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COMPLEX ENVELOPE PROPERTIES, INTERPRETATION,

FILTERING, AND EVALUATION

INTRODUCTION

When a narrowband input excites a passband filter, the output
time waveform y(t) is a narrowband process with low-frequency
amplitude- and/or phase-modulations. The evaluation of this
output process y(t) can entail an extreme amount of calculations
if the detailed behavior of the higher-frequency carrier is
tracked. A much better procedure in this case is to concentrate
instead on determination of the low-frequency complex envelope of
the narrowband output process y(t) and to state the carrier
frequency associated with it. Then, the detaiied nature of the
output can be found at any time points of interest if desired,
although, often, the complex envelope itself is the quantity of
interest.

The complex envelcpe of output y(t) is determined from its
spectrum (Fourier transform) Y(f) by suppressing the negative
frequencies, down-shifting by the carrier frequency, and Fourier
transforming back into the time domain. For a complicated input
spectrum and/or filter transfer function with slowly decaying
spectral skirts, these calculations can encounter a large number
of data points and require large-size fast Fourier transforms
(FFTs) for their direct realization. 1In this case, the use of
collapsing or pre-aliasing [l; pages 4 - 5] can be fruitfully
employed, thereby keeping storage and FFT sizes small, without

any loss of accuracy. This procedure will be employed here.
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As will be seen, when the complex envelope is re-applied to

the one-sided carrier term and the real part taken, the exact
narrowband waveform y(t) 1is recovered. However, if the complex
envelope itself 1s the quantity of interest, it has some
undesirable features. The first problem is related to the fact
that 1f waveform y(t) has any discontinuities i'. time, its
Hitbert transform contains logarithmic infinities, which show up
in the complex envelope. The second problem 1s generated by the
operation of truncating the negative frequencies in spectrum
Y(f); this creates a discontinuous spectrum which leads to a very
slow decay in time of the magnitude of the complex envelope.
Since numerical calculation of the complex envelope is
necessarily accomplished by sampling spectrum Y(f) in frequency f
and performing FFTs, this slow time decay leads to significant
aliasing and distortion in the time domain of the computed
quantities.

Because these features in the mathematically defined complex
envelope are very undesirable, there is a need to define and
investigate a modified complex envelope which more nearly
correspondc to physical interpretation and utility. The time
discontinuities in y(t) show up in Y(f) as a 1/f decay for large
frequencies, whereas the truncation of the negative frequencies
of Y(f) shnws up ac a discontinuity directly in f. Both of these
spectral properties can be controlled by filtering the truncated
spectral quantity, prior to transforming back to the time domain.
e wlll addrecs this filtered complex envelope and its efficient

evaluation in this report.
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Wwhen the waveform y(t) 1s real and/or causal, its spectrum

Y(f) possesses special properties which enable alternative

methods of calculation.
the real (or imaginary)
sine) transform, rather
The aliasing properties

implemented by means of

Thus, 1t sometimes suffices to have only
part of Y(f) and to employ a cosine (or
than a complex exponential transform.
of these special transforms, when

FFTs, will also be addressed here.

3/4
Reverse Blank
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ANALYTIC WAVEFORM AND COMPLEX ENVELOPE

Waveform y(t) is real with amplitude modulation a(t) and
phase modulation p(t) applied on given carrier frequency fo;

however, y(t) need not be narrowband. That is,
y(t) = a(t) cos[2nfot + p(t)] = Re{z(t) exp(i2nfot)] ' (1)
where complex lowpass waveform
z(t) = a(t) exp[ip(t)] (2)

will be called the imposed modulation. The corresponding

spectrum of imposed modulation z(t) is
Z(£f) = J dt exp(-i2nft) z(t) . (3)

(Integrals without limits are from -= to +«.) The magnitude

of spectrum Z(f) is depicted in figure 1; it is generally concen-

trated near frequency f = 0. The graininess of the curves here

is due to plotter quantization, not function discontinuities.
From (1), since waveform

1 z*(t) exp(-i2nfot) ' (4)

y(t) = % z(t) exp(i2nf t) + 3

its spectrum can be expressed as (see figure 1)

N =

Y(f) = % Z(f-£_) + z*(-f-fo) ;o Y(-f) = Y (f) . (5)

It will be assumed here that y(t) has no dc component; that is,

Y(f) contains no impulse at f = 0.
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ANALYTIC WAVEFORM
The single-sided (positive) frequency spectrum is defined as
Y,(£) = 2 U(E) Y(f) = U(f) Z2(f-£ ) + U(f) Z*(-f—fo) = (6)
= 2(f-f_) - U(-f) Z(£-f ) + U(f) z*(-f-fo) for all f . (7)

Here, U(x) is the unit step function; that is, U(x) is 1 for
x > 0 and U(x) i1s 0 for x < 0. The analytic waveform

corresponding to y(t) is then given by Fourier transform
y, () = I df exp(i2nft) Y+(f) . (8)

In order to further develop (8), we define a single-sided

(negative) frequency function

0 for £ > 0

N(f) = U(-f) Z(f-f,) = . (9)
Z(f-f,) for f < 0

which can be determined directly from the spectrum Z(f) of the
imposed modulation z(t) in (2) if fo is known. The magnitude of
N(f), scaled to peak value 1, is sketched in figure 1; it is
small if £, is large, and is peaked near f = 0. The complex time
function corresponding to (negative frequency) function N(f) is
0
n(t) = J df exp(i2nft) N(f) = J df exp(i2nft) Z(f-fo) . (10)
- Q0
With the help of (9) and (10), the single-sided spectrum

Y, (f) in (7) can now be expressed as
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Y (f) = Z(f-f ) - N(f) + N (-f) , (11)

with corresponding analytic waveform (8)

y,(t) = exp(i2nf_t) z(t) - n(t) + n*(t) = (12)

exp(ianOt) 2(t) - 1 2 Im{n(t)} . (13)

That is, the analytic waveform is composed of two parts, the
first of which is what we would typically desire, namely the
imposed modulation (2) shifted up in frequency by fo. The second
term in (13), which is totally imaginary, is usually undesired;
it can be seen from (10) and |N(f)| in figure 1 to be generally
rather small. There also follows immediately, from (13) and (2),

the expected result

Rely (t)} = a(t) cos[2nfot + p(t)] = y(t) . (14)
Since analytic waveform y,(t) can also be expressed as

Yo(E) = y(t) + iy (t) = y(t) + i y(t) @ = = y(t) + ifau 2L

n(t-u)’
(15)
where yu(t) is the Hilbert transform of y(t) and ® denotes
convolution, (13) and (2) yield
yH(t) = a(t) sin[2nf0t + p(t)] - 2 Im{n(t)} . (16)

If we define (real) error waveform e(t) as the difference between
the Hilbert transform of (1) and the quadrature version of

original waveform (1), we have
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e(t) = yy(t) - a(t) sin[2rf t + p(t)] = (17)
= - 2 Im{n(t)} = i [n(t) - n"(¥)] = (18)
0
= -2 Im J df exp(i2nft) Z(f-f ) = (19)
-f
o
= - 2 Im {exp(ianot) J df exp(i2nft) Z(f)} ' (20)
where we used (16) and (10). The error spectrum is, from (18)
and (9),
E(f) = i [N(f) - N'(-f)] = (21)
-i z*(-f-fo) for £ > O
= . (22)
iZ(f-f) for £ < 0
Then, E(-f) = E*(f). The magnitude of E(f) is displayed in
figure 2; it is generally small and centered about f = 0.
The total energy in real error waveform e(t) is
2
[ at ree)® = | at |E(6)|? =
= J df [N(f) - N*(-f)] [N*(f) - N(-f)] =
2 2
= [ae [Ineer1? + In-6)1%] = 2 [ af In0)1? =
0 —f0
=2 [ af |z(£-£)|? = 2 J af |z(£)]? , (23)
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where we used (21), the single-sided behavior of N(f), and (9).
This is just twice the energy in the spectrum Z(f) of imposed
modulation z(t) below frequency —fo; inspection of figure 1

reveals that this quantity will usually be small.

COMPLEX ENVELOPE

The complex envelope y(t) of waveform y(t) is the frequency

down-shifted version of analytic waveform y_(t):
y(t) =y, (t) exp(-i2nfot) = (24)
= z(t) + 1 e(t) exp(-i2nfot) ' (25)

where we used (13) and (18) and chose to downshift by fo Hertz,
the known carrier frequency in (l1). Waveforms z(t) and e(t) are
lowpass, as may be verified from their spectra in figures 1 and

2. The spectrum of the complex envelope is, from (25),

Y(£) = 2(f) + i E(f+£ ) . (26)

Equations (25) and (26) show that the complex envelope and its
spectrum are each composed of a desired component and an error
term.

The magnitudes of the complex envelope spectrum Y(f) and its
error component are displayed in figure 2; Y(f) is discontinuous
at £ = -fo but has zero slope as f - —fo, whether from above or
below. The left tail of Z(f) and shifted error spectrum,

i E(f+f0), interact so as to yield Y(f) = 0 for f <« -fo; this is

most easily seen from a combination of (24) and (6), namely

11
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Y(f) = Y (f+f ) = 2 U(E+E ) Y(E+f ) = (27)

*
= U(E+E ) [2(f) + 27 (-f-2f )] . (28)

The results for the error spectrum and energy in (22) and
(23), respectively, were originally derived by Nuttall ({2];
however, we have augmented those results here, to give detailed
expressions for the error and complex envelope waveforms and
spectra. There are no approximations in any of the above
relations; they apply to waveforms with arbitrary spectra,

whether carrier frequency fO is large or small.

EXTRACTED AMPLITUDE AND PHASE MODULATIONS

It is important and useful to also make the following
observations relative to the amplitude and phase modulations that

can be extracted from the complex envelope y(t). Define
A(t) = ly(e)yl »  P(t) = argly(t)} . (29)

Then, from (14) and (24), the original waveform can be expressed

in terms of these extracted amplitude and phase modulations as

y(t) = Re{y(t) exp(i2nf_t)} = A(t) cos[2rf_t + P(t)] . (30)

However, complex-envelope modulations A(t) and P(t) in (29) and
(30) are not generally equal to imposed modulations a(t) and p(t)
in (1), as may be seen by reference to (25). Namely, complex
envelope y(t) is equal to complex lowpass waveform z(t) in (2)

only if error e(t) is zero. But the energy in waveform e(t), as

12
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given by (23), is zero only if imposed spectrum zZ(f) in (3) 1is
zero for f < —fo. When Z(f) is not zero for f < —fo, complex-
envelope modulations A(t) and P(t) do not agree with imposed
modulations a(t) and p(t), despite the ability to write y(t) in
the two similar real forms (1) and (30) involving an amplitude-
and phase-modulated cosine with the same fo‘

Another interesting property of form (30) is that its

quadrature version is identically the Hilbert transform of y(t).

This is in contrast with the quadrature version of (1) involving
imposed modulations a(t) and p(t); see (17) - (20). To prove
this claim, observe that the quadrature versicn of the last term

of (30) is, using (29),

a(t) = A(t) sin[2nf _t + P(t)] = (31)
= I% [A(t) exp(iP(t) + i2nf t) - A(t) exp(-iP(t) - i2nf t)) =
= T%[Y(t) exp(i2nfot) - z*(t) exp(-ianot)] . (32)
The spectrum of this waveform is

QUf) = p3[Y(e-£5) - YT (-£-£)]| = -iu(f) Y(f) - U(-f) Y(-£)] -

{—i Y(f) for £ > O

} = -i sgn(f) Y(f) = Y, (f) , (33)
i Y(f) for £ <O

where we used (27), the conjugate symmetry of Y(f), sgn(x) = +1

for x > 0 and -1 for x < 0, and (6) in the form

Y+(f) = 2 U(f) Y(f) = (1 + sgn(f)] Y(f) = Y(f) + i YH(f) . (34)

13




TR 8827

the latter result following from (15). Thus, (33) and (31) yield

the desired result

yH(t) = R% ® y(t) = g(t) = A(t) sin[2nfot + P(t)] . (35)

This simple connection between (35) and (30) holds in general
when modulations A(t) and P(t) are extracted from the complex
envelope according to (29); there are no narrowband assumptions
required. The more complicated connection between (16) and (1),
which is applicable for the imposed modulations, involves an
error term; this error is zero if and only if spectrum Z2(f) in

(3) is zero for f < —fo.

SPECTRUM Y(f) GIVEN

All of the above results have presumed that waveform y(t) in
the form (1) was available as the starting point. But there are
many problems of interest where spectrum Y(f) is the initial
avallable quantity, rather than y(t). For example, the output
spectrum Y(f) of a linear filter L(f) subject to input spectrum
X(f) is given by Y(f) = L(f) X(f) and can often be easily and
directly computed. In this case, there are no given amplitude
and phase modulations a(t) and p(t) as in (1); in fact, there is
not even an obvious or unique center frequency for a given
spectrum Y(f). Nevertheless, many, but not all, of the relations
above hold true under appropriate definitions of the various

terms.

14
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Given spectrum Y(f) with conjugate symmetry, Y(-f) = Y*(f),

we begin with its corresponding real waveform
y(t) = J df exp(i2nft) Y(f) . (36)
The Hilbert transform of y(t) and its spectrum are given by
yu(t) = = ® y(t) , Y (f) = ~i sgn(f) Y(f) . (37)

The single-sided spectrum and analytic waveform are, respectively

Y, (f) = 2 U(E) Y(£) = (1 + sgn(f)] Y() = ¥(£) + i Y () , (38)
y, (t) = 2 f df exp(i2nft) Y(f) = y(t) + i yu(t) . (39)
0

Up to this point, all the functions are unique and nothing
has changed. However, we now have to choose a '"center frequency"
fC of Y+(f), since none has been specified; this (somewhat
arbitrary) selection process of fc is addressed in appendix A, to
which the reader is referred at this point. Hence, we take f. as

given and define lowpass spectrum
Y(f) = Y+(f+fc) = 2 U(f+fc) Y(f+fc) . (40)
The corresponding complex envelope is
y(t) =y, (t) exp(-i2nfct) . (41)

We define the complex-envelope amplitude and phase

modulations as in (29):

A(t) = |y(t)| ,  P(r) = argiy(t)} = argiy,(t)} - 2nf t . (42)

15




TR 8827
Then, from (39), (41), and (42), we have

y(t) = Re{y+(t)} = Ref{y(t) exp(ianct)] = A(t) cos[2nfct + P(t)].

(43)
Now when we define the quadrature version of the right-hand side

of (43) in a manner similar to (31), but now employing £ instead
of (unspecified) fo' the same type of manipulations as in

(31) - (35) yield relations identical to those given above:
Q(f) = YH(f) ’ yH(t) = q(t) = A(t) sin[ZHfCt + P(t)] . (44)

Because the choice of center frequency fc of single-sided
spectrum Y_ (f) is somewhat arbitrary (see appendix A), this makes
complex envelope y(t) and its extracted phase P(t) somewhat
arbitrary. However, the argument, 2nfct + P(t) = argiy, (t)}, of
(43) and (44) is not arbitrary, as seen directly from (41) and
the uniqueness of y, (t) in (39). Furthermore, extracted
amplitude modulation A(t) in (42) has no arbitrariness since it
is given alternatively by |y, (t)|, according to (41).

Since A(t) and P(t) are lowpass functions, we can compute
them at relatively coarse increments in time t. Then, 1f we want
to observe the fine detail of y(t), as given by (43), we can
interpolate between these values of A(t) and P(t) and then
compute the cosine in (43) at whatever t values are of interest.
This practical numerical approach will reduce the number of
computations of A(t) and P(t) required; in fact, in many
applications, A(t) and P(t) will themselves be the desired output
quantities of interest, rather than narrowband waveform y(t) with

all its unimportant high-frequency detail.

16




TR 8827

EXAMPLE

Consider the fundamental building block of systems with

rational transfer functions, namely

y(t) = U(t) exp(-at) cos(2nf0t + ¢) , a >0, £t >0, (45)
where U’t) is the unit step in time t. Let
w = 2nf , w, = 2nfo ;o C = - dwg . (46)

Then, from (1) and (2), the imposed modulations are

a(t)

]

U(t) exp(-at), p(t) = ¢, z2(t) = U(t) exp(i¢-at) , (47)

yielding, upon use of (3) and (46), spectrum

Z(f) = exp(i¢) exp(i¢) (48)

a + 12nf o + 1w

From (5) and (48), the spectrum of y(t) is

=1 exp(i¢) exp(-i¢)
Y(f) = 2[a + 1(w - w,) Yo+ i(w + w,) ‘ (49)

and (6) ylelds single-sided spectrum

= exp(i¢) exp(-i¢)
Y, (f) = U(f)[a + 1(w - w,) T aE 1w+ w )l ° (50)

Now we use (9), (48), and (40) to obtain (negative) spectrum

0 for £ > 0

= u(_fy €Xp{i¢) _
N(£) U(-f) c + 1w exp(1i for £ < 0 : (51)
c + 1w

17
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Then, from (10), the corresponding complex time waveform is

0 c
n(t) = J df exp(iwt) ixg(;:) = einig;Ct) j Q% exp(tu) . (52)
~® c-1x
For t < 0, let x = |t{u = -tu, to get
clt|
_ p(i¢-ct) d _ i .
n(t) = SXELEZE S exp(-x) = z¢ exp(i¢-ct) Ej(c|t]) , (53)

clt]-i=

where E,(z) is the exponential integral [3; 5.1.1]. It is
important to observe and use the fact that the path of
integration 1in the complex x-plane in (53} remains in the fourth
quadrant and never crosses the negative real x-axis

[3; under 5.1.6].

Also, for t > 0, let x = -tu in (52), to get
-ct
_ exp(i¢-ct) dx _ i .
n(t) = on = exp(-x) = 57 exp(i¢-ct) E;(-ct) . (54)
-Cct+iw

Here, the contour of integration remains in the second quadrant
of the complex x-plane and again does not cross the negative real
x-ax1ls [3; under 5.1.6). The combination of (53) and (54) now

yields complex time waveform

n(t) = 5% exp(ié¢-ct) E,(-ct) for all t = 0 . (55)

18
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Now, we use (18) to obtain real error waveform
e(t) = - % Re{exp(i¢-ct) El(—ct)} for all t = 0 . (56)

(Or we could directly use (20) with (48).) The corresponding

error spectrum follews from (22), (48), and (46) as

-i exp(-i¢)
- : for £ > 0
c + 1w
E(f) = . (57)

c + iw

From (16), (17), (47), and (56), the Hilbert transform of

y(t) is

yH(t) = U(t) exp(-at) sin(2nfot+¢) -

- % Re{exp(i¢-ct) El(—ct)} for all t = 0. (58)

In addition, using (15) and (45), the analytic waveform is

y,.(t) = U(t) exp(i¢-ct) - 1 % Re{exp(i¢-ct) El(—ct)}

for all t = 0. (59)
The complex envelope follows from (25), (47), and (56) as

y(t) = U(t) exp(i¢-at) - % exp(—iwot) Re{exp(i¢-ct) El(-ct)}

for all t = 0 . (60)

The corresponding spectrum is, from (27) and (50),

- exp(i exp(-i¢)
Y(f) = U(f+fo)[a—$iI%l e v (61)
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The extracted amplitude and phase modulations A(t) and P(t) of
complex envelope y(t) are now available by applying (42) to

(60). Since the first term, by itself, in (60) has the imposed
amplitude and phase modulations a(t) and p(t) as specified in
(47), A(t) cannot possibly equal a(t), nor can P(t) equal p(t).
This example is an illustration of the general property stated in
the sequel to (30). The reason is that spectrum Z(f) in (48) is
obviously nonzero for f < —fo.

From (23) and (48), the energy in error waveform e(t) is

w
9
a

For comparison, the energy in desired component z(t) in complex

2

1l -~ = arctan . (62)

_daf _ _1
2 2 2a

=]

envelope y(t) of (25) is, from (47),

j dt lz(t)l2 =

-

1
5o - (63)
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SINGULAR BEHAVIOR
Since [3; 5.1.11 and footnote on page 228}
El(z) = - 1ln(z) - y + Ein(z) , (64)

where Ein(z) is entire, the error waveform in (56) has a

component

- % Re{-exp(i¢-ct) 1ln(-ct)} =

]
==

Refexp(i¢-ct) [1ln(-c sgn(t)) + ln|t|] for t = 0 , (65)

of which the most singular component is

% 1n|t| exp(-at) cos(w t + ¢) ~ % cos(¢) ln|t| as t » 0 . (66)

The only situation for which this logarithmic singularity does
not contribute an infinity as t » 0 is when ¢ = - n/2 (or n/2).

That corresponds to the special case in (45) of
y(t) = U(t) exp(-at) sin(wot) for ¢ = - n/2 , (67)

which is zero at t = 0; that is, y(t) is continuous for all t.
However, even for ¢ = - n/2 in the first term of (66), the
product 1ln|t| sin(w,t) has an infinite slope at its zero at

t = 0, leading possibly to numerical difficulties.

The spectrum Y(f) follows from (49) as

w
Y(f) = 9 for ¢ = - %, (68)
2 2 . 2 2
a” + wo + 120w - W
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which decays as w_z as w 2 *=; this spectral decay is the key
issue for avoiding a logarithmic singularity in e(t), yu(t),
y,(t), and y(t). All values of ¢ other than #*n/2 lead to
asymptotic decay of Y(f) in (49) according to -i cos(¢) w—l,
which leads to a logarithmic singularity in the variou: time
functions considered here, including the ccmplex envelope.

Continuing this special case of ¢ = - n/2 in (67) and (68),

we find, from (48),
Z2(f) = ——— , z(t) = U(t) (-i) exp(-at) for ¢ = - 7 . (69)

Also, there follows from (56), (58), and (60), respectively, the

error, the Hilbert transform, and the complex envelope, as

e(t) = - % Im{exp(-ct) El(—ct)} p (70)
yy(t) = - U(t) exp(-at) cos(w t) + e(t) , (71)
Y(t) = U(t) {-i) exp(-at) + i exp(-iw _t) e(t) , (72)
all for ¢ = - n/2.

The asymptotic behavior of error e(t) at infinity is

available from [3; 5.1.51] as

as t » *» for ¢ = - % . (73)

[\
[\
=
t|—

a + w
o)

The origin behavior is available from [3; 5.1.11]:
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- % arctan(wo/a) as t » 0-

e(t) ~ for ¢ = - . (74)

NI

13

1 - % arctan(wo/a) as t » 0+

Observe that these limits in (74) at t = *0 are both finite.
Also, note the very slow decay in (73), namely 1/t, of error e(t)
at infinity.

When ¢ = *n/2, the generalizations to (73) and (74) are

[3; 5.1.51 and 5.1.11]

o COoS¢ - W sing

1
e(t) ~ — as t 2 o (75)
a2 + w2 nt !
(o]
and
e(t) ~ €252 Jnt] ast >0 . (76)

Now, error e(t) becomes infinite at the origin and decays only as
1/t for large t. (If tan¢ = a/wo, then e(t) = O(t-z) as t o *w;

this corresponds to Y(0) = 0 in (49).)
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GENERAL HILBERT TRANSFORM BEHAVIOR

The example of y(t) in (45) (when ¢ = *n/2) illustrates the
general rule that if a time function has a discontinuity of value
D at time t_, then its Hilbert transform behaves as D/n lnlt—tol

as t - to' To derive this result, observe that

y(t) ~ V + %D sgn(t-to) as t - tO ’ (77)

when y(t) is discontinuous at to. Then, for t near to’ the

Hilbert transform of y(t) is dominated by the components

-
1 [d 1
yu(t) ~ = J £ [v + 3D sgn(t—to—u)] +

-b
b

1 (d 1

+ 2 J & [v + 2D sgn(t-to-u)] , (78)

£

where € 1s a small positive quantity and the principal value
nature of the Hilbert transform integral has been utilized. The
integrals involving constant V cancel; also, by breaking the
integrals in (78) down into regions where sgn is positive versus
negative, and watching whether t-t, is positive or negative, the
terms involving ln(e) cancel, leaving the dominant behavior

yy(t) ~ % Inlt-t_| as t - t_ . (79)

(The example in (66) corresponds to a discontinuity D = cos(¢) at

tO = 0, as may be seen by referring to (45).) When Hilbert

24




TR 8827

transform yh(t) has this logarithmic singularity (79), then so
also do y_(t), y(t), and e(t) at the same time location. Thus,
the complex envelope corresponding to a discontinuous y(t) has a
logarithmic singularity.

An alternative representation for Hilbert transform y(t) in

(15) is given by
yylt) = J df exp(i2nft) (-1) sgn(f) Y(f) . (80)

1f Y(f) decays to zero at f = *» and if Y(f) is continuous for
all real f, then an integration by parts on (80) yields (due to
the discontinuity of sgn(f)) the asymptotic decay

yy(t) ~ X%%l as t > *o . (81)

(Results (73) and (75) are special cases of (81), when applied to
example (49).) The only saving feature of this very slow decay
for large t in (81) is that Y(0) may be small relative to its

-1 for

maximum for f = 0. For example (49), IY(fO)I £ (2a)
a << wg, which is then much larger than Y(0) = - sin¢/wo. In
this narrowband case, the slow decay of (81) will not be overly
significant in analytic waveform y_(t) until t gets rather large.
If Y(0) is zero, the dominant behavior is not given by (81), but

instead is replaced by a l/t2 dependence, with a magnitude

proportional to Y’ (0).

25




TR 8827
GRAPHICAL RESULTS

We now take the example in (45) with parameter values
a =1 sec”! and f, = 100 Hz. The error e(t) in (56) is plotted
versus time t in fiqure 3 for three different values of phase ¢.

A time sampling increment A, of .02 msec was used to compute

t
(56), since these error functio=s are very sharp in t, being
concentrated around t = 0 where the waveform y(t) has its
discontinuity. The period of the carrier frequency is l/fO = 10
msec; however, the error functions vary significantly in time
intervals less than 1 msec. These functions approach -« at

t = 0, according to (66), except for ¢ = -n/2.

The corresponding complex envelope is given by (72); its
magnitude is plotted in fiqure 4 over a much wider time interval.
The straight line just to the right of the origin is the desired
exponential decay a(t) = exp(-at), which dominates the error e(t)
in this region of time. Eventually, however, for larger t or
negative t, the error e(t) dominates, with its much slower decay
rate. It is readily verified that the asymptotic behavior
predicted by (75) is in control and very accurate near both edges
of fiqure 4.

At the transition between the two components, the random
vector addition in (72) leads to large oscillations; the period
of the carrier is l/fO = 10 msec, meaning that the transition
oscillations in figure 4 have been grossly undersampled with the
time increment A, approximately 40 msec that was used. The error

t
curve for ¢ = 0 is much smaller than the other two examples over
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most of its range; however, the magnitude error goes sharply to «
at t = 0.

From (72) and figure 4, it is seen that for ¢ = -n/2, the
phase P(t) of complex envelope y(t) 1is essentially -n/2 for
t > 0, until we reach the transition. To the right of the
transition, the phase of y(t) exp(iwot) is essentially n/2
because e(t) > 0 for t > 0, for this example. For t < 0, the
phase of y(t) exp(iwot) is -n/2 because e(t) < 0 for t < 0. We
will numerically confirm these claims later when we compute the

analytic waveform and complex envelope by means of FFTs.
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uldim_ . . -

Figure 3. Error e(t) for Various ¢

Figure 4. Complex Envelope for Various ¢
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FILTERED COMPLEX ENVELOPE

It was shown in (26) that the spectrum Y(f) of the complex
envelope y(t) of a given waveform y(t) with complex imposed
modulation z(t) is given by a desired term Z(f) plus an undesired

error term, namely,
Y(f) = Z2(f) + i E(f+fo) . (82)

According to figures 1 and 2, the major contribution of the first

0, while the undesired second

term, 2(f), is centered around f

term in (82) is centered about f —fo. This suggests the
possibility of lowpass filtering complex envelope spectrum Y(f)
in order to suppress the undesired frequency components. Also,

this will eliminate or suppress the undesired logarithmic

singularities present in the complex envelope y(t).

LOWPASS FILTER

To this aim, let H(f) denote a lowpass filter with H(0) =1
and cutoff frequency, fl’ smaller than fo. For example, the Hann

filter is characterized by

cosz( %—] for |f| < £,
1

H(f) = . (83)

N

0 otherwise

The filtered complex envelope spectrum is, in general,

G(f) = Y(f) H(f) . (84)
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The importance of having f, < fo is that filter H(f) will then

1
smoothly cut off its response before reaching the discontinuity
at £ = —fo of the spectrum Y(f) of the complex envelope y(t); see
(27). In this way, we can avoid the slowly decaying behavior of
the complex envelope y(t) for large t, namely 1/t, which
inherently accompanies its discontinuous frequency spectrum.
This will prove important when we numerically evaluate the
filtered complex envelope, by sampling (84) at equispaced
frequencies and performing a Fourier transform into the t domain,
necessarily encountering the unavoidable aliasing in time
associated with such a technique.

Since the complex envelope y(t) is given by (25) as the sum

of desired component z(t) and an error term, the filtered

waveform corresponding to spectrum G(f) in (84) is given by

g(t) = y(t) & h(t) =
= z(t) ® h(t) + [i e(t) exp(-i2nf _t)] & h(t) = (85)

= gg4l(t) + g,(t), (86)

where ® denotes convolution, h(t) is the impulse response of
the general filter H(f) in (84), and gq(t) and g,(t) are,
respectively, the desired and undesired components of the
filtered complex envelope g(t). We should choose filter H(f) to
be real and even; then impulse response h(t) is also real and
even.

The Hann filter example in (82) could be replaced by a filter

with a flatter response about f = 0 and a sharper cutoff
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behavior. The major features that filter H(f) shculd have are a
fairly flat response in the Z(f) freguency range near f = 0, but
cut off significantly before getting into the major frequency
content of error term E(f+fo), which is centered about f = -fo.
If the given waveform y(t) in (1) 1s not really narrow.-nd, there
may not be any good choice of cutoff frequency fl; that is, 1t
may be necessary to sacrifice some of the higher frequency

content of z{t) or to allow some of the error e(t) to pass.

EXAMPLE

We again consider the example given 1in (47) and (48), along
with the Hann filte:- in (83). 1In order to evaluate the filtered

complex envelope g(t) in (86), we define an auxiliary functicn
E(z) = exp(z) E,(z) , (87)

where E,(z) 1s the exponential integral [3; 5.1.1]. Then, when

we use the fact that (83) can be expressed as

exp(inf/fl) + 1 exp(—inf/fl) for |f| < £, . (88)

H(Ef) = 7

+

=

1
2
we encounter the following two integrals. First, we need the

result

exp(iuot+io:~1

f1 .
2
J df a + 12w+
_fl o

-lexp(-1iw

n/fl) ) (-1)

1w 12m

t)E(un)—exp(iwlt)E(v Yl o

1 n

(89)
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where w = 2nf, n is an integer, f, < f and we defined

1 o’
u, o= -({a + i2wO - iwl)(t + %n/fl) ,
vy = -(a + iZwO + iwl)(t + %n/fl) (90)
To derive this result, we let x = -(a + i2wO + iw)(t + %n/fl) in

(89) and used (3; 5.1.1], along with the important fact that
fl < fo’ which gquarantees no crossing of the negative real avis
of the resulting contour of integration in the complex x-plane.

Also, when we define

- P : 1
Uy = ug(£550) = -(a - deg)(t + Fn/fy)
v =V (£,=0) = —(a + iw))(t + n/f)) , (91)

then for fo = 0, we find the second :ntegral result reguired,

namely,
f1 1
exp(iwt+iw§n/f1) (_l)n _ .
[ df T i = STy exp(—lwlt)E(gn)—exp(1w1t)E(yn) +
-t
1
+ U(t + ln/f ) exp(-at - lan/f ) (92)
2™ P 2 1) -

The extra term in the second line of (92) is due to a crossing of
the negative real axis 1n the complex x-plane by the contour of
integration when we make the substitution
X = - (o + 1lw)(t + an/fl) in the integral of (92).

The desired component of the fi'tered comple. envelope is

given by the first term of (85) and (86), in the alternative form
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gq(t) = | af exp(iznft) z(f) H(f) =

(93)

f

1
- . exp(i¢) 2[5 ;_]
I df exp(idnft) o+ 1w €95 |3 fl
_fl

= ei¢(e_°t[%0(t) + %U[t + 5%;] exp[%%;] + %U(t - —%I] exp[igzll +

8]

+ I%;(exp(-iwlt)[E(Ho) - % E(u,) - % E(u -1)] -

- exp(iw t) [E(vy) - 3 E(v) - 3 E(v _])] - (94)

Here, we also used (48), (88), and (92). Since the factor
multiplying exp(i¢) in (93) has conjugate symmetry in frequency
f, the time function multiplying exp(i¢) in (94) is purely real
for all time t.

The undesired spectral component in (82) is given by
. *
i E(f+fo) =2 (—f—2fo) for £ > —f0 ’ (95)

where we used (22). Therefore, using restriction f1 < fo’ the
undesired time component in the filtered complex envelope in

(86) is given, upon use of (89), by

£
- : exp(-i¢) 2(£ £_] -
gu(t) = J df exp(i2nft) 7 iZwo +1o €057 |3 fl
-f
1

= gfﬂfiﬁil[exp(-iwlt)[E(uo) - % E(u,) - % E(u_l)] -
- exp(iwlt)[E(vo) - % E(vy) - % E(v_l)]] . (96)
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In contrast with (94), the time function multiplying phase factor
exp(-1i¢) in (96) is complex. The total time waveform at the
filter output, g(t), namely the filtered complex envelope, is
given by (94) plus (96), and depends on ¢. In fact, since the
magnitude of total output g(t) depends on ¢, we will look at
plots of the magnitudes of components |gd(t)| and Igu(t)l,
neither of which depend on ¢.

For comparison, the complex envelope itself is given by (25)
in the form y(t) = z(t) + 1 e(t) exp(—i2nfot). Since these two
(unfiltered) components depend differently on phase ¢, we shall
also consider only their magnitudes |z(t)| and |e(t)| and compare
them with filtered components lgd(t)l and lgu(t)l, respectively.
In particular, from (48), the desired component of the complex

envelope y(t) for the example at hand is
z(t) = exp(i¢$¢ - at) U(t) for all t , (97)
while the undesired portion is given by (56) and (87) as
e(t) = - %Re{exp(i¢ - ct) El(—ct)} = - %Re{exp(i¢) E(-ct)} (98)

for t # 0, where ¢ = a - iwo. The magnitude of complex waveform
z(t) 1s independent of ¢, but the magnitude of real error
waveform e(t) still depends on ¢; see figure 3.

The magnitudes of z(t) and g4(t) for o = 1 sec”! and
f, = 40 Hz are displayed in figure 5 on a logarithmic ordinate.
The filtered complex envelope component, gd(t), drops very
quickly to the left of t = 0 and is indistinguishable from z(t)

for t > 0; compare with figure 4. Thus, the passband of the Hann
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filter H(f) in (83) has been taken wide enough to pass the
majority of the frequency components of desired function Z(f) in
this example. The darkened portion of the plot just to the left
of t = 0 corresponds to a weak amplitude-modulated 40 Hz
component, which is the cutoff frequency f1 of filter H(f).

The magnitudes of gu(t) and error e(t) are displayed in
figure 6 for the additional choice of parameters fo = 100 Hz and

¢
t

-n/2 rad. The peak values of these undesired components at

0 differ by over a factor of 10, through this process of
filtering the complex envelope. At the same time, the skirts of
filtered version g,(t) are down by several orders of magnitude
relative to e(t). The thick plot of Igu(t)l is again a 40 Hz
component, which has been sampled at a time increment b, = .002
sec.

For phase ¢ = 0 instead, original waveform y(t) in (45) is
discontinuous at t = 0, giving rise to a Hilbert transform which
has a logarithmic infinity there; see (77), (78), and (79).
Therefore, the magnitude of error e(t) in figure 7 has an
infinity at t = 0, whereas the filtered quantity g,(t) is finite
there; in fact, lgu(t)l is independent of ¢. Although e(t) is
significantly reduced in value, away from the origin, relative to
figure 6, it is still larger than the filtered quantity g,lt).
Since the energy in error waveform e(t) is independent of ¢ (see
(62)), smaller skirts in e(t) can only be accompanied by a larger
peak; in fact, this latter case for e(t) in figure 7 has an
infinite (integrable) peak at t = 0. By contrast, the energy in

the filtered undesired component gu(t) is, from (82) and (84),
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[ ag Eere1? 1men))? (99)

which can be considerably less than the error energy, when filter
H(f) significantly rejects the displaced error spectrum E(f+fo).
This example points out that considerable reduction of the
undesired error term in the complex envelope can be achieved
through the use of lowpass filtering with an appropriate cutoff
frequency, and that the undesired singularities can be signif-
icantly suppressed. Furthermore, the desired component of the
complex envelope can be essentially retained. These conclusions
follow if the bandwidth of the imposed modulation, z(t) in (1)

and (2), 1is small relative to the carrier frequency fo'

1 | r“—— ............ _________ T

T ———

L U O R PN P

b l&.(/l S
10 Arale

Figure 5. Filtered Complex Envelope; Desired Terms
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Figure 6. Filtered Complex Envelope; Undesired Terms, ¢=-n/2
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Figure 7. Filtered Complex Envelope; Undesired Terms, ¢=0
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TRAPEZOIDAL APPROXIMATIONS TO ANALYTIC WAVEFORM,
COMPLEX ENVELOPE, AND FILTERED COMPLEX ENVELOPE

In this section, we address methods of evaluating the
analytic waveform and the complex envelope by means of FFTs.
We start by repeating the results in (6) and (8) for the

analytic waveform, that is,

Y, (f) = 2 U(E) Y(f) , (100)

y,(t) = f df exp(i2nft) Y, (f) = J df exp(i2nft) 2 Y(f) . (101)
0

The trapezoidal approximation to (101) is obtained by sampling
with frequency increment A to get
o

8 ) €, exp(i2nnAt) 2 Y(nA) = (102)
n=0

Y, (t)

j df exp(i2nft) 2 Y(f) b §,(f) =
0

Y (t) ® &) ,(t) =¥ _ y+[t - %} . (103)
n

where sequence = % and €, = 1 for n 2 1, and summations

o
without limits are from -« to +«.

Notice that approximation §+(t) is a continuous function of
time t and has period 1/8A in t. The desired term in (103) is
that for n = 0, namely analytic waveform y,(t). Because y_(t)

can contain a slowly decaying Hilbert transform component, the

aliasing at separation 1/4 in (103) can lead to severe distortion

39




TR 8827

in approximation y, (t) defined in (102).

Since y,(t) has period 1/A in t, we can confine its
computation to any interval of length 1/A. In particular, if we
divide this interval into N equally-spaced points (where integer
N is arbitrary), we can compute, from (102),

§+[-ﬁ%] =0y e, exp(i2nnk/N) 2 Y(nb) (104)
n=0
for any N contiguous values of k. If we choose the range
0 < k € N-1, and if we collapse the infinite sequence in the

summand of (104) according to

z = 24 %=0 €n+jN Y(nA + jNA) for 0 £ n < N-1 , (105)
then (104) can be written precisely as
-k N-1
y+[ﬁ3] = §=0 exp(i2nnk/N) z, - (106)

This last result can be accomplished by means of an N-point FFT
if N is highly composite. This is a very efficient method of
computing the aliased version of the analytic waveform as defined

by (102).
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COMPLEX ENVELOPE

The center frequency fC of single-sided spectrum Y (f) in
(100) can be found by the method described in appendix A. Then

the complex envelope spectrum and waveform are, respectively,

X(f) = Y+(f+fc) ’ (107)
y(e) = I df exp(i2nft) Y(f) =
= I df exp(iZnft) Y+(f+fc) = exp(—i2nfct) y.(t) - (108)

The approximation to complex envelope y(t) is achieved by

relating it to that for analytic waveform y_(t) according to

y(t) = exp(-i2nf_t) Y (t) = (109)
= exp(-i2nf_t) A y e, exp(i2mnat) 2 Y(nd) , (110)
n=0

where we used (108) and (102). The continuous function
exp(ianct) i(t), which is just §+(t), has period 1/A in t, which
simplifies its calculation. Using (109), (103), and (108), there

follows, for the approximation to the complex envelope,

y(t) = exp(-i2nf_t) J B y+{t - %] =) y[t - %] exp(-i2nf_n/a)
n n
(111)
The desired term in (111), for n = 0, is complex envelope y(t).
The n-th term has a time delay (aliasing) of n/A and a phase

shift of n2nfc/A radians, which is arbitrary because frequency
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sampling increment 4 in (102) is unrelated to center frequency
fC of Y _(f) in (100).
Sample values of complex envelope approximation i(t) can be

obtained from (110) as

~(_k : Kk ® L
Y[ﬁz] - exp[—12nfc ﬁE] A %;% e, exp(izmnk/N) 2 Y(nd) . (112

Again, the infinite sum in (112) can be collapsed and realized
as an N-point FFT; see (104) - (106). The phase factor

Py = exp(—i2nfck/(NA)) can be computed via recurrence

Py = Pr_1 exp(-iznfc/(NA)).

FILTERED COMPLEX ENVELOPE

The spectrum of the filtered complex envelope is given by
(84) as G(f) = Y(f) H(f). The filtered complex envelope waveform

is
g(t) = J df exp(i2nft) G(f) = y(t) ® h(t) (113)

and has low sidelobes and rapid decay in t, when filter H(f) is
chosen appropriately.

The approximation to g(t) adopted here will be generalized
slightly in order to allow for frequency-shifted sampling.

Specifically, we define
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~

ga(t) = J df exp(i2nft) G(f) A 6A(f - a) = (114)

=48 Y _ exp(i2n[nA + alt) G(nA + a) . (115)
n

The function exp(-i2nat) aa(t) has period 1/4 in t, which allows
us to confine its calculation to any convenient period.

The behavior of approximation §a(t) in (114) follows as
9, (t) = g(t) & [exp(iZ2nat) &, ,,(t)] =

= g(t) 8} exp(i2nan/A) é[t ~ %] =
n
- : _ E
= En exp(i2ran/4) g[t A] . (116)

This is the aliased version of the filtered complex envelope.
The desired term, for n = 0, is the filtered complex envelope
g(t), independent of the choice of frequency shift a. Shift a
is arbitrary and could be taken as -fc if desired.

Samples of aa(t) are available from (115) according to
g [—5] = A ex [i2na —5) > exp(i2nnk/N) G(nd + a) (117)
Ja{ND P Na) p ’

which we can limit to 0 £ k < N-1 due to the periodicity of
Ea(t). Again, the infinite sum on n can be converted to an

N-point FFT without error, by collapsing into the finite sequence

z =0 Ejj G(nd + a + jNA) for 0 < n € N-1 . (118)
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The remaining phasor exp(i2mak/(NA)) in (117) can be quickly

obtained via recursion on k.

GRAPHICAL RESULTS

The same fundamental example introduced in (45) will be

used here, again with a = 1 sec”!

¢
Y

and f0 = 100 Hz. For phase

-n/2, FFT size N = 1024, and a frequency increment of

1/80 Hz, the magnitude of y(t), namely A(t), is displayed in
figure 8 over the 1/A = 80 sec period centered at t = 0. This
selection of the time period has been purposely made the same as
that used in fiqure 4, for easy comparison of results. The major
difference between the ¢ = -n/2 result in figure 4 and figure 8
is that the aliasing in the latter case causes the curve to have
a jagged behavior and to droop in the neighborhood of t = #40
sec. However, other examples could well have the aliasing
increase near the edges of the period. A total of 88,000 samples
of Y(f) at frequency increment A were taken in computation of
(104); the collapsing in (106) resulted in storage of only
N = 1024 complex numbers and the ability to use a single
relatively small N-point FFT. A program for the evaluation of
the complex envelope by means of an FFT with collapsing is
furnished in appendix B; the FFT uses a zero-subscripted array in
direct agreement with the mathematical definition of the FFT.

The corresponding phase, P(t) = arg[i(t)], of the aliased
complex envelope is given in figure 9. The phase is

approximately -n/2 for 0 £ t < 10 sec, as expected, since in
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this limited time interval, the error is not the dominant term.
However, over the rest of the period, the error term does
dominate and it has an exp(—iwot) behavior, where fO = 100;

see (25) and figqure 3. Thus, the time sampling increment

by = 1/(NA) = .078 sec is grossly inadequate to track this
high-frequency term, and we get virtually random samples of the
phase of the complex exponential exp(-iwot).

To confirm the phase behavior outside the (0,10) sec
interval, we have plotted the pha§9vof zkt) exp(iwot) =y, (t) in
figure 10 as found by the FFT précedure above. To the right of
t = 10, the phase is approximately n/2, in agreement with the
fact that e(t) is real and positive for t > 0; see figure 3 and
(25). For time t < 0, the phase is -n/2 because e(t) < 0 for
t < 0. The oscillatory behavior at both edges of the period,
namely, for 30 < |t] < 40, is due to aliasing from adjacent lobes
indicated by (103) and (111).

When ¢ is changed to 0 and everything else is kept unchanged,
the result for the magnitude of complex envelope aliased version
i(t) is plotted in figure 11. Comparison with the exact results
in figure 4 reveals a very dramatic increase in aliasing, in
fact, by two orders of magnitude. The reason for this
considerable increase can be seen from figure 3 and (75); namely,
the error e(t) is unipolar for ¢ = 0 and it decays very slowly.
Whereas for figure 8, the alternating character of the over-
lapping aliased error lobes led to a cancellation near t = 40

sec, the opposite situation occurred in figure 11, leading to a
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considerable build-up of the aliasing effect.

The corresponding phase of i(t), P(t), is piotted in figure
12. Its value is zero in the region 0 < t £ 10, as expected,
since the desired term, exp(-at), dominates here. Outside this
region, the situation is the same as explaines’ above with respect
to figure 9. We have not plotted the counterpart to figure 10
because no one error lobe dominates anywhere on the time scale;
the result is a phase plot that looks random over the entire
period of (-40,40) sec.

When the complex envelope spectrum is filtered according to
the Hann filter in (83) - (86), the results for the sampled
filtered complex envelope waveform, obtained by means of the
collapsed FFT in (117) and (118) with a = 0, are given in figures
13 and 14. There were 6400 frequency samples taken uf G(f) with
increment A = 1/80 Hz and an FFT size of N = 1024 was utilized;
see appendix B. A comparison of the magnitudes in figures 13 and
5 reveals virtually identical results; namely, the error and its
inherent accompanying aliasing, that was present in figure 8, 1is
absent from figure 13.

The corresponding phase plot of the FFT output is displayed
in fiqgure 14. 71 the region 0 £ t < 24 sec, where the desired
exp(-at) term d¢ inates, the FFT output phase is equal to the
value of ¢ = -n/2 for this example. When this example was rerun
for ¢ = 0, similar high quality results were obtained, except
that the FFT output phase was zero. The benefits of filtering
the complex envelope spectrum are well illustrated by the results

of figures 13 and 14.
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ALIASING PROPERTIES OF COSINE AND SINE TRANSFORMS

If a time function is causal, it can be obtained from its
Fourier transform either by a cosine or a sine transform.
However, when these integral transforms are approximated, by
means of sampling the frequency function and using some
integration rule like trapezoidal, the "alias-free" interval in
the time domain is approximately halved, as shown below. This
does not necessarily mean that these transform alternatives
should be discarded, because a more rapidly decaying integrand
can be useful, but it does point out a cautionary feature in
their use and the need to consider the tradeoff between aliasing

and truncation error.

GENERAL TIME FUNCTION

In general, complex time function y(t) is obtained from its

Fourier transform Y(f) according to

y(t) = f df exp(i2nft) Y(f) = (119)
- J df cos(2nft) Y(f) + i j df sin(2nft) Y(f) = (120)
= ye(t) + yo(t) for all t , (121)

where complex functions ye(t) and yo(t) are the even and odd

parts of function y(t), respectively.
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CAUSAL COMPLEX TIME FUNCTION

Now suppose that y(t) 1is causal, but possibly complex; then

y(t) =0 for t < 0 . (122)
Then, letting t = -a, a > 0, we have, from (122) and (121),
0 = y(-a) = y,(-a) +y (-a) =y,(a) - y,(a) for a >0 . (123)
That is,
yo(a) = ye(a) for a > 0 . (124)

Therefore, from (121) and (120), we have two alternatives for a

causal complex time function y(t):

y(t) 2 f df cos(2nft) vY(f) for t > 0 , (125)

and

y(t) = i2 j df sin(2nft) Y(f) for t > O . (126)

We need complex function Y(f) for negative as well as positive
frequency arguments f, in order to determine causal complex
function y(t), but we can utilize either a cosine or a sine

transform.
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NONCAUSAL REAL TIME FUNCTION

Now suppose instead that y(t) is real, but noncausal. Then,

since spectrum Y(-f) = Y*(f), we can express (119) as
y(t) = 2 Re J df exp(i2nft) Y(f) = (127)
0

= ZJ df cos(2nft) Yr(f) - ZI df sin(2nft) Yi(f) for all t. (128)
0 0

The first term in (128) 1is even part Ye(t), while the second term
in (128) is odd part yo(t); see (121). 1In this case of a real

time function y(t), we need complex function Y(f) only for £ > O.

CAUSAL REAL TIME FUNCTION

Now let y(t) be both causal and real. Then using property

Y(-f) = Y*(f) in (125) and (126), we obtain

yit) = 4 J df cos(2nft) Y_(f) for t > O , (129)
0
and
y(t) = -4 J df sin(2nft) Y, (f) for t > O . (130)
0

Here, we need either Yr(f) or Yi(f), and then only for positive
frequency arquments f. Also, a cosine or a sine transform will

suffice for determination of y(t).
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ALIASING PRCPERTIES

The above relations have all assumed that spectrum Y(f) is
available for all continuous f. Now we will address the effects
of only having samples of Y(f) availablie at frequency increment

A. We begin with the trapezoidal approximation to (119):

y;(t) =2 Y exp(i2mnat) Y(nA) for all t . (131)
n

The approximation y,(t) is periodic in t with period 1/4. It

can be expressed exactly as

yl(t) = I df exp(i2nft) Y(f) & 6A(f) = (132)
= y(t) @ & ,,(t) = 1 y[t - %] for all t . (133)
n

That is, approximation y,(t) is an aliased version of desired
waveform y(t), with displacements 1/4 in time. This result holds
for any complex waveform y(t) and has been used repeatedly in the
analyses above.

The second approximation of interest is obtained from the
cosine transform in (125), which applies for causal complex y(t)

in the form

Yoo (t) = 28 Y cos(2nnAt) Y(na) for all t . (134)
n

yzc(t) also has period 1/48 in t and can be developed as follows:
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Yoo l(t) = 4 2; [exp(i2rnnAt) + exp(-i2nnAt)] Y(nA) =

J df [exp(i2nft) + exp(-i2nft)] Y(f) & &,(f)

[Y(t) + y(-t)] ® &, ,,(t) = 2 y (t) & &, ,,(t)

- 2; [y[t - %] + y[§ . t]] for all t . (135)

That is, sampling of the cosine transform in (125) results in
aliasing of y(t) plus its mirror image y(-t), even when y(t) is
causal. This will restrict useful results in yzc(t) to a region
approximately half as large as that given by (131) and (133),
where the sampled exponential transform was used. Even when we
restrict calculation of approximation y2c(t) to the region
(0,1/4), we are contaminated by the mirror image lobe y(1/4 - t)
and by the usual lobe y(t + 1/4) extending from t = -1/A into the
desired region.

A similar situation exists for using a sampled version of the
sine transform for causal complex y(t) in (126); namely, consider

the approximation

i2A ) sin(2nnAt) Y(na)  for all t . (136)

¥pg(t) _

Then
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Yy(t) = 4 Y. [exp(i2nnAt) - exp(-i2mnnAt)] Y(nA) =
n

J df [exp!i2nft) - exp(-i2nft)] Y(£) & §,(f)

[y(t) - y(-t)] ® &, ,(t) = 2 y (t) ® & ,,(t)

- Eg[y(t - %] - y[% - t]] for all t . (137)

Here, for the approximate sine transform, twice the odd part of
causal complex y(t) is aliased with separations 1/4 in time,
thereby again leading to a clear region only about half that
attainable from (131) and (133). We will return to these
apparently undesirable transform properties below and find them
useful when we consider a causal real time function.

The next approximation is for the noncausal real waveform
result in (127); namely, letting g = % and E, = l forn 2 1, we

have trapezoidal approximation
[e o}
yy(t) = 2 Re 4 ) €, exp(i2nnAt) Y(nd) for all t . (138)
n=0
Then

y;(t) = 2 Re J df exp(i2nft) Y(f) b &,(f) =
0

= [ df exp(ianft) v(f) 8 8,(f) = L y[t . %] for all t , (139)
n
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just as in (133). Thus, the combination of the cosine and sine
transforms in (128) does not additionally damage the aliasing
behavior associated with sampling. In practice, we would use the
real part of the exponential transform as given by (127). The
same result, (139), follows when the cosine and sine transforms
in (128) are individually directly approximated by the
trapezoidal rule and the results added together.

The two final approximations of interest come from sampling
the results for causal real y(t) in (129) and (130); from (129),

define approximation
(o]

y4c(t) = 44 E €, cos(2nnAt) Yr(nA) for all t , (140)
n=0

which has period 1/4 in t. Now we develop (140) as

Yac(t) = 28 }; cos(2mnit) Y _(na)

2 f df cos(2nft) Y_(£) b 8,(f)

2 j df exp(i2nft) Y_(£) b 8,(f) =
= J df exp(i2nft) [Y(f) + Y*(£)] & §,(f) =
= Y(t) ® &) 0 (t) + ¥ (-t) @ &, ,,(t)

= 3 y[t - %) + 3y y(% - t] =2y, (t) ® & ,(t) for all t, (141)
n n
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where we used the real character of y(t).

This end result is identical to (135); however, approximation
y4c(t) in (140) uses only the real part Yr(f) of the complex
function Y(f), whereas Yoo (t) in (134) requires the complete
complex function Y(f) for a causal complex y(t). Since it is
possible to have complex functions Y(f) which have rapidly
decaying real parts and slower decaying imaginary parts, (140)

affords the possibility of getting a smaller truncation error

than (134), when y(t) is causal real and when both sums are
carried out to the same frequency limit, because both sums must
be terminated in practice. Whether the reduction in the usable
"alias-free" region, dictated by (141), can be traded off against
a smaller truncation error associated with use of only the real
part Yr(f) in (140), depends on the particular example under
investigation. 1In any event, (140) affords an alternative to
consider for causal real y(t).

The final approximation comes about by sampling (130):

o

y4s(t) = -4A E sin(2nnAt) Yi(nA) for all t , (142)
n=1

which has period 1/4 in t. 1In the usual fashion, we find
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Yas(t) = -28 2; sin(2rnnat) Y, (na)

#
!

-2 J df sin(2nft) Y, (f) 8 &,(f)

i2 J df exp(i2nft) Y,(f) & 8,(f) =
= I df exp(iznft) [Y(f) - Y (£)] B 8,(f) =

= y(t) &, ,,(t) - Y (-t) ® &, ,,(t) = 2 Yo(t) & 8, ,,(¢)

1/8 1/4 1/4

= 2; y[t - %] - }; y[% - t] for all t . (143)

Here, we used the real character of y(t).

The end result in (143) is identical to (137); however,
Yq5(t) in (142) only requires knowledge of the imaginary part
Yi(f) of complex function Y(f), whereas yzs(t) in (136) requires
the complete complex function Y(f) for a causal complex y(t).
This is due to the fact that (129) and (130) apply only to causal
real y(t), whereas (125) and (126) apply to causal complex y(t).
Since there exist complex functions Y(f) which have more rapidly
decaying imaginary parts than real parts, the opportunity arises
to reduce the truncation error by employing (142) instead of
(136), when y(t) is causal and real. The comments in the sequel
to (141), regarding the trade-off between truncation error and a

reduced alias-free region, are again applicable.
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This procedure, of using only the imaginary part of a Fourier
transform because it decays faster than the real part, was
utilized to advantage in [4; pages 4 - 6] and was based upon an
earlier result in [5; (15)]. The very rapid decay of the

imaginary part far outweighed the aliasing; see [4; page 6].

EVALUATION BY MEANS OF FFTs

If periodic function Yy (t) in (131) is evaluated at the
equally -paced time points k/(NA) for k=0 to N-1, which suffice

to cover one periocd, we obtain

yl[ﬁ%] = A 2; exp(i2nnk/N) Y(nA) = (144)
N-1

= A )  exp(i2nnk/N) z (145)
n=0

where {z 1, 0 £ n £ N-1, is the collapsed version of sequence

{Y(nA)}, -» < n < ». No approximations are involved in this

collapsing procedure from (144) to (145). Relation (145) can be

accomplished by means of an N-point FFT if N is highly compousite.
In a similar fashion, (140) yields samples of the cosine

transform as
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@

y4c[ﬁ%] =48 Yy £ cos(2nnk/N) Y (nd) =

n=0
= 44 Re ;=0 exp(i2nnk/N) e, Y.(nd) = (146)
N-1
= 44 Re ) exp(1i2nnk/N) zZ, (147)
n=0

where {zn], 0 £ n £ N-1, is the collapsed version of sequence

{€ Yr(nA)}, 0 £ n < =,

n
Since (147) will likely be realized as the real part of an

FFT output, the question arises as to the interpretation and

utility of the total complex FFT output in (147). To this aim,

we rewrite Yac(t) in (146) (in its continuous time version) as

(t) = Re 4 J df exp(i2nft) Y_(f) & 8,(f) =
0

Y4c
= Re{zl(t) @ SI/A(t)} ’ (148)

where we define, for all t, Fourier transform

@

z,(t) =4 J df exp(i2nft) Y _(f) =
0

= J df exp(i2nft) [2Y(f) + 2Y*(f)] =
0

* * .
=y, (t) + y (-t) = [y(t) + y (-t)] exp(i2nf_t) =
= y(t) + y(-t) + ify (t) - yu(-t)] . (149)
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That is, y4c(t) is the real part of the aliased version of zl(t),
which itselt is composed of the analytic waveform y,(t) and its
mirror image. Thus, not only is z,(t) aliased according to
(148), but in addition, z,(t) contains terms which will further
overlap and thereby confuse the values of y4c(t) in the
fundamental range (0,1/A). (Of course, the real part of zl(t) in
(149) for t > 0 is, as expected, just y(t) for this causal real
case.)

Finally, sampling the sine transform of Yi(f) in (142) yields

k .
y4s(ﬁ3] = - 4A ;=1 sin(2nnk/N) Y.(nd) =
= - 47 Im ) exp(i2nnk/N) Y.(nd) = (150)
n=1
N-1
= - 4A Im E exp(i2nnk/N) z, (151)
n=0

where {zn}, 0 < n £ N-1, is the collapsed version of sequence
{Yi(nA}, 1 £ n < =. Relation (151) can be realized as an N-point
FFT of which only the imaginary part is kept for 0 < k < N-1.

As above, the interpretation of the complete complex output
of the FFT in (151) is furnished by returning to the continuous

version of the sampled Yqs(t) in (150). We express it as

[o0]

y4s(t) = - Im 4 J df exp(i2nft) Yi(f) A 6A(f) =
0
= Imfz,(t) ® &, ,(t)] , (152)
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where we define, for all t, Fourier transform

o«

z,(t) = - 4 J df exp(i2nft) Y, (f) =
0

[+ ]

=i J df exp(i2nft) [2Y(f) - 2Y"(f)] =

0
= ily,(t) - y,(-t)] = i[y(t) - y'(-t)] exp(i2mf_t) = (153
= i[y(t) - y(-t)] - yy(t) - yy(-t) - (154)

Again, the aliasing of z,(t) in (152) and the mirror image of the
analytic waveform and complex envelope in (153) will serve to

confuse the usefulness of zz(t). The imaginary part of z,(t) in

(154) for t > 0 is just y(t), as expected, for this causal real

waveform.
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DISPLACED SAMPLING

If displaced samples of a waveform are desired, such as at
time locations (k+8)/(NA) in (145), where 0 < B8 < 1, we can

obtain them via an N-point FFT as follows: from (131),

k+8 . .

1[ ;A] = A 2; exp(i2nnk/N) exp(i2rnB/N) Y(na) = (155)
N-1

= A ;=0 exp(i2nnk/N) z, for 0 S k £ N-1 , (156)

where [zn], 0 £ n £ N-1, is the collapsed version of sequence
{exp(i2nnB/N) Y(nA)}, -» < n < », That is, we have to load up
the arrays containing {z} with phase-shifted versions of the
original sequence {Y(nA)} and then perform the N-point FFT.
Calculation of phasor P, = exp(i2nnB/N) in (155) can take

advantage of recursion P, = Pnh_1 exp(i2np/N).
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SUMMARY

The advantages of filtering the complex envelope spectrum by
means of a suitable lowpass filter are significant in some
instances. The singular behavior of the complex envelope
waveform is eliminated by utilizing a filter which cuts off at
finite frequencies, while the slow decay in the time domain of
the complex envelope is circumvented by using a filter with a
smoothly tapered cutoff that prevents any discontinuities in the
complex envelope spectrum from contributing.

The use of an FFT to evaluate the filtered complex envelope
is then an attractive efficient approach because the inherent
time aliasing associated with frequency sampling has been greatly
suppressed. Also, the very rapidly varying singular components
of the complex envelope have been eliminated, allowing for a
lower time-sampling rate, that is, smaller FFT sizes.

When two waveforms, each with its own imposed amplitude- and
phase-modulations, are convolved, such as encountered in the
narrowband excitation of a passband filter, the output complex
envelope 1s given exactly by the convolution of the individual
complex envelopes. Although the convolution of the two (complex)
imposed modulations is often a good approximation to the output
complex envelope, it has an error term. This analysis is

presented in appendix C.
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APPENDIX A. DETERMINATION OF CENTER FREQUENCY

Suppose we are given spectrum Y(f) of (narrowband) real
waveform y(t), but the center frequency of Y(f) is not obvious or
is unknown. The analytic waveform is still uniquely given by

=]

y,(t) = J df exp(i2nft) Y+(f) = 2 J df exp(i2nft) Y(£f) . (A-1)
0
Make a guess at initial frequency fi near the center of Y (f).
Then compute the initial down-shifted waveform
w
yi(t) = exp(—ianit) y, (t) = 2 J df exp(i2nft) Y(f+fi) . {A-=2)
-f.
i
Compute initial phase P.(t) = arg{y,(t)} and then unwrap P, (t).
Select time t in the interval T of interest and fit a straight
line a + Bt to the unwrapped phase P.(t) over T. Compute

frequency
£ o= f, + =5 ; (A-3)

this is the center frequency of y (t) for t € T. Another
selection of a different time interval could lead to a somewhat
different center frequency; there is no unique center frequency
of an arbitrarily given spectrum Y(f).

The complex envelope is then
y(t) = exp(—i2nfct) y,(t) . (A-4)

The "physical" envelope or extracted amplitude modulation 1is
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Act) = ly(e)l = ly o)l = ly;enl (A-5)

which is independent of the choice of fi or fc. The extracted

phase of complex envelope y(t) is
P(t) = arg{y(t)} = argly,(t) eXP(-iZcht)l = P,(t) - Bt , (A-6)

where we used (A-4) and (A-2). Functions y;(t) and P, (t) have
already been computed and can be used to evaluate the envelope

A(t) and phase P(t). The real waveform is

y(t) = Re{y_ (t)} = Re{y(t) exp(i2nfct)} = A(t) cos[2nfct + P(t)],

(A-T7)
in terms of chosen center frequency fC and amplitude and phase

modulations A(t) and P(t), respectively. Although fC and P(t)
are not unique, the argument of the cosine and the waveform y(t)
in (A-7) are unique, as may be seen by the first equality in
(A-7). All of these relations hold for time t ¢ T.

If the fit of the straight line a + Bt to initial unwrapped

phase P.(t) over interval T is via minimum error energy, then we

find
M.V - H4V
HoHy = Hq T T

There is no need to explicitly compute «, although it should be
included in the error energy minimization in order to afford a

better fit.
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APPENDIX B. PROGRAM FOR FILTERED COMPLEX ENVELOPE VIA FFT

The program listed below actually computes the unfiltered
complex envelope by means of an FFT. In order to convert it to
one which will compute the filtered complex envelope, remove
lines 220 - 320 and replace them by the following lines:

220 F1=40. ! CUTOFF FREQUENCY < Fo

230 H1=.5+*PI/F1l

240 M1=M*F1l/Fo

250 FOR Ms=-M1 TO Ml ! -F1 < F <KFl

260 J=Ms MODULO N ! COLLAPSING

270 F=Df *Ms ! FREQUENCY £

280 CALL Y(F+Fo,Al,Wo,Cp,Sp,¥Yr,Yi) !SHIFTED FREQUENCY FUNCTION
290 Cos=COS(H1x*F)

300 H=Cos*Cos ! REAL LOWPASS HAWN FILTER

310 X(J)=X(J)+Yr*H

320 Y(J)=Y(J)-Yi*H ! CONJUGATE INPUT INTO FFT
19 t COMPLEX EHYELOPE %wIRA SHIFTED FREQUENCY FUHCTIOHN

29 RI=1 !  DAMPING RALPHA

oy} Fo=11309 ! CARRIER FREQUEHCYW

43 Phi==-PI1-2 ' PHAZE

593 M=3038 ' HUMEBER 0QF SAMFLES FOR F < 03 LIME 278
Y5 H=1824 ! SIZE OF FFT; ZERO SUBSCRIFT

s FEDIM CosvdeM 34 S0BsH~12,YC(BIN=-12

34 DIM CozalB2d), 049360, V048960

249 DOUBLE M,H,HZ,J,M= ! INTEGERS, NHOT DOUBLE PRECISION
190 N2=HM-2
119 R=Z.*P1-H
129 FOR J=9 T0D MN/4
130 Cos I =CO3iA*J> I RQUARTER-COSIME TABLE IH Caoszi+:
149 HEXT J
150 Cp=COSIPhi
1540 Sp=SIMCPhi
179 Wo=Z2#Pl*Fo
138 Df=Fo-M '  FRERDUEMCY IMCREMEHWT
176 Dt=1., cH=lf> ! TIME THCREMENT OH COMFLE:® EHVYELOFE
29 MAT “=09. 0
219 MAT V=v9, 3
aggs Mz=-M
2738 J=M=z mMODULD H
249 CALL %(B.,RA1 Mo, Cp,Sp,Yr,¥id b0
250 “lJor=.5%%r
2e0 Y Ja==,5%%) I COMJUGATE IHPUT T FFT
278 FOR Ms=-M+1 TO M#15 ' HOITICE UPPEF LIMIT ON FRERQUEHCY
238 J=Mz= MODULD H ' COLLRAPSING
2749 F=Df=*Ms I FREBDUEHWCY f
1515 CALL Y/ F+Fo,R) Mo, Cp,3p,7r,7Ti ' SHIFTED FREQUEHCY FUHCTION
219 Al Tazdo I+
329 e To= o T= ! COHJUGRTE IHMPUT TOD FFT
339 HE:T Mz
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MAT K=X#*(2.%Df)

MAT Y=Y#¢2,#Df) L% COHJUGATE
CALL Fferi14(N,Cosc#y,X{%¥),Y(*>> | u ¢ty  OF COMPLEX
GINIT 1 - EHYELUOPE

PLOTTER IS "GRRAPHICS"

GRAPHICS OH

WINDOW -MH2,N2,-3,0 ! CEHNTER PLOT AT TIME 1t
LINE TYPE 3

GRID N-3,1

LINE TYPE 4

MOVE 9,9

Ts=Dt*N-4

DRAW N a4, LGTCEXPY-AT#T3s)

PENLIF

LIME TYFPE 1

FOR Ms=-HZ TO H2

J=Mz MODULO H

K=RT)

VYT

Tayet+ysy ! MASHITUDE S&UARED COMFLEX EHYELQFE
IF T:8. THEH S7TO

PERUP
GOTO
PLOT P
NEXT M=
PENUP
PRUSE
GCLERR
GRAFHICS OH

WINDOQW -H2,HZ,-PI,PI

LINE TYPE 3

GRID H-2,PI.-2

LINE TYPE 1

FOR Mz=-HZ TD HZ ' PLOT COMPLE: EHVELOFPE FPHRSE
J=Mz MODULD H

PLIT Mz, FHRr g MO T, =% oo 1 COMJUGARTE THE FFT QUTRUT
HEXT Ms

PEHLIF

PRUSE

SCLERF

GRAFHICS OH

LINE TYPE 2

GRID H-3,P1-2

LINE TVPE 1

FOF Mz=-HZ T3 HZ

Y=tz MODULD H

—

w
T ol Q)
[N

yLGTTo+.5 ' MAGHITUDE OF COMPLES EHWVELOFE

Tz=Mz~D1t ! TIME

Coz=0053  Wo+Tz o ! SHIFT PHHASE THE

NS IH Mo+ Tz ! COMFLE EHYELOFE DY Mo Tz
RN

N R i f COMJUSATE THE FFT QUTFOUT
PLOT Mz, FHAr g« S+ Coz-"+*31n, 2*Sin+V+«Coz0

HE.:T Mz

PEHMHLIF

PRIJZE

END

i
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319 DEF FHRArgci,Y> ! PRINCIPAL RRG(2)
329 IF ¥=0. THEM RETURN .S#PI*SGNC(Y)

338 R=RTNIY - X2

949 IF #>8. THEH RETURN A

359 IF ¥<9. THEHM RETURN R-PI

358 RETURN R+PI

970 FNEHD

988 !

939 SUB Y(F,R1,W3,Cp,3p,"r,Yi> I SPECTRAL FUMCTION
1960 W=2,%#PI1#F

1919 T=W-Wo

1620 D=RI1#*R1+T*T

1939 R1=(Cp*R1+3Sp*T1-D

13409 [1=C5p*A1-Cp*TH>-D

1958 T=W+No

186483 D=RA1+R1+T=+=T

1979 2= Cp*A1-Sp*Ta-D

19309 2= -Sp*A1-Cp*Ti-D

1339 Yr=,3#(R1+R2>

1199 Yi=.5%#0(11+12)

1119 SUBEND

1129 !

1139 SUB Fft 140 DOUEBLE M,RERL Cozi#),X{#1,Y{%32 | N =2 14=182243
1149 DOUELE Log3n N1,H2,H3,N4,T,K ) INTEGERS « 2~31 = 2,147
1154 DOUELE I1,12,13,14,15,16,17,13,12,110,I111,I112, 113,114,008
1168 IF H=1 THEH SUBEXIT

1179 IF N»2 THEH 1259

11383 A=sCBi+:d10

1138 X{10=X(Br=-#C1)

1299 Q=R

1219 A=Y@+ LD

1220 Yola=Yiaa=rilo

122 Year=A

1249 SUBEAILIT

1259 R=LOGCNY ZLOIGCE, )

1268 Log2n=R

1273 IF ABS(A~-Log2n»<1.E~-8 THEM 1380

1239 FRINT "M =";H;"I3 HOT R POWER OF 2; DISALLJWED."
1299 PRUSE

1308 Ml=H-"4

12193 =H1+1

1328 M2=M2+1

1338 H4=HI+H1

13409 FOR Il=1 TdO Log2n

1358 I12=2~"Logadn-11>

1280 [3=2+12

1279 Id4=H-13

2849 FOrR IS=1 TO 12

1393 I8=0I5-10%14+1

1408 IF I&<=HZ THEH 1449

1419 Al=-Cos(H4-16-1

1429 2==Coz{IB5=-H1-1>

1428 GOTD 1459

1440 Rl=Coz(ls-1">

1459 2=-Cos(H3-16-1>

14593 FOR I7=9 T HN-1I3 STEP 13

{4783 I3=I7+I5~-1

1438 [19=13+12
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14943 Ti=XCI8)
1509 T2=x019)
15109 T3=v018>
1528 Ta=v(19>
1530 A3=T1-T2
1549 AR4=T3-T4
1559 X(I8y=T1+T2
15609 Y(CI33=T3+T4
1579 X(I2»=A1+A3-A2%R4
1539 YIS =A1*A4+AZ*H3
15948 NEXT I?
1588 HEXT IS
1519 NEXT I1
1629 Il=Log2n+1
163¢ FOR I2=1 T 14
1549 LCIZ2-10=1
1559 IF I2*Logan THEH 1678
1660 Lolg-10=2~0I1-122
1679 NEST 12
15309 (=3
1533 FOR Itl=1 T L1130
17899 FOR I2=11 TO L.12> STEP L1312
1719 FOR I3=Ix TO L“11>» STEP L1123
178 FOR I4=I3 TO L1 STEP L1l
17328 FOR IS=I4 T3 Lu3) STEP L<C18>
1748 FOR Ie=1I5 TO Lu3» STEP L(92
1798 FOR I7=Is TO L¢V>» STEP LC(S3)
1758 FOR I2=IV TO Lus» STEP L<(V2
1Tre FOR I3=I3 TO Lv5» STEP L(s5J
Ta FOR I19g=1% TD L<4> STEP LIS3
170 FAOR T11=I19 T3 Ld<3y STEP Ludn
PEERSIN] FOR I12=I11 TO L<2» STEP LC3)
1314 FOR I13=I12 T Laly STEP Lu2)
13248 FOR I14=113 TO L<O>» STEP L<13
1338 J=114-1
13489 IF »J THEH 19189
1354 A=
1e2nd AL NPT
13749 ®(Jo=H
1229 R=%0 kD
1390 Wik =y e T
1209 Yo Ji=R
i 5 k=k+1
i i HE=T 114
1AIa HET Itz
i HET 11tz
LRE MET T11
LAy HE:T T1#
1378 HEST 19
1339 HEST 12
133 HEST IT
s TN S) HEWT I6
=319 HEXT IS
2829 HEXT T4
2939 HEXT 13
2049 HEXT 12
SRS HERT I1
e SUEBEND
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APPENDIX C. CONVOLUTION OF TWO WAVEFORMS

Suppose real waveform x(t) excites passband filter H(f) with

real impulse response h(t). Then, the output is
Y(f) = H(f) X(f) , y(t) = h(t) & x(t) . (C-1)
The single-sided output spectrum is
= = _ 1
Y (f) = 2 U(f) Y(£f) = 2 U(E) H(E) X(£) = 5 H () X (f) . (C-2)
The corresponding output analytic waveform is exactly
1
ye(t) = 5 h(t) & x (t) , (C-3)

which is just (one-half of) the convolution of the individual
analytic waveforms.
If the center frequency of Y+(f) is fc (see appendix A), then

the spectrum of the output complex envelope is, using (C-2),

|—=

Y(£) = Y (£+£,) = 5 H(£+£,) X (E4E() = 3 H(E) X(£) ,  (C-4)

2

where we have taken the same center frequency, fc, for H_(f) as
well as X _(f). This relation in (C-4) is exact; it involves no

narrowband approximations. The output complex envelope

corresponding to (C-4) is then exactly
1
y(t) =3 h(t) & x(t) . (C-5)

That is, the complex envelope of the convolution of any two
waveforms is equal to (one-half of) the convolution of the two

individual complex envelopes, irrespective of their frequency

73




TR 8827

contents.
Now suppose that x(t) is given in terms of some complex

imposed modulation xi(t) according to
x(t) = Re{x;(t) exp(i2nf_t)] , (C-6)

which allows for amplitude-modulation as well as phase-

modulation. The spectrum of x(t) can then be expressed as
1 *
X(f) = 3 [Xi(f-fc) + Xi(—f-fc)] . (C-7)

Also, suppose that filter impulse response h(t) is expressible in

a similar form according to
h(t) = Re{hi(t) exp(i2nfct)} ' (C-8)
with corresponding transfer function
H(E) = = [Hy(f-f_) + H (-f-f c-9
(t) = 5 [Hy(f-1,) j(-t-t )1 . (C-9)

The filter output spectrum then follows from (C-1), (C-7),

and (C-9) as
1 * *
Y(£) = 7 [H(£-£f,) X;(f-£f) + H;(-f-f,) X, (-f-f ) +
+ HY(-f-f_) X (£-£,) + H (f-f ) X](-f-£,) ] . (C-10)

By inverse Fourier transforming the individual terms, the

corresponding waveform to (C-10) is found to be exactly
y(t) = Refexp(i2nf t) [y (t) + y (&)1} . (C-11)

where
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y (t) = 2 hi(t) ® x,(t) , (c-17,
and
Yplt) = % [h;(t) exp(-i4nfct)] e x;(t) . (C-13)

Relation (C-12) states that component ya(t) of outpnt y(t)
in (C-11) is just the convolution of the two complex imposed
modulations hi(t) and x;(t). However, (C-11) and (C-13) reveal
that there is an additional term in y(t), which requires che
convolution of a relatively high-frequency component, namely
exp(~i4nfct). Since this latter term, yb(t), will often be
s.all due to this oscillatory integrand, we may neglect it in
many circumstances.

A good way of assessing the importance of the yb(t) term in
(C-11) is to obserxrve that it is due to the second line of the
spectrum in (C-10); the first line in (C-10) corresponds to
yy(t). Since Hi(f) and Xi(f) are generally lowpass functions of
frequency, the function Hi(-f—fc) in (C-10) is centered around
f = —fc, while the Xi(f-fc) term peaks near f = fc. The
separation of these two functions is approximately 2f_, on the f
axis; if this separation is somewhat greater than the bandwidths
of Hy and X then there is inconsequential overlap of any of the
frequency components in the second line of (C-10). This leads to
a small value for yb(t) for all t and we can neglect its effect

relative to y,(t) in (C-11).
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