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ABSTRACT

A method for generating and adaptively refining a highly stretched unstructured mesh, suitable
for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional
geometries has been developed. The method is based on the Delaunay triangulation of a
predetermined set of points and employs a local mapping in order to achieve the high stretch-
ing rates required in the boundary-layer and wake regions. The initial mesh-point distribution
is determined in a geometry-adaptive manner which clusters points in regions of high curvature
and sharp comers. Adaptive mesh refinement is achieved by adding new points in regions of
large flow gradients, and locally retriangulating, thus obviating the need for global mesh regen-
cration. Initial and adapted meshes about complex multi-element airfoil geometries are shown
and compressible flow solutions are computed on these meshes.
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1. INTRODUCTION

Although unstructured meshes have formed the mainstay of solid modeling and structural
mechanics discretization techniques for many years, their use in the field of computational fluid

dynamics (CFD) constitutes a relatively recent development. While this situation may be
largely attributed to the large computational requirements of CFD problems and the generally
lower efficiency of unstructured mesh solvers, it also appears that the geometrical

configurations of many CFD problems can be much more demanding in terms of discretization

requirements than those encountered in other fields. CFD problems often require the discreti-
zation of semi-infinite two-dimensional fields or three-dimensional spaces with a widely vary-
ing resolution [1]. The solution of high-Reynolds-number viscous flows, which is essentially a
singular perturbation problem, relies on highly stretched discretizations in the boundary-layer
and wake regions, employing normal and strcamwisc resolutions which may differ by several
orders of magnitude. Such problems, which appear to have no counterpart in the more tradi-
tional fields of unstructured mesh discretizations, have generally been resolved by resorting to a
hybrid structured-unstructured technique where the highly stretched discretization in the
boundary-layer and wake regions is obtained using a thin structured quadrilateral mesh, and the
outer region is filled with an essentially unstretched unstructured mesh 12,3,4]. However, the
main reasons for employing unstructured mesh techniques relate to the increased flexibility
these types of discretizations afford in dealing with complex geometries and the ease with
which adaptive meshing may be performed. Besides leading to an increase in coding complex-
ity, the strictured-unstructured type compromise limits the generality of the unstructured mesh
approach in dealing with arbitrarily complex geometries, such as multiple body geometries with
close tolerances where confluent boundary layers may occur, and complicates the task of per-
forming adaptive meshing in the inviscid as well as viscous regions of flow. Thus, in this
work, the use of fully unstructured meshes throughout all regions of the flow-field is advo-
cated. The two main approaches to generating unstructured meshes for two- and three-
dimensional CFD problems have been the advancing front technique [5,6] and the Delaunay
triangulation technique [7]. Of these, the Delaunay approach provides the flexibility of decou-
pling the generation of the mesh-point distribution from the actual triangulation procedure, and
appears to be better suited for efficient adaptive methods, since it may be formulated as a
sequential point insertion process involving only local searching and restructuring operations.
However, in their original form, neither method is capable of producing the highly stretched,
smoothly varying meshes required for the computation of high-Reynolds-number viscous flows.
In a previous paper 181, a method of modifying the Delaunay triangulation criterion, in order to
obtain highly stretched triangular elements in predetermined regions, has been described. The
present work, which is based on this approach, describes the development of a general method
for generating and adaptively refining fully unstructured meshes with highly stretched,

smoothly varying elements, suitable for the computation of high-Reynolds-number viscous
flows.

2. OVERALL METIIODOLOGY

In order to develop a method capable of generating and adaptively modifying meshes

about arbitrary type geometries, a suitable spline definition of the geometrical configuration
must initially be constructed. Two-dimensional geometries can generally be defined by an
ordered set of points. These points are not employed as mesh points themselves. Rather, they

are used as the basis for the construction of a spline definition of the geometry. Mesh points
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may then be generated at predetermined locations along these spline curves. In ordcr to treat
truly arbitrary geometries with possible sharp comers, piecewise splines or splines with slope
discontinuities must be employed. For the sake of generality, it also proves useful to assign
flow-field boundary conditions with each boundary curve at this stage. In this manner, newly
generated boundary mesh points, either in the initial mesh generation procedure or the subse-
quent adaptive refinement process, may automatically be assigned the boundary condition
corresponding to the boundary spline or segment from which they were formed.

The mesh generation and adaptive refinement procedures are based on the modified
Delaunay criterion previously described [8]. The initial mesh generation is accomplished in
three main steps. First, a distribution of mesh points throughout the flow-field is constructed,
and a distribution of stretching is defined. These points are then joined together, making use
of the modified Delaunay criterion, in a manner governed by the local stretching values, in
order to form a set of non-overlapping triangular elements, which completely fill the domain.
The resulting mesh is then postprocessed leading to a smoother "higher quality" mesh. Since
no knowledge of the flow-field solution exists during the initial mesh generation phase, suitable
mesh point and stretching distributions must be obtained by estimating the location and charac-
teristics of the main features of the flow-field to be computed. The first step of this process
consists of constructing lines of maximum stretching. Such lines, which may be drawn as
curved segments in two-dimensional space, represent local regions of maximum stretching,
away from which the stretching magnitude decreases. For viscous flows, such lines correspond
to walls delimiting boundary layers, and wake centerlines. While the former may easily be
identified as coinciding with all geometry boundaries where a Navier-Stokes no-slip boundary
condition is applied, the precise locations of the wake lines are generally more difficult to esti-
mate, since they depend on the actual flow solution. In the present work, which involves flow
over multi-element airfoils, initial wake line positions have been determined using an inviscid
panel-method solution.t A distribution of boundary mesh points is then generated along all
such lines of maximum stretching in a geometry-adaptive manner, which concentrates points in
regions of high curvature and sharp comers, where significant flow gradients are anticipated,
and producing a uniformly accurate discretization of the geometry. A distribution of mesh
points throughout the entire flow-field is then generated using a series of local hyperbolically
gencrated meshes, each mesh being associated with a particular maximum stretching line (i.c a
wall or wake line), and employing the boundary point distribution of its associated stretching
line as its initial condition. An adequate normal mesh spacing distribution, which must be
specified in the hyperbolic mesh generation procedure 191, can be estimated from a knowledge
of the overall Reynolds number of the flow to be solved for, which governs the relative thick-
ness of these shear layers. Once an initial mesh has been generated and the flow has been
solved for on this mesh, a new finer mesh may be obtained by adaptively refining the previous
grid. New mesh points are thus added in regions where large flow gradients are observed, and
the mesh is locally restructured according to the modified Delaunay criterion 181. In this
manner, the evolving meh-point distribution can configure itself to accurately resolve all
features of the particular flow-field. The distribution of stretching, however, is not altered in
the present adaptive process. Hcnce, a good initial distribution of stretching and wake-line
positions are essential for efficiently resolving all relevant flow features.

t Supplied by L. Wiglon, The Boeing Company.
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The initial generation and subsequent adaptive refinement procedures are both based on
the modified Delaunay triangulation criterion of 18] which provides a method for constructing
meshes with regions of arbitrarily high stretchings. Such constructions are, however, based on
the assumption of a slowly varying local stretching distribution with respect to the local tri-
angular element size. Furthermore, the key to obtaining a mesh of smoothly varying resolution
and stretching lies in the ability to generate closely coupled mesh-point and stretching distribu-
t~ons. While the mesh post-processing operation can be relied upon to remove some of the
irregularities in the mesh, major deficiencies cannot be corrected by such a process. It is,

therefore, ;mportant to ensure that an adequate mesh-point distribution, exhibiting good correla-
tic- with the stretching distribution, is initially obtained, and subsequently maintained
thr aghout the adaptive process.

3. BOUNDARY POINT DISTRIBUTION

A geometry-adaptive boundary-point distribution must initially be generated along all
lines of maximum stretching. For multi-element airfoil geometries, such lines consist of airfoil
surfaces and wake lines. The reasons for employing a geometry-adaptive distribution are three-
fold. Firstly, this approach ensures a uniformly accurate discretization of the geometry along
all splined surfaces. Secondly, boundary points, and hence subsequently generated field points,
will automatically be clustered in regions of high curvature and sharp comers where large flow
gradients are expected. Finally, and perhaps most importantly, this approach couples the mesh
point resolution with the stretching distribution. The clustering of points in regions of high
curvature has the effect of reducing the size and aspect ratio of mesh elements in a region
where the direction of the stretching varies rapidly.

The gcometry-adaptive boundary-point generation is initiated by prescribing an initial dis-
tribution of mesh points along the piecewise splined boundary and specifying the normal mesh
spacing required at each point along the boundary. This is equivalent to the specification of a
(locally varying) maxinmum strcamwise mesh spacing, and a stretching vector at each boundary
point. The stretching vector, which defines the magnitude and direction of the desired stretch-
ing in that region of the mesh, is taken as tangent to the boundary and has a magnitude com-

puted as the ratio of the local streamwise spacing divided by the prescribed normal mesh spac-
ing (i.e., a boundary cell aspect ratio).

The boundary is, thus, discretized and the relative change in the stretching vector between
neighboring points is examined. This is achieved by drawing the tangent to the boundary at

the point of interest and comparing the height Ay of the intersection between this tangent and
the normal emanating from the neighboring boundary point with the prescribed normal mesh

spacing An at this point, as depicted in Figure 1. For a boundary where the radius of curva-
ture can be taken as locally constant, and the local strcamwise mesh spacing is denoted as As,

the relation

Ay = As (-)(
2

can be deduced, where A0 denotes the change in angle of the tangent vector between neighbor-

ing boundary points. Dividing through by An, the relation

y = i - A-- (2)
An 2

is obtained, where ISI is the magnitude of the local stretching vector, which has previously
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As

been defined as the ratio --. The right-hand side is thus proportional to the magnitude of the
An

change in the stretching vector, since it represents one half of the vector difference between the
two neighboring stretching vectors. Thus, when the ratio A- is larger than some prescribed

An
value (usually taken as a small integer), a new boundary point is added midway between the
two neighboring points under consideration. The effect of adding new points is to increase the
resolution of the curved boundary (thus decreasing the AO values between two neighboring

Aspoints), and to lower the aspect ratio of the boundary cells or the value ,Sl=-. If R
Andenotes the local radius of curvature, which is related to the angle AO by the expression

As (3)

R

then equation (1) may be rewritten as

AY 2R (4)

indicating that Ay, and hence the change in the stretching vector between two consecutive
points, decreases quadratically as new boundary points are introduced, and the streamwise
spacing is reduced (An being a constant). Thus, by increasing the boundary-point resolution in
regions of high curvature, a bound on the change of the local stretching vector - an be
enforced. The above criterion operates on local change of slope, rather than magnitude of cur-
vature, and thus sharp comers, where the values of curvature become singular, can still be han-
dled. A comer may be defined as a point at which a finite change in slope occurs. Thus,
denoting this change by [A61, equation (1) reads

Ay = As 9] (5)

2
Since the change in slope [AEI is now a constant, we obtain a linear relationship between Ay
and As, which results in an increased resolution of points near such comers, the final magni-
tude of which depends on the "sharpness" [As] of the comer.

4. GENERATION OF INTERIOR POINT DISTRIBUTION

A flow-field mesh-point distribution may be constructed using multiple local hyperboli-
cally generated meshes. For multi-element airfoils, a hyperbolic C-Mesh is generated about
each airfoil-wake combination of the geometry using the previously obtained boundary-point
distribution and a specified normal spacing. In the more general case, local hyperbolic meshes
may be generated about each boundary segment where a no-slip boundary condition is
prescribed. The union of the points from these various local structured meshes may then be
used as the basis for the triangulation procedure, as shown in Figure 2. However, at this stage
a point filtering operation may be employed to produce a more suitable mesh-point distribution.
By noting that high streamwise aspect-ratio elements are required near the walls and wake
lines, but that elements of aspect ratio close to unity are desirable in the inviscid regions of
flow, a point filtering operation based on the local hyperbolic structured mesh-cell aspect-ratios
may be devised. By proceeding along a normal mesh line of a given local hyperbolic mesh
and monitoring the ratio of strcamwise mesh spacing Al to normal spacing A71, points on either

side of the current mesh line may simultaneously be tagged for removal when the ratio _
A1
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decreases below unity, as shown in Figure 3. This procedure is first executed along even nor-
mal mesh lines, removing points at odd mesh lines. The process is formulated recursively so
that a second pass operates on every fourth mesh line and, in general, an nth pass on every 2""
mesh line. The algorithm is constructed such that each time a mesh point is removed the
streamwise resolution decreases, while the normal resolution remains unchanged, thus produc-
ing a more isotropic mesh point distribution away from the regions of high stretching near the
boundary. This point filtering operation is especially important when the geometry-adapive
boundary-point distribution is employed. The bunching of boundary points near sharp comers
and in regions of high curvature leads to a clustering of hyperbolic mesh lines which can
extend out into the far-field. The aspect-ratio based point filtering operation provides an
effective method of removing such unwanted mesh points. For most practical geometries, the
point filtering operation has been found to remove roughly 30% of the total number of points.
Thus, in addition to providing a higher quality mesh, the filtering operation increases the solu-
tion efficiency by substantially reducing the required number of mesh points.

The filtered mesh-point distribution can now be used as input to the triangulation pro-
cedure. However, a distribution of stretching must also be supplied. As previously mentioned,
a stretching value is defined by a direction and a magnitude. Thus, stretching vectors must be
constructed at each mesh point. The stretching direction at each point is taken as the direction
of the tangential hyperbolic structured mesh line, i.e., the line in Figure 2, and the magnitude

is taken as the ratio - using the mesh point spacings of the filtered point distribution.
A7

5. TRIANGULATION PROCEDURE

The filtered mesh-point distribution is triangulated using the modified Delaunay criterion

described in [8]. In its original form, die Delaunay triangulation procedure tends to produce
the most equiangular triangles possible and is thus not well suited for the generation of highly

stretched elements. The procedure is thus modified through the use of a local mapping.
Hence, a mapping, based on the local stretching vector, is constructed as:

x" = [ I + (ISI-I) sin0 I x , y" = ( I + (IS -I) cos0 I Y (6)

where x' and y' represent the mapped cartesian coordinates corresponding to x and Y, and iS!
is the magnitude of the local stretching vector, which is oriented at the angle 9 with respect to
the cartesian reference frame. If, for example, the stretching vector is lined up with the hor-
izontal axis (0 = 0), the mapping reduces to

x' = x y" = iSly (7)

which corresponds to a stretching of space in the y direction. Thus, the distribution of mesh
points in physical space, which for this case is closely packed in the y direction and more
sparse in the x direction, will appear more isotropic in the transformed x'-y' space. The
effect of the mapping is thus to produce a more isotropic mesh point distribution in the
mapped space, such that the original Delaunay criterion may be employed to triangulate the
points in this mapped space. Once the triangulation is effected, the connected mesh points are
mapped back to physical space, thus producing the desired stretched triangulation. A variety
of methods exist for constructing a regular Dclaunay triangulation. Of these, the Bowyer algo-
rithm I10l and the edge-swapping algorithm of Lawson 111 are of special interest. Bowyer's
algorithm, which is formulated as a sequential point insertion process, makes use of the cir-

cumcircle property of a Delaunay triangulation. This property states that no vertex from any
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riangle may be contained within the circumcircle of any other triangle, as shown in Figure 4.

Assuming an initial triangulation exists and a list of points to be inserted is at hand, each point
from the list is inserted one at a time into the triangulation. The triangles whose circumcircles
are intersected by this new point are located and flagged. The union of these flagged triangles
forms a convex polygon which contains the new point. The structure of the mesh in this
region is thus removed and a new structure is defined by joining the new mes., point to all the
vertices of the convex polygon. Bowyer's algorithm is thus ideally suited for adaptive mesh
refinement purposes. It can also be employed to construct an initial mesh, given a set of mesh
points, and an initial coarse triangulation of the geometry. The edge-swapping algorithm of
Lawson provides a method of transforming an arbitrary triangulation of a given set of points
into a Delaunay triangulation. Since all two-dimensional planar graphs obey Euler's formula
1121, all possible triangulation of a given set of points contain the same number of edges and
triangles. Thus, any one triangulation may be obtained by simply rearranging the edges of
another triangulation of the same set of points. Because Delaunay triangulations obey the
equiangular properly, i.e., they maximize the minimum of all six angles within a convex qua-
drHatcral, as shown in Figure 5, the swapping of edges according to this criterion results in a
convergent process which produces the Delaunay triangulation for the given set of points. The
construction of the stretched or modified Delaunay triangulation of the filtered mesh-point set
is constructed in a two-step process. First, an initial regular Delaunay triangulation of the
point set is constructed using Bowyer's algorithm. An initial coarse mesh for Bowyer's algo-
rithm is construcied by joining up the trailing-edge point of one of the airfoils to all the outer
boundary points. All remaining interior mesh points are then inserted sequentially using
Bowyer's algorithm. The edge-swapping algorithm is then employed to convert this regular
Delaunay triangulation into a stretched Delaunay triangulation making use of the equiangular
property in the locally stretched space, which is defined by the stretching vectors. However,
prior to the edge swapping process, the i!istribution of stretching vectors is smoothed. This is
necessary since the stretching vectors are originally determined from the local structured hyper-
bolic mesh-cell aspect-ratios. which may result in a non-smooth stretching distribution in
regions where multiple local meshes overlap (c.f. Figure 2). Smoothing is performed by
averaging each stretching vector with its neighbors as determined by the connectivity of the
initial Delaunay triangulation.

This two stage process, that of an initial Delaunay triangulation followed by a subsequent
edge-swapping operation, can be likened to the data-dependent triangulations discussed in [131.
Originally developed for data interpolation purposes, the edges of a given triangulation are
swapped according to the nodal values to be interpolated in a manner designed to reduce some
measure of the interpolation error. The present stretched triangulations can be thought of as
similar to these data-dependent triangulations (the data being the finite-element approximation
to the flow solution). However, by basing the criterion on a modified or mapped Dclaunay con-
struction, subsequent adaptive meshing may easily be performed using Bowyer's algorithm in
the stretched space.

6. MESH POST PROCESSING

Once a stretched triangulation has been generated, local mesh irregularities may be
removed, and increased smoothness obtained by post-processing die mesh. This is accom-
plished by slightly displacing the mesh points according to a Laplacian smoothing operator
discrctizcd on the existing mesh. Thus, new smoothed mesh-point coordinates may be
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computed as
(0

XL
'

= X + Ixk Xi)
n1 k=1

(8)
n .

where the summation is over all n neighbors of point i, and w is a relaxation factor. This
type of smoothing is not guaranteed to prevent mesh cross-overs (negative area cells), which
can easily occur in regions of highly stretched elements. While various smoothing operators
which exclude the possibility of mesh cross-overs have been proposed 114,151, these usually
result in stiff systems of equations which are expensive to solve. The simplest way of avoid-
ing mesh cross-overs is to limit the local amount of smoothing through the magnitude of the
relaxation factor in regions where negative cell areas would otherwise occur. After the mesh
points have been displaced, the smoothed mesh no longer obeys the (modified) Delaunay cri-
terion. Thus, the mesh edges may be swapped to recover this property. Multiple, such passes
of smoothing and edge-swapping can be used to post-process the mesh, thus ensuring a smooth
final mesh distribution.

7. ADAPTIVE MESHING

Once the initial stretched unstructured mesh has been generated, it may be adaptively
refined provided an approximate flow-field solution has been obtained. The flow solution is
examined and the mesh is refined by adding new points in regions where the flow gradients or
the solution discretization errors are large. In the present work, adaptation has been performed
on the basis of the gradient of pressure and Mach number. The undivided differences of
pressure/Mach number are constructed along each mesh edge. If, at a particular mesh edge
this difference is larger than some fraction of the average of all differences across all edges of
the mesh, then a new mesh point is created midway along that edge. Each new mesh point is
then inserted and triangulated into the existing mesh using Bowyer's algorithm in the stretched
space. Thus, the new adaptively generated mesh is created by introducing new points and
locally restructuring the previous coarser mesh without the need for global mesh regeneration.
Whereas the mesh-point distribution is modified by the adaptive process, the stretching distri-
bution may not be altered in the present implementation. Thus, in order to maintain a close
coupling between the mesh-point distribution and the stretching distribution, which is necessary
to ensure the construction of a smoothly varying mesh, an isotropic refinement strategy is
employed. When one edge of a mesh triangle is tagged for refinement, all three edges of the
triangle are actually refined, thus avoiding any directional biasing of the refinement process.
The strctchings assigned to the new mesh points are taken as the average of the stretchings at
both points on either end of the generating mesh edge, thus maintaining a smooth stretching
distribution.

The main difficulty encountered in adaptively refining highly stretched unstructured
meshes relates to the insertion of new boundary points. Since the geometry boundaries are
defined by spline curves, new boundary points will not, in general, coincide with the midpoint
of the boundary edge from which they are generated. For concave boundaries, the new boun-
dary point will not be enclosed by any of the existing mesh triangles, whereas for convex
boundaries the new mesh point will be interior to the existing mesh as shown in Figure 6. For
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highly stretched meshes, the height of the local mesh cells may be much smaller than the
boundary-point displacement produced by the spline deiinition of the geometry. Hence, in
regions of convex curvature, newly inserted boundary points may not even fall within the
boundary mesh cells but may be enclosed by a cell located several layers away from the boun-
dary, interior to the mesh. Since this new point is indeed a boundary' point, tile dikcretiied
N)undary must be rcconfigured by breaking the generating boundary edge and Joining the new
point to both ends of this edge. This operation implies the restructuring of the boundary cell
which contains this edge. However, the intersected triangle circumcircle search employed in
Bowyer's algorithm is not guaranteed to tag this boundary cell for restructuring, since in the
convex boundary case the new point may lie several cells away from this boundary triangle,
and in the concave boundary case, the new point is not even contained in the existing mesh.
Thus, Bowyer's algorithm must be modified in order to enable the effective restructuring of
highly stretched meshes in the vicinity of curved boundaries. In order to avoid outright failure
of the search routine and to guarantee the restructuring of boundary triangles, the new boun-
darv points are thus initially positioned at theit undisplaced location, i.e., midway along the
boundary edge from which they are generated. The displaced position of the boundary point is
then determined from the spline definition of the geometry. A line segment is then drawn join-
ing the original boundary point location with this new spline-displaced boundary point position.
All mesh cells which are intersected by this line segment are then searched for and tagged for
subsequent restructuring. Triangles whose circumcircles (in stretched space) are intersected by
the splinc-displaced location of the boundary point are also identified and tagged. The mesh is
then restructured in the region defined by the union of all the tagged mesh cells by removing
all edges interior of this region and creating new edges by joining the boundary point to all the
vertices bounding de restructured region as per the standard Bowyer algorithm procedure.
Thus, the discretized boundary is redclined and the mesh is restructured in its vicinity as
shown in Figure 7. This process results in a valid (stretched) Delaunay triangulation provided
no mesh points are contained in the region delimited by the discretized representation of the

boundary and the actual spline definition of the boundary as shown in Figure 7. If such points
exist, they may become exterior to the discretized flow-ficld as new mesh points are introduced
and the boundary discretization is refined. Thus, a mesh refinement strategy which precludes

this possibility must be devised. The general strategy employed is to ensure, during the initial
mesh generation and subsequent adaptive mesh refinement, that inesh points are approxinatcly
arranged along normal stations in the vicinity of the boundary During the initial mesh genera-
Lion phase. this type of distribution is naturally provided bv the local hyperbolic meshes
employed to generate the unstructured mesh point distribution. When adaptive mesh enrich-
ment is performed, the idea is to avoid cases where an edge interior to the mesh but close to a

curved boundary is relined without the boundary edge itself being refined. lcnce an additional
process is created which adds extra refinement points to the mesh. This process is executed
after the determination of the edges of the mesh which require relinemcnt, but prior to the
actual initiation of the restructuring process. The spline displacement at each boundary mesh
edge is first computed and stored. For each boundary edge, a normal line which extends into
the flow-ficld is then constructed. The points of intersection between this line and the various
mesh edges near the boundary are determined as shown in Figure 8. As the distance away
from the boundary increases, the normal mesh spacing becomes larger and the distance
bLwecn consecutive intersection points along the normal line also increases. When this dis-
tancc becomes larger than some factor (usually taken as 2) times the spline displacement dis-

lance, the normal line is tenninated. If none of the intersected mesh edges have been
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previously tagged for rezfinement, the process is abandoned at this point. Htowever, if one or
more of these edges are to be refined, then all the intersected edges including the boundary
edge arc tagged for refinement, thus creating a column of new mesh points in this region. The
mesh point corresponding to the center of the boundary edge must be displaced onto the spline
definition of this boundary. However, since this displacement will be larger than the distance
between the boundary point and the next point up in the column, all points in the column are
displaced by an equivalent amount. This procedure guarantees a suitable new mesh-point dis-
tribution, since the separation distance of the mesh points at the interior end of the column is,
by construction, larger than the spline displacement distance applied to all such points.

Thus, a suitable mesh-point distribution is obtained by adding extra mesh points in
regions where high boundary curvature and large mesh stretchings occur simultaneously. As
mentioned previously in Section 3, such regions are characterized by a rapid variation of the
local mesh stretching vectors with respect to the average local mesh element size. Thus, the
geometry-adaptive boundary-point distribution employed in the generation of the initial mesh-
point distribution, which is based on a measure of the relative change of the mesh stretching
vectors, is also seen to have a beneficial effect at this stage in the adaptive meshing strategy.
By employing a mesh-point distribution in the original mesh which limits the magnitude of the
rate of change of the mesh stretching with respect to the local cell size, the regions where extra
mesh points are required in the adaptive meshing procedure in order to properly discretize
curved boundary regions are minimized. Furthermore, as the mesh refinement process
proceeds, the extent of these regions continually decreases until, at fine enough resolutions, no
such extra points are required in any region of the flow-field. This can be seen from examin-
ing the size of the spline displacements as a function of the mesh resolution. For a boundary
of locally constant curvature R, the spline displacement A(sp) is given by the relation

A(sp) = R I I-- cos- (9"
2

where AO represents the chamge in the angle between the tangents at two consecutive boundary
points, as shown in Figure 9. Since the streamwise mesh spacing As is related to this angle by
equation (3), we obtain a quadratic relation between A(sp) and As:

A(sp) A 2  (10,(p -4 R

However, the normal mesh spacing An also decreases as the mesh is refined, since an isotropic
refinement strategy is emplo)cd. T',c local stretching values are therefore not altered during the

mesh refinement process, and the ratio -a = (x can be considered constant. Hence, the ratio of
An

spline displacement to normal mesh spacing can be expressed as

A(sp) (11)
A~n 4 R

thus demonstrating that the spline displacements A(sp) decrease faster than the normal mesh
spacings An, as the mesh is refined.

8. RESULTS

Figure 10 depicts a highly-stretched unstructured mesh generated in the geomeir)-
adaptive fashion about a simple two-dimensional airfoil. The mesh contains a total of 14,675
nodes including 23(0 airfoil surface points, and a normal spacing at the wall of 2 x 10 ' chords
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has been prescribed. The geometry-adaptive mesh-point distribution is , !en to result in a
smooth variation of elements throughout the domain, with local clustering in regions of high
curvature and near sharp comers. Figure 11 depicts a relatively coarse stretched unstructured
mesh about a more complex four-element airfoil configuration. The mesh-point distribution for
each airfoil has been generated in a geometry-adaptive fasl:on, and the mesh contains a total
of 13,214 points, of which 299 are in the airfoil surfaces. The normal spacing of the elements
at the wall is 4 x 10-5 chords for each airfoil element, resulting in cell aspect ratios of the order
of 500:1 in these regions. The flow-field has been solved for on the above mesh (Mach
number = 0.1995, Reynolds number = 1.187 million, Incidence = 16.02 degrees) and employed
to adaptively refine the mesh. This flow-solution/adaptive-refinement process has been
repeated twice, resulting in the heavily adapted mesh depicted in Figure 12. This mesh con-
tains a total of 48,691 mesh points, of which 243 are on the surface of the main airfoil, 327 on
the surface of the slat (forward element), with 208 and 247 points on the surfaces of the vane
and flap (third and fourth elements). A globally (non-adaptive) generated mesh of equivalent
resolution would have required 4 to 5 times more mesh points thus illustrating the efficiency
advantages of the adaptive meshing procedure. From the figures, refinement is seen to occur
mainly in the boundary-layer and wake regions and near the leading and trailing edges of the
airfoils, thus reinforcing the advantages of the initial gcometry-aJaptive mesh-point distribution.
The minimum normal spacing at the wall for this case is I x 10-5 chords, which should be
more than adequate for resolving the viscous layers at this Reynolds number. The ilotal time
required to generate the original coarse mesh about this configuration (13,214 nodes) was 120
CPU seconds on a CONVEX C-210 computer. The triangulation procedure required ro-ghly
80 seconds, with the remainder of the time mainly required for the post-processing operation
(e.g. edge-swapping and smoothing). In the adaptive mesh enrichment stage, the triangulation
operation is more efficient, since very little searching is required when inserting new points
adaptively. For example, the last adaptive cycle resulted in the insertion of 22,211 new points
into a previous mesh of 26,480 points, which was performed in 30 CPU seconds on a Convex
C-210. The flow-field Mach contours for the flow solution computed on this mesh are dep-
icted in Figure 13. The smoothness of these computed contours is a good indication of the
quality of the mesh-point and stretching distributions and the relative smoothness of the mesh.
This solution has been computed using a previously described finite-element Navier-Stokes
solver in conjunction with an algebraic turbulence model designed for use on unstructured
meshes [16).

9. CONCLUSION
A method for generating and adaptively refining a highly-stretched unstructured mesh

suitable for computing high-Rcynolds-number flows over arbitrary two-dimensional
configurations has bcn described. A combination of high stretching and smoothly varying ele-
ments can be obtained by devoting special attention to the initial mesh-point and stretching dis-
tributions and employing post-processing techniques. The triangulation procedure, which is
based on Bowyer's Delaunay algorithm and an edge-swapping technique, is efficient and exhi-
bits linear computational complexity provided efficient search routines are employed. Although
the mesh-point distribution is modified in the adaptive meshing process, the stretching distribu-
tion is held fixed after the initial mesh generation phase. Future work is required to develop an
adaptive strategy capable of modifying the local mesh stretching distribution in order that indi-
vidual flow phenomena such as wakes or shear layers may be more easily tracked. The exten-
sion of this work to three dimensions is not entirely straightforward. In three dimensions, no



exact relation exists between the number of nodes and cdges or faces of a given graph. I icnce,
no direct counterpart to the edge-swapping algorithm employed in this work appears possible.
The other concepts and methodologies employed, such as the local mapping of strctchcd space
and Bowyer's algorithm, do however carry over to higher dimensions.
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x Points to be removed

Figure 3
Illustration of Points Tagged for Removal by Aspect-Ratio Based

Point Filtering Operation
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Figure 4
Bowyer's Algorithm for Delaunay Triangulation

a) Insertion of New Point
b) Resulting Restructured Region

-. /a20t

Figure 5
The Two Possible Configurations for the Diagonal in a Convex Quadrilateral

and the Six Angles Associated with the Most Equiangular
Configuration (Solid Line)



Concave

Convex

Figure 6
Illustration of the Required Displacements out of and into

the Discrefized Domain for New Adaptively Inserted
Boundary Points Along Concave and Convex Boundaries
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region for
mesh points

Figure 7
Illustration of Original and Displaced Adaptively Inserted Boundary

Mesh Point in Region of Simultaneous High Mesh Stretching and
High Boundary Curvature and Subsequent Restructuring of Mesh in this Vicinity
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Figure 8
Illustration of Fictitious Normal Line, Additional Mesh Points,

and Displacements of these Points Applied in Regions of
Simultaneous High Mesh Stretching and High Boundary Curvature in Order

to Ensure an Adequate Mesh-Point Distribution
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Figure 9
Illustration Of Spline Displacement Distance as a Function Strearnwise

Spacing and Boundary Curvature
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Figure 10
Stretched Unstructured Mesh Generated in Geometry-Adapfive Manner

About a Two-Dimiensional Airfoil
(Number of Nodes = 14,675)



Figure 11
Initial Coarse U~nstructured Mesh about Four-Element Airfoil Configuration

(Number of Nodes = 13,214)
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Figure 12
Final Adaptively Generated Mesh about Four-Element Airfoil Configurationi

(Number of Nodes -48,691)



-23-

Figure 13
Computed Mach Contours for Flow Over Four-Element Airfoil Configuration
Mach = 0.1995, Reynolds Number = 1.187 million, Incidence = 16.02 degrees
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