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ABSTRACT

Genetic algorithms were used to select and create features and to select refer-
ence exemplar patterns for machine vision and speech pattern classification tasks.
On a 15-feature machine-vision inspection task, it was found that genetic algorithms
performed no better than conventional approaches to feature selection but required
much more computation. For a speech recognition task, genetic algorithms required
no more computation time than traditional approaches but reduced the number of
features required by a factor of five (from 153 to 33 features). On a difficult artificial
machine-vision task, genetic algorithms were able to create new features (polyno-
mial functions of the original features) that reduced classification error rates from
19 to almost 0 percent. Neural net and nearest-neighbor classifiers were unable to
provide such low error rates using only the original features. Genetic algorithms
were also used to reduce the number of reference exemplar patterns and to select
the value of k for a k-nearest-neighbor classifier. On a 338 training pattern vowel
recognition problem with 10 classes, genetic algorithms simultaneously reduced the
number of stored exemplars from 338 to 63 and selected k without significantly
decreasing classification accuracy.

In all applications, genetic algorithms were easy to apply and found good
solutions in many fewer trials than would be required by an exhaustive search. Run
times were long but not unreasonable. These resuits suggest that genetic algorithms
may soon be practical for pattern classification problems as faster serial and parallel
computers are developed.
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1. INTRODUCTION

Feature selection and feature creation are two of the most important and difficult tasks in
the field of pattern classification. Good features improve the performance of both conventional
and neural network pattern classifiers. There is little theory to guide the creation of good features
and only some theory in selecting good features. This report explores the application of genetic
algorithms to both problems.

1.1 Pattern Classification

The goal of pattern classification is to classify a set of patterns into different classes based
on distinguishing characteristics. A pattern may be the outline of a fish, a bark from a dog, or
the flag of a nation. Patterns from different classes are made up of features that distinguish these
classes. A feature can be any distL.ctive characteristic. For example, the United States flag has the
following features: it has 50 stars, 13 alternating stripes, and its colors are red, whi~e, and blue.

In designing a pattern classification system, examples of the patterns in each class are typically
used to "train" the pattern classifier. These patterns are called the training patterns. Features
in patterns can be viewed as defining point: in an input space. Providing more training patterns
usually results in a better description of decision regions in the input space, resulting in a more
accurate classifier. Decision regions are partitions of the input space into regions where patterns
are classified as one particular class. For example, the input space illustrated in the left of Figure 2
has two decision regions. Input patterns that fall into the wnite region are classified as the 0 class,
while input patterns that fall into the shaded region are classified as the + class.

After a classifier is trained, it must be tested with a different set of patterns called the testing
patterns. When a classifier performs well on the testing set, generalization is high. Boundaries
between different classes learned from the training patterns are accurate enough so that even a new
set of patterns, the testing patterns, c,-" be accurately classified.

It is important to have separate sets of training and testing patterns in order to estimate
the accuracy of a classifier confidently. The performance of a classifier on training patterns can
be overly optimistic because some classifiers, such as nearest-neighbor classifiers, store all training
patterns and can classify them perfectly. Accurate estimation of classification performance in real
situations requires testing on patterns not used during training.

If the total number of patterns is too small to separate the patterns into training and testing
sets that adequately characterize the classes, cross validation can be used 16]. In cross validation,
a portion of the available patterns is randomly chosen to be used for training, with the remaining
patterns used for testing. By averaging the classifier accuracy over different random partitions of
training and testing data, a better estimation of the classifier's accuracy can be obtained.

With enough training patterns, similar low error rates can be provided using almost any type
of neural net or conventional classifier [11]. However, the number of patterns available is often
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limited by the cost or the difficulty of obtaining more data. It is thus important to select and
create good features that provide good performance with a limited number of training patterns.

1.2 What's a Good Feature?

Deriving a good set of features using genetic algorithms is one major goal of this study. An
understanding of the relationship between features and classifier accuracy is thus essential. A good
feature should make the task of distinguishing between different classes easier without requiring
more training patterns.

A feature's usefulness depends on the classification task. For example, suppose the triangles
and rectangles shown in Figure 1 need to be distinguished. A good feature is the number of sides
in the object. Other possible features such as dimension and enclosed area provide no additional
information for this task. The number of sides alone is the best feature; all other features are
unnecessary and can be considered noise. Conversely, to separate out the objects by their size, the
enclosed area of each object is the important feature.

A feature is good if it separates classes accurately with as few examples as possible, Table 1
lists some possible object features.

152529-l
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T3 R2 /

Figure 1. A set of rectangles and triangles that may be inputs to a pattern classifier.
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TABLE 1

Possible Features of a Set of Shapes

Class-ID Number Area X-Proj Y-Proj
of Sides

T-1 3 0.78 1.56 1.00
R-1 4 0.54 1.00 0.54

R-2 4 0.18 0.18 1.00
T-2 3 0.32 1.00 0.64

T-3 3 0.97 1.00 1.94

If the number of sides is used as one feature, rectangles and triangles (classes R and T) can
be specified with only two examples, one from class R and one from class T. The number of sides
is thus a very efficient feature to use for classifying objects into rectangles and triangles. On the
other hand, if all features are considered, the area of each object is also a reasonable feature; for
example, in this given set all objects with area greater than 0.6 are triangles and most objects Nlth
area below 0.6 are rectangles. However, because the area is not fundamentally related to the shape
of each object, the area feature would not provide reliable classification with new objects. This will
only be evident, however, if many training patterns are provided.

1.3 Feature Selection

Having too many input features, also known as the "curse of dimensionality" i1, makes pat-
tern classification problems difficult. As the number of input features increases, the number of
training patterns required to maintain good generalization also often increases rapidly and perfor-
mance with limited training patterns may degrade. When there are many features, more training
patterns are needed to fully describe the distribution of the different classes in the multidimensional
space spanned by the input features. Because the number of training patterns available is always
limited, if there are too many input features, there may not be enough training patterns to design
a good pattern classifier.

Feature selection (dimensionality reduction) is often required to select the subset of features
that best separates classes.

Figure 2 demonstrates the effect of feature selection when training data is limited. In this
problem, the first class consists of all points with an x coordinate value greater than 3.5. The y
coordinate value is random and is not important for classification. A nearest-neighbor classifier
was used to demonstrate the concept of decision regions. This classifier stores all reference training
patterns (called exemplar patterns) and classifies an unknown input to be in the class of the nearest
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exemplar pattern (Euclidean distance is used to determine the nearest neighbor). When a nearest-
neighbor classifier is used with the 16 training patterns shown, the boundary between the two
classes, shown on the left side of the figure, is inaccurate because the extra y dimension creates
unnecessary sparseness between training patterns. If the y coordinate is eliminated through feature
selection, then the boundary between two classes becomes much more accurate as shown in the
right side of Figure 2. Figure , plots Lhe error rate of a nearest-neighbor classifier for this problem
as the number of trainipg patterns varies from 0 to 500. Each curve is the average of 10 different
random trials. Error rates are much lower when only the x feature is used, and an error rate of
under 1 percent was achieved with fewer than 50 training patterns. On the other hand, when using
both features, the error rate is still above 1 percent even after the number of training patterns is
increased to 500. This clearly demonstrates the benefit of selecting good features.

Feature selection is difficult because the number of possible combinations of features grows
exponentially with the number of original features. For a moderate size problem with 64 features,
there are 264 possible subsets of features. Clearly, an exhaustive evaluation of each possible combi-
nation is impossible. Frequently, finding a near optimal feature subset is adequate. Many methods
exist for finding near optimal solutions. There are two general approaches: heuristically guided
search and Monte Carlo approaches. Siedlecki et al. present an overview of these search techniques
[18]. Heuristically guided search techniques, such as sequential search, dynamic programming,
and branch-and-bound search, utilize heuristics to determine which solutions are to be examined.
Monte Carlo approaches, such as simulated annealing and genetic algorithms, rely on selectively
added randomness to search for near optimal solutions efficiently.

1.3.1 Traditional Heuristically Guided Search Approaches

Sequential forward search and sequential backward search are the simplest and most widely
used of the heuristically guided search techniques [18]. Sequential forward search starts with an
empty feature subset, examines each feature's classifier accuracy individually, and puts the best
performing feature into the current feature subset. Sequential forward search then looks at all the
combinations that include the current feature subset and one of the remaining features and picks
the best combination as the new current feature subset. At each cycle the number of features in
the feature subset increases by one, while the number of feature pairs examined reduces by one.
The process repeats until the feature set grows to the original feature set size or a preset size.
A full sequential forward search of a feature set of size N examines roughly (N2 + N)/2 feature
subsets and the number of computations grows as O(N 2). Backward sequential search is similar to
forward sequential search except that the search starts with a full feature set. Backward sequential
search tries taking out features individually and at each step removes the feature that degrades
classifier accuracy the least. At each cycle the number of features in the feature subset is reduced by
one, while the number of feature combinations examined is also reduced by one. A full sequential
backward search of a feature set of size N also examines roughly (N2 + N)/2 feature subsets and
the number of computations again grows as O(N 2 ). Both sequential forward search and sequential
backward search are nonoptimal search procedures in that they are not guaranteed to select the
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Figure 2. Decision boundaries of a nearest-neighbor classifier: (a) using both x and y as
features and (b) using only the x feature.
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Figure 3. Classification error rate versus the number of training patterns used to train
a nearest-neighbor classifier for the feature set of (x, y) and the feature set of only x.

best feature subset. They may fail because good individual features do not necessarily combine
to form best feature subsets [5]. Sequential search methods can thus miss the best feature subset
because they have already deleted or added individual features that were good by themselves but
which do not belong in the optimal feature subset.

Two feature selection methods, dynamic programming 141 and branch-and-bound search [7],
find the optimal feature subset, if certain conditions are met. Dynamic programming is similar
to forward sequential search except that it keeps several feature subsets instead of keeping only
one. For an original feature set of size N, the dynamic programming approach starts with N
feature subsets, each containing one original feature. Individual features are then combined with
all feature subsets that do not contain the feature and are assigned to the feature subset that
performs the best with the individual feature. The process is repeated until all subsets have grown
to the desired feature set size. For a feature set of size N, the dynamic programming approach
examines N2 * (N - 1)/2 feature subsets. The number of subsets examined grows as O(N 3 ). The
dynamic programming approach uses more than the O(N2 ) evaluations required by sequential
search methods and much less than 0( 2N) evaluations required by exhaustive search.

The dynamic programming approach always finds the optimal feature subset when classifier
accuracy increases monotonically and when the classifier accuracy of a feature subset is a linear
function of classifier accuracies using the individual features within the feature subset. The first
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requirement, monotonicity in classifier accuracy, states that as the number of features increases,
classifier accuracy can only increase or stay the same. As shown in Figure 3, this assumption is not
always correct. Depending on the type of the classifier used, extra features may degrade accuracy.
The second requirement, separability, states that classifier accuracy on a subset of features and on
individual features does not interact. Classifier accuracy of the combined feature set must be a
linear function of the individual classifier accuracies. This requiremen, is also often not met. The
dynamic programming approach is thus not frequently used [15,18].

Fukunaga's branch-and-bound procedure finds the optimal subset of features when the mono-
tonicity requirement is met [13]. By assuming that as the number of features is reduced, the error
rate of a classifier can only increase or stay the same, branches that have very high error rates in
a search tree can be disregarded because reducing more features in that subset will not reduce the
error rate. The algorithm can thus concentrate on only promising branches and find the optimal
feature subset, given sufficient time. In many real-life problems, however, reducing the number
of features may actually reduce the classifier's error rate; thus, these problems are not monotonic
[5,8]. This restriction and the complexity of the branch-and-bound procedure with high input
dimensionality again have limited its application.

1.3.2 Genetic Search

Genetic algorithms have recently been applied with good results to NP complete problems,
such as the traveling salesman problem and job scheduling problems [3]. They take advantage of
"implicit parallelism" to search efficiently for good solutions 19] and depend on the generation-
by-generation development of possible solutions, with selection eliminating bad solutions in future
generations and allowing good solutions to be replicated and modified.

It has also been shown that genetic algorithms are effective in optimizing multimodal and noisy
functions 19]. In these applications, each solution manipulated by genetic algorithms represents one
possible location of the maxima of a complex function. Solutions specified by bit strings are first
randomly generated, then evaluated, and finally manipulated to produce new strings. A suitable
function needs to be found for evaluating the fitness of each solution. The selection and search for
a better solution is directly affected by the fitness function; thus, the fitness function should be
linked tightly to the eventual goal. In pattern classification problems, the usual criterion for success
is the percentage of patterns classified correctly. It is thus logical to use the actual classification
accuracy as the fitness function of a given subset of features instead of other possible functions,
such as the variance of data with respect to tile subset of features.

The "training-on-testing-data" problem [6) may appear when the percentage of training pat-
terns classified correctly is used as the fitness function. If the classifier accuracy on the training
set is used as the fitness evaluation function, then as better subsets are created at each generation,
the feature subsets will gradually be selected based on how they perform according to the testing
patterns; in essence, testing patterns have been used as training patterns. There is a danger of
finding selections that are good for a particular set of testing patterns yet bad for the general
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distribution of patterns. This testing on a training data problem can be delayed through using the
"leave-one-out" method and cross validation. A different portion of the training patterns is tested
at each generation and the feature subsets' performance on this portion of patterns is used for fit-
ness evaluation. However, a separate set of "pure" testing patterns is used to test the performance
of feature subsets once feature selection is over. The feature subsets' performance on the pure test
patterns is used to verify that feature subsets provide good generalization.

Siedlecki has recently successfully applied genetic algorithms to select features for high di-
mensional problems 120]. However, most of the studies he performed used artificially generated
data. The only problem with real data consisted of 150 patterns with an input dimension of 30.
Because the number of training patterns was small, apparently the training set consisted of all 150
patterns and no testing set result was reported. As mentioned previously, without checking for the
generalization ability of a given set of features, the result obtained on the training set by genetic
algorithms may be highly misleading because the genetic feature selection method can overfit the
training data.

This report compares the genetic search approach with the forward and backward sequential
search approaches in efficiency and success of selecting features for several real problems. The
sequential approaches were chosen as a basis of comparison because they are the most efficient of
traditional approaches and they frequently perform well. Determining the practicality of genetic
feature selection is the focus of this research.

1.4 Feature Creation

Feature creation is one of the most important and difficult parts of pattern classification.
Created features are normally highly specific to the problem domain. For example, in speech
recognition, the distribution of spectral energy may be a useful feature. In machine-vision prob-
lems, corners or edges may be useful features. Finding the right features may demand extensive
experimentation; yet without good features, it is impossible to provide high classification accuracy.
Sometimes higher-order functions of original features can dramatically reduce the number of train-
ing patterns needed and improve classification accuracy. One example is a pattern classification
problem where all points having equal x and y coordinates form one class and all other points form
another class, as illustrated in the left side of Figure 4.

The decision boundaries shown in the figure were formed using a nearest-neighbor classifier,
as in Figure 2. Using the original features, shown in the left side of Figure 4, provides good
generalization only if there are many training patterns that cluster together oit the diagonal line.
However, because there are only a limited number of training patterns, it is very likely gaps will
occur between points on the diagonal line so that a testing pattern in that gap will be classified
incorrectly. Recognizing that higher-order functions of the x and y features are more informative
provides better use of the limited training patterns. In this problem, the ratio between the x and
y coordinates distinguishes between the classes. Suppose a new system, shown in the right side of
Figure 4, is created where only the ratio of the x and y coordinates is used as the feature. In this
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Figure 4. Decision boundaries of a nearest-neighbor classifier: (a) using both x and y
features and (b) using the (x/y) feature to classify points on a diagonal line.
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case, many fewer training patterns are needed to provide good classification accuracy. All patterns
that have a ratio of one belong in the diagonal class and are bounded within the narrow shadowed
zone, while all other patterns belong in the nondiagonal class. In this case, it is impossible for a
diagonal class pattern to be misclassified using a nearest-neighbor classifier because all diagonal
class patterns are on the same point. The chance of nondiagonal patterns being misclassified is
greatly reduced as well.
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Figure 5. Classification error rate versus the number of training patterns used to train
a nearest-neighbor classifier for the diagonal line problem.

Figure 5 plots the error rate of a nearest-neighbor classifier versus the number of training
patterns for this problem. Clearly, by using a good feature (the ratio of x/y), less than 20 training
patterns are required to have an error rate of roughly 2 percent. On the other hand, using just the
x and y features, even with 500 training patterns, the error rate of the classifier is still well above
2 percent.

Many feature creation techniques are available to create new features that are linear combi-
nations of a given set of features. Fisher's linear discriminant approach creates new features in the
direction of greatest intraclass variance. Features are thus generated with the hope that they will
more clearly separate the classes [6]. Using a Karhunen-L6eve expansion, the original features are
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transformed into a new set of features with the aim of reducing the correlation between the new
features as much as possible. By removing the coirelation between features, it is hoped that the
new features with the greatest variance will be the truly useful features. These approaches can
reduce the number of input features to a classifier, if only the most useful features are kept. They
work well on problems where the patterns are linearly separable in the new feature space. In real
problems, it is difficult to know a priori whether a set of patterns is linearly separable in some
new feature space. Also, both of these methods examine the statistical properties of the training
patterns that may not relate directly to the classifier accuracy.

Much research still needs to be done on creating higher-order nonlinear features. For example,
given a feature set of x and y, one can readily create a feature z = ax + by with the coefficients a
and b calculated using the methods described above. Few methods have been found, however, that
effectively create higher-order nonlinear features such as z = x/y or x * y. The number of possible
higher-order features grows exponentially with the number of original features. For example, given a
problem with three original features x, X2, and X3, the number of unique combinations of these three
variables taken two at a time is three. If the number of variables is increased to six, the number of
unique combinations increases exponentially to 15. The exponentially growing characteristic of the
problem makes an exhaustive search, for even a moderate size problem, computationally infeasible.
Only searches of near optimal solutions can be attempted. Tenorio et al. have applied simulated
annealing and a tree-based approach to search for the near optimal solutions 121). Other methods
such as the Group Method of Data Handling (GMDH) 112 and nonlinear regression can also be
used to find higher-order features. These methods rely on local pruning to reduce the number of
combinations to be searched. For example, the GMDH approach builds complex functions out of
the original features by keeping function sub-blocks that fit the desired output function closely.
It can encounter local minima and build very complicated functions when a simpler higher-order
function would be better because the local pruning falsely eliminates necessary function sub-blocks.

This report explores the use of genetic algorithms to search the space of possible features and
find good new high-order features that are nonlinear combinations of original input features. Such
higher-order features will improve the efficiency of pattern classification, if the correct problem-
specific feature can be found.

Higher-order terms can take many forms, and the multiplicative form chosen here is only
a small portion of all possible higher-order terms. For example, the multiplicative forms can
represent new features such as x2 * y; however, other possible new features, such as x * ln(y) and
(x + y)/(x - y), cannot be found using only a polynomial representation. The type of higher-order
terms that provide best performance will be problem dependent. For example, in a time series
problem, the Fourier transform of inputs or the cepstrum may be the correct feature to use. In
general, any nonlinear function can be chosen by the user to be created and searched using genetic
algorithms.
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1.5 Report Outline

The remainder of this report is organized as follows. Section 2 describes the theory and
practice of genetic algorithms. Experimental results of applying genetic algorithms on two sim-
ple problems are also presented. Section 3 describes the k-nearest-neighbor classifier and some
improvements made to increase efficiency. Section 4 focuses on feature selection. Experimental
results on real and artificial problems are presented. Section 5 describes methods and results of
applying genetic algorithms to feature creation. Section 6 describes enhancements that increase
the complexity of features created. Section 7 presents results of experiments that used genetic
algorithms to reduce the number of exemplars needed by k-nearest-neighbor classifiers. Finally,
Section 8 provides an overview and discusses future research directions.
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2. GENETIC ALGORITHMS

2.1 Introduction

Genetic algorithms were first proposed by Holland to optimize functions 12]. Since then,
they have been applied to many different types of problems, such as pipeline control, computer-
aided design, and classifier design 19]. Genetic algorithms emulate Darwin's theory of evolution. A
group of possible solutions is judged according to a "fitness" function, which is explicitly related
to the objective function to be maximized. Better solutions are chosen and random elements are
exchanged between two chosen solutions to generate new possible solutions. The new solutions
then undergo mutation, where the bits of the solutions are randomly altered. Afterwards, these
new solutions replace members of the old population. If the combination of two partially good
solutions yields better solutions, then genetic algorithms will efficiently find near optimal solutions.

2.1.1 Four Stages in Genetic Algorithms

There are four stages in the genetic search process: creation, selection, crossover, and muta-
tion. In the creation stage, a group of possible solutions is randomly generated. In most genetic
algorithm applications, each solution is a string of O's and l's. Each string is created by randomly
placing O's and l's in the string.

After the creation stage, each solution is evaluated and assigned a fitness value. This is
followed by a selection stage, where the fitter solutions are given more chance to reproduce. This
stage gives the fitter solutions more and more influence over the changes in the population so that
eventually fitter solutions dominate.

A crossover operation occurs after two fitter solutions (called parent solutions) have been
chosen to reproduce. During crossover, portions of the parent solutions are exchanged. This
operation is performed in the hope of generating new solutions that will contain the useful parts of
both parent solutions and be even better solutions. Crossover is responsible for generating most of
the new solutions in genetic search.

When all the solutions are similar, the crossover operation loses the ability to generate new
solutions since exchanging portions of same solutions generates the same solutions. Mutation is
performed on each new solution to prevent the whole population from becoming similar. However,
mutation does not generally improve solutions by itself. The combination of both crossover and
mutation is required for good performance.

2.1.2 A Simple Example

A simple feature selection problem can be used to demonstrate the basic concepts of genetic
algorithms. A string of O's and l's is used to indicate whether a given feature is used. Assume that
for a given subset of features, fitness is the percentage-correct score of a nearest-neighbor classifier
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using this particular subset of features. The goal is to find the optimal feature subset with as few
tries as possible. Suppose the ideal feature subset and its fitness value are

10000 90%

To find a good feature subset, four procedures of genetic algorithms are performed: creation,
selection, crossover, and mutation. In the creation stage, a finite set of possible solutions is randomly
generated. For example, in a particular experiment the following initial population may be created:

10110 74%

01101 80%

01011 80% Initial set of solutions

01010 78%

00011 78%

11110 82%

After this initial set has been generated and evaluated as shown above, two solutions are
selected to create new strings. This is the process of selection. Just as in nature where the fittest
tends to survive, fitter solutions are more likely to be selected. However, weak solutions still have
a chance to become parents. Suppose the following two solutions are selected.

01101 80% Two selected solutions
01011 80% J

Portions of these solutions are exchanged in order to create new solutions. By performing the
crossover operation, new solutions can be created that retain the traits of the parents. A simple
type of crossover operation is picking a random point along the solution string and exchanging the
solutions' second portion. An example is shown below.

011L11 78% The new solutions after crossover

0101 82%J

The two selected solutions are crossed over to create two new solutions. The lines above and
below the two strings are used to distinguish the string portion of one selected solution from that
of the other.
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After crossover, the newly created solutions are randomly mutated. This mutation is necessary
because sometimes all the solutions in the population are very similar. Even exchanging portions
of different solutions creates no new solutions. With a small amount of mutation, however, new
solutions are created to introduce more diversity into the population.

In the current example, suppose the first new string is randomly changed at one position
identified by the - sign.

01611 80% } Mutated solution

In this case the mutation was fortuitous because it improved the modified solution's fitness
value from 78 to 80 percent. This improvement does not always happen and is not the main purpose
of performing mutation. Mutation's chief contribution is preventing premature convergence of
the whole population of solutions, i.e., the whole population having similar solutions. Without
mutation, once premature convergence occurs, genetic search stops. This process of selection,
crossover, and mutation would normally be continued through many generations in this problem
until an acceptable solution was found. As can be seen by this example, many new strings may
need to be created because there is no guarantee that crossover and mutation will always lead to
fitter strings.

2.2 Methods

2.2.1 Introduction

There are many varieties of genetic algorithms. In the original simple models, all members
of a population completely reproduce at every generation. In more complicated models, "niches"
are formed in the population and "migration" is allowed within niches 19]. This study used an
incremental approach that has been used successfully in other areas and was found to work well in
initial exploratory experiments.

2.2.2 Static Population Model

The relatively new incremental static population model proposed by Whitley [23] was used in
all experiments. In the regular genetic algorithm model, the whole population undergoes selection
and reproduction, with a large portion of the strings replaced by new strings. It is thus possible
for good strings to be deleted from the population. In the static population model, the population
is ranked according to fitness. At each recombination cycle, two strings are picked as parents
according to their fitness values and two new strings are produced. These two new strings replace
the lowest-ranked strings in the original population. This model automatically protects the better
strings in the population, so that the best string found so far always stays in the population.
Also, because changes in the population are incremental, a large portion of the population is never
replaced by worse strings (this can conceivably happen in the regular generation model).
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2.2.3 Rank-Based Selection

Genetic algorithms rely on likelihood of that better strings to reproduce to increase search
efficiency. In the experiments performed, a rank-based selection approach was used to select parents.
In the typical genetic algorithm model, the probability of a string i becoming the next parent, p(i),
is calculated as follows: p(i) - c * f(i)/f(avg). Here. f(i) is the fitness of the string i, f(avg) is
the average fitness of the whole population, and c is a constant selected by the user. If the fitness
of string i is 10 times greater than the average fitness, it would be 10 times more likely than an
average string to reproduce.

This selection scheme can fail due to the large differences between fitness values. For example,
if the average fitness value is 10, yet two strings have the fitness values of 90, clearly these two
strings will be selected most of the time. When both of the parents are the same, the crossover
operator has no effect and gradually tile whole population becomes duplicates of the fittest strings.
No new strings are created and the search halts. This phenomenon defeats the purpose of a genetic
algorithm's search and is similar to the phenomenon of "inbreeding" noted by biologists.

To prevent superbly fit individuals from dominating a population, various scaling schemes
have been proposed. For example, the value of c can be periodically adjusted when the probability
of reproduction is assigned. In the beginning of the search, when a few strings are more likely to
have a high fitness value relative to the average fitness value, the constant c is adjusted lower. At
the latter part of the search, when the difference between the best string's fitness value and the
average string's fitness value is smaller, the constant c is increased to ensure that the best strings
do get more chances to reproduce.

There are many problems in using the fitness values themselves to compute the probability of
reproduction directly. By using the rank-based selection scheme, all these problems can be avoided

123]. In a rank-based system, all the strings within the population are ranked according to their
fitness value. A variable called selective pressure is used to determine how much the top strings are
favored. The probability to reproduce is computed with the following iterative equations:

p(l) = 1.0 * selective pressure,

i

p(i + 1) = (1.0 - Ep(j)) * selective pressure,
j=l

where string 1 is the most fit solution and probabilities are assigned to the fittest solution first. This
scheme gives exponentially more reproduction opportunity to fitter strings. Also, because only the
relative rank of the strings affects the probability of reproduction, changes in the distribution of
fitness values have no effect as genetic search progresses. An additional benefit is that bias toward
good strings can be controlled by varying the selective pressure variable. For example, Figure 6
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shows that the distribution of the chance to reproduce changes visibly when the selective pressure
is changed from 0.05 to 0.25.

1525n-6
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RANK IN THE POPULATION

Figure 6. A comparison of the distribution of probability of reproduction with selective
pressure values of 0.05 and 0.25 and population size of 100.

2.2.4 Crossover Operators

Many different techniques can be used to create new strings by crossing over old strings. A uni-
form crossover operator, one-point crossover operator, two-points crossover operator, or unit-based
operator can be used. With the uniform operator, random bits of each string are independpntly
chosen to be crossed over. With the one-point crossover operator, a random point is chosen in the
string and the substring starting from the chosen point until the end of the string is exchanged.
With the two-points crossover operator, two random points are picked within the strings and the
substring between the two chosen points is exchanged. With the unit-based crossover operator,
substrings are exchanged in unit lengths that relote to the encoding of the string. For example,
suppose a string 12 bits long represents four numbers, with three bits representing each number.
Using the unit-based crossover operator, the substring exchanged between strings can only start at
1, 4, 7, 10, and end at 3, 6, 9, 12. Because the bit string encoding is ultimately translated back to
integer values, it may be more efficient to exchange substrings between strigs only in the unit of
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integers. The unit-based operator keeps each integer represented in the bit string intact even after
crossover.

After some initial comparison of crossover operators in solving simple problems, the two-points
crossover operator and the uniform crossover operator appeared most consistent in providing good
results. Both were used as crossover operators in the rest of the experiments.

2.2.5 Mutation Operator

Mutation increases the diversity of strings in a population. In the standard genetic algorithm,
the mutation probability is usually set in the range of 0.01 to 0.001. By using low mutation values,
the genetic search depends on the crossover operation to create new strings that are yet unexplored.
An adaptive mutation rate approach suggested by Whitley [24] was used in all experiments. This
approach uses the hamming distance between the two parents as a measure of their similarity. If
the hamming distance is large, then the mutation rate is reduced. If the hamming distance is
small, then the mutation rate is increased. More specifically, the mutation rate is calculated with
the following equations:

mutative pressure if hamming distance > I
p(mutation) = hammig dstance

mutative pressure if hamming distance = 0

Because the crossover operation depends on exchanging portions of the parent strings that are
different, the adaptive mutation rate ensures that when parents are very similar, different strings
are still produced. When the crossover operator becomes ineffective as a mean of generating new
strings, the mutation operator becomes more influential in generating new strings.

2.3 Initial Exploratory Experiments

2.3.1 The Exponent Guessing Problem

Problem Description. The effectiveness of genetic algorithms in searching for functions was
tested using two artificial problems. The first problem was an exponent guessing problem that
evaluated the ability of genetic algorithms to select parameters of a function. A four-variable
function t(a, b, c, d) = ai. bj* * * dl was used as the target function. Each individual string
within the population contained 12 bits, with 3 bits identifying the exponent of each variable,
ranging from -3 to 3 (with 0 being represented twice). The difference 6 between the desired
function to and the function guessed by a genetic algorithm was summed over the integer range
(0 < a < 5, 0 < b < 5, 0 < c < 5, 0 < d < 5). The ratio 1/(E 6 + 0.001) was used as the fitness
function to evaluate the fitness of each individual string. The small value 0.001 was added to the
overall sum to avoid dividing by zero when the correct function was found.
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This experiment was performed to see whether genetic algorithms are able to find the correct
function that maximizes fitness. When creating features, as described in Section 5, different high-
order functions of basic features are searched; it is thus important to test the genetic algorithm's
ability to create functions. There had been no previous results on using genetic algorithms to create
functions, and it was uncertain whether genetic algorithms would work well on this problem.

Results. Sets of experiments using different crossover operators, mutative pressure, and se-
lective pressure were run. The results are shown in Tables 2 to 5. Ten independent trials were run
for each combination of selective pressure, mutative pressure, and crossover operator. The numbers
shown in the tables are the average number of recombinations over the 10 trials required before
the perfect answer was found. Each trial was stopped once the number of recombinations reached
1001. The original population size was 100; therefore, 100 evaluations for the original population
plus the number of recombinations equals the total number of evaluations used before the correct
function was found.

TABLE 2

Number of Recombinations Until the Correct Solution Was Found with a
Uniform Crossover Operator for the Exponent Problem

Mutative 0.0 0.25 0.5 0.75 1.0
Pressure

0.00 387 247 452 515 862

0.05 387 109 265 320 244

Selective 0.10 713 70 219 423 449
Pressure 0.15 705 282 137 300 169

0.20 804 143 293 374 305

0.25 902 212 172 225 373

The bit strings in this problem were 12 bits long. One of the exponents to be guessed was
zero, which could be represented with two distinct combinations (000 and 100), so the total number
of distinct strings was 211, or 2,048. An average of 1,024 evaluations would thus be needed in a
random search procedure. Tables 2 to 5 show that as long as a selective pressure of 0.0 or a mutative
pressure of 0.0 was not used, genetic algorithms always required fewer evaluations than the random
search procedure. Furthermore, except when mutative pressure or selective pressure equaled 0.0,
there was no general trend in the number of recombinations required for different selective and
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TABLE 3

Number of Recombinations Until the Correct Solution Was Found with a
Two-Points Crossover Operator for the Exponent Problem

Mutative 0.0 0.25 0.5 0.75 1.0
Pressure

0.00 447 432 648 664 442

0.05 902 374 252 281 374

Selective /0.10 809 159 334 293 322
Pressure 0.15 901 160 134 397 446

0.20 901 216 348 334 310
0.25 1001 246 589 389 285

TABLE 4

Number of Recombinations Until the Correct Solution Was Found with a
One-Point Crossover Operator for the Exponent Problem

Mutative 0.0 0.25 0.5 0.75 1.0
Pressure

0.00 406 451 373 507 453

0.05 708 266 327 374 385

Selective 0.10 906 174 324 250 180
Pressure 0.15 710 297 177 280 342

0.20 1001 106 248 540 377

0.25 901 378 179 358 474
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TABLE 5

Number of Recombinations Until the Correct Solution Was Found with a
Unit-Based Crossover Operator for the Exponent Problem

Mutative 0.0 0.25 0.5 0.75 1.0
Pressure

0.00 504 459 436 509 603

0.05 721 312 125 319 371

Selective 0.10 704 165 316 342 373
Pressure 0.15 1001 226 195 244 462

0.20 902 236 297 412 333

0.25 701 278 266 358 343

mutative pressure values. Genetic algorithm search appeared to be robust to the values chosen and
worked better than a random search for a wide range of values.

Table 6 lists the average and the median number of recombinations for a mutative pressure
range of 0.25 to 0.75 and a selective pressure range of 0.05 to 0.25 required by each crossover oper-
ator. The uniform operator required fewer recombinations than the two-points crossover operator;
however, the difference was small. No crossover operator performed an order of magnitude bet-
ter than other operators. All operators required more than a factor-of-three less evaluations than
would be required by an average random search.

Another set of experiments was performed using the traditional generation model on the same
exponent guessing problem. Three sets of experiments, each consisting of 10 independent trials,
were performed. The population size was also 100, the probability of reproduction was 60 percent,
and the mutation rates were 0.001, 0.01, and 0.10, respectively. In any given generation, 60 percent
of the strings were likely to be reproduced. The expected number of recombinations per generation
was thus 60. The average number of recombinations required for the three sets of experiments is
listed in Table 7.

The generation approach was not as efficient as the static population model approach. For
example, the average number of recombinations with the two-points crossover operator and the
static population model was 300, yet all three trials of the generational model required more
than 500 recombinations. This difference in efficiency is due to the many new strings that are
generated in each generation, so a good string can reproduce many times in one generation. This
excessive reproduction results in homogeneity in the population and premature convergence. In
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TABLE 6

The Average and Median Number of Recombinations Until the Correct
Solution Was Found Using Different Operators for the Exponent Problem

Operator Average Median
Uniform 236.3 219

Two-Points 3004 281

One-Point 285.2 266
Unit-Based 272.7 266

TABLE 7

Number of Recombinations Until the Correct Solution Was Found with a
Two-Points Crossover Operator for the Exponent Problem Using a

Traditional Approach

Mutative Average Number Standard
Pressure of Recombinations Deviation

0.001 540 180

0.01 1020 300

0.10 840 180
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this experiment, the best string was always kept in the population, further increasing the chance
of premature convergence.

2.3.2 The Linear Combination, Guessing Problem

Problem Description. This problem tested the ability of genetic algorithms to find a combi-
nation of functions simultaneously. In feature creation, a set of features may need to be found at
the same time in order for the classifier to benefit from them. To test the effectiveness of genetic
algorithms in guessing a set of functions, the second problem was designed to be a search of a linear
combination of functions.

In this problem, genetic algorithms were used to find the variables and exponents of the
function to = x, 31 + x * y +1 + x' * 3 . The x and y variables could be any of the four
variables a, b, c, and d. The exponent of each variable was either 1 or -1. Two bits were used to
identify the variable and one bit was used to indicate the exponent of the variable. Each of the
product terms in the equation thus required six bits. The whole equation required a total of 18
bits. The actual function to be guessed was to = a * b + a * c + bid. Again, the fitness function
used was 1/(E 6 + 0.001), the inverse of the difference 6 between the function guessed by genetic
algorithms and the actual function over the range of 0 to 5 for each variable. To prevent dividing
by zero when the perfect solution was found, a very small value ( 0.001) was again added to the
sum of differences. The fitness value of the perfect string is thus 1,000.

Results. Experiments were again performed using different'selective pressure, mutative pres-
sure, and crossover operators. The average numbers of recombinations required before the correct
solution was found are listed in Tables 8 .. 12. The total number of evaluations used was the
initial population size (100) plus the number of recombinations. This linear combination problem
had an encoding length of 18 bits. However, there are some redundant solutions; for example,
the term a * b is the same as the term b * a. The actual number of distinct solution is (25) 3, or
32,768. Out of the 32,768 solutions, there are 3! correct solutions because the three terms in the
target equation can be rearranged. The probability of successfully guessing the correct solution
in a random trial is then 6/32,768. The expected number of trials required in a random search
procedure is 1/2 * 6/32,768 = 2,730.

Table 8 lists the number of recombinations required when the original two-points crossover
operator is used. As long as a mutative pressure of 0.0 or 1.0 and a selective pressure of 0.0 are not
used, the average number of recombinations is 446. After adding 100, the number of evaluations
required for the starting population, the total of 556 is still much less than 2,730. Genetic algorithms
performed better than random search for all four types of crossover operators.

The operator tested in Table 8 first uniformly picked a point, then picked a second point
uniformly between the first point and the end of the string. The portion between the first point
and the second point was exchanged. This operator differed from an alternative form of two-points
crossover operator, where both points were picked uniformly along the length of the string, with
the smaller number becoming the starting point.

23



The experiment with the second type of two-points crossover operator is shown in Table 9.
There is no significant difference between Tables 8 and 9. There was also no clear advantage in
using the one-point crossover operator (Table 10), the uniform operator (Table 11), or the unit-
based operator (Table 12). An operator might have been better at a particular setting of selective
and mutative pressures, but no operator was consistently better than all the others.

TABLE 8

Number of Recombinations Until the Correct Solution Was Found with a
Two-Points Crossover Operator for the Linear Problem

Mutative 0.0 0.25 0.5 0.75 1.0
Pressure

0.00 1106 478 285 735 961

0.05 2413 449 317 336 599

Selective 0.10 2711 313 337 634 400
Pressure 0.15 2704 355 544 493 945

0.20 2405 686 561 419 965
0.25 3001 309 558 382 866

Table 13 shows the average and the median number of recombinations for the mutative pres-
sure range of 0.25 to 0.75 and selective pressure range of 0.05 to 0.25. These ranges were chosen to
remove the results of using extreme mutative and selective pressure values. Within the ranges, the
two-points crossover operator performed the best and the uniform crossover operator performed the
worst. The results differ with the results shown in Table 6, when the uniform operator performed
the best and the two-points crossover operator performed the worst.

Table 14 shows the average and the median number of recombinations when the mutative
pressure is 0.25 and the selective pressure range remains at 0.05 to 0.25. In this table, the new
two-points crossover operator turned out to be the best in terms of average, while the uniform
crossover operator was the best in terms of median.

Depending on the selective and mutative pressure range, one operator may be superior to
another. However, no result convincingly shows one crossover operator to be better than other
operators. In this report, the two-points crossover operator was used for feature selection and
feature creation problems for consistency. On problems with longer strings such as the experiments
described in Section 7, the uniform crossover operator was used. These choices were made based
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TABLE 9

Number of Recombinations Until the Correct Solution Was Found with a
New Two-Points Crossover Operator for the Linear Problem

Mutative 0.0 0.25 0.5 0.75 1.0
Pressure

0.00 680 698 562 804 948

0.05 1558 392 415 585 405

Selective 0.10 2403 614 506 511 705

Pressure 0.15 2703 303 453 691 520

0.20 3001 369 572 640 510

0.25 2402 583 517 392 615

TABLE 10

Number of Recombinations Until the Correct Solution Was Found with a
One-Point Crossover Operator 'cr the Linear Problem

Mutative 0.0 0.25 0.5 0.75 1.0
Pressure

0.00 1088 564 671 522 1095
0.05 1855 282 306 808 867

Selective 0.10 2125 341 423 745 552
Pressure 0.15 3001 480 258 582 523

0.20 2702 271 334 763 628

0.25 3001 496 797 650 668
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TABLE 11

Number of Recombinations Until the Correct Solution Was Found with a
Uniform Crossover Operator for the Linear Problem

Mutative 0.0 0.25 f).5 0.75 1.0
Pressure

0.00 846 488 721 950 801

0.05 760 271 552 762 1044

Selective 0.10 2130 298 533 703 1480

Pressure 0.15 2707 567 346 876 1068

0.20 2703 399 491 569 1031
0.25 2402 291 965 1142 1083

TABLE 12

Number of Recombinations Until the Correct Solution Was Found with a
Unit-Based Crossover Operator for the Linear Problem

Mutative 0.0 0.25 0.5 0.75 1.0
Pressure

0.00 864 458 462 385 907

0.05 3001 416 364 505 528
Selective 0.10 2117 353 492 465 699

Pressure 0.15 2406 244 453 438 765

0.20 2406 371 507 546 949

0.25 2403 328 815 990 902
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TABLE 13

The Average and Median Number of Recombinations Until the Correct
Solution Was Found Using Different Operators for the Linear Problem

Operator Average Median

Uniform 584.3 533
Two-Points 446.2 382

New Two-Points 502.9 506

One-Point 502.4 480

Unit-Based 556.5 438

TABLE 14

The Average and Median Number of Recombinations Until the Correct
Solution Was Found Required by Different Cpzrators for the Linear Problem

Using Mutative Pressure of 0.25

Operator Average Median

Uniform 365.2 298
Two-Points 422.4 355

New Two-Points 252.2 392

One-Point 374.0 341

Unit-Based 342.4 353
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on the experience that no one operator performed an order-of-magnitude better than the others.
Completely analyzing the performance of all crossover operators for the type of problems studied in
this report would have taken too long, so no further studies on the effect of using different operators
were pursued.

2.4 Summary

This section describes the genetic algorithm approach selected for this study and the effect
of using different mutative pressures, selective pressures, and crossover operators. Although small
aifferences exist between the performances of different crossover operators, they are not large enough
to favor selecting one operator over another. No specific set of selective and mutative pressure values
was good for all experiments, but mutative pressures of 0.25 and 0.5 and selective pressures from
0.05 to 0.25 appeared to work well in all problems. The standard two-points crossover operator and
the uniform crossover operator were used for further experiments with parameters chosen from this
range. With choices from these ranges, genetic algorithms on average found the correct function
for two artificial function selection problems in one-fifth to one-half as many trials as would be
required on average by a random search procedure.
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3. NEAREST-NEIGHBOR PATTERN CLASSIFICATION

3.1 Introduction

Genetic algorithms for feature selection require a fitness function to estimate the usefulness
of a set of features. The most direct way of determining the usefulness of a set of features is to
actually use the features with a pattern classifier. In this report, the percentage correct from a
k-nearest-neighbor classifier was used as the evaluation function. This section briefly describes the
k-nearest-neighbor classifier and enhancements that reduce computation requirements.

3.2 The K-Nearest-Neighbor Classifier

3.2.1 History

The k-nearest-neighbor classifier has been used as a reference classifier by many researchers in
the neural networks field [11. It has the advantage of not requiring a training phase and providing
good accuracy when there are sufficient training patterns that are representative of the overall
pattern distribution. It has been proven that the error of the nearest-neighbor classifier is bounded
by twice the Bayes error when the number of training patterns is large (6). Previous work has
also demonstrated that the relative performance of a feature set found using a k-nearest-neighbor
classifier is closely related to the relative performance of other classifiers 18,11].

3.2.2 Descripiion

A k-nearest-neighbor classifier compares the Euclidean distance between a pattern to be clas-
sified with all stored training exemplar patterns. The unknown pattern is assigned the class label
that occurs most frequently among the k-nearest-neighbor training patterns. The only training
required is storing all the training patterns in memory. The procedures of training and using a
k-nearest-neighbor classifier are:

* Training

1. Store all training patterns in memory along with their class labels.

* Classification

1. Present an unknown pattern to be classified.

2. Find the k-nearest neighbors of an unknown pattern by calculating the Eu-
clidean distance between the unknown pattern and the stored exemplars.

3. Assign to the unknown pattern the class label that occurs most frequently
among the k-nearest neighbors. In case of a tie between classes, break the tie
randomly.
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Because genetic algorithms rely on trying many possible solutions, the k-nearest-neighbor
classifier is attractive because it requires little training. A different type of pattern classifier, the
radial basis function classifier 112,17], was also used as a pattern classifier in initial experiments.
However, using the radial basis function classifier took considerably longer and did not always
provide large improvements in accuracy. Thus, the k-nearest-neighbor classifier was used in all
experiments. Because computation requirements increase as k increases, k was set to 1 for all ex-
periments except when genetic algorithms were used to choose exemplars, as described in Section 7.

3.2.3 Efficiency Improvements

Although the k-nearest-neighbor classifier requires little training, the amount of time required
to classify input patterns is considerable, especially when there are many example patterns and
the input data has high dimensionality. When using "leave-one-out" cross validation to estimate
error rates (6], the Euclidean distance between every exemplar pattern taken one at a time and
other exemplar patterns must be calculated. Computation thus increases as O(N 2 ) where N is
the number of exemplar patterns. Two improvements were made to the basic nearest-neighbor
classifier to reduce computation requirements.

Comparison with the Shortest Squared Distance. Any method that can cut down the number
of operations performed in distance calculations will reduce the execution time of a k-nearest-
neighbor classifier. One such method that does not require much memory or time is to terminate
distance calculation on an exemplar if it cannot be closer than the kth-nearest neighbor found so
far. An algorithmic description of the method follows.

In calculating the distance to each exemplar pattern with d as the input dimension and Sum
as the total squared distance to the exemplar:

1. Sum = 0, i = 1 .

2. Calculate d?, the squared difference between feature i of the exemplar pattern and
that of the input pattern.

3. Sum = Sum + d? .

4. If Sum > minimum squared distance to the kth-nearest neighbor found so far, then
this exemplar is done.

5. Else, i = i + 1.

6. If i < d, then go to step 2.

7. Else, this exemplar is done.

This distance calculation proceeds by iteratively summing the squared distances between features
in the input and the exemplar patterns, one feature at a time.
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When the sum is greater than the squared distance to the kth-nearest neighbor found so
far, then clearly the current exemplar cannot be one of the k-nearest neighbors and the extra
computation for the remaining features can be eliminated.

This method requires an extra comparison at each dimension. For low dimension problems
on a Sun 3/110 workstation with a floating-point accelerator, the time used for performing the
comparison may be longer than the amount of time saved by avoiding more calculations in fur-
ther dimensions. However, for problems with a large number of features, as the sum of squared
differences is progressively increased, it becomes more and more likely will be greater than the
kth-nearest squared distance found so far. The chance of avoiding many calculations is high and
the likely saving in time is large.
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Figure 7. Cumulative distribution of the number of features out of 153 used to calculate
Euclidean distances in a k-nearest-neighbor classifier with 90 input and exemplar patterns
from the TI 46-word problem.

For example, for the Texas Instruments (TI) 46-word database problem described in the
next section, there are 153 input features. If a k-nearest-neighbor classifier with k = 1 is used
with 90 training patterns, each distance calculation requires 305 additions plus subtractions and
153 multiplications per input pattern. With the modification, the cumulative distribution of the
number of features used to calculate distances is shown in Figure 7. As can be seen, more than
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50 percent of the distance calculations were completed before calculation proceeded to 80 features.
The average time used by the modified version of the k-nearest-neighbor classifier in one experiment
was 1.81 sec. This is 44 percent less than the 3.21 sec used by the unmodified version. All times
were measured on a Sun 3/110 workstation with a floating-point accelerator in an experiment with
90 input patterns.

Conditionally Terminating Evaluation. While the above modification to the k-nearest-neigh-
bor classifier does not introduce new errors, another modification (conditionally terminating evalu-
ations) can statistically create new errors. However, the amount of time saved makes it worthwhile
to accept the small risk of not accurately estimating the classifier accuracy.

Before introducing the approach, the reason for its use needs to be explained. In the exper-
iments performed in this report, there were two classifier accuracies: the accuracy of the training
set and the accuracy of the testing set. The accuracy of the training set was the fitness function
value used in the genetic search, while the accuracy of the testing set was not used in the genetic
search. Separating patterns into training and testing sets allows the generalization ability of the
genetic search's solution to be checked. However, the k-nearest-neighbor classifier with k = 1 has an
accuracy of 100 percent on the training patterns because the nearest neighbor of a pattern is itself.
To avoid this problem, the leave-one-out approach was used 16]. In this approach, every pattern in
the training set is classified using the training set with itself removed. The overall accuracy of the
training set is the number of correct classifications divided by the total number of patterns in the
training set.

In many problems the size of the training set is large; thus, calculating the training set
accuracy using the leave-one-out approach takes a long time. It requires classifying each exemplar
pattern using N(N - 1) Euclidean distance computations. Conditionally terminating evaluation is
based on the idea that the eventual classification accuracy of the training set can be adequately
estimated using only a small portion of all the training patterns. At intervals of 50 training patterns,
the program estimates the error rate and calculates the expected deviation from the true error rate
with the following equation:

S (1 -p)*p

In this equation p is the estimate of probability of correct classification obtained so far and n
is tile number of samples tested so far. The value p is calculated with the following equation:

Number of training patterns correctly classified so far
P= Number of training patterns classified so far
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Every 50 patterns, the sum of p and 2 * a (two times the standard deviation) is compared with
the best performance obtained so far. If the sum of p and 2 * a is less than the best accuracy so far,
then testing is stopped and the program accepts p * 100 as the percentage correct. This procedure
works because the percentage correct usually stabilizes quickly as one goes through the patterns in
the training set. Thus, the final percentage correct can be estimated from the percentage correct
calculated with a smaller sample set size. For example, Figure 8 shows that as the number of
samples evaluated increases for the vector problem discussed in Section 4, the percentage correct
gradually stabilizes and the final percentage correct is not far from the percentage correct calculated
at n = 100. When n = 50, the estimated percentage correct plus two standard deviations is greater
than the best percentage correct found so far, so the calculation continues. At n = 100, the
estimated percentage correct plus two standard deviations is below the best percentage correct
found so far, so the program would stop and accept the current estimated percentage correct as
the final value. Because the percentage correct is far from the best percentage correct found so far,
slight inaccuracy in classifier accuracy does not affect the genetic search.

Assuming that the deviation of p from the true percentage correct is a Gaussian random
value with a mean of 0, there is only a 2.3 percent chance that the true percentage is greater than
p + 2 * a. There is thus only a one-in-forty chance that the accepted percentage correct would be
lower than the percentage correct obtained when all patterns in the training set are classified.

When genetic algorithms are used for feature creation, the best feature subsets are frequently
outstanding compared with the average feature. The feature subsets that have a low percentage
correct compared with the best feature subset encountered so far do not require accurate estimations
of their accuracy. By using this approach and the above rule, the amount of computation required
by the parallel vector problem, described in the next section, was reduced by a factor of six. Because
genetic algorithms took days to run, a reduction from six days to one day was significant. Accepting
a 2.3 percent probability of a large estimation error resulted in much shorter computation time and
made this research possible.
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4. FEATURE SELECTION

4.1 Introduction

Feature selection involves selecting that subset of features from a large initial set that provides
best classification performance. As mentioned previously, for a problem with high dimensionality,
conducting a full search through all the possible feature subsets is infeasible. This report focuses on
genetic algorithms and uses forward and backward sequential search as a reference for comparisons.

4.2 Methods

4.2.1 Representation and Evaluation

Every feature set or possible solution is represented by a bit string with d bits, where d is
the maximum input dimension. Each bit of a solution represents a feature. If the bit is 1, then the
feature is used; otherwise, the feature is not used. Many different evaluation functions have been
suggested to differentiate between good and bad feature subsets. Most are statistical and indirect
and make strong assumptions on data distributions 16,15]. The accuracy of a nearest-neighbor
classifier was used as the evaluation function in this study. The nearest-neighbor classifier has the
advantages of requiring no training time and providing results directly related tp performance.

4.2.2 Feature Reduction

The goals of feature reduction are twofold: feature reduction and classifier performance im-
provement. These two goals may conflict with each other, as in cases where the full feature subset
is actually the feature set to use if best classifier performance is required. In some cases, however,
reducing the number of features is more important than finding the best performing feature set
possible. For example, the storage of the extra features may be very expensive and the collection
of additional features may be time-consuming. By reducing the number of features required, one
call directly reduce memory requirements and the expense of collecting training data.

If classifier performance is used as the fitness function, genetic search will find a set of features
with the best classifier performance and not necessarily reduce the number of features used. There
must be an incentive for feature reduction to take place.

In the experiments performed in this study, feature reduction was an option that could either
be used or not used. When the feature reduction option was used, an incentive in the form of
a "bonus" was given to good strings that did not use many features. The bonus was a constant
multiplied by the number of features not used, and it was added to the classifier performance to
derive the .atness value of the string.

Two different methods of giving the bonus were tried. In one policy called "only-the-best,"
only the string that performed better or equal to the best string so far would receive a bonus. This
policy had the effect of ensuring that classification accuracy was not compromised for the sake of
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reducing the number of features used. If the full feature subset turned out to be the best set, then
it would still have a higher fitness value than other subsets that used fewer features but had a lower
classification accuracy.

Another policy of giving the bonus was called "bonus-above-thc chreshold." With this policy,
the user specified an acceptable percent-correct threshold. All strings equaling or surpassing the
standard would get a bonus proportional to the number of features they did not use. By using this
policy, the user could specify that feature reduction was the more important goal once a certain
minimum performance standard was achieved. With this policy, it was possible for a string with a
lower classification accuracy to have higher fitness value because it used fewer features. This policy
is useful if an acceptable threshold can be found. It may be difficult to use if selecting a minimum
performance threshold is a problem.

4.2.3 Reshuffling

With the only-the-best policy, the fitness function is time-varying because it depends on the
best performance measured so far. This factor causes strings evaluated earlier in the population to
have an advantage over latter strings. Because the first string to be evaluated is compared with a
classification accuracy of zero, it will definitely receive a bonus. It will be more difficult for latter
strings to receive the bonus. In some cases, two identical strings, one evaluated at the beginning
and one evaluated near the end, will have different fitness values.

To avoid biasing the population by favoring the strings evaluated earlier, a procedure called
"reshuffling" took place periodically. When reshuffling was performed, the classification accuracy
of all the strings was compared with the best classification accuracy obtained thus far. Periodic
reshuffling was essential to rank all solutions using the same fitness function.

4.3 Experiments

4.3.1 The NMR Problem

Problem Description. The first data used for feature selection, a General Electric Corpo-
rate Research and Development database, contained 387 patterns, each with 15 featureb, for four
different classes of patterns. The 15 features were derived from the intensity histogram of nuclear
magnetic resonance (NMR) test images that were generated for calibration and test purposes using
a standard glass sphere. Within the data were 27 normal patterns, 72 chopped phase shift patterns,
144 spike patterns, and 144 phase shift patterns. The latter three classes were defective images
that would be obtained from hardware faults in the image processor. With this database, the goal
was to distinguish between the patterns of the normal case and that of the three defective cases.

Results. The first 300 samples were used as the training set. The remaining 87 samples were
used as the testing set. A population size of 100, with selective pressure of 0.05, mutative pressure
of 0.50, and only-the-best policy (weight per feature = 5), was used with the genetic search. An
exhaustive search of all 32,768 possible subset combinations of 15 features was performed for this
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problem to find the optimal solution. This solution contained eight features and had a classification
error rate of 2.3 percent on the training set. The progress of the genetic algorithm in searching
for good feature subsets is shown in Figure 9. The maximum fitness increased in stages, while the
average fitness of the population increased gradually from recombination 1 to 1,100. The effect of
reshuffling can be seen at recombination cycle 1,200 of Figure 9, where maximum fitness dropped
abruptly. The best string up to that point was no longer the best performing string, so it lost the
bonus portion of its fitness function. The average fitness of the population also dropped because
many strings within the population lost their bonuses.
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Figure 9. Fitness (percentage correct plus a bonus of five for every feature not used)
versus the number of recombinations for the NMR problem.

The amount of feature reduction achieved is shown in Figure 10. In this figure, the best
classification accuracy obtained thus far and the number of features used by the best subset are
shown. The top plot of Figure 10 shows that at recombination 1,200, the training set accuracy
increased slightly. This increase in accuracy was gained at the expense of using three more features,
as shown in the bottom plot. The tendency of the search was to reduce the number of features
as much as possible without decreasing classifier accuracy. The search procedure favored a low
classification error rate over feature reduction. The final best string is the optimal feature subset
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with the classification error rate of 2.3 percent on the training set and eight features. As a com-
parison, the classifier error rate with the full set of 15 features was 4.3 percent. Experiments with
only-the-best policy using a weight per feature of one instead of five found the same features but
with roughly half the number of recombinations.
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Figure 10. Genetic algorithm's progress in searching feature subsets for the NMR prob-
lem: (a) lowest error rate and (b) minimum number of features.

In a second experiment, the bonus-above-the-threshold policy was used. The minimum ac-
ceptable classifier accuracy was chosen to be 92 percent. Once the minimum performance standard
was reached, a string using fewer features would have a higher fitness value. A string that used
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very few features would then be expected. The best string found by this method used only three
features. Its classification accuracy was 92.3 percent on the training set, just above the minimum
standard.

The results of a genetic algorithm's search in the two cases demonstrate that genetic algo-
rithms do find a good solution. Even complicated evaluation functions involving logical operations
can be used. Prior knowledge of the problem can thus be used as part of the evaluation function,
and the genetic algorithm search can maximize the function using the prior knowledge implicitly
presented in the evaluation function as a guide.

Genetic algorithms found the optimal solution within 1,500 recombinations. This is consid-
erably less than the average 16,384 evaluations (215/2) required in a random search. However,
simple backward sequential search and forward sequential search, as described in Section 1, were
also performed. Although the forward search procedure did not find the optimal feature subset, the
backward search procedure did. The backward sequential search starts with all the features, tries
all combinations with one feature left out, selects the best feature subset among these subsets, and
then repeats the process. The backward sequential search can be observed looking from right to left
of Figure 11. The forward sequential search can be observed looking from left to right of Figure 11.
This procedure starts with subsets consisting of only one feature, chooses the best subset, and then
adds features one at a time, choosing the best subset at each level. Because the sequential searches
required only 120 evaluations for this 15-feature problem, even performing both procedures took
an order-of-magnitude less time than using genetic algorithms. Genetic algorithms were thus not
required to select features for this problem.

Another major reason for feature selection is to eliminate features that are noisy. The amount
of noise contained in the data can be estimated by using the sequential search methods to search
for the best feature subsets. If the error rate of the best feature subset curve does not have a deep
minimum, then the amount of noise in the data is not very large. On the other hand, if the error
rate of the best feature subset curve dips when not all the features are used, then certain features
are probably noise. Figure 11 shows that the best feature subset curve did not increase substantially
as the number of features was increased. All of the features therefore probably contained useful
information.

4.3.2 The Parallel Vector Problem

Problem Description. A second artificial problem was designed to evaluate genetic algo-
rithms with noisy features. The problem, illustrated in Figure 12, was to determine whether two
vectors are parallel. The four x, y starting points and the four dx, dy components of two vectors
are the original input features. If the vectors are parallel, then the pair should be classified as par-
allel. Otherwise, the vectors should be classified as nonparallel. The starting points of the vectors
were randomly distributed between -150 and 150, and the lengths of the vectors varied uniformly
between 0 and 100. The training set contained 300 patterns, while the testing set contained 100
patterns. The starting points of the vectors, shown in Figure 12, do not carry information that
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Figure 11. Forward and backward sequential search results for the NIR problem.

determines whether the vectors are parallel and can be considered noise. Good feature selection
should thus eliminate these four features.

Results. Genetic algorithms were used, as described above, to find the best feature subsets
with an initial population size of 100. In all trials, the genetic search procedure found the optimal
feature subset, consisting of the dx and dy of the two vectors. To evaluate how effective genetic
algorithms were in searching for the best feature, a collection of experiments was performed. Each
experiment consisted of 10 independent trials using genetic algorithms to search for the best subset,
and each trial ended only when the optimal feature subset had been found. The total number of
evaluations was 100 in addition to the number of recombinations. The results are listed in Table 15.
When the reduce feature option was used, the strings using fewer features were rewarded with a
bonus. In this case the only-the-best bonus policy was used. Table 15 shows that the number of
evaluations ranged from 125 to 157. Using a selective pressure of 0.10 and a mutative pressure of
0.25 provided the best result.

Sequential forward and backward procedures were also performed for this problem. The re-
sults are shown in Figure 13. Both the forward sequential search and the backward sequential
search procedure successfully found the optimal feature set. Each sequential search used 28 evalua-
tions. One can also see that the amount of noise in the original feature sets was large by observing
that the error rate dipped substantially when the number of features used was four. Error rates
increased with the starting point features because these four features are noise. As a comparison,
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TABLE 15

Average Number of Recombinations Needed to Find the Best Feature
Subset for the Vector Problem

Experiment I II III IV

Selective Pressure 0.05 0.10 0.10 0.05

Mutative Pressure 0.50 0.25 0.25 0.50
Reduce Feature? YES YES NO NO

Average Number of Recombinations 43 31 25 57

Standard Deviation 70.3 36.3 26.5 76.9
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the error rate curves in Figure 11 have no significant dip in the middle because there were no purely
noisy features in the NMR problem.
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Figure 13. Forward and backward sequential search results on the training set for the
vector problem.

When the numbers of evaluations required by the different approaches are compared, the
performance of genetic algorithms is disappointing. Even choosing the best experiment, the average
number of evaluations was 125, with a standard deviation of 26. Compared to 128 evaluations (the
expected number required in a random search), genetic algorithms did not perform any better.
Furthermore, a forward and backward sequential search successfully found the optimal feature
subset and required only 28 evaluations.

In both the NMR problem and the parallel vector problem, genetic algorithms found the
optimal feature subset but were not more efficient than traditional feature selection methods. This
may not be true with more complex problems that have nonmonotonic improvement in performance
as more features are added [8,19] . The next problem with 153 input feature dimensions provided
a more difficult problem domain.
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4.3.3 The Nine E-Set Words Speech Recognition Problem

Problem Description. The data for this problem comes from the Texas Instruments (TI)
46-word speech database. Although the full database contains speech patterns of 46 spoken words,
only the nine spoken letters of the alphabets with the "E" sound (B, C, D, E, G, P, T, V, Z)
were chosen. The speech data of the E words were taken from 16 speakers: 8 male and 8 female.
Waveforms were spectrally analyzed and encoded with a hidden Markov model (HMM) speech
recognizer [10]. The features were the average log-likelihood distance and duration from all the
hidden Markov nodes determined using Viterbi decoding. There were a total of eight nodes with
the duration, with the average distance values from each node counting as two input features. The
final output of the HMM was also included in the feature set, resulting in 17 features per word
class. Because there were nine different word classes, the total number of features was 153 (17 *
9). For each talker there were 10 patterns in the training set and 16 patterns in the testing set per
word class. All experiments were talker-dependent where classifiers were tested and trained using
only data from the same talker.

Results. A smaller-scale experiment was first performed using only the data from one female
speaker (the F1 data set). A sequential forward and backward search for the best feature subset
was first performed. A large number of evaluations (11,781) was required for each sequential search.
The result of the sequential search, shown in Figure 14, indicates that classifier accuracy improves
when features are taken out of the full feature set. Best performance (training set error rate = 2.2
percent) was found with 33 features.

Genetic algorithms performed comparatively better for this experiment. The size of the
population was 500, with selective pressure and mutative pressure set at 0.05 and 0.25, respectively.
Figure 15 shows the progress of the genetic algorithm search. The top plot shows that classification
error rates were 3.3 percent on the training set and 17.4 percent on the testing set. The bottom
plot shows that near recombination 12,100, the number of features used was reduced to 15.

This testing set error rate is lower than the error rate of 18.8 percent provided by the original
HMM recognizer used to segment input speech tokens [10]. Genetic algorithm feature selection thus
improved the discrimination of the HMM recognizer. The features selected by the genetic search
are listed in Table 16. Features 1, 3, 5, 7, 9, 11, 13, and 15 are the durations from hidden Markov
nodes 1, 2, 3, 4, 5, 6, 7, and 8, respectively. Features 2, 4, 6, 8, 10, 12, 14, and 16 are log-likelihood
from hidden Markov nodes 1, 2, 3, 4, 5, 6, 7, and 8, respectively. Feature 17 is the HMM's final
output. Table 16 shows that features were selected near the beginning of the words where spectral
differences are greatest. Table 17 summarizes the comparison between the best feature subsets
found by genetic search and sequential searches. Genetic algorithms found a feature subset that
not only used fewer features but also had better generalization performance.

A second multitalker experiment was performed using the data from four female talkers (Fl,
F2, F3, and F4) by combining the data from all talkers as if it came from one talker. A sequential
forward and backward search for the best feature subset was first performed. Because the amount of
data was four times the amount of data in the first experiment, this experiment took approximately
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TABLE 16

Features Selected by Genetic Algorithms for the TI F1 Problem

Word Class

1 2 3 5 617 81

Features

1. Duration of node 1

2. Strength of node 1 Y Y Y Y Y Y Y

3. Duration of node 2

4. Strength of node 2 Y Y Y
5. Duration of node 3

6. Strength of node 3 Y Y Y

7, Duration of node 4

8. Strength of node 4 Y

9. Duration of node 5
10. Strength of node 5

11. Duration of node 6

12. Strength of node 6 Y

13. Duration of node 7

14. Strength of node 7
15. Duration of node 8

16. Strength of node 8
17. Output of HMM

Note: "Y" means the feature is used; a blank means the feature is not used.
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Figure 14. Forward and backward sequential search results on the traiving set for the TI
F1 problem.

TABLE 17

Comparison Between Sequential Search and Genetic Algorithms for the TI
F1 Problem

Error Rate

(Percent)

Number
Method Train Test Nue of

Evaluations

Genetic Search 3.3 17.4 15 20,000

Sequential Search 2.2 18.5 33 11,781

45



50

40

S30--Li

__ TESTING SET
n- 2

20
0

TETN SET

0

(a)

200 1

0160 -

0 n INITIAL NUMBER OF FEATURES
M _ 120
WUJ

n 80

W
u. 40 - NUMBER OF FEATURES USED

0 
-

0 10000 20000

NUMBER OF RECOMBINATIONS
(b)

Figure 15. Genetic algorithm's progress in searching for feature subsets with high clas-
sification accuracy and fet., features for the TI F1 problem. (a) Classification error rate
and (b) number of features used.

46



16 times longer to perform. Each sequential search still required 11,781 evaluations. Results from
the sequential search are shown in Figure 16. This figure shows a rather drastic example of a
problem with the forward sequential search. As the number of features increased, the classification
error rate actually increased to about 60 percent before dipping back to about 20 percent. The
feature subset at the 60 percent point consisted of features 1, 3, 5, 7, 9, 11, 13, and 15 from all the
classes.

Apparently, the forward sequential search encountered a local minima where even the best

featui s could only provide a 60 percent error rate. This demonstrates the danger of using sequential
search when the relationship between accuracy and the number of features is not monotonic.
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Figure 16. Forward and backward sequential search results on the training set for the TI
F1-F4 problem.

A genetic search was performed up to 25,000 recombinations. The parameters for genetic
algorithms were the same as the previous experiment. Figure 17 shows the progress of the genetic
search. The top plot shows that the classification error rates of the training set and the testing

set were 10.0 and 17.2 percent, respectively. The bottom plot shows that at recombination 9,600,

the number of features used was reduced to 32. The features selected are listed in Table 18. They
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again tend to cluster around the beginning nodes. Table 19 compares the best feature subset found
by sequential searches with the one found by genetic search. In this experiment, genetic algorithms
found a feature subset that had slightly better accuracy on both the testing set and the training
set; however, this feature subset used 13 more features than the feature subset found by sequential
search.

TABLE 18

Features Selected by Genetic Algorithms for the TI F1-F4 Problem

Word Class
4__ _ _ 1 2 3 5 6 17 8 9

Features

1. Duration of node 1 Y
2. Strength of node 1 Y Y Y Y Y Y
3. Duration of node 2

4. Strength of node 2 Y Y Y Y Y Y Y
5. Duration of node 3

6. Strength of node 3 Y Y Y Y Y Y Y Y
7. Duration of node 4

8. Strength of node 4 Y Y Y Y
9. Duration of node 5

10. Strength of node 5 Y Y

11. Duration of node 6

12. Strength of node 6
13. Duration of node 7

14. Strength of node 7 Y Y Y

15. Duration of node 8
16. Strength of node 8 V
17. Output of HMM

Note: "Y' means the feature is used; a blank means the feature is not used.
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TABLE 19

Comparison Between Sequential Search and Genetic Algorithms for the TI

F1-F4 Problem

Error Rate

(Percent)

Number Number of
Method Train Test Nme ubro

of Features Evaluations

Genetic Search 10.0 17.2 32 25,000

Sequential Search 12.2 18.6 19 11,781
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Figure 17. Genetic algorithm's progress in searching for feature subsets with high classi-
fication accuracy and few features for the TI FI-F4 problem. (a) Classification error rate
and (b) number of features used.
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4.4 Summary

This section presented the approach, methods, and results of using genetic algorithms for fea-
ture selection. Traditional feature selection techniques were also compared with genetic algorithms.
In all experiments, genetic algorithms successfully found good feature subsets. For small, low di-
mensionality problems, genetic algorithms took longer than traditional approaches. The traditional
sequential search approaches found the good feature subsets as well in much less time.

For larger dimensionality problems, such as the nine Eset word problem with 153 input
features, the genetic algorithm search procedure was more competitive. For this problem, even the
sequential search procedures took numerous evaluations, and a full exhaustive search was clearly
out of the question. Genetic algorithms were able to find feature subsets with good classification
accuracy while reducing the number of features used from 153 to 15 for the one-talker problem and
from 153 to 32 for the four-talker problem. For the one-talker problem genetic algorithm features
provided lower crror rates than the original HMM recognizer used to segment input speech tokens.
Furthermore, genetic algorithms were able to find good results with less than a factor-of-two more
computation than more conventional sequential search approaches. An interesting example of a
problem with the simplar sequential search approach was also provided when sequential search was
used with the four-talker problem.

50



5. FEATURE CREATION

5.1 Introduction

Few methods have been developed to derive higher-order polynomial features from original
features to enhance classifier performance. Most perform only a sequential local search and may
find complex features that provide poor generalization. Genetic algorithms search nonsequentially
and are less likely to be trapped by local minima. The complexity of functions can be limited
beforehand or included in the fitness function; thus, the system need not generate complex functions
that overfit the training data. Also, instead of using indirect statistical measures to determine which
new features are best, the performance of a nearest-neighbor classifier with the new features is used
as the fitness criterion.

5.2 Methods

New features were represented as a bit string consisting of substrings identifying the original
features used, their exponents, and the operation to be applied between the original features. New
features were generated as polynomials of original features taken two at a time. This form was
chosen admittedly with the experiment problem in mind because the parallel vector problem to be
described below required new features that were polynomials of two original features.

Each of the original features had an identifying bit string. The power of each original feature
and the operator to be used between two original features were also identified with bit strings. For
example, if feature 1 (fl) had identification bit string 00 and feature 2 (f2) had identification bit
string 01, the string 00 1 01 1 01 represented the new feature (f2 - f2). The first two bits (00)
of the string identified the first feature. Then one bit (1) was used to indicate the power of the
feature. The same decoding mechanism was used for the second feature. Finally, the last two bits
(01) identified the operator (-). The power of the original features was limited to either 1 or 2. The
operators that could be used between original features were addition, subtraction, multiplication,
and division. It was hoped that with these limits on the complexity of the created features, a more
general set of features would be derived. In actual problems, if specific knowledge of the likely
form of a useful feature is available, the operator set can be modified to take advantage of that
knowledge.

The number of new features created was fixed a priori and the fitness function was classifi-
cation accurate (percent correct). Initially, a population of new features was randomly generated.
Each member of the population was then evaluated according to the following procedure:

1. New features and original features encoded in each member were searched together
using a forward sequential search to find the best subset of features. The features
were evaluated using a nearest-neighbor classifier and leave-one-out cross validation.

2. If a newly created feature was used in the best subset of features, the part of bit string
representing it was left untouched. Otherwise, that part of the string was randomly
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scrambled. Because feature creation was highly random, randomly mutating the part
of the bit string representing useless new features increased the size of search space
and avoided premature convergence.

Figure 18 illustrates the whole process of creating new features and deciding whether to keep
the substring describing the new feature.

S BIT STRING DESCRIBES THE FEATURES i

100101011010110

I

DECODE THE STRING TO CREATE NEW FEATURES.

III I

C OMBINE NEW FEATURES AND ORIGINAL FEATURES.

PICK THE BEST FEATURE SUBSET THROUGH
FORWARD S EQUENTIAL SEARCH.

IF THE NEW FEATURE IS IN THE BEST
SUBSET, KEEP ITS STRING INTACT, OR
ELSE SCRAMBLE ITS STRING.

" I

SRETURN THE NEWLY MODIFIED STRING TO THE
POPULATION WITH THE BEST FEATURE SUBSET
ACCURACY AS THE FITNESS VALUE.

Figure 18. A block diagram of the feature creation process in which local search is used
to eliminate features that are noise.

After the whole population had been evaluated, members of the population were selected,
recombined, and mutated using the same genetic algorithm that was used for feature selection. In
all experiments two new features were used. For many problems, often only one new feature does
not enhance classification accuracy, and multiple new features must be used simultaneously.

Using a nearest-neighbor classifier created a problem. The classifier accuracy of the nearest-
neighbor was easily affected by noise, and any original or new feature that was essentially noise
would decrease classification accuracy. For example, in a set of three newly created features, suppose
two of them are exactly the needed features, but the third one is a random function of the original
features. This third feature would be noise and would distort the distance measurements used by
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the nearest-neighbor classifier. After considering other classifiers that might be more noise-tolerant
(radial-basis function and back-propagation networks) and the amount of time required to train
them, the nearest-neighbor classifier was still chosen because it required no training. However, to
avoid the effect of noisy features, a local sequential forward search was conducted on the set of
original features and new features to select the best subset of original and new features during the
evaluation of every string. The effect of noisy features could thus be eliminated and the search
space reduced. Without sequential search, both the correct new features and the correct set of
features must be found at the same time using genetic algorithms; otherwise, the usefulness of the
newly created features would not be apparent. With sequential search, good features can be found
one at a time and still have their usefulness not distorted by other noisy features. In cases where
local search fails due to nonmonotonicity, then the correct features and correct set of features must
be found simultaneously by genetic algorithms.

5.3 Experiments

5.3.1 The Parallel Vector Problem

Problem Description and Results. The artificial parallel vector problem described in the
previous section was first used as a test problem because higher-order functions (slopes) are known
to improve performance. The starting point coordinates of the vectors were taken out of the data set
to reduce the size of the search space. Original features consisted of the four dx and dy components
of the vectors. In an experiment using the (+, -, *, /) operator set, a population size of 200, and
300 training patterns, genetic algorithms successfully found a useful set of features. In fact, genetic
algorithms found a better set of features than the slopes (dyl/dxl and dy2 /dx 2 ) that should be
very good features. These slope features with the nearest-neighbor classifier provided a 6.7 percent
error rate on the training data. This compared favorably with the 18.7 percent error rate using
only the four original dx and dy features. It was also much better than the error rate obtained
using carefully tuned GMDH (13.3 percent) and radial-basis-function classifiers (8.3 percent) 112].
It was clear that by having the correct features, the performance of classifiers could be improved
a great deal. Genetic algorithms, however, found the following set of new features: dy2/dy and
dx2 /dxl.

The classification error rate using this set of features was 2.7 percent of the training data. The
reason for improved performance with these features is demonstrated in Figures 19 and 20. Genetic
search found regularity in the data that was not at first apparent. The original data set was created
with dxl and dyl ranging uniformly between -50 and 50, and then having dX2 = k*dxl, dy2 = k*dyl,
k ranging uniformly between 0.0 and 2.0. The slope can range from -oo to co, with most vectors
clustering between -1 and 1. However, the features dy2/dyi and dx 2/dxl were bounded to be
between 0.0 and 2.0. The parallel input patterns were thus clustered more densely when dy2 /dyl
and dx2 /dxj were used as features (Figure 20) instead of using the slopes (Figure 19). This
clustering improved the performance of the nearest-neighbor classifier.
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Figure 19. Scatter plot of training patterns for parallel (+) and nonparallel (0) vectors
using slope features for the vector problem.

Figure 21 shows the progress of genetic algorithms on the vector problem. The curves shown
are the average of five independent runs. The testing set performance is the percentage-correct
rate on 100 test patterns that were not used by genetic algorithms in finding new features. Good
performance was achieved near recombination 1,500. The total number of evaluations was (1,500
+ 200) * 28 = 47,600, where 28 is the number of evaluations required by forward sequential search.
The number of possible distinct solutions was 357,760 ((K 3 + 3 * K' + 2 * K)/6, K = 128). The
expected number of evaluations needed in a random search was one half of that number, 178,880.
Genetic algorithms took roughly one-fourth of the average number of evaluations required in a
random search. These 47,600 evaluations took 31 hours on a Sun 3/80.

5.4 Summary

Genetic algorithms were used to create new high-order polynomial features. Genetic algo-
rithms successfully found new features that reduced the error rate from 19 to 3 percent on one
artificial problem and were shown to be a promising search procedure for finding higher-order fea-
tures. However, the amount of time required to utilize this approach grows very quickly with the
number of features. Even for the simple problem presented in this section, run times were more
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Figure 20. Scatter plot of training patterns for parallel (+) and nonparallel (0) vectors
using genetic algorithm features for the vector problem.

than a day. Such times are practical only for difficult problems when a good solution is essen-

tial. Shorter run times achieved through parallelism or more powerful computers could make this
approach more practical.
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Figure 21. Creating features from original input features to provide better classification
accuracy for the parallel vector problem.
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6. INCREASING THE COMPLEXITY OF CREATED FEATURES

6.1 Introduction

The features created in the previous sections had limited complexity. Each newly created
feature could only be composed of two original features; the exponent of each original feature
was limited to either one or two, and it was impossible to create features from previously created
features. There are cases, however, when it would be useful to have more complex features than
this allows. This section discusses experiments in which increasingly more complex features could
be created.

6.2 Methods

The ap roach used to search for higher-level features relied on a gradual buildup of complexity
over multiple stages. At each stage the complexity of created features was limited. Once the
accuracy of the classifier had converged at one stage, another stage was begun where more complex
high-order features were allowed. This improves generalization by creating simple features first and
by creating more complicated features only when simpler features are not satisfactory.

It is difficult to define a condition that positively signals the successful completion of searching
for good features of a limited complexity at one stage. The number of recombinations since the last
improvement in classifier accuracy was used as an estimate of how well the search vpace has been
explored during one stage. In the beginning of the genetic search process, it is easy to find features
that improve classifier accuracy; thus, the number of recombinations since the last improvement
is frequently reset back to zero. After very good features have been found, it is increasingly more
difficult to find even better features, so the number of recombinations since the last improvement
increases steadily and eventually reaches a preset limit.

Once the limit is reached, the best features that were created thus far become a part of
the original feature set, and even newer features are created using the original features and these
previously created features. The complexity or order of the created features can thus increase
steadily. For example, suppose a necessary feature is the sum of two created features. With this
process, it is possible for this feature to be created. Previously, with the limit on the complexity
of the created features, such features could not be created.

6.3 Experiments

6.3.1 The Parallel Vector Problem

The parallel vector problem used to explore feature creation was again used. Figure 20 shows
that with the right features, the parallel vector patterns are closely clustered in the diagonal line
from (0,0) to (2,2) in the feature space. The denser one class of patterns clusters together, the less
likely a nearest-neighbor classifier will make a mistake. It is therefore reasonable to assume that
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creating a new feature consisting of the differences between the ratios may be a good feature. With
this feature, all parallel patterns would have a value of zero and cluster on one point.

Experiments were performed with a complexity interval limit set to 2,000, i.e., the complexity
of features created increased when there had not been improvement in classifier accuracy for 2,000
recombinations. The value of 2,000 was chosen since in previous experiments, the ratio features
were found within 2,000 recombinations. It was therefore likely that when the complexity level
is increased, the already created fer tures would be the correct ratio features. In other problems
where the correct setting is unknown, there would be a trade-off between search thoroughness and
computation time. Figure 22 shows the progress of the genetic search in finding more complicated
features. The ratio features were first found near recombination 700. After the error rate had
not changed for 2,000 recombinations, the complexity of the created features was increased at
recombination 2,700. At this point the two ratio features and the four original features were
treated as if they were six original features. The final feature found after this point was (dX 2 *

dy 2)/(dxl * dyl). Classification error rate for the training set decreased to 0 percent with this
feature. All parallel vector patterns have a value of one for this feature and the whole parallel
vector class has been clustered into one point in the input feature space.
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Figure 22. Creating features out of created features to improve classification accuracy for
the parallel vector problem.
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The classification error rate using the final created feature alone was 0 percent for both the
training patterns and testing patterns. The original best classification error rate was 3 percent for
the training patterns and 0 percent for the testing patterns. This improvement in training pattern
performance was 3 percent, which is statistically significant. The utility of the new feature can also
be seen by observing the distribution of classes provided by this feature, as shown in Figure 23.
Here, it can be seen that all the parallel vector patterns are on one point with a feature value of
one, while most of the nonparallel vectors are around zero. 'he separation between classes is thus
very distinct.

250

PARALLEL
200

ZI,Iz

U.

0
M 10010 NONPARALLEL

z

-10 .5 0 5 10

[(dy2/dyl) I (dx2ldxl)]

Figure 23. Distribution of the training patterns belonging to parallel and nonparallel
classes when the feature ((dy2/dyj)/(dx2/dxj)) is used for the parallel vector problem.

6.3.2 The Vowel Problem

The vowel database, originally collected by Peterson and Barney 116], was also used to test
feature creation. There were 10 classes, each class being a word starting with "h" and ending with
"d," with a vowel in between (head, hid, hod, had, hawed, heard, heed, hud, who'd, and hood).
The patterns were collected from 67 speakers, including men, women, and children. A total of
338 patterns was used as the training set and 333 patterns were used as the testing set. Each
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pattern consisted of two features that were the two formant frequencies of the vowel determined by
spectrographic analysis. A formant is a resonant frequency of the speaker's vocal tract. The two
lowest formants were used in the database. Lee and Ng have also used this set of data to perform
experiments on other types of classifiers [11,14].

A populatioD of 200 was again used with selective pressure of 0.05, mutative pressure of
0.25, and k of 5. In this experiment, all features were normalized within the range of zero to one
by transforming the highest number within the feature to one and the lowest number within the
feature to zero. Results presented in Table 20 and Figure 24 show that classification error rates
on both training and testing sets decreased as genetic algorithms created more complex features.
Three features (f2 * fl, 1/f2, and f2/f2) created near recombination 700; in addition, the second
original feature (f2) provided the lowest classification error rate during the first stage of creating
features (24.6 percent for the training set and 17.4 percent for the testing set). As a comparison,
classification error rates using only the original features are 27.2 percent for the training set and
20 percent for the testing set.
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Figure 24. Creating higher-order polynomial features to reduce classification error rate
for the vowel problem.
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When additional complexity was allowed at recombination 3,100, two additional higher-order
features (f2 * f32 and fi/fi) were created, where f3 is the first created feature stored in the previous
stage (f2 * fl) and f6 is another previously created feature (f2/fi). Using these two newly created
features and the four features used at recombination 700 results in the training set classification
error rate of 23.6 percent and the testing set classification error rate of 17.1 percent.

TABLE 20

Classification Error Rate for the Vowel Problem as New Features Are Created

Error Rate
(Percent)

Number
Condition Train Test oumFer

of Features

Original 27.2 20.0 2

After First Stage 24.6 17.4 4

After Second Stage 23.6 17.1 6

6.4 Summary

This section presented the results of using genetic search to create gradually more complicated
features after the created feature performance stabilizes. In the parallel vector problem, a reduction
of 3 percent in error rate was achieved. Genetic algorithms also reduced classification error rate for
the vowel problem. The gradual increase of complexity allows the feature creation approach to be
used on real problems. The simpler fixed complexity approach was limited because the complexity
of useful features is often not known a priori and might be too limited. Gradually increasing

complexity allows an incremental, albeit still limited, enlargement of the search space.
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7. EXEMPLAR SELECTION

7.1 Introduction

The performance of a k-nearest-neighbor classifier typically improves as more training patterns
are stored. This characteristic often makes a k-nearest-neighbor classifier impractical because both
classification time and memory requirements increase linearly with the number of training patterns
[11]. A k-nearest-neighbor classifier with many training patterns may thus need too much time or
memory to provide real-time response.

Previous approaches to reducing the classification time of nearest-neighbor classifiers include
using kd-trees and the metric-space search algorithm (AESA) [22]. Kd-trees partition the input
space so that not all training pattern distances need to be calculated. The AESA creates a look-
up table of intratraining-pattern distances that also reduces the number of distance calculations
required. Unfortunately, the benefits of these approaches diminish dramatically when the input
dimensionality is high. A better way to reduce the classification time of a k-nearest-neighbor
classifier is to reduce directly the number of training patterns stored. With fewer training patterns,
both classification time and memory requirement are reduced.

The number of exemplars stored can frequently be reduced a great deal without sacrificing
classification accuracy. For example, in Figure 23 there are actually more than 100 training patterns
all with the value of one, when only one training pattern would suffice. By carefully selecting
training patterns, the number of training patterns can often be reduced dramatically.

One sequential approach to selecting training patterns is called the condensed nearest-neighbor
classifier [6]. This approach is outlined below:

1. Start with an empty set of training exemplars.

2. Select each individual training pattern sequentially.

•3. Classify the selected training pattern using the current set of exemplar patterns.
If the pattern is classified incorrectly, keep the training pattern as an exemplar,
otherwise, discard the training pattern.

4. Repeat steps 2 and 3 until all patterns have been selected.

One problem in using this approach is that it is biased. Training patterns evaluated earlier
are more likely to be included as exemplars. An alternative approach is to use genetic algorithms to
select the whole training set simultaneously. With this approach the order of the training patterns
does not affect the selection of training patterns. Furthermore, if a given number of training
patte'rns needs to be used simultaneously in combination to improve classifier accuracy, the genetic
algorithm search procedure is more likely to find the group than a simple sequential search. This is
similar to the feature selection problem when two individually good features would not necessarily
be a good set of features.
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7.2 Methods

7.2.1 Using a Bonus to Reduce the Number of Patterns

The original feature selection and creation program was enhanced with the capability of
selecting training set patterns. Each bit in a string identified whether a particular training pattern
was used. To reduce the number of training pattcrns used, a "bonus" system similar to the one
described in section 4.2.2 was again used. The bonus was calculated according to how many patterns
were not used. A string received a bonus of one point for each pattern that it did not use. There
were two bonus policies: "only-the-best" and "bonus-above-the-threshold." With the only-the-best
policy, a bonus was only given to the training set with the highest classifier accuracy. This policy
ensured that classifier accuracy was not sacrificed to reduce the number of training patterns. With
the bonus-above-the-threshold policy, all training sets with classifier accuracy above a user-preset
threshold received bonus points. The choice between these two policies depends on the trade-off
desired between classification accuracy and number of training patterns used. In general, the bonus-
above-the-threshold policy results in a smaller number of stored exemplars but does not provide
the highest classification accuracy.

7.2.2 Using Genetic Algorithms to Select k

The number of training patterns also depends on the value k, the number of nearest neighbors
that are polled. For example, if k = 1, then a testing pattern would be classified correctly as long
as its nearest neighbor belongs in the correct class. On the other hand, if k = 7, then a testing
pattern would be correctly classified only when a majority of its nearest seven neighbors are in the
right class. As k increases, the need for training data also increases. But there are cases when it is
worthwhile to have a large k. It has been shown that with an infinite amount of training patterns,
accuracy increases as k increases [6].

A trade-off exists between classifit r accuracy and the number of training patterns required
when the value k is chosen. For a given problem, there is generally no way of determining the
proper value of k besides performing experiments. Because the choice of k affects both the number
of training patterns required and classifier accuracy, the option of using genetic algorithms to select
the value for k was added to the genetic search algorithm.

The k value was encoded with three bits; thus, k could vary from 1 to 8. These three bits
were attached to the end of each string and were separated from the other bits that identified the
usage of the training patterns. The whole combined string was manipulated as before. Besides
separate treatment in decoding, there was no differentiation between the k bits and the pattern
status bits when the string was processed.
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7.3 Experiments

7.3.1 The Vowel Problem

Exemplar selection was tested using the vowel database described in section 6.3.2. This
database was chosen because it was a real problem with complicated boundaries between classes;
it was thus more challenging to reduce the number of training patterns without sacrificing clas-
sification accuracy. Also, there were only 338 training patterns; the number of bits managed by
genetic algorithms was therefore manageable. The number of strings used in the population was
set to 500. A uniform crossover operator was used with the mutative pressure value set to 0.25
and the selective pressure value set to 0.10. The uniform crossover operator performed quite well
at this setting for the linear guessing problem (Table 11), so it was decided to try using it for this
problem. Since each run of the program took about one day of computation time, it was impossible
to perform a significant comparison between different settings of opei tors, selective pressure, and
mutative pressure. Judging from the experience gained in performing initial exploratory experi-
ments described in section 2, it is unlikely for any setting to be an order-of-magnitude better than
other settings.

Figure 25 shows the progress of genetic reduction of exemplars with k = 1 and only-the-best
policy. After the initial evaluation of the 500 strings, the number of exemplars is already reduced
to 160. Then, by recombination 20,000, the number of exemplars is reduced to 101. The training
set classification error rate decreased to 12.3 percent, while the testing set classification error rate
stayed above 24.3 percent. In previous studies 1111, best recognition accuracy was provided when
k = 8. Experiments were performed with k = 8 as shown in Figure 26. As mentioned previously, a
k-nearest-neighbor classifier with large k should require more data to perform well, so the number of
exemplars probably cannot be reduced as much. Figure 26 illustrates this point. At recombination
30,000, the number of exemplars was reduced to 147. This total is 46 more exemplars than in the
last experiment. The training set classification error rate was 14.5 percent, while the testing set
classification error rate was lower, 20.7 percent.

The other fitness policy, bonus-above-the-threshold, was also tried. With this policy, once the
performance above the threshold had been achieved, the goal of the genetic search was to reduce
the number of exemplars as much as possible. A greater reduction in exemplars should be expected.
Figure 27 illustrates the reduction of stored exemplars with the bonus-above-the-threshold policy,
k = 1, and the threshold of 80 percent. The number of stored exemplars was reduced to 43 by the
end of the experiment. Using a higher k would result in a higher value, since more exemplars are
needed to identify each input pattern correctly. As shown in Figure 28, such results were indeed
obtained with k = 8. While the classification error rate on the training set fluctuated below 20
percent, the preset threshold, the number of exemplars was steadily reduced to 79.

Section 7.2.2 described the process of using genetic algorithms to select both k and the
exemplars. Two experiments were performed using this approach, one with the only-the-best
policy and the other with the bonus-above-the-threshold policy. Figure 29 shows the result of the
experiment with the only-the-best bonus policy. At recombination 30,000, the number of exemplars
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Figure 25. Progress of genetic reduction of exemplars for the vowel problem with k = 1
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plars used.
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Figure 26. Progress of genetic reduction of exemplars for the vowel problem with k =8
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was reduced to 146, k = 7, and the training and testing classification error rate were 14.5 and 21.3
percent, respectively.

The number of exemplars was again greatly reduced by using the bonus-above-the-threshold
policy with the threshold of 80 percent. Figure 30 illustrates the search. The number of exemplars
was reduced to 63, while k = 6. The training set classification error rate of 18.9 percent stayed
barely below 20 percent as expected. The testing set classification error rate was 20.1 percent.

Figures 31 and 32 illustrate the difference in decision boundaries when the 43 stored exemplars
chosen with genetic algorithms were used instead of all 338 exemplars. The decision boundaries
in Figure 32 are smoother and generalize well with new data. On the other hand, using all 338
exemplars created decision boundaries (Figure 31) that provided perfect performance on the train-
ing patterns but performed poorly on the testing patterns (25 percent). By carefully choosing
exemplars, even using a low value of k can provide low classification error rate. Selecting a good
set of exemplars can thus allow the use of a low k, with the benefit of shorter classification time.

Table 21 summarizes the results of using genetic algorithms to select exemplars. Using k = 1
resulted in the lowest testing set accuracy. Using a larger k resulted in better and approximately
equal testing set accuracies. However, the training set performance differed according to the bonus
policy used. If only-the-best policy was used, then the training set classification error rate was
about 15 percent. With the bonus-above-the-threshold policy and a threshold of 80 percent, the
training set classification error rate was just below 20 percent. By using the bonus-above-the-
threshold policy, the number of exemplars was reduced by roughly a factor-of-two more than using
the only-the-best policy. This result suggests that the bonus-above-the-threshold is the proper
policy to use for reducing the number of exemplars.

Using genetic algorithms to selec& c resulted in classifiers that required fewer exemplars while
providing the same classification accurdcy. This result suggests that genetic algorithms can be used
to select k without problems.

Ng recently studied the effectiveness of the condensed k-nearest-neighbor classifier, described
in section 7.1, on this problem as well 114]. With k = 8, he obtained a stored exemplar set with 152
exemplars. The classification error rates on the training set and the testing set were 26.3 and 21.0
percent, respectively. The number of exemplars is much larger than the 43 exemplars obtained using
the genetic algorithm approach. Furthermore, since these 43 exemplars offered better classification
performance while using only k = 1, a k-nearest-neighbor classifier using these exemplars would
require less time due to using both fewer exemplars and a lower k value. The genetic approach, how-
ever, took two orders-of-magnitude longer than the condensed nearest-neighbor approach (19,600
versus 180 sec). For a problem where reducing the number of exemplars is important, the genetic
approach may be well worth the extra time required.
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Figure 29. Progress of genetic reduction of exemplars for the vowel problem with k = 7
(selected by genetic algorithms) and only-the-best bonus policy: (a) classification error
rate and (b) the number of exemplars used.
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Figure 30. Progress of genetic reduction of exemplars for the vowel problem with k = 6
(selected by genetic algorithms) and bonus-above-the-threshold policy: (a) classification
error rate and (b) the number of exemplars used.
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Figure 31. Decision boundaries of a nearest-neighbor classifier for the vowel problem:
k = 1 and 338 exemplars.

TABLE 21

Soimmary of Using Genetic Algorithms to Select Exemplars

Error Rate

(Percent)

Number or
k Bonus Policy Train Test Exepar

Exemplars

1 Only-the-Best 12.4 24.3 101

1 Above-the-Threshold 19.2 20.4 43

8 Only-the-Best 14.5 20.7 147

8 Above-the-Threshold 19.5 20.1 79

7 (GA) Only-the-Best 14.5 21.3 146

6 (GA) Above-the-Threshold 18.9 20.1 63
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Figure 32. Decision boundaries of a nearest-neighbor classifier for tile vowel problem:
k = 1 and 43 exemplars selected using genetic alqgrithms.

7.4 Summary

Genetic algorithms were used to reduce the number of exemplar patterns required by a k-
nearest-neighbor classifier. In experiments using a ,owel database with 338 training patterns,
genetic algorithms reduced the number of stored exemplars to 43 without significant loss of classifi-
cation performance. Such results are much better than those obtained using the simpler condensed
k-nearest-neighbor algorithms. Based on the success achieved with this problem, it is expected
that genetic algorithms can efficiently reduce the number of training patterns for other types of
problems.
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8. CONCLUSIONS

Genetic algorithms were applied to feature selection, feature creation, and exemplar selection
for various pattern recognition problems. In all cases, genetic algorithms were able to find good

solutions with far fewer evaluations than the number required by an exhaustive search. In the case
of feature selection, it was found that simpler search procedures such as sequential forward and
backward search were equally effective on low dimensionality problems while requiring much less

computation. Genetic algorithms were competitive when the dimensionality of the problem was

large, such as with the TI 46-word problem. When used for feature creation, genetic algorithms
successfully found good features that reduced the classification error rate from 18.7 to 2.7 percent

on the parallel vector problem. By increasing created feature complexity, features were found that
provided 0 percent error rate on this problem. Using genetic algorithms to reduce the number of

exemplars was also fruitful, with the number of exemplars reduced by more than a factor of eight
without substantially increasing the classification error rate for the vowel problem.

Although genetic algorithms proved useful for feature selection, feature creation, and exem-
plar reduction, this approach required long computation times. A computation time of days may
not be acceptable for some applications. However, genetic algorithms can be easily adapted to
parallel machines to reduce run times. Even single-processor machines are becoming increasingly

more powerful, making genetic algorithms more practical for feature selection and exemplar reduc-
tion. Also, genetic algorithms proved to be a good search technique that is widely applicable in
pattern classification. Compared with tailoring a special search technique for each type of searching

problem, genetic algorithms offer the benefit of simplicity and good performance on all problems.

More research is needed in quantifying the relationship between the parameters of genetic al-
gorithms and the problem size and problem type. Better measurements of population convergence
and optimality are also needed. Lastly, more experiments need to be performed on other real prob-
lems to characterize fully the effectiveness of genetic algorithms and understand their performance
compared with other search techniques.
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