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GRAPHICS DISCLAIMER
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TITLE: APPLICATION OF TRANSFORMATIONAL 1DEAS TO
AUTOMATIC FLIGHT CONTROL DESIGN

AUTHOR: Li Wenhua and Liang Feng
SUMMARY To opt to use geometrical methods to design actual

nonlinear systems, one must, first of all, resolve the problems of the
complexity of transformations, the great amount of calculations, and
other similar problems. Because of this, simplifying the design
brocess is extremely important. In this article, based on
transformational ideas, we have obtained two methods and used them in
the design of the U.S. F-8 Crusader fighter plane's vertical control
System. The simulaticn ceoolts clearly demonstrate that the new
control laws are obviously superior to the original nonlinear
optimization control laws. Moreover, it is possible to guarantee that
aircraft can make high angle attack flights.

Key Words transformation, nonlinear system, feedback design

I. INTRODUCTION

Do to the excellence of linear system design toois; at the
present time, relevent nonlinear systems design theory depends 7>
help in every case on the design methods of linear systems. 1n the
thmory of differential jeometry, transformation methods are bassd on
this idea. The key to this is nothing other than--in looking for a
type of transform--taking the original system transform t> b2 3 1i12:°

b RSN
)

system or guasilinear system in a different space. After d5ia, Laaxl;
it is possible, in the new space, to opt for the us> >f 1inz2ir sy3ten
J2s5i3n tools to carcy out the design. Because almost all
tran;formations a1 b 7 2rognized as differential homeomorphisms, and
differential homeomorphism guarantees that thz st-iclLural
“teacteristics of systems before and after transformations is
invariable, 1in this way,going again through ~<2averse transformations,
one obtains the o~ijinal sSystea control laws which can cause the
o-iginal system pole points not to follow the operating points in
their changes. Th- difficulty with this method is in getting the
transformational relationships. Actual or practical transformation
fooas general have a base transformation and a feedback

. arious bes
i~ asSormation. Transformition metheds can, thus. be of varia 157
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and kinds.

There are those systems whose nonlinear natures are due to an
inappropriate selection of base. Naturally, it is possible to opt for
the use of overall transformations, taking them and changing them into
standard forms of integral patterns that can be controlled. Hunt and
others in Reference (1), on the basis of solutions to linear partial
differential equations, gave out sufficient conditions for overall
transformations as well as general methods of constructing them.
Polynumeric actual or real systems are only capable of partial
transformation into linear systems. Su R., in Reference (2), proved
or confirmed the sufficient conditions for the existence of partial
iiff2cential homeomorphisms. As far as the size of the partial domain
for this origin point is concerned, there still is no conclusion.
furthermore, the2 genecal run of systeas are only capable of
transforming into linear systems within a tangent space. In this
regard, there is Baumann along with others who brought up extended
linearization 3 and Reboulet and others who brought up

Blé6é
pseudolinearization(4). The two methods are basically in agreement
with each other. FREven {f on: g2ts the closed ring characteristic
values set up when the closed ring operations are at different
equilibrium points to be invariable, because th:t is so, on- svoids

point to point linearizatian.

From Reference (5), it is possible to see that general forms cof
high order system transformation relationships are always extremely
difficult to obtain. There are only block triangular form systems
that are an exception. Because of this, designers, when designing
sutonatic aircrali control systems, always take flight equations and
do simplification processing in order to obtain block triangular
forms. However, this necessarily carries with it a certain error.
Anat follows deals with investigations into the F-8 fighter plane's
vertical control system and how transfo-mations were selected fo- use

to arrive at control rules.




I1I. THE SET UP OF VERT1CAL MOVEMENT EQUATIONS FOR AIRCRAFT

Modern generations of high performance aircraft normally fly
within large envelopes or ranges, and nonlinear factors severly impact
the dynamic cesponses of systems. A common example is high angle of
attack flignt in fighter plancs. Their lift coefficients are
certainly not capable of usiny linear angle of attack functions for
their precise expression. At high angular velocities of rolland turn
noalinear inertial combinations lead to loss of stability. Tn order
to improve dynamic response, it is necessary, on the basis of
nonlinear models, to carry forward the design work.

In Peferencc 6, one takes lift coefficients and uses third degree
angle of attack functions to simulate actual 1lift curves. Cosine
functions take the initial two terms of a Taylor expansion, at the
same time taking into consideration all the many nonlinear factors,
uander conditions in which aircraft have no acceleration, the Mach
number 1is 0.85, the altitude of flight is 9000m, and the condition is
level flight., On=> go>s th-o>ugh a trimning down process and obtains
~juations for the vertical movement of the F~8 fighter plane (let the
le ol aliach a X let the pitch angle v =X ,; let the pitch

velocity 8 =uv3r 213, 1et the ~adder deviation anjle be ¢ e).

RS
)

% —0.877x, +0.47x} +3.846x} —0.019%] —x}2,—0.088%,%, + X,

X = ED)

Xy «—4.208x,—0.47x) —3.564x} —0.396x, (1)
—0,215

. + 0 3,
—20.967

In Refernce (6), in consideration of the linear optimization

control law (& = y O):

Hy= —0.053%, + 0.5%,+ 0.521%,




When the initial perturbation value for the angle of attack
@.>-0.43rad(21.5")  the system loses stability. Because of this,

one finds the third order form for nonlinear optimization control

B=r,40,04x) —0,048%,%;,+0.374%} —0.312x}x, (2)

(2) This equation comes from solving Hamilton-Jacobi equations.
The equation in question can only guarantee ¢ (V is the Lyapunov
function) in its negative specification. It does not guarantee the
positive specification of V. Because this is true, when the initial
perturbation value a°>0.48rad(27.§3), (1) is still unstable. Below,
we opt for the use of a new method of transformation to solve for even

more satisfactory results.

III. TWO TYPES OF TRANSFORMATION METHODS

1. Method 1
Consider the system

(3)
()= f(x(8)) + g(x(8)) +u(4)

In this, analyziny f, g¢éR* 1 the domain or rejion adjacent to the
origin, f()=0, It can be seen that f and g make the vector field e*

i1cluding the origin open up on R ¥ . Our objective is to search for

the linear independent transformation T(x):

R*—R- that will take system (3) and change it into the type of
integral form of quasicontrollable standard form. ol6a
T, T, 0 .
j:! = 2;. + 9 [ ( )
i H
Tl T.QI l




In this, Tn+1 should be the arbitrary function Tl""’Tn' It

is easy to see that.

8T
o

Taking the equation above and comparing it with (4), it is possible to get

T=Zlf=@l ) i=1,2,m8-1

aT,g— (dThg)=0 $=1,2y,m—1

Therefore, one has

(4T3, 0= @@T, ),

-—-a—jitad‘/.g) =0
6T
@l @ = (=D 2 ’d' :f,8)=0 (5)
@Ta 0 = «—1)"8T’(¢d"‘f g)=1

In this (ad1 f,g)=<<ad1f,g>,g>
-1
Let the controllables array £ = [g,(adlf,g),...,(adn f,g)l.

Then, equation (5) can be generalized to be

oT,
-a—x-l £0,0,°°,0,1]

If & is nonsingular; select «°' 's final line. Assume it is
q{x) (q(x) is a lxn dimensional vector quantity). Then, it is

possible to obtain




T /0x=¢(x) (6)

If q(x) is a gradient field, then (6) is a soluble equation. If
this is not the case, then, normally, it is possible to place a
function JEIE causing ¢ =e(x). q(x) to be a gralient
field. Then, from \8T,/ox=§ (%) it is possible to solve for

Tl(x). At this time, system (3) transforms to become like the form

below

T T, ¢

@.=[%]+[ 0 ]«

To! ‘Tl Y=nrrem

Tivin, wnis mothol and usiag I8 291 systom (1), ic is first
n-cessa y Lo solve the controllable ar-ay «
1=f_g,(ad'f,g). (ﬂd’/ng))

In this

(ad'f,g)=—08f/o%¢
. faf \?
i f, =20, (2L)

ox
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o Also, solving

After that, it is still necessary to solve for £
equation (6), the amount of calculations can be imagined. 1In a practical
study of system(l): the influence of "¢ on the system Is only —0.0lei
of the o signal. Due to th- fact that ¢ is a slowly transforaing
modality, its connection with and influence on the quickly changiny
modalities of & and d are very small. Because this is the case, we
would be well served if we first carried out designing of the interior

ring composed of the quickly changing modalities

[i,] [—0.877::, +0.475) +3.846x) —x1x,—0,088%,%,+ %4 ]
=
% —4,208%,—0,396%,—0,47%} —3.564%} -

%
—0.215
+[ Je.
—20.567

LAY

~1

System (7) 's Jaccb array or rmatrix is

Fe 8f (—0.877+0.94x,+11.538x! —2x,%,— 0,088z, +0.088x,—x! ]
0%  (-4.208—-0.94%,—10,7x! —0.396

Let F={F“ F”\’
Fy, FyJ

\ af ra(z) 3
(adl vE)= ——7— =

fg 6x g La’(‘)J

In this _
a,(x)=0.215F, +20.967F 1, @:(%)=0,215F;, +20.967F,

. -1 . . , .
Solving & 's final line, one obtains

1

Tak1ing f(x\—*S.).Q()'/"a](x)—0.215a2(x)
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it i5 possible to obtain Tl=20.967x1—0.215x2

Because

8T,
i1

Ty=(20.967F,;—0,215F,) %, + (20.967F;,—0,215F 1) %,

T)=(dT|)j)= f=20o967f1—01215fl

»

From T2, it is possible to obtain

Ty=(20.967F,, —0.213F,) fi+ (20.967F;, —0.215F1) /1

Since tris 1s true, system (7)'s status feedback rule is

3,=( -5T, =5,;T,—Ts)/(—0o(%)]

= (B,T,+ 5T, +Ty)/o(x) (3)
TMoEALs, Ly oani b oare Close oA Lype multlte~m -z 3juation
CRgt b L an s sy ffisi-nts, that 1s, when 4 and i are
closed rirc pcie points, one has (s—e)(s—e)=s+bs +b.,
2. “42thod 2
Consider the second o der affine nonlinear systen
ri.J_r/.(z) h{g.(s)]“
L*x L/x(‘)J £:1(%) (9)

It is alwiys capable of traasforping inio a block Leidaguiar one.
Recals -, in Lhe most gene-al situation, when gl(x)~32(\)#0,

cration (9) an be written b be




[gti;z.—:li' }z[/lg’f;—g{:gl]{g-i. ]“ (10) e

Let i.=gzil—gli2. Then, eju=tion (10) can be written to become a
block triangle form. As far as its overall or global transformation is

concerned, it is possible to 1et

T179 X179 1%

n ] .
Th“;n’ Tl=j- gldxl —j g,dx,

0 0
B2canse TZ:T1:f192_5231
ther=fore T2=p(x)~xl+q(x)ex2
In tni=

: ag
p(x)=af‘ g+ f3L P—f—gx—/s—afj

?
0%, dx, 9z,

af, ogr _ofs .08
9 =G0 6t [z, ~om & 1,

If one writes it to become a controllable standard form of

expressicn, then one has

Tyx)=p(x)+ [+ q(x)+ [
9(x)=—(p(x) g, +q(2)g)




In the same way, it is possitle to opbtain the status feedback rule or
law ‘

“=(—blTl—bITl—T’)/(—¢(x)) ( 11)

.f one takes system (7) and substitutes into the various
equations discussed above, it is possible to see that eguation (11)
and equation (8) are of the same type.

1v. VERTICAL FEEDBACK CONTROL LAWS AND SIMULATION RESULTS

As far as system (1) is concerned, due to the fact that, after
the placement of the pole points of small sealed rings, there is no
relationship with the operating points, as a result, it is necessary
to stabilize the integral signal 9 of ¢ . It is only necessary,
after the control law of small sealed rings to attach a linear
feedback ¥ J . As a result of this, one obtains the

(unclear)
vertical control law

d,=(b1T|+b2Tz+T:)/d(x)+K4l’ (12)

In this Tl’ T2, T3, and e(x) have definitions which can be
seen in the sections above.

If one takes the interior ring pole points .nd positions th2mn at
(-2,0) and (-4,0), and, again, on the basis of the gquality of actual

and simulated responses, sclects K( =0.1, and, below, if one

unclear)
tak2s coarrol law (2) and coptrol iaw (12) and nakes use of them to
make a complete comparison of the respons:2s after the original system,
the results of simulations are as shown below:

1. whan the original perturbation @, =0.25rad(14.3°), the
responses of the two angles of attack a are closely in line with
each other, howaver, due to the fact tha£ the initial rudder offset
angles were not the same, control law (12) was slightly better (see
Fig.1).
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2. Wwhen @ é0.47rad(27°), the response of control saw (12)

is clearly superior to control law (2) (see Fig.2).

alasd) OFTY L

Fig.1l

A Comparison of Responses When a* =0.25rad (1) Dotted line control

Law (2) (2) Solid line control law(12)

al(a)« $ 00 {mt/D)
e gt

0.4
0.2
0 ,
-0.2 W
- O.Af i
Fi3.2
A Comparison of Responses When @ =0.47rad (1) Dotted line

Control Law (2) (2) Solid line Control Law (12)

3. After a, >0.47rad, control law (2) begins to cause systems 5170

to diverge. However, gtraight up to the time when
a,=0.6rad(31.4°) the response of control law (12) is still good

(see Fig.3).




Fig.3 Responses of Control Law (12) When a =0.6rad

Fig.4 A Compz-ison of Rudder Offset Angle Response Curves (Curve 1
represents the cudder offset for control law (12) when a =0.47rad.
Curve 2 renrezents the ruddzr offset for control law {2) w~hen

a,=0.47ra” Curve 3 represents the rudder offset for control law
{12) when @& =0.6rad)

V. SEVERAL POINTS IN CONCLUSION

This article, based on the transformation thinking in
i ic R stens f
differential g2onetry, designed for the vertical control systems O

the F-8 fighter plane nonlinecar computer conteol laws or rules. The

12




results of simulations clearly show that these control laws are
capable of guaranteeing that the aircraft can fly at high angles of
attack. The dynamic qualities are much better than those of the
original nonlinear optimization controls. A practical analysis of the
rudder offset responses in Fig.4 is capable of showing one that, when
angles of attack are relatively large, due to ) CL/ §a <O (C, is
the 1lift coefficient), there are problems with the aircraft fighting
the controls. However , control law (12) still actualizes feedback to
defeat this before it happens, and, as a result, it avoids this
fighting of the controls.

Speaking in terms of aircraft in general, the vertical direction
is due to the seperate characteristics of ¢4 and & , as well as ¢ .
Because this is true, the two methods that have been discussed above
both are feasible. As far as high order nonlinear systems are
concerned, if it is possible to set up laws to take them and tcansform
them into block triangular forms, then, both of the two methods are

made simpler and easier.
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