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Abstract

The paper demonstrates how large-scale stochastic linear programs with re-

course can be efficiently solved by using a blending of classical Benders decomposi-

tion with a relatively new technique called importance sampling. Numerical results

of large-scale problems in the area of expansion planning of power systems and

financial planning are presented.

1. Introduction

Solutions obtained from deterministic planning models are usually unsatisfac-

tory because they fail to hedge against unfavorable events which may occur in the

future. Stochastic models address this shortcoming, but in the past have seemed to

be untractable because, even for a relatively small number of parameters, subject

to uncertainty the size of such problems can get very large. Stochastic problems

have been studied extensively in the literature since Dantzig (1955), for example

Birge (1985), Ermoliev (1983), Frauendorfer (1988), Higle and Sen (1989), Kall
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(1979), Pereira et al. (1989), Rockafellar and Wets (1989), Ruszczynski (1986),

Wets (1984) and others contributed in this area (Ermoliev and Wets (1988)). The

paper addresses a common class of stochastic models, namely the stochastic linear

programs with recourse. We discuss how decomposition techniques and importance

sampling can be applied to solve them (Dantzig and Glynn (1990), Infanger (1990)).

2. A Class of Multi-Stage Stochastic Linear Programs

Large-scale deterministic mathematical programs, used for operations and

strategic planing, often are dynamic linear programs. These problems have a stair-

case (multistage) matrix structure. In general, the size of these stochastic problems

can get extremly large because the number of scenarios grows exponentially with

the number of periods. We will, however, address a certain restricted class whose

number of scenarios grows linearly with the number of stages: The problem (whose

constraints are stated below) breaks down into two parts: a deterministic dynamic

part and a stochastic part. We call the deterministic part the master-problem. It

is a dynamic linear program with T stages. The vectors ct and bt, and the matrices

Bt- 1 and At are assumed to be known with certainty.

T T
mm Z t +Etyi
t=1 t=1

-Bt-lt-1 +At zt = bt, t = 1,...,T, Bo " 0
F X, D = d tt, t = t E t

Each stage is associated with a stochastic sub-problem. Uncertainty appears

in the recourse-matrix Ft" and in the right hand side vector d~t where wt, denotes

an outcome of the stochastic parameters in period t, with flt denoting the set of all

possible outcomes in period t. The sub-problems in each stage are assumed to be

stochastically independent. The sub-problem costs ft and the technology matrix

Dt are assumed to be deterministic parameters.
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Facility expansion planning is an example of this type of formulation. The

master-problem models the expansion of the facilities over time. Decision variables

are the capacity built and the capacity available at time t. The oub-problems model

the operation of these capacities in an uncertain environment. Take for example

the case of expansion planning of power systems: The expansion or replacement of

capacities of generators and transmission lines are determined in the master prob-

lem. The capacities at each period t are made available to the system for operation.

The subproblems model the power system operation, the optimal sceduling of the

available capacities to meet the demand for electricity. The availabilities of gener-

ators and transmission lines and the demands are uncertain and not known at the

time when the expansion decision is made.

The approach is primarily "here and now" (Dantzig and Madansky(1961))

and justified by high investment costs and long lead-times for capacity expansion.

However, as the operations subproblems are stochastically independent and only

expected operation cost rather than the state of the system after period t affects

the expansion plan (as failures of equipment get repaired, and uncertainty in the

demands are interpreted as deviations from a demand path), "here and now" is

equivalent to "wait and see". That means that the optimal decision in period

t + 1 depends only on the capital stock on hand at the start of period t + 1 and is

independent of any observed outcomes in period t, i.e. the same optimal capacity

expansion decision would be made before as after period t operations. Thus the

facility expansion plan can be laid out at the beginning for the whole planning

horizon based on the expansion costs and the expected operation costs. This permits

the multi-stage problem to be treated as if it were a two-stage problem. The first

"stage" concerns the single decision of what facility expansion will be in all future

periods without knowledge of the particular outcomes of the uncertainty parameters

in future periods. The second "stage" concerns the operations problems, where the
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recourse decisions made depend on the realizations of the stochastic parameters.

Note that for T = 1, the problem is exactly a two stage stochastic linear program

with recourse. For T __ 2 the problem is a two "stage" problem with the second

stage consisting of T independent subproblems.

3. Multidimensional Integration

The difficulty of solving large-scale stochastic problems arises from the need to

compute multiple integrals or multiple sums. The expected value of the second stage

costs in period t (we suppress the index t for this discussion), e.g. z = E(fyw) =

E(C) is an expectation of functions C(vw), w E fl, where C(v') is obtained by solv-

ing a linear problem. V (in general) is a h-dimensional random vector parameter,

e.g. V = (V,,..., V), with outcomes v' = (Vj,... ,vh) ' . For example Vi represents

the percent of generators of type i down for repair or transmission lines not operating

and vt" the observed random percent outcome. The vector v' is also denoted by v,

and p(vw) alias p(v) denote the corresponding probability. fa is the set of all possible

random events and is constructed by crossing the sets of outcomes fli, i = 1,... , h as

= fll X f12 X ... X fl . With P being the probability measure under the assumption

of independence the integral E C(V) = f C(vw)P(dw) takes the form of a multiple

integral E C(V) = f... f C(v)p(v)dv1 ... dvh, or, in case of discrete distributions,

the form of a multiple sum E C(V) = E, ... E,,, C(v)pi(vi) ... ph(vh).

In the following discussion we concentrate on discrete distributions. This is not

a restriction as the approach can be easily adapted for continuous distributions. In

practical applications all distributions can be approximated with sufficiant accuracy

by discrete ones. Even for h as small as 20 the number of terms in the multiple

sum computation gets easily out of hand and the problem is no longer practical to

solve by direct summation. This is especially true because function avaluations are

computationally expensive since each term in the multiple sum requires the solution
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of a linear program.

4. Importance Sampling

Monte Carlo Methods are recommended to compute multiple integrals or mul-

tiple sums for higher h-dimensional sample spaces (Davis and Rabinowitz (1984),

Glynn and Iglehart (1989)). Suppose C' = C(vu) are independent random variates

of vW, - 1,..., n with expectation z, where n is the sample size. An unbiased
estimator of z with variance a '- 2/n - var(C(V) ) is

= (1/n) E C'.
W=1

Note that the standard error decreases with n -0 -5 and the convergence rate of

i to z is independent of the dimension of the sample space h. We rewrite z =

SC(v')p(v") as

q(v"')Went

by introducing a new probability mass function q(vd) and we obtain a new estimator

of z
1 n C(v,)p(V,~)1

by sampling from q(v"). The variance of i is given by

vari)= z (C(VWIP(vw) - )2 qv
var() n WE (v()) qv

C) C(v')v(v') would lead to var(g) = 0, which means one could

get a perfect estimate of the multiple sum from only one estimation. Practically

however, this is useless since to compute q(vW') we have to know z = EW ,l CwP(vw),

which we eventually want to compute. The result however helps to derive a heuris-

tic for choosing q. It should be proportional to the product C(vW)p(vW) and should

have a form that can be integrated easily. Thus a function r(v") ; C(v') is sought,
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which can be integrated with less costs than C(v"'). Additive and multiplicative

(in the components of the stochastic vector v) approximation functions and combi-

nations of these are potential candidates for our approximations. In particular, we

have been getting good results using C(V) st " Ci(Vi). We compute q as

q(v' ) seV')('
E,=, Elm C(vW)

In this case one has to compute only h 1-dimensional sums instead of 1 h-dimensional

sum. The variance reduction depends on how well the approximation function fits

the original cost function. If the original cost function has the property of additivity

(seperability) the multiple sum can be computed exactly by h 1-dimensional sums.

If the addidive model is a bad approximation of the cost function the only "price"

that has to be paid is increasing the size of samples. If the observed variance is too

high using a starting sample size the size of sample is adjusted higher. Actually

we use a variant of the addidive approximation function. By introducing C(T),

the costs of a base case, we make the model more sensitive to the impact of the

stochastic parameters v.

h

r(v) = C( r) + ZC(ri, ... , r,_1, V, ,+ .... rh) - C(T)

We denote this as a marginal cost model. r can be any arbitrary chosen point of

the set of values vi, i = 1,..., h. For example we choose ri as that outcome of V'

which leads to the lowest costs, ceteris paribus.

5. Benders Decomposition

We decompose the 2-stage multi-period stochastic linear problem by applying

Benders (1962) decomposition. (Van Slyke, Wets (1969)):

6



The master problem:

T T

A =min~ct Xt +E e
t1-- t=1

-Bt-lzt-, + At xt =bt, t= 1,...,T, Bo = 0-G't xt + 'a > gt', t = 1,...., T,I = 1, ... , L
Zt > 0

where the latter constraints, called cuts, are initially absent but are inserted in

later iterations. The master problem is optimized to obtain an approximate optimal

feasible solution Zt = il that is used as input to the subproblems.

The sub-problems for wt in period t:

zt'l(i4) = min ftyt'

irt((') : Dty'"= dt'+ t ' , WoEflt,t= 1,...,T

yt" 0 0, 1 given,

where rt" = ,r"(g) are dual multipliers corresponding to the constraints and

z' = 4'(il) is the value of the objective as functions of (i). These are used to

generate the next cut for the master.

The cuts: for t = 1, 2,..., T,

G' = E(7rw'BQw), gt = E(irwt'd), zt(i) = E(z'), r =" I - ( )

Lower (LBL) and upper (UBL) bounds to the problem:

T

LBL _ 4, UBL = min{UBL-I +(ct& + zt(&4))), UBO =o
t=1

i is the optimal solution of the master problem in iteration 1, iW'C(i) is the

optimal dual solution of subproblem wt, given :i. Note that if the subproblems are

infeasible, a slightly different definition of the cut is used. a = 0 corresponds to

feasibility cuts and a = 1 to optimality cuts. Solving the master problem in iteration

1 we obtain a trial solution il which we pass to the subproblems. By solving a
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sample of sub-problems wt,wt E Nt,t = 1,...,T, according to the importance

sampling scheme we compute estimates of the second stage costs zt and estimates

of the gradients GI and the right hand sides gt of the cuts. Cuts represent rn outer

linearization of the second stage costs expressed in first stage decision variables and

Gt. Note that there is one cut for each period t. The cuts are added to the master

problem and the master problem is solved again. The objective function value of the

master problem gives a lower bound estimate and the total expected costs of a trial

solution it,t = 1,... ,T gives an upper bound estimate to the objective function

value of the problem. If the lower and the upper bound are sufficiently close, which

is tested by a Student-t test, the problem is considered to be solved. Lower and

upper bounds can be seen as a sum of i.i.d. random terms which for sample sizes

of 30 or more can be assumed normally distributed with known (derived from the

estimation process) variances. A 95% confidence intervall of the optimal solution

is computed. See Dantzig and Glynn(1990) and Infanger(1990) for details of the

algorithm.

6. Numerical Results

This method for solving large-scale two-stage stochastic linear programs with

recourse has been implemented. The code of MINOS (Murtagh and Saunders

(1983)) has been adapted for this purpose as a subroutine for solving both the

master-problem and the sub-problems. When solving large numbers of sub-problems

it is important for the performance of the algorithm to take advantage of good start-

ing bases. Computation time can be reduced dramatically by solving first an ex-

pected value problem by replacing the stochastic parameters by their expectations.

The expected value solution of the resulting deterministic problem is then used as a

starting point for the stochastic solution. Additionally we keep cuts obtained from

the expected value problem to initially guide the algorithm. It can be shown that
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cuts obtained from the expected value problem are valid for the stochastic problem.

They are "weak" and get repaced as the algorithm proceeds. The code uses sparce

matrix techniques and efficient data structures for handling large-scale problems.

Computational results of the large scale test problems are represented in Ta-

ble 1. Besides the solution of the stochastic problems, the results from solving the

expected value problems are also reported. We also report on the estimated ex-

pected costs if the expected value solution is used as the decision in a stochastic

environment. The objective function value of the true stochastic solution has to lie

between the minimum value of objective function of the deterministic problem and

the expected costs of the expected value solution.

Expansion planning of multi-area power systems

WRPM is a multi-area capacity expansion planning problem for the western

USA and Canada. The model is very detailed and covers 6 regions, 3 demand

blocks, 2 seasons, and several kinds of generation and transmission technologies.

The objective is to determine optimum discounted least cost levels of generation

and transmission facilities for each region of the system over time. The model min-

imizes the total discounted costs of supplying electricity (investment and operating

costs) to meet the exogenously given demand subject to expansion and operating

constraints. A description of the model can be found in Dantzig et. al. (1989). In

the stochastic version of the model the availabilities of generators and transmission

lines and demands are subject to uncertainty. There are 13 stochastic parame-

ters per time period (8 stochastic availabilities of generators and transmission lines

and 5 uncertain demands) with discrete distributions with 3 or 4 outcomes. The

model covers a time horizon of 3 future periods of 10 years each. Thus the total

number of stochastic parameters is 39. The operating sub-problems of each period

are stochastically independent. The number of universe scenarios is larger than

5.106 per period. In the deterministic equivalent formulation the problem if it were
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possible to state it would have more than 4.5 billion constraints.

The stochastic WRPM is solved by using a sample size of 100 per period. It

takes 129 iterations to obtain the expected value solution and additional 68 it-

erations to compute the stochastic solution. The objective function value of the

stochastic solution was estimated as 199017.4 with an amazingly small 95% confi-

dence intervall of 0.029% on the left side and 0.067% on the right side. Thus the

optimal solution lies with 95% confidence between 198959.3 < z* < 199164.1. The

expected costs of the expected value solution (202590.3) and the objective function

value of the stochastic solution differ significantly from the expected costs of the

optimal stochastic solution. The problem was solved in 687 minutes on a Toshiba

T5200 laptop personal computer. This time includes time to solve 26295 linear

sub-problems of the size of 302 rows and 289 columns and 197 master problems.

Multi-period Portfolio Management

LP42 is a portfolio management test-problem, formulated as a network prob-

lem. It is a modified version of test-problems found in Mulvey and Vladimirou

(1989). The problem is to select a portfolio which maximizes expected returns in

future periods taking into account the possibility of revising the portfolio in each

period. There are also transaction costs and bounds on the holdings and turnovers.

The test problem covers a planning horizon of four future periods. The returns

of the stocks in the four future periods are assumed to be independent stochastic

parameters, discretely distributed with 3 outcomes each; this formulation differs

from that of Mulvey and Vladimirou who restricted the problem size by looking

at a certain number of preselected scenarios. Like in Mulvey and Vladimirou the

multi-period problem is viewed as a 2-stage problem, where all future periods are in-

cluded in the second stage. With 13 stocks with uncertain returns, the problem has

52 stochastic parameters. The universe number of scenarios 6.1024 is very large, so

that the, deterministic equivalent formulation of the problem if expressed explicitely
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would have more than 1.9- 1027 rows. Here, the stochastic parmeters appear in

the B-matrix as well as in the D-matrix. In this case cuts from the expected value

problem are not valid for the stochastic problem. The expected value problem and

the stochastic problem are solved seperately. A sample size of 600 was chosen. The

solution (objective function value 2.329) is obtained in 4 iterations. The 95% confi-

dence intervall is very small given the large number of stochastic parameters, namely

0.536% on the left side and 0.767% on the right side. Thus with 95% confidence

the objective function value of the optimal solution lies within 2.316 < z* < 2.347.

The expected costs of the expected value solution is significantly different from the

expected costs of the stochastic solution.

7. Conclusion

We have demonstrated that our approach using Benders decomposition and

importance sampling is capable of solving large-scale problems of planning under

uncertainty. Numerical results of large problems with numerous stochastic param-

eters indicate that very accurate solutions of the problems can be obtained using

only small sample sizes.
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Table 1: Large-scale problems: computational results

WRPM LP42

# periods 3 1

# iter stoch. (exp. val.) 197 (129) 4 (6)
sample size (per period) 100 600
exp. val. solution, obj 196471.4 1.611
exp. val. solution, exp. cost 202590.3 2.334
stochastic solution, obj 199017.4 2.329
est. conf. left % 0.0292 0.536

conf. right % 0.067 0.767

solution time (min) 687 209

Problem Size
Master rows 128 49

columns 226 83
nonzeros 413 133

Sub rows 302 178
columns 289 309
nonzeros 866 570

# stoch. parameters (total) 39 52
# univ. scen. (per period) 5 106 6. 1024
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