper,
giving a state space realization for either analog or digital implementation. This type of integrator
is used in order to avoid the integration of any DC bias produced by the accelerometer and
associated signal conditioning.

I 2.5 Digital Controller

The digital controller used is a Systolic Systems Optima 3. The input and output voltage
range is t5 Volts The input channels are anti-alias filtered and the output channels are smooth
filtered. The digital to analog converters on this system present a practical design issue, since they
do not saturate. Rather, when the control law produces an output that exceeds the output range of
the converter the conversion process wraps the desired signal value around the available output
range. In other words, if the control law produces a desired signal of 6 Volt, the D/A converters
will produce a -4 Volt signal. The solution to tl:is problem used is to place the static controller
gain on the power amplifiers. This is fine for static compensators or direct output feedback of
sensor signals of known and bounded signal strength, such as the LVDT output. For dynamic
compensators this is not necessarily a robust solution. A second solution would be to place logic
statements in the control software that would provide saturation levels. Such logic statements
would lower the achievable sampling rate.

C 3 Control Design

The application of a proof mass actuator to the control of a simple flexible structure is
considered in this section. The structure consists of one rigid body mode, and one flexible mode
of vibration. This problem is illustrated in figure 5. This problem has been proposed as a
benchmark robust control problem 14. The difference here is that the control force is produced by
an actuator whose dynamics cannot be ignored. The open loop equations for this system are
given by

I



Ms 0 1fi ~ -Ks -Ks 0 xi 0 r1~
0 Ms+mp+md mp + -Ks Ks 0 X2= gac 0 fg(t) + d(t) (4)
0 mp mp 0 0 1 0

The measurement equations are for the relative position, f,

yp = KLVDTIl = [0 0 KLVDT] x (5)

The following values are used for all calculations in this section.

NIS= I
0.5 < Ks < 2, nominally Ks = 1
mp 0.2mod=O

gat= 1
KLVDT = 1

In the following subsections several vibration control strategies are considered. The
effectiveness of each system is then evaluated by giving the system an impact disturbance across
masses 1 and 2, and the response of x2 is measured. This type of disturbance does not excite the
system's rigid body mode.

3.1 Controllability

The controllability ofdhis system is then computed with standard techniques 9  I
rank [B AB A2B ... A5 B] =4*6 (6)

Indicating that the system is not completely controllable. The control force produced by the
actuator should be considered as a force internal to the system, and as such cannot change the
location and motion of the system's center of mass. The lack of complete controllability is I
because the actuator cannot control the rigid, body mode of the system. A further explanation of
this is the actuator configured as a point force cannot produce a force at zero frequency.
Therefore, a statement of the obvious is that the actuator should be only used for vibration control.
In other words the actuator should be used to give the structure damping. It is also evident that a
rigid body control system must be designed for this system. A design goal for the vibration
control system is that it should enhance the rigid body controller.

3.2 Observability

The observability of the system is computed from

rank [C CA CA 2 ... CA5]T=4 #6 (7)

indicating that the system is also not completely observable. Similar to the previous section the
rigid body modes of the system are not observable.
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3.3 Vibration Absorber

I The first control law considered is direct feedback of the relative proof mass position, 11, and

velocity, 11. This is considered a colocated design, since the resulting closed loop stiffness and

damping matrices are symmetric. Although the LVDT measures the position 11 only, it is assumed

that I is available from a lead network or digital derivative. This type of feedback compensation
is a proportional plus derivative control. Equivalently, this type of control may also be thought of
as designing an actuator spring stiffness, ka, and viscous damper, Ca. One criterion for the choice
of the feedback gains, ka and Ca, is that used to design a passive vibration absorberIO1 1,4. The
actuator spring stiffness is found from

mp (I+a)2 (8)

c2= mp.aC 1 +a (9)
z. ,2 1

C52mP~0)(l+g)3(9

9.a = m002
ka = gactKposKLVDT
ca = gactKveIKLVDT

wi - frequency of interest, ith mode

Iij "jth degree of freedom, eigenvector of the ith mode, normalized with respect to the mass
matrix

The resulting closed loop equations of motion are then0 0 o(l 0 i," r Ks-s0 (l'"j.~
Ms+mp+md mp + 0 00 + -Ks Ks 0 ] x2 = 1 ld(t) (10)

0 mp mp 0 0 Ca Il 0 0 ka J 0

Alternatively, the feedback gains can be calculated from the following quadratic cost functionI I

I J = 4 dt = ZTQz dt (11)

This system is stable provided that the feedback gains, ka and Ca, are positive. The constant

gain feedback of sensor signals that are colocated with an actuator does not destabilize the system.
The colocation of sensors and actuators is evidenced by the symmetric closed loop stiffness and
damping matrices.

The spring stiffness and damping coefficient for this example are calculated to be

ka 0.331
c+-- 0. 17 3-

C.C C) .o



The response of x2 for the given disturbance is shown in figure 7. The responses shown are
calculated for the minimum, maximum and nominal value for the structural spring stiffness, Ks.
The vibration control system's performance when Ks is increased to its maximum value is I
comparable to its performance for the nominal valne of Ks. On the other hand, when Ks is
allowed to decrease to its minimum the performance of the system is diminished.

The performance of this type of control is explained in a control system sense as a pole-zero
cancellation. The second order dynamics of the PMA add a pole and a zero to the system, which
will be less that the structure's pole and zero. The zero associated with the structure will appear in
between the actuator pole and the structural pole. These poles are closely spaced, since the mass
ratio, lia, is usually small. Hence, the structural zero will tend to cancel either the actuator or the
structuzal pole, depending on sensor and actuator placement. Because this type of control relies
upon pole zero cancellation its effectiveness for more than one mode of vibration is limited.

3.4 Direct Velocity Feedback

The second control strategy considered consists of direct structural velocity feedback 13. The
idea being that the actuator will provide a force at a given point on the structure that is directly
proportional and opposite in direction to the structure's velocity at that point. It is pointed that the
control force is determined on the basis of both a colocated and a noncolocated sensor. Therefore,
the stability of the closed loop system must be considered. The difficulty here is the design of the
feedback compensator to provide the proof mass centering force. The control force is given as

fg(t)= c k2 - f(l) (12)

where f(ri) represents the output of the feedback compensator.
In the following subsections the velocity feedback gain, c, is held constant and two feedback

compensators for Ti are designed. The value used for the feedback gain c is

c=0.5

3.4.1 Direct Output Feedback

In this section a proportional plus derivative compensator is designed for the feedback of the
proof mass relative position, 71. Again, this type of control may be thought of as determining an
equivalent actuator spring stiffness, ka, and viscous damper, ca. The control force is

fg(t)= c x2- kai-cal (13)

The closed loop equations of motion for this system are then

0 Ms+mp mp R2 0 0 0 + -Ks Ks 0 x2 = 'Ijd(t) (14)
0 mp mp J 0 -c ca 0 0 ka iJ 0

This is a noncolocated control system, and as such its stability is in question. The characteristic
equation for this system is evaluated to be
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I + [sS 3 + P 2+ Msm4) S 22

((ca+)Ks+2cS ) +

2 e~)-S -x~s ( .S (2M + m) 0 (15)

Applying the Routh-Hurwitz test to portion of the characteristic equation inside the brackets the

following stability relation is obtained, assuming that each individual parameter is positive

(C2 + 2CaC + c2) KKn+ [2(ca + cac)K2 + (Cac - c2) Kska]Msmp

I -cacKskaM> 0 (16)

3 When the actuator damping is held at zero, i. e. Ca = 0, Eq.13 reduces to

KA>k (17)! Ms np

In other words, the actuator natural frequency should be less than the structure's natural frequency
of vibration. Also, note that the velocity feedback gain, c, is not present in Eq. 14. Figure 6
illustrates the stability boundary of ka for a range of both Ca and c, for the nominal spring stiffness
Ks. Actuator spring stiffnesses below this boundary result in a stable system. The smallest stable
ka in figure 6 occurs for Ca = 0, independent of c. Also, the surface is relatively flat over most of
the range of Ca and c, indicating that in this case stability is insensitive to actuator damping. In
order to ensure stability robustness against the permissible variations in the structural spring
stiffness, Ks, the minimum permitted value should be used as the nominal of design value.The feedback gains, ka and ca, are determined by following the same optimization strategy

that was outlined in the previous section12. For this example ka and Ca are found to be

ka = 0. 1053 Ca = -0.0027

The performance of this system is illustrated in figure 8. The system's settling time for both the
nominal and maximum spring stiffnesses is less than that of the vibration absorber design.
Although it is not apparent in this figure, when Ks is varied to its minimum value the system
becomes unstable.

Following this strategy the actuator spring stiffness is found to be less than the vibration
absorber spring stiffness. Performance is improved with an increased feedback gain c. In
comparison to the vibration absorber system the proof mass here exhibits more relative motion
and does more work on the structure.

3.4.2 Robust Control Design

I An attempt to design a compensator for the feedback of the relative position, in, using an Ho.
robust control design technique was unsuccessful. The system rigid body modes were first
removed from the state space equations of motion by model reduction. The rigid body mode
associated with the proof mass was retained in the system equations, since it is this output that thecompensator is being designed to control. The H., design procedure failed because there was a
plant pole on the jo-axis which then produces a closed loop pole also on the jo-axis.
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3.5 Passive Damper

As a counterpoint to the above control designs the actuator is also configured to act as a
passive linear damper which applies a bending moment at two locations on the structure, as
shown in figure 10. Only feedback of the proof mass relative velocity, Il is used here. In other
words this is direct velocity feedback. A proof mass centering force is not required since this is I
provided for by the structure and fixturing. The actuator can be attached at nonadjacent joint
locations to better distribute the control effort to low frequency modes.

4 Experimental Implementation

The experimental implementation of the control laws considered above is addressed in this
section. An impact is given to the structure at node 1 in the x direction and the structure's
acceleration is measured at node 4 also in the x direction, Each response is filtered with a 25 Hz
low pass filter to give a cleaner picture of the actuator's effect. The resulting settling time for each 3
test is used as a measure of control law performance. The actuator location is chosen in order to
provide the greatest effect on the first vibration mode. The control laws are implemented digitally,
with the sampling rate for each set at 4000Hz. As a basis for comparison the response of the
uncontrolled structure is shown in figure 10. The settling time for this test is greater than 3.5 U
seconds. It is also evident that the structure must be considered more complicated than a single
degree of freedom.

The vibration absorber was designed to provide damping to the first mode whose frequency
is shifted to 5.8 Hz when the actuator dead mass and inertia are added. The actuator is placed at I
node 4. The result of this implementation is illustrated in figure 11. It is seen here that the settling
time is reduced in comparison to the uncontrolled structure, but is greater than 2.5 seconds.
When the actuator was tuned to the second mode at approximately 12 Hz the actuator was made I
unstable. This is a result of the nonlinear electromagnetic coupling of the coil and permanent
magnets.

The effect of adding structural velocity feedback is shown in figure 12. The acceleration of
node 4 is integrated by the approximate integrator given in Eq. 3. The cutoff frequency for the
integrator is 1 Hz. Following the stability guideline for this case the actuator spring stiffness is
kept low such that the actuator frequency is below that of the first mode of vibration. The settling
time for this case is an improvement from the vibration absorber. Figure 12 displays a signal of
approximately 1 Hz, which is the double pendulum mode of the structure suspension system.
Closed loop instability for this set of feedback paths resulted when the magnitude of the
disturbance impact caused the proof mass to hit the end of its stroke. These resulting impacts i
caused the accelerometer to overload which subsequently made the control computer overflow
which induced the more proof mass impacts.

Figure 13 illustrates that the viscous damper implementation has an effect comparable to that
of using structural velocity feedback. Although, there is more second mode behavior for this
case. The actuator was attached at nodes 3 and 5. In comparison to the point force application of
the actuator where the proof mass uses the entire stroke length, the travel of the proof mass here is
at most 0.25 in.

5 Conclusions

Several structural vibration control laws have been considered analytically and implemented
experimentally. Two of these control strategies are essentially active implementations of passive
control concepts, namely the viscous damper and the vibration absorber. The feedback of the m
local structural velocity is an active control idea. A control structure interaction approach was
taken in the sense that the actuator dynamics were included in the control design, and that there are
several nonlinearities in the closed loop system that can lead to instability. 3
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Experimental MSC/PAL
Mode # Natural Damping Natural Mode

Frequency (Hz) Ratio (%) Frequency (Hz) Type

1 0.021 6.5 1st bending
2 15.1 0.026 15.6 1st torsional
3 17.7 0.010 17.7 2nd bending
4 29.6 0.018 29.9 2nd torsional
5 35.4 0.025 35.2 3rd bending
6 45.6 0.014 45.2 3rd torsional
7 58.0 0.026 55.6 4th bending
8 63.3 0.022 60.8 4th torsional

I
Table 1: Modal Properties of Flexible Structure

I
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Link O.D. do 22 mm
Link 1.D. di 20 mm
Density p 2.45x103 kg/m3

Elastic modulus E 70 GPa
Shear modulus G 26 GPa
Joint mass mj 0.0759 kg
Bolt mass mb 0.0578 kg

Table 2: Structure link and joint characteristics

Proof mass mp 0.225 kg
Dead mass rrd 0.730 kg
Dead inertia id 0.008 kg-m 2

Force constant gact 2.75 N/A
Friction coefficient 4 0.01

Table 3: Linear Proof Mass Actuator Properties

6 - Bay Planar Truss
Total Mass - 6.25 Kg

Meroform Aluminum Tube Elements I
Outside Diameter - 22 mm

Inside Diameter - 20 mm

Elastic

2 m ,-Suspension

Cord

2 3 4 567

0' mI

z 89 "10 1 1 12 13 14

-*- 0.5 m 3_

Figure 1: Experimental Flexible Structure
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I Abstract
A flexible structure was modelled and actively controlled by using a single space realizable

linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss
structure at an "optimal" location and it Was considered as both passive and active device. The
placement of the actuator was specified by examining the eigenvalues of the modified model that
included the actuator dynamics, and the frequency response functions of the modified system. The
electronic stiffness of the actuator was specified, such that the proof mass actuator system was
tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The
active control law was limited to velocity feedback by integrating of the signals of two
accelerometers attached to the structure. The two lower modes of the closed-loop structure were
placed further in the LHS of the complex plane. The theoretically predicted passive and active
control law was experimentally verified.

1. Introduction
Large continuous structures, like space structures tend to have tight restrictions on the

actual response of the structure. A passive or active control design is often necessary for the
structure to satisfy the desired response restrictions. The success of the passive and active control
design is based on the accuracy of the model that describes the dynamic characteristics of the
structure. Flexible distributed parameter systems can be successfully modelled by finite element
analysis 1. This categoy of structures is lightly damped and tends to have most of its mass
concentrated at the joints 2. Their natural frequencies are low and appear in closely spaced groups.
The finite element model of the structure that consists of a mass and a stiffness matrix, can be
reduced by traditional model reduction techniques by eliminating the insignificant displacements at
the nodal points 3. The dissipation energy of the system can be modelled by constructing a system
damping matrix, by assuming a normal mode system 4, and by using the damping ratios obtained
experimentally from modal parameter estimation methods 5, 6, 7. In the case where the
discrepancy between the analytical model and the experimentally obtained modal model is
significant, the reduced order analytical damped model can be further modified 8, such that it is in
agreement with the experimental natural frequencies, damping ratios and mode shapes
8,9,10,11,12,13. It is important to realize that the design of the "optimal" control is based on the
modified reduced order model, but it is actually applied to the real structure. Therefore, the model
improvement mentioned above, becomes very important and its accuracy is vital in the success ofI the design of the control law.

The structure used here, is a planar truss constructed with space realizable links and joints
in the configuration presented in fig. 1. The truss is lightly damped and has the behavior of a large

*Currently with G.E. Corporate Research and Development Center, Advanced Projects
Laboratory, Schenectady, N.Y. 12301.
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space structure, with most of its mass concentrated at the joints 2. It possesses low resonant
frequencies that appear in closely spaced groups and has both translational and rotational modes of
vibration.

The structure is passively and actively controlled by a single actuator. The actuator used in
this experiment is the NASA/UVA/UB proof mass actuator system. The actuator dynamics are
taken into consideration and a global model is constructed which includes both the structure and the
actuator dynamics 14,15. The location of the actuator is specified 16,17 by examining the
eigenvalues of the uncontrolled global model and the frequency response functions of the global
system. The actuator is considered as both a passive and an active device with two design
variables, its electronic stiffness and the generated force. The electronic stiffness is specified such
that the actuator proof-mass-electronic-spring system is tuned to one of the structural modes of the
truss by using traditional vibration absorber design 18,19,20. The generated force of the actuator
is specified by using output feedback techniques. Here, the active control law was limited to
velocity feedback by integrating the signals of two accelerometers attached to the structure. The
objective is to move the two lower modes of the closed-loop structure further in the LHS of the
complex plane and at the same time maintain stability of the closed-loop system 21,22. The
theoretically predicted passive and active control law are experimentally implemented and the
results are evaluated.

2. Modeling
2.1 Construction of the Finite Element Model

The finite element model of the structure was constructed by using the commercially
available MSC/PAL package for dynamic modeling. The structure weighed 7.335 Kg and was
constructed with links and joints, mainly made of aluminum alloy. The density of the material was
measured experimentally by using standard techniques. The Young's modulus of aluminum alloy
was used, since the links and joints are mainly constructed with this material. The nodal points of
the finite element model coincide with the location of the joints of the structure. Every nodal point
was allowed to have three degrees of freedom, that is translation in the z-axis and rotations about
the x and y-axis resulting in a 48-degree-of-freedom model (see Fig. 1). The boundary conditions
were assumed to be clamped for nodes 15 and 16 and free for the rest of the nodes, since the
structure was supported as illustrated in fig. 1. After the boundary conditions were applied the finalmodel was a 42-degree-of-freedom model.

2.2 Mass Distribution
The mass distribution of a non-uniform structure is a problem, that should by no means be

ignored. Here, two approaches were used. The first approach was to calculate an equivalent
internal diameter of the hollow links, such that the links had the measured mass. The links were
treated as uniform hollow tubes constructed with aluminum alloy with an equivalent length of
0.Sm. The joints were modelled as a concentrated mass at the particular location and are treated as
rigid. The natural frequencies of this model were calculated and are presented in table 1. The
results were considered unsatisfactory and one of the links was disassembled for more insight to
the mass distribution of the link. In the second approach, the real internal diameter of the links was
used and the excessive mass was distributed to the nodes accordingly. The resulting natural
frequencies of the model are compared to the experimental results in table 1. The finite element
model was constructed using a finer grid which include more nodal points, specifically an
additional nodal point at the mid-point of each link. The resulting model after the boundary
conditions were applied was a 126-degree-of-freedom model.

It can be concluded that the 45-node(126-dof) model is not significantly better than the 16-
node(42-dot) model in predicting the first fourteen natural frequencies. Therefore, it was found
unnecessary to use the 45-node(126-dof) model in the determination of the control design of the
structure, since the 16-node(42-doo model was as accurate.
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Table 1 : Comparison of the theoretical and experimental natural frequencies of
the structure.

FEM TEST I (rot accel)
Uniform mass distribution Corrected mass distribution

42dof 42dof 126dof 14dof SDOF analysis
Frequency in Hz

1 1.38 1.045 1.048 1.039 1.07
2 4.56 3.467 3.468 3.469 3.54
3 10.88 8.050 8.050 8.051 7.94
4 26.98 19.894 19.894 19.902 -

5 29.68 21.746 21.748 21.750 -

6 30.94 22.077 22.074 22.087 22.54
7 42.63 30.468 30.472 30.477 32.61
8 53.79 39.268 39.252 39.326 40.35
9 68.46 48.524 48.521 48.552 -

10 72.61 51.746 51.704 51.842 52.51
11 82.93 58.645 58.629 58.718 61.41
12 101.93 71.169 71.116 71.275 65.62
13 102.88 72.090 72.039 72.285 78.24
14 116.52 80.741 80.610 80.920 91.74
15 236.64 219.856 183.903 - 187.13.

2.3 Model Reduction
Most of the control algorithms are designed for first order systems. Transforming the 16-

node(42-doO model in the state space results in a 84-dof state space matrix. This matrix is quite
large, and it was found that it is difficult to manipulate in vibration prediction, and control
algorithms. Therefore, it was necessary to reduce the order of the model before performing control
analysis and designing a control law. From the configuration of the model the rotational degrees of
freedom can be considered as less significant than the translational ones, and can be eliminated
from the model by using the Guyan reduction method 3. The resulting reduced order model is a
14-dof model. Eigenvalue analysis of this model showed that this model maintained the first
fourteen natural frequencies of the larger model quite accurately. The damping ratios determined
from the modal test were used in the construction of the system's damping matrix, by assuming
that the system exhibited normal mode behavior. The damping matrix is calculated by the
following equation:

D = MUFdiag(2ioW)UFl (1)
where UF is the eigenvector matrix of M IK, and Cj are the experimentally obtained damping
ratios. The final reduced order model is described by the following equation:

M4(t) +Dq(t) + Kq(t) = 0 (2)
This equation describes only the dynamic characteristics of the structure. The actuator dynamics
were considered important and they were included in the dynamic model.

2.4 Actuator Dynamics
The actuator that was used in this experiment was the NASA/UVA/UB proof mass

actuator, presented in fig.2. The actuator system is comprised of a movable proof mass (mprf =0.225Kg), a fixed coil that applies an electromagnetic force on the proof mass, an analog interface
board, a power amplifier and a linear variable differential transformer (LVDT) sensor. The LVDT
transducer is an electromechanical transducer that measures the relative position of the proof mass
with respect to the actuate? housing. The actuator can be modelled as single degree of freedom
mass-spring system, with a variable electronic stiffness and the ability to apply a force on the

I



I

structure at the attachment point. An equal and opposite force is applied on the proof mass of the I
actuator. The actuator is space-realizable in the sense that it does not have to be attached to the
ground. The equations of motion are written by taking into account the actuator dynamics 15 .
Let's assume that the actuator is attached to the structure at the ith nodal point. The global system
that includes both the structure and the actuator dynamics, is of higher order, equal to the order of
the original system plus the order of the actuator dynamics, and it is described by:

0 -K0 q0+
[ 0 m rQ + - ctJq + Kct [ = fg (3a)

J[ f] - CactO Cact- -.I - -kac t 0 kact P A

where qprf is the displacement of the proof mass (mrf), the scalars kw and cactare the stiffness and
damping of the electronic spring of the actuator, nar is the parasitic mass of the actuator, fg is
force generated by the actuator, and the matrices MIDI and K, are the following matrices:M I_--M+ mpardiag[0,...,0,1,0,'...,0]._ (3b)

K = K+kactdiag[0,...,0,1,0,...,0] (3c)
DI = D + cactdiag[0,...,0,1,0,...,01 (3d) I

This is referred to as the open-loop system and the mass, damping and stiffness matrices are
denoted by subscript (0L) for convenience. Note that the non-zero elements correspond to the ith
row or/and column of the particular matrix or vector of the previous set of equations. The force fI
is the actuator-generated force applied on the structure. The electronic stiffness of the actuator can
be selected in a variety of ways for various design approaches.

3. Passive Control Design I
3.1 Structural Modification Design

The parasitic mass of the actuator housing has the same effect as adding a dead parasitic
mass at the point of attachment. Increasing the mass of the structure is a structural modification,
with the direct effect of reducing the lower natural frequencies of the system. The natural
frequencies of the new model with the dead mass were examined both theoretically and
experimentally, and the results are tabulated in table 2. The experimental results are presented in
the form of point and transfer inertance (transfer function) plots. The transfer function of nodes 1
and 8, of both the original structure and the modified structure are presented in fig.3 and fig.4
respectively. The effect of attaching the PMA (inactive) was also examined. This configuration is
equivalent of having a dead mass equal to the parasitic mass of the actuator housing plus the proof I
mass. However, when the actuator's electronic stiffness is activated, the proof mass becomes an
additional degree of freedom, and it is not part of the parasitic mass any longer.

The results indicate that the modified structure has lower natural frequencies than the I
original structure. This is true for the first five structural modes as indicated in the table above.
The experimental frequency response plots show that the level of the vibration response was
reduced considerably, especially in the lower frequency region.

If the design methodology was limited to structural modification, it will be considered
necessary to examine the effect of adding the dead mass at different nodal points. The results are
presented in table 3. The design criterion that was used to place the actuator was to reduce the
overall vibration level at node 1, because a sensitive device will be attached at that point. The I
actuator cannot be placed at node 1 because there is no room. Note that different design criterion
results in different locations of the :ctuator. Placing the actuator at node 10 doesn't reduce the
vibration at node 1 at all. Nodes 2, 3, and 4 have the same effect in reducing the vibration level of I
node 1. But the first structural mode is shifted at 0.92 Hz. This was considered undesirable
because it is hard to control the low frequencies by active control. Placing the actuator at nodes 6,7
and 8 has the same effect in reducing the vibration level of node I and the first structural mode is
not shifted considerably. Therefore, any of nodes 6,7, and 8 can be used as an "optimal" location
of the actuator. The results that follow are for placing the actuator at node 8. I
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Table 2 : Comparison of the theoretical and experimental natural frequencies of
the structure with and without the parasitic mass.

w/o w w/o w dead mass w PMA inactive
Frequency in Hz

1 1.04 0.97 1.07 1.01 1.02
2 3.47 2.94 3.54 3.09 2.96
3 8.05 8.00 7.94 7.69 7.88
4 19.90 16.42 - 17.01 16.03
5 21.75 21.44 - 22.39
6 22.09 22.06 22.54 22.02 23.50
7 30.48 28.53 32.61 30.08 29.50
8 39.33 39.12 40.35 39.78 39.33
9 48.55 46.40 - - -
10 51.84 51.45 52.51 49.31 50.68
11 58.72 58.52 61.41 54.57 57.36
12 71.27 70.71 65.62 65.02 66.29
13 72.28 72.28 78.24 77.73 78.41
14 80.92 80.74 91.74 84.8

Table 3 Comparison of the theoretical natural frequencies of the structure with
the parasitic mass at various nodal points.

FEM
w/o 8 2 3 4 5 6 7 10

Frequency in Hz
1 1.04 0.97 0.93 0.93 0.92 0.98 0.98 0.98 1.01
2 3.47 2.94 3.39 3.40 2.94 2.96 3.41 3.40 3.42
3 8.05 8.00 7.71 7.66 7.65 7.95 7.93 7.95 7.28
4 19.90 16.42 18.25 18.41 17.47 15.54 19.84 19.88 19.52
5 21.75 21.44 21.74 21.45 20.17 21.75 20.52 20.24 20.52
6 22.09 22.06 21.98 22.07 21.77 21.96 21.94 21.75 22.00
7 30.48 28.53 30.09 30.02 29.60 27.79 30.07 30.43 29.83
8 39.33 39.12 39.17 38.15 37.87 36.87 39.30 38.92 37.06
9 48.55 46.40 45.12 46.65 48.35 48.35 43.27 45.40 43.03
10 51.84 51.45 51.67 49.02 49.76 50.89 49.56 51.40 51.83
11 58.72 58.52 54.15 57.71 58.47 58.54 58.60 56.68 56.07
12 71.27 70.71 68.85 68.34 70.27 70.62 67.91 68.31 68.53
13 72.28 72.28 71.87 72.26 72.26 72.09 71.67 72.23 71.34
14 80.92 80.74 80.44 80.13 80.69 80.67 79.27 79.27 77.81

3.2 Vibration absorber design
There are several criteria for tuning the absorber to a MDOF structure. The simplest

criterion is to tune the natural frequency of the absorber to exactly one of the natural frequencies of
the structure 18 , that is:

Th a =  i (4a)
The design of the damped absorber results in an optimal tuned frequency given by18 :

a  = (4b)
1+A1i
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where p is the ratio of the mass of the absorber (here, the proof mass) over the mass of the SDOF
structure (here, the modal mass at mode w). The ratio pj or the modal mass can be calculated in a
trial and error procedure. The difficulty of applying the second method is the fact that it is difficult
to determine the optimal value for p for the higher modes 22.

An optimal tuning criterion for MDOF systems was presented in reference [191. The
absorber frequency (wa) and damping coefficient (Ca) are given by:

( = i2 I +Pt  (5a)

Ca2 = ma2(A0ipa ( +Pit (5b)(1+Jt+J.a)3

where,

Pt= mt4- 2 and P.a= mai,.2  (5c)

The scalars m, and ma are the parasitic mass and the mass of the absorber, respectively, and the
scalar is the jth entry of the associated eigenvector of the ith mode, where j is the degree of

freedom corresponding to the location of the absorber. Note that the eigenvectors derived form the
fimite element model, are normalized with respect to the mass matrix.

3.2.2 Experimental implementation of the passive control design
The stiffness of the PMA can be electronically varied, such that the actuator system can be

tuned to different frequencies. The PMA was attached to ground, and the LVDT signal was
examined for random signal input that generates an electromagnetic force on the proof mass. The
LVDT signal gives the relative position of the proof mass with respect to the housing of the
actuator. As it can be clearly seen in the experimental bode plot in fig.5, the PMA system is well
modelled by a SDOF system, with a natural frequency depending on the gain that determines the
electronic stiffness. The stiffness is a function of the external gain (a), and other electromagnetic
constants of the coil and the amplifier (included in the factor K). The natural frequency of thesystem is given by:

Wa =1/20r "aKx!' , (6)
The damping in the actuator was identified as Coulomb damping due to the friction in the

bearings. An equivalent viscous coefficient was calculated from the frequency response functions
of the LVDT signal at particular tuning frequencies. It was found that the lower the tuning
frequency becomes, the higher the equivalent damping becomes. This is actually due to the fact
that at low frequencies the proof mass of the actuator cannot overcome the friction. As a
consequence, the natural frequency of the SDOF model of the actuator dynamics cannot go lower
than a certain frequency, since the stiffness is electronically determined and it depends on the
relative motion of the proof mass with respect to the housing of the actuator. It was found that the
actuator system behaves like an overdamped system when tuned to frequencies below 8 Hz.
Therefore, it was practically impossible to tune the actuator to frequencies lower than 8 Hz. Note
that, this range includes the three lower natural frequencies of the modified structure. Therefore,
the PMA is tuned to the fourth mode, by using the criteria described above. The results from only
the second criterion are presented here in the top part of fig.6, due to the fact that the plots from the
simple criterion (equation 4a) and the optimal tuning criterion (equation 5) were very similar. It canI
be clearly seen that the vibration response is clearly reduced.

4. Active Control design
The active control law is implemented, by using one actuator and two sensors. The force

generator signal of the actuaor was then given by:
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Sf =FCy(t) (7)
where Fithe feedback gain matrix and C the output matrix. The sensors were placed at node I and
node 4 as indicated in fig. 1. Node I was chosen because this is the possible point of attachment of
a sensitive device, where the vibration level is required to be reduced. Node 4 was chosen,
because it moves in the opposite direction of node 1, when the structure is excited at one of its
rotational modes. Here, accelerometers were used and their signals were integrated once by an
analog computer, to give the corresponding velocity signals. The output position matrix was
therefore zero, and the velocity output matrix was of the form:

S1 x3 Olxl- (8)

The gain matrix is therefore given by:i F -- [g1: g2] (9)
where g, and g2 are the two gains to be determined. Substituting into the previous equation results

in:

fg =F [013 1 XixI4]q(t) (10)

The closed-loop system written in physical coordinate system, is given by the following equation:

MOLq(t) +DoLq(t) + KoLq(t) = BoLFCiq(t) (11)
The objective here is to calculate the gain matrix F such that the system has poles at the desired
locations. The right hand side of the previous equation is expanded as:

1 01xl4]= g1 0 %g92 01 x (12)BoFI =  [0~ 2 010x3 0 lxll 06 x15

* L -g 100 -g2  01xII_Note that this is a square sparse asymmetric matrix with only four non-zero elements. This results
in a closed-loop system damping matrix of the form:

Dc "ct + g1 0 0 g2  01x 1 (13)

I CL= 0 0 6 x15

-cact O  act-i -g10 0 "g2  O1xlI
where cact, corresponds to the equivalent viscous damping coefficient of the actuator system.

The objective here, was to decrease the amplitude of the vibration response at the low
modes that have high participation factors. Note that, direct pole placement design could not be
applied since with one actuator and two sensors, only one closed-loop pole can be placed. The
gains were determined in an ad hoc design, from an algorithm that covered a broad region of
values, with the main objective to move the lower two poles further in the LHS complex plane.
The results are presented in table 6. It can be clearly seen that the closed-loop system is stable
when the two gains g, and g2, are in the region -10 to 10 and 0 to 15 respectively. A finer grid
that covered the part of the stable region, where the damping of the first two modes was increased
(g, from 0 to 10 and g2 from 10 to 20) was also examined 22.

It was discovered that the "optimal "gain of F= [5 : 151 increases the damping on modes
1, 2, 4, 5, 6 and decreases the damping at mode 3. Note that, further increase of the gains towards
the "optimal" direction, resulted in an unstable closed-loop system. The experimentally obtained
transfer functions of nodes 1 and 8, are presented in fig.6, and they are compared directly with the
open-loop system, tuned to the fourth structural mode. The results show clearly, a decrease in the
response at modes 1 and 2. The decrease of the vibration response is not very large as desired,
because of the following reasons:
(i) By using only one actuator and two sensors, we can only affect 4 elements of the 15x15 closed-
loop damping matrix.I (ii) Further increase in the gains towards the "optimal " direction drives the third mode unstable.

I
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(iii) We are trying to control a flexible structure with many significant modes that cannot be i
ignored.
(iv) We are only using velocity feedback

It was also illustrated experimentally that by increasing the gains at higher values drove the
proof mass system unstable.

Table 6 : Determination of the feedback gain matrix

L g 2 0  15 -0 -5 0 5 10 15 20 25 30]
-20 U U U U U U U U U U U
-15 U UU U U U U U U

10 U U U U U U U U U U U
-5 U U U U U U U U U U U
o U U U S S U U U U U UI
5 U U S S S S U U U U U
10 U U U S S S S U U U U
15 U U U U S S U U U U U
20 U U U U U U U U U U U

U = unstable, S = stable.

5. Closing Remarks
An experimental flexible planar truss structure was modelled and successfully controlled in

a passive and active way by using a space realizable linear proof mass actuator system. The PMA
was attached to the truss at a desired location, and tuned as traditional vibration absorber to one of
the structural modes of the truss by using several criteria. The actuator dynamics were
successfully modelled and taken into consideration in the design of the passive and active control
law. The active control design was adopted in the form of output velocity feedback by integrating
the signals of two accelerometers, attached to the structure. The limitations of this method were
indicated and difficulties of applying output feedback on large flexible structures with several
significant modes are identified and pointed out.
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I ABSTRACT

This lecture presents a summary of work on the analysis of the interaction between a structure, an actuator
used to suppress the vibration of the structure, and the control law implemented by the actuator. Two control
applications are considered. First, a proof-mass actuator with experimentally verified dynamics, capable of
being used in a space structure configuration is examined. This is connected to a cantilevered beam modeled as
a single degree of freedom system. Secondly, an electric motor, again with experimentally verified dynamics, is
used to slew a beam modeled by a partial differential equation. Both the experimental and numerical
configuration predict the presence of potential instabilities in system performance if proper consideaioa is not
given to interactions between the control law, the structure and the actuator. In addition, an understanding of the
interaction is shown to g'catly effect performance. In particular it is shownthat a judicious choice of actuator
parameters greatly improves closed loop performance.

INTRODUCTION
The purpose of this paper is to summarize several results expressing the nature of control structure

interaction. These results point to the importance of modeling actuator dynamics in designing vibration
suppression systems for flexible structures. It is common practice for designers of servo control system to
incorporate the dynamics of the servo motor into the closed loop design of the system under consideration. Yet
a majority of the literature on the control of flexible structures ignores the actuator dynamics in developing
control methods [I ] This paper illustrates mto types of active vibration suppression systems and points ouithe
effects of considering the dynamics of :he actuators in the closed loop design.

The two systems considered .m a linear electromechanical actuator, consisting of a proof-mass actuator (2],
and an electic motor, both used to control the transverse vibrations of an Euler Bernoulli beam. The proof.
mass actuator is used to control i'te transverse vibration of a cantileve.ed beam. The electric motor is used to
control the transverse vibration ot a beam during a slewing maneuver. Slewing refers to the rotation of the beam
about the motor axis similar to the motion of a door rotating on a hinge.

It is illustrated here that the interaction between the actuator dynamics, the choice of control law and the
nature of the structural dynamics is critical in both cases. In particular

* the choice of feedback paths through the actuator is critical
- instabilities result if one ignores the interaction, or coupling between the actuators and sructure

dynamics
- performance of the closed loop system is significantly enhanced if the nature of the interaction is

considered in the choice of the actuator dynamics
These points are illustratcd and verified in the remainder of this paper.

I
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PROOF-MASS ACTUATOR/BEAM MODEL I
Proof-mass actuator systems have been considered by several authors [2-10]. The actuator used heme to

demonstrate the nature of control/structure interaction is a linear actuator. composed of a solenoid-like
arrangement of a mass moving in an electric field. This proof-mass actuator (PMA) is a reaction type force
actuator, which creates a force by reacting against an inertial mass. Such actuators are also called Reaction-Mass
Actuators (RMA). This actuator has been extensively tested [2] and is capable of generating an arbitrary (but
bounded) control force. The actuator consists of a movable "proof-mass," a fixed coil two collocated sensors m
a digital microcontroller and a power amplifier as described in detail in Ref. 2. All of the actuator componea*
am mounted on a single compact fixture. Power lines are are the only external connection required to operate the
actuator unless uncollocated control is used. In the uncollocated case, the actuator accepts signals from sensors
at other locations on the structure. In addition, an optional analog or digital input can be used as the conWo law
for design purposes.

As illustrated in Ref. 6. the PMA's transfer function clearly dictates a second order model of the form of a
single degree of freedom oscillator. Laboratory bench tests and tests with the actuator mounted on a variety of
structures indicate that the model of Figure I provides an accurate description of the actuator dynamics. In the
Figure, ma represents. the internal moving mass, or proof-mass, of the actuator, and xg is the time dependent

I.

structure actuator ,3
// t

m m t

.Figure 1. Dynamics ofra proof-mass actuator. Figure 2. A snledgeo f , o, msyste wih m
control actuator attached.

position of the actuator relative to the base. The quantity md is the dead, or non-moving, mass of the actuatoti
(i~e., the housing, transducers, magnets. control electronics, etc. fixed to the structure), The dapinU
coefficient, ca, is dtetermined experimentally and represents an equivalent viscous damping coefficieni for thP
internal friction of the actuator. Th-e quantity ka, also determinedi experimentally, is the electronic stiffness fore=
required to keep the proof-mass centered in its housing. This force, as welU as the internatl damaping force,"t
required for stability of t.he actuator. The control force is generated between the proof-mass and the sut'ur
and is denoted as fa. Reference 6 reports the dynamic modeling in detail. U

The basic phenomena of interest here can be illustrated by treating the beam as a single degree of fretedom
system. The extension to larger order models is contained in Ref. 11. To illustrate the basic instablil
problems consider the simple case of velocity feedback which performs vibration suppression by addinnl
damping to the system. Without actuator dynamics, the single degree of freedom model of the beam whtr
velocity feedback is:

Here x = t(t) is the nominal transverse displacement of the beam, m is the mass of the beam, c is tlU
approximate internal damping and k is the beam stiffness. The quality g is the electronic gain which is to 3
adjusted to produce the desired vibration suppression.

I
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II
In the case of the ignoring actuator dynamics one would rearrange Eq. (1) and note that the velocity

coefficient becomes c + g. Hence the desired vibration suppression control law would be to make the gain. g,
as large as possible. Next consider applying this control law, developed without regard for the actuator
dynamics. to a model which includes actuator dynamics. The equations of motion become (see Figure 2).

m [ 0 2 ][ [c+ca .ca] [i] +E[kZa .kaj xJ = [ ,f.](2)

* Using the same simple velocity feedback control of the form fa = gi, this becomes

M~ n0a [ C c+ca+g -Ca] K ~k k(3
.] ca Ca k k:k j (

Note that the matrix coefficient of the velkity vector in Eq. (2) is asymmetic. Every matrix can be written as
the sum of a symmetric matrix and , v4., Nymnetry matrix. In this case the symmetric part of the closed loop
damping matrx becomes

*I ,(4)

If this matrix becomes indefinite or negative definite, it is well known that instability results (12). This matrix
clearly becomes indefinite as the gain g is increased as suggested by the control law calculated by omitting theactuator dynamics.

The high gain instability effect is also obvious from applying the Routh-Hurwitz test to the chamteristic
equation associated with Eq. (3). However, the matrix approach is applicable to larger order models with a
greater number of actuators. This is presented in Ref. 11.

It should be noted that several researchers 17.8,101 involved in using reaction mass actuators for vibration

suppression m flexible structures have avoided this instability problem by using relative velocity feedback of the
fori

The use of this feedback path -.e, :he aamx coefficient of the velocity vector to be symmetric and positive
definite for any value of the ,min Hioever, relative velocity feedback as given in equation (5) and used in
Refs. 7.8. and 10. reduces the cont:eol 'roblem :o one of parameter optimization similar in performaice to a
passive vibration absorber. This ,rint made m more detail in Ref. 9 which compares the response of closed
loop s.),cms with the two , '--.' K r:i,.

Comparing the use ot . :.,-)ack paths for fixed beam parameters and actuator dynamics
yields that a shorter ettn,,' ,rhot is obtainable by using the potentially destabilizing control
Law of Eq. 03) then -s obta:: -. tti, e velocity feedback of the form of Eq. (5). This is illustrated in
F-gures I and .1 There .re , 'c * -n it :an be learned from controlling a single degree of freedom
"tructure with a PMA that .. w ",,'io:', ,:u to 'he vibration control of both multiple degree of freedom and
distrbuted parameter stru .tus (',wnuAl 'aws that ignore actuator dynamics may result in closed loop
instability. The use of only safe or no,destabilizing feedback paths may not yield the best performance.
Furthermore. using only relatre position and velocity feedback results in a control law that is no different than
that of a traditional vibration abwurber This type of design tends to require low feedback gains, such that the

motion of the proof mass is unimpeded. Finally, better performance is achieved with structural velocity
feedback combined with relative velo(tv feedback. In fact, a high structural feedback gain can only be tolerated
in the presence of a high relative velocity feedback gain.
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U SUPPRESSION DURING SLEWING

In this seclon, vibration suppression during slewing of a beam by a simple, armature controlled, DC electric
motor is prestnted. The electric motor model is standard and can be found in Ref. 13. By applying Hamilton's
pnnciple to an Euler Bernoulli beam moving in a horizontal plane driven by the DC motor yields the equation of
motion of the tructure/actuator system. While the control structure interaction problem has been considered
previously (14 the effects of a flexible load (beam) have not been generally addressed in the previous literaaiue.
In particular, ti, . modeling approach suggested here focuses on the effective boundary condition of the beam at' the point of atta,:hment to the motor.

A majority of the previous work in slewing assumes that this arrangement defines a clamp-free beam.
However, the approach taken here is that the point of attachment does not define a clamped end, but rather thr
boundary condition for the beam at the point of attachment rotates and depends direcly on the motor dynamics.

As derived in Ref. 15, the equations of motion for the open loop beam actuator system are:

I -I vx~t) + 2v(x.t) -,

E l t + p - + px6(t) = 8'(0,t) (6)

with boundary conditions

y(0,t) =0 . El lmN (2

Y A O =g l x a x a t 2
at the point of attachment to the moto: it'1

El =h Ei '-
ax " )x ax-

at the free end, coupled with motor equation:
x LNKgtr -I N: 2 (C' + K') (7)=Ra -a'ImNg-9R

I where is the total angular displacement which includes rigid body rotation and the angular displac mt due to

flexure. Here E, I and p are the beam elastic modulus, moment of inertia and density per unit length
respectively. The motor constants Kt, Kb,Ra, Im and C, denote the motor torque coriz-ant, back emf constant,
armature resistance, motor tnerti.a and equivalent tearing friction respectively. The gear ratio is denoted by Ng
and I denotes the length oi ne beam. The term of the right hand side of equation (6) represents the direct
transmission of torque into "wexural deflection, y(x,t). The point moment delta operator is denoted by 6'(Ot),

0(t) denotes the angular position of the underflected b',am and ec denotes the applied armatr voltage. This
formulation considers the intracnon between the beam flex,.ral dynamics and the motor dynamics.

The coupling between ,ne beam and actuator dynamics highlighted iW this model allows the motor parameter,
beam parameters and control law to be ,hosen to more efficiently control the higher modes of flexural vibration.
This is illustrated in the tollowkin e[xpenmental verification of a zervo control implemented based on Eqs. (6)-
(7). -Tc actuator structure system consists of a DC armature controlled electric motor connected to a .85 meter
aluminum beam in a direct dr.%e ,.onfiguration. The direct drive configuration allows significant coupling
between the motor and beam ,!%namics. This allows more of the beam vibrational energy to be dissipated
through the actuator that dnves ,t~e ,ve:n.

The experiment consisted .uI .'011 -,ep slew of the aluminum beam. A comparison was made between swo
simple servo control laws. Pirst. a .tandard servo control was implemented (PD control of 6). This control law
does not capuaiize on the interaction between the structure and actuator as suggested by Eqs. (6)-(7). The
second control implemented was again a PD control, however the tachometer feedback gain was increased to
take advantage of the actuators ability to dissipate the energy by of the transverse vibration of the beam. The
model presented in Eqs. t6)-t7) predicts this energy dissipation and subsequent improved vibration suppression.
The results of these experiments as illustrated in fig.5 which consists of the time histories of the top acceleration
for each control law. In addiuon, a third course indicates the theoretically predicted response use a finite
approximauon of Eqs. (6)-(7). Note that the PD controller with increase tach feedback yields ap~proximately70% decrease in the settling tor pointing) tme of the maneuver as well as a 40% reduction in maximum

vibration amplitude.

I
227

I
I
I



Stunia ric Acceleranon. 30 Degree Step Slew ManeuverI

0.8 - experiment wloi tach feedback-
0.61 experim~ent wif rxh feedback: -

0.4 model w/ tach feedback -

0.2

-0.2

.0.4I

-0.6-

-0.8..

0 0.2 1.: 1,4 1.6 1.8 2

ACKNO LEDG ENTSFigmce5. Tip accelerations for a step comnmand to the system.

The authors graefully acknowledge the support of AFOSR grant number F49620-88.C.0018 monitored by L± Col. G. Hatitosf
and NASA pnts number NAG-l. 178 and NGT.33 183804 monitored by Dr. G.C. Horner ofth L.Angley RessmlaCoustt.

REFERENCES

1B3alas, MJ., 'Trends in Laige Space Stnsctjre Control Theory: Fondest Hopes, Wildest Dreams," IEEE Tranctlons
Automatic Contm4! Vol AC.27, No. 3. June 1982, pp. 522.535.

2 Zimmerman, D.C.. Homer. G.C. and Inman. D.J.. "Microprocessor ControUlid Force Actuator,* ALAA four Jot Guidance,
Control and Dynarnim. Vol. II. No. 3, "lay-June 1985. pp. 230.23 6.

3 Zimmerman. D.C.. Dynamic Ciactenzutiion and Microprocessor Control of the NASAAJVA Proof-Mans Actur, M.S
Thesis, Department of Mechanical A A\erospace Engineenng, State University of New York at Buffalo, June 1984. 5

4 Haviland, J.K., Lim, T.M.. Pilkey. W.D. and Politansky. H.. 'nTe Control of Linear Dampers for LArge Space Structuares,
PAoceedings of the 1987 AIAA Guidance and Control Conference. Monterey. CA August. 1987, pp. 106.116.

5 Pulkey. W.D. and Haviland. i..K.. 'Lrge Space Structure Damping Design. Fnal Report,* University of VIrgInis, VA 1983.E
6 Zimmerman. D.C. and Inman. DJ.. "On the Nature of the Interaction Between Structures and Proof.Masa Actilatrs,AL4

fournai ot Guidance Control and Oynamics. lo appear,
Hallsuer. W. L and Uniberuon. F.. "Expenrnental Active Vibration Damping of a Plans Truss Using Hybrid Actuation"

AIAA paper 089-1169, P-r'.eed. i hr "h Strienire. Structural Dynamics andMaterials3Conferece, Apil 199pp SO.9 0.
J uang, J.. 'Optimal Neit4n -1 1 '1-r' 0 t ion Absorber for a Truss Bleam.* AIAA Journal of GiacCn'ln

Dvnamirs. Vol. 7. No. 6. \nv' F-.c I-,,. p-3 '14.

'0 Inman. DJ.. Umlanu. J % And J 1 . TC introlling Flexible Strucriures with Second Order Actuator Dynamics," 3rd
Antnual Conference on Atrospacr C nwi*.,i,,n ii Cointrol,' August l'9S9,

1O0 Miller. D.W. and Crawley. E.F. "Theoreticat and Expenmental Inveitigation of Space-Realizable Inertiail Actmaion fol
passive and Active Stru~cturai Cuntroi,. I IAA Journal of Guidance. Control and Dynamics. Vol. 11. No. 5, Sept.O)ct 1988, p
449.458.1

I1 nnan, D.J.. "ControV/Structure lniersction: Effects of Actuator Dynamics, Proceedings of the AIAA Dynamriic Specialst
Conference, April 1990, to appear.

12 Inman, DiJ.. Vibration with Control ~easurement and Stability, Prentice Hall, 1989.
13 Kuo. B.C.. Automatic Control Systems. 5th Edition, Prentice Hall. 1988. I
14 Harokopoas. E.G and Maynie, R.W., 'Motor Charactenstics in the Control of a Compliant Lad," AIAA Journal of

Guidance Control and Dynamics. Vol. 1). N4o,. I 'M~. pp 113-118.

228



Modeling and Tachometer Feedback in the Contrrl of an Experimental

3 Single Link Flexible Structure,

Ephrahim Garcia Daniel J. InmanU Research Assistant Professor Professor

3 Department of Mechanical and Aerospace Engineering
State University of New York at Buffalo

Buffalo, New York 14260

Abstrac Structural Dynamics

The problem under consideration is the slewing of a flexible
* In this work a formulation for the modeling of a single link beam in the horizontal plane and is schematically represented in

flexible structure will be introduced that includes the effects of figure 1.
dynamic interaction between the actuator and structure. These g
effects are the rotational modal participation factors for the
structure's vibratory motion that occurs at the slewing axis. It V
will be shown, both theoretically and experimentally, that this X
dynamic interaction can be advantageous for vibration
suppression of the flexible modes of the system during slewing L(x t) L
positioning maneuvers.

Introdtctioc

Research in the control of flexible structures has been carried out
in the fields of robotics[I-6] and spacecraft with flexible X
appendages[7-91. Although a continuous beam is a figure 1. Slewing flexible beam - top view.
simplification of more complicated structures actually used in
these fields[19, 201, studying simple beams often yields insite In figure 1, XY is an inertial reference frame, and xy is a
into the underlying physics that governs the overall system rotating reference frame. This rotating reference frame
behavior. In the area of robotics, light-weight (flexible) represents the position of the undeflected beam. It is assumed
manipulators are seen as a way to reduce energy consumption that the beam is moving in the horizontal plane and that flexural
and therefore operating cost in industrial robots. In space, vibrations occur only in this plane. It is assumed that gravity has
reducing structural mass of space-bound robots and satellite a uniform effect on the system that is out of plane and therefore
appendages allows for lighter, and hence, more cost effective can be ignored. The beam is pinned at the stewing axis, and the
payloads for orbital delivery. torque is applied at this axis.

The modeling presented here in an extension of the modeling A modal summation procedure is applied for the motion of the
done by other researchers[l-31. This modeling includes the structure, e.g.,I effects of actuator-structure interaction via the modal
participation factors of the flexible modes of the system[l 1]. n

I Finally, the dynamics of a experimental flexible beam slewing in i=l
the horizontal plane are investigated. Servo positioning is often
the goal of many control applications, such as robotic arm Th
positioning for assembly line applications or the attitude e ependntonsao mode shapes are defined by 4j(x), and theI orientation of a spacecraft. The response of the beam with a t d e a i m s d y
servo positioning control law will also be investigated to Hamilton's principle for dynamic system's is stated as
determine the validity of the proposed model. follows[l4,15).

L
8() j [Lg +Wnc! dt= 0 (2)I Modeling o

Thewhere, 8() denotes the first variation and Lg denotes the| . The dynamics of the system will be derived in two parts. First, sstem's Lagrni n Thete m,.. .. . ... . .co sevaiv
the structural dynamics will be formulated from Hamilton's
principle. The equations of motion for the actuator will then be work done by the applied,t, in figure 1. The nonconservative
derived and combined with the equations of motion for the work done by the applied torque becomes,I structure. Finally, the angular position and velocity matrices for
a servo feedback control using the driving motor will be derived. Wnc + x °'0t) (3)
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Accounting for the rotation of the flexible structure, y'(0,t), in where Cv is the viscous damping in the motorand K is armati
the nonconservative work term leads to the inclusion of the torque constant. Since the electrical time constant of the motol!
modal participation factors in the structure's equations of much smaller than the mechanical time constant of the system,
motion[ 1I]. Generally modes should be chosen within a the inductance is considered negligible so that it does not appq
practical bandwidth or frequency range of interest[17]. This in the expression for torque. Before combining the structul
modal summation procedure is also known as the Rayleigh-Ritz equations of motion with the actuator dynamics we will consicF
method or the expansion theorem[12]. The following the eigenanalysis of the structure taking into account the physical
Lagrangian for this system was found using an assumed-mode constraints of a motor actuated beam.
method application of Hamilton's principle[ 131. l

. L n L n .
Lg 1,b2 + JPXG iq dx + f Z qi qj Pi j It can be said a motor-actuated beam has an eigensolution tl

0 il d 1o, satisfies the boundary conditions imposed by the motor actiEl
hinge. These boundary conditions for the structure are pinnl

Ej" (4) with a rotatory inertia at the pinned axis and free at the other
0 ,J end(or simply, inertia-free). The inertia acting at the beam a

is usually referred to as a constraint[l]. Thus, the inertia-fl
where, for convenience, -=4i(x), and 0i=Oi(t). Substituting this eigenfunctions are considered to be the constrained modes Jf
into the Euler-Lagrange equation, an expression for the rigid beam, and the pin-free modes are the unconstrained modes of
body position, 0, is found to be, vibration for the structure. The first mode of a pin-free be o

with various degrees of constraining inertia is plotted in figur l
n L (see also reference[l]). These modes are plotted for a genericm

b 0 + I fpxi dx ai = 'r (5) meter structure with varying beam to servo inertia ratios - lo/ls =
i=il (0.1, 1.0, 10.0).

The equation for the ith flexible modes of the structure. qj, is as The strongly constrained, or clamp-free, eigenfunctions wl
follows, used successfully for modeling experimental slewing

apparatus[2,3]. However, no verification of a model we

L n L significant actuator structure interaction (i.e., unconstrained I
j pxbi dxO + .1 p~jj dx '4i lightly constrained modes of vibration) has been found in t

3= 1 literature.

n L i" d" The condition for a flexible beam with a rotatory inertia due
+ -jEl dx qi = b'(0) 't (6) the motor acting at the slewing axis is,

The term, Oi'(0) 'r, is reflective of the direct transmission of Miij = Is 4Oi'(O)4Oj'(0) + Ljp~ijdx
torque into the modal deflections of the structure. 0

Actuator Dynamics where, 5ij is the Kronecker delta operator. Since the structuri

The torque applied to the beam is considered here to be operator is self-adjoint, and positive semi-definite the of
generated by an armature controlled DC electric motor, whose diagonal terms of the structure's mass and stiffness submatrices
behavior is represented by the following schematic. decouple[ 11,12].

Combined Motor/Beam Equations

The eigenfunctions of the previous section can now be applied
L a K the beam s slewing equations of motion, Eqs. (5) and (6), arE

b ii 8 the actuators dynamics, Eq. (7), to represent the systerr
equations of motion in matrix notation. For n modes of
vibration, we can represent the system as,

Ra I Mi++D i+Kx=Bfea

where

figure 2. Motor armature circuit and gear box schematic. =[ b+ls Ii+lsr(0) ... n+sn(0)

Here, ea is the voltage applied across the armature, ia is the M =/iI+isr(o) MI "" 0

current in the motor circuit, La is the motor inductance, Ra is the i 3 3
armature resistance, Ng is the gear ratio and Kb is the motor Lln+IsFn(O) 0 ... Mn
back-emf. Applying Kirchoff's law and summing the torques
about the motor armature, the following expression for the
torque is found as a function voltage across the motor armature, by bvfl(0) ... bvrn(O)

D= bv~r(0) bvFl(0) 2  ... bvrt(O)Fn(0)

Rael-Ng2 (O+ i4=*i() Lbvrn(O) bvrn(O)rt(o) ... bvrn(0)2_

( Kc+-K ) Ng2 (0+ Z i'(O) qi) (7)i= II



0 201xn M
1 '" 0 f5=DK- Onxl R = K= +KpKfb

2 BfT = [ Kp, KprI(0),... , Kprn(0)]

L L .. In~ ~ adPnOBI = NK'1 .0 ....0 -- rn(o)l KP Kpr 1(0) .. Kp o(o)
RaL Kfb =  Kprt(0) KPr ( 0 )2  .. KpFI(0)Fn(0)

Fi(0) = i'(0), Ii = jpx~i(x) dx:::

0= o [-Kprn(0) Kprn(0)ri(o) ... KpF,(0)2
and XT = [0, ql ..., n]The servo stiffness is defined as,

where, Is= IrN , is the effective servo inertia, and b= (cv + Kst nh (14)
,)N2, is equivalent viscous friction due to the the viscous where, Kg is the amplification gain. Since the equivalent

Ra . g viscous damping of the system, by, now includes the damping
bearing friction of the system, cv, and the back emf constant of due to the tachometer feedback, it is redefined as,
the motor. The (T) denotes the transpose of a matrix or vector,
and Mi is a constant of normalization for the eigenfunction, Oi. bv = (cv + Kt(Kb + Ktach) )Ng2  (15)

The modal coordinates, qi, ae not coupled to one another in
either the mass or stiffness structural submatrices, except of The inclusion of the modal participation factors cause theI . course through the viscous dissipation in the actuator as one position and velocity feedback matrices to becomes fully
would expect. populated, as opposed to the single element feedback terms.

Closed Loop System Experimental Apparatus

To arrive at a closed loop response for the system, the motor This experiment consists of a a 0.0825 cm (1/32") thick by 7.62armature is set equal to various states of the model, e.g., cm (3") wide aluminum beam fixed to a 1/4 inch stock shaft - theslewing axis. The beam is fixed to the slewing axis via a rigid

ea = Gp x Gvk (10) clamp. The structure used in this had an effective length of .848
m, measured from the slewing axis to the beams free end. The

The matrices Gp and Gv are the position and velocity feedback motor was directly linked to the flexible structure through the
row vectors, respectively. Since precise position, or servo slewing axis as indicated in the schematic of figure 4. The
control, is usually the goal of a controlled flexible beam, the beam's slewing axis is bearng mounted in a rigid aluminum
effects of a servo controller will be considered on the open loop base which is fixed to ground. A 1/16" square key way
equations of motion. For the closed loop response, the armature (channel) is cut in the shaft, the rigid clamp, and the motor/beam
voltage is set proportional to the error signal generated by the coupler.
difference between a reference signal, 0ref, and the measured The motor used in the experiment was an armature controlled
beam position, i.e., DC electric motor manufactured by the Electro-Craft

corporation, model# 586-MGHP, with the following
f e= g(o 0-o + ot) ( specifications.

Tachometer feedback is usually obtained by adding the negative 1m 5.5x10 "3 oz in s2
tachometer signal to Ei. (11) in order to obtain a control based La 2.3x10 "3 H
on the angular velocity as well as the angular position of the Ra 1.1 fQ
system, such that, Kb - 5.8 V/kRPM

n n Kt - 7.8 oz in/A
ea = Kg(Oref- (0 + z Fi(0) qi))" Kv(( + y Ili(O) qi ) (12)

=1 i= An EA12000 analog computer was used to condition the sensor
signals, as well as to close the servo loop. The amplified servo

KtachKtN signals were fed to a Copley Servo Controller, model# 215, inwhere, K, = RahR is the tachometer signal measured at the power amplifier mode of operation. This closed loop system

the motor and Ktach is the tachometer gain. The ta;.hometer can be represented by the block diagram of figure 5. The
feedback, Kv, has the effect of changing the level of viscous constants from figure 5 have the following definitions.
damping in the motor, and hence, the slewing axis Kg analog computer gain

Combining the position and velocity feedback , Eq. (12) with Kamp power amplification gain
the open loop system, Eq. (9), the closed loop system of Kpot position feedback
equations are found to be, Ktach tachometer feedback

A potentiometer was used to generate a position signal for theII X + 5 k + R x =B Oref (13) motor beam system, and the angular velocity was measured via a
"built in" tachomecer in the motor housing. In addition to these

The lozed loop system matrices of Eq (13) are defined as, benors an accelerometer was used to measure the a&elerativn



at the beam tip. The mass of the accelerometer was Closing Remarks
approximately 5 grams and its effects were not considered in the
modeling of the system. The model presented in this paper generalizes other models in

the literature. Here the effects of the motor on the dynamics
The physical properties of the beam were found to be, the structure are accounted for through the boundary condition 1

The interaction of the beam and the motor are then coupled I
E =69x109 Pa consideration of the rotation due to the modal deflections of the

I=1bh 3  structure. The experimental result indicates that this modelinj6
12 approach describes the physical system behavior fairlf

b =3" (7.62 cm) h = 1/32" (.8 mm) accurately.

p =. 1698 kg/m The significance here is thr Ihe interaction between structure ani6
El =.2631 Nm2  actuator can be advantageous for vibration suppression withog

The rigid body inertia of the beam about the slew axis is needing any structural sensors. The interaction allows for thU
calculated to be, servo angular position and velocity sensors to measure structure

vibrations directly. When the modal participation factors of th
9(.88)3  system are nonzero, feeding back the tachometer signU

b . 1698- = 3.45x10-2 kgm 2  generates damping for not only the rigid body position of tlUsystem but also damps the flexible modes of the structure.
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figure 5. Block diagram of the slewing control of a flexible structure.

I lb/Is 0.0 0.01 0.1 1.0 10.0 pin-free -

alL 1.8751 1.8796 1.9189 2.2135 3.1677 3.9256

a2L 4.6941 4.6944 4.6970 4.7234 5.0011 7.0682

a3L 7.8548 7.8548 7.8554 7.8610 7.9190 10.2078
a4L 10.9955 10.9956 10.9958 10.9978 11.0185 13.3492

Table 1. Eigenvalues of an inertia-free beam for various It/Is.

mode 1 2 3 4 5

Theory 4.130 12.345 22.579 36.384 56.763 (Hz)

iTbnt 4.0 11.625 22.813 39.625 63.125 (Hz)

ITable 2. Theoretical and experimental natural frequencies.
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Abstract T1 accounts for non-linear cross-

Timoshenko beam theory is applied to beams section deformation
with multiple layers of piezoelectric material &A voltage
attached. The model is developed using a ade electric charge
Hamiltonian approach, and includes theaeoelectriccharge
external electrical circuit as well as a com plete p densityI set of boundary conditions. Resistors are V(xt) bem bending angle
added to the sensor layers for passive damp -
ing. The resulting model is then formulated in 1. IntroductionIstate space.

t sThe problem of controlling the dynamic re -Nomenclature sponse of large space structures has been the
subject of much research for the last several

Subscripts a,,s , c actuator, sensor, beam years. Several types of control systems have
A Cross sectional area been investigated. They can be broadly
be width of the conducting surface classified as discrete and distributed control
Cij element o 1astic matrix •systems. Examples of discrete control
E Youngs modulus systems include proof mass actuators [1],
G shear modulus torque wheels [2], thrusters [3], and discrete
ha, ha z-coordinate of actuator, sensor piezoelectric ele ments [4]. Distributed control
h outer z-coordinate systems can be broadly classified as passive
K. Heaviside step function, and active. The most common example of
I Second moment of inertia passive control is constrained layer damping
n number of segments treatments, which are compared in [5]. An
P Ext. applied normal forces example of distributed active control are
PsI Pa exposed normal force dist. layers of piezoelec tric materials.
Ri ith discrete resistor. There are several advantages to implementing
ui displacement field a distributed control scheme. First, as the
E, D (3xl) electric and displacement fields current designs for space structures grow in -
e (3x6) piezoelectric strain-charge creasingly flexible, the difference between

coeff. ground tests of these structures in a strong
h (3x6) piezoelec. strain-voltage coeff. gravity field and their actual on-orbit behavior
Ior, e (6xl1) stress and strain fields increases, and determining discrete actuator

and sensor placement becomes more difficult.
ee(3x3) dielectric permittivity coeff. This can be avoided using distributed
Pe(3x3) dielectric impermeability coeff, actuators and sensors. Distributed control

schemes are less sensitive to individual
3(xIzIt) shear bending angle actuator and sensor failure. Some distributed
exx, Ixz normal strain, shear strain control schemes can control all modes for

certain boundary conditions, and thereby
avoid modal truncation and the ac companying

I



problems of control and observation spillover ceramic materials generate, it is very pliable
[6]. and not brittle like the crystals are.
In terms of resulting loss factors, piezoelectric Additionally, it can easily be manufactured in
control can achieve higher damping ratios sheets, and applied in a distributed manner.
than equivalent passive damping treatments The layers are assumed to be perfectly
[5,7,8]. Primarily for this reason, several bonded. This configuration was also chosen
researchers have been examining different such that the structure is symmetric about the
aspects of the problem of controlling centroidal axis, hence the neutral axis is
vibrations with piezoelectric materials. coincident with the centroidal axis, which
Hubbard, et. al., have developed a model of a allows a clearer analysis of the piezoelectric
beam with has both a layer of piezoelectric effects on the equations of motion. The
sensor material and a layer of piezoelectric mechanical effects of the conducting surfaces
actuator material, using Euler-Bernoulli beam sputtered on the piezoelectric materials can be
theory [6,7,9]. Similar models were neglected since their thickness is on the order
developed by Obal and Hanagud [10]. Tzou of microns. The mechanical effects of the
developed a model of distributed piezoelectric bonding layers will also be neglected, at the
materials using Euler-Bemoulli beam theory appropriate time they can be included in the
[11], while Lee and Moon developed a model model by increasing the number of layers to
for a plate using Eu ler-Bernoulli bending be analyzed. As a final assumption, none of
deformation assumptions [12]. the layers are considered to deform in the
The objective of this research is to develop an thickness direction.
electromechanical equations of motion for a The assumption about deformation of the
beam with multiple layers of attached piezo - beam follows Timoshenko beam theory, and
electric materials. The motivation for using is given as,
multiple layers is to provide greater control u1 = -z 1* A(x,t)
authority to the structure to be controlled. The 1 =t (1)
approach taken is to use Timoshenko beam u2 =0
theory in conjunction with a Hamiltonian u3 = w(x,t)
energy method for each individ ual layer of the where displacement directions u 1, u2, and u3
beam. Since one control objective is to add correspond to the x, y, and z directions,
damping to a structure, a resistor network is respectively, shown in Fig. 1.
added to the sensor layers to provide both the The strain displacement relations are given as,
sensor output voltage in an explicit form as -z V(x,t)
well as a mechanism for dissipating energy. 8xx = -z 1" * (2)

2. Theory Xz = 1 P(x,z,t)

The structure of interest is shown in Fig. 1, and all other strains are considered zero.
and is considered to have 5 layers: an original There are two mechanisms by which energy is
substructure, a top and bottom layer adjacent considered to be dissipated. Viscous (air)
to the substructure which will be considered damping occurs because the structure is
the sensors, and outer layers on the top and usually vibrating in a fluid, and is represented
bottom which are considered to be the by the coefficient C 1. The structural damping
actuators, where the sensors and actuators are is modelled as Kelvin-Voight damping, and is
piezoelectrically active material. The proportional to strain rate, therefore there is a
procedure this analysis follows is to analyze coefficient for the normal strain, C d, and the
each layer separately as shown in Fig. 2, shear strain, C.
which exposes the electrical boundaries as The constitutive laws for piezoelectric
well as the interlaminar stress distribution, materials relate the electrical and mechanical
Hamilton's principle will then be applied to effects. Two versions of the constitutive laws
each layer and electrical network. The layers are presented here, and they can be related to
can be linked through the exposed one another by simple transformations [13]. If
interlaminar stress distribution, the piezoelectric layer is configured as a
Several assumptions are made about the sensor, that is, if the voltage output is of
configuration to be analyzed. First, the interest, then the appropriate constitutive law
piezoelectric material is taken to be to use is
polyvinylfiouride film (PVDF). While it does = E etE
not exhibit the forces that piezoelectric +



I
D = e e + e E (3) where Wne represents the energy dissipated by

where superscript t represents the transpose. the resistor, and Wext represents the energy
If the layer to be modelled is configured as an crossing the boundary from the surface of the
actuator, then the voltage field is applied, and piezoelectric material conductor surface.
is an independent variable, so the appropriate Taking the first variation and setting the result
form of the constitutive law is, equal to zero yields the resulting equations of

amotion. Since the variation of each of thehtE (4) unknowns is arbitrary,. to set the complete

E =-he + 3eD Hamiltonian to zero requires that the terms
modifying each unknown must equal zero.

Analysis of the Sensor Layer Thus, each unknown will yield an equation.
The Hamiltonian for the sensor layer is given For the first variation of the transverse
as, displacemerA of the beam, Bw(x,t), the

tl resulting equation is,

itH)d S S a j~cs 5

&I1  to ii-v dv +ap A (xat) ,K 2CAaw(xt)

+ Pa(x,t) - P(x,t) = 0 (9)
f J8'Wnc 8( w ext  dt (5) where the first three terms are the same as for

w TV + a Timoshenko beam, Pa(Xt) represents the
where T is the kinetic energy, W nc represents normal component of the exposed force
the energy dissipation due to damping distribution between the actuator and sensor
mechanisms, and Wext represents the work layer, and P(xt) represents the normal
crossing the boundary of the system. This component of the exposed force distribution
term accounts for mechanical work in the between the sensor layer and the sub-
form of the applied forces to the beam and the structure.
exposed interlaminar stress distribution, and For the first variation of the bending angle.of
electrical energy crossing the boundary. The the beam, Biy(xt), the resulting equation is,
integrals are with respect to time, or over the 2
volume, v, or the surface area, s. a V(@,t) a (xt)
H represents the electric enthalpy, which is the -P1 2 +-(C2 isis 
appropriate term to use for the sensors, since SS tS

the sensor voltage distribution, which can be 2 aw(x' 0
related to the electric field within the +[CAs 55s( d--(x,t))]piezoelectric layer,a a

E3 = dx (6) a aarisxs
is the variable of interest ( 14]. This term can + K 2sC A a D )

3 be derived from the internal energy through a ds s
Legendre transformation, H = U - EtD. The + h +h
unknowns are the sensor voltage distribution, + x-c 3  2"4s(x't)]
interlaminar stress distribution, and beam + v (x,t)h -v(x,t)h = 0 (10)Idisplacements. S sa a
Developing a Hamiltonian formulation of the The first five terms would result from a
external electric circuit yields, standard Timoshenko beam with damping.

x te The shear force distribution from the actuator
ti layer and sub-structure are represented by

1 v (x,t)h and v (x,t)h, respectively. The term
(1) ex=.l1)Wn 1) Jdts
1 t Wne 1)Wext I dt (7) of interest in this equation isfl s a h +h

to ;[be -s 11 4 (xt)] (11)

I



I
where 4s (x,t) is the resulting voltage t2

distribution. It is through this term that the [K 2sCsAs(- - - - - (x,t)) +
mechanical deformation of the beam is f [ ss55S S

directly influenced by the piezoelectric ti

properties of the sensor layer. Note that if 2 a "w(xt) L

none of the quantities in this term vary K2CA ( -V -- x" t 0
spatially, then when the derivative term is S " I
applied the result will be zero, and the most 0
direct electro-mechanical coupling mechanism (14)
will be lost. Note that although 4)S (X,t) is The only term different than the usual

spatially dependent, the boundary conditions for the Timoshenko
represented as being sthlage the beam is the last term in Eq. (13). If none of
conducting surface causes the voltage to be the quantities vary spatially, this is the onlyconstant along the surface of the beam.temhruhwihlcromhail
This has been recognized by other researchers. term through which electro-mechanicalThishas een econize by the resarchrscoupling can be implemented, and leads toa
To keep this term active, Hubbard, et. al. boundary control problem [6]. l
varied the width of the conducting surface The equation describing the external circuit

with respect to the length of the beam [6]. results from the variation of the current in Eq. ui
Lee and Moon used that technique in addition (7) and is g ive n as t

to varying the piezoelectric property (7), and is given as

represented by e31 with respect to space by •(xt)

varying the polarization field during fRib Xt = 'tt) for i = 1,...,n-1 (15)
manufacture of the film [12]. xi I I
We propose to vaiy the voltage 4s (x,t) by Note that energy dissipation is represented by n

segmenting the conducting surface in a the first time derivative of the charge
manner analogous to finite element analysis of distribution. Using Heaviside unit step
beams, and can be easily accomplished by functions, the discrete sensor output voltages
etching the conducting surface. This is can be related to the distributed sensor
represented in Fig. 3, and for n segments voltages, and will allow us to view the
results in n sensor output voltages. Given this structure as a combined distributed and
structure, we will still consider )s (x,t) as a discrete system. Thi relation is given as,

distributed quantity, and the first variation 4s(xt) =1[ (t)Hli(x-xi-.a(x - x)] (16)
yields the equation, iA1 3

h S+h a OV xt) b e33=
se a +Jj\, c 3

be31 2-- ( )+ t (x,t) Analysis of the Actuator Layer
+ b Cse (x,t) = 0 (12) The analysis of the outer actuator layer

is the cwhich proceeds in a similar fashion as the sensor
where Gse charge distribution, layer, with two important differences. First,
can vary spatially. Note that this is also a since the electric field is applied, the
coupled electro-mechanical equation. A dependent variable is the actuator charge I
complete set of boundary conditions result distribution. Therefore, the proper energy
when the first variation is applied, and these term to use in Eq. (5) is U, the internal energy,
are given as not the electric enthalpy. The most

t2 convenient form of the constitutive law to use

f [Iis given by Eq. (4). Secondly, there is no
f' [C. C I a- ( )x't) significant external electric circuit to consider,

t 1I S s s a the applied voltage 4 a(X,t) is taken to be an

h +h 1 ideal voltage source. The unknowns are the
+bcet ah (xt) Ldt =0 (13) interlaminar stress distribution, beam

+be31-s(X 1 d0 (displacements, and the actuator charge

and0 distribution.
3. State Space FormulationU

I



II
A set of equations is obtained for each layer. a (x,t) using the technique presented in Eq.
They can be combined through the 16. The energy dissipation taking place in the
interlaminar stress distribution terms, which external resistors connected to the sensor
will be equal and opposite for adjacent layers. segments can then be enhanced by feedback to
The resulting combined equations are then the actuator layer.
cast in a state space model, given as

i = Ax + bu
y = cx (17) A Hamiltonian approach has been used to

where the state variables are given as x = [w, develop the equations of motion for a beam
consisting of a substructure with multiple

y, w, I, 6]t y is the output vector of discrete layers of piezoelectric material attached.

sensor voltages given as [sl(t),s(t) There are several sigific?,t asp..cts to this
model. First, the individual layers of the beam

n(t)]t. The inputs to the multilayered beam are separated to help obtain the proper
* electrical and mechanical boundary

are the external forces and the applied voltage conditions, and Timoshenko bending

distribution, so that u = [P(x,t),a(x,t)t , and b deformation assumptions are utilized.
is given as Secondly, the conductors of the sensor and

[ 1 00080 actuator layers are considered segmented to
b 00001 (18) allow for a spatially varying voltage

The distributed state space model, A, is given distribution. Resistors are added to the sensor
in operator notation as, layer to allow for passive damping. Finally, it

0 0 1 0 0s is shown that different energy functions are
? 0 000l appropriate to use in the Hamiltonian

L L -L -L formulation of each layer, depending on
1 2  3" 4  5  (19) whether that particular layer is configured as a
L L L I L -L1 sensor or as an actuator.

L 10 L 0 20 -L4 A state space model is then proposed which
15 16J will implement the control objective of adding

where the operators are presented in Table 1. damping to the beam. Future research will
. The output matrix,.c, is given as focus on discretizing this model, and

x "simulating and evaluating the disturbance
d l attenuation of the system.1 0 00 ut fR b I(.)dt
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On the Nature of the Interaction Between Structures and
Proof-Mass Actuators

D avid C. .iinnernian *
Unirers, if ot ..,rida. (,uinesrille. Florida

Brow ,""11e. Rholude Island

Uhis paw prv..dn% ;iii anli% tit :1w ii. r... 1 N trucinre. In actuator used to control the vibration
of the siructurc,. andi lin: coirol iio- lot ;to,. .1clouttir. 'I hi- ctint, ot hardware used Is a proof-man
act naior Ailli i*.prl wnlai rifii iiJI1:1111 tii ~i . ig ijit in na c %i~rowture configuration. A local

riiii-46-illiack , t iiti im i%. uwsd I lit, 4,4111'. ..1 1"'. ilil. 1.111 .itioniro% i% lin t.Ini. 'I he iir,.t structure is a
caiiiilv~cred Wiant o~inirtivvut oil a qiaI,.~ . I n;.si awI'Iiai I hag is, Co~ifrooil 11) i t ,,lngle Actuator
f,,rinig $ii e' poriiin i miiit i eIIHIiIvi ur iii,' 11 11 i*com giaI i hrut~I t Ini ore iq a h ii.lin tmotdel of a truss
system controlled by a single actuator. Mlodel'. oilit ,It '.tures predict the pirtsetwe or potential Instablties In
system performance if proper consideration is not ;gi'en in interactions between the control law, the structure, anodI the actuator.

1. Introduction Structures (COFS) I flight article .4 The control devices

T ~HE control of large flexible space structures by a small mounted on the COPS I flight article are fundamentally the
Inumber of control devices acting at a few points along the same as the PMA dcscribed in Sec. HT. The configuration used

structure has sparked iuit.nsive research over the last teol tn the study is the COFS I flight article controlled in one plane
years. ' A majority of the work in this area has neglected the of vibration using a rate-feedback control law. This model is
effects of actuator dynamics in modeling the closed-loop described in Sec. TV and analyzed for different actuator
system. Recently, concern has developed ovcr the effects of configurations in Sec. V.
actuator dynamics in the design of control laws for flexible
structures. 4

-
6 The emphasis of this paper is to examine the 11. Actuator Dynamics

effects that both actuator dynamics and control forces haveThacutodeiehsnfrtistdysteNA /
on the performance of the actuator/structure msteni li h cuto eiecoe o hssuyi h AA

expeimetaland umeica resltsarepresnte L VA;U13 proof-mass actuator.' The actuator system is comn-
execmntl adnerical rsedihsul s a resentedis posed of a movable proof-mass, a fixed coil, two colocated
ThctaorolMA develused inr th Sork is al pruoto se~n'ois. a digital mnicrocointroller, and a power amplifier as

actutor(PMA deelopd fr th Stuctual klesetibed in detail in Refs. 9 and 10, All of the actuator
Branh o th NAS Lagle Resarc Ceter rcc I"I omnponens are mounted as a single unit with power lines

athe University of Virginia" and the State I m'. ", being the ,inl% external connection required by the actuator
New York at B~uffalo " "' This aci ua toi has. bccai \ i, stcni it)op ipatc, The PMA is a reaction-type force actuator

testd"1andis cp..1e f gneraingarb tra ~'tiI .1In that it -tcates. a Corce by reacting against an inertial mass.
The onboard microcontroller ii capable ol'inmpkcii'ti- I IgUrk: I sh%% an experimentally verified model of the PMA
cated control l,twsN or can w.r\e as a local _oiw- attached ltk a ingle- degree- of- freedom structural model. The
hierarchical control aidwtte1ktre The ,icitiatol il mi, i i 'i, dy naniics tit the PIMA can be modeled as a single-degree-of-
arc described in See. 11 hicedoni osc.illator with the addition of a force generator

Thefirt srucureuse inthi stdy s asimle nt~c~icd cting betmeen the proof-mass and the structure. The equa-
beam constructed of a tqtiasi-isotropit. eompo'.ite ii1.1td ii l io' fmto o hsmdlaegvnaIbeing considered Co iuse tin flexible %.pae 'Ii ticictiit i111- 101.(I w nfothsmdlaegvns
tion." The material has unusuial damping pi opertie'. buti l M,] c, + e, -
strong and lightweight A simple experiment usig the PN i .

an nh oposite beam piovide a prlmIr oka on ~ I - , ~2
trol/structure interaction phenomena. The actuatoli vomlposite (I) A -

ba sytmadcorresponding experiment aind anal'.si' is + [-~ A ~ L~ [11 1 i]
discussed in detail in Sec. IllI p 4 -

The numerical study consists of uising a rcdkflt I Here it. is the equi'~alent lumped mass of the structure and
finite-element model of the propotcd Cuonirk'I ,1I UhL the parasitic. niaiss of the actuator (PMA system mass minus

the proof mass). The structure is also assumed to have viscous

Recei'.ed March lb. 1988. r,..Iiin rwcci~ed s- damping coellicient C, and stiffness K1. The mass of the proof
righ @ 989Ainri~n I~tiut -I \cttimtinia-s i% den.ied b\ nip, The inherent electronic damping of the

In.Arights8 Ainer~oin tnii ~ ' \roukPl\ide to the back-emf in the fixed coil is denoted
"Assistant Proics' , ct i iront stiffiness force required to keep the proof

ehianicsi. and 11n10anCC11114 S,1, m iti. housing is denoted by k,. This centering
tProfessor. Dasasao1' Ai \1,1 \Si? '.O.i m laboratory experiments to overcome the

Mechanicat and Acrkriace I vaiwecrine \iai, .oiiiponvwi ,I gra% it\ that would cause the proof mass to slideYork. Buffalo, Nc%% i iI'S it) .,no ka 11 id~ 1,1 lact the outer case. Additionally, it will be
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Fig. I Dynamic model of proof-mass actuator.
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Fig. 2 Open-loop Inertance frequency response function. Fig. 3 Closed-loop inertance frequency response function.

shown in Sec. III that the centering force is required for the in Fig. I (again with M, locked) and is given by
closed-loop system to be asymptotically stable. The coordi-
nate x, denotes the displacement of the structure, while x, J;(s) _ +_co (3)
denotes the displacement of the proof mass. The overdots F(s) . 2
represent time derivatives. The addition of the desired control
law is modeled asf., a force generator that applies equal but Equation (3) reveals that as s -* oo, the total force applied to I
opposite forces onto the structure and the proof mass, the structure is equal to the output of the force generator.

To determine the inherent dynamic properties of the PMA Physically, this corresponds to the fact that both the displace-
system, the actuator was attached to a nonmoving structure ment and velocity of the proof mass tend to zero as the
(M, locked in Fig. 1). The frequency response function of the frequency content of the force generator command signal I
total force applied to the structure (the reactions of the tends to infinity.
spring, damper, and force generator) to the voltage command
to the force generator was measured experimentally. Let F(s) III. Composite Beam System
and V(s) denote the Laplace transform of the total applied An eperimental test of the PMA's ability to control vibra- Iforce and the voltage command to the force generator, respec- lion using a r. te-fecdback control law was performed using atively. The experimentally9 verified transfer function for the 1,% ,trtlt-tre made of ,i quiasi-isotropic composite material"PMA system is onligurk:,l I., aI cantilevered beam. The PMA system was

s)iilached .1l tile Il) II ice end). In addition to the two sensors
-F(s) GIGMPS 2 mp GIG, "k: ontalined %%ithin the IMA system, an independent accelerom.V~s m~s2 + GG2cps + G, G2k, S, + 2,,a) + t); cicr w, mounted at the tip to monitor the vibrations of thebeam l'he rate-feedback control law was implemented by

2 = IG' Gok , (2) dhtllll Integrating the accelerometer signal contained within
P till, tile IMA ysteni and multiplying by an appropriate gain. In

this experiment. the electronic centering force gain kt, was
Here, GI(NIA) is the electromagnetic gain of the PMA's wioil. a,.k..td su*.i that tile break frequency of the actuator was
and G2(A/V) is the power amplifier gain. The inherent d) Ahglitl) locr than the fundamental mode of vibration of the
namics of the PMA are seen to be that of a high-pass filter .antlle~ercd beam. A detailed description of the experimental
whose characteristics are shaped by the spring and damper ,ctup, .ontrol la% implementation, and experimental methods
rates. The simplest way to characterize the dynamics of the is provided in Ref. 10.
actuator is by its break frequency w.,, which indi*.,aLb tli. I I,. iiiudal prop%.rtis of the unkontrollcd and controlled
frequency at which the Bode magnitude plot of the PMA Auuw.turc yerc determined using both time and frequency I
breaks flat from a 40 dBtdecade rise, and the phase plot go, , ,J,,i,, idntti.ation techniqucs. The uncontrolled, or open-
through 90 deg. The break frequency corresponds roughly Lo lk,p. .y.i ,.onsists of the ".intilcered beam with the para-
the natural frequency of the actuator. ,itie indic of the actuator. The measured inertance

The transfer functmc, n relating the total applied I'r*.... I t, t..o.*t-i lur..*..) lrcquen%.,y response function is shown inand the output of the force generator f2 (s) can be obtained f ,g. 2. UaLng the circle-fit identification technique,i3 the natu-
from Eqs. (2) by considenng a free-body diagram of mass i, ial fi,.quen,.ies here determined to be 3.49 and 29 Hz, with
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damping ratios of 0.2 and 1.0%, respectively. These values for the system is given as
were also confirmed by using the eigensystem realization
algorithm 4 (ERA) time domain modal identification tech- 4 + (C,/M, + C + C, fM, _ d/M,)Jnique. 4+ (,M+c/M+ ,/ , -dM)2

The closed-loop system consists of the open-loop ,ystem + (K/M + kpIM, + k"Im, + 4cC/(Mm,))A2

with the proof mass added and the control law turned on.
Although difficult to see from the measured inertance fre- + (K,1cp(Mn^) + CAk,/(M^n,))A + Kk,/(Mm.,) ,0 (5)
quency response function of the -Iosed-loop system in Fig. 3,
an additional natural frequency appears. These three frcquen- With the aid of MACSYMA,17 the inequality relations for the

cies and corresponding damping ratios were again identified rate-feedback gain d in terms of the actuator and structural
using the circle-fit method and verified using ERA. The
closed-loop system' exhibits natural frequencies al 3.19. 4.03. properties for a stable closed-loop system are iven as
and 28 Hz, with damping ratios of 0.2. 9.4. and I 9",, The d <C, + c, + Mc/m, (6a)
appearance of a third modc of vibration is due ii, 1h 0'\IA
dynamics, and is referred to as the actualor-dominaited mLd d <[ AS + e) + k(C, + c) + m (2Hck.
The actuator-dominated mode is the sharp narrow peak at
3.19 Hz in Fig. 3. The lirnt snluctural mode i ditled tip (o + C(.,, - C'c) + M,(cA + M,ck,)]I
4.03 Hz, in accordance with the first monotonwiet prmncle'"
and is heavily damped by the control law in'.(K, + k,,) + tnp(Mk, - Cc,)] (6b)

The effect of the control system on the 5tructure's re~ponse
is best exzmined in the time domain. Figure 4 illustrates the d: - C2c,[l(2Kimn) + l/(2kpm,)]
open-loop time response of the accelerometer located ,: the
tip of the beam. Examination of the response indicates that + ( l/2)(C, + c, - K,ck, + M,c,/m "
the open-loop system is very lightly damped, illustrating - Af,C,klK,m^ - CGkplK, ± {4[(K,(Cmpcpk,)2

substantial oscillation even after 16s have elapsed. The
closed-loop system response illustrated in Fig. 5, subject to an + C,K;mc2,k,)(M + MP) + MCK, m c, k.(M, + 2MP)
equivalent impact, shows a substantial increase in damping.
essentially reducing the structural vibration to small levels in + K',4.c.k.,(C, + c.) + C,, rmIc. kp,(m , + CK, c.)
less than 2 s. However, Fig. 5 also illustrates that a very small +

amplitude and lightly damped oscillation occurs at 3.19 Hz, + C.,K,mk,(C , k, + Cm ,k, - 2MKck,)]
which is the actuator-dominated mode. This oscillation repre-
sents a degradation of. the closed-loop system performance + [(Kmpcpkp -C,mp,)(M, + mp) + C Km,(mk, -c,')
because of the interaction between the structure, the control ctn(Ck + Klm,)]' 2 /(2KAt2k,)law, and the actuator dynamics. (6c)

To gain a further understanding of the structure/actuator Additionally, inspection of the last term of the characteristic
dynamics in conjunction with the rate-feedback control law, equation reveals that the electronic centering force k. is aconsider a two-mode model of the controlled structure con- requirement for the closed-loop system to be ymptotically
sisting of the actuator-dominatd mode (3.19 Hz) and the first able. If no centering force is provided, the last term in Eq.structural dominated mode (4.03 Hz). The second structural (5) is zero and, thus, the system would exhibit an uncontrol-dominated mode (28 Hz) is not included in this model because (5) id mod This e s een y ex i nin the
its contribution to the total time response of Figs. .1 and 5 s lable rigid-body mode. This can also be seen by examining the
minimal. The equations of motion are then given by Estiffness matrix of Eq. (1 for the case of k, =0. e existnce

imhfbein The ruatonsfedbk otro law, hen gen b E. of this rigid-body mode is independent of the choice ofwith f being the rate-feedback control law, i E -ad.. Sub- control law implemented by the actuator.stitution of the control law into Eq. (I) a'nd moving the The physical parameters of the two-mode modef'd:.-ribed
control term to the left side of the equation yields a closed- Ty praeters of thetwmde m es' teloop damping matrix of by Eq. (I) were determined by independent tests of the

actuatorl) and the beam.' 2-" The constants associated with
CU + v, - d - ep the bean dynamics M,, C,, and K, were determined to be

e C 1 (4) 1.1537 kg. 0.2 N-s/m, and 554.75 N/m, respectively. In deter-
L-' + , mining these constants, it was assumed that the structure

The homogeneous equation for the closed-loop s,,te~n i% no behaved as an ideal cantilevered beam. The constants associ-
longer symmetric atd ponthve semidelieo 55 stmg tile ated with the actuator dynamics m I and c (converted toI logersymctrc ad poitie smidlinte. ndi..imngthe mechanical units) were determined to be 0.232kg and 0.76 N-
possibility of an unstable response."' The .outh stability smespctl n te det erie t e vad o7 N.
criteria can be utilized to determine the stable and unstable s/r, respectively. In the control experiment, the value of k.
regions in the parameter space. The characterinstc equation converted to mechanical units was 108.27 N/re. Substituting

these values into Eq. (6), it is found that Eq. (6c) is the active

I 0.8 .. .""0.8

II

Q:

I 0.8 .11.8. -

0,0 4F t li" i.0d TIp c(SE c 16.00
I Fig. 4 Ope'n-loop frete deca tip acccteral,,,, Fig . 5 C'losed-loop rree decay tip acceleration.
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Fig. 6 System root locus. Fig. 7 Modal damping ratio vs feedback gain d.

constraint, and the rate-feedback d for a stable control system IV. Structural Model m
must satisfy the inequality In order to investigate more thoroughly the high gain

instability suggested by the simple beam experiment and
- 1.55 < d < 2.145 N-s/rn (7) analysis described in Sec. III in a large space structure appli.

cation. a simplified numerical model of the COFS I truss flight
In the active control experiment, the gain 1 implemntd by article was constructed. This three-mode model consists of a

the 8751 control program was d -1.2 N.s/m, whereas the two-mode approximation of the COFS I structure with an

gain required to match the model damping ratios experimen- additional degree of freedom for the linear DC motor

tally identifie and those predicted by Eq, (I) is r -1.4 (LDCM) control actuator. The three-mode model allows for m
N-s/rn. This difference can be accounted for by the relative an investigation into the effect of placing the break frequency
error in the identified structural parameters. In either case, the of the actuator below, in between, and above the modes of
rate-feedback gain used in the experiment is relatively close to vibration of the uncontrolled structure,
the unstable region. The I.DCM developed for the COFS flight article has the I

The effect of the rate-feedback gain on the closed-loop same dynamic characteristics as the PMA discussed in Sec.

poles can be demonstrated by plotting the root locus of the IL." Therefore, Eq. (2) is also the transfer function for the
system transfer function. With x, defined to be the output and LDCM control actuators. A continuum beam model4 of the
fthe input, the root locus as a function of the rate-feedback truss developed for control law design studies was used. The
gain d (expressed in mechanical units) is shown in Fig. 6. The equivalent beam characteristics are given as length 60.693 m,
root-locus plot provides information beyond that provided by mass per unit length 4.461 kg/m, and flexural rigidity
Eqs. (6) for a given set of physical parameters. Specifically, 28.63 x 106 N-im2. The continuum model was then approxi,
Fig. 6 reveals that it is the first mode of vibration that goes mated using a statically reduced two-element finite-element I
unstable when the gain d is less than -1.55, and that the model. Nodes zero, one, and two were located at the base,
second mode of vibration goes unstable when the gain d mid-point, and tip of the beam, respectively, as shown in Fig.
exceeds 2.145. However, inspection of the root-locus plot does 8. This physical modeling approach was used as an alternate
not directly reveal the relationship between the gain d and ihe ipproach to the more standard modal model because the
modal damping ratios of the controlled structure. interaction of the actuator and structural dynamics become

A plot of the modal damping ratios vs the gain d is shown more apparent. A lumped mass (100 kg) was added at the tip
in Fig. 7. Like the root-locus plot, Fig. 7 reveals which mde of' the beam. The open-loop natural frequencies for this
goes unstable when the gain violates the Routh stabilts .ppr ixin~tt model .re ,ileulated to be 1.429 and 10.39rad/s.
criteria. It also reveals more clearly and quantifi,ably thal I p fi not m d l tle controlled system are given as

changing the gain to increase the damping in one of the c

modes results in a decrease in damping of the other mode WN0 0 () 0
This high (in magnitude) gain instability provid-s an explana- + [ 0 0 X11-
don of the low frequency, low amplitude, lightly damped t) 170.4 1) + 0 ( - [ ]
response found in the previously described experiment. vi, 0 t, .
evidenced in Fig. 5. As the magnitude of the rate-feedbaLlk L [

gain is increased, the damping ratio of the structure-dom'- 14045 -4395 01[.I 1 01 (8)
nated mode is increased. At the same time, the damping ratio 17 -k (8
of the actuator-dominated mode decreases. Apparently the -4395 1752+ , + P f
system is adding damping to one mode at the expense of the 0 -kp k, x 3J -f4
electronic damping in the actuator mode. Eventually, the gain
is increased to the point where the actuator-dominated mode where x and x2 are the displacements of the two finite-ele.

damping becomes negative, driving the closed-loop system ment model nodes of the truss at the midpoint and tip, and x3

unstable. The time response shown in Fig. 5 was for the is the displacement of the proof mass.

.losed-loop system operating at a value of gain just below that
,at which the system goes unstable. A classical control design V. Actuator Limitation
would see this as a system with poor gain margin. In this In this section several cases of actuator design are consid-
region, the damping ratio is very small causing the first-mode ered to point out control system design limitations and to
.vibration to persist for a long period of time. investigate the nature of the interaction between the control I
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E law, the actuator dynamics, and the structural dynamics. The The undamped (c., d =0),eigenvalues and eigenvectors are
criteria used to explain the nature of this interaction is to
examine the modal damping ratios of the closed-loop system (t1 = 0.496 rad/s, u = [0.0051 0.163 1.0]r

as a function of the rate-feedback gain d.
'U First, consider the common case of control system design (t, = 1.44 rad/s, u = (0.3196 -1.0 -0.1369]7
I without considering the actuator dynamics. Figure 9 illus-

trates that increasing the control gain d substantially increases w- 10.39 rad/s, u3 = 1.0 -0.2640 0.O06]r  (10)
the damping ratio of mode 1. In addition, the second-mode The first mode of vibration is termed actuator-dominated

* damping ratio is also increased, but to a much lesser extent.
due to placement of the control actuator near the node of the hcuse the third coordinate, which corresponds to the actua-
second mode. This naive modeling approach seems to indicate (ie ditlheement, illustrated the largest amplitude, whereas
that a reasonable design exists for reducing vibration levels in the other two coordinates are relatively small. By this criteria,
the first mode. The danger of this modeling approach is oIc 2 .nd 3 are structure-dominated, but both have someillustrated in the followingactuator influence.Next, consider t addition of the actuator dynamics to the The modal damping ratios for this case are plotted vs the

exts consier The brad of ec cttoris chosen to be less gain in Fig. 10. Note that, again, the first structure-dominated-
than the first structural mode [ow, = 0.5 < 1.43 = les (rads)]. mode (mode 2) shows an increase in damping ratio, from
thn thirs strctlmosedopequatios b e 0almost zero for the open-loop system, to as much as 20% for
In this case the closed-loop equations become the high-gain closed-loop case. Again, the other structure-

140.8 0 0 0 -[eI: dominated mode increases in damping as well. However, note
V1 that the damping ratio of the actuator-dominated mode

+170.4 0 1.1 1- It.- 1.1, (mode I) decreases with increasing gain. In fact, there is some
0 ,J -1.1- d l. value of the gain at which the modal damping ratio becomes

negative, driving the closed-loop system unstable. This again

+ 14045 -4395 0 1 rxl 0ol icpresents a high-gain limitation on the local rate-feedback
+ -4395 1757.5 - 5.5 x2 = (9) control law, the actuator, and the structure.

0 -5.5 5.5 x3

where c = 1.1 (N-s/m) results from assuming that the actua- 8.580Eo01
tor bacl.emf damping is 5%. The mass m, used in Eq. (9) is 0.220E+02ODE
consistent with the moving mass of the pair of LDCM tip 0.240E-01 ...MODEa,
actuators mounted in one plane on the COFS flight hardware. 3 //./
The 5% modal damping ratio of the inherent actuator dynam- ./
ics is representative of measurements of various PMA's built.

.../

O. IOOE-01
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Fig. 8 Equivalent continuum beam and actuator configuration. Fig. 10 Damping vs gain, Ow <<w.
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Fig. 9 Damping is gain-actuator di numic,, ignored. Fig. I I Damping is gain, co, < o), < w~z.
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Next, consider the case that the break frequency is chosen dilferential equation model with an infinite number of fre- I
to fall in between the two structural frequencies. Specifically. quencies., as pointed out in Ref. 20. Hence, there is always
consider o, - 1.35 < o,, = 6 < o, = 10.41. An eigenvector s ome structural frequency larger than the break frequency,
analysis of this system reveals that mode I is dominated b> ,11d the unstable closed-loop situation of Fig. I I results. In
both the structure and the actuator, mode 2 is actuator addition, the high-gain instability problem of the previous
dominated, and mode 3 is structure dominated. The modal case is still present. In practical terms, although a structure
damping ratios of each mode are plotted vs the actuator gain ducs not exhibit the infinite number of frequencies the partial
in Fig. 11. Note that in this case, one of the damping ratios is dillciential equation would predict, the question of how one
negative for almost any nonzero value of the gain that would pick the highest structural frequency that can be
achieves reasonable structural damping. Hence. the closed- e\ctcd is not yet answered.
loop system is almost always unstable, and selecting the break With (,, > w,, eigenvector analysis reveals that the actuator
frequency of the actuator to lie between two structural modes ell'ct is strongly present in each mode with the third mode I
is not feasible (without further compensation). This is due to being clearly actuator dominated. Figure 12 illustrates the
the phase characteristics of the PMA. For the rate-feedback modal damping ratio vs gain plots for each of the modes.
control law, the voltage command to and force output of the Note that increasing the feedback gain increases the modal
force generator will have a frequency content equal to the damping, but to a much smaller extent than for the case with
damped natural frequencies of the closed-loop system. For a the break frequency below the first structural frequency indi- I
stable closed-loop system, the sign of the rate-feedback gain is cated in Fig. 10. In fact, for the case considered, the highest
chosen such that the force component at each individual achievable closed-loop damping ratio is less than 1%. This
frequency opposes the corresponding modal velocity of the happens because the actuator is force-output limited in this
structure. At frequencies well below the break frequency of condition, as described in the previous paragraph. Again, the I
the actuator, there is an 180-deg phase difference between the system goes unstable at higher values of the gain. At-least for
voltage command and the actual applied force, whereas at the system configuration presented here, placing the actuator
frequencies well above the break frequency, there is no pha. break frequency above the highest structural frequency offers
difference. Therefore, when the break frcqucncy of the actimta- no apparent advantage. I
tor is chosen to lie in between two of the structural modes and Rctti ning to the case with the break frequency chosen to be
the voltage command corresponds to a physical velocity (not Ilhllei than the lowest structural natural frequency, the
a known sum of individual modal velocities), the individual high-g.nn limitation can be represented in terms of the modal
applied force components on one side of the break frequenct dcsigni thai of Fig. 13. This is also used to illustrate the I
will oppose the corresponding modal velocities, thereby re- Iuportance of back-emif damping in actuator design. The
moving energy from these modes. However. because of thc olid line of Fig. 13 divides the plot into stable and unstable
180-deg phase difference, the individual applied force compo,- iccion., For a given back-emf actuator damping ratio
nents on the other side of the break frequency will aid thk kh,.mol b 'j, the solid line yields the largest feedback gain I
modal velocities, thereby adding energy to these modes. II tl, lt il, -,teni becomes u nstable. This curve represents the
energy dissipated by the inherent modal damping of thest , hiu,.i. iigi-gtin limit The dashed line indicates the maxi-
modes is not greater than the energy added by the apphed -Ilwil .,h,,hle danping ratio for the second mode (which is
force components, the closed-loop system will becoine tLik ui,t tiuctural mode) belore the high-gain instability I
unstable. ,cIu.I.

Some researchers' have suggested that placing the break
frequency of the actuator above the highest frequency of VI. Summary
interest is a feasible method of reducing the effects of actuator The interaction between a structure, an actuator used to
dynamics on control design. Several problems arise in the -oiitiol the structure, and the control law used to drive the
control structure configuration examined here. First, because s)steni has been examined for two different systems. The firstthe magnitude of the actuator force output breakq down at %bteim considered consisted of a simple cantilevered beam
40 dB/s below the break frequency, the output force level .ontrolled using a rate-feedback control law implemented by
would be severely limited at low frequencies, typically where a proof-iass actuator. The second system consisted of con-
the highest levels of control force are required. Secondly, if trolling the vibrations of the COFS I flight article using a
the structure is very flexible, the model approaches a partial rate-feedback control law implemented by a Linear DC

~ I
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Motor. A simplified model of the COFS I structure was used 'Swanson, A. D. (ed.), NASA/DOD Control/Structure Interaction
so that the control/structure interaction phenomena were Technology- 1987. Colorado S-Prings, CO, AFWAL-TR48-3052,
more clearly revealed. In the past, the simple rate-feedback Nov. 1987.

*control law has been viewed as being a stable control law. 'Caughey, T. K. and Goh, C. J., "Vibration Suppression in Large
because it is equivalent to an increase in the passive damping Space Structures," Proceedings of the Woikshop on Appication Pf

leve ofthestrctue. oweer, henprof-mss ctutor Disrrbuted System Theory to the Control of Large Space Struetures,
leve ofthestrctue. oweer, henprof-mss ctutor Jet Propulsion Lab.. Pasadena, CA, Pub. 83-46, 1983, pp. 119-142.I ~ dynamics are included, it was shown that a high-gain instabil- 7Pilkey. W. D. and Haviland, J. K., "Large Space Structureity prevents arbitrarily high levels of damping from being Damping Design-Final Report," Univ. of Virginia, Charlottesville,

added to the system by active control. This high-gain instabil- VA. 1983.
ity was investigated using Rotiths' stability criteria InI a gen- ' laviland. .1 K.. Limn, T. M.. Pilkey, W. D., and Politansky, H.,Ieral sense and through root-locus atnd miodatl damping pkoi I i Control of Linecar Dampers for Large Space Structures," Pro.
for specific cases. - ('dflis of the 1987.41IA A Guidance and Control Conference, AIAA,

With added damping to the first (lowest) strictimal iiidli aN \vw York. Aug. 1987. pp. 106-116.
a design criteria, it was shown that the break ietluenc% o 1t hl 7iniciiman. 1) C'.. -Dynamnic Characterization and Microproces.

'Or Control of the NASA/U VA Proof-Mass Actuator," M.S. Thesis,actuator should be designed below the first natural freqtiency M~l nC M. hn . -1 A.,n,,,,.. Pr.,. S#-#- U-,i- of U.1,
of the structure for best performance. In addition, it was York at Buffalo, Buffalo, NY, June 1984.
shown that the closed-loop system exhibits a high-gain linita- ...Zimmerman, D. C., Horner, G. C., and Inman, D. J., "Mi-
tion, and that this limitation is determined by the amount of troprocessor Controlled Force Actuator," Journalof Guidence Con-
back-emf damping available. It was also shown that as the fiol. and Dynamics, Vol. 11, No. 3, May-June 1988, pp. 230-236.
high-gain limit of a given structure/actuator/control law~ iWilson. M. L. and Miserertino. R., "Pertrusion Process Devexlop'
configuration is approached, system performance degradles mcnt for Long Space Boom Models," Proceedings of the 41st Annua

substatiall. 198 ,. of tVioit fPlasticsr Industry, institute paper 60, Jan,

I i2"Bank's. 11 T , Cudnecy, if. H., Inman, D. J., and Wang, Y,,Acknowledgments "Parameter Identification Techniques for the Estimation of Damping
This work was supported in part by NASA Grants NOT inI Flexible Structure Experiments," Proceedings of the 26th IEEE

33183801 and NAG-1985 through the Structural Dynamic Conference on Decision and Control, Research Studies Press, Letch-
Branch of NASA Langley Research Center, Air Force Office worth, England, UK, Dec. 1987.
of Scienti 'c Research Granis 85-0220 and F49620-86.6-01 I I 13E1wins, D. J., Modal Testing: Theory and Experiment, Resach

throgh ne atheatis ad Iformtio Scence Diectry, Studies Press, 1986.
truhteMteaisand Inoration Sciences Directory, Grn '48587 Juang, J.-N. and Pappa, R. S., "An Eigensystem, Raalization

and atioal ciene Fondaion rantMSM 835107. Algorithm for Modal Parameter Identification and Model Reduc
The instrumentation was provided by Equipment Grant tion," Journal of Guidance, Control, and Dynamics, Vol. 8, Sept.-Oct.
AFOSR 850119. The composite beam and the proof-mass 1984. pp. 620-627.

iiactuator were provided by the Structural Dynamics Branch of "5Weinberger, H. F., "Variational Methods for Eigenvalue Approx-
NASA Langley Research Center through the efforts of R. iation,"' Regional Conference Series in Applied Mathensatks, Society
Miserentino and G. C. Horner. of Industrial and Applied Mechanics, Philadelphia, PA, March 1974,,

pp. 58-62.
"Ilnman. D. J.. "Dynamics of Asymmetric Nonconservative Sys-

References tenms,"~ Journal of Applied Mechanics, Vol. 50, No. 1, 1983, pp.
iJuang. J,4-l-. and Longman. R. WV (cd%.). "'Special ~i ksia 41 1491 203I Structural Modeling and System Identification ol l'lemick Spliux 'Bogen. R.. ,tACSYMA Rejrrence Manual, Version 10, Mathlab

Structures," Journal of the Astronautical Scienceak, Vol 3.1. No 1. tiroip, Massachusetts inst. of Technology, Cambridge, MA, 1983.
Jan.-March, 1985. "~Zimmerman, D. C. and Cudney, H. H., "Practical Implementa-2Meirovitch, L. (ed.), Proceedings of the Sixth I'Pl&SC, 11.1 tion Issues for Active Control of Large Flexible Structures," ASME
Symposium on the Dynamics and Control of Large Structure's, Vir Journlal of Vibration. Acoustics, Stress, and Reliability in Design, Vol.'Iginia Polytechnic Inst. arid State Univ., IBlacksburg, VA. liinc-Itl% Ill1. No, 3. July 1989, pp. 283-289.
1987; also see proceedings of preceding years, 1977, 1979, 1981, 1985 ''Balas, M. J., "~Observer Stabilization of Singularly Perturbed

3Balas, M. J., "Trends in Large Space Structure Control Theor% Systems."~ Journal of Guidance and Control, Vol. 1, Jan.-Feb. 1978,
3 Fondest Hopes, Wildest Drearms." IEEE Transactionv on Aiitoniatif pp. 93-95,

I UC'ontrols, Vol. AC-27, No. 3. June 1982, pp. 522-535 2"Goh. C. J. and Caughey, T. K., "On the Stability Problem
"Wright. R. L. (ed.). Pro, 'dukCc. it/ tie At~. NASAl DOD1 ( ipint,l (a.used by Finite Actuator Dynamics in the Colocated Control of

Structures Interaction Teclitologi Con ference. Norfolk. NA.. N \SA Large Space Structures," International Journal of Control, Vol. 41,
CP.2447, Pts. I and 2. Nov. 1986 Nol 3, March 1985. pp. 787 -802,



Matching Finite Element Models to
C. Minas Modal Data

Graduate Research Assistant.
A technique is proposed which systematically adjusts a finite element model of a

D. J. Inman structure to produce an updated model in agreement with measured modal raults.
Professor. The approach suggested here is to consider the desired perturbations in stiffness and

damping matrices as gain matrices in a feedback control algorithm designed to per-Mechanical and Aerospace Engineering form elgenstructure assignment. The improvedstiffness and damping matrces com-
o epartment. bined with the analytical mass matrix, more closely predict the modal tat results.State University of New York at Buffalo,

Bulfalo, NY 14260 The technique is applicahle to undamped, proportionally damped, as well as non-
proportionally damped models. The proposed method assumes that the analytical
mass, damping and stiffness matrices are known and that vibration test data Is
available in the.lrnm of natural frequencies, damping ratios, and mode shapes.

Introduction
The method proposed here addresses the problem of com- control theory method is used and adopted to physical coor-

paring an analytical model of a given structure with the ex- dinates rendering these procedures compatible with ex-
perimentally measured vibration response of the same struc- perimental measurements. Several examples are presented to
ture in the form of modal data. The analytical finite element explain and clarify the procedure.
model is generally of larger order than the experimentally The proposed technique is applicable where a finite element
determined model and the two seldom yield the same natural model of an existing structure is available in the form of mass,
frequencies, damping ratios and mode shapes. Previous work, damping and stiffness matrices. The finite element model can
see Berman and Nagy (1983), Heylen (1982), Kammer (1987) be undamped, proportionally damped, as well as nonpropor-
and Fuh et al (1984) for instance, have suggested adjusting the tionally damped. In addition, modal testing results for the
finite element model in the hope of producing a modified same structure consisting of a set of eigenvalues and elgenvec-
model, more in agreement with the measured response. tors is assumed to be available. The cigenvalues and eigenvec-

The modal data collected in a vibration test can easily be tors can be real as well as complex. As in most test situations,
cast into eigenvalue and* eigenvector information, if one it is assumed that the number of measured modes is smaller
assumes that the structure under test can be successfully than the number of analytical modes and that they are not
modeled by a linear lumped parameter multiple-degree.of- necessarily of the same order.
freedom system. The problem of matching finite element
models with test data can be restated as follows. Given a
dynamical system, and its finite element model, find correc- Analytical Model
tion matrices for the stiffness matrix and damping matrix such The dynamic structures under consideration are assumed to
that the corrected system has the measured eigenvalues and be successfully modeled by a linear damped multiple-degree.
eigenvectors. If one identifies the measured eigenstructure ol-freedom system. The free vibration of the model is de-
(i.e., modal data) with the desired eigenstructure, this is ex. scribed by the differential equation of the form
actly the statement of the eigenstructure assignment problem,
using velocity and position feedback common in control Mii(t) +Di(t) +Kq(t) =0
theory. where, M is the mass matrix and D and K are the damping and

The method proposed here, capitalizes on these similaritics stiffness matrix respectively. The mass and stiffness matrices
and uses an eigenstructure assignment algorithm from control are assumed to be symmetric, positive definite matrices and
theory to calculate corrections in the finite element model (An- the damping matrix is assumed to be symmetric, positive semi.
dry et al, 1982.3, Srinathkumar, 1978). The result is a cor- definite (Shames, 1985, Stasa, 1985). The analytical model is
rected finite element model which agrees with experimental obtained by finite element structural analysis. As a result, thedata. Note that in this proposed method, active control is not damping matrix is proportional to the mass and stiffness
performed, only an algorithm from control theory is used. matrices, that is

The technique of using an eigenstructure assignment
methodology with measured modal data as the desired D=aM+ OK
eigenstructure works equally well for both real mode shapes where, a and fi are constants. This proportionally damped
and complex mode shapes. This well known and established model usually has complex eigenvalues and real eigenvectors.

Contrbuted by the Technical Committee on Vibration and Sound tor complex eigenvalu,.s of the system are in complex con-Publication in the JOURNAl o vMN A oND AcousTic n Manus.ript rci d jugate pairs, siace the matrices, M, D and K consist of realJuly ON. constant parameters. The eigenvalues and eigenvectors of the
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I
analytical model are referred to as the open-loop eigenvalues matrices, respectively. Here q is a real valued vector of dimen.
(*) and eigenvectors (vi ) of the system. sion n x 1, u is a real valued vector of dimension m, and y is a

real valued vector of dimension r.
Experimental Model The control vector u(t) is given by:

The experimentally obtained modal data can easily be cast u (t) = Fy (t) (3)
into a set of natural frequencies (wi), damping ratios (c,) and The quantities M, D, K, Co, C, and q are rearranged such that
mode shapes by using modal parameter estimation methods, the first m coordinates of x(t) correspond to the measured I
such as circle-fit (Ewins, 1986), polyreference method and coordinates, that is
eigensystem realization algorithm (Allemang and Brown,
1987). These quantities can be further transformed into a set x(1) = Tq(t) (4)
of eigenvalues (XI) and associated eigenvectors (z,). Note that where T is an n x n transformation matrix. Note that it is im- I
the eigensystem realization algorithm yields the eigenvalues portant here for the finite element analyst and the test engineer
and eigenvectors directly (Juang and Pappa, 1985). The eigen- to use compatible coordinate systems. This means that ac-
values are given by the following equation: celerometers should be placed at positions on the structure

Xi r WI :',±j~ corresponding to nodes of the finite element model. Since the 1
finite element and the modal tests are often performed by dif-

where, ferent people, (in some cases, by different departments) it is

Wd = WI I important to ensure that the test data used in this procedure is m
for the underdamped case. consistent with the finite element code which is being verified.

The eigenvalues and eigenvectors Note that the number of nodes of the finite element model can
in general, can be real or complex. In the case where some of and will be, much larger than the number of accelerometers
the eigenvalues and eigenvectors are complex, they will be in used in the modal test.
complex conjugate pairs for the model to be real. Substitution of (2), (3) and (4) in (1) yields: 3
Model Correction MT-'x(t)+DT" ') +KT-'x(t) =BoFCoT-'x(t)
. The proposed technique uses an eigenstructure assignment i- BoFCI T-Ii(t) (5)

algorithm to obtain correction matrices for the damping and Let, I
.stiffness matrices. Those matrices are considered as gain
matrices in a feedback control algorithm. The first step in the M, MT ' DI MT-1 K, =KT- I
theoretical formulation of the proposed technique, is to con- CO* CoT-1 C I" = CT" (6)
sider a multiple-degree-of-freedom vibrating system of order Substitution of (6) into (5) yields:
n, subject to feedback control of the form: A

Mj(t) +D4(t) + Kq (t) = Bou (t) (1)

Theoutput or measurement vector y(t) is given by where Al,, DI, and K, are generally asymmetric n x n
matrices. The closed-loop system described by (7) has 2n

y(t) =Coq(t) +Ctii) (2) eigenvalues and 2n (n xl) eigenvectors. Given (XI),

where Co and C, are the position and velocity measurement i= 1,2 ...... r as the desired eigenvalues, and v, the eigenvec. I
- Nomenclature

B' = full rank constant coeffi-
cient feedback matrix

B = modified constant coeffi-
cient feedback matrix i " n . I independent in- y(t) = output vector i

CO = position measurement puts (actualors) ., = ith measured eigenvector
matrix Al = system mass matrix (sym- 6,D = measure of changes of

C, = velocity measurement metric positive definite) damping matrix, i= 1, 2
matrix Al= transformed mass matrix 6bA. = measure of changes of

Co6 = transformed position n = number of degrees of stiffness matrix, i=1, 2
measurement matrix freedom 6D = damping matrix of

Cil = transformed velocity p = number of measured changes
measurement matrix modes 6K = stiffness matrix of changes

D = system damping (sym- q(t) =displacement vector X," = open-loop system ithmetric positive definite) Q,= partition of R, eigenvalue

DI = transformed damping r = number of independent X, = closed-loop system ith
matrix outputs (sensors) eigenvalue

F = output feedback gain R, subspace of ith eigenvector A = eigenvalue matrix
matrix T = transformation matrix = measured damping ratio

G, = partition of R, u(t) = control vector o, = measured undamped
1, = nxn identity matrix v," = open-loop system ith frequency
J = objective function eigenvector w, = measured damped
K = system stiffness matrix v, = closed-loop system ith frequency

(symmetric positive cigenvector
definite) W = system eigenvector matrix Superscripts

KI = transformed stiffness x(t) = transformed displacement T = matrix transpose Umatrix vector = time derivative
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tors corresponding to X,, then tie eigenvector cquaiion of the ( Gi -1
closed-loop system is given by: Ri L J (14)

(I 2  (- M I , +M , + Aft BOFC (8) where G, is an m x m square matrix and Q is an (n- ) x m
= (M, - B0FCX, +M -BoFCo), (8) matrix. The matrices Gi and Qi can be further partitioned into

After simple matrix manipulation, this becomes: column vectors as follows:
Vi = (,, X,2 + MI - I DI Xi + MI - I Kl)- I Aft "- IGF G=[g :g2:g3: - • :g 

(CI * X + CO*) v ,  (9) Q1 =[q,:q2:q3:.. N
Note that the elements of Ri, Qi and G, are complex in the

Here it is assumed that none of the assigned cigenvalucs X,, case of complex experimental eigenvalues and eigenvectors.
match the system open-loop eigenvalues Xi*, therefore, the in- Here it is assumed that G, is nonsingular, so that the elements
verse of (IX1 2 +M, -'DIX+M I "K,) exists. of z, can be expressed as a linear combination of g; 11,

Next define the mxl vector mi, as g3, ... gm that is

mn, = F(C Xki + Co*)vi ( 10) zi =ag, +a2g 2 +a 3g 3  . . .amgm (16)

Then (9) becomes where the elements at are constant expansion coefficients.
V,= (X12 +M, 'DIX, A4, IK,) 'At, 'I /?,i, (1:1 This last exprcssion can be written in matrix notation a

The implication of (11) is of great importance (Srinathkumar. = G~s (17)

1978, Andry et al, 1983). It states that the lo.deibo where the vector a is given by
eigenvector vi which is associated with the closed-loop ,:i' e- a = [a,, a2,a3, ..... a] (18)
value ?X, must lie in the subspace spannedl by ih t~li~ ,,h ' '., ,.ilarh, the vector d, is unspecified and forced tosatisfy:
the matrix

R1 = (X, 2 +M i IDIX, FAl, IKI) 'Al In,,F di=Qla (19)

(C , X,+C) (12) If equation (17) is multiplied by G,, the vector a is cal-
culated to be:

This means that there is a constraint on the eigenvector and
not just any complete eigenvector can he assigned to a giveii a=G1 -z. (20)
structure. The dimension of this subspace is i, the number of Substitution into (19) then yields
independent control-inputs to the system. The orientation of di= QIG,-'z1  (21)
this subspace depends upon the parameters in M, D, K, Tand
the desired eigenvalue Xi. Therefore M, D and K must be a Thus, the ith assigned eigenvector is given by
"good" representation of the structure for this subspace to be r z
physically meaningful. v1  z' (22)

Srinathkumar's (1978) work has very important implica- QG,-zJ
tions for this approach. It implies the following theorem
which uniquely determines the feedback gain matrix r. Equation (22) is a physically meaningful relationship be-

tween the unmeasured elements of v, and those elements
Elgenstructure Assignment Theorem. Given a controllable which are measured, HoWever, this relationship Is true only

and observable dynamical system (see Ch 'n, 1984, or Inman, when the analytical model is a "good" representation of the
1989, for definition), the elements of the feedback gain matrix structure. The assigned eigenvalues can be arbitrary, but the
F, can be specified such that max (m, r) closed-loop eigen- assigned eigenvectors must lie in a certain subspace. Further-
values can be assigned, max (in, r) eigenvectors can be par- more, the orientation of this subspace depends on the
tially assigned, and min (m, r) entries in each eigenvector can analytical mass, damping and stiffness matrices. This is
be partially assigned. equivalent to the equation derived by Berman (1983) relating

According to this eigenstructure assignment theorem we call the measured and unmeasured components of an eigenvector.
only assign (in, r) eigenvalues and min (m, r) entries in each Next the procedure for calculation of the feedback gain
eigenvector. If m =r, that is the number of sensors is equal to matrix is presented.
the number of actuators then, in eigenvalues can be assigned
and m eigenvectors can be partially assigned and i eutries ill Calculation of Feedback Gain Matrix. Equation (8) holds
each eigenvector can be arbitrarily assigned. II the cigvn%-.- hor all in closed-loop eigenvalue/eigenvector pairs. In the
tots are of dimension in x 1, then the eigenvectors ".i be iilk onpact form or matrix notation, the m equations represented
assigned. The measured eigenvectors are assumed to li' of hy (8) become
dimension px 1, where p is the number of the ineasnmed li'A-= -M, lDWA- W,-IKIW+BFC,*WA+BFCo*W
modes. The choice of the number of actuators iup it) the lise
in this case as no physical device need be present in this ap- where, (23)
plication. Therefore if p is set equal to tit, then all the ex-
perimental modal parameters can be fully assigned. Let the ex- W [vI :v2 :v3: ...... V,, (24)
perimental eigenvalues be {X, l, i= 1,2 ....... i and the A = diag(XI,X2 ,X3 . . . . . . . , X.) (25)
experimental eigenvectors [z, 1,i = ,2 ....... in. The B=M -IB0 (26)
assigned eigenvectors are of dimension n x I and are given by:

Solving (23) for the matrix Fyields

v,= (13) F=(BTB)-'BT(WAz+MI-IDWA+M I.tKI91
d, [C,*WA+Co*W]-J (27)

where d, is an (n-rn) x I vector of unspecified components. From a mathematical view, [C1 ,* WA+Co* W]- will exist as
Next the vector d, is chosen such that (12) Is satisfied, that is long as the only point of intersection of the nullspace of the

vi lies in the subspace spanned by the columns of the matrix output matrix [C,. CO], and the space spanned by the columns
R1.Then, R, can be partitioned into G, and Q, of the matrix of the desired eigenvectors W, is the origin.
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The new damping and stiffness matrices can be calculated calculated numerically, a canned subroutine from IMSL Math
as: Library was used (IMSL 10, CONDIR). The optimization

routine uses the conjugate directions technique to minimizeD.=D-BoFCo (28) (ie objective function. A subroutine that provides the func-
K=K-BFC0  tion to be minimized in terms of the independent variable vec-

It is noted that the new damping and stiffness matrices are not tor is necessary.
symmetric because the matrices BoFC0 and B0FCI are gener- Iterative Procedure. After the optimization procedure isally not symmetric. This problem is overcome by optimizing applied, Js not always exactly zero which implies that the newan appropriate objective function. pleJi o laseaty eowihipista h ean a pro riat ob ectve f ncton.damping and stiffness m atrices are not perfectly sym metric. ItIt is also noted that the original FEM will in general not pro- dampngand toife mat e notrper fectly sti.duc a odl wthcomlexmoes.Ths i tre ecasethe is important to realize that the improved damping and stiff-
duce a model with complex modes. This is true because te ness matrices must be symmetric. Therefore only the sym-standard choice for a damping matrix in FEM is to assume it metric parts of DO and K* are taken into consideration in theto be a linear combination of the mass and stiffness matrices calculations. However, by throwing away the asymmetric part
(i.e., proportional damping). The new damping and stiffness of D* and K'% the new model does not have the exact assignedmatrix given in equation (28) will in general not be propor. (measured) eigenvalues and eigenvectors. An iterative pro-
tional. Hence the adjusted FEM will yield complex modes, cedure is then applied to the updated model until the elements
which is what is observed in most structural tests. of the gain feedback matrix Fare negligibly small, yielding an

.Choice of Objective Function. As is noted in the previous. alnost symmetric system. During the iterative procedure thesection, the elements of Co and CI, that is the position and eigenvalues and eigenvectors are repeatedly assigned to the up-velocity measurement matrices respectively, cannot be deter- dated model, throwing away the asymmetric part of the new
mined analytically if symmetry of the new model is required, damping and stiffness matrices at each step. After every itera-

In general, the asymmetric part of a square matrix A, see In- tion the model is updated and checked for convergence of theman (1989) for instance, is given by, eigenvalues and eigenvectors of the updated model to the
A.=.5(A-A7) (29) assigned data.

If A is symmetric, the matrix A. must be a matrix with zero Summary of Adopted Procedure. The application of the
entries. Next define A,, A2, A3, A 4 to be the following method is straightforward and is performed in 7 steps, listedmaic: here and illustrated in Fig. 1.

(1) Choose BoA =B FC A2=BoFCo  (2) Choose initial values for the elements of Co and C-,A t -*A A4=A2-AT ( (3) Use the optimization algorithm to minimize J. Get F and -
An objective function J, is set to be the sum of the squares of new Co, C,
the elements of A3 and A 4. The objective function J is
minimized over the elements of the measurement matrices Co
and C1. If the final value of Jis zero then that the elements of Choose
A3 and A 4 are zero, which implies that matrices A1 and A, are Analytical Model
symmetric. Therefore the necessary condition for symmetry of M D K 0
the new mode',M D K8

B0FC = C,TIFB 0 T1 (3!) 00
B0 FC0  Co TFTBOI

Is satisfied.
To express matrices A3 and A 4 and finally J, in terms ofl C. OPrIMIZA]ION ALGORITHMand CIO the expression for BoF from equation (23) can be u~sed Kninizo Jd. Got CO. Cio F

to yield: D' . OFC1
BoF=Mt[WA2 +MI IDI WA+M- IK, q[fc,\A K' , K - 0FC0

+ Co"M W - (32)
Then, by transposing (32), the matrix FrBor is calculated to New Modelbe

1CD*WA+ 
,,WA2+MIDWA D -BOFCI

+M -IKI W]TMIT (33) K'. K- BOFC0
y this results in the objective function J, in terms of only

known quantities and in terms of the independent variable Yes
vector that contains the elements of CO and C,: ,,ND
1.0 $ [I faWA2 +MI -ID, WA +MI -'K, W]IC, 0 WA [- 0Ar
" +C*.-ICo- [CIWA+CW]-T[WA+MI 'ID IVA 1evectors within

." +M -tKIW1TMrC 'II+ II,[WA2 +M, -'D, WA desired
+MIIKIWI[CIWA+C 0 'W]-IC -[CIoWA

+C0oWl1T[WAZ+MI IDI WA+MI -IKI WlTMIrCITI(34 " O0+t) - 0(i) - BOF0i)GZ

K(i+ ) K() - BOF(Q)CO 0* O .5( 4 )
An unconstrained optimization algorithm was used to + I + K' =.5 K + Kr)

minimize the above objective function. Since the gradient vec- k U
tor and the Hessian matrix of J are not trivial and have to be Fig. I Flowchart of adopted procedure
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D*=D-BoFC ing ratios. The seconc example is a four-degree-of-freedom,
K = K- BoFC nonproportionally damped model which is assigned two

measured complex eigenvalues and two measured complex
(4) If J is not exactly zero, D' and K* are not symmetric eigenvectors. The complex eigenvalues and eigenvectors are in

complex conjugate pairs. This is necessary if the entries of the
Set DO.5 (DO+D ) mass, damping and stiffness matrices are required tobe real

K* =.5 (KO +K. 7) numbers....
(5) The new model M, DO, K* does not have the exact assigned
eigenvalues and eigenvectors. Example 1
(6) Iterate procedure, that is, ,

'

In this example an eight-degree-of-freedom, nonpropqE.D(1+1) = D( ) _ BoP C, tionally damped model is assumed, It is also asaumed'tlhk
D(11') = .5(D0) + D('.,)r) measured model data in the form of three real 40.4l.,

(i..., an overdamped response so that the three: s %
damping ratios are greater than one) and three xl)mode

Kt 1) -. 5(K(i+ 1) + KV' i) r) shapes is available. P .1iut , -t"z

until desired accuracy in eigenvalues/eigenvectors is achieved. Analytical Model. The model is given by equation (1) ivth
(7) The improved model M, D, K results. Ihe following banded coefficient matrices:

A flowchart of the method is presented in Fig. I. % di" g nded coef'ficient matrices:
Measures of Changes. The evaluation of' changes in ihe

damping and stiffness matrices is necessary if one i, to pav F 2.5 .0 -2.5 .0 .0 .0 .0 .0"
judgement on the acceptability of the improved modl. No 2.5 .0 -2.5 .0 .0 , .0 .0
single measure of these changes can be compleiely ininiglu. 2.5 .0 .0 .0 .0 .0

Therefore, two separate parameters were calculated to assist il 2.5 -2.5 .0 .0this evaluation. The first, 6,, is the mean square of the eleinciw: symmetric 10.5 -4,0 -4.0
changes divided by the mean square of the elements ol' lhe .4.0 .0
original matrix. Thus 61 for the damping and stiffness 4,0
matrices are defined as:

n n 8.0 -1.0 -1.0 .0 .0 .0 .0 .0"6Dij 6Kj- 2.0 .0 -1.0 .0 .0 ,0 .0
i- 4.0 .0 -3.0 .0 .0 .0

61D 61 K=,= (35) K= 4.0 .0 -3.0 .0 .0
4.0 -1.0 .0 .0

Du2  K, 2 symmetric 8,0 -2.0I., .i2.0 .0
j ~ tL- 2 .0 .

where SD, 6K are defined as the matrices of changes of the
damping and stiffness matrices, respectively, that is: 1 0 O"0 0 0

6D=D'.D 6K=K*-K (36) 0 0 0
This measure makes no recognition of the relative changes B0= 0 0 0

of the elements. In a sense, the diagonal elements may be con- 0 0 0
sidered to be indicators of the magnitude of the data in the 0 0 0corresponding rows and columns. Thus, the second measure L0 0 1 "of changes was calculated, which is simply the mean square of

the relative changes in the diagonal elements. Thus, 6, is de- The sixteen eigenvalues of the open-loop (FEM) system are
fined as: calculated and presented below for comparison:

D,,-',,: I X''. i= 1, 161 = I - 6.7072,- 5.4904,- 0.7160,- 8.8625
rd S,,2rd K,, :L3.273 1 i, - 1.6916 *t 1.7638i, - 0.0462 * 1.80551,

i1.| I(7
32D = , . 3"7) 0.2242:k 1.6361i, -0.0645 *0.4199i-0.48,43/0.00781)

SD,,!
,-. ,-' Measured Results. Next, it is assumed that th-. measured

results are available in the form of eigenvalues and associated
The above procedure is illustrated in the examples that eigenvectors, that is:

follow. The measure of changes in the damping and qtiffness Eigenvalues:
matrices are also shown. {X,X,X 31 = -7.0000,-5.0000,-0.75001

Associated Eigenvectors:
Examples C 00~- .2000~ ].325100

In this section two examples are shown to illustrate the pro- z 10000 ] Z2 = 05 = 10
posed method. The examples are fictitious and do not corre- -. 0500 1.0000 -. 0050
spond to real experiments or structures. However, they do These eigenvalues and eigenvectors are then assigned to the
simulate the standard case for real structures in the sense that above model using the proposed method to produce the
the FEM is larger than the "measured" modal model. The following correction factors. Note that only the first three
first example illustrates an eight-degree-of-frcedoin, non- elements of each eigenvector are available. This simulates the
proportionally damped model which is assigned three real situation in most structural test, that only partial mode shapes
eigenvalues and three (3 x 1) eigenvectors. This simulates three can be determit..d and only a few of the eigenvalues can be
sets of measured mode shapes, natural frequencies and danip- measured.
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1(a) Results from Optimization Procedure .. o!a:agc.. ' the damping and stiffness
The resulting measurement matrices Cc and C, become ... : ai .ulatcd and shown in Table 1. Next, this pro-

(k -. ih 1., iterated to improve the corrected model.

C -7.77 8.62 9.99 9.31 , , 6.21 49.03I

co= 32.26 -10.94 -0.78 13.96 - 1 i :.I 2.76 - 17.54
-291.65 76.99 102.36 -54.17 11.4, 14.64 280.541

0105 -. 0447 -. 0480 0243 -0 398 11,5 o103 -. 0918)

C, .00 -.044 -. 40 04 - .1610 0613 -.01901
C3 : 103 -. 0078 .0498 .0569 - .0272 .037 ,I , (601 .019011

.1783 -4.167 -. 4749 .2714 -31H3 1 9.; .1723 -. 8831_

The modal parameters of the new system, that are of inteic-o, lt, R lt, After Iterative Procedure
are the following set of eigenvalues and eigen~ectors, that %;'c 4 aerations the modal parameters of the new system,

E1 ,.. 1 'Z uciterest, (i.e., those corresponding to the measured
Elgenvatlues: a. , : I,,x the following ,et of eigenvalues and eigenvec- I

1X1 J X3= -7.0654, - 5.4857, - 0,68641

Associated Eigenvectors:
-. 0309" -. 12'60 , ,\ I I 7,u0OO,- 5.0000, -0.75001100 15002 217 1a 1,i~ .I'cos

1.00-.45 1000.0 00(.19541 1.0000 -,.251"7 , ' [t tlCo

xxx 2 x XXXX .010 - .20W .2500
V 1 000 V2  xxxx v0 = XX 1.0000 .0500 1.0000XXCX x'xxx.\x, .0xxxx XXXX .500 1.0000 -. 0050

IxxV =x V XXXX xxxxx x x x JX X t, 
=xxx x X X X X ", X X X X V 3x x x x

matrix and the damping and stiffness matrices that follori , Xxxx xxxx xxxx

that is: xxxx xxxx xxxx

2.872 .082 -2.478 .424 .155 - .355 .220 .139' I
2.500 .0 -2.553 .0 .0 .0 - .034

2.500 -. 183 .0 .0 .0 - .004
D*= 2.952 .029 - .001 .182 .0

2.500 2.500 .0 .232
symmetric i 500 - 4.000 - 2.3344.000 - 1.028

1.666

and

6.952 - 1.025 -. 988 - 1.382 '2 .165 .365 -. 301 '
2.000 .0 .1.002 . ) .0 - .012

4.000 .028 ' .0 .0 .146
K= 2.673 .' 2.852 .615 - .537

(10o( 0 -. 044 I
synlletriL '"I'')0 - 2.070

1003 -. 156
2.897

S:- b the original mass

. natrices that follow.

3.410 -.942 .MI L110 .297 2.151"
2.500 1,02,1 0 .0 - 1.606

- ,M ' .077 .0 .0 1.066
DO' .097 2.579 .056 -2.079

2.654 3.255 .077 1.572
Vn,.. II l, 10.500 -4.000 -2.163

4.000 .043

and 
5.152I

7.490 -2.050 -9 II 3.462 - .778 .165 -. 559 1.442'
2.000 .0 I 500 - 1.024 .0 .0 - 1.584

4 .)00 .ti'9 -2.923 .0 .0 1.217 -

KO= .07 -. 518 -2.852 .117 -. 537
1.952 - 1.000 -1.024 -1.616

Syl I.-1ct. 8.000 - 2.000 -2.070
2.000 - 1.727

2.897
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Table 1 Measures of chanqes 1 lie anodal parameters of thc new system, corresponding to
E- ( l it in easured data, are the following serof eigenvalucs-and

Example/case Sip _8 1K '82D 62 eigcnvectors, that is:

2a 0.80 10.83 1.19 6 03] Associated Eigenvectors:
2b 0.80 10.86 1.18 _ " .1, -0 I 0 (

0.9908 0.0868i| -20.90 + .0868i

The m easures of changes of ie dam ping aw-' ,;i : , x

matrices are calculated and the results are sho~n Its i
Note that the eigenvalues and cigenvectors of di i.'. ,! i,- new model is described by the original mass matrix and
model are much closer to the simulated mcasutcdl ,Ji,: ' .,. hi. lping and stiffness matrices that follow, that is:
the result obtained by just using cquations (2t ( 2.0246 --3.9628 - .1771
tion. In either case, llic modal miloII mi of t l , 1 ' 14,'' 2.024 - .062 -- 174
model is much closer to ilit v .,,, ,,m ,;,i0 2s .0000 6.0000 -2.0287]
original model. 0174 -2.0287 2.9560

Example 2
In the last examuple,. o i . I, i !, --.9928 -2.0011 1,503f"

tionally damped systmin i, i'. , '000 -1,0000 -,0098
to be two com plex eigenvalue , ., 'd , 2 ," , 1.0000 5.0000 - 2.0009

with damping ratios less Owhu ani u .. . 1503, -. 0098 -2.0009 3663j
eigenvectors (complex mode shapes). "l'his e\alipi, , measures of changes of the damping and stiffness
because most structures are underdamped and n'.'~i"' . , rices are calculated and the results are presented in Table
plex, or moving, mode shapes. Consider the modcl ,IClt i Next, this procedure is iterated to improve the corrected
equation (1) with the following, coefficient matrice'. ;: '(lel.
M= diag 2.0,3.0,4.0,2101 2(h Results After Iterative ProcedureI 6 --4 1 0 f 4 1
D= -2 2 0 2 = - 1 2 - \ fter ten iterations the modal parameters of the new system
D= -4 0 6 0 -2 1 i c oicsponding to the measured data are the following set of

0 0 -c2 0 0 -2 .igenvalues and eigenvectors:

rI ( Eitzenvalues:
B= ,. L=-100+ 1.000i,- 1.0000- 1.00001)

0
0 1 , Asso~ciated Eigenveclors:

The eight eigenvalues of the open-loop (FEI\ ,.1tc .ie 1.0000 1.0000
calculated and presented below for comparison: v. - 1.0000.0.0500i - 1.0000+0.0500i

IX',j = 1,8) = { - 3.2813, -0.7269, -0.76Nl xxxx =xxxx
L 1.018, 749t,-0.729, ,7M Xxxx Jxxxx
1.0158i,-0.0126q-0.2749,-0.2986 0,7-< ,ihal improved model is described by the original mass

Measured Results. Next, it is asunicdal l th 'lnd tile damping and stiffness matrices that follow,
results, are available in the form of eigen alies ,ui,,
eigenvectors, that is:

Eigenvalues: 2.0246 - 3.9582 -. 1991"
I ,X2 = I - 1.0000 , I.o(00i,. I 000(1 2 n0( 2.0)00 .0126 .0013[

0126 6.0034 -2,0312Associated Eigenvectors: ',7 .0013 2.0312 2.9528J[ 1.0000 1 o)(, ,fl,

- .0000-0.0%500 j I o . (10 " 4.4391 -1.0016 -1.9994 1.5048"
1.016 1.9679 -1.0037 -. 0114

These eigenvalues and elgen,.el:or , are then a.;., ., . - 1.9994 - 1.0037 5.0000 -2.0009
above model using the propoed method to pod,, t 1.5048 -. 0114 -2.0009 3.6639.
following correction factors. measures of changes of the damping and stiffness

2(a) Results from Optimization Procedure ,:r:ces are calculated and the results are presented in Table
The resulting measurement matrices C,, and ( I ' ,ain, the procedure for concerning an analytical model us-

,casured modal data and an eigenstructure assignment
Co 27.4251 - 4.1;9 0 2934 I' v. lure produced an improved model with modal data

"7 0 6, ng experinental observation.179.0766 - 0.S2So ii. 106- ,,",

C 23.1963 11.8602 "'' Io of R.ultS

- 10.7962 1.225 - ,f ',,- I .N the above examples, the proposed tech-
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nique successfully assigned a complete l ~ ,c.itl . ad hc and less systematic
ly obtained (simulated in this case) cigens .t.C. mnd cu~.~ ~ ~~a and exsperimental models. Ititors. This provides a systematic mecthod lit III E .. .~tc li,-, mrany structures and machines exanalytical models by experimentally ubscr-.ed daia. Ih Mo .,~' nde \ihtjics. However, the common approach U
posed method is limited to updating or imipioving th ss.." ... a .iw damilping II unite elemenc procedures is to assume
matrix and the damping matrix. Some FEIM practitiv~t~s :ha: it . damping is proportional leading to real mode shapes.
believe that the mass matrix is actually a larger source ol -' i st 1 it, p. 'posvd approach at iorrecring the analytical modilin modeling and hence should also be changed. Trhe , u, i a ih;. klrrvcted motdel to have complex modes as Imethod does not allow the mass matrix to be chianged bw *

believed that the feedback algorithm used here cot,, -mL:a ,. n lit~ sinimarties this paper.
altered to accommodate mass changes and represent I dnqc sdvlpc hc ssgsm%:ie oa
research. The proposed method does, however, addres li,;,hiu sdeeoe hc sigsmaue oa
important issue of constructing a damping ItIatri\ lbr (lit I I NI (I aI vivcn finite cementt model of an existing
which yields complex mode shapes (hInman and A.1 ha. % HO , IV bY "ti cigelisi ruct tre assignment methods com-
This represents an important improvement onl standard - l-\1 ''tItil theory.
practice as the standard FEM damping mariN is proportional .I lie aipproach takeni is to consider (lie desired perturba.U
(yielding real mode shapes) and most mecasured data cow~fli: i - ii sidlitess and dampingl matrices as gain matrices in
complex mode shapes. In the case where the mode shait'N i; : onitrol algorithnis.
not available, other pole placement techniques t ltuian. ilec: 'sibatioii imat ii e obtained by the eigenstruc- *
Chen, 1984, Kimura, I1975, Davison. 19701. 1 973, 1 975j ) twiil lucliiteare not necessai ily symmetric. Th is f
used for ciglenvalue assignment and] model impro'.enei ,vercomne b uising anI optimization algorithm

The procedure described here produces I I I ,,-,.tilel. : I emtents of' the position and velocity
definite stiffness and positive beiini-defiiiit, kmpigil As :a.atrices ,tich that the symmetry of the new model is
adjust to an existing FEM. It does not, owcsr, -ti d.I
that the resulting modified stiffnes-, and daminig m . t calive p~rocedure is then applied to the improvedthe same physical significance incy had [t the ., -1 " esure that the assigned modal test results are
modeling. The procedure only guarantees that the ii~- 1.", mtsiited. Convergen-rce of the iterative procedure i
model yields the natural frequencies, damping ratio, .~' always guiaranteed,
mode shapes obtained from an experimental miodai anahl ,. t .) rhte dleveloped technique is applicable to undamped,
the modeled structures. p- itp ii ally dhampled, as well as nion-proportionally damped

For a gyroscopic system described by; 1itodel~l
(0) lut ther improvement of the algorithm and optimization

AI4(:)+A2q(t) +A3q(t) =80u(l ol the objective function under coupling constraints will lead I
to more accurate and physivally meaningful results.

where A,. A2, and A3 are real, asymmetric matrices, the pro-
posed technique is a one iteration method. The optimization
algorithm is skipped, since symmetry of the improved model I,, AcknowledgmentI
not required. Trhis research was supported in part under grants numberThe proposed method does not use the orthogonalit% I'm- 'US.4608--O ,AOR8.20adNFMM
tions for normal modes (Berman, 1983, Heylen, .lI,, .) Ahl .' The60-6C0 1,ho rAFyaOwledes5te0hpfu and I
Therefore, it can be applied to undamped, proporti, U I *ai M17, Thse otnith rte fully acnwlde the heepiewean.
damped, as well as non-proportionally damped imiodels. 0111l1 l ielvees

A disadvantage of the proposed technique is thle 'act i
additional coupling is introduced in the damping und stlfi .'
matrices. This problem can be avoided by op)timni~ing (t,. tI
Jective function, using a constrained olptiiiuiatii alet-i . at98".u~I)I ,l'7 "Modal Analysis: Twenty Years
and setting as constraints the couplingt -v.i lin'tn- 5 ..I I dlr'awn, Jantuary, pp, 10-16,
originally zero. This will poteniia'u kIiv. . i ' '60( 1982, "Modal Control for a

curate result and improvemnt ol thie ihP .. trjoveberoft pIIt should also be noted that itltlIfrda oebr p
analysis and the finite element inodc' '-'~. .. 1983, "Eigenstructure
the same or very close, then lte a.i.'. .. , U0ieruovaw' and Flec.'..Ict ora 2ageAnlyinot exist. This problem is avoidleti 11, s,. no *-ie %i a-I, I lA ata
measured eigenvalues that are alt eady it, ., -I,.' k 1 cnt .1.. .t11- 116X-173
analytical model (FENI). Note that thle niildcti ti %:,, .. the'. '1 Detscign. CBS College
cigenvalues and eigenvectors assigned by thle tbto-,e p~re- -J V,"t lit I'.. api 7,Z pp 32438.trdswt n
is arbitrary and up to the user. 'l'hretore. itiodal dIata 111 1-..1il IaAtvmn', on .luwitntauc C'otrol, AC-I Ulow confidence factor need not be assignted. LikI

.x. measured modal data that nmatches thie analytical datau it *a I I at I lam," 1. 1 . *AniAlgoritin br the Assignment of
I ~ need not be assigned. Those familiar with pole placemen: aao 1!' ,' Voik, ;y-teni' LUttg Output 1leedback in Large Linear

eigenstructure assignment methods will recoogiil the p'- *~\it~,, ''~n.~11 ca i: 0 n,,aa 'nrl C SU billity that the analytical eigenvalues (that matched the 1j~;, J . arld W5ang, S, It.. 15.75, "On Pole Assignment in Linear
.~ perimental ones) left unassigned will probably Move, I It, s:.'.II .1ai SiUt5 .ing Output Feedback," IEEE Transactions on
- event the procedure is repeated until all those measttred ii kA (''v AC926. oa4.sigleo~ n Practice, ReerhStudiesassigned high confidence are assigned to the finite elettnat l';v, ltd. Liansrd116 oa tieIwnad Rsac.t model. An introduction to using feedback control in vibran.., I -t. . LtI,. S.. dld ttcr~il V.. 19$'4, "Sytem Identification of3 and measurement problems can be found lin Ionitian (I198,)) 4S -*.ta . \ods ot lDamped Sltiotule,. \1,\ Structures, SDM Con.fina reark itwas how tht te etetstrt .t - Vq,. N4.026, IdAitl Sprig'.. .allt.'rnz, Mtay. pp. 112-116.As a fina reak tws5hw httlecgntw . 1982. '()pinizationa Qt Model \latn,.cs By Means of Ex-assignmtent method can be used to link anialysis %\ith '.t di t'tnuucd ihuaie Dl.s." J'remc~yhngj. of the 1st International

ment in a systematic way. Previously, the modal tcstineii s ii.- At.. witer,'wv cl(tai,. I iwatda, Ntouintler. pp. 32-38.
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I ABSTRACT structure is obtained forgiven boundary conditions. With the
structure attached to an actuator, the boundary' conditions bcotme

* A model for slewing motor-beam systems is described in this unclear, Some researchers have noted the typtcal clamped bound-
pa per based on a finite element beam representation modified to ,try condition at the base of the stewing structure and have assumed
include a dynamic model of a DC motor as the actttator. The sys- et: Lel i-ru mtodes for the analysis, However, unless the actuator
tern model is in state equation form and by including the effect of' is p)owerful enough to dominate the stewing motion with negligible
actuator-load interaction, can closely represent the physical beami interaction, this assumption is not generally appropriate, An

* system. The beam model is placed in moving coordinates to elimi- improved incdal model constdering the modal participation factor
nate the rigid body mode and is connected to the motor drive by at for the actuating torquehas been proposed by Garcia (1989). This
clamped boundary condition in its local coordlinates. The overall teptesetitation call include part of the actuutor-structurt interaction,
response of the system shows that the effective beam boundary bitt still is restricted to very basic flexible structures. for example, a1
conditions in a global sense depend on the motor parameters and simple beam,

*can vary from pinned-free to clatoped-free. The overall system
* damping also depends on various motor-beamn interaction. Several Stewing structLre modeling by the finite element method

examples are presented to illustrate the varying natture of the s (113M), utilizes a physical coordinate system throughout the mod-
torm modes and to show that with proper selection of motor pa~rarn- cling process (Bayo, 1987, Usoro, 1986). However, FEM Is not
eters, damping of the first few system modes imay be itieased 11%, natuorally capable of modeling generalized active elements and the

* motor-beam interaction. Iivitij)t interactions between active and passive system elements.
Ri , -i bodly motions also complicate FEM modeling and require

'.at1 conmidcrations. In this paper, a modified FEM model it
.. eted for a DC motor-simple beam system. This idea cant be

INTRODUCTION ,nddto any type of structure, as long as it can be expressed 1,n
.fs I'NI model, and any.%ctuator that can be expressed in state

Slowing structures are used in a wide vaniety of industriaml ,yimomi format. The coupling of the two sub-systtms is consid-
aplcains and in space structures. Due to the angulamr motion WAId when the mathemat'cal model for the overall system is con.-

ivlethe dynamic behavior is more comiplicated tilidi tht ot u1 tiled. Thtis approach has the following advantages, (a) it stays in
* similar translational systems and, for a flexible structure attaclied ph) smmil coordinates, (b) it can be applied to arty structure and
* to an actuator, it is important to take actuator-structure interaction a%.tutor, (c) it implicitly match4es the boundary conditions of the
* into consideration when constructing the mathematical model. Tlw, Nmrutire to the actittor, Wd the effects of actuator-load interac-

model, either continuous or discrete, may then closely represetnt tos .mt included and (e) the mathematical model is imn a simple
the actual physical system. However, if the interaction is not con- 'lae equation formal. Since the system is represented in state

* sidered, the dynamic response of the mathematical model ma1.) he .+4.414011 form (firat order differential equations) which ame
* biased, and will be accurate only when actuator itera100tism ~ d fioi the PIEM model (second order differential equa-

negligible or weak. vo,", combined with the actuator representation, the matrix sixe
The most popular approach in .lewing stititure iiichkiul iN ,, ,. to decribe the system i sapprcximaiely doubled. This

* the modal model approach (Juang. 1980. 1 lastite, 1987. Iktittd ma toot be .i severe problein for many applivations.
* 1985, Cannon. 1984). With tmis ztppio,melm. the eigeimi outk 1t fli Noom cil i-sult. using a DC , motor and a simple tiam with
U structural system must be obtained prior ii, conisidrlng dtudl kilk ivot gcar ratios are: pre;sented iW th-. discussion below. The

interaction. Certain difficulties mtay arise width iappioacti. [id. tIiiivl lespotise of dis system) is studiclJ to understand the roleI for complex 1tructures, for instance a three d ..... oooiI tras ik ictra~tion plays in tlm~ overall sysitm character. Eigen-
analytical eigenvalues and eigenvectors are almost impossible to Wt~ih sis of vamrious motor-beamn slowing systems has been per-
obtain. Thus, a discrete method such as the finite element niethi(t wie md remults are presented here which show system
is mom. appropriate to determine thme mode shapes atd ntatural tIce ~ ~ .~emt~ bounded by clamped-free amnd ptnned-free. beam
quencies of the system. Second, the eigenstrteture of a flexible bio ir. Rtstilts fut rantsient response and eigenvalue arialysis of



the niitt&-bcanirystein also show that dansicnbe iovided b)
natuialinteraction o~the stictire and :tcniator without ielying oin K, is tlte ttorctie constant
structural datnping. ., n l r h nri n rcino h oo

MATHEMATICAL MODEL ad1.ae i eti n rcino h oo

Consider a flexible bearn driven by a DC moutor through a geai /V1) is the reaction torqule or load dItte to the vibration of the beam
set with speed ratio r as shown in Figuire 1. Assunming that there is no structural damping, the FEM regre.

'R . sentation for the beamn with n elements is described in Figure and
--AN L0 te governing equations are fKY=()1

eo 9, , where M and K are (2n+2)x(2n4-2) inertia and stiffness matrices,
and the excitation vector F is (2n+2)xl1. The forcing functions canI
be split into two parts. The first part is due to the angular accelera-

pg 1 tion of the motor and the inertta of the beam, and may be called an
3 V5 implicit forcing function. Other externally applied forces and

-~ torques not related to the motor would be explicit forcing functions

9z 94 ; but are not specifically considered in this discussion.
Figure IThe boundary conditions of the beam in beam's local coordi-

Motor-Beam System Schematic Diagram na~tes are

-Two coordinate systems are used in the model. The first isth Y0e,) = MIAO = 0I
coordinate system for the DC motor, which is an angular coordi- oi h E ersnain
nate stem. Ihe second is the beam's nodal coordinates which ar, r i heFMrpesnain

l: ind with respect to the rigid body motion of the beam and are y1(g = y2(0 = 0()
aligned with the mootor's angular coordinate. The coordinate sys-
tem describing the motion of the miotora:nd beami is shown ifl Fig- lkvi-itse oh' the boundary conditions, we can redtice the size of theI
ure 2. model by partitioning the M and K matrices as

M 411 M12j K= K, K,2  (5)

where At,, and K,, are Wx motrices while M12 and K,2 ame 2nx2n

Smatrices. ), is also partitioned as Y = [YJ y, wherl:

Y= ty, y 1r and Y', = (y) Y. _2..2A.,~. Since Y, Is defined byI
\ It it boundazy conditions (4), only Y', is unknown and the dynamic

eqluatiotns for the beam reduce to

_________________Mj1, + K,2Y, = F, (6)

A where r, is the corresponding sub-vcctor of F.

a 1k rV i t7-17 iTeactin force Rjand torque R, on node I ar obtained by

Coordinates Used ith Mtt-3ut vtitC'j P;+4a(7)
By defining the coorlinte %ysiiin ii de.scr:bed III I'Igul. vw .

rigid body motton af the beam v., x tracte~l. lh boiiid,,, y etino. i twit lewintg nmotion is considered, tonly the torqute will rt'ZtI
uonis of the beam in it%: beat evordiiie .ystei 0' .n bc iegit;'o bl,. itimor ant
specified as 'cla.pcd" on the inotor shafi. lIsli'ti~j be noted dia
the "clamped-free"~ bound.y coadilot is viewedl frona the la R, =M,?, -KY), (8)
ccordinaics, ieif a carnra is mounted rigidly oi, the. inotor Nit U
mr! potintitward the bcarn~ip clanped-ree roationw iil be oeel n Kare sitb-mat,,,rices of M,, and K,2 corresponding to
observed. H-owevcr, in a globil szw tile Wa~in dou% ot have lihe effectitve torque transmitted to the motor through the gears
clamped-free miode shatpe&.

by amoo is as) eleccro. mechanica'd devit that nita t..'! rRQ

werese by alnR eir he ehetrva idutn e nd .- Ttan) igre - 1 9

-- IdwI



I
Substituting (9) into (2) yields NUMERICAL RESULTS

d) Numerical evaluations of a notor-beam system cats be carried
Jd = Ki - B.,o- r(Mfl;, + K, Y) (10) out by integrating (14) numerically for transient response, or by

finding the eigenvalues of A in (15) for frequency analysis. In this

Also, rearranging (6) results in section, an open.loop system with an Electro-Craft E586 DC servo
i motor and an aluminum beam is considered. Their specifications

Y,=MfF,-2 K,,Y, (1) are listed in Table I andTable 2.
It was assumed that only the implicit forcing function due to

angular acceleration exists in this system, and such forcing func- Km 5.5158x10 "2 N'M/A
tions are proportional to the angular acceleration of the "otor, 5.8 V/krpm- , R 1. f2Table1
Thus the implicit force F, =-rF, - where F, depends only on J,, 3.889x10 Kg.M 2  MotorParameters

beam dimensions and material properties. This can be obtained 2.3 mH
directly from the beam description without any knowledge of the B,,, 7.071x 104 N.M/krpm
DC motor. Combining (10) and (11) yields 7.07 7 D4

dO K , , ( r Length 0.9144 M
. Width 3.81x10 '2 l Table 2

Thickness 1.5875x10"'M I Beam Parameters
where J, =1,.-r 2M,M'P,. Density 2700 K&'M3 21Est Modulus 17"2568x!0 N/M2

Defining the state variables for the beam as X, = Y, and 'I
X2 = 1 = k, and substituting these definitions and (12) into (II).
the derivative equation (1I) becomes The DC motor and the aluminum beam are connected through

a set of gears, and the system is assumed to have zero initial condi-
rK r. rB( tions. A unit step voltage drives the DC motor fort 2 0. Two state

2'=-M~ + M, F, 'T (13) vat iables are monitored, angular velocity of the motor and tip
displacement of the beam with respect to the rigid body motion.

[ r M2 . Figures 4(a) and (b) show the response of the system for unity *ear
S-, + ratio, Figure 4(a) shows the plot of motor angular velocity vs. tame.

• Apparently at t = 5s the system has not reached steady state veloc-
ity. The oscillations on the curve indicate that the vibration of the

Combining (1), (12) and (13) along with , =Xz, we can repre- beam is interacting with the motor. Also, from Figure 4(b), there
sent the system in the state equation format are signs that the motor has influence on the beam. First, the tip

displacement of the beam is negative for the time period shown.
, AX + RU (H) This results because the motor is accelerating and the inertia of the

beam produces an overall beam deflection during the acceleration.
The second observation is that even without structural damping in

X = I, i X \'!I' the FEM representation, damping occurs in the motor- an system
.,ice the peak-to.peak amplitude of tip displacement is decaying.
This Nuggests that the structure can gain damping through the

S=%tructunre-actuator interaction.
8- K.

S t , -, j.-'i , I order to further explore the interac~ions between the motor
i" 1 ,, and the beam, different gear ratios are conidered for the system.
K- "-1 In Figure 4, with a gear ratio equal to unity iie motor provides

A 0 only modest torque to drive the beam, thus the response is slow.
0 0 ~ 0 1 With a decreased gear ratio, driving torque for the slewing bearn is

K .increased by llr and this increases the dynamic response speed.[,',f,: ~ ~ ~ ~ ~ ~ ~ ~~~~~1 F-- ,tj, ,t/, -M t %X*h. Iigures 5 and 6 present the transient response of the system wit/"

" ", " r=O.I and r=0,01 respectively subject to the same unit step input.
In Figure 5(a), it can be seen that the speed of response has been
increased significantly, with settling time' t - 0.5s. The influence

and of the vibration of the beam can still be seen in the transient for I <I. - -Li ,s. Figure 5(b) shows the tip displacement of the beam. Notice-able differences l'etween r=l and r=0.l can be observed. The max-inum tip disp!acement for r=0. I in Figure 5(b) is larger than that

I. tIe,) of r= I becauise the starting torque is 10 times larger. The first
Sytem mode in the r=0. I case possesses more damping than the

t0 r= I case, as the peak-to.peak amplitude decays faster. This also
yields a faster settling time for the tip motion with r' .l. Also, the
system's natural frequencies are different for the two gear ratios,

The above equations represent the dynamic characiertuL,, o this can be fui ther considered by looking at the eigenvalues of each
an interacting sle.,ng motor-beam system. In systemns co;ll'alug system.
different type of actuators or more complex structures. a shidar
approach may be applied to the model. The beain and moto,
parameters are ,cattered dhrough matrix A, these tenn, rclprec'i:
the interactions between the motor and beam. Severa' tra ',,lt and
frequency respon-,n results for a motor-beam s,%,tern :, dit i lercnt
gear ratios are presented below. These examples show that the
interaction between the motor and ttam ching.s the boundary I settling time defined here is ±5% of steady state value
conditions of the beam and affects damping of thie o, crll s tenI

I
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In the two previous examples, it can be scen that a gear ratio 0A mode Clamped-Free Natu- Pinned-Free Naturalreduction can yield a faster, beter-damped dynamic systei. In ral Frequency (I z) Frequcncy (Hz)
Figure 6, the same motor and beam ar considered wall the Iutheri gear ratio reduction to r=0.O, which again imunsifies the driving 1 1.5756 6.8934
torque as it reduces the driving speed. The angular velocity in Fig- 2 9.8477 22.3811
ure 6(a) shows that the settling time has been further reduced, how- - ,,
ever, the first ,ystem mode is no longer well damped and the 3 27.6182 46.5526
system is not in steady state at the end of the simulation. The motor
response is generally complete before t - 05s but oscillations in Table 4
the shaft speed persist because of the continuning beam vibration. Natural Frequencies of Clamprd
In Figure 6(b), it is clear that the initial acceleration of the motor and Pinned-Free Bean
initiates the beam vibration. Due to the low gear ratio the starting
angular acceleration of the beam is lower and this reduces the mag- vibration hardly influences the transient of the motor, This situt-
nitude of the tip displacement. The beam vibration is only lightly tion is similar to the clamped.free boundary condition. Comparing
damped and causes the motor angular velocity to oscillate slightly Table 3 and Table 4, it can be found that the system's natural
about its steady-state. This system has the potential for a fast tran- frequencies lie between the pinned-free and clamped-free natural
sient response but has light damping because of limited moto- frequencies of the beam, depending on the gear ratios, as shown in
beam interaction. "Table 51 The fact that different gear ratios on the same motor/beam sys- _Mode__Camped-Fre__r=0.01 _r=0,1 _r-_l__ined.___

tem will yield different dynamic behavior can also be seen in the Mode Clamped-Free r=0.01 r=0I1 r-l Pinned.Free
frequency domain, Eigenvalues, natural frequencies and damping 1 1.5756 1.5807 1.8902 6.8486 6,8934
ratios am listed in Table 3 for the various gear ratios. 2 9.8477 9.9355 10.538 216265 22.3811

3 27.6182 28.0633 28,5407 43.2349 46.5526
0 mode X.i 0), (Hz) 4 (%) Table 5

_ _ _ _Different Boundary Conditions1 -0.3320 ±43.0297 i 6.8486 0,771 Comipari sons of Natural Frequeticies Between
2 -1.2615 ± 135.8777 i 21.6265 0.928

From the examples above, depending upon the motor parame-3 .3642 ± 271.6337 i 43.2349 1.202 tcrs, a pli ticular beam can gain various amounts of damping from
motor-beam interaction in open loop. By tuning the gear rato.

Table 3 (a) alone in the above system, the first mode damping ratio reaches a
Eigenvalues, Natural Frequencies and Damping Ratios value of 81.977% at r=0.10 (Table-3b). Best damping effect may

for r=I possibly achieved with a more careful selection or, Iffrther
damping is required, full tuning of the motor parameters and gear
r,!io may approach critical damping of the first mode. When a

i mode X, , (I Iz) (clwd. !'mp controller is to be designed, various feedback signals
1 9.7357 ± 6.8014 i 1.8902 81,977 anid feedbackgains may be considered for the control loop. If all
1 _9.7357± t.8014i ,802 177Ohe ,,taies ar not available for feedback, full eigenstructure assign-
I -5,9619 ± 65.9-179 1 10.5387 9.011 mwii. becones impossible. Controlling such a system with avail-

oti, ouiptit feedback may depend heavily on the open-loop
3 1.3345 ± 179.3217 i 28.5107 0.7,14 ' .mciciisics of the system. A well designed open-loop system, in

', dttimton, can help provide inherent damping and Improve the
lo,,dop .ystem performance.

Table 3 tb)
Eigenvalues, Natural Frequencies and Damping Ratio ('ONCILUSIONS

for r=0.1I This model, in general, demonstrates a precise model for aI t mode Wk c, (Hiz) 1, %) lotr-beall system and considers the interactions between the
actuator and load. It can be treated as a foundation for designing

1 -0.0703 ± 9.9318 i 1.5807 0.708 closed-loop systems based on traditional control strategies, optimal
-oM Il or design optimization. Furthermore, many structures with2 -0.0485 4.62.4264 i 9.9355 0.073 111cracting actuator dynamics can be modeled by a similar

I 3 .0.0129 176.3269 28.0633 0.007 .lpproacl. In this study both the motor and the beam are modeled
,',, linear systems, the coupled system is also linear, as mratrix A is a
voitix of constants. When modeling non-linear systems, the above
:o,'cdure are still valid with the exception that the coupled sys-Table 3 ), ould be expressed in the form of, =f(x,u,t). As with all

Eigenvalues, Natural =requencie and Damping kl{iol non-linear models, frequency domain studies can not be performed
in general, but the transient responses can still be obtained by inte-

It can be seen that the variaion in gear ratio Lhiiiges the cigela- aling the non-linear state equations. Explicit forcing functions,
structures of the system. To explain thi, effect, the boundary on- hich ire externally applied, can be added to the model by
ditions of the beam should be considered. Pinned-free and including appropriate terms in the B matrix if the applied for-

clamped-freenatural frequciis of the b. re shown n .e/ionients do not have dynamic interactions with the system.Table 4d-. Otherwise, each external actuator needs to be considered
bC4aralely.

With high gear ratio, the motor can give little torque to drive the As pres,.-, ted above, appropriate design of the motor may
beam, however, the vibration of the beam can turn the motor shaft As Inge the epgenstructure of the system, and may enhance dampinge sl.This situation is very sim ilar to time botnndatry Con~dition m~ unetecg ntu t r ftesyt m n a n a c a pn
easily. the %ystem through iotor-beam interactions. When a more sta-
pinned-free beam. On the other hand, when the gear ratio is low, ble open-!oop system is desired, analysis and perhaps optimization
the motor is dominating the slewing motion vhile the beam'sI

I



of actuator-load interactions should be considered to sclect the
most suitable motor to drive the beam including dynamic interac-
tion as well as power and torque requirements. The boundary con-
ditions of the beam also change for the slewing systems as the
mv'or or gear ratio is changed. This suggests that in many
situations the assumption of clamped-free boundary conditions Imay be questionable.
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CONTROL FORMULATIONS FOR VIBRATION SUPPRESSION OF I
AN ACTIVE STRUCTURE IN SLEWING MOTIONS

Ephrahim Garcia and Daniel J. Inman
Mechanical Systems Laboratory

Department of ;1t l ia::. ; '.\m ' A paco Engineering
State Univ ,: ,- , .'iu v York at Buffalo I

• dl,, .,k~wYork

I
ABSTRACT Ng gear ratio

The slewing control of a flexible structure is coisidered by q1  ith modal coordinate

cxamining the equations of motion of an integrated control/,iructLm It -displacement vector
system containing both the actuator and structure dynamics. The Ru armature resistance

system under consideration is a stewing flexible structure, a thin it - beam thickness
aluminum beam, torque driven by an armature controlled DC electric x system state vector
motor and actuated by a piece-wise distributed piezoceramic y(xt) -deflection of the beam wrt x
actuator. An improvement in performance is gained by a) including
Te effects of the motor-actuator and beam dynamic interaction and y - measurement vector

b) using a piezoclectric device, layered on the structure, for direct Qi(x) ith eigenfunction
vibration suppression of the structural dynamics. Various control i - modal participation factor of the ith mode I
laws ar considered for the vibration suppression control problem,
These include a standard linear quadratic regulator controller and n piezo layer constant
output feedback control scheme. A comparison is made bct,.w.en the -angular position of the rigid body motion
petforn'.,nce of the output feedback control scheme and the ull taie angular position of the motor

fredback conitroller. 011 aglrpstinoIh oo
p - mass dln.eity per unit length

CL R -torque applied to beamNOMENCLATURE l "matrix transpose

A - state space system matri - differentiation wrt x

B -state s =e contiol matix
Sr ono matrix in physical coordinates

- equ;valent viscous damping I
c, . viscous damping in the motor (bearing friction) It has been shown by Garcia (1989) that the dynamic interactio
C state space output matrix between the slewing actuator, the DC motor, and the flexible-
D voltage applied across the armature circuit -atruncairc can lead to improved vibration suppression. Traditionally.

E damping matrix the slewing control of a flexible single link structure has been

- elastic modulus 'ingle actuator problem. This problem has been studied both biFJ, . flxura rigdityresearchers in the control of large flexible space structures, Juang ei
- cross sectional moment of inetiaa al. (1986), and by researchers in the robotics community, Cannon

lb -rotatory inertia of the beam about the slewing axis and Schmitz (1984), Hastings and Book (1987), and by Yurkovich
Im  - motor inertia and Tzes (1990).
Trn n by r. identity matrix I

- effective motor inertia Recently, Park et al. (1990) proposed the use of a "voice-coil"
K - stiffness matrix actuator in addition to the slewing motor. This actuator was rigidly
K back electro-motor force (enfl) constant attafhed to the stewing hub and actuated the beam near the clampe
Kp - position feedback gain end. This approach achieved improved structural dynamic

- motor torque constant perfonnance and reduced peak motor voltages, but at the cost oi
L - beam length addincg the mass of the coil actuator and its supporting mechanical
MI Iinertia matrix inelace to the slcwilg p.tyload. Garcia and Inman (1990b) showed

that mmular increases in performance can be achieved by slewing a1

1 I



Iactive structure rather than a passive structure. TII.,,s struciuru aItc,;wthfe moment genterated by adding piect wise distributed* consists of a beam layered w~th piece-wise (1itributcel, or ~ o1t~tr.Tedistributed mnomen 'term on the right hand sidesegmented, piezoceramic crystal. The active bem bigcnsid(!redl "qu i (3) cmi be rcwenas
here is similar to those considercd earlier by Fanson and Call-heyI(1987) and Burke and Hubbard (1987). They considered a
cantilevered flexible beam controlled by a collocated pair of t~~~1 x x=pV()(iL)-~'L) 4
piezoelectric actuators and strain sensors coupled with a p(,iittv o 1e<tAx)6()(s=pV 'L) 4
position feedback control law. I-pt j(j

Astudy is performed which examines various confrol la%, nlow cni distribtiion. fl.(x.O. can be calculated by the productI fo rmulations; in particular, an output feedback icontrol I iiIdjtlkIODw'it. pt, anid the voltage applied ars h emnV~)compared to a linear quadratic regulator (L.QR), a,; (li~ctiwd 1 cos h egetNV(
Kirk (1970) and Sage and White (1977). "Iti Iu~llcc~i, ~'' ' I -IN' .111 iti 'it otf [lie geoinetry and properties of the
.an~output feedback control strategy that pcrfonns nearly and ,%ell 1, -11 it This analysis follows that of Fanson and CaugheyI a full state feedbark controller. The application ISM ii owl'o! .1' Iliikcand ltiibard (1987). A more detailed analysis of
feedback controller reduces the number of :eedback paths inI tII,- A layered piezo actuation of a structure was given by
control loop, which is essential to experimenital iipIleincoiiaiolt .. A ndvirson (1990). Finally, the equations of motionI the control law. More i mporiawoly, anI onlii po-l L wt, v *NI~91 iti'titre are assembled in a lumped mass

generates a feedback niaiiix iliait I,,h llt 1o 1 .ytm s
information rather than relyiit o mi~ it~ I.,

SYSTEMi DYAMC ilt' fitI 'I 1 ( tt i% mldiiicd by 41(1) 1 = 0(t) Il(t)
sy'rMDYAMC I !1h . da'upii and Nsiftness coefficient

The schematic of Figure I is an edge view Wl a t..i. beam ~ le
the horizontal plane such that gravity does not play a,\hiriicaiu i''h l(0)

*in tht uysamics. The driving torque. T, is applied at thie %lewino t+~~0 .

*T e motion JV the structure is assumed to have aI modal exp:itisoo II I lj'1 1 (0) MI)~

n hV b, r1l(0) ... b~fln(0)1
y(x~t i,t) qiQ) ) D blrt(0)) b~r,(o)2  

... bvrI(0)r,(o) (7)

--where nis tnc number of modes used in the solution, NO(x is the ith bvl-,(O) bvr,(o)r1 (o) ... bvI'n(9)2 -

mode of vibration and qI(t) is the modal amplitude. A detailedIschematic of a experimental piezo-actuated structure is presented in 0 0 xnFigure 2. F2
Garcia and Inman (1990b) derived the equations of motion for a K 1  (8)piezo-actuated beam in slewing motions. This analysis revealed that 2o~I-M~ 8the equation for the rigid body motion of the system is given by' 0 .. nO-

TO8 + .:Zfpxoidx qi=tc (2) i .t 0~this is the ith torsional modal participationJ= J 0 !.-r the beamu. Thle coefficienit bv is an equivalent viscous
It IIII which IN -i coliii at ion of the viscous damping in the

Ieflexible motion of the structure is governed by the hfollm ig, set "od thle back citit of' the mnotor, Kb. The term Is is equal
,ofn equations of motion iim-c inertia of Olte miotor acting through the gear ratio,I~~~~~ ~~ lilt~dB [ l .. I iInenma tenn is given by

I [ZjI~i"Oi"d q] Oi()ti .2 (x,tA(x))O(x) X I"
qiJ f ~()d which represents couples the flexible motion of the structure with

0 thie I qId 1)Itmy slewing motion. The control input vector u(c) is the 2
whr n Ieec totenme rmdsaunciileNii, x ector tiT(t) = f ea(t), Vp(t) I and the control coefficient matrix is

The actuator dynamics - that is, the interaction of motor atid beami - N Kg~is included in this model. This interaction takes into account the p, R)
-rotation of the structure due to flexure brought about by the applied I~ R, 41 )a 1 (0

torque in the Hamiltonian's expression for the tionconser,,.i'e (0
work (Garcia and Inman, 1990,A). This imteraction .ippe.uitmm ~jq* .)
Equation (3) as the direct transmission of applied tor.lte tol the in-!
through its modal participation factor. Garcia anmd Inian 010"! .11" NI xcgent piezoceramic actuator. The system of equationI . ito %late Npuice forn by defining the state vector x as



is minimized. The matrices Q and R are chosen to provide a desired
(I I) and system performance. Now let uo be a controller which is a

X function of the measurements of the system, i.e.,

and the corresponding state matrix u0=K0y*(t) (17)

0 I Now define the function
[ " M'  MID.] (12)

Q = I o(t)-u*(t)T(uo(t)-u*(t)l 
(18)

where 0 denotes the matrix of zeros and I denotes the identity ii ,IWt
of appropriate dimension. With this change of coordil.aL . 111d nut tiwuize } with respect to the gain matrix, Ko.Eq uation (5) becomes Substituting for uo, setting -_. = 0, and solving for Ko, the

i -Ax + Bu I),)
following expression is obtained,

with output measurements defined by K0=I (19)

This obtains a least squares approximation for the solution of the
Here the matrix of constants C specifies the rela: - between the output feedback .:ain matrix, Ko.measurements and the state vector x(t). Control and Simulations of an Active Ream

VIBRATION SUPPRESSION COY )L The example given here is of an experimental slewing beam, as
depicted in Figure 2. This structure is currently housed in the U

Presented will be an LQR controller design where the focus of the Mechanical System Laboratory at the State University of New York
design will be for the vibration suppression of the structure, While at Buffalo. The aluminum beam is 0.8 m long, 0,81 mm thick, and
the solutions to such problems are analytically convenient, full state 1.27 cm wide. The actuators of the structure consists of two pairs
feedback controllers are not easily implemented in actual hardware of lead zirconate piezoceramic layers (Piezo Electric Products, Inc. U
without the aid of an on-line full state estimator, Since estimators G- 1195), and a Electro-Craft 586 DC electric motor. The moment U
only approximate plant behavior, the prediction of system (listtrihttioi geicnted for each pair of the piezo actuators is
performance requires that estimator dynamics be included in the
overall system models. Although this type of controller is a 11(x,t) =4.345x10- 5 VP Nm/volt (20)
standard formulation in control technology, experimentally
implementing these controllers is not always trivial in the laboratory A more complete description of this system was given by Inman et
Therefore, an investigation into an output feedback cont:ol al. (1990).
formulation is pursued. An output feedback control strategy reduices
the number of feedback paths and allows these gains to be function'. Tlhe mea.surements assumed to be available for this slewing control U
of the instrument measurements. This generates a lower order ,iutilation are strain and angular position transducers. The angular
controller which is simpler to implement in actual hardwaie. ,ittl po\tih.n acd angular velocity signals are easily measured for a
arguably more reliable than a more complex full state feedhak s% ,om kittliz.ig optical encoders, or potentiometers, for position and
controller. A comparison of the performance of these controllet is ,t tithoniter for velocity sensing. With respect to the system of
given. elumtion (5), tie angular position signal is the sum of the

An uIput Feedback Control Formuation undeflccted beam position, 0. and the deflection due to the structural
rot:tion it the slewing axis, i.e.,

Some early formulations for LQ type optimal output feelback wero •
made by Levine and Athans (1970) and Kosut (1970). Tlhes U,(t) ( Ialgorithms do not guarantee stability, and were found to yield (21)
unsatisfactory results for high order systems. A more recent
algorithm was derived by Moerder and Calise (1985). This t
approach yielded a stable algorithm for finding optimal uuitpui %%here the angular velocity is simply the time rate of change of
feedback solution by adding to the cost functional a penalty on the Equ ation t21). The strain of a beam sensed at position Is is given
feedback gains. Sah (1990) considered a simplified approach for a by
single actuator slewing problem which comprised of a least squares
solution between an LQR controller and an output feedback a2y(Lt) n2i(L,) (22)
controller. This approach is presented here as follows. Let u' be D)x2 - 2 ,"T--2 i() (22)
the solution to the infinite time, linear quadratic regulator (I.QR)
problem, such that as presented by Juang et al. (1986). Piezoelectric polymer sensors

yield a time rate of strain for a given system so that it will be
u*(t) - .Kx*(t) (15) assumed that such a signal could be included in our control

formulation.
where K is the optimal feedback gain matrix, and x*(t) is the
optimal state vector. The LQR control algorithm then calculates the The quadratic regulator penalty function was determined by
value of the gain matrix K* such that the cost functional choosing the weighting matrices as

Q = DIAGI 10.0, 4.0, 1.0, 10.0, 4.0, 1.0] (23a)
" R = 1 IAGI 1.0, 0.011 (23b)

J = J(xTQx + uTRu)dt t I(

3



U

I s yielded a satisfactory response for the structure in terms of the Levine, W.S., and Athans, M., 1970, "On the Determination of
peak current requirements of te motor, the structural t . deflection, the Optimal Feedback Gains for Linear Multivariable Systems,"
angular position respons. and tt~e voltage requiremen .of the piezo lEEE Transactions on Aut:matic Control, vol. AC-15, pp. 44-48,I actuators. The response e.f dtb system to the LQR cor.,roller is given February.
by the solid line in Figures 3-5, while the dashed lir's represent the Park, Y.-P., Kim, S.-H., Ha, Y.-K., Park, H.-S., 1989,
response of the system to the output feedback ( ,ntroller. The "Analysis and Test on the Digital Optimal Control of a iFlexible
structural displacement response of Figure 3 tppears slightly Rotor Arm Vibration," Proceeding of the 7th InternationalModal
smoother than in the LQR. This is due in part to we insensitivity of Analysis Conference, pp. 1489-1495.
the output feedback controller to the higher tnodes of vibration, as Randall, D. S., and O'Neil, C. G., 1981, "Axial-mode
shown in Figure 5. Figure 4, shows the total angular deflection of Piezoelectrically-Driven Beam Deflectors" SPIE Vol. 299 Advances
the system during the slewing maneuver. In Laser Scanning Technology.

Sage, A.P.. and White. C.C., 1977, "Optimum SystemI The performance, as defined by the cost functional E-quations (16) ("' ml." 2nd edition, Prentice.l hlll, Englewood Cliffs, New
and (23), is J=10.987 for the standard LQR formulation. The cost lcrcv,
for the output feedback controller scheme is J=l 1.074, and is highler ",ii. . -J., 1990, "On the ntraction Between an Actuator and a
as one might expect. Overall the perfomance of the output fve'dbt'k ;!',,' Structure," Ph.D. Thesis, State University of New York at
controller closely resembled the performance of the LQR. 1 .. I[tul falo, New York.

"'ikovtch. S. and 'rzes. A., 1990, "Experiments in
hl'h'iurlication anod Control of Flexible-Link Manipulators," IEEECLOSING REMARKS Con"uft,,1 S ewtlns Magazin'. Vol. 10, No. 2.

I An investigation has been performed into the use of an oulpti
feedback control scheme applied to an active structure. 'rli. V
controller scheme has been found to yield satisfactory results that X
perform nearly as well as a full state feedback, LQR, controller.
The output feedback controller reduces the number of feedback L
paths, and hence, the complexity of the controller. More
importantly, it utilizes sensor measurements rather than relying on
state information which may not always be available.
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