DIAGNOSIS AND TREATMENT OF DISEASES OF
TACTICAL IMPORTANCE TO US CENTCOM FORCES

1990
ACKNOWLEDGMENTS

LTC Kelly McKee, Medical Division. USAMRIID, Ft. Detrick, MD.

LTC Robert A. Gasser, Jr., Infectious Disease Service
Walter Reed Army Medical Center, Washington, D.C.

MAJ Alan J. Magill, Infectious Disease Service
Walter Reed Army Medical Center, Washington, D.C.

COL Charles N. Oster, Chief, Infectious Disease Service
Walter Reed Army Medical Center, Washington, D.C.

POC: COL Michael J. Kussman, Chief Consultant In Medicine,
Office of the Army Surgeon
Falls Church, Virginia 22041
PREFACE

This Primer was developed out of a need to address medical conditions related to Operation Desert Shield. It specifically addresses communicable diseases and biological agents that medical personnel need to become familiar with and develop clinical expertise. Chemical, heat, and other topics have been covered extensively in other communications.

This information is not meant to be all inclusive but to help the health care provider have access to information that is not readily available. As the Theater matures, new issues will develop and we will add to this Primer.

Michael J. Scotti
Brigadier General, MC
Director of Professional Services
Office of the Army Surgeon General
TABLE OF CONTENTS

SECTION I - COMMUNICABLE DISEASES

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach to the Febrile Patient (Algorithm)</td>
<td>2</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>6</td>
</tr>
<tr>
<td>Congo Crimean Hemorrhagic Fever (CCHF)</td>
<td>9</td>
</tr>
<tr>
<td>Diarrheal Diseases (Algorithm)</td>
<td>14</td>
</tr>
<tr>
<td>Enteric Fever (Typhoid)</td>
<td>19</td>
</tr>
<tr>
<td>Helminthic Infections</td>
<td>24</td>
</tr>
<tr>
<td>Hepatitis, Viral</td>
<td>25</td>
</tr>
<tr>
<td>Leishmaniasis, Old World Cutaneous</td>
<td>29</td>
</tr>
<tr>
<td>Leishmaniasis, Visceral</td>
<td>31</td>
</tr>
<tr>
<td>Malaria</td>
<td>36</td>
</tr>
<tr>
<td>Meningococcal Disease</td>
<td>42</td>
</tr>
<tr>
<td>Rabies</td>
<td>46</td>
</tr>
<tr>
<td>Sandfly Fever</td>
<td>48</td>
</tr>
<tr>
<td>Schistosomiasis, Acute (Katayama Fever)</td>
<td>50</td>
</tr>
<tr>
<td>Sexually Transmitted Diseases</td>
<td>52</td>
</tr>
<tr>
<td>Streptococcal Infections</td>
<td>57</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>60</td>
</tr>
<tr>
<td>Typhus, Endemic</td>
<td>66</td>
</tr>
<tr>
<td>Typhus, Epidemic</td>
<td>69</td>
</tr>
</tbody>
</table>

SECTION II - BIOLOGICAL AGENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>72</td>
</tr>
<tr>
<td>Anthrax</td>
<td>73</td>
</tr>
<tr>
<td>Botulism</td>
<td>74</td>
</tr>
<tr>
<td>Staphylococcal Enterotoxin B</td>
<td>76</td>
</tr>
<tr>
<td>Clostridium Perfringens</td>
<td>78</td>
</tr>
<tr>
<td>Collection and Transport of Specimens</td>
<td>81</td>
</tr>
<tr>
<td>Differentiation of Symptoms</td>
<td>84</td>
</tr>
</tbody>
</table>
SECTION I

COMMUNICABLE DISEASES
Approach to the Acutely Ill Febrile Patient

A number of infectious diseases found in the Middle East may be rapidly fatal if specific therapy is not immediately instituted. Congo-Crimean Hemorrhagic Fever may be readily transmitted to hospital personnel, with lethal consequences. The following algorithm is designed to prevent lethal oversights in the initial management of acutely ill febrile patients in the Middle Eastern environment.

- **Acutely ill febrile patient**
 - T ≥ 101.5°F (38.5°C)

- **Petechiae, purpura, ecchymoses, and/or jaundice present**
 - YES
 - **Possible CCHF:** institute strict isolation, including respiratory, contact, and bodily fluids until diagnosis clarified; consider prophylaxis of exposed personnel; consider ribavirin treatment. Also consider meningococcemia.
 - **NO**

- **Hypotensive**
 - **NO**
 - **YES**
 - 1. Initiate therapy simultaneously with obtaining history, exam, and clinical specimens for laboratory.
 - 2. Place 2 large bore (≥ 16 ga) IV lines administer 1 - 2 l of normal saline or Ringers ASAP
Headache or Altered mental status

YES

A. Obtain blood for:
1. malaria smears, thick and thin
2. blood cultures
3. CBC
4. coagulation studies
5. chemistries to include:
 a. BUN, creatinine, glucose, electrolytes
 b. liver assoc. enzymes
 c. bilirubin
B. Obtain urine for culture, urinalysis

NO

Focal neurologic signs or papilledema

YES

Perform LP; obtain CSF for studies to rule out meningitis

NO

Administer IV antibiotics to cover meningitis

Refer for evaluation of intracranial lesions
CSF results consistent with meningitis

NO
- Malaria Smears
 - Negative
 - 1. If headache present: initiate Rx for typhus
 - 2. If hypotension on initial presentation: consider initiating broad spectrum antibiotics for septic shock at this point
 - Positive
 - Treat for malaria: continue close observation

YES
- Continue antibiotics and supportive care

Rash
- **NO**
- **YES**
 - Evaluate for typhus, typhoid, scarlet fever, secondary syphilis, and treat as clinically appropriate

Diarrhea
- **NO**
- **YES**
 - See Diarrhea Algorithm
Ulcerated lymphadenopathy, or Tender, massive, local lymphadenopathy

YES

1. Obtain blood and urine culture; aspirate node for culture.
2. Obtain CBC, chemistries, urinalysis.
3. Obtain CXR - strict respiratory isolation if evidence of pneumonia
4. Therapy:
 a. Streptomycin 15 mg/day BID x 10 days, or
 b. Tetracycline 1 gm QID PO x 10 days

NO

1. Obtain multiple, thick and thin blood films for malaria.
2. Obtain blood and urine cultures, CBC, chemistries, coagulation studies, urinalysis.
3. Obtain chest x-ray.
4. Specifically consider malaria, sandfly fever, brucellosis, typhus, typhoid, tuberculosis, and evaluate as indicated.
5. In absence of findings pointing to specific disease - observe closely, provide supportive care.
BRUCELLOSIS

I. Communicability
 A. Routes: inhalation of infectious aerosols; ingestion of contaminated meat or dairy products; direct contact with infected tissues, blood or lymph with abraded skin or mucous membranes.
 B. Isolation of patients: body fluid precautions.
 C. Contact prophylaxis: none required.

II. Incubation period: 2 - 3 weeks (one week to several months).

III. Diagnosis: systemic infection with protean manifestations; no diagnostic clinical findings. Exposure history is critical, ask for: (1) ingestion of unpasteurized milk products or consumption of cheese; (2) exposure to animals, livestock, meats.

A. Symptoms and signs:
 1. Osteoarticular (20-85%):
 - arthralgias
 - myalgia
 - arthritis
 - spondylitis
 - osteomyelitis
 - tenosynovitis
 - bursitis
 - sacroiliitis
 2. Neurological (2-5%):
 - meningencephalitis
 - myelitis
 - paresis
 - psychosis
 - depression
 - headaches
 3. Genitourinary (2-40%):
 - unilateral epididymo-orchitis
 - pyelonephritis, acute interstitial nephritis, prostatitis, (very uncommon)
 4. Cardiovascular:
 - endocarditis - 2% (most common cause of death)
 5. Gastrointestinal:
 - hepatitis
 - nausea and vomiting
 - diarrhea
 - abdominal pain
 - liver and spleen abscesses
 - anorexia
6. Pulmonary (15-25%):
 - cough

7. Systemic (almost 100%):
 - fever
 - night sweats
 - malaise
 - weakness
 - weight loss

8. Cutaneous (5%):
 - many non-specific findings such as erythema
 nodosum, eczematous rashes, vasculitis, maculo-papular rashes and petechiae.

C. Laboratory:
 1. Hematology: anemia, leukopenia, thrombocytopenia
 2. Microbiology: culture of pathogen from blood, bone
 marrow, fluids or tissue; special media, conditions and precautions required.
 3. Serology: very helpful; IgM elevated in first 3 weeks, followed by IgG after 3 weeks; titer ≥
 1:160 indicates past exposure.

D. Radiology:
 - CZR abnormal in patients who acquired infection by aerosol: hilar adenopathy; perihilar infiltrates;
 nodular lesions; lung abscess; pleural effusions; pneumothorax.

E. Invasive procedures: not required for diagnosis; only required in therapy for focal suppurative com-
 plications.

F. "Gold Standard:" isolation of pathogen or titer ≥
 1:160 with compatible epidemiologic and clinical findings.

IV. Duration:
 A. Treated: weeks to months.
 B. Untreated: months, with up to 30% complications.

V. Complications: see signs and symptoms

VI. Treatment:
 A. No complications: doxycycline 100 mg
 BID plus rifampin 600 mg/day x 6 weeks.
 B. Complications: seek specialist input.
 C. Treatment failure and relapses occur in 5%; most not due to drug resistance;
 retreat with initial regimen.
VII. Disposition:
A. No complications: limited duty (consider EVAC).
B. Complications: hospitalization and EVAC.

VII. Prognosis:
A. Treated: excellent.
B. Untreated: 30% complications, prolonged hospitalization and convalescence with occasional deaths due to endocarditis.

IX. Public health measures:
Locate contaminated products, if implicated, and destroy; educate troops not to drink or eat unpasteurized dairy products; report to Preventive Medicine. Not communicable from person to person.
Congo Crimean Hemorrhagic Fever (CCHF)

I. Communicability:

A. Route:
 1. Ixodid tick (Hyalomma species) bites:
 2. Exposure to blood, secretions, or excrement of infected patients. Aerosol transmission may occur, as transmission to hospital staff has been documented in the absence of direct patient contact.
 3. Exposure to tissue or blood of infected animals.

B. Isolation:
 1. Strict isolation mandatory, to include contact, blood, body fluids, and respiratory. This must include strict precautions in handling of clinical laboratory specimens.

C. Prophylaxis:
 1. No prophylaxis of proven efficacy is available.
 2. Hyperimmune convalescent serum:
 a. Isolated clinical reports suggest that administration of hyperimmune convalescent human serum may be protective. Definitive indications and dosage regimen have not been established.
 b. 250 ml administered IV over 1 to 2 hours, possibly repeated once in 12 hours may beneficial.
 c. Potential problems include:
 i. Inability to ascertain antiviral titers in transfused serum.
 ii. Hypersensitivity reaction.
 iii. Transmission of other blood-borne illnesses.

3. Ribavirin:
 a. Ribavirin, an antiviral drug, may be effective. Definitive clinical studies have not yet been accomplished but preliminary studies show promise.
 b. Post exposure prophylaxis should be strongly considered for health care workers and transporting personnel involved in caring for patients with CCHF. Prophylaxis should be begun as soon as possible after exposure.
 c. Suggested post-exposure prophylaxis dosage regimen: 400 mg PO Q6h for 24 hours, then 400 mg PO TID for 6 days.
 d. Adverse effects include: teratogenicity, possible embryotoxicity, reversible macrocytic anemia, extravascular hemolysis,
reversible hyperbilirubinemia, hyperuricemia, nausea, headache, insomnia, lethargy, and mood alterations. Overall, however, the drug appears safe and generally well tolerated.

II. Incubation: 7 days (range: 3-16 days).

III. Diagnosis:

A. Symptoms:
 Prodromal flu-like syndrome
 Abrupt onset of severe illness
 Fever - 100%
 Anorexia - 100%
 Bleeding tendency - 100%
 Headache - 90%
 Abdominal Pain - 90%
 Backache - 90%
 Arthralgia/myalgia - 70%
 Diarrhea - 40-50%
 Photophobia - 50%
 Cough (non-productive) - 10-40%
 Chest pain - 20%
 Sore throat - 16%

B. Signs:
 Fever: to 40°C (104°F) - 100%
 Skin hemorrhages (petechiae, purpura) - 100%
 Jaundice - 25-100%
 Hematuria - 90%
 Tachycardia - 70-90%
 Hypotension - 70-90%
 Oliguria - 80%
 Hepatomegaly - 80-100%
 Disturbed consciousness - 80%
 GI bleeding (hematemesis or melena) - 70%
 Epistaxis - 50%
 Vaginal bleeding >50% of women
 Edema - 50%
 Meningeal irritation - 40%
 Bleeding gums - 40%
 Relative bradycardia - 20%
 Conjunctival injection - 20%
 Palmar erythema - 20%
 Gingival ulcers - 16%

C. Laboratory:
 1. Hematologic:
 Anemia (as condition deteriorates)
 Leukopenia - 60%
 Thrombocytopenia - 100%
 Atypical lymphocytes - 60%
2. Chemistries:
 Hyperbilirubinemia
 Elevated transaminases
3. Urinalysis:
 Hematuria - 90%
 Proteinuria - 90%
4. Microbiologic:
 a. Unavailable in most clinical laboratories.
 b. Viral isolation possible by specialized laboratories with sophisticated containment and viral culture capabilities.
 c. Exposure of laboratory personnel to aerosolized specimens is highly dangerous.
5. Serology:
 Antibodies should be present by day 20, IgM earlier. Generally of retrospective and epidemiologic rather than immediate clinical value.
6. Coagulation studies:
 Prolonged bleeding time - 100%
 Prolonged PT - 75%
 Prolonged aPTT - 67%
 Diminished fibrinogen - 100%
 Increased fibrin split products - 60%

D. Invasive Procedures: not applicable.
E. X-rays: nonspecific.
F. Diagnostic Confirmation: serologic or viral isolation.

IV. Duration:
A. Untreated: 10-14 days with subsequent convalescence requiring several weeks
B. Treated: undefined, but presumably shorter acute illness and markedly abbreviated convalescence

V. Complications:
A. Sepsis, shock, renal failure, death.
B. Relapse does not occur.

VI. Treatment:
A. Treatment regimens of proven efficacy do not exist.
B. Ribavirin: preliminary studies of ribavirin against CCHF, and clinical studies of ribavirin's efficacy against related viral hemorrhagic fevers suggest that it may be beneficial for treatment of CCHF.
1. Oral: 400 mg Q4h for 24 hours, then 400 mg Q8h for 7 to 14 days.
2. IV: 2 gm loading dose, then 1 gm Q8h for 4 days, then 500 mg Q8h for 6 days (Dilute in saline or D5W, administer over 15 to 20 minutes).

C. Human immune convalescent serum: isolated clinical reports suggest possible benefit. Efficacy is not proven.
1. Dosage: 250 ml, administered as single dose IV over 1 to 2 hours, and repeated Q12h as needed.
2. Potential problems include:
 a. Inability to ascertain antiviral titers in transfused serum.
 b. Hypersensitivity reactions.
 c. Transmission of other blood-borne illnesses.

D. No alternatives exist for treatment failure.

E. Relapses are not known to occur.

F. Aggressive supportive care emphasizing replacement of intravascular volume and blood products is essential.

VII. Disposition:

A. Local hospitalization is favored during acute illness if possible. If evacuation to larger facilities is unavoidable, strict isolation must be observed.

B. Depending on clinical response, evacuation after acute illness may be required for cases showing the typical prolonged convalescence.

C. Rapidly recovered cases may return to duty.

VIII. Prognosis:

A. Untreated: 10-70% mortality; nosocomially acquired cases may be associated with higher mortality than sporadically required cases.

B. Treated: unknown; inadequate data.

C. Survivors generally suffer no major sequela.
IX. Prevention/Public health measures:

A. Insect repellents.

B. Frequent de-ticking (self-examination and removal of ticks at least BID) in infected areas.

C. Report suspected cases immediately to higher echelon medical authorities.

D. Strict isolation of cases and ribavirin prophylaxis of health care providers. (See Isolation and Prophylaxis above).
DIARRHEAL DISEASES

I. Communicability:
 A. Route: oral ingestion of infectious organisms in contaminated food/water, particularly if inadequately cooked/purified. Inadequate personal hygiene, inadequate sanitary measures, and flies are the most likely contributory factors.
 B. Isolation of Cases: normal sanitary and stool precautions only; hand washing essential.
 C. Prophylaxis: not recommended. Efficacy is of brief duration, inadequate for sustained operations. After initial 1 to 2 weeks of protection, prophylaxis with antibiotics has been associated with increased incidence of diarrhea due to disruption of protective normal bowel flora and with emergence of drug resistant pathogens.

II. Incubation: varies with specific pathogen. Ranges from hours (staphylococcal enterotoxins) to several weeks (giardiasis or amebiasis).

III. Diagnosis:
 A. Specific pathogen identification is not usually required for effective management of individual patients.
 B. The following algorithm provides an effective, efficient approach:

 Symptoms: 5 stools/day, fever, abdominal pain, weight loss, blood, pus, or mucus in stool; antibiotic use in preceding 4 weeks.
 Signs: fever > 101°F; 38.3°C; abdominal tenderness; tachycardia; hypotension; orthostatic pulse rise or blood pressure fall; guaiac positive stool.
Any one of above present NO

YES

Fever occurring in malarious area

NO

YES

Obtain blood smear for parasites 4x/d for 3-4 days plus

Obtain fresh stool for testing presence of occult blood, WBC's, ova, or parasites

None present

Ova, parasites present

blood, or WBC's present

1. Oral rehydration (1)
2. Optional: Bismuth subsalicylate (Pepto Bismol) 262 mg tab, 2-4x/d while symptomatic
3. Optional: antimotility agents (2)
4. Optional: antibiotics (3)
5. Return to duty
6. Brief hospitalization or limited duty as clinically appropriate
1. Consider stool culture for salmonella, shigella, and campylobacter. Decision to be guided by local capability and epidemiologic considerations.

2. Oral rehydration (1)

3. IV rehydration, if oral route insufficient

4. Antibiotics (3)

5. Antimotility agents contraindicated

6. Limited duty or brief hospitalization as individually indicated
Possible pseudomembranous colitis:
1. **Dx:** Anoscopy or proctoscopy to 15-20 cm.
2. Pseudomembranes present, or proctoscope unavailable

Therapeutic Options
- a. Vancomycin capsule 250 mg Q6hx10 days or
- b. Vancomycin solution 125 mg Q6hx10 days or
- c. Flagyl 250 mg QIDx10 days

1. Assess for antimicrobial resistance — stool cultures
2. Assess for possible amebiasis — repeat stool exams; obtain proctoscopy/sigmoidoscopy
3. Assess for possible giardiasis — repeat stool exams; assess for flatness, evidence of malabsorption (e.g., qualitative stool fecal fat; consider duodenal aspirate.
4. Consider empirical trials of alternative antibiotic regimen or of anti-amoebal or anti-giardial therapy.
5. Cases which remain refractory may require evacuation.
6. Consider malaria —— blood smear for malaria several times daily for several days
C. Notes on the diarrhea algorithms:

1. Oral rehydration: 3.5 gm NaCl, 2.5 gm NaHCO3, 1.5 gm KCl, 20 gm glucose (or 40 gm sucrose) in 1 liter H2O. Intake should be sufficient to maintain 60 to 100 ml urine output per hour. Premixed salts/glucose are available.

2. Antimotility agents:
 a. Use Loperamide (Imodium) 2 mg tablet, 1 or 2 tablets, 2 to 4 times/day, up to 48 hours duration.
 b. Kapectate is ineffective.
 c. Diphenoxylate with atropine (Lomotil) is relatively contraindicated in hot desert environment because may cause hyperthermia secondary to diminution of sweating.

3. Antibiotics: recommended regimens, in order of preference, include:
 a. Ciprofloxacin 500 mg BID for 5 days.
 b. Norfloxacin 400 mg BID for 5 days.
 c. TMP/SMX 2 tablets or 1 DS tablet (for dose of 160/800 mg) BID for 5 days.

IV. Public health measures:

A. Command emphasis on adequate sanitary facilities is essential.

B. Command emphasis on personal hygiene, especially hand washing, is essential.

C. Command emphasis on water purification and individual water discipline is essential.
ENETIC FEVER (TYPHOID)

I. Communicability
A. Route: oral ingestion of organisms, typically in contaminated food or water.
1. Patients excrete organisms in stool, urine, pus and/or emesis. Asymptomatic carriage and excretion of organisms in stool is common.
2. Viable organisms can contaminate food and water via spread by hands, flies, fomites, or direct contamination.

B. Isolation of patients:
1. Enteric precautions while ill and convalescing.
2. Disinfection of contaminated articles.
3. Since excretion of organisms typically persists for several weeks after resolution of illness, and persists more than 1 year in up to 3% of patients, convalescing patients should be evacuated rather than returned to field setting.

C. Contact prophylaxis:
1. For household (barracks or tent mate) contacts, administer vaccine if this has not been received within three years.
2. Household contacts should not be used as food handlers unless both stool and urine are each negative for salmonella on two occasions at least 24 hours apart.

II. Incubation:
A. Average: 1 week.
B. Range: 3 days to 8 weeks.
C. Larger inoculum is associated with briefer incubations.

III. Diagnosis:
A. Symptoms: insidious onset
fever - 75-100%
headache - 59-90%
anorexia - 39-91%
cough - 28-86%
myalgia - 12-91%
constipation - 10-79%
weakness - 10-87%
diarrhea - 37-57%
vomiting - 24-54%
nausea - 23-54%
sore throat - 6-34%
chills - 16-37%
abdominal Pain - 19-39%
sweats - 33%
B. Signs:
1. Fever: remittent, 40°C (104°F); 75 – 100%.
2. Pulse slow relative to fever.
3. Rose spots: 2 – 4 mm blanching erythematous, maculopapular lesions; occur in crops of about 10; located on upper abdomen; lasting several hours to several days; appearing 7 – 10 days into illness; 13 – 46%.
4. Hepatomegaly: 15 – 50%
5. Splenomegaly; often tender: 40 – 64%
6. Neurologic/mental status changes: including lethargy, stupor, coma, seizures, delirium, meningismus; 10%.
7. 'Pea soup' stools: loose, pale stools; 25%.

C. Laboratory:
1. Hematologic:
 a. Hgb/Hct: anemia common, worsens progressively over first three weeks.
 b. WBC: normal in 75% (range 1,200 - 20,000).
 c. Platelets: usually normal, occasionally low.
 d. ESR: typically elevated.
2. Chemistries:
 a. SGOT, LDH: mild/moderate elevation in about 33%.
 b. Alkaline phosphatase: mild elevation common.
 c. Bilirubin: mild elevation (two-fold) common; sufficient to cause jaundice, uncommon.
 d. CPK: occasionally elevated.
4. Microbiologic: causative organisms include Salmonella typhi (typhoid), other salmonella species (paratyphoid) and other bacteria including Yersinia enterocolitica, Yersinia pseudotuberculosis and Campylobacter fetus.
 a. Blood cultures: i) first week 80% positive; by third week 20-30% positive; ii) obtain 2 to 3 sets for optimal yield.
 b. Bone marrow aspirate cultures: 90-95% positive.
 c. Stool cultures: occasionally positive during incubation; 33-67% positive during weeks 2 – 4 of illness.
 d. Urine culture: intermittently positive after second week of illness in 25%. Multiple specimens should be sent.
e. Skin snips of rose spots: may be positive when cultures of other sites fail to isolate organism.

5. Serologic: limited value-insensitive and non-specific.

6. Coagulation: usually normal. Occasionally coagulopathy, with prolonged prothrombin time (PT) and partial thromboplastin time (aPTT) may be seen.

D. X-ray: chest x-ray normal (infiltrates in <10%).

E. Invasive procedures:
1. Bone marrow aspiration, for culture, as above.
2. Skin snip or biopsy of rose spot, for culture, as above.

F. Diagnostic confirmation: isolation of organism from blood, marrow, or skin. Isolation from stool of a typical case is presumptive evidence, but not definitive.

IV. Duration:
A. Treated: 4 - 5 days, until defervescence; 2 weeks therapy required.
B. Untreated: 4 week acute illness, if not complicated.

V. Complications:
A. Intestinal perforation:
1. Incidence 1 to 10%, typically during second or third week of illness.
2. Mortality: 25%.
3. Signs:
 a. classic peritoneal signs often absent.
 b. abdominal x-ray shows free air below diaphragm.
 c. absent bowel sounds and vomiting, suggesting ileus, may be most prominent clinical features.
4. Perforations may be single or multiple.
5. Ileum is most common location.
6. Treatment is surgical.

B. GI Hemorrhage:
1. Incidence: 1-20% depending on initiation of antibiotics.
3. Typically occurs during second or third week of illness.
4. Treatment is supportive, including transfusion. Surgical intervention should be reserved for massive or persistent bleeding.

C. Local abscess/infection:
 1. Incidence ≤ 1%.
 2. May occur in any tissue, notably bone, soft tissue, meninges, heart, pericardium, lungs, liver, spleen, kidneys, thyroid, breast.

D. Other complications:
 1. Hemolytic anemia (2%).
 2. Typhoid pneumonia (8-10%).
 3. Peripheral neuropathy.

VI. Treatment:
A. Preferred regimens:
 1. Ceftriaxone (Rocephin): 1 gm Q12h IV for 14 days, or
 2. Ciprofloxacin: 500 mg BID orally for 14 days.

B. Alternatives (resistance more likely):
 1. Chloramphenicol: 50 mg/kg/day, divided Q6h, orally (preferred), or IV, for 14 days; or,
 2. TMP-SMX: 320/1600 to 640/3200 per day divided Q12h orally (i.e., 1 to 2 DS tablets BID, or 2 to 4 regular strength tablets BID), for 14 days.

C. Supportive fluid and nutritional therapy is essential.

D. Avoid heparin and antipyretics.

E. In critically ill patients (i.e., shock, delirium, stupor, or coma): dexamethasone, loading dose 3 mg/kg IV, then 1 mg/kg Q8h IV x 48 hours (improves survival from 45% to 90%).

VII. Disposition: evacuation, once stabilized.

VIII. Prognosis:
A. Treated: ≤ 1% mortality.
B. Untreated: 10% mortality.

IX. Prevention/public health measures:
A. Vaccinate all military personnel.
B. Command emphasis:
 1. Strict sanitation.
 2. Hand washing/personal hygiene.
 4. Fly control:
 a. insecticide spraying.
 b. screening.
 c. proper garbage disposal.
C. Epidemiologic investigation of each case.
HELMINTH INFECTIONS

I. A wide variety of helminths cause human disease. Specific diagnosis is based upon identification of characteristic organisms, larvae, or ova in clinical specimens. Specific treatment regimens for specific diagnoses are provided below, excluding that for schistosomiasis, which is covered elsewhere in this publication.

II. In the face of diagnostic uncertainty as to the specific helminth in a clinical specimen, note that all round worms except strongyloides respond to mebendazole. Strongyloides is distinctive in that only larval forms, worm-like organisms approximately 220 microns (.2 mm) in length, but no ova, are seen in stool of infected patients. It responds to thiabendazole. Tapeworm infections, regardless of specific species, may be treated with praziquantel.

II. Treatment regimens:

A. Roundworms (Nematodes):
 1. Ascariasis: mebendazole (Vermox) 100 mg BID orally x 3 days.
 2. Enterobiasis (Pinworm): mebendazole 100 mg orally, with a second dose 14 days later.
 3. Ancylostomiasis (Hookworm): mebendazole 100 mg BID orally x 3 days.
 4. Trichuriasis (Whipworm): mebendazole 100 mg BID orally x 3 days.
 5. Strongyloidiasis: thiabendazole 25 mg/kg BID x 2 days.

B. Tapeworms (Taenia species):
 1. Praziquantel 10-20 mg/kg orally, one dose.
VIRAL HEPATITIS

I. Communicability:

A. Route:
 a. Usually are contracted by oral ingestion of organisms, typically via infected food or water, or after physical contact with an infected individual (e.g., hand to hand to mouth, basically fecal-oral).
 b. Hepatitis A is rarely spread by male homosexual activity, among IV drug abusers or by blood transfusions.

2. Hepatitis B, hepatitis delta, and hepatitis C are contracted by exposure to infected blood, blood products, other infected bodily fluids, or by sexual activity. Hepatitis delta occurs as co-infection with acute hepatitis B or as superinfection with chronic hepatitis B.

B. Isolation:
2. Hepatitis B, delta, C: needle, blood, and bodily fluid precautions.
3. In case of clinical uncertainty as to specific viral etiology, implement both types of precautions.
4. Infectiousness is generally greatest during incubation period and early icteric phase of illness, but may persist with hepatitis B or C for much longer periods.

C. Contact prophylaxis:
1. Hepatitis A, E: 2 to 5 ml of immune serum globulin (ISG) IM as soon as possible post-exposure.
2. Hepatitis B: for needle sticks or high risk sexual exposure, 5 ml Hepatitis B Immune Globulin (HBIG) IM, with simultaneous initiation of hepatitis B vaccination.

II. Incubation:
A. Hepatitis A: 30 days (range: 15-45).
B. Hepatitis B: 70 days (range: 30-180).
C. Hepatitis C: 50 days (range: 15-150).
D. Hepatitis D: less well defined; probably similar to hepatitis B.

E. Hepatitis E: 40 days (range 15-60).

III. Diagnosis: the clinical manifestations of acute hepatitis caused by the various viral agents overlap. Specific diagnosis must usually be based on serology. For any type of viral hepatitis, the spectrum of disease may range from inapparent to fulminant.

A. Symptoms:
1. Malaise
2. Anorexia, including loss of taste for tobacco smoking.
3. Nausea and/or vomiting
4. Right upper quadrant pain/discomfort
5. Pruritus
6. Arthritis/Arthralgia
7. Headaches
8. Fever (low grade)
9. Jaundice
10. Dark Urine
11. Light (acholic) stools

B. Signs:
1. Icterus/jaundice
2. Tender hepatomegaly (mild-moderate)
3. Splenomegaly (uncommon)
4. Palmar erythema
5. Spider angiomata
 (NOTE: fever is usually absent; if present it is low grade.)

C. Laboratory:
1. Hematologic:
 a. Hgb/Hct: usually normal; hemolysis occurs uncommonly.
 b. WBC:
 i) normal or mild leukopenia.
 ii) mild lymphocytosis with or without atypical lymphocytes may occur.
 c. Platelets: normal.
2. Chemistries:
 a. Transaminases:
 i) rise 5-100x above normal.
 ii) ALT (SGPT) > AST (SGOT)
 b. Bilirubin: rises 1-20x normal.
 c. Alkaline phosphatase: rises mildly, 1-4x normal.
 d. Albumin/globulin: remains normal or near normal in uncomplicated acute hepatitis.
3. Urinalysis:
 a. positive for bile.
 b. occasional microhematuria.
 c. occasional mild proteinuria.
4. Microbiologic: not applicable.
5. Serology:
 a. Anti-Hepatitis A IgM suggests acute hepatitis A.
 b. Anti-Hepatitis A IgG indicates prior infection with hepatitis A.
 c. Hepatitis B surface antigen (HBsAg) indicates active infection with hepatitis B.
 d. Hepatitis B "e" antigen indicates early stage of hepatitis B with active viral replication and greater infectiousness.
 e. Anti-Hepatitis B surface antibody appears during convalescence; it indicates prior infection, and is not useful for directly diagnosing active hepatitis.
 f. IgM anti-Hepatitis B core antibody indicates acute infection with Hepatitis B.
 g. Anti-Hepatitis C antibody indicates prior infection with Hepatitis C. It is not useful for directly diagnosing active hepatitis.
6. Coagulation:
 a. generally normal in uncomplicated acute viral hepatitis.
 b. Prothrombin time (PT) rises in fulminant hepatitis.

D. X-ray: non specific.
E. Invasive Procedures: not indicated.
F. Diagnostic confirmation: serologic.

IV. Duration:
A. Icteric phase: 1 to 3 weeks.
B. Convalescent phase: may require up to several months.

V. Complications:
A. Fulminant Hepatitis:
 1. Presentation: hepatic encephalopathy, asterixis, coma, coagulopathy, death.
 2. Treatment:
 a. Supportive to include bed rest, protein restriction.
 b. Lactulose in sorbitol orally, if tolerated, by enema otherwise; or oral neomycin.
B. Progression to Chronic Hepatitis: occurs rarely if ever in hepatitis A, in 5-10% of hepatitis B, and in up to 50-70% of hepatitis C.

C. Pancreatitis.

VI. Treatment: no specific treatment is available for viral hepatitis. Rest is important; discontinue any nonessential medications.

VII. Disposition:
A. Mild cases may be hospitalized in theater as some will be able to return to duty in 2 to 3 weeks.
B. Evacuate moderate or severe cases.

VIII. Prognoses:
A. Mortality: less than 1%.
B. Chronic disease: see complications above.

IX. Public health measures:
A. Hepatitis A and E:
1. Administer ISG to population at risk; 2-5 ml IM; protection is roughly 1 month/ml administered.
2. Command emphasis on proper sanitation.
3. Proper food preparation/water purification.
4. Personal hygiene.
5. Hepatitis A vaccine, if available.

B. Hepatitis B, delta, and C:
1. Vaccinate high risk populations with Hepatitis B vaccine. Vaccination series requires 3 injections at 0, 1, and 6 months.
2. Sexual abstinence or use of barrier (condom) protection.
3. Screening of blood products for hepatitis B and C.
4. Use of barrier precautions by health workers when dealing with blood or other body fluids.
OLD WORLD CUTANEOUS LEISHMANIASIS

An ulcerative skin disease caused by *Leishmania major* in Eastern Saudi Arabia and *L. tropica* in southwestern Saudi Arabia.

I. Communicability:
A. Route: promastigote inoculated into skin by the bite of an infected sandfly.
B. Isolation of patients: not required.
C. Contact prophylaxis: not required.

II. Incubation period: usually 2 to 8 weeks, but may be years depending on initial inoculum size.

III. Diagnosis:
A. Symptoms/signs: inflammatory papule that slowly increases in size and ulcerates. Base will crust over but the ulcer spreads under the edge of a firm and raised border. Lesions are usually on exposed skin and are rarely seen in the scalp or on the palms and soles.
B. Demonstration of the parasite is necessary to confirm diagnosis. A small full thickness skin biopsy from the lesion’s edge is performed and touch preps made which can be stained with Giemsa. The biopsy is divided into halves for culture and histology.

IV. Duration:
A. Treated: weeks to months.
B. Untreated: *L. major* heals spontaneously in 3-5 months; *L. tropica* heals spontaneously, but takes 12 months or longer.

V. Complications: secondary bacterial infection.

VI. Treatment: ulcers do not necessarily require treatment, but consider treating if the lesions are large, multiple, threaten structures like the eye, or limit function. The preferred treatment is sodium stibogluconate (Pentostam), 20 mg/kg/day IV x 20 days.
VII. Disposition:
 A. Severe problem requiring drug treatment: EVAC.
 B. Minor problem and soldier is mission essential: no immediate treatment required; refer for treatment on return CONUS.

VIII. Prognosis: excellent.

IX. Public health measures:
 A. Sandfly control with residual insecticides.
 B. Host (gerbil) control.
 C. Personal protection with clothing, insect repellent.
VISCERAL LEISHMANIASIS

I. Communicability:

A. Route:
1. Sandfly (Phlebotomus species) bites.
2. Isolated instances of sexual transmission have been reported.
3. Isolated cases of transmission by infected blood transfusion have been reported.
4. Disease transmission by accidental inoculation in the laboratory has occurred.
5. Vertical transmission from mother to fetus has been reported.

B. Isolation: generally not required; in forward areas or under field conditions where continued exposure to sandflies may occur, personal measures to protect the patient from sandfly bites, including insect repellents and permethrin-impregnated netting, should be used.

C. Prophylaxis: not required.

II. Incubation: normally 3-8 months (range 10 days - 34 months or longer).

III. Diagnosis:

A. Symptoms:
1. Onset may be insidious (more common) or abrupt.
2. Fever: high intermittent or remittent, not generally associated with chills or prostration.
3. Sweats.
5. Epistaxis.
6. Abdominal discomfort and/or swelling.
7. Weight loss.
8. Diarrhea.
9. Peripheral edema (late).
10. Bleeding diathesis (late).
11. Generalized weakness (as emaciation progresses).

B. Signs:
1. Weight loss/emaciation.
2. Splenomegaly (presents early, progressively worsens).
3. Hepatomegaly (less pronounced than splenomegaly).
4. Lymphadenopathy (especially femoral, inguinal, but may be generalized).
5. Fever (39 to 40°C).
6. Skin:
 a. trophic changes (due to malnutrition): thinning, dryness, hair loss, hypopigmentation.
 b. polymorphic lesions: papules, wart-like nodules, ulcers (rare).
 c. petechiae, purpura, bruises.

7. Eyes: retinal hemorrhage, papilledema, eyelid nodules, anterior uveitis.

9. Nodules or ulcers of oral and/or nasopharyngeal mucosa (rare).

10. Edema (typically late).

11. Bleeding: epistaxis, gingival, vaginal, other sites.

C. Laboratory:
1. Hematologic:
 a. anemia (normochromic, normocytic).
 b. marked leukopenia (95% with WBC < 3000/mm3).
 c. thrombocytopenia.
 d. Coombs test, usually positive.
 e. marked decrease or absence of eosinophils.
 f. parasitemia may be occasionally detected on peripheral blood smear.
 g. buffy coat smears may be diagnostic.

2. Chemistries:
 a. polyclonal hypergammaglobulinemia.
 b. positive rheumatoid factor.
 c. hypoalbuminemia.
 d. elevated transaminases.
 e. hyperbilirubinemia (advanced disease).

3. Urinalysis:
 a. proteinuria (occasional).
 b. hematuria (occasional).

4. Microbiologic: standard microbiologic techniques are not applicable.

5. Serologic:
 a. ELISA is most sensitive (98%) but is non-specific.
 b. indirect immunofluorescent antibody tests may be more readily available (95% sensitive).
 c. complement fixation, counter-immunoelectrophoresis, hemagglutination, and agglutination tests are less specific.

6. Coagulation:
 a. bleeding and clotting times are generally normal.
 b. prothrombin time (PT) may be mildly prolonged (2 to 4 seconds more than control).
D. X-ray:
1. Standard examinations are nonspecific.
2. Hepatomegaly and splenomegaly can be detected by appropriate imaging modalities (sonogram, CT, etc.).

E. Invasive procedures:
1. Bone marrow aspiration with Wright or Giemsa stains of smear (54-86% sensitive).
2. Splenic aspiration with Wright, Giemsa, or Leishman's stain of smear (98% sensitive).
 a. Contraindications include: physician inexperience; soft spleen in acute disease; PT prolonged 5 seconds or more above normal, platelet count below 50,000/mm³.
3. Liver biopsy/aspiration: sensitivity similar to splenic aspiration, but higher risk of hemorrhage.
4. Lymph node aspiration/biopsy: less sensitive than above tests. Avoid femoral or inguinal nodes because they are less likely to be diagnostic.

F. Skin testing: Leishmanin skin test will be negative in active disease and is not useful for diagnosis.

G. Diagnostic confirmation:
1. Demonstration of organism on smear/stain of aspirate/biopsy.
2. Culture of organism from tissue aspirate/specimens is possible with specialized technique (NNN or Schneider's media).

IV. Duration:
A. Treated: varies with therapeutic regimen; generally about 1 month with sodium stibogluconate (Pentostam) therapy; however, fever will respond within 48 to 72 hours of starting therapy, and the patient will feel improved within the first week.
B. Untreated: indefinite; usually fatal in months.

V. Complications:
A. Renal:
 1. Renal amyloidosis with nephrotic syndrome.
 2. Immune-complex mediated glomerulonephritis.

B. Hepatic:
 1. Acute liver failure may rarely occur.
 2. Cirrhosis (rare).

C. Disseminated intravascular coagulation (DIC).
D. Hemorrhage.

E. Secondary infections (common, due to immunosuppression).
 1. Tuberculosis.
 2. Pneumonia.
 3. Dysentery.
 4. Measles, in previously unvaccinated individuals.

F. Persistent post-disease splenomegaly.

VI. Treatment:

A. Standard therapy:
 1. Sodium stibogluconate (Pentostam), 20 mg/kg IV QD, for 30 days. Some recommendations in past have advised not exceeding a maximal daily dose of 850 mg; however, if the dose does not exceed 20 mg/kg/day, toxicity is not excessive, and efficacy may be improved.
 a. Drug toxicity includes: coughing, nausea, vomiting, arthralgias, myalgias, diarrhea, rash, headache, lethargy, renal toxicity, hepatic toxicity, brady-dysrhythmias, QT segment prolongation, ST segment abnormalities, T-wave inversion, and cardiac arrest (rare, to be anticipated only at dosages higher than those advised here).

B. Alternatives:
 1. Because of their greater toxicity, alternative regimens are generally reserved for treatment failures or relapses. Such cases should be referred to tropical disease or infectious disease specialists for management.
 2. Pentamidine isethionate, 4 mg/kg IM or IV, 3 times per week. The duration of therapy is not well defined; five weeks is minimum and probably inadequate. Four months is advised. Daily therapy is unacceptably toxic.
 a. Drug toxicity includes: hypoglycemia, permanent drug-induced diabetes mellitus, and possible cardiovascular collapse. Lesser effects include headaches, nausea, vomiting, flushing and sterile abscesses after IN injections.
 3. Amphotericin B, to a cumulative dose of 1.5 to 2.0 grams. Drug is suspended in DSW (not saline) and administered IV. Initiate therapy with a test dose of 1.0 mg administered over 15 to 20 minutes with monitored vital signs Q 30 minutes for 4
hours. Repeat dose daily, advancing to a daily dose of 0.5 mg/kg by day 5 of therapy and continuing until total desired dose has been administered or toxicity as become unacceptable.

a. Toxicity includes renal damage, electrolyte abnormalities, fever, anemia, abdominal pain, nausea, anorexia, and vomiting.

4. Additional regimens including combinations of drugs and/or gamma interferon may be used in refractory cases.

C. Treatment Failure/Relapses: refer for specialist evaluation and management, as described above.

VII. Prognosis: generally good; mortality usually occurs only in advanced disease, but even advanced disease may be successfully cured. Therapy, particularly when pentamidine or amphotericin is required, may result in permanent morbidity.

VIII. Disposition: evacuate on a routine basis. This disease is slowly progressive and should not be so far advanced in U.S. military personnel that emergency treatment is required.

IX. Public health:

A. Command emphasis on use of personal protection (repellent, impregnated netting, application of permethrin insecticides to clothes and netting if not previously treated).

B. Insecticide applications to sandfly habitats located near troop areas.

C. Control of wild canids (foxes and jackals are the natural reservoirs of infection).

D. Protection of patients from further sandfly bites, thus aborting possibility of epidemics based on human reservoirs.
MALARIA

I. Communicability:

A. Route:
1. Disease is transmitted by bites of infected anopheline mosquitoes.
2. Transfusion of malaria-infected blood will transmit disease.
3. IV drug abusers sharing contaminated needles have become infected.

B. Isolation: Malarious patients must be protected from exposure to additional mosquito bites. Insect repellent and netting should be used. No other isolation is required.

C. Contact prophylaxis: prophylaxis of individuals who have had contact with malaria patients is not required per se.

D. Chemoprophylaxis:
1. Chemoprophylaxis of all individuals present in malaria areas should be instituted. At this time, malaria is not known to be present in eastern Saudi Arabia, Kuwait, or southern Iraq; however, malaria may be introduced into these areas by migrant workers or troops. Imported cases are seen in this group. *P. falciparum* and *P. vivax* malaria are seen in western Saudi Arabia. Chloroquine-resistant strains, if present, are rare.

2. a. Recommended regimen (for western Saudi Arabia): chloroquine phosphate (Aralen), 500 mg weekly, preferably commencing 1-2 weeks before arrival, and continuing for 6 weeks after departure.

 b. "Terminal prophylaxis" to eradicate persistent hepatic parasites should be considered for individuals who are not pregnant or G6PD deficient: primaquine phosphate, 26.3 mg PO QD, for 14 days after departure from malaria area. In individuals unable to take primaquine, an additional 6 weeks (for total of 3 months) prophylaxis with chloroquine may be given after departure. Terminal prophylaxis should only be recommended if *P. vivax* or *P. ovale* infections have been identified in the theater.
II. Incubation:

A. *P. falciparum*: 12 days (range 9-14).
B. *P. vivax*: 14 days (range 12 days - 10 months).

III. Diagnosis:

A. Symptoms:
1. Syndrome of malaise, fatigue and myalgia may precede febrile paroxysm by several days.
2. Abrupt onset: fevers, chills/rigors, profuse sweating, headache, backache, myalgia, abdominal pain, nausea, vomiting, diarrhea (may be watery and profuse in *P. falciparum*).

B. Signs:
1. Intermittent fever to $\geq 40^\circ$C (105°F). Fever may be almost continuous in *P. falciparum* malaria; classic "periodicity" is frequently absent. Profuse sweating between febrile paroxysms. Tachycardia, orthostatic hypotension, tenderness, hepatomegaly, moderate splenomegaly, delirium (during fever).

C. Laboratory:
1. Hematologic:
 a. Intra-erythrocytic parasites on smears of peripheral blood.
 i) thin smears: prepare film as for normal CBC, fix in methanol, use Giemsa stain.
 ii) thick smear—one drop of blood on a slide; with glass slide corner spread drop until it is about dime size, and print on paper below slide/smear can barely be seen; stain with Giemsa stain after well dried. DO NOT FIX!
 iii) thick smear more sensitive (about 20x) for identifying parasite presence, thin film more accurate for species identification.
 iv) smear must be obtained several times/day for several days to rule out malaria.
 b. Anemia (normochromic, normocytic, hemolytic).
 c. Leukopenia.
 d. Monocytosis (> 10%).
 e. Eosinophilia not seen.
 f. Thrombocytopenia (to ≤ 50,000/mm3).
2. Chemistries:
 a. Hypoglycemia (may be severe, even after treatment).
 b. Electrolyte abnormalities, including hyperkalemia, from RBC lysis.
 c. Elevated transaminases (alkaline phosphatase normal).
 d. Asotemia (pre-renal).
 e. Hyperbilirubinemia.
3. Urinalysis: generally normal; small amounts of proteinuria may occur.
4. Microbiologic: standard techniques are not applicable.
5. Serology:
 a. Biologic false positive VDRL may occur.
 b. Specific malarial serologic tests exist, but are of epidemiologic, not clinical, value.
6. Coagulation:
 a. Generally normal, but prolonged prothrombin time (PT) and partial thromboplastin time (APTT) may be seen.
 b. Disseminated intravascular coagulation (DIC) occurs, but uncommonly.

D. X-ray: nonspecific.

E. Invasive procedures:
 1. Not specifically indicated.
 2. Lumbar puncture to assess mental status or neurologic changes may show elevated opening pressure but will be otherwise normal in the absence of cerebral malaria.
 3. Lumbar puncture in cerebral malaria may show increased opening pressure, increased protein and pleocytosis, but glucose is usually normal.

F. Diagnostic confirmation: identification of parasite on blood smears.

IV. Duration:
 A. Treated: 3 days in uncomplicated cases. May recrudesce within 4 weeks if parasite drug resistant.
 B. Untreated:
 1. *P. falciparum* often rapidly fatal in untreated non-immune patients and may recrudesce up to 2 - 4 years.
 2. *P. vivax* is rarely fatal but may relapse up to 8 years.
V. Complications: the following complications strongly indicate infection with P. falciparum:

A. Hyperparasitemia: ≥ 5% of RBC’s on smear parasitized; correlates with other complications, though complications can be seen with lower degrees of parasitemia.

B. Cerebral malaria:
1. Altered mental status, personality changes, lethargy, stupor, coma or delirium.
3. Treatment: is directed at overall infection; although exchange transfusion may be of value.
4. Mortality is high (20-50%) but survivors rarely show neurologic sequelae.

C. Algid malaria:
1. Clinically resembles septic shock; may be associated with hypothermia.
2. Treatment is directed at overall infection; intravascular volume replacement, vasopressors, and antibiotics should be added to the antimalarial regimen, as needed.

D. Renal Failure:
1. May be pre-renal or intrarenal (ATN-like) in origin.
2. Treatment:
 a. assure adequate intravascular volume replacement.
 b. supportive care to include dialysis if needed.

E. Adult respiratory distress syndrome (ARDS; non-cardiogenic pulmonary edema):
1. Pathogenesis: due to increased capillary permeability and fluid extravasation. Avoiding excessive intravascular fluid administration may reduce incidence.
2. Treatment is supportive, to include mechanical ventilation.

F. Splenic rupture/hemorrhage:
1. Treatment is blood replacement and control of hemorrhage surgically.
G. "Blackwater Fever:"
1. Massive hemolysis and hemoglobinuria in the setting of *P. falciparum* malaria is traditionally called blackwater fever.
2. Incidence has decreased with use of modern antimalarials. Its occurrence has been associated with quinine use, oxidant antimalarials in G6PD-deficient patients, or possibly as the result of an atypical immune response. Other causes of massive hemolysis must be excluded.
3. Treatment includes appropriate antimalarials, transfusions and the prevention or management of acute renal failure, including dialysis in some cases.

VI. Treatment:

A. Treatment of choice:
1. As chloroquine-resistant cases are not endemic in this region, initial treatment should be chloroquine phosphate, 1 gm orally, then 500 mg at 6 hours, 24 hours and 48 hours.
2. Depending on response, prophylaxis can then be resumed; or patient can be evacuated, and terminal prophylaxis given if needed.

B. Alternatives:
1. Critically ill patients who require IV medication can receive:
 a. Quinidine gluconate, 10 mg/kg (max 600 mg) loading dose over 1 to 2 hrs, followed by 0.02 mg/kg/minute constant infusion for a maximum of 72 hrs. Monitor EKG and switch to oral agents when mental status clears and parasitemia < 1%.
 b. Quinidine gluconate, 15 mg/kg (max 650 kg) loading dose over 4 hours; followed by 7.5 mg/kg over 4 hours Q8h for 7 days. Monitor EKG and switch to oral agents as above.
 c. Quinine dihydrochloride, 650 mg IV, over 4 hours, Q8h for 7 days. Switch to oral agents as above.

C. Treatment failures or early recrudescence:
1. IV regimen of quinine or quinidine as above, or
2. Quinine sulfate, 650 mg TID for 3 days, orally; plus either: pyrimethamine-sulfadoxine (Fansidar) 3 tablets in one dose; or tetracycline, 250 mg QID for 7 days; or clindamycin, 900 mg TID for 3 days, or
3. Mefloquine, 250 mg tablets, 1250 mg (5 tablets) as a single dose.
 a. Toxicities of mefloquine: CNS effects (psychosis, confusion, and seizures) and cardiac toxicity may be seen. Avoid concurrent use of quinine, quinidine, beta-blocking agents or calcium-channel blockers.

VII. Disposition:
 A. For uncomplicated cases: local hospitalization for up to 48 hours, with limited duty for several days (until drug therapy is completed).
 B. For complicated cases, including cerebral malaria, ARDS, "Blackwater Fever," and renal failure: evacuation to third or fourth echelon facilities will be needed.

VII. Prognosis:
 A. P. vivax: excellent if treated; mortality low, even if untreated, and complications are rare.
 B. P. falciparum:
 1. Untreated 25% or more will be fatal.
 2. Properly treated uncomplicated cases do well, without sequelae.
 3. The prognosis for complicated cases depends on the specific complications; however, the potential for full recovery exists even for critically ill, complicated cases who should, therefore, be managed aggressively.

IX. Public health measures:
 A. Command emphasis on personal protection measures (chemoprophylaxis, repellents and netting) in endemic areas.
 B. Mosquito control: elimination of breeding sites, larvicide applications and insecticide applications to kill adult mosquitoes.
MENINGOCOCCAL DISEASE

I. Communicability:

A. Route: person to person by respiratory droplets.

B. Isolation of patients: respiratory isolation for first 24 hours of antibiotic therapy; disinfect nasal and pharyngeal secretions and material contaminated with them.

C. Prophylaxis of contacts:
 1. Intimate and household contacts, including bar-
 racks and tent-mates should receive:
 a. rifampin 600 mg PO Q12h for 4 days, or
 ceftriaxone 250 mg IM, one dose, or
 ciprofloxacin 500 mg PO Q12h for 5 days,
 plus
 B. meningococcal vaccine, unless this has been
 received within two years.
 2. Casual contacts need not receive prophylaxis.

II. Incubation: 3 to 4 days (range 2 to 10 days).

III. Diagnosis: meningococcal infection may be asymptomatic, or
 may present as a self-limited flu-like illness (without
 sequelae), as meningitis, as fulminant septicemia
 (meningococcemia) or as combined meningitis-septicemia.
 Clinical signs and symptoms will vary with the type of
 presentation.

A. Symptoms:
 1. Meningococcemia: very abrupt onset with fulminant
 course:
 fever
 headache
 malaise
 diarrhea (occasionally may be severe)

 2. Meningitis: onset may be abrupt or subacute
 (several days):
 headache
 fever
 malaise
 photophobia
 nausea/vomiting
 back ache
B. Signs:
1. Meningococcemia:
 - fever
 - tachycardia
 - generalized muscular tenderness
 - petechiae/purpura/ecchymoses - both skin and mucosal
 - hypotension
 - altered mental status

2. Meningitis:
 - headache
 - fever
 - meningismus/stiff neck
 - cranial nerve palsies (VI most common; also III, VII, VIII)
 - altered mental status
 - seizure
 - positive Kernig's sign

C. Laboratory:
1. Hematologic:
 a. Meningococcemia:
 i) HGB/HCT: nonspecific.
 ii) WBC: leukocytosis or leukopenia (leukopenia implies more fulminant illness).
 iii) thrombocytopenia: common.
 b. Meningitis:
 i) HGB/HCT: nonspecific.
 ii) WBC: leukocytosis more typical, leukopenia suggests sepsis/meningococcemia.
 iii) platelets: usually normal - thrombocytopenia suggests sepsis/meningococcemia.
 iv) CSF: see below.

2. Chemistries: nonspecific; serum glucose and protein should be obtained for comparison against CSF values.

4. Microbiologic:
 a. CSF Gram stain: positive in 50-90%, including meningococcemia without clinical meningitis. Organisms may be present prior to WBC's.
 b. CSF culture: positive in 50-90%, including meningococcemia without clinical meningitis.
 c. Blood culture: positive in 50-60%.
 d. Organisms are fragile; smears and cultures should be prepared as soon as CSF is obtained from patient.

5. Serology: not applicable.
6. Coagulation: prothrombin time (PT) and partial thromboplastin (PTT) time may be elevated in meningococcemia. Evidence of DIC, including decreased fibrinogen levels, and elevated levels of fibrin degradation products may be seen.

D. X-ray: nonspecific.

E. Invasive procedure:
 1. In presence of meningitis or suspected meningococcemia, lumbar puncture for CSF should be performed immediately, unless papilledema or focal neurologic signs are present, suggesting intracranial mass or increased intracranial pressure.
 2. CSF should be tested for glucose, protein, cell count, gram stain and culture. Counter-immunoelectrophoresis against meningococci, pneumococci, and Hemophilus influenzae may be helpful if available.
 3. CSF results:
 a. glucose ≤ 40 mg/dl (in 75% of cases).
 b. protein = 150 mg/dl (range 25-800).
 c. WBC > 1000 cells/mm, PMN predominant (range 10-65,000; lymphocyte predominance is seen in < 10%.

F. Diagnostic confirmation: culture of organism from clinical specimen (from blood, CSF, or petechial aspirate).

IV. Duration:
 A. Treated: clinical response should occur within 48 hours. Duration of convalescence depends on severity of illness and its complications.
 B. Untreated: death may occur within minutes to hours. Mortality is extremely high.

V. Complications: shock, disseminated intravascular coagulation (DIC), adult respiratory distress syndrome (ARDS), pericarditis including tamponade, pneumonia, diabetes insipidus, cranial nerve palsy, prolonged mental status changes.

VI. Treatment:
 A. Once meningococcal disease is suspected, treatment must proceed simultaneously with the diagnostic evaluation.
 1. Obtain rapid history and physical exam, identifying contraindications to lumbar puncture.
2. Obtain blood for hemoglobin, chemistry, coagulation and culture; place IV line.
3. Perform LP if not contraindicated.
4. Administer antibiotics:
 a. penicillin G, 300,000 U/kg/day divided in 8 to 12 doses, to a maximum of 2 million units Q2h IV, or
 b. if penicillin allergic: chloramphenicol 100 mg/kg/day divided in 4 doses, to a maximum of 1 gm Q6h, IV.
5. Provide hemodynamic and respiratory support as needed.
6. Proceed with more detailed history and examination; evaluate results of laboratory tests.

B. Should laboratory evaluation of CSF reveal pneumococci, penicillin or chloramphenicol may be continued.

C. Should CSF reveal H. influenzae, ceftriaxone, 1 gm q12h IV or chloramphenicol may be used. Ampicillin 200-300 mg/kg/day divided q6h IV (eg, 3gm IV q6h) may be used for H. influenzae proven sensitive to ampicillin.

VII. Disposition:

A. Milder cases or cases which recover rapidly may be treated at hospitals in theater in anticipation of return to duty.

B. Cases which initially appear more severe, become complicated, or convalesce more slowly should be evacuated after initial stabilization.

VIII. Prognosis: even properly treated cases may have 5-10% mortality. Untreated, mortality may range from 50-85%. Residual morbidity is not unusual in properly treated cases. Hearing loss may persist.

IX. Public health measures:

A. Vaccination of susceptible populations.

B. Antibiotic prophylaxis of close contacts, as above.

C. Prevent overcrowding in troop shelters, and provide them with adequate ventilation.
RABBIES

I. Communicability:
 A. Route: virus laden saliva of an infected animal introduced by a bite.
 B. Isolation of patients: contact isolation for saliva and respiratory secretions. Transmission to attending personnel has not been documented.
 C. Contact prophylaxis: contacts with an open wound or mucous membrane that has been exposed to the patient's saliva should receive post-exposure prophylaxis.

II. Incubation period: 14 to 60 days (10 days to one year); 95% are within one year.

III. Diagnosis:
 A. Symptoms and signs: nonspecific syndrome of malaise, fatigue, headache and fever lasting 2-10 days with pain and paraesthesia at the bite site in over 50%. Syndrome merges to an acute encephalomyelitis with apprehension and hyperactivity progressing to spasm of the swallowing muscles and hydrophobia.
 B. Laboratory: diagnosis confirmed by specific fluorescent antibody staining of brain tissues. No useful antemortem diagnostic findings that would change management, although corneal impression smears or a skin biopsy of the neck above the hair line, stained with immunofluorescent antibody, can confirm the diagnosis.

IV. Duration:
 A. Treated: death in weeks to months.
 B. Untreated: death in days to weeks following onset of clinical symptoms.

V. Complications: usual multiple complications of comatose ICU patient.

VI. Treatment:
 A. No specific anti-rabies chemotherapy available; treatment is directed solely at supportive care.
 B. Pre-exposure prophylaxis not indicated for routine deployment to the Middle East.
C. Post-exposure prophylaxis: should be given to anyone who is bitten by dog, cat, fox or jackal and considered in any other exposure.
1. Cleanse and flush wound ASAP with copious water and soap.
2. Thorough wound cleaning and debridement under medical supervision, leaving wound open if possible.
3. Single dose of human rabies immune globulin (HRIG), 20 I.U./kg, half infiltrated into the bite site and the rest given IM.
4. Give human diploid cell vaccine (HDCV) in five 1.0 ml doses, IM, on days 0, 3, 7, 14 and 28.

VII. Disposition:
A. Exposure: full duty with supervised HRIG and HDCV.
B. Clinical illness: EVAC

VIII. Prognosis:
A. Treated exposure: excellent.
B. Treated clinical illness: uniformly fatal.

IX. Public Health:
A. Capture and sacrifice of any animal implicated; examine brain for rabies.
B. Education of troops to avoid stray or feral dogs, cats and wild foxes.
SANDFLY FEVER

I. Communicability:

A. Route:
 1. Sandfly (Phlebotomus papatasii) bites.
 2. No direct human to human transmission.

B. Isolation: not required. Protection of patients from further sandfly bites will interrupt transmission. Human viremia is present from about 24 hours prior to onset of fever until about 24 hours after fever resolves. Very fine mesh for screens or bed net (10-12 mesh/cm) required. Permethrin treatment of larger mesh mosquito nets will also make them effective barriers for sandflies.

C. Prophylaxis of contact: none required.

II. Incubation period: 3 - 6 days.

III. Diagnosis:

A. Symptoms: fever to 40°C
 - facial congestion
 - neck stiffness
 - supraorbital pain intense or retro-bulbar
 pain with eye movement
 - limb stiffness
 - malaise/nausea/myalgias

B. Signs: fever
 - conjunctival injection
 - papilledema (occasional)

C. Laboratory:
 1. Hematologic: leukopenia on day 4 - 5 of fever.
 2. Chemistries: n/a.
 3. Urinalysis: n/a.
 4. Microbiology: n/a.
 5. Serology: paired sera for hemagglutination-inhibition (HI) and neutralizing antibodies (retrospective only).
 6. Coagulation: n/a.

D. Invasive procedures: lumbar puncture shows increased opening pressure and CSF pleocytosis.

E. X-ray: n/a.

F. Diagnostic confirmation: serologic.
IV. Duration: up to 4 days, convalescence may be longer.

V. Complications: none, though patients may have lethargy, depression and easy fatigability for weeks after recovery.

VI. Treatment:
A. No specific treatment available yet.
B. Investigation into the potential use of ribavirin is in progress. Ribavirin, 400 mg PO Q8h x 8 days, prevented human disease after experimental challenge with sandfly fever virus.
C. Provide supportive care.

VII. Disposition: limited duty or local hospitalization until fever resolves, then full duty. Occasionally, convalescence may be prolonged and some patients may require EVAC.

VIII. Prognosis: full recovery. Single infection confers lasting immunity against same serotype.

IX. Public health measures:
A. Insecticide spraying of troop quarters, emplacements and entrenchments.
B. Troop education.
C. Insect repellents - command emphasis.
D. Report outbreaks to higher echelon medical authorities.
ACUTE SCHISTOSOMIASIS (KATAYAMA FEVER)

I. Communicability:

A. Route-man to man spread not seen. Disease acquired by contact with infected fresh water by swimming, wading, washing, etc.
B. Isolation of patients: not required.
C. Contact prophylaxis: not required.

II. Incubation period: schistosomiasis dermatitis (swimmer's itch) occurs within 24 hours of penetration of skin by the infective forked tailed cercariae. Clinical syndrome occurs 1 to 3 months later and starts with an "enteric fever" like picture which resembles typhoid fever or brucellosis.

III. Diagnosis:

A. Exposure east of the great sand belts: \textit{S. haematobium} which is not associated with an acute syndrome.
B. Exposure west of the great sand belts: \textit{S. mansoni} which could present as Katayama fever.
C. Symptoms:
 - fever (all)
 - chills
 - sweating
 - headache
 - cough (most)
 - diarrhea (50%)
 - weight loss
D. Signs:
 - lymphadenopathy
 - hepatomegaly (50%)
 - splenomegaly (10%)
E. Laboratory:
 - eosinophilia up to 40% in all patients
F. Microbiology: stool exam shows eggs in most patients with acute schistosomiasis; however, stools may be negative since eggs are present in stool only 40-55 days following infection with \textit{S. mansoni}.
G. Serology: not useful in acute cases.
H. Radiology: not useful acutely.
G. **NOTE:** exposure history is essential to consider the diagnosis. Absence of eosinophilia (>500 cell/mm³) excludes the diagnosis.

IV. Duration:

A. Treated: aborts chronic sequelae but may not limit acute disease.

B. Untreated: 2 to 4 weeks for resolution of acute symptoms.

V. Complications: if not recognized or treated could present later as chronic manifestations of schistosomiasis. Rare reports of death in non-immune with a heavy primary infection.

VI. Treatment:

A. Prasiquantel (Biltricide): single oral dose of 40 mg/kg following a meal; may also be given in two divided doses on the same day.

B. Prasiquantel may cause malaise, headache or dizziness; side effects fewer if given as two divided doses.

C. Other schistosoma infections: chronic infections can cause hepatic cirrhosis and intestinal polyposis (S. mansoni), or obstructive uropathy and bladder cancer (S. haematobium), so all infections must be treated, whether asymptomatic or not.

VII. Disposition: limited duty or hospitalization depending on how ill; EVAC may be indicated with severe disease.

VIII. Prognosis: excellent.

IX. Public health: education of soldiers to avoid exposure (swimming or wading in any fresh water).
SEXUALLY TRANSMITTED DISEASES: TREATMENT REGIMENS

I. Gonorrhea:

A. Uncomplicated urethral, cervical, or rectal infections:
 1. Ceftriaxone (Rocephin) 250 mg IM one dose, followed by doxycycline 100 mg BID orally x 7 days.
 2. Less desirable alternatives:
 a. Spectinomycin 2 gm IM one dose followed by doxycycline 100 mg BID orally x 7 days, or
 b. Ciprofloxacin 500 mg one dose orally, followed by doxycycline 100 mg BID orally x 7 days.

B. Pharyngeal infections: ceftriaxone or ciprofloxacin as above; doxycycline is not indicated.

C. Disseminated gonococcal infections:
 1. a. Ceftriaxone (Rocephin) 1 gm IV or IM Q12h, or
 b. Ceftizoxime (Ceftizox) 1 gm IV Q8h, or
 c. Cefotaxime (Claforan) 1 gm IV Q8h, or
 d. Spectinomycin 2 gm IM Q8h
 2. Duration: therapy should continue until 48 hours after all symptoms have resolved.
 3. Following above parenteral therapy, patients should receive:
 a. cefuroxime axetil 500 mg BID orally for 7 days, or
 b. amoxicillin with clavulanate (Augmentin) 500 mg TID orally for 7 days, or
 c. ciprofloxacin 500 mg BID orally for 7 days.

D. Gonococcal meningitis:
 1. Ceftriaxone (Rocephin) 1 gm or 2 gm IV Q12h x 10 to 14 days, or
 2. Chloramphenicol 1 gm IV Q4-6h for 10 to 14 days (less desirable regimen).
 3. In proven penicillin-sensitive cases, penicillin G, 300,000 U/kg/d in divided doses, to a maximum of 2,000,000 U Q2h IV for 10 to 14 days, is acceptable.

E. Gonococcal endocarditis:
 1. Ceftriaxone (Rocephin) 1-2 gm IV Q12h for 4 weeks.
 2. In proven penicillin-sensitive cases, penicillin G, 300,000 U/kg/d in divided doses, to a maximum of 2,000,000 U Q2h IV for 4 weeks may be given.

F. Adult gonococcal ophthalmia:
 1. Ceftriaxone (Rocephin) 1 gm IM, one dose, plus saline irrigation. Topical antibiotics are not sufficient.
2. Persistent cases may be treated with ceftriaxone 1 gm IM or IV QD for 5 days. Concurrent infection with Chlamydia trachomatis should be suspected if patient does not respond (see below).

II. Chlamydia Trachomatis:

A. Urethral, cervical, and rectal infections:
 1. Doxycycline 100 mg BID orally for 7 days or
 2. Tetracycline 500 mg QID orally for 7 days or
 3. Erythromycin 500 mg QID orally for 7 days

B. Conjunctivitis (Chlamydia trachomatis):
 1. Doxycycline 100 mg BID orally for 3 weeks, or
 2. Tetracycline 500 mg QID orally for 3 weeks, or
 3. Erythromycin 500 mg QID orally for 3 weeks.

III. Non-gonococcal urethritis: as for Chlamydia trachomatis; patients who do not respond or relapse after doxycycline or tetracycline therapy should be treated with erythromycin.

IV. Syphilis:

A. Primary, secondary, or early latent (less than 1 year duration):
 1. Benzathine penicillin G, 2.4 million units, IM, one dose.
 2. Less desirable alternatives:
 a. Doxycycline 100 mg BID orally for 2 weeks.
 b. Tetracycline 500 mg QID orally for 2 weeks.
 c. Erythromycin 500 mg QID orally for 2 weeks.

B. Late latent syphilis (more than 1 year), cardiovascular syphilis, or gummas:
 1. Benzathine penicillin G, 2.4 million units IM, 3 doses, 1 week apart, for 3 consecutive weeks.
 2. Less desirable alternatives; to be used if neurosyphilis has been excluded:
 a. Doxycycline 100 mg BID orally for 4 weeks.
 b. Tetracycline 500 mg QID orally for 4 weeks.

C. Neurosyphilis: aqueous crystalline penicillin G 2 to 4 million units Q4h IV for 14 days. No proven alternative; refer for desensitization of allergic patient. Anecdotal experience with ceftriaxone, 1 to 2 gm IM or IV QD, suggests that it may be an effective alternative to penicillin.
V. Chancroid:

A. Preferred:
1. Erythromycin 500 mg QID orally for 7 days, or
2. Ceftriaxone (Rocephin) 250 mg IM, one dose.

B. Alternatives:
1. TMP/SMX 160/800 (2 tablets or 1 double strength tablet) BID orally for 7 days, or
2. Ciprofloxacin 500 mg BID orally for 7 days, or
3. Amoxicillin plus clavulanate (Augmentin) 500 mg TID orally for 7 days.

VI. Lymphogranuloma venereum (LGV):

A. Doxycycline 100 mg BID orally for 3 weeks.

B. Alternatives:
1. tetracycline 500 mg QID orally for 3 weeks, or
2. erythromycin 500 mg QID orally for 3 weeks, or
3. sulfisoxazole 500 mg QID orally for 3 weeks.

VII. Genital Herpes Simplex:

A. Genital Herpes, first episode: acyclovir 200 mg 5x/day orally, for 7 to 10 days or until resolution (whichever is longer).

B. Herpes proctitis: acyclovir 400 mg 5x/day orally, for 10 days or until resolution (whichever is longer).

C. Genital Herpes, recurrent episode: therapy is generally ineffective. In severely symptomatic disease within 2 days of onset, consider acyclovir 200 mg 5x/day orally for 5 days or 800 mg 2x/day for 5 days.

VIII. Genital Warts:

A. Biopsy all atypical, pigmented, or persistent warts.

B. Cryotherapy, podophyllin, trichloroacetic acid or electrodesiccation are all effective topical measures.
2. Podophyllin 10%-25% in tincture of benzoin: apply total volume < 0.5 ml; wash off in 1-4 hours; repeat weekly as needed.
3. Trichloroacetic acid (80-90% solution): apply weekly as needed.

IX. Pelvic Inflammatory Disease:

54
A. Strongly consider hospitalization - this is particularly advised in military setting.

B. Parenteral regimens:
1. Cefoxitin 2 gm Q6h IV plus doxycycline 100 mg BID orally, until 48 hours after clinical resolution, followed by doxycycline 100 mg BID orally for a total of 14 days.
2. Cefotetan, 2 gm Q12h IV may be substituted for cefoxitin, above.
3. Clindamycin 900 mg Q8h IV plus gentamicin loading dose 2 mg/kg IM or IV followed by 1.5 mg/kg Q8h IV, until 48 hours after clinical resolution, followed by doxycycline 100 mg BID orally for a total antibiotic course of 14 days.

C. Outpatient regimen (less desirable):
1. Cefoxitin 2 gm IM plus probenecid 1 gm orally, one dose plus doxycycline 100 mg BID orally for 14 days or tetracycline 500 mg QID orally for 14 days or erythromycin 500 mg QID orally for 14 days.
2. Ceftriaxone (Rocephin) 250 mg IM may be substituted for cefoxitin.

X. Epididymitis: treat as for urethral gonorrhea, except for prolonging doxycycline for 10 days total.

XI. Trichomoniasis: metronidazole (Flagyl) 2 gm orally, single dose, or metronidazole 500 mg BID orally for 7 days.

XII. Pediculosis pubis (crab lice):
A. 1. Permethrin 1% creme rinse applied to affected area and washed off after 10 minutes, or
2. Pyrethrins and piperonal butoxide applied to the affected area and washed off after 10 minutes, or
3. Lindane 1% shampoo applied for 4 minutes than washed off (avoid during pregnancy).

B. Pediculosis of eyelids should be treated with an occlusive ophthalmic ointment BID for 10 days to smother nits and lice.
XIII. Scabies:
 A. Lindane (1%): 1 oz of lotion or 30 gm of cream applied from neck down, covering body and washed off after 8 hours, or
 B. Crotamiton (10%) applied from neck down, washed off after 24 hours, and immediately reapplied for another 24 hours.
 C. Avoid Lindane during pregnancy.

XIV. Additional diagnostic concerns: patients may be simultaneously infected with more than one sexually transmitted disease. Evaluate all such patients with serology for syphilis at presentation and at 3 months, and for HIV at presentation, and at 3 months and 6 months after presentation.

XV. Pregnancy warnings:
 A. Avoid use of tetracycline, doxycycline, acyclovir, metronidazole, ciprofloxacin, erythromycin estolate (other erythromycins acceptable), podophyllin, and lindane in pregnancy.
 B. Erythromycin is ineffective in preventing congenital syphilis in the fetus of a syphilis-infected pregnant woman.

XVI. Treatment of sexual partners, presumptive: sexual partners of patients with the following sexually transmitted diseases should be treated presumptively: chancroid, syphilis, gonorrhea, chlamydia, other non-gonococcal urethritis, pelvic inflammatory disease, and trichomoniasis.
STREPTOCOCCAL INFECTIONS

I. Communicability:

A. Route:
1. Person to person, via respiratory or salivary droplets. Crowded living arrangements enhance transmission.
2. Food and waterborne outbreaks have occurred.

B. Isolation of patient: not warranted.

C. Contact Prophylaxis: generally not warranted. In an outbreak of streptococcal disease associated with rheumatic fever or glomerulonephritis, culture and treatment of culture-positive household contacts (barracks or tent mates) can be considered. Alternatively, prophylactic benzathine penicillin can be employed to interrupt an outbreak.

II. Incubation: 2 to 4 days for pharyngitis.

III. Diagnosis: clinical streptococcal disease may present as pharyngitis, scarlet fever, erysipelas (superficial cellulitis), or pyoderma (impetigo).

A. Pharyngitis:
1. Symptoms: sore throat, headache, fever, malaise.
2. Signs: pharyngeal redness, edema, and lymphoid hyperplasia; enlarged reddened tonsils with exudate (in 50%), tender submandibular lymphadenopathy; fever ≥ 101°F (38.3°C).
3. Laboratory: mild leukocytosis, positive pharyngeal cultures.

B. Scarlet Fever:
1. Usually occurs with pharyngitis, but may be seen with streptococcal skin infections.
2. Symptoms: those of primary infected site, plus fever, rash, and occasionally marked systemic toxicity or a toxic-shock like syndrome.

C. Erysipelas:
1. Symptoms: chills, fever, systemic toxicity.
2. Signs: red, edematous, sharply demarcated, advancing skin lesion.
D. Impetigo:
1. Signs: pustule which enlarges into thickly crusted shallow skin ulcers, typically occurring on exposed skin areas.

IV. Duration:
A. Pharyngitis: treated 1 to 4 days; untreated 3 to 5 days.
B. Scarlet Fever: rash persists 4 to 5 days; subsequent desquamation persists 2 to 4 weeks.
C. Erysipelas/cellulitis: treated; improvement in 24 to 48 hours; untreated; may proceed to fatality.
D. Impetigo: treated; improvement within 2 to 3 days. untreated: may persist several weeks.

V. Complications:
A. Immunologic:
 1. Rheumatic fever.
 2. Acute glomerulonephritis.
B. Infection: septicemia, otitis media, sinusitis, mastoiditis, meningitis, brain abscess, toxic shock syndrome (all uncommon).

VI. Treatment:
A. Pharyngitis:
 1. Benzathine Penicillin G, 1.2 million units IM one dose; preferred; or
 2. Penicillin V 250 mg PO TID for 10 days (avoid due to compliance problem); or
 3. Erythromycin 250 mg PO QID for 10 days (for penicillin-allergic patients).
B. Scarlet fever:
 1. Treat primary source of infection (e.g. pharyngitis, skin) as appropriate.
 2. Supportive care.
C. Erysipelas/cellulitis:
 1. Penicillinase-resistant penicillin (to cross cover possible staphylococcal etiology) IV or PO depending on severity of infection. May switch to oral agent 1 to 2 days after initiating therapy if response is good. Minimum 10 day course; or,
2. Erythromycin: 0.5 to 1 gm Q6h IV followed by 500 mg Q6h PO, once response has occurred to complete full 10 day course; or
3. Vancomycin: 1 gm Q12h IV; switch to PO erythromycin to complete 10 day course.

D. Impetigo:
1. Penicillin V 250 mg PO QID for 10 days; or,
2. Erythromycin 250 mg PO QID for 10 days.

VII. Disposition:
A. Local hospitalization required for scarlet fever, erysipelas, or severe pharyngitis.
B. Mild pharyngitis or impetigo may be returned to duty.
C. Evacuation should rarely, if ever, be required unless rheumatic fever, glomerulonephritis or advanced infectious complications develop.

VIII. Prognosis: excellent if treated. Complications of untreated disease will be associated with serious sequelae in some cases. Scarlet fever and erysipelas may be fatal if not properly treated.

IX. Public health measures:
A. No specific measures warranted under most circumstances.
B. Good hygiene will minimize incidence of streptococcal skin infections.
TUBERCULOSIS

I. Communicability:

A. Route:
 1. Inhalation of airborne droplet nuclei from productive cough of tuberculous patients.
 2. Ingestion of infected unpasteurized dairy products.

B. Isolation: respiratory isolation indicated for patients with cough productive of bacteriologically positive (culture or smear) sputum. Appropriate antituberculous drug therapy generally renders sputum non-infectious in 2 weeks. If sputum status is unknown, isolate patient until it is determined.

C. Prophylaxis:
 1. Household contacts (barracks or tent mates) should be screened with intradermal intermediate strength (5-TU) PPD.
 2. PPD negative contacts: retest in 2 to 3 months.
 3. PPD positive contacts:
 a. Check chest X-ray to rule out active pulmonary disease.
 b. If chest X-ray shows evidence of pulmonary tuberculosis, evaluate and treat for active disease (see below).
 c. If CXR is negative or normal, consider INH prophylaxis as follows:
 i) INH 300 mg PO QD for 6 months.
 ii) INH prophylaxis should not be given to patients: who have had prior INH therapy; those older than age 35 years who have not had a negative IPPD within two years of the current testing; those patients with active liver disease; and those patients who have had previous adverse reactions to INH.
 iii) delay prophylactic INH chemotherapy in pregnant women until after delivery.
 iv) advise discontinuation of alcohol intake while on INH.
 d. In cases of exposure to known INH-resistant tuberculosis and subsequent PPD conversion, alternative regimens include:
 i) INH, 300 mg PO QD, for 6 months.
 ii) rifampin, 600 mg (10 mg/kg) PO QD, for 6 months; alone.
 iii) rifampin, 600 mg (10 mg/kg) PO QD, plus ethambutol, 15-25 mg/kg QD, for 6 months.
iv) INH, 300 mg PO QD, plus rifampin, 600 mg (10 mg/kg) PO QD, for 6 months to 1 year.

II. Incubation:
A. For development of primary lesion: 4 to 12 weeks.
B. For progressive, reactivation or extrapulmonary disease: 4 weeks to lifetime. Risk of active disease is greatest during the first 6 to 24 months after infection, or with development of other systemic illnesses which weaken host defenses.

III. Diagnosis:
A. Symptoms:
1. Disease may be asymptomatic, especially early.
2. Fever (may be intermittent)
 night sweats
 anorexia
 weight loss
 fatigue
 cough (productive or non-productive)
 hemoptysis
 chest pain (pleuritic)
 dyspnea
3. Symptoms produced by extrapulmonary tuberculosis depend on the organ system involved. In rough order of frequency, extrapulmonary sites include:
 a. lymphatics
 b. pleura
 c. genitourinary tract
 d. bone/joint
 e. meninges
 f. peritoneum
 g. other, including: liver, pericardium, middle ear and brain.
B. Signs:
1. Signs may be absent, especially in early disease.
 In general they are nonspecific and less significant than would be expected from extent of disease.
2. Rales, especially post-tussive; dullness to percussion; and diminished breath sounds.
3. Other signs depend on the site(s) of extrapulmonary involvement.
C. Laboratory:

1. Hematologic:
 a. May be normal.
 b. Anemia, mild leukocytosis or monocytosis (≥ 10%)

2. Chemistry:
 a. Usually normal.
 b. Hypercalcemia.
 c. Hyponatremia.
 d. Other abnormalities may represent specific effects of extrapulmonary involvement.

3. Urinalysis:
 a. Usually normal.
 b. In presence of genitourinary tuberculosis may see sterile pyuria, proteinuria and/or hematuria.

4. Microbiologic:
 a. Examination of smear (sputum, gastric aspirate) with acid-fast staining may show organism. A single organism on a slide may be significant, though usually 3 to 5 organisms per slide is considered a true positive.
 i) Fluorochrome staining is most efficient.
 ii) Alternatives include Ziehl-Neelson, Kinyoun, or blue-light fluorescent stains.
 b. Radiometric culture system (i.e. BACTEC) will reveal presence of organisms in 2 to 6 days.
 c. Standard mycobacterial cultures may take up to 6 weeks to define organism.
 d. Drug sensitivity results are generally unavailable before 4 to 6 weeks.
 e. In presence of urinary sediment abnormalities, obtain APB smears and cultures on centrifuged urine.

5. Serology: not in general use.

D. X-rays findings depend on the character and extent of disease.

1. Early or primary TB may present in any lobe (more typically lower) as pneumonic infiltrate, atelectasis or mass, with or without ipsilateral hilar adenopathy.

2. Later, chronic, or reactivation TB typically shows patchy or nodular infiltrates in the apices or superior segments of lower lobes; cavitation may or may not be present.

3. Pleural effusions may be seen.
E. Invasive procedures:
1. Gastric aspirate for smear and culture may be useful if no sputum can be produced.
2. Bronchoscopy, with washings for cultures, may be diagnostic when TB is a consideration but organisms cannot be recovered by less invasive means.
3. The choice of other specific invasive procedures, including thoracentesis, lumbar puncture, or biopsies, is guided by clinical evidence of extrapulmonary TB.

F. Skin testing: in previous non-reactors, PPD may convert to positive by 4 weeks. PPD may be negative in early or primary disease, in overwhelming disease, or in patients with immunosuppression from other disease. Up to 25% of patients with pulmonary TB may have negative skin tests; 5% of patients may have selective anergy (negative PPD and positive anergy panel). In an area of high prevalence, IPPD skin tests of >10 mm induration are considered positive.

G. Diagnostic confirmation: successful culture of mycobacteria from clinical specimens.

IV. Duration:
A. Treated: variable, depending on extent of disease. Treatment regimens range from 9-18 months in length, but clinical response occurs much sooner.
B. Untreated: indefinite. 50% die; 25% develop chronic TB, which can remain active for years; and 25% spontaneously heal.

V. Complications:
A. Pulmonary: hemoptysis; massive hemorrhage; and major parenchymal lung damage with permanent impairment of respiratory function.
B. Extrapulmonary: ranges from minor damage to destruction of the involved organ.
C. Recurrence, possibly with resistant organisms, may occur in inadequately treated patients. Recurrence in inadequately treated patients is very uncommon, but may occur.
VI. Treatment:

A. Standard treatment is a 9 month course of INH, 300 mg QD, plus rifampin, 600 mg (10 mg/kg) QD.

B. Given the high level of resistance to INH anticipated in organisms acquired in the Middle East, treatment of TB cases in that setting should include rifampin plus at least one other drug in addition to INH. Optimal choices for the third drug include pyrazinamide, 25-35 mg/kg (maximum 2.5 gm) QD, or ethambutol, 15-25 mg/kg QD. A four drug regimen containing INH, rifampin, ethambutol, and pyrazinamide may be optimal in this setting pending mycobacterial sensitivity results.

C. Monitor therapy monthly.

D. Alternative agents include:
 1. Streptomycin, 750 to 1000 mg IM QD for 2 to 3 months, then 750-1000 mg IM 2 to 3 times per week; resistance to streptomycin is common in the Middle East.
 2. Capreomycin, 1 gm IM QD; greater ototoxicity than streptomycin.
 3. Ethionamide, 10-15 mg/kg PO QD; bacteriostatic; has GI, hepatic, and neurotoxicity.
 4. Cycloserine, 750-1000 mg PO QD, divided in 3 or 4 doses); bacteriostatic; has significant potential central nervous system toxicity. Pyridoxine, 100 mg PO QD, should be considered to prevent CNS toxicity.
 5. Amikacin, 15 mg/kg IM QD.

E. Treatment failures or relapses: therapy should be guided by mycobacterial sensitivity results, with the basic principle of always using at least two new drugs to which the organism is sensitive. Refer patients with resistant disease for specialist management. If a patient is failing on therapy, always add two new drugs until sensitivities are known.

VII. Disposition: varies with severity of clinical disease.

A. Asymptomatic, or mildly ill patients whose symptoms resolve quickly, may be returned to duty on medication, with follow-up, once non-infectious (usually by two weeks of treatment).

B. More seriously ill, or persistently ill, patients will require evacuation.
C. The need for temporary isolation of infectious cases may guide the disposition decision, based on available medical capabilities.

VIII. Prognosis: excellent in properly treated cases.

IX. Public health measures:
 A. Isolation and treatment of infectious patients.
 B. Prophylaxis of contacts (see Section II, above).
 C. Avoid use of local (unpasteurized) dairy products.
ENDEMIC TYPHUS (MURINE TYPHUS, FLEABORNE TYPHUS)

I. Communicability:
 A. Routes:
 1. Bite of infected rat flea (Xenopsylla cheopis).
 2. No evidence of person to person transmission.
 B. Isolation: not required.
 C. Prophylaxis of contacts: not required.

II. Incubation: 12 days (range 4-15 days).

III. Diagnosis: overall similar to epidemic typhus but milder, briefer.
 A. Symptoms: onset variable, but more commonly sudden.
 fever (90-100%)
 chills
 headache (severe) (85% or more)
 myalgia (85%)
 non-productive cough (50-60%)
 nausea
 vomiting
 marked weakness/prostration
 sore throat
 chest pain
 B. Signs:
 fever (100%) up to 40°C (105°F) for 12-16 days duration.
 rash (80-80%) initial: upper thorax and abdomen, macular, appears on day 3-5 of illness.
 later: remains central, becomes maculopapular, duration 4-8 days, rarely involves face or palms.
 conjunctival injection (50%)
 splenomegaly (30%)
 mental status changes (20%)
 photophobia (10-20%)
 no eschar present
 C. Hematology: WBC usually normal.
 D. Chemistries: non-specific.
 E. Microbiology: not available, except in special facilities with containment capability.
V. U/A: proteinuria (15-20%).

G. Serology: Weil-Felix reaction to OX-19 (four-fold titer rise or single titer ≥ 1/320).

H. Coagulation: nonspecific.

I. Invasive procedures: not indicated.

J. X-ray: findings non-specific.

K. Diagnostic Confirmation: clinical diagnosis generally is sufficient for patient care. If specific confirmation is required for epidemiologic purposes, culture or specialized application of indirect immunofluorescent antibody after cross absorption of patient’s serum with specially prepared antigen from other rickettsial species.

IV. Duration:

A. Treated: 2 to 3 days, until defervescence.

B. Untreated: up to 16 days until defervescence.

V. Complications: very uncommon.

VI. Treatment:

A. Standard:
 1. Tetracycline 250 mg PO QID until day 3 after defervescence.

B. Alternatives:
 1. Doxycycline 100 mg PO BID until 3 days after defervescence.
 2. Chloramphenicol 50 mg/kg/day divided into 4 doses until 3 days after defervescence.

C. Relapse: rare in murine typhus; retreat with original regimen.

VII. Disposition: local hospitalization, anticipate return to duty in 1 to 2 weeks.

VIII. Prognosis: excellent; even untreated cases should recover without sequelae.
II. Public health measures:

A. Insecticide application to rat runs and rat-infested areas to kill fleas.

B. After effective insecticide applications, rat-elimination measures including poisoning and trapping are indicated.

C. Rat-proofing human quarters.
EPIDEMIC TYPHUS (LOUSE-BORNE)

I. Communicability:

A. Routes:
 1. Body louse (*Pediculus humanus*) infestation; inoculation with louse feces through skin abrasions or excoriations.
 2. No evidence of person-to-person transmission.

B. Isolation: contact isolation required until after delousing (by insecticide) of patients clothing, bedding, quarters, and household contacts. Options: DDT; lindane; malathion; carbaryl.

C. Prophylaxis:
 1. A killed organism vaccine is available but is recommended only for high risk individuals, not usually including military personnel. Two doses, 10 to 14 days, apart may reduce incidence of disease, and diminishes mortality to almost nil.
 2. Doxycycline, single dose, 200 mg.

II. Incubation period: 12 days (range 5-23).

III. Diagnosis:

A. Symptoms: abrupt onset.
 - sustained fever ≥ 40°C
 - severe headache
 - prostration
 - back pain
 - limb pain
 - non-productive cough
 - photophobia
 - anorexia
 - constipation
 - nausea (uncommon)
 - vomiting (uncommon)
 - diarrhea (uncommon)

B. Signs:
 - rash (90%); onset, day 3 to 5 of illness. Initially in axillary folds, on abdomen and chest. Centrifugal spread later. Initially roseolar, macular; becomes petechial. Rarely involves palms, soles or face. No eschar is seen.
 - profound lethargy/stupor
 - delirium
 - facial congestion
 - conjunctival injection

69
spleenomegaly
hypotension
tachycardia
jaundice (uncommon)
oliguria
meningismus
cranial nerve palsy, including deafness/tinnitus

C. Laboratory:
1. Hematologic: leukopenia early; no eosinophilia; anemia and thrombocytopenia seen as disease advances.
4. Microbiology: culture may be possible in large centers but not under field conditions or in small hospitals.
5. Serology:
 a. Weil Felix reaction (OX-19): 4 fold rise or single titer > 1:320 in 2nd week of illness.
 b. Specific serologic testing: IFA or microagglutination.

D. Invasive procedures: CSF may show pleocytosis.

E. X-ray: CXR may show pulmonary infiltrate.

IV. Complications: sepsis, parotitis, pneumonia; rarely myocarditis, CHF, thromboses.

V. Treatment:
A. Doxycycline, 200 mg PO, single dose.
B. Tetracycline, 250 mg PO QID, until 3 days post defervescence (avoid if renal failure is present).
C. Chloramphenicol, 50 mg/kg/day, divided into 4 doses, until 3 days post defervescence.
D. Relapse: repeating initial treatment is effective.

V. Disposition:
A. Initial: hospitalization.

B. Post treatment: prompt responders, return to duty; complicated cases, with those with inadequate response to treatment: evacuate.
VI. Prognosis:

A. Mortality:
 1. Treated: very little, if any, mortality.
 2. Untreated: 10-40% depending on clinical situation.

B. Prompt recovery with therapy: usually better in 24 to 48 hours.

C. Untreated: fever lyses in 2 weeks; mentation rapidly returns to normal; 2 to 3 months may be required for return of strength.

D. Relapses occur rarely, but are more likely if tetracycline or chloramphenicol are prematurely stopped.

VII. Prevention:

A. Insecticides:
 1. Application of insecticide to clothing of all personnel at risk of exposure.
 2. Use of persistent insecticide for application to clothing of individuals at particular risk.

B. Hygiene: command emphasis on personal hygiene and cleanliness of clothing.

C. Disease reporting to higher echelon medical authorities.
SECTION II

BIOLOGICAL AGENTS
SECTION I

INTRODUCTION

Technology makes it possible that U.S. forces could be exposed to biological weapons. The following sections are an update of medical information in potential biological agents.

The major risk is aerosol exposure. Clearly, the most effective and singularly most important prophylaxis is physical protection. Preventing exposure of the respiratory tract and mucous membranes (to include the conjunctivae) to infectious and/or toxic aerosols through use of a full-face respirator will prevent illness, and should, theoretically, obviate the need for additional measures. To this end, the currently fielded M17-Al and new M40 and M43 chemical protective masks effectively filter biological hazards. Medical defenses (prophylaxis and therapy) against some of the possible threat agents are limited, and outlined in the enclosed document. All medical prophylactic modalities described should be viewed only as secondary (i.e., backup) and not be relied upon as primary protective measures.

Agent exposures near the source of dissemination would be high and likely to overwhelm any medical protective measure. The precise efficacy of available medical countermeasures has, of course, never been evaluated in actual field circumstances, but is largely inferred from laboratory studies on non-human primates. While these extrapolations may be inexact, they strongly support the efficacy of vaccines and drugs at some agent dose. Use would be based in command assessments of the potential threats.

Unlike some chemical threats, aerosols of agents disseminated by line-source munitions (e.g., sprayed by low-flying aircraft or speedboat along the coast) do not leave hazardous environmental residual (although anthrax spores are extremely persistent and could pose a hazard near the dissemination line). On the other hand, aerosols generated by point-source munitions (i.e., stationary aerosol generator, bomblets, etc.) are more apt to produce ground contamination, but only in the immediate vicinity of dissemination. Point source munitions leave an obvious signature that alerts the field commander to the fact that a biological warfare attack has occurred. Since point source munitions always leave an agent residue, this evidence can be exploited for diagnostic purposes.

In general, neither clinical laboratory samples nor medical care of these patients are dangerous. There is no risk to health-care providers from victims of intoxications such as botulism or staphylococcal enterotoxins, and the risk from anthrax is limited to exposure to open lesions or blood (possibly resulting in cutaneous anthrax). Isolation precautions beyond that required for hepatitis (and then, only for suspected anthrax victims) are unnecessary. However, post-mortem examination of suspected anthrax victims should be performed with strict mask, gown, and glove precautions because of the high titers of vegetative organisms that may be present.

Outlined in Section II is an assessment of our current capability to respond to several potential biological agents. Additional agents will be discussed in future publications. A common format is used to enable rapid consolidation of capabilities by response area (e.g., specific laboratory diagnosis, therapy, prophylaxis). Section III contains information pertinent to specimen collection and processing for the specific laboratory diagnosis of biological warfare threat agents. Section IV provides a review of clinical features distinguishing chemical neurointoxications from botulism.
SECTION II
SPECIFIC THREAT AGENTS

ANTHRAX

A: CLINICAL SYNDROME

Anthrax is a zoonotic disease caused by *Bacillus anthracis*. Under natural conditions, man becomes infected by contact with infected animals or contaminated animal products. Human anthrax usually is manifest by cutaneous lesions. A biowarfare attack with anthrax spores delivered by the aerosol route would cause inhalation anthrax, an extraordinarily rare form of the naturally occurring disease.

Clinical Features:

The disease begins after an incubation period varying from 1 to 6 days, presumably dependent upon the dose of inhaled organisms. Onset is gradual and non-specific, with fever, malaise, and fatigue, sometimes in association with a nonproductive cough and mild chest discomfort. In some cases, there may be a short period of improvement. The initial symptoms are followed in 2 to 3 days by the abrupt development of severe respiratory distress with dyspnea, diaphoresis, stridor, and cyanosis. Physical findings may include evidence of pleural effusions, edema of the chest wall, and meningitis. Chest X-ray reveals a dramatically widened mediastinum, often with pleural effusions but typically without infiltrates. Shock and death usually follow within 24 to 36 hours of respiratory distress onset.

B: DIAGNOSIS

1. Routine Laboratory Findings

Laboratory evaluation will reveal a neutrophilic leukocytosis. When pleural effusions and evidence of meningitis are present, pleural and cerebrospinal fluids may be hemorrhagic.

2. Differential Diagnosis

An epidemic of inhalation anthrax in its early stage with non-specific symptoms could be confused with a wide variety of viral, bacterial, and fungal infectious diseases. Progression over a period of 2 to 3 days with the sudden development of severe respiratory distress followed by shock and death in 24-36 hours in essentially all untreated cases eliminates diagnoses other than inhalation anthrax. The presence of a widened mediastinum on chest X-ray, in particular, should alert one to the diagnosis. Other suggestive findings include chest wall edema, hemorrhagic pleural effusions, and hemorrhagic meningitis. Other diagnoses to consider include aerosol exposure to staphylococcal enterotoxin B, but in this case, onset would be more rapid after exposure (if known), and no prodrome would be evident prior to onset of severe respiratory symptoms. Mediastinal widening on chest X-ray will also be absent. Patients with plague pneumonia would have pulmonary infiltrates and clinical signs of pneumonia (usually absent in anthrax).

C: Specific Laboratory Diagnosis

Bacillus anthracis will be readily detectable by blood culture with routine media. Smears and cultures of pleural fluid and abnormal cerebrospinal fluid may also be positive. Impression smears of mediastinal lymph nodes and spleen from fatal cases should be positive. Toxemia is sufficient to permit anthrax toxin detection in blood by immunoassays, and such assays will be available in field-deployed laboratories (see Section III).
C. THERAPY

Almost all cases of inhalation anthrax have been fatal regardless of treatment. Historically, penicillin has been regarded as the treatment of choice, with 2 million units given intravenously every 2 hours. Tetracycline and erythromycin have been recommended in penicillin-sensitive patients. The vast majority of anthrax strains are sensitive in vitro to penicillin. However, penicillin-resistant strains exist naturally, and one has been recovered from a fatal human case. Moreover, it is not difficult to induce resistance to both penicillin and tetracycline through laboratory manipulation of organisms. All strains tested to date have been sensitive to erythromycin, chloramphenicol, gentamicin, and ciprofloxacin. In the current setting, treatment should be instituted at the earliest signs of disease with oral ciprofloxacin (1000 mg initially, followed by 750 mg po bid) or intravenous doxycycline (200 mg initially, followed by 100 mg q 12 hrs).

D. PROPHYLAXIS

VACCINE

A licensed, alum-precipitated, preparation of purified Bacillus anthracis protective antigen (PA) has been shown to be effective in preventing or significantly reducing the incidence of inhalation anthrax. Limited human data suggests that, after completion of the first 3 doses of the recommended 6-dose primary series (0, 2, 4 weeks, then 6, 12, 18 months), protection against both cutaneous and inhalation anthrax is afforded. Studies in rhesus monkeys indicate that good protection is afforded after 2 doses (10-16 days apart) for periods up to 2 years. There is likely protection after 2 doses in humans as well, but there is too little information to draw firm conclusions. As with all vaccines, the degree of protection depends upon the magnitude of the challenge dose; vaccine-induced protection is undoubtedly overwhelmed by extremely high spore challenge.

In the present setting, 3 doses of the vaccine (at 0, 2, and 4 weeks) is recommended for prophylaxis against inhalation anthrax. Given projected stocks, 2 doses, 0.5 ml each, administered subcutaneously on days 0 and 14, are recommended initially. A third dose should be given 2 or more weeks after the second as additional vaccine becomes available. Contraindications for use are sensitivity to vaccine components (formalin, alum, benzethonium chloride) and/or history of clinical anthrax. Reactogenicity is mild to moderate: up to 6% of recipients will experience mild discomfort at the inoculation site for up to 72 hours (tenderness, erythema, edema, pruritus), while a smaller proportion (< 1%) will experience more severe local reactions (potentially limiting use of the extremity for 1-2 days); modest systemic reactions (myalgia, malaise, low-grade fever) are uncommon, and severe systemic reactions (anaphylaxis, which precludes additional vaccination) are rare. The vaccine should be stored at refrigerator temperature (not frozen).

ANTIBIOTICS

Choice of antibiotics for prophylaxis is guided by the same principles as that for treatment; i.e., it is relatively easy to produce a stable penicillin or tetracycline-resistant organism in the laboratory. Therefore, if there is information indicating that a biological weapon attack is imminent, initiating prophylaxis with ciprofloxacin (500 mg po bid), or doxycycline (100 mg po bid) is probably reasonable. If unvaccinated, a single 0.5 ml dose of vaccine should be given subcutaneously. Should the attack be confirmed as anthrax, antibiotics should be continued for at least 4 weeks in all exposed. In addition, two 0.5 ml
doses of vaccine should be given 2 weeks apart in the unvaccinated; those previously
vaccinated with fewer than 3 doses should receive a single 0.5 ml booster, while vaccination
probably is not necessary for those who have received the entire 3-dose primary series.
Upon discontinuation of antibiotics, patients should be closely observed; if clinical signs of
anthrax occur, patients should be treated as indicated above. If vaccine is not available,
antibiotics should be continued beyond 4 weeks until the patient can be closely observed upon
discontinuation of therapy.

BOTULISM

A. CLINICAL SYNDROME

Botulism is caused by intoxication with the neurotoxin produced by *Clostridium
botulinum*. The toxin is a protein with molecular weight of approximately 150,000 which
binds to the presynaptic membrane of neurons at peripheral cholinergic synapses to prevent
release of acetylcholine and block neurotransmission. The blockade is most evident clinically
in the cholinergic autonomic nervous system and at the neuromuscular junction.

A biowarfare attack with botulinum toxin delivered by aerosol to the respiratory tract
would be expected to cause symptoms similar in most respects to those observed with
foodborne botulism.

Clinical Features:

Symptoms of botulism may begin as early as 3 to 36 hours following exposure, or as
late as several days. Initial symptoms include generalized weakness, lassitude, and dizziness.
Diminished salivation with extreme dryness of the mouth and throat may cause complaint of
a sore throat. Urinary retention or ileus may also occur. Motor symptoms usually are
present early in disease; cranial nerves are affected first with blurred vision, diplopia, paresis,
and photophobia. Bulbar nerve dysfunction causes dysarthria, dysphonia, and dysphagia.
This is followed by a symmetrical, descending, progressive weakness of the extremities along
with weakness of the respiratory muscles. Development of respiratory failure may be abrupt.

On physical examination, the patient is alert, oriented, and afebrile. Postural
hypotension may be present. Ocular findings may include ptosis, extraocular muscle
paralysis, and fixed and dilated pupils. Mucous membranes of the mouth may be dry and
crusted. Neurologic examination shows flaccid muscle weakness of the palate, tongue,
larynx, respiratory muscles, and extremities. Deep tendon reflexes vary from intact to
absent. No pathologic reflexes are present, and the sensory exam generally is normal
(although reports suggest that obtundation or sensory involvement may sometimes occur).

B. DIAGNOSIS

1. **Routine Laboratory Findings**

Routine laboratory findings are of no value in diagnosis. The cerebrospinal fluid is
normal.

2. **Differential Diagnosis**

The occurrence of an epidemic with large numbers of afebrile patients with
progressive ocular, pharyngeal, respiratory, and muscular weakness and paralysis hints
strongly at the diagnosis. Single cases may be confused with various neuromuscular
disorders such as atypical Guillain-Barre syndrome, myasthenia gravis, or tick paralysis.
The edrophonium (tensilon) test may be transiently positive in botulism. Other considerations include enterovirus infections, but in these patients, fever is present, paralysis is often asymmetrical, and the cerebrospinal fluid is abnormal. In the present setting, it will be necessary to distinguish nerve agent and atropine poisoning from botulinum intoxication. Briefly, organophosphate nerve agent poisoning results in miotic pupils and copious secretions. In atropine poisoning, the pupils are dilated and mucous membranes are dry, but central nervous system excitation with hallucinations and delirium is present. See Section IV for a more comprehensive differential.

3. Specific Laboratory Diagnosis

Detection of toxin in serum or gastric contents from cases of foodborne botulism is often feasible by mouse inoculation. In the case of inhalation botulism, toxin may well be cleared from the blood by the time symptoms are noted. Nevertheless, serum should be obtained from representative cases for such attempts. Survivors probably will not develop an antibody response due to the small amount of toxin necessary to cause death. See Section III for details of sample collection and processing.

C. THERAPY

Respiratory failure secondary to paralysis of respiratory muscles is the most serious complication and, generally, the cause of death. Reported cases of botulism prior to 1950 had a mortality of 60%. With tracheostomy and ventilatory assistance, fatalities should be <5%. Intensive and prolonged nursing care may be required for recovery (which may take several weeks or even months).

ANTITOXIN

In isolated cases of foodborne botulism, circulating toxin is usually present, perhaps due to continued absorption through the gut wall. Equine antitoxin has been used in these circumstances, and is probably helpful. After aerosol exposure, it is unknown whether toxin circulates or antitoxin would be therapeutically useful after onset of symptoms. However, administration of antitoxin is reasonable if disease has not progressed to a stable state.

A human pentavalent antitoxin produced by plasmapheresis of toxoid vaccinees is available in very limited quantities. It is an Investigational New Drug (IND) and has never been tested for efficacy. Formal safety and pharmacokinetic studies are in progress. This product is useful only for highly specialized indications, and should not be considered as generally available. There is no prospect for additional human antitoxin to be produced and made available in the foreseeable future.

A "despeciated" equine heptavalent antitoxin (vs types A, B, C, D, E, F, and G) has been prepared by cleaving the Fc fragments from horse IgG molecules, leaving F(ab)2 fragments. Once bottled and tested, it is felt that this antitoxin might offer an option for therapy.

An equine trivalent (vs types A, B, and E) antitoxin is produced commercially in limited quantities. Its efficacy is inferred from mixed case-report series, but is formally unproven outside animal studies. Use requires pre-testing for sensitivity to horse serum (and desensitization for those allergic), and disadvantages include rapid clearance by immune elimination, as well as the risk of serum sickness. This product will not be generally available in the field.

D. PROPHYLAXIS
A pentavalent toxoid of Clostridium botulinum types A, B, C, D, and E is available under IND status. This product has been administered to several thousand volunteers and occupationally at-risk workers, and induces serum antitoxin levels which correspond to protective levels in experimental animal systems. The currently recommended schedule (0, 2, and 12 weeks, then a 1 year booster) induces solidly protective antitoxin levels in an acceptable percentage of vaccinees after 1 year. The little available data suggests that limited and transient antitoxin levels are induced after 3 injections; there are no data currently available to assess immunogenicity after 1 or 2 doses, although lower levels of antitoxin than those currently recommended for laboratory workers may well offer protection in a field setting.

At present, this product is available in limited quantities, and must be administered under protocol. Contraindications include sensitivity to alum, formaldehyde, and thimerosal, or hypersensitivity to a previous dose. Reactogenicity is modest, with 2-4% of vaccinees reporting erythema, edema, or induration which peaks at 24-48 hours, then dissipates. The frequency of local reactions increases with each subsequent inoculation; after the second and third doses, 7-10% will have local reactions, with higher incidences (up to 20% or so) after boosters. Severe local reactions are rare, consisting of more extensive edema or induration. Systemic reactions are reported in up to 3%, consisting of fever, malaise, headache, and myalgia. Incapacitating reactions (local or systemic) are uncommon. The vaccine should be stored at refrigerator temperatures (not frozen).

Given current and projected vaccine stocks, 3 or more vaccine doses (0, 2, and 12 weeks, then 1 year if possible, by deep subcutaneous injection) are recommended only to selected individuals or groups judged at high risk for exposure to botulinum aerosols.

Given projected antitoxin stocks and absence of pharmacokinetic data for human and desensitized equine products, there is no indication at present for use of antitoxin as a generally-available prophylactic modality.

STAPHYLOCOCCAL ENTEROTOXIN B

A. CLINICAL SYNDROME

Staphylococcal enterotoxin B (SEB) is one of several exotoxins produced by Staphylococcus aureus, causing food poisoning when ingested. A biowarfare attack with aerosol delivery of SEB to the respiratory tract produces a distinct syndrome causing significant morbidity and potential mortality.

Clinical Features:
The disease begins 1 to 6 hours after exposure with the sudden onset of fever, chills, headache, myalgia, and nonproductive cough. In more severe cases, dyspnea and retrosternal chest pain may also be present. Fever, which may reach 103-106°F, has lasted 2-5 days, but cough may persist 1 to 4 weeks. In many patients, nausea, which may be severe, and vomiting will also occur. Physical findings are often unremarkable. Conjunctival injection may be present, and in the most severe cases, signs of pulmonary edema would be expected. The chest X-ray is generally normal, but in severe cases, there will be increased interstitial markings, atelectasis, and possibly overt pulmonary edema. In
moderately severe laboratory exposures, lost duty time has been less than 2 weeks, but, based upon animal data, it is anticipated that severe exposures will result in fatalities.

B. DIAGNOSIS

1. Routine Laboratory Findings
 Laboratory findings are non-contributory except for a neutrophilic leukocytosis and elevated erythrocyte sedimentation rate.

2. Differential Diagnosis
 In foodborne SEB intoxication, fever and respiratory involvement are not seen, and gastrointestinal symptoms are prominent.
 The non-specific findings of fever, non-productive cough, myalgia, and headache occurring in large numbers of patients in an epidemic setting would suggest any of several infectious respiratory pathogens, particularly influenza, adenovirus, or mycoplasma. In a single biowarfare attack with SEB, cases would likely have their onset within a single day period, while these other, naturally occurring, outbreaks would present over a more prolonged interval. Naturally occurring outbreaks of Q fever and tularemia might cause confusion, but would involve much smaller numbers of individuals, and would more likely be accompanied by pulmonary infiltrates.
 The dyspnea of botulism is associated with obvious signs of muscular paralysis; its cholinergic blocking effects result in a dry respiratory tree, and patients are afebrile. Inhalation of nerve agent may lead to weakness, dyspnea, and copious secretions. Rapid progression of respiratory signs and symptoms to a stable state distinguishes SEB intoxication from the early stages of anthrax.

3. Specific Laboratory Diagnosis
 Toxin is cleared from the serum rapidly and is difficult to detect by the time of symptom onset. Nevertheless, specific laboratory tests are available to detect SEB (see Section III), and serum should be collected as early as possible following exposure. In situations where many individuals are symptomatic, sera should be obtained from those not yet showing evidence of clinical disease. Most patients develop a significant antibody response, but this may require 2-4 weeks.

C. THERAPY
 Treatment is limited to supportive care.

D. PROPHYLAXIS
 There currently is no prophylaxis for SEB intoxication. Experimental immunization has protected monkeys, but no vaccine is presently available for human use.

CLOSTRIDIUM PERFRINGENS

A. CLINICAL SYNDROME
 Clostridium perfringens is a common anaerobic bacterium associated with three distinct disease syndromes: (a) gas gangrene or clostridial myonecrosis, (b) enteritis necroticans (pig-bel), (c) clostridial food poisoning. Each of these syndromes has very specific requirements for delivering inocula of C. perfringens to specific sites to induce
disease, and it is difficult to envision a general scenario in which the spores or vegetative organisms could be used as a biowarfare agent. There are, however, at least 12 protein toxins elaborated, and one or more of these could be produced, concentrated, and used as a weapon. Waterborne disease is conceivable, but unlikely. The best available speculation (based on virtually no exploratory data with which to sharpen our conclusions) is that the alpha toxin would be lethal by aerosol. This is a well-characterized, highly toxic phospholipase C. Other toxins from the organism might be co-weaponized and enhance effectiveness. For example, the epsilon toxin is neurotoxic in laboratory animals.

Clinical Features:
The clinical picture of aerosolized $\mathrm{C. \ perfringens}$ alpha toxin would be expected to be that of a serious acute pulmonary insult. Absorbed alpha toxin could produce vascular leak, hemolysis, thrombocytopenia, liver damage, etc. Other toxins admixed could modify the event.

B. DIAGNOSIS
1. Routine Laboratory Findings
 Clinical laboratory findings might include anemia (due to intravascular hemolysis), thrombocytopenia, elevated serum transaminases, and hypoxia.
2. Differential Diagnosis
 Pulmonary signs might lead to confusion with SEB initially. Liver damage, hemolytic anemia, and thrombocytopenia are not associated with SEB, and the pulmonary findings should be reversible in SEB.
3. Specific Laboratory Diagnosis
 Acute serum and tissue samples should be collected and rapidly transported to a reference laboratory (see Section III). Specific immunoassays are available; however, their utility in diagnosis of human disease is unproven.
 The enterotoxin can be detected in fecal samples from human food-poisoning cases, and bacteria are readily cultured from clinical samples.

C. THERAPY
 No specific treatment is available for $\mathrm{C. \ perfringens}$ intoxication. Humans with enteritis necroticans have been treated with antitoxin with some success.
 The organism itself is sensitive to penicillin, and, consequently, this is the current drug of choice. Recent data indicate that clindamycin or rifampin may suppress toxin production, and provide superior results in animal models.

D. PROPHYLAXIS
 There is no available prophylaxis for $\mathrm{C. \ perfringens}$ intoxication. Toxoids are being used to prevent enteritis necroticans in humans, and veterinary toxoids are in wide use.
SECTION III
Collection and Transport of Diagnostic Specimens
for Definitive Diagnosis

A. Safety Considerations for Medical Personnel.

Clinical specimens from victims of biowarfare agents under consideration here do not represent a significant risk to medical personnel. Routine protective measures as would be used for hepatitis should provide adequate protection for both staff in direct patient contact and laboratory personnel processing specimens. Cutaneous anthrax could follow contamination of broken skin, and thus poses some hazard at autopsy. Blood and tissues contain large numbers of vegetative anthrax organisms which, upon exposure to air, will sporulate; the spores are resistant to ready disinfection, and will pose a residual hazard.

B. Specimens to be Obtained.
1. For Routine Clinical Laboratory
 a: Anthrax. Blood culture with routine media will readily detect Bacillus anthracis. Impression smears when taken late in disease from mediastinal lymph nodes and spleen, smears from blood, pleural fluid, and abnormal cerebrospinal fluid should all be positive by Gram or Giemsa stains. Positive smears and cultures should be retained for transport to the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID).
 b: Botulinum Toxin. None appropriate.
 c: Staphylococcal Enterotoxins. None appropriate.
 d: Clostridium perfringens. Bacteria can be cultured from clinical specimens using anaerobic techniques. Positive cultures should be retained for transport to USAMRIID.

2. For Special Diagnostic Laboratories.
 a: Anthrax. Acute serum (at least 3 ml) should be collected as early as possible following onset of symptoms, and shipped frozen to a reference laboratory (see below). Convalescent sera should be obtained from survivors and other members of the attacked unit 3-4 weeks later.
 b: Botulinum toxin. Acute serum (at least 20 ml blood) should be collected as early as possible following onset of symptoms, and shipped frozen to a reference laboratory (see below). Exposed persons who are not yet symptomatic should also be bled (20 ml of blood).
 c: Staphylococcal Enterotoxins. Acute serum (3 ml) should be collected as soon as possible following onset of symptoms. Exposed persons who are not yet symptomatic should also be bled (3 ml). Convalescent sera from survivors and non-affected unit members should be obtained 2-4 weeks later. Serum should be shipped frozen to a reference laboratory (see below).
 d: Clostridium perfringens. Same as staphylococcal enterotoxins above.

3. Autopsy Samples
All tissue samples should be collected in duplicate aliquots: one (25-50 gms) to freeze for microbiology/toxicology and one in formalin for histopathology. Organs sampled should include lung, mediastinal lymph nodes, spleen, and liver. Obvious lesions and adjacent normal tissue should be taken from affected areas in any organ.

Post-mortem blood (up to 20 ml) should be obtained and submitted as serum and clot/cells.

Each container should be labeled with name, SSN, and date of collection. Include a brief description of illness and gross autopsy findings; place, date, and time of death; place, date, and time of collection; prosector and unit.

Samples for analysis should be kept as cold as possible, preferably frozen. Formalin-fixed material must not be frozen.

C. Specimen Handling and Shipment

1. Specimen Handling.
 a: Processing. All specimens from suspected biowarfare casualties should be submitted through the routine diagnostic laboratory chain for processing. Samples must be clearly marked for special diagnostic testing, and chain-of-custody procedures maintained.
 b: Labeling. All serum samples should be completely labeled with patient's name, SSN, Unit, Date, and medical facility to receive results. Routine laboratory slips should be included with each sample. Data on lab slips should include number of disease days and the reason that samples were obtained.
 c: Packaging. Serum should be contained in plastic screw-cap vials, which are securely sealed. If possible, each serum sample should be individually placed in a second plastic vial or zip-lock bag to prevent leakage. All specimens should be contained in a metal shipping can or other secondary container. Sufficient absorbent material should be packed to prevent leakage outside the container. The entire contents should be placed in an insulated shipping container with cold packs or dry ice.
 d: Addresses. It is the responsibility of the laboratory officer, in concert with the physician, to ensure that suspect specimens are submitted correctly and expeditiously to a special diagnostic laboratory. These specialized testing/reference laboratory facilities will be available at several locations; the facility appropriate for a given unit or location will be guided by unit SOP. Sites established as of this writing include the following:

 1. Naval Medical Unit
 C/O NAVCENT Surgeon
 COM USNVALGUSFOR//N-9//
 Bahrain
 TEL: COM 011-973-728-877

 2. 10th MED LAB
 Landstuhl
 West Germany APO NY 09180

 3. US NAMRU-3
 C/O US Embassy
4. USAMRIID (ATTN: SGRD-UID-E)
Fort Detrick
Frederick, MD 21702-5011
TEL: AV 343-7193/7244
COM 301-663-7193/7244
FAX: COM 301-663-2492

If specific questions arise regarding specimen collection, processing, or shipment, contact USAMRIID (above) for instructions.
SECTION IV
DIFFERENTIATION AMONG NERVE AGENT, ATROPINE, AND BOTULINUM INTOXICATIONS

<table>
<thead>
<tr>
<th></th>
<th>BOTULINUM TOXIN</th>
<th>NERVE AGENT</th>
<th>ATROPINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensorium</td>
<td>Usually normal</td>
<td>Disorientation, agitation, coma, seizures</td>
<td>Disorientation, excitation, agitation, irritability, coma</td>
</tr>
<tr>
<td>Ophthalmologic Abnormalities</td>
<td>Dilated and fixed pupils, distorted blurred vision, ptosis, extraocular muscle paralysis</td>
<td>Constricted pupils, dim vision (if vapor or aerosol exposure), little if any change if exposed via skin</td>
<td>Weak effects if usual doses given causing pupillary dilation and paralysis of accommodation</td>
</tr>
<tr>
<td>Paralysis</td>
<td>Flaccid paralysis. Early bulbar signs (dysphonia, dysphagia) descending to upper and lower extremities. Respiratory failure.</td>
<td>Rigid paralysis with twitching, jerking. Seizures.</td>
<td>None of significance</td>
</tr>
<tr>
<td>Autonomic Findings</td>
<td>Dry mouth and skin, constipation, ileus, urinary retention. Early emesis and diarrhea after food ingestion.</td>
<td>Excess salivation, increased sweating, involuntary defecation and urination. Severe rhinorhea and bronchoconstriction occur if exposure is by inhalation.</td>
<td>Dry mouth and skin, constipation, ileus, urinary retention. Early emesis and diarrhea after food ingestion.</td>
</tr>
<tr>
<td>Onset</td>
<td>3-38 hours by inhalation exposure. Not absorbed through intact skin; 12-72 hours onset by oral exposure</td>
<td>1-10 minutes by inhalation exposure; 1-2 hours by dermal exposure</td>
<td>Minutes after injection, can be exacerbated by dehydration and heat exposure</td>
</tr>
</tbody>
</table>
Paralysis in the BW/CW Setting

The differential diagnosis must include both botulinum and nerve agent intoxications.

a: Nerve agent is rapid in onset (minutes to 1-2 hrs). A rigid paralysis develops, with parasympathetic excess (salivation, miosis, sweating, involuntary defecation, and urination); central nervous system dysfunction and death soon follow. If exposure is by aerosol or vapor, constricted pupils, rhinorrhea, and bronchoconstriction also occur.

b: Botulinum toxin is slower in onset (3 hrs to several days). Descending paralysis (bulbar to extremities to respiratory) and parasympathetic blockade (dry mouth, pupillary dilation, constipation, urinary retention, absence of sweating) are characteristic. Paralysis, nausea, vomiting, and diarrhea may, however, occur after exposure to either nerve agent or botulinum toxin. Central signs (confusion, seizure, coma) are rare after botulinum, but common after nerve agent intoxication.

c: Anticholinergics such as atropine can, of course, cause central nervous system changes such as agitation, confusion, and hallucinations as well as dry mouth, dry skin, and constipation. These changes could easily obscure the correct diagnosis in a soldier who used his injector even without exposure to an agent.