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SUMMARY To opt to use geometrical methods to design actual

nonlinear systems, one must, first of all, resolve the problems of the

complexity of transformations, the great amount of calculations, and
other similar problems. Because of this, simplifying the design

process is extremely important. In this article, based on

transformational ideas, we have obtained two methods and used them in

the design of the U.S. F-8 Crusader fighter plane's vertical control

vystem. The :ic:t__ liLs clearly demonstrate that the new
control laws are obviously superior to the original nonlinear
optimization control laws. Moreover, it is possible to guarantee that
aircraft can make high angle attack flights.

Key Words transformation, nonlinear system, feedback design

I. INTRODUCTION

Do to the excellence of linear system design toolS; at the
present time, relevent nonlinear systems design theory depends ,)

help in every case on the design methods of linear syste.ms. in the
th,,.r-y of diffecential eonetry, trnsformation methods ace based on
this idea. The key to this is nothing other than--in looking for a

type of tcansforn--taking the ociginal system transform t) b
system or quasiL[.ear system in a different space. Afr ,

it is possible, in the new space, to opt for the u-; )f li-ire s's.;ei

iasi an tools to tmir'y out the design. Because almost all
transformations c>'l , -- :oJniel -s differential homeomorphisms, and
differential homeomorphism guarantees that th st-icliral

" of systems befoce and after transformations is
i1'art bH, ;in this way,going again through ,reverse transformations,
one obtains the o i iial systen control laws which can cause the

o' iginal systen pol points not to follow the operating points in

their changes. jifficulty with this method is in getting th.-
transformatitnal relationships. Actual or practical trans[ormation

f , ; ' .;n ral have a bae transformation and a feedback

13 ,r-natJon. Trans fur-nLi,. methods can, thus. be of various types



and kinds.

There are those systems whose nonlinear natures are due to an

inappropriate selection of base. Naturally, it is possible to opt for

the use of overall transformations, taking them and changing them into

standard forms of integral patterns that can be controlled. Hunt and

others in Rtference (1), on the basis of solutions to linear partial

differential equations, gave out sufficient conditions for cverall

transformations as well as general methods of constructing them.
Polynumeric actual or real systemns are only capable of partial

transformation into linear systems. Su R., in Reference (2), proved

or confirmed the sufficient conditions for the existence of partial

IiF ecential homeomorphisms. As far as the size of the partial domain

for this origin point is concerned, there still is no conclusion.

Pur thermo,-e, the genef al run of sysLens are only capable of
transforming into linear systems within a tangent space. In this

regard, there is Baumann along with others who brought up Ctende4
linearization 3) and Reboulet and others who brought up

B166
(4)

pgeudolinearization 4 . The two methods are basically in agreement

with each other. F\,en iV on g.ts the closed ring characteristic
values set up when the closed ring operations are at different

equilibrium points to be invariable, because that is so, on. ivoids

point to point linearization.

F:-om Reference (5), it is possible to see that general forms of
high o,,r system transformation relationships are always extremely

difficult to obtain. There are only block triangular form systems

that are an exception. Because of this, designers, when designing

utLoLic aircaiL control systems, always take flight equations and

do simplification processing in order to obtain block triangu]ar

forms. However, this necessarily carries wihh it a certain error.

What follows deals with investigations into the F-8 fighter plane's

vertical control system and how transfo.-nations were selecteJ! fo.- use

to arrive at control rules.
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II. THE SET UP OF VERTICAL MOVEMENT EQUATIONS FOR AIRCRAFT

Modern generations of high performance aircraft normally fly

within large envelopes or ranges, and nonlinear factors severly impact

the dynmnic cesponses of systems. A common example is high angle of

attack flight in fighter plancs. Their lift coefficients are

certainly not capable of using linear angle of attack functions for

their precise expression. At high angular velocities of roll and turn

i),linear inertial combinations lead to loss of stability. T- order

to improve dynamic response, it is necessary, on the basis of

nonlinear models, to carry forward the design work.

In Peferencc 6, one takes lift coefficients and uses third degree

angle c)f attack functions to simulate actual lift curves. Cosine

functions take the initial two terms of a Taylor expansion, at the

sane time taking into consideration al.1 the many nonlinear factors,
under c)7-iitions in which aircraft have no acceleration, the Mach

nurmer is 0.85, the altitude of flight is 9000m, and the condition is

level flight. On- gn; t---ugh a trimning down process and obtains

.i-,Lions for the vertical movement of the F-8 fighter plane (let the

, 1LA. ' a =' let the pitch anqle =X2 let the pitch

voocity 3 :'3 aJ, lA th 2die deviation angle be 6 .
~e

[il jf-0.77xi+O.47x:3+3.846xv,-0.019x:-4Xls-o.088xixa+xs 
*

-4.208x,-0.47x-3.564x!-0.396x, (1)

+ -0.215
+0 8 ,
,-20.967J

In Refr.rnce (6), in consideration of the linear optimization

control law ( 6 = )

M,= -0.053j,+0.5 1j+ 0.521x,
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When the initial perturbation value for the angle of attack

Z,.43rd(21 .5') the system loses stability. Because of this,

one finds the third order form for nonlinear optimization control

'=/,'+ 0.04,-O.048x,9,+ O.374s --O.312xs (2)

(2) This equation comes from solving Hamilton-Jacobi equations.

The equation in question can only guarantee I (V is the Lyapunov

function) in its negative specification. It does not guarantee the

positive specification of V. Because this is true, when the initial

perturbation value c0>0.48rad(27.5°), (1) is still unstable. Below,

we opt for the use of a new method of transformation to solve for even

more satisfactory results.

III. TWO TYPES OF TRANSFORMATION METHODS

1. Method 1

Consider the system

(3)i(t) =f f((1)) + g(s(U)) ."M1

In this, analyzing f, g(Re T the domain or rejiorn adjacent to the

origin, f(0)=0, It cdn be seen that f and g make the vector field e'

•ncluding the origin open up on R . Our objective is to search for

tho linear independent transfornation T(x):
R.-R" that will take system (3) and change it into the type of

integral form of quasicontrollable standard form. B167

t' T 0 (4)
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In this, Tn+l should be the arbitrary function TI,...,Tn It

is easy to see that.

O= T ST OTI*" X = - I + -'

Taking the equation above and comparing it with (4), it is possible to get

=. , f -= UTr,,$f i-1,2,-,%-1

-- -g = dT,g) =0
ax

Therefore, one has

(dT,,g)= (d(dT, f) ,g)

- - -(ad~f,g) = 0

0T 2

(dT.,g)- (-1)'- "- -(ad'"f,g)=(

In this (adi  f,g)=<<ad if,g>,g>

Let the controllable array 4 = [g,(ad f,g),...,(ad n-f,g)].

Then, equation (5) can be generalized to be

OT,- O= [0, ,.0, 1)
Ox

If F is nonsingular; select d- 's final line. Assume it is

q(x) (q(x) is a lxn dimensional vector quantity). Then, it is

possible to nbtain
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8T 1/Oxfq(x) (6)

If q(x) is a gradient field, then (6) is a soluble equation. If

this is not the case, then, normally, it is possible to place a

function c(X, causing (Z)=e(z). q(x) to be a g-a.ient

field. Then, from OT,1/Ox=(x) it is possible to solve foc

T1 (x). At this time, system (3) transforms to become like the form

below

t: W
T, T..I (-010W'e*

T.. n t';is ,T, t . ..nd US ,' 0! SYS y tc- !) ic r- f irSt

n LU solv'e the controllable ar-ay d

,d=rf,(ad'f,g), (ad'f,g) )

In this

(ad1f,g) = -Of/ 8x.g

(ad'f , g)f- -O-xP "/fk-)6
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After that, it is still necessary to solve for i-' . Also, solving

equation (6), the amount of calculations can be imagined. In a practical

study of system(l): the influence of 0 on the system is only -0.019x 2

of the a signal. Due to t=- fact that 0 is a slowly transfor niri

modality, its connection with and influence on the quickly chanyinj

modalities of G anl j are very small. Because this is the case, we

would be well served if we first carried out designing of the interior

ri,,j -omposed of the quickly changing modalities

r .877x 14-O.47xz +3.846x!-x~xs-.O88jX3+XS
I, - 4.208X,-O.396 1-O.47x' -3.564xz .

+ [-20.96718

f]+.215
=K/, I+ -~~ b (7)
L f, .- 20.967)

System (7) 's Jacob array or matrix is

a! _-0.877 +0.94x 1 + 11.538x,-2xx,-0.O88x, + 0.088X1-x ,
F Z - - L-4.208-0.94z -1  0.7x' -0.396

LetF F,, F12= LFjj Fz, J

af ra,(z) -(a"g)- -x- g =La,(,o

In this a,(x) 0.215F,,+20.967F,2, a,(x)=0.215F,+20.967Fz,

Solv'inj d 1 -3 final line, one obtains

20.967a1(x)-0.215a,(x) (20.9670.215J

Taking (ix n 2.967 -1 x ) -0 21 5a 2( x)
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it is possible to obtain T =20.967 x-0.215x2

Be caIuse

OT

T, = (dr f) If- = -=20.967f,-O. 215f,

T, (20.967F,,-0.215F,i) k + (20,967F,,- 0. 21 5F,,)il

From T 2 F it is possible to obtain

T,- (20.967F,,-0.215F,,)f, + (20.967F21-0.215F2)fI

Since ti.is is true, system (7) 's status feedback rule is

a,= (-biT,-bjTz-Ts)/[- (%) ]

= (b,T, + bT, + T,)/a(x) W )

I' t h , -I s ; ,, i c .n' , !I j " 11tf , 1x] t it e -" n .: ] u~ t o n

- :-nts s, that is, when 4, a nc , , re

cIoseJ nr,c: po'e poi:.ts, one has (s-e,)(s-e 2) =s'+b s +b..

2. '1e th)J 2

Cons ider the sec 3nd o-,r i I f ine nonl inear system

AZ= r,(z) 9 X UJ

It is aIwIys cap bli e ) t1 f-f ,' PA I rig I o f i - bi) 1 d,(19 ngu iAr o L .

, a i -. i th. j s ,.ri " i t 1 a t ion , 2 h n jl (x ) ( )763

S , ( 9 in b, w itt.in t h.
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glil 02 'g'-flg I u 1 ) B 69
gJ L (0) 102-

Let i1 =g 2'1-g1 ' 2. Then, equation (10) can be written to become a

block triangle form. As far as its overall or global transformation is

7oncerned, it is j-)osible to lot

i W1. 912

Thrn rl " 1="f g d' l-Jgdx1

0 0

RT . 2 Tl 10 Id 2 - i

h f or e 2=P(X)- 1+q(x)ox 2

In t~ii

-- + fl / - .-l ag,

ax, 012 O all

If one writes it to become a controlli!le standard form of

expression, then one has

T3(x) =P () .f, + q(x) .f,

9((X)g, + q(x)"g)



In the same way, it is possible to ootain the status feedback rule or

law

f one takes system (7) and substitutes into the various

equations discussed above, it is possible to see that equation (11)

and equation (8) are of the same type.

IV. VERTICAL FEEDBACK CONTROL LAWS AND SIMULATION RESULTS

As far as system (1) is concerned, due to the fact that, after

the placement of the pole points of small sealed rings, there is no

relationship with the operating points, as a result, it is necessary

to stabilize the integral signal 6 of 0 - It is orily necessary,

after the control law of small sealed rings to attach a linear

feedback K(unclear) e . As a -esult of this, one obtains the

vprtical control law

e,= (bT, + b2T 2 + T,)/u(x) + Ko (12)

In this T,, T 2, T 3 , and d(x) have definitions which can be

seen in the sections .bovu.

If one takes the interior ring pole points nd positions th-an a"

(-2,0) and (-4,0), and, again, on the basis of the quality of actuil

and simulated responses, selects K (Onclear) =0.1, and, below, if on.

t< cu, tro.. .lw (2' and a ofrlo law (12) and nakes use of them to

make a cormpolete comparison of the responses after the Original system,

the results of simnulations are as shown below:

1. When the original perturbation ao =0.25rAd(14.3P), th2

responses of the two angles of attack a, are closely in line with

each other, however, due to the fact that the initial rudder offset

angles were not the sane, control law (12) was slightly better (see

Fig.1).
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2. Whn n ac =O.47rad(270 ), the response of control iaw (12)

is clearly superior to control law (2) (see Fig.2).

Fig.l

A Compar ison of Responses When a' =0.-25 rad (1) Dotted line control

Law (2) (2) Solid line control law(12)

0.2 .

A Comparison of Responses When as =0.47rad (1) Dotted line

Control Law (2) (2) Solid line Control Law (12)

3. After a,. >O.47rad, control law (2) begins to cause systems B170

to divergje. Howeve!r, straiqht up to the time when

ao- -O.6rad(31.4') the response of control law (12) is still good

(see Fig.3).



Fig.3 Responses of Control Law (12) When as =0.6rad

Fig.4 A CTisnof Rudd-r~ Offset Angle Response? Curves (Curve 1
tep' sntsL~ ddir-offset forc control law (12) when a. =O.47rad.

Cujrv, 2 recnre-zrts LhH. rudd-.r' offset for -Dnt-ol law (2) c
a3= .4 ra' Curve 3 represents the rudder offset for control law

(12 ) whe n as =0.6rad)

V. SEVERAL POINTS IN CON'CLUSION

This article, based on the transformation thinking in

diffoontil .)netry, designed for the vertical control systens of

the F-8 f ighLer~ plane no :nl invar-C~lLtr contfol lso rls

1.2



results of simulations clearly show that these control ldws are

capable of guaranteeing that the aircraft can fly at high angles of

attack. The dynamic qualities are much better than those of the

original nonlinear optimization controls. A practical analysis of the

rudder offset responses in Fig.4 is capable of showing one that, when

angles of attack are relatively large, due to 0 CL/ ea<O (CL is

the lift coefficient), there are problems with the aircraft fighting

the controls. However , control law (12) still actualizes feedback to

defeat this before it happens, and, as a result, it avoids this

fighting of the controls.

Speaking in terms of aircraft in general, the vertical direction

is due to the seperate characteristics of 0 and 0. , as well as 0 .

Because this is true, the two methods that have been discussed above

both are feasible. As far as high order nonlinear systems are

concerned, if it is possible to set up laws to take them and transform

them into block triangular forms, then, both of the two methods are

made simpler and easier.
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