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ABSTRACT

A mecthod for gencrating and adaptively refining a highly strctched unstructured mesh, suitable
for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional
geometries has been developed. The method is based on the Delaunay triangulation of a
predetermined set of points and employs a local mapping in order to achieve the high stretch-
ing rates required in the boundary-layer and wake regions. The initial mesh-point distribution
is dctermined in a geometry-adaptive manner which clusters points in regions of high curvature
and sharp comers. Adaptive mesh refinement is achicved by adding new points in regions of
large flow gradicnts, and locally rctriangulating, thus obviating the need for global mesh regen-
cration. Initial and adapted meshes about complex multi-clement airfoil gcometries arc shown
and compressible flow solutions arc computed on these meshes.

This rescarch was supported under the National Acronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Sci-
cnce and Engincering (ICASE), NASA Langley Research Center, Hampton, VA 23665.




1. INTRODUCTION

Although unstructured meshes have formed the mainstay of solid modeling and structural
mechanics discretization techniques for many years, their use in the field of computational fluid
dynamics (CFD) constitutes a relatively recent development. While this situation may be
largely attributed to the large computational requirements of CFD problems and the generally
lower efficiency of unstructured mesh solvers, it also appcars that the gcomcetrical
configurations of many CFD problems can be much more demanding in terms of discretization
requircments than those encountered in other ficlds. CFD problems often require the discreti-
zation of semi-infinite two-dimensional ficlds or three-dimensional spaces with a widcly vary-
ing resolution [1]. The solution of high-Reynolds-number viscous flows, which is cssentially a
singular perturbation problem, relics on highly stretched discretizations in the boundary-layer
and wake regions, employing normal and strcamwisc resolutions which may differ by scveral
orders of magnitude. Such problems, which appcar 1o have no counterpart in the more tradi-
tional ficlds of unstructured mcsh discretizations, have gencrally been resolved by resorting to a
hybrid structured-unstructured technique where the highly stretched discretization in the
boundary-layer and wake regions is obtained using a thin structured quadrilateral mesh, and the
outer region is filled with an essentially unstretched unstructured mesh [2,3,4]. However, the
main reasons for employing unstructurcd mesh techniques relate to the increcased flexibility
these types of discretizations afford in dealing with complex geometries and the ease with
which adaptive meshing may be performed. Besides leading to an increase in coding complex-
ity, the structurcd-unstructured type compromise limits the generality of the unstructured mesh
approach in dealing with arbitrarily complex geometries, such as multiple body geometries with
close tolcrances where confluent boundary layers may occur, and complicates the task of per-
forming adaptive meshing in the inviscid as well as viscous regions of flow. Thus, in this
work, the use of fully unstructurcd meshes throughout all regions of the flow-ficld is advo-
cated. The two main approaches to generating unstructured meshes for two- and three-
dimcnsional CFD problems have been the advancing front technique [5,6] and the Delaunay
triangulation technique {7]. Of these, the Delaunay approach provides the flexibility of decou-
pling the generation of the mesh-point distribution from the actual triangulation procedure, and
appcars to be better suited for efficient adaptive methods, since it may be formulated as a
scquential point insertion process involving only local scarching and restructuring operations.
Howecver, in their original form, ncither method is capable of producing the highly stretched,
smoothly varying meshes required for the computation of high-Reynolds-number viscous flows.
In a previous paper [8], a method of modifying the Delaunay triangulation criterion, in order to
obtain highly stretched triangular clements in predetermined regions, has been described. The
present work, which is based on this approach, describes the development of a gencral method
for generating and adaptively refining fully unstructured meshes with highly stretched,
smoothly varying clements, suitable for thc computation of high-Reynolds-number viscous
flows.

2. OVERALL METHODOLOGY

In order to develop a method capable of generating and adaptively modifying meshes
about arbitrary typc gcometrics, a suitable splinc definition of the geometrical configuration
must initially be constructed. Two-dimensional gecometrics can generally be defined by an
ordered sct of points. These points are not employed as mesh points themsclves.  Rather, they
are uscd as the basis for the construction of a spline definition of the gcometry. Mesh points
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may then be gencrated at predetermined locations along these spline curves. In order to treat
truly arbitrary geometrics with possible sharp corners, piccewise splines or splines with slope
discontinuitics must be cmploycd. For the sake of generality, it also proves uscful to assign
flow-ficld boundary conditions with each boundary curve at this stage. In this manner, ncwly
generated boundary mesh points, cither in the initial mesh gencration procedurc or the subse-
quent adaptive refinement process, may automatically be assigned the boundary condition
corresponding to the boundary spline or segment from which they were formed.

The mesh gencration and adaptive refincment procedures are based on the modified
Declaunay criterion previously described [8]. The initial mesh gencration is accomplished in
three main steps.  First, a distribution of mesh points throughout the flow-field is constructed,
and a distribution of stretching is defined. These points are then joined together, making use
of the modificd Delaunay critcrion, in a manner governcd by the local stretching values, in
order to form a sct of non-overlapping triangular clements, which completely fill the domain.
The resulting mesh is then postprocessed leading to a smoother *‘higher quality’’ mesh. Since
no knowlcdge of the flow-ficld solution exists during the initial mesh gencration phase, suitable
mesh point and stretching distributions must be obtained by estimating the location and charac-
teristics of the main fcatures of the flow-ficld to be computed. The first step of this process
consists of constructing lines of maximum stretching. Such lines, which may be drawn as
curved scgments in two-dimensional space, represent local regions of maximum streiching,
away from which the stretching magnitude decreases. For viscous flows, such lines correspond
to walls dclimiting boundary laycrs, and wake centerlines.  While the former may casily be
identificd as coinciding with all gecometry boundarics where a Navier-Stokes no-slip boundary
condition is applicd, the precise locations of the wake lines are gencraily more difficult to csti-
mate, since they depend on the actual flow solution. In the present work, which involves flow
over multi-clement airfoils, initial wake line positions have been determined using an inviscid
pancl-method solution.® A distribution of boundary mesh points is then gencrated along all
such lincs of maximum stretching in a gcometry-adaptive manncr, which concentrates points in
regions of high curvature and sharp comers, where significant flow gradicnts arc anticipated,
and producing a uniformly accurate discretization of the geomcetry. A distribution of mesh
points throughout the entire flow-ficld is then generated using a serics of local hyperbolically
generated meshes, cach mesh being associated with a particular maximum stretching line (i.c a
wall or wake linc), and employing the boundary point distribution of its associated stretching
linc as its initial condition. An adcquatc normal mesh spacing distribution, which must be
specificd in the hyperbolic mesh generation procedure [9], can be estimated from a knowledge
of the overall Reynolds number of the flow to be solved for, which governs the relative thick-
ness of these shear layers. Once an initial mesh has been generated and the flow has been
solved for on this mesh, a new finer mesh may be obtained by adaptively refining the previous
grid. New mesh points are thus added in regions where large flow gradicnts are observed, and
the mesh is locally restructured according to the modificd Dclaunay critcrion {8]. In this
manncr, the cvolving mec<h-point distribution can configure itself to accurately resolve all
fcaturcs of the particular flow-ficld. The distribution of stretching, however, is not altcred in
the present adaptive process. Hence, a good initial distribution of stretching and wake-line
positions are cssential for cfficiently resolving all relevant flow features.

+ Supplied by L. Wigton, The Bocing Company.
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The initial generation and subsequent adaptive refinement procedures arc both based on
the modificd Dclaunay triangulation critcrion of [8] which provides a method for constructing
meshes with regions of arbitrarily high stretchings. Such constructions are, however, bascd on
the assumption of a slowly varying local stretching distribution with respect to the local tri-
angular clement size. Furthermore, the key to obtaining a mesh of smoothly varying resolution
and stretching lics in the ability to gencrate closely coupled mesh-point and stretching distribu-
tions. While the mesh post-processing operation can be relied upon to remove some of the
irregularitics in the mesh, major deficiencies cannot be corrected by such a process. It is,
thercfore, ‘mportant to ensure that an adequate mesh-point distribution, exhibiting good correla-
tic: with the stretching distribution, is initially obtained, and subscquently maintained
thr aghout the adaptive process.

3. BOUNDARY POINT DISTRIBUTION

A geometry-adaptive boundary-point distribution must initially be gencrated along all
lines of maximum stretching. For mulii-element airfoil geometries, such lines consist of airfoil
surfaces and wake lines. The rcasons for employing a gcomctry-adaptive distribution are three-
fold. Firstly, this approach ensures a uniformly accurate discretization of the geometry along
all splined surfaces. Seccondly, boundary points, and hence subsequently generated field points,
will automatically be clustered in regions of high curvature and sharp comers where large flow
gradicnts are cxpecied. Finally, and perhaps most importantly, this approach couples the mesh
point resolution with the stretching distribution. The clustering of points in regions of high
curvature has the cffect of reducing the size and aspect ratio of mcsh clemenis in a region
where the direction of the stretching varics rapidly.

The gcometry-adaptive boundary-point gencration is initiated by prescribing an initial dis-
tribution of mesh points along the piccewise splined boundary and specifying the normal mesh
spacing required at each point along the boundary. This is equivalent to the specification of a
(locally varying) maxinium strcamwisc mcsh spacing, and a stretching vector at cach boundary
point. The stretching vector, which defines the magnitude and direction of the desired stretch-
ing in that region of thc mesh, is taken as tangent 10 the boundary and has a magnitude com-
puted as the ratio of the local streamwisc spacing divided by the prescribed normal mesh spac-
ing (i.c., a boundary ccll aspect ratio).

The boundary is, thus, discretized and the relative change in the stretching vector between
neighboring points is examined. This is achicved by drawing the tangent to the boundary at
the point of intcrest and comparing the height Ay of the intersection between this tangent and
the normal ecmanating from the neighboring boundary point with the prescribed normal mesh
spacing An at this point, as depicted in Figure 1. For a boundary where the radius of curva-
turc can be taken as locally constant, and the local strcamwise mesh spacing is denoted as As,
the rclation

AD
Ay = As (-2—) (D
can be deduced, where A8 denotes the change in angle of the tangent vector between neighbor-

ing boundary points. Dividing through by An, the rclation
& - 151 48
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is obtaincd, where S| is the magnitude of the local stretching vector, which has previously




been defined as the ratio %‘;— The right-hand side is thus proportional to the magnitude of the
change in the stretching vector, since it represents one half of the vector difference between the
two ncighboring stretching vectors. Thus, when the ratio —ﬁnx is larger than some prescribed

value (usually taken as a small integer), a ncw boundary point is added midway between the
two neighboring points under consideration. The effect of adding ncw points is to increase the
resolution of the curved boundary (thus decreasing the A8 values between two neighboring

points), and to lower the aspect ratio of the boundary cells or the valuc lSl:%’sl—. If R

denotes the local radius of curvature, which is related to the angle A8 by the expression

As
A8 = 7 (3)
then equation (1) may be rewritten as
1 2
Y2 @

indicating that Ay, and hence the change in the stretching vector between two consecutive
points, decreases quadratically as new boundary points are introduced, and the strcamwise
spacing is reduced (An being a constant). Thus, by increasing the boundary-point resolution in
regions of high curvature, a bound on the change of the local stretching vector - .un be
enforced. The above critcrion operates on local change of slope, rather than magnitude of cur-
vature, and thus sharp comers, where the values of curvature become singular, can still be han-
dled. A comer may be defined as a point at which a finite change in slope occurs. Thus,
denoting this change by [A®], equation (1) reads

Ay = % (AO)] (5)

Since the change in slope [A@] is now a constant, we obtain a lincar relationship between Ay
and As, which results in an increased resolution of points near such comers, the final magni-
tudc of which depends on the *‘sharpness’ (A®] of the comer.

4. GENERATION OF INTERIOR POINT DISTRIBUTION

A flow-ficld mesh-point distribution may be constructed using multiple local hyperboli-
cally gencrated meshes. For multi-clement airfoils, a hyperbolic C-Mesh is gencrated about
cach airfoil-wake combination of thc gcometry using the previously obtained boundary-point
distribution and a specificd normal spacing. In the more general case, local hyperbolic meshes
may bc gencratcd about cach boundary scgment where a no-slip boundary condition is
prescribed.  The union of the points from these various local structured meshes may then be
uscd as the basis for the triangulation procedure, as shown in Figure 2. However, at this stage
a point filtering opcration may be employed to produce a more suitable mesh-point distribution.
By noting that high strcamwise aspect-ratio clements arc required ncar the walls and wake
lincs, but that clements of aspect ratio close to unily arc desirable in the inviscid regions of
flow, a point filtering opcration based on the local hyperbolic structured mesh-cell aspect-ratios
may be devised. By proceeding along a normal mesh linc of a given local hyperbolic mesh
and monitoring the ratio of strcamwisc mesh spacing A§ to normal spacing An, points on cither

. . . . A
sidc of thc current mesh line may simultancously be tagged for rcmoval when the ratio Zi
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decreases below unity, as shown in Figure 3. This procedure is first executed along cven nor-
mal mesh lines, removing points at odd mesh lines. The process is formulated recursively so
that a second pass operates on every fourth mesh line and, in general, an nth pass on cvery P
mesh line. The algorithm is constructed such that each time a mesh point is removed the
streamwisc resolution decrcases, while the normal resolution remains unchanged, thus produc-
ing a more isotropic mesh point distribution away from the regions of high stretching near the
boundary. This point filicring operation is especially important when the geometry-adapiive
boundary-point distribution is cmployed. The bunching of boundary points near sharp comers
and in regions of high curvature leads to a clustering of hyperbolic mesh lines which can
extend out into the far-ficld. The aspect-ratio based point filtering operation provides an
effective method of removing such unwanted mesh points. For most practical gcometrics, the
point filtcring operation has been found to remove roughly 30% of the total number of points.
Thus, in addition to providing a higher quality mesh, the filtering operation increases the solu-
tion efficiency by substantially reducing the required number of mesh points.

The filtered mesh-point distribution can now be used as input to the triangulation pro-
cedure. However, a distribution of streiching must also be suppliecd. As previously mentioned,
a stretching value is defined by a direction and a magnitude. Thus, stretching vectors must be
constructed at cach mesh point. The stretching direction at each point is taken as the direction
of the tangential hyperbolic structured mesh line, i.e., the & line in Figure 2, and the magnitude

is taken as the ratio % using the mesh point spacings of the filtered point distribution.

5. TRIANGULATION PROCEDURE

The filtcred mesh-point distribution is triangulated using the modified Delaunay criterion
described in {8]. In its original form, dic Delaunay triangulation procedure tends 10 produce
the most equiangular triangles possible and is thus not well suited for the generation of highly
stretched clements. The proccdure is thus modified through the use of a local mapping.
Hence, a mapping, based on the local stretching vector, is constructed as:

x'=[1+(S-1)sind | x , y =[1+(ISi-1)cos8 | y (6)

where x” and y’ represent the mapped cartesian coordinates corresponding to x and y, and |S!
is the magnitude of the local strctching vector, which is oricnted at the angle 9 with respect 10
the cartesian reference frame. 1f, for example, the stretching vector is lined up with the hor-
izontal axis (8 = 0), the mapping rcduccs to

x'=x y = Sly A

which corrcsponds to a stretching of space in the y direction. Thus, the distribution of mesh
points in physical space, which for this casc is closcly packed in the y direction and more
sparse in the x dircction, will appear more isotropic in the transformed x’-y” space. The
effect of the mapping is thus to produce a morc isotropic mesh point distribution in the
mapped space, such that the original Delaunay critcrion may be employed to triangulate the
points in this mapped space. Once the triangulation is c¢ffected, the connected mesh points arc
mapped back to physical space, thus producing the desired stretched triangulation. A variety
of methods cxist for constructing a rcgular Dclaunay triangulation.  Of these, the Bowyer algo-
rithm [10] and the edge-swapping algorithm of Lawson [11] arc of special intcrest.  Bowyer's
algorithm, which is formulated as a sequential point inscrtion process, makes use of the cir-
cumcircle property of a Dclaunay triangulation. This property states that no verex from any
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*riangle may be centained within the circumcircle of any other triangle, as shown in Figure 4.
Assuming an initial triangulation cxists and a list of points to be inserted is at hand, cach point
from the list is inscrted onc at a time into the triangulation. The triangles whose circumcircles
arc intersected by this new point are located and flagged. The union of these flagged triangles
forms a convex polygon which contains the new point. The structure of the mesh in this
rcgion is thus removed and a new structure is defined by joining the new mes.: point to all the
vertices of the convex polygon. Bowyer’s algorithm is thus ideally suited for adaptive mesh
refinement purposes. It can also be employed to construct an initial mesh, given a set of mesh
points, and an initial coarsc triangulation of the geometry. The edge-swapping algorithm of
Lawson provides a mcthod of transforming an arbitrary triangulation of a given set of points
into a Dclaunay triangulation. Since all two-dimensional planar graphs obey Euler’s formula
[12], all possible triangulation of a given sct of points contain the same number of cdges and
triangles.  Thus, any one triangulation may be obtained by simply rearranging the cdges of
another triangulation of the same sct of points. Because Dclaunay triangulations obey the
cquiangular properly, i.c., they maximize the minimum of all six angles within a convex qua-
drilateral, as shown in Figure 5, the swapping of edges according to this critecrion results in a
convergent process which produces the Delaunay triangulation for the given sct of points. The
construction of the stretched or modified Delaunay triangulation of the filtered mesh-point sct
is constructed in a two-step process. First, an initial regular Delaunay triangulation of the
point sct is constructed using Bowyer’s algorithm. An initial coarsc mcsh for Bowyer's algo-
rithm is construcicd by joining up the trailing-cdge point of one of the airfoils to all the outer
boundary points. All rcmaining intcrior mesh points arc then inserted scquentially using
Bowyer’s algorithm. The cdgc-swapping algorithm is then cmployed to convert this regular
Dclaunay triangulation into a stretched Dclaunay triangulation making use of the equiangular
property in the locally stretched space, which is defined by the stretching vectors. However,
prior to the edge swapping process, the distribution of stretching vectors is smoothed. This is
nccessary since the stretching vectors are originally determined from the local structured hyper-
bolic mesh-cell aspect-ratios, which may result in a non-smooth stretching distribution in
regions where multiple local meshes overlap (c.f. Figure 2). Smoothing is performed by
averaging each stretching vector with its ncighbors as determined by the connectivity of the
initial Dclaunay triangulation.

This two stage process, that of an initial Delaunay triangulation followed by a subsequent
cdge-swapping operation, can be likened to the data-dependent triangulations discussed in [13].
Originally developed for data interpolation purposes, the edges of a given triangulation arc
swapped according to the nodal values to be interpolated in a manner designed to reduce some
measurc of the interpolation crror. The present stretched triangulations can be thought of as
similar to these data-dependent triangulations (the data being the finite-clement approximation
to the flow solution). However, by basing the criterion on a modified or mapped Delaunay con-
struction, subscquent adaptive meshing may casily be performed using Bowyer's algorithm in
the stretched space.

6. MESH POST PROCESSING

Once a stretched triangulation has been generated, local mesh irregularitics may be
rcmoved, and incrcased smoothness obtained by post-processing the mesh.  This is accom-
plished by slightly displacing the mesh points according to a Laplacian smoothing operator
discretized on the cxisting mesh.  Thus, ncw smoothed mesh-point coordinates may be




computed as

(8)

where the summation is over all n ncighbors of point i, and o is a rclaxation factor. This
type of smoothing is not guarantced to prevent mesh cross-overs (negative area cells), which
can casily occur in regions of highly stretched clements. While various smoothing operators
which exclude the possibility of mesh cross-overs have been proposed [14,15], these usually
result in stiff systems of cquations which are expensive to solve. The simplest way of avoid-
ing mesh cross-overs is to limit the local amount of smoothing through the magnitude of the
relaxation factor in regions where negative cell arcas would otherwise occur.  After the mesh
points have been displaced, the smoothed mesh no longer obeys the (modified) Delaunay cri-
terion. Thus, the mesh edges may be swapped to recover this property. Multiple, such passes
of smoothing and edge-swapping can be used to post-process the mesh, thus ensuring a smooth
final mesh distribution.

7. ADAPTIVE MESHING

Once the initial stretched unstructured mesh has been generated, it may be adaptively
refincd provided an approximate flow-ficld solution has been obtained. The flow solution is
examined and the mesh is refined by adding new points in regions where the flow gradients or
the solution discretization errors arc large. In the present work, adaptation has been performed
on the basis of the gradient of pressure and Mach number. The undivided differences of
pressure/Mach number are constructed along cach mesh edge. If, at a particular mesh edge
this difference is larger than some fraction of the average of all differences across all cdges of
the mesh, then a ncw mesh point is created midway along that edge. Each new mesh point is
then inserted and triangulated into the existing mesh using Bowyer’s algorithm in the stretched
space. Thus, thc new adaptively generated mesh is created by introducing new points and
locally restructuring the previous coarser mesh without the need for global mesh regencration.
Whereas the mesh-point distribution is modified by the adaptive process, the stretching distri-
bution may not be altered in the present implementation. Thus, in order to maintain a close
coupling between the mesh-point distribution and the stretching distribution, which is necessary
to ensurc the construction of a smoothly varying mesh, an isotropic rcfinement strategy is
cmployed. When onc edge of a mesh triangle is tagged for refinement, all three edees of the
trianglc arc actually rcfined, thus avoiding any dircctional biasing of the refinement process.
The stretchings assigned to the new mcesh points are taken as the average of the stretchings at
both points on cither cnd of the gencrating mesh edge, thus maintaining a smooth stretching
distnbution.

The main difficulty encountered in adaptively refining highly stretched unstructured
meshes relates to the insertion of new boundary points. Since the gecometry boundarics arc
defined by spline curves, ncw boundary points will not, in general, coincide with the midpoint
of the boundary cdge from which they are generated.  For concave boundarics, the new boun-
dary point will not bc cnclosed by any of the existing mesh trangles, whercas for convex
boundarics the new mesh point will be interior to the cxisting mesh as shown in Figure 6. For
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highly stretched meshes, the height of the local mesh cells may be much smaller than the
boundary-point displacement produced by the spline detinition of the geometry. Hence, in
regions of convex curvature, newly inserted boundary points may not cven fall within the
boundary mesh cells but may be enclosed by a cell located several layers away from the boun-
dary, interior 10 the mesh. Since this new point is indeed a boundary point. the discretized
boundary must be reconfigured by breaking the generating boundary edge and ioining the new
point 'o both cnds of this edge. This operation impiies the restructuring of the boundary cell
which contzins this cdge. Howcver, the intersected triangle circumcircle scarch emploved in
Bowyer’s algorithm is not guaraniced to tag this boundary cell for restructuning, since in the
convex boundary casc the new point may lic scveral cells away from this boundary triangic,
and in the concave boundary case, the new point is not even contained in the cxisting mesh,
Thus, Bowyer’s algorithm must be modilied in order to enable the cffective restructunng of
highly stretched meshes in the vicinity of curved boundaries. In order to avoid outright failure
of the scarch routine and to guarantee the restructuring of boundary triangles, the new boun-
dary points are thus initially positioned at their undisplaced location, i.c., midway along the
boundary edgc from which they are gencrated. The displaced position of the boundary point is
then determined from the spline definition of the geometry. A line segment is then drawn join-
ing the original boundary point location with this new spline-displaced boundary point position.
All mesh cells which arc intersected by this line segment are then searched for and tagged for
subscquent restructuring.  Triangles whose circumcircles (in streiched space) are intersected by
the spline-displaced location of the boundary point are also identified and tagged. The mesh is
then restructured in the region defined by the union of all the tagged mesh cells by removing
all edges interior of this region and creating new cdges by joining the boundary point 1o all the
vertices bounding the restructured region as per the standard Bowyer algorithm procedure.
Thus, the discretized boundary is redefined and the mesh is restructured in its vicinity as
shown in Figure 7. This process results in a valid (stretched) Delaunay triangulation provided
no mesh points are contained in the region delimited by the discretized representation of the
boundary and the actual spline definition of the boundary as shown in Figure 7. 1f such points
exist, they may become extenor to the discretized flow-ficld as new mesh points are introduced
and the boundary discretization is refined.  Thus, a mesh refinement strategy which precludes
this possibility must be Jevised. The general strategy employed is to ensure, during the inital
mesh generation and subsequent adaptive mesh retinement, that inesh points are approximately
arranged along normal stations in the vicinity of the boundary.  During the initial mesh genera-
tion phasc. this type of distribution is naturally provided bv the local hyperbolic meshes
cmployed to generate the unstructured mesh point distribution. When adaptive mesh cnrich-
ment is performed, the idea is to avoid cases where an edge intenor to the mesh but close to a
curved boundary is retined without the boundary cdge itself heing refined. Hence an additional
process is created which adds cxtra refincment points to the mesh. This process is exccuted
after the determination ot the edges of the mesh which require refinement, but prior 10 the
actual initiation of the restructuring process. The spline displacement at cach boundary mesh
edge is first computed and stored.  For cach boundary edge. a normal line which extends into
the flow-ficld is then constructed. The points of intersection between this line and the various
mesh cdges near the boundary are determined as shown in Figure 8. As the distance away
from the boundary increases, the normal mesh spacing becomes larger and the distance
between consccutive intersection points along the nommal line also increases. When this dis-
tance becomes targer than some factor (usually taken as 2) times the spline displacement dis-
tance, the normal line is terminated.  If none of the intersected mesh edges have been
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previously tageed for refinement, the process is abandoned at this point. However, if one or
more of these edges are 10 he refined, then all the inersected edges including the boundary
edge are tagged for refinement, thus creating a column of new inesh points in this region. The
mesh point corresponding to the center of the boundary edge must be displaced onto the spline
definition of this boundary. Howecever, since this displacement will be larger than the distance
between the boundary point and the next point up in the column, all points in the column are
dispiaced by an cquivalent amount. This procedure guarantces a suitable new mesh-point dis-
tribution, since the separation distance of the mesh points at the interior end of the column is,
by construction, larger than the spline displacement distance applied to all such points.

Thus, a suitable mesh-point distribution is obtained by adding cxira mesh points n
rcgions where high boundary curvaturc and large mesh stretchings occur simultancously., As
mentioned previously in Section 3, such regions are characterized by a rapid variation of the
local mesh stretching vectors with respect to the average local mesh element size. Thus, the
geomcetry-adaptive boundary-point distribution cmployed in the generation of the initial mesh-
point distribution, which is based on a measure of the relative change of the mesh stretching
vectors, is also scen to have a beneficial effect at this stage in the adaptive meshing strategy.
By employing a mesh-point distribution in the original mesh which limits the magnitude of the
rate of change of the mesh stretching with respect to the local cell size, the regions where extra
mesh points are required in the adaptive meshing procedure in order 10 properly discretize
curved boundary regions are minimized. Furthermore, as the mesh refinement process
procecds, the extent of these regions continually decreases until, at fine cnough resolutions, no
such extra points arc required in any region of the flow-ficld. This can be seen from examin-
ing the size of the spline displaccments as a function of the mesh resolution. For a boundary
of locally constant curvature R, the spline displacement A(sp) is given by the relation

AGsp) = R {1~ cos—Az—e—] (9

where A6 represents the change in the angle between the tangents at two consceutive boundary
points, as shown in Figurc 9. Since the strcamwise mesh spacing As is related to this angle by
cquation (3), we obtain a quadratic rclation between A(sp) and As:

Alsp) = 4 —— (10)
However, the normal mesh spacing An also decrcases as the mesh is refined, since an isotropic
rcfinement strategy is employed. Te local stretching values are therefore not altered during the
. Ay . . .
mesh refinement process, and the ratio o can be considered constant.  Hencee, the ratio of
n
spline displacement 1o normal mesh spacing can be expressed as

Alsp) o Ay

= 11
An 4 R (n

thus demonstrating that the spline displacements A(sp) decrease faster than the normal mesh
spacings An, as the mesh is refined.

8. RESULTS

Figure 10 depicts a highly-stretched unstructured mesh generated in the geometry -
adaptive fashion about a simple two-dimensional airfoil. The mesh contains a total of 14,675
nodes including 230 airfoil surface points, and a normal spacing at the walt of 2 x 107 chords
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has been prescribed. The geometry-adaptive mesh-point distribution is ccen to result in a
smooth variation of clements throughout the domain, with local clustciing in regions of high
curvature and near sharp comers. Figure 11 depicts a relatively coarse stretched unstructured
mesh about a more complex four-element airfoil configuration. The mesh-point distribution for
cach airfoil has been generated in a gecometry-adaptive fashon, and the mesh contains a total
of 13,214 points, of which 299 arc in the airfoil surfaces. The nommal spacing of the cleiments
at the wall is 4 x 107> chords for each airfoil clement, resulting in cell aspect ratios of the order
of 500:1 in these rcgions. The flow-ficld has been solved for on the above mesh (Mach
number = 0.1995, Reynolds number = 1.187 million, Incidence = 16.02 degrees) and employed
to adaptively refine the mesh. This flow-solution/adaptive-refinement process has been
repeated twice, resulting in the heavily adapted mesh depicted in Figure 12. This mesh con-
tains a total of 48,691 mesh points, of which 243 arc on the surface of the main airfoil, 327 on
the surface of the slat (forward clement), with 208 and 247 points on the surfaces of the vane
and flap (third and fourth clements). A globally (non-adaptive) generated mesh of cquivalent
resolution would have required 4 10 5 times more mesh points thus illustrating the efficiency
advantages of the adaptive meshing procedurc. From the figurcs, refinement is seen to occur
mainly in the boundary-layer and wake regions and ncar the leading and trailing edges of the
airfoils, thus reinforcing the advantages of the initial geometry-adaptive mesh-point distribution.
The minimum normal spacing at the wall for this case is 1 x 107 chords, which should be
mor¢ than adequate for resolving the viscous layers at this Reynolds number. The iotal time
required to generate the original coarse mesh about this configuration (13,214 nodes) was 120
CPU scconds on a CONVEX C-210 computer. The triangulation proccdure required rorghly
80 scconds, with the remainder of the time mainly required for the post-processing operation
(c.g. cdge-swapping and smoothing). In the adaptive mesh enrichment stage, the triangulation
operation is more cfficient, since very little scarching is required when inscrting new points
adaptively. For example, the last adaptive cycle resulted in the insertion of 22,211 new points
into a previous mesh of 26,480 points, which was performed in 30 CPU scconds on a Convex
C-210. The flow-ficld Mach contours for the flow solution computed on this mesh are dep-
icted in Figure 13. The smoothness of these computed contours is a good indication of the
quality of the mesh-point and stretching distributions and the relative smoothness of the mesh.
This solution has been computed using a previously described finite-clement Navier-Stokes
solver in conjunction with an algebraic turbulence model designed for use on unstructured
meshes [16].

9. CONCLUSION

A mcthod for gencrating and adaptively refining a highly-stretched unstructured mesh
suitable  for computing high-Rcynolds-number  flows over arbitrary two-dimensional
configurations has been described. A combination of high stretching and smoothly varying cle-
ments can be obtained by devoting special attention to the initial mesh-point and stretching dis-
tributions and employing post-processing techniques. The triangulation procedure, which is
bascd on Bowyer's Dclaunay algorithm and an edge-swapping tcchnique, is cfficient and exhi-
bits lincar computational complexity provided efficient scarch routines are employed. Although
the mesh-point distribution is modificd in the adaptive meshing process, the streiching distribu-
tion is held fixed after the initial mesh generation phase.  Future work is required to develop an
adaptive strategy capable of modifying the local mesh stretching distribution in order that indi-
vidual How phenomena such as wakes or shear layers may be more casily tracked. The cxten-
sion of this work o three dimensions is not entirely straightforward.  In three dimensions, no
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cxact relation exists between the number of nodes and edges or faces of a given graph.  Hencee,
no direct counterpart to the edge-swapping algorithm employed in this work appears possible.
The other concepts and methodologics employed, such as the local mapping of stretched space
and Bowyer’s algorithm, do however carry over to higher dimensions.
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Figure 1
[Mustration of the Criterion Employed for Geometry-Adaptive
Boundary Point Refinement
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Figure 2
Itlustration of Mcsh-Point Distribution Generated by a Scrics of

Overlapping Structured Meshes and Definition of Point-Wisce Stretching Vector
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Figure 3
Illustration of Points Tagged for Removal by Aspect-Ratio Bascd
Point Filtering Opcration
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Figure 4
Bowyer’s Algorithm for Delasnay Triangulation
a) Insertion of New Point
b) Resulting Restructured Region

Figure §
The Two Possible Configurations for the Diagonal in a Convex Quadrilateral
and the Six Angles Associated with the Most Equiangular
Configuration (Solid Linc)




-16-

Concave

Convex

Figure 6
Hlustration of the Requircd Displacements out of and into
the Discretized Domain for New Adaptively Inserted
Boundary Points Along Concave and Convex Boundarics
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Figure 7
Itlustration of Original and Displaced Adaptively Inserted Boundary
Mesh Point in Region of Simultancous High Mesh Stretching and
High Boundary Curvature and Subscquent Restructuring of Mesh in this Vicinity




Figure 8
Ilustration of Fictitious Normal Line, Additional Mcsh Points,
and Displacements of these Points Applied in Regions of
Simultaneous High Mesh Stretching and High Boundary Curvature in Order
to Ensure an Adequate Mesh-Point Distribution
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As ~ RA®
A(sp) ~ R[1- cos 82

A2

A(sp) ~R

Figure 9
Tllustration of Spline Displacement Distance as a Function Streamwise
Spacing and Boundary Curvature
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Figure 10
Stretched Unstructured Mesh Generated in Geometry-Adaptive Manner
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About a Two-Dimensional Airfoil
(Number of Nodcs = 14,675)
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Figure 11

Initial Coarse Unstructured Mesh about Four-Element Airfoil Configuration
(Number of Nodes = 13,214)
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Figure 12
Final Adaptively Generated Mesh about Four-Element Airfoil Configuration
(Number of Nodes = 48,691)
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Figure 13
Computed Mach Contours for Flow Over Four-Element Airfoil Configuration
Mach = 0.1995, Reynolds Number = 1.187 million, Incidence = 16.02 degrees
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